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Abstract. Stabilization of an inverted pendulum is one of the most appealing 
and conventional problem for control engineering. This system has extremely 
nonlinear representation and entirely unstable dynamics. The main idea of this 
research was to design control algorithms for the balancing of rotary inverted 
pendulum. 

Research gives an idea about a convenient approach to implement a real-
time control which harmonizes the pendulum in vertical-upright position. Two 
stabilization controllers, LQR (Linear Quadratic Regulator) and Fuzzy Logic 
were designed to deal with the non-linear characteristics of the system.  

Outcome of both control methods commencing computer simulation are 
specified to illustrate the efficiency of these controllers. The projected intelli-
gent hybrid controller is evaluated by means of the conventional controller and 
reliability is demonstrated. The results showed that fuzzy controller exhibit  
improved performance than LQR near the linearized region. 

The paper widened the dynamical representation and initiates the implemen-
tation of the considered schemes comparatively.  

Keywords: rotary inverted pendulum, stabilization, LQR, fuzzy logic control-
ler, simulink. 

1 Introduction 

The control of under actuated system is currently a dynamic field of research which is 
appropriate to the broad application in electromechanical systems like aerospace, ro-
botics and marine vehicles.  Pattern of under actuated systems comprised of flexible-
link robots, walking robots, acrobatic robots, space robots, helicopters, satellites, under 
actuated marine vehicles, the pendubot, spacecraft’s etc[1]. Under actuated systems 
comprised into eight classes [2]. The paper demonstrates the control of the rotary in-
verted pendulum, which belongs to class IIa, as it addresses the tracking problem [3-5]. 
The rotational configuration is on the whole an amendment of the well-known cart-on-
rail pendulum structure.  

Compensations of the rotary inverted pendulum system with unhinged poles and 
non-lowest phase dynamics, nonlinear equations with an uncomplicated arrangement 
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direct to choose RIP for testing new control procedure on as a benchmark. As a result 
engineers like to utilize it for authenticating and estimating the efficiency, robustness, 
and precision of their recommended control techniques[6]. 

This is an extremely typical and intellectual nonlinear control dilemma, and numer-
ous techniques previously exist for its explanation [7], for instance, model-based con-
trol, fuzzy control, neural network(NN) control, pulse step control, genetic algorithms 
(GAs)-based control, and so on.  On the other hand, the controller was complicated to 
wholly stabilize a pendulum system within a short period of time[8, 9].  

In this paper, distinction of LQR and fuzzy logic control for a rotary-type inverted 
pendulum system has been identified.   

Initially, an LQR was utilized to steady the rotary inverted pendulum in such a way 
that the pendulum is at all times to retain it upright position and to uphold the arm 
position in horizontal level surface by making use of a state feedback control to move 
about unhinged poles of a linear system to steady ones.  Accordingly, a Mamdani FIS 
is deliberated which alleviates the pendulum in the linear region, imitating LQR con-
trol just about the stability position.  The linear state feedback law is mapped to the 
system of the fuzzy presumption engine. 

2 Mathematical Modeling of Rotary Inverted Pendulum 

In this section, the model of the rotary inverted pendulum is established. Rotational inverted 
pendulum is a nonlinear system of fourth order with a single input variable. The variables relat-
ing internal states are as follows: a rotation angle of a base (ߠ଴), a rotational velocity of a base 
 .(ሶଵߠ) and its corresponding rotational velocity (ଵߠ) an angle of rotation of the pendulum ,(ሶ௢ߠ)

 

 

Fig. 1. Orientation and parameters of rotaryinverted pendulum 

The input variable for the system is the torque delivered by the motor.  The scheme 
is characterized by two equilibrium points.  The steady equilibrium point is attained 
when the pendulum is leaning upright and pointing downwards.  The second equili-
brium point is also defined for the vertical orientation, but works for the pendulum 
pointing upwards[10]. 
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The experimental bed comprised of three prime mechanisms: the plant, digital and 
analog edge and the digital regulator.  The overall scheme is revealed in Fig. 1. The 
plant embraces of a pendulum and a revolving base type of aluminum rods, an unde-
viating DC motor to progress the base and two optical encoders as the angular point 
sensors. While the base swivels all the way through the angleߠ௢, the pendulum is 
liberated to turn around through its angle ߠଵprepared with the vertical.  Crossing point 
flanked by the digital controller and the plant comprised of two information posses-
sion cards and numerous signal conditioning circuitry[11]. 

