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Abstract. Probability-possibility transformation is a purely mechanical trans-
formation of probabilistic support to possibilistic support and vice versa. In this
paper, we apply the most common transformations to graphical models, i.e.,
Bayesian into possibilistic networks. We show that existing transformations are
not appropriate to transform Bayesian networks to possibilistic ones since they
cannot preserve the information incorporated in joint distributions. Therefore, we
propose new consitency properties, exclusively useful for graphical models trans-
formations.

Keywords: Probability-Possibility transformation, Bayesian networks, Possibilis-
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1 Introduction

Probability and possibility theories are two ways to express uncertainty. Several bridges
between these two frameworks were established. Especially, several researches ad-
dressed the problem of transformation of possibilistic distributions into probabilistic
ones and vice versa. The first interest underlying these transformations is to study the
coherence between these frameworks and, more precisely, the consistency of derived
distributions. Another interest is to make a benefit advantage of each framework. Fol-
lowing this idea, we are interested by transformations between Bayesian networks [13]
and their adaptation in the possibilistic framework i.e. possibilistic networks [13]. In
fact, these graphical models, which share the same graphical component i.e. Directed
Acyclic Graph (DAG), are quantified using different distributions (i.e., probability dis-
tributions in the case of Bayesian networks and possibility ones in the case of possibilis-
tic networks). Recently, the inference topic in possibilistic networks has been explored
using compilation techniques [1]. It has been shown that the qualitative setting of possi-
bility theory goes beyond the probabilistic framework and the quantitative possibilistic
framework since it takes advantage of specific properties of the minimum operator. So,
our objective in this paper is to study the possibility of switching from one model to
another in order to reason in an efficient way.

This paper is organized as follows: Section 2 presents most common transformations.
Section 3 presents some basics of Bayesian and possibilistic networks. Section 4 studies
the particular case of transforming Bayesian networks into possibilistic ones.
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2 Probability-Possibility Transformation

Possibility theory introduced by Zadeh [14] and developed by Dubois and Prade [6] lies
at the crossroads between fuzzy sets, probability and non-monotonic reasoning. The ba-
sic building block in possibility theory is the notion of possibility distribution [6]: let
V = {X1, ..., XN} be a set of state variables whose values are ill-known such that
D1 . . .Dn are their respective domains. Ω = D1 × . . . ×DN denotes the universe of
discourse, which is the cartesian product of all variable domains in V . Vectors ω ∈ Ω
are often called realizations or simply “states” (of the world). In what follows, we use
xi to denote possible instances of Xi. The agent’s knowledge about the value of the xi’s
can be encoded by a possibility distribution π : Ω → [0, 1] where π(ω) = 1 means that
ω is totally possible and π(ω) = 0 means that ω is an impossible state. It is generally
assumed that there exist at least one state ω which is totally possible, π is then said to
be normalized. We denote by �(π) the set of totally possible states in π. From π, one
can compute, for any event A ⊆ Ω, the possibility measure Π(A) = supω∈A π(ω) that
evaluates to which extend A is consistent with the knowledge represented by π. The
particularity of the possibilistic scale is that it can be interpreted twofold: either in an
ordinal manner, when the possibility degree reflects only an ordering between the pos-
sible values, so the minimum operator is used to combine different distributions, or, in a
numerical manner, so possibility distributions are combined using the product operator.

Several researchers tackle different bridges between probability and possibility the-
ory. When we deal with those transformations, two cases can be distinguished, those
relative to subjective probabilities [8] and those relative to objective ones. In this pa-
per, we focus on these latters which were used in several practical problems such as:
constructing a fuzzy membership function from statistical data [11], combining prob-
abilities and possibilities information in expert systems [9] and reducing the compu-
tational complexity [7]. Roughly speaking, transforming probabilistic distributions to
possibilistic ones, denoted by p → π, is useful when weak source of information makes
probabilistic data unrealistic or to reduce the complexity of the solution or to combine
different types of data. However, transformation, denoted by π → p, is useful in the
case of decision making. Interestingly enough, when transforming p → π, some infor-
mation is lost because we transform point value probabilities to interval values ones. In
contrast, π → p adds information to some possibilistic incomplete knowledge.

2.1 Consistency Principle

In order to describe different transformations, several properties, called consistency
principle, were proposed in literature. We retain, in particular, three of them:

Zadeh Consistency Principle: Zadeh [14] defined the probability-possibility consis-
tency principle such as ”a high degree of possibility does not imply a high degree of
probability, and a low degree of probability does not imply a low degree of possibility”.
The degree of consistency between p and π is defined by: C(π, p) =

∑
i=1...n πi ∗ pi.

Zadeh [14] pointed out that C(π, p) is not a precise law or a relationship between pos-
sibility and probability distributions. It is an approximate formalization of the heuristic
connection stating that lessening the possibility of an event tends to lessen its probabil-
ity but not vice-versa.
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Klir Consistency Principle: The concept of consistency condition was redefined by
Klir [10]. Assume that the elements of Ω are ordered in such a way that pi > 0 and
pi ≥ pi+1, ∀ i = {1..n}. Any transformation should be based on these assumptions:
– A scaling assumption that forces each value πi to be a function of pi/p1 (where
p1 ≥ . . . ≥ pn).
– An uncertainty invariance assumption according to which p and π must have the same
amount of uncertainty.
– Consistency condition: πi ≥ pi stating that what is probable must be possible, so π
can be seen as an upper-bound of p.
Dubois and Prade [5] gave an example to show that the scaling assumption of Klir may
sometimes lead to violation of the consistency principle. The second assumption is also
debatable because it assumes that possibilistic and probabilistic information measures
are commensurate.

