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Abstract. Structural models such as ontologies and graphs can encode
generic knowledge about a scene observed in an image. Their use in spa-
tial reasoning schemes allows driving segmentation and recognition of
objects and structures in images. The developed methods include find-
ing a best segmentation path in a graph, global solving of a constraint
satisfaction problem, integrating prior knowledge in deformable models,
and exploring images in a progressive fashion. Conversely, these mod-
els can be specified based on individual information resulting from the
segmentation and recognition process. In particular models relying on
spatial relations between structures are relevant and more flexible than
shape models to be adapted to potential variations, multiple occurrences,
or pathological cases. The problem of semantic gap is addressed by gener-
ating spatial representations (in the image space) of relations initially ex-
pressed in linguistic or symbolic form, within a fuzzy set formalism. This
allows coping with uncertainty and fuzziness, which are inherent both
to generic knowledge and to image information. Applications in medical
imaging and remote sensing imaging illustrate the proposed paradigm.

Keywords: Image understanding, structural models, graphs, spatial re-
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1 Structural Models

Models constitute an important source of information for image understanding,
that provides generic knowledge, complementary to the actual data and images.
Such models may provide information regarding the objects contained in the
scene, as well as their spatial arrangement. This aspect confers them a structural
nature, in which spatial relations are of prime importance.

Let us consider medical image interpretation as an example. On the one hand,
biological, anatomical or biomechanical models can be used to guide image in-
terpretation. On the other hand, medical images can be exploited in order to
build models of the human body, from an anatomical or functional point of view.

Iconic representations of anatomical knowledge can be found, such as anatom-
ical atlases. Although their use for normal structure recognition is well ac-
knowledged, they remain difficult to exploit in pathological cases. Anatomical
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knowledge is also available in textbooks or dedicated web sites, and expressed
mainly in linguistic form. These models involve concepts that correspond to
anatomical objects, their characteristics, or the spatial relations between them.
Human experts use intensively such concepts and knowledge to recognize visu-
ally anatomical structures in images. This motivates their use in computer aided
image interpretation. Some attempts to formalize this knowledge have been per-
formed, in particular in the form of ontologies (e.g. the Foundational Model of
Anatomy [14]). Such linguistic or ontological descriptions can be found in other
domains, such as remote sensing.

In several applications, shape is not a sufficient information to describe a
scene, and models should involve higher level information, on the structure and
spatial arrangement of the scene. Hence models of spatial relations have to be
developed and included in the models. Graphs are often used to represent the
structural information in image interpretation, where the vertices represent ob-
jects or image regions (and may carry attributes such as their shapes, sizes, and
colors or grey levels), and the edges carry the structural information, such as
the spatial relations among objects, or radiometric contrasts between regions.

In our work, we concentrate mainly on spatial relations, which are strongly
involved in linguistic descriptions. We proposed mathematical models of several
spatial relations, in the framework of fuzzy set theory [5]. Fuzziness is very impor-
tant to model the intrinsic imprecision of spatial relations expressed in a linguis-
tic way. The modeling relies on tools from mathematical morphology [7,9], which
provides a strong algebraic framework. This allows deriving similar models, with
the same properties, in various settings, either quantitative, semi-quantitative
(fuzzy) or qualitative (logics) ones (see [6] for mathematical details), and thus
reasoning at different levels and on different types of information. In particular,
the fuzzy representations can enrich anatomical ontologies [21] and contribute
to fill the semantic gap between symbolic concepts, as expressed in the ontology,
and visual percepts, as extracted from the images. A symbolic concept represent-
ing a given spatial relation can be translated into semi-qualitative representation
using the proposed fuzzy models. The parameters are tuned using learning proce-
dures for each application domain1 [3], leading to a representation in the image
domain. Combination with image information can then be performed. These
ideas were used in particular in our segmentation and recognition methods.

Interactions between models and images can be seen in different directions. A
model can drive the exploration of an image, as described next. Conversely, the
result of an image interpretation process can be used to modify a generic model
to make it specific to the observed case. Moreover, results on several images can
help building generic models. In the sequel, we focus on the first aspect.

1 For instance, a relation such as “close to a given object” is intrinsically fuzzy, and
moreover its concrete meaning depends on the domain. It is typically not the same
for anatomical structures in medical images, and for man-made or natural objects
in satellite images.
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2 Model-Based Structure Recognition and Image
Understanding

The methods we developed for segmentation and recognition of 3D structures in
medical images can be seen as spatial reasoning processes. Two main components
of this domain are spatial knowledge representation and reasoning.