The ordinary differential equations that approximately illustrate the dynamics of 
the plant are given by:  

 (1) ܽߴ݌ܭ+݋ߠ݌ܽ =ߠ 

ሷଵߠ  ൌ െ ஼భ௃భ ሶଵߠ ൅ ௠భ௚௟భ௃భ sin ሶଵߠ ൅ ଵܭ  ሷ௢ (2)ߠ

Where: 
 ௔= motor armature voltageߴ ሶଵ= angular speed of the pendulumߠ ଵ= angular displacement of the pendulumߠ ሶ௢= angular speed of the rotating baseߠ ௢ = angular displacement of the rotating baseߠ 
 
Equation (1) and (2) describing the dynamics of the model are extremely nonlinear. 

Table 1 represents the parameters involved in (1) and (2) of the RIP system:  

Table 1. Parameter of Rotary Inverted Pendulum System 

Parameter Description Value Unit 

Kp Parameter of DC Motor 74.8903 rad-s-2-v-1 

ap Parameter of DC Motor 33.0408 s-2 

K1 Torque constant 1.03001x10-3 Kg-m/rad 

g Acceleration due to gravity 9.8006 m/sec2 

m1 Pendulum mass 0.086184 kg 

l1 Pendulum length 0.113 m 

J1 Pendulum inertia 1.3001x10-3 N-m-s2 

C1 Friction constant 2.9794x10-3 N-m-s/rad 

 
For the controller synthesis state variable description of pendulum system is re-

quired.  
This is easily done by defining state variables as:ݔଵ ൌ ଶݔ ,௢ߠ ൌ ଷݔ ,ሶ௢ߠ ൌ ,ଵߠ ସݔ ൌߠሶଵ and control signal ݑ ൌ  :௔ to getߴ 

ሶଵݔ  ൌ  ଶ (3)ݔ 

ሶଶݔ  ൌ െܽ௣ݔଶ ൅  (4) ݑ௣ܭ
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ሶଷݔ  ൌ  ସ (5)ݔ

ሶସݔ  ൌ െ ௄భ௔೛௃భ ܽ௣ ൅ ௠భ௚௟భ௃భ sin ଷݔ െ ஼భ௃భ ସݔ ൅ ௄భ௄೛௃భ  (6) ݑ

 
Linearization of (3), (4), (5) and (6) about vertical unstable equilibrium position 

(i.e.,  ൣθଵ, θଶ, θሶ ଵ, θሶ ଶ൧ ൌ ሾ0, 0, 0, 0ሿ ), results in the linear, time invariant state variable 
model. By using data in Table 1, linearized model of the rotary inverted pendulum 
results in:   

 

 ൦ݔሶଵݔሶଶݔሶଷݔሶସ൪ ൌ ቎0 1 0          00 െ33.04 0          000 049.30 073.41  1െ2.29቏ ቎ݔଵݔଶݔଷݔସ቏ ൅ ቎ 074.890െ111.74቏  (7) ݑ

 ቎ݕଵݕଶݕଷݕସ቏ ൌ ቂ1 0 0 00 0 1 0ቃ ቎ݔଵݔଶݔଷݔସ቏ ൅ ቂ00ቃ  (8)  ݑ

 
Equation (7) and (8) is defined by the following equations: 
 

ሻݐሶሺݔ  ൌ ሻݐሺݔܣ ൅  ሻ (9)ݐሺݑܤ

ሻݐሺݕ  ൌ ሻݐሺݔܥ ൅  (10) ݐሺݑܦ 

 
The linearized model in (7) and (8) are not truly represents the physical system, as 

during the linearization process some of the nonlinearities like motor dynamics, fric-
tion , dead-zone and other characteristics are neglected. 

3 Full State Feedback (LQR) Design 

Linearized model of RIP is completely controllable and observable, therefore linear 
state-feedback strategies, such as the LQR, are applicable.  

In this optimal control technique we try to minimize the defined error as a cost 
function and the Linear Quadratic Regulator (LQR) method minimizes the cost func-
tion (J). 

The performance index for the LQR is 

ܬ  ൌ ׬ ሺݔሺݐሻݔܳٹሺݐሻ ൅ ஶ଴ݐሻሻ݀ݐሺݑܴٹሻݐሺݑ  (11) 

subject to  
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 xሶሺtሻ ൌ Axሺtሻ ൅ Buሺtሻ (12) 

Q and R in Cost Function represent the weighting matrices of suitable dimension 
corresponding to the state x and input u, respectively.  