In particular spatial relations constitute an important part of the knowledge
we have to handle, as explained before, since they constitute relevant information
to guide the recognition of structures embedded in a complex environment, and
are more stable and less prone to variability (even in pathological cases) than
object characteristics such as shape or size. Imprecision is often attached to
spatial reasoning in images, and can occur at different levels, from knowledge to
the type of question we want to answer.

The reasoning component includes fusion of heterogeneous spatial knowledge,
decision making, inference, recognition. Two types of questions are raised when
dealing with spatial relations:

1. given two objects (possibly fuzzy), assess the degree to which a relation is
satisfied;

2. given one reference object, define the area of space in which a relation to
this reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination:

– mathematical morphology, which is an algebraic theory that has extensions
to fuzzy sets and to logical formulas, and can elegantly unify the represen-
tation of several types of relations;

– fuzzy set theory, which has powerful features to represent imprecision at
different levels, to combine heterogeneous information and to make decisions;

– formal logics and the attached reasoning and inference power.

The association of these three frameworks for spatial reasoning is an original
contribution of our work, and the lattice structure underlying each of these
frameworks is a core feature, making the use of mathematical morphology rele-
vant and powerful [6].

The interpretation of complex scenes in images often requires (or can benefit
from) a model of the scene. The spatial arrangement of objects or structures is
often crucial for differentiating among objects with similar appearances in the
images, or disambiguating complex cases. Examples occur in many domains,
including medical imaging, in which structural knowledge can help in the in-
terpretation of the images. In magnetic resonance imaging (MRI), for instance,
radiometry is often insufficient for recognizing individual anatomical structures,
and their relative spatial configuration provides an important input into the
recognition process [12]. Other examples occur in aerial and satellite imaging,
robot vision, and video sequence interpretation, among other fields.
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In our work, we often address the image interpretation problem as a joint
problem of image segmentation and object recognition, based on structural in-
formation. The methods summarized in the next section address this question,
and belong to a more general class of model-based or knowledge-based interpre-
tation systems. Only a sketch of each of them is provided here, and mathematical
and technical details can be found in the mentioned references.

3 A Few Approaches

3.1 Morphisms between Graphs

A first recognition approach, called global, uses the first type of question (1).
The idea is to represent all available knowledge about the objects to be recog-
nized. A typical example consists of graph-based representations. The model is
then represented as a graph where nodes are objects and edges represent links
between these objects. Both nodes and edges are attributed. Node attributes are
characteristics of the objects, while edge attributes quantify spatial relations be-
tween the objects. A data graph is then constructed from each image where the
recognition has to be performed, based on a preliminary segmentation into homo-
geneous regions. Each region of the image constitutes a node of this data graph,
and edges represent spatial relations between regions, as for the model graph.
The comparison between representations is performed through the computation
of similarities between model graph attributes and data graph attributes. Note
that it might not be straightforward to design an appropriate similarity function
involving vertex and edge attributes for a specific application.

Although graph representations have become popular in the last 40 years [13],
a number of open problems remain in their efficient implementation. In particu-
lar, when expressing the recognition problem as a graph matching problem be-
tween the image and model graphs, which is an annotation problem, this scheme
often requires solving complex combinatorial problems [13]. Improvements can
be achieved by suppressing iteratively inconsistent annotations using a constraint
propagation procedure, as proposed e.g. in [29,36] for simple geometrical figures
or in [24,32] for the annotation of image segmentations. However, the constraint
propagation procedure does not guarantee a unique annotation. Moreover, all of
these approaches assume a correct initial segmentation of the image. However,
the segmentation problem is a known challenge in image processing, to which
no universal solution exists. The segmentation is usually imperfect, and no iso-
morphism exists between the graphs being matched. An inexact matching must
then be found, for instance by allowing several image regions to be assigned to
one model vertex or by relaxing the notion of morphism to that of fuzzy mor-
phism [10,28]. For example, previous studies [15,16] employ an over-segmentation
of the image, which is easier to obtain. A model structure (i.e. a graph vertex)
is then explicitly associated with a set of regions, and the recognition problem is
expressed as a constraint satisfaction problem. To overcome the complexity is-
sue, a weaker version of the model relations (encoded in the edges) is considered,
and the problem is solved using a modified AC-4 propagation algorithm [25].
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3.2 Progressive Exploration of the Image Using Graphs

A second type of approach relies on the second type of question (2), and is called
here progressive or sequential [8,12,18]. In this approach, objects are recognized
sequentially and their recognition makes use of knowledge about their relations
with respect to other objects. This sequential segmentation framework allows
decomposing the initial problem into several easier-to-solve sub-problems, using
the generic knowledge about the scene. Relations with respect to previously
obtained objects can be combined at two different levels of the procedure. First,
fusion can occur in the spatial domain, using spatial fuzzy sets. The result of
this fusion allows building a fuzzy region of interest in which the search of a
new object will take place, in a process similar to focalization of attention, thus
driving the image exploration. In a sequential procedure, the amount of available
spatial relations increases with the number of processed objects. Therefore, the
recognition of the most difficult structures, usually handled in the last steps, will
be focused in a more restricted area. Another fusion level occurs during the final
decision step, i.e. segmentation and recognition of a structure. For this purpose,
spatial relations are introduced in the evolution scheme of a deformable model,
in which they are combined with other types of numerical information, usually
edge and regularity constraints.

This approach, as pointed out in [12], requires to define the order according
to which the objects have to be recognized and the choice of the most appro-
priate order is a challenging issue. This was addressed in [18], with two original
contributions:

– First, we extended the sequential segmentation framework by introducing a
pre-attentional mechanism based on saliency [22], which is used, in combi-
nation with spatial relations, to derive a criterion for the optimization of the
segmentation order.

– Secondly, we introduced criteria and a data structure which allow us to detect
the potential errors and control the ordering strategy.

The proposed framework has two levels. The first level is a generic bottom-up
module which allows selecting the next structure to segment. This level does
not rely on an initial segmentation or classification, but instead on a focus of
attention and a map of generic features. The sequential approach allows this
level to use two types of knowledge: generic and domain independent features in
unexplored area of the image to segment, and high-level knowledge such as spa-
tial relations linked to the already recognized structures. The selection criterion
is used to optimize the segmentation order and to select the next structure to
segment at each step. The second level achieves recognition and segmentation of
the selected structure, as well as the evaluation of the segmentation. The recog-
nition of the structure is achieved at the same time as the segmentation. This
level is composed by the segmentation method defined in [12], integrating spatial
relations in a deformable model, and an original evaluation method. It uses two
types of a priori information: the spatial information which allows us to reduce
the search area, and a radiometric estimation of the intensity of the structure.
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Therefore, the radiometric estimation needs to discriminate the intensity of the
structure only in the search area and not in the whole image. Once a structure
is segmented and recognized, this level also evaluates the quality of the result
and proposes a strategy to guarantee the spatial consistency of the result and
to potentially backtrack on the segmentation order.

This approach is illustrated in Figure 1.

Fig. 1. General scheme of the sequential segmentation framework (figure reproduced
from [18]). The graph initially represents only the generic knowledge (here about the
brain) and the reference structures. At each step, a structure is selected according to
the saliency of its localization and its relations to other structures. This structure is
then segmented and the result is evaluated. In case of success, the graph is updated and
the process is iterated until the graph is completely specialized or no more structure
can be segmented. In case of failure, the system is constrained to select another path
to segment and the process is iterated.

3.3 Global Method Based on Graphs and CSP

To overcome the problems raised by sequential approaches while avoiding the
need for an initial segmentation, we proposed in [27] an original method that
still employs a structural model, but solves the problem in a global fashion. Our
definition of a solution is the assignment of a spatial region to each model ob-
ject, in a way that satisfies the constraints expressed in the model. We propose a
progressive reduction of the solution domain for all objects by excluding assign-
ments that are inconsistent with the structural model. Constraint networks [30]
constitute an appropriate framework for both the formalization of the problem
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and the optimization. An original feature of the proposed approach is that the
regions are not predetermined, but are instead constructed during the reduction
process. The image segmentation and recognition algorithm therefore differs from
an annotation procedure, and no prior segmentation of the image into meaning-
ful or homogeneous regions is required. This feature overcomes the limitations
of many previous approaches (such as [15,16]). More precisely, a constraint net-
work is constructed from the structural model, and a propagation algorithm is
then designed to reduce the search space, which is an adaptation of AC-3 al-
gorithm [30] with an ordering of constraints to reduce the computational cost
and reduce the domains as much as possible. Finally, an approximate solution is
extracted from the reduced search space. Once the propagation process termi-
nates, the solution space is typically reduced substantially for all of the model
structures. The final segmentation and recognition results can then be obtained
using any segmentation method that is constrained by this solution space.