The minimization of J results in moving suitable minimum phase poles to stabilize 
the RIP system immediately with as little controlling force and state deviations as 
reachable[12]. The control law has the state feedback form 

ሻݐሺݑ  ൌ െΣܭ௜ݔ௜ (13) 

Given fixed Q and R, the feedback gains K in (13) that optimize the function J in 
(11) can be uniquely determined by solving an algebraic Riccati equation given be-
low: 

 

 ܱ ൌ ܩ ൅ ்ܵܣ ൅ ܣܵ െ ்ܵܤଵିܴܤܵ ൅ ܳ (14) 

ܭ  ൌ ܴିଵ(15) ்ܵܤ 

 

 

Fig. 2. Open system response with non zero initial condition. (a): simulation result of pendulum 
angle (ߠଵ); (b): simulation result of pendulum velocity(ߠሶଵ). 

By means of the linearized representation of the system, the subsequent con-
straints are allocated to devise most favorable gain by LQR technique. Unbolt sphere 
poles are initiate as 7.4991, -9.7891, 0 and 33.0400. In view of the fact that single 
pole is lying on the right half of s-plane the system is unbalanced. The unstable re-
sponse of system with non-zero initial condition is shown in Fig. 2. 
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By giving the highest priority on controlling ߠଵ than regulating the base position, 
choose the weighting matrices as 

 ܳ ൌ ݀݅ܽ݃ሺ1,0,5,0ሻAnd ܴ ൌ 1 

The optimal feedback gains for the controller in (13) corresponding to the weighting 
matrices Q and R are: ܭ ൌ ሺെ1, െ1.191, െ9.699, െ0.961ሻ 

On substituting (13) in (12) yields 

 

ሻݐሶሺݔ  ൌ ሾܣ െ  ሻ (16)ݐሺݔሿܭܤ

 

The closed loop system poles are -31.84, -14.02, -5.22 and -2.35. They all lie in the 
left half of s-plane and show the closed loop system is stable. 

Applying the control law above, it is observed that the unstable equilibrium point 
of rotary inverted pendulum remains stable and control performance was found ade-
quate. 

The simulation result for stabilization of rotary inverted pendulum by using LQR 
around unstable equilibrium point with non-zero initial condition is given in Fig. 3. 

 

Fig. 3. Rotary inverted pendulum stabilization response by using LQR with non-zero initial 
condition. (a): simulation result of base angle (ߠ௢); (b): simulation result of base velocity (ߠሶ௢); 
(c): simulation result of pendulum angle (ߠଵ); (d): simulation result of pendulum velocity(ߠሶଵ). 
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4 Fuzzy Logic Controller Design 

Commencing the realistic point of observation, real-time control necessitates  
a number of simplifications of the investigational model, and human intrusion is for 
all time essential for this category of control. In common, a controller based on the 
understanding of the human machinist is preferred for the realistic function.  
Fuzzy controllers utilize heuristic information in mounting plan methodologies  
intended for control of non-linear vibrant systems. This loom eradicates the necessi-
tate for widespread facts and statistical modeling of the system[8]. Within this  
segment the alleviation of the RIP system by means of FLC through a primary  
stipulation is presented. Simulink model of fuzzy control system is shown in  
Fig. 4(a). 

The entire numeral of rules is an exponential purpose of the number of contribution 
and number of association functions. For example for an input system with N mem-
bership purpose for each input Nn rules are derived. 

A four input system through seven connection functions is measured by[13]by 
means of 2401 rules. Encompassing such a huge amount of rules possibly will 
grounds difficulties owing to memory restrictions to accumulate the FIS for actual 
time action using Matlab/Simulink [14]. The instigators of this manuscript originate 
that for n =2, N =7 and originating 49 rules formulate the assemblage progression too 
fluctuating but later than additional alteration to the gain these vacillation can be con-
densed notably. 

The two inputs to the fuzzy controller are the position error of the pendulum eଷ and 
the difference of error eସ. Seven connection functions for every input and output 
which are uniformly distributed across the universe of discourse are revealed inFig. 
4(b), Fig. 4(c) and Fig. 4(d).A Mamdani FIS is deliberated which alleviates the pen-
dulum in the linear zone, imitating LQR control just about the equilibrium position. 
The linear state feedback law is recorded to the policy of the fuzzy presumption en-
gine. In common, designed for a fuzzy controller by means of n inputs and single 
output, the center of the controller output fuzzy set Ysmembership function would be 
situated at: 

 

 ሺ݆ ൅ ݇ ൅ ڮ ݈ሻ ൈ ଶሺேିଵሻ௡ (17) 

 
Whereݏ ൌ ݆ ൅ ݇ ൅ ڮ ݈ is the index of the output fuzzy set ܻ௦, ሼ݆, ݇, … ݈ሽ are the lin-
guistic-numeric indices of the input fuzzy sets, N is the number of connection func-
tions on every input universe of dissertation, and n is the number of inputs. 

We decide triangular membership functions for these, by means of centers speci-

fied by (17) and base widths equal to 
ଵଶ.ହ. 
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Fig. 4.  (a) Simulink model of rotary inverted pendulum with fuzzy logic controller. (b): mem-
bership function of input variable (ߠଵ); (c): membership function of input variable (ߠሶଵ); (d): 
Normalized output variable membership function (ߴ௔); (e): simulation response of pendulum 
angle (ߠଵ) with derived gain; (f): simulation response of pendulum angle (ߠଵ) with tuned gains. 

The rule-base of RIP system is shown in Table II, where -3, -2, -1, 0, 1, 2 and 3 
denote fuzzy linguistic values of negative large, negative medium, negative small, 
zero, positive large, positive medium and positive small respectively. 

Transformation of LQR gains into the scaling gains of fuzzy system is achieved by 
using following formula 

 

 ݃௢݃௜ ൌ ݇௜ (18) 

 
Where k୧ are the LQR gains? For g୭ ൌ െ4.6 the fuzzy systems input gains gଵ, gଶ,gଷ and gସ are 0.1975, 0.2391, 2 and 0.1957 respectively. Simulation results of RIP 
system by using FLC with derived and tuned gains are shown in Fig. 8. 

5 Results 

The simulation results of proposed control system for the rotary inverted  
pendulum with the SIMULINK in MATLAB 7.0 are shown in Fig. 2, Fig. 3, Fig. 4 
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and Fig. 5, respectively for conventional Hybrid controller and Intelligent Hybrid 
Controller. 

Fig. 2 shows that rotary inverted pendulum is highly nonlinear model for consider-
ation. To stabilize the system state feedback control technique was used. Fig. 3 shows 
an adequate stabilization controller response through LQR. 

In Fig.4 angle of the pendulum are shown by using FLC. The pendulum shows 
fluctuating response with calculated gains but after adding tuned gains the response 
becomes more condensed.   

The LQR method for non-zero initial condition couldn't set the pendulum to zero, 
but fuzzy controller doesn't have this problem[6]. The comparison results of both the 
controller with non-zero initial condition are shown in Fig.5. It was observed that both 
FLC and LQR have different steady-state error, settling time and overshoots. Through 
LQR, pendulum never attained its steady state value to zero. Analysis of obtained 
results shows that LQR controller relatively gives the fast response and attained its 
settling state quickly in comparison to FLC, but the pendulum keeps oscillating about 
its reference position. The proposed fuzzy controller is able to stabilize the pendulum 
system by tracking the reference signal remarkably, which indicates the disturbance 
rejection capability of FLC controller  

 

 

Fig. 5. Comparision results of FLC with LQR for the stabilization of rotary inverted pendulum. 
(a): simulation result of pendulum angle (ߠଵ) with LQR; (c): simulation result of pendulum 
angle (ߠଵ) with FLC. 
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Table 2. Inference Rules For Fuzzy Balance Controller 

j k Y 
-3 -3 -1.00 
-3 -2 -0.83 
-3 -1 -0.67 
-3 0 -0.50 
-3 1 -0.33 
-3 2 -0.17 
-3 3 0.00 
-2 -3 -0.83 
-2 -2 -0.67 
-2 -1 -0.50 
-2 0 -0.33 
-2 1 -0.17 
-2 2 0.00 
-2 3 0.17 
-1 -3 -0.67 
-1 -2 -0.50 
-1 -1 -0.33 
-1 0 -0.17 
-1 1 0.00 
-1 2 0.17 
-1 3 0.33 
0 -3 -0.50 
0 -2 -0.33 
0 -1 -0.17 
0 0 0.00 
0 1 0.17 
0 2 0.33 
0 3 0.50 
1 -3 -0.33 
1 -2 -0.17 
1 -1 0.00 
1 0 0.17 
1 1 0.33 
1 2 0.50 
1 3 0.67 
2 -3 -0.17 
2 -2 0.00 
2 -1 0.17 
2 0 0.33 
2 1 0.50 
2 2 0.67 
2 3 0.83 
3 -3 0.00 
3 -2 0.17 
3 -1 0.33 
3 0 0.50 
3 1 0.67 
3 2 0.83 
3 3 1.00 
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6 Conclusion 

The aim of this research was to design a stabilizing controller meant for inverted pen-
dulum and this has been fruitfully attained. 

We subsequently compared the performance of the LQR and FLC for a rotary-type 
inverted pendulum system.  

The robustness of both control techniques is verified by running simulation with 
different initial conditions, which confirms the control efficiency of the method. The 
results showed that fuzzy controller reveal enhanced performance than LQR near the 
linearized region. 

On the whole, the manuscript presents a relative guide to individuals eager to learn 
the control laws on such a typical nonlinear and under actuated system. 
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