This approach is illustrated in Figure 2.

3.4 Global Method Based on Nested Conceptual Graphs and Fuzzy
CSP

In this section, we summarize a hybrid method, relying on a preliminary segmen-
tation of the image, which does not need to be perfect, and on a recognition step
to identify the concepts represented in the model [33]. In some applications, for
instance to interpret Earth observation images, multiple instantiations of some
objects should be taken into account (e.g. several boats in a harbor).

In this case, the interpretation relies on a generic model of the scene to be
recognized, encoding objects and groups of objects, spatial relations between
between objects or between groups, along with the imprecision and uncertainty
attached to the formal representations of such relations (this includes complex
relations such as alignment, parallelism, etc. [34,35]). The model is formalized
as a nested conceptual graph [31], which allows representing internal and exter-
nal information, zooming, partial description of an entity, or specific contexts.
Identifying possibly multiple instances of the model in an image is formalized as
a graph homomorphism.

Finding the best homomorphism is performed by solving a fuzzy constraint
satisfaction problems (FCSP) [17], using arc-consistency checking [11]. FCSP
and arc-consistency checking have been extended in [33] to deal with relations
having an arity greater than two and with complex objects. The main contribu-
tion in this work concerns the adaptation of the algorithm to deal with groups
of objects which can be related among them or have a spatial property such as
being aligned. A methodology is then proposed to find the instantiations of a
nested conceptual graph in an unlabeled image. Experimental results on high
resolution satellite images show that the proposed approach successfully recog-
nizes a given spatial configuration (such as harbor or airport) and is robust to
image segmentation errors. The results demonstrate the interest of using complex
spatial relations for the interpretation of images.

This approach is summarized in Figure 3.
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Fig. 2. Overview of the CSP approach for the brain structures example (figure repro-
duced from [27]). For instance, the solution space of the left caudate nucleus (CNl) is
reduced based on the constraint that “the left caudate nucleus (CNl) is exterior (i.e.
to the right in the image) to the left lateral ventricle (LV l)”.
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Fig. 3. Summary of the method for determining the model’s instantiations using nested
conceptual graphs and FCSP (figure reproduced from [33])
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4 A Few Examples

The approaches summarized above have been proved useful in a number of appli-
cations. A first example concerns brain structure recognition and segmentation
in 3D MRI images. Both sequential and global approaches have been successfully
applied [12,18,23,27], in particular for ventricles and grey nuclei. These struc-
tures highly benefit from the knowledge expressed in a structural model, since
spatial relations are quite stable while shape and location are much more prone
to inter-individual differences. These relations mainly include adjacency, direc-
tional relations and distances. The recognition and segmentation performed well
even in the presence of large tumors deforming the normal structures.

Sequential approaches have been also applied in other domains, with some-
times more complex relations. Let us mention two examples:

– optical coherence tomography (OCT) is now used for eye imaging, and pro-
vides high resolution images of the retinal layers. In [19,20], a method seg-
menting all visible layers was proposed, integrating spatial constraints be-
tween layers, such as approximate parallelism;

– segmentation of thoracic structures, including pathological ones such as tu-
mors, was performed in [26,37], on 3D CT images. As an example, the heart
was segmented using shape and structural information, modeling the fact
that it is approximately between the lungs.

In all these examples, the global organization of the structures, and in partic-
ular their relative orientation, was known. It could then easily be used, knowing
the orientation of the acquired images. When considering ante-natal images, this
is no more true, since the position of the fetus can vary (while the position of the
pregnant woman during the acquisition is known). This question was addressed
in [1,2,4], and a progressive exploration of the images allows deriving both the
global orientation and the recognition of individual structures.

Let us finally mention an application of the FSCP method summarized in
Section 3.4 to the problem of finding harbors in high resolution remote sensing
images [33], based on a conceptual graph. Several instantiations of the model
are then searched for in the image, and here more complex relations, considering
also groups of objects, are used.

These examples will be illustrated during the conference.
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