Dubois and Prade Consistency Principle: Dubois and Prade defined the consistency
principle, differently, using these assumptions [4]:
– Consistency condition: Pi < Πi, ∀ i = {1..n}.
– Preference preservation: Assuming that π has the same form as p, then ∀(ω1, ω2) ∈
Ω2, p(ω1) > p(ω2) ⇒ π(ω1) > π(ω2) and p(ω1) = p(ω2) ⇒ π(ω1) = π(ω2).
– Maximum specificity: Let π1 and π2 be two possibility distributions, then π2 is more
specific than π1 iff: ∀ω ∈ Ω, π2(ω) ≤ π1(ω).

2.2 Probability-Possibility Transformation Rules

Several transformation rules are proposed in literature. We present the most com-
mon ones, namely: Klir transformation (KT), Optimal transformation (OT), Symmetric
transformation (ST) and Variable transformation (VT).

Klir Transformation (KT): Assume that the elements of Ω are ordered in such a way
that: ∀ i = {1..n}, pi > 0, pi ≥ pi+1 and πi > 0, πi ≥ πi+1 with pn+1 = 0
and πn+1 = 0. Klir has considered the principle of uncertainty preservation under two
scales [10]:

– The ratio scale: p → π and π → p, named the normalized transformations, are
defined by:

πi =
pi
p1

, pi =
πi

n
∑n

i=1 πi
(1)

– The log-interval scale: p → π and π → p are defined by:

πi = (
pi
p1

)α , pi =
π

1
α

i∑n
i=1(πi)

1
α

(2)

where α is a parameter that belongs to the open interval ]0, 1[.

Optimal Transformation (OT): proposed by Dubois and Prade [4] and also called
”Asymmetric Transformation”, is defined as follows:

πi =
∑

j/pj≤pi

pj , pi =

n∑

j=1

πj − πj+1

j
(3)
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OT is optimal because it gives the most specific possibility distribution i.e. that loses
less information [7], and it’s asymmetric since the two formulas in Equation (3) are not
converse. Sandri et al. [7] suggested a Symmetric Transformation (ST) that needs less
computation but it is quite far from the optimum. It is defined by:

πi =

n∑

j=1

min(pi, pj) (4)

Variable Transformation (VT): It’s a p → π transformation proposed by Mouchaweh
et al. [12] and expressed as follows: assume that the elements of Ω are ordered in such
a way that: ∀ i = {1..n}, pi > 0, pi ≥ pi+1 and πi > 0, πi ≥ πi+1 with pn+1 = 0
and πn+1 = 0, then:

πi = (
pi
p1

)k.(1−pi) (5)

where k is a constant belonging to the interval: 0 ≤ k ≤ logpn

(1−pn). log(
pn
p1

) .

Bouguelid [3] proposed V Ti, which is an improvement of VT, to make it as specific as
OT. So, a parameter ki is set for each πi. Formally: ∀ i = {1..n},

πi = (
pi
p1

)ki.(1−pi) (6)

where ki belongs to the interval: 0 ≤ ki ≤ log(pi+pi+1+...+pn)

(1−pi). log(
pi
p1

)
, ∀i = {2..n}.

Table 1 summarizes characteristics of KT, OT, ST, VT and V Ti. For each transforma-
tion, it is mentioned if it deals with discrete (D) and-or continuous case (C) and if it
satisfies consistency principle (Cs), preference preservation (PP) and maximum speci-
ficity (MS). Clearly, OT and V Ti are the most interesting rules in the discrete case for
p → π.

Table 1. Summary of transformations

TR p → π π → p Properties
D C Cs PP MS

KT × × × × ×
OT × × × × × × ×
ST × × × × × ×
VT × × ×
VTi × × × × ×

3 Basics on Bayesian and Possibilistic Networks

Bayesian networks [13] are powerful probabilistic graphical models for representing
uncertain knowledge. Studying the possibilistic counterpart of Bayesian networks leads
to two variants, namely: min-based possibilistic networks corresponding to the ordinal
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interpretation of the possibilistic scale and product-based possibilistic networks corre-
sponding to the numerical interpretation [2]. It is well-known that product-based pos-
sibilistic networks are close to Bayesian networks since they share the same features
(essentially the product operator) with almost the same theoretical and practical results
[2]. This is not the case for min-based possibilistic networks due to the particularities of
the min operator (e.g. the idempotency). Over a set of N variables V = {X1, .., XN},
Bayesian networks (denoted by BN ) and possibilistic networks (denoted by ΠG⊗
where ⊗ = min in the ordinal setting, and ⊗ = ∗ in the numerical one) share the
same two components:
– A graphical component composed of a DAG, G= (V,E) where V denotes a set of
nodes representing variables and E a set of edges encoding links between nodes.
– A numerical component that quantifies different links. Uncertainty of each node Xi

is represented by a local normalized conditional probability or possibility distribution
in the context of its parents.
Given a Bayesian network BN on N variables, we can compute its joint probability
distribution by the following chain rule :

p(X1, . . . , XN) = ∗i=1..N P (Xi | Ui) (7)
In a similar manner, the joint possibility distribution of a possibilistic network ΠG⊗ is
defined by the ⊗-based chain rule, where ⊗ = min for the ordinal setting and ⊗ = ∗
for the numerical one, expressed by:

π⊗(X1, . . . , XN ) = ⊗i=1..N Π(Xi | Ui) (8)
One of the most interesting treatments that can be applied for possibilistic networks is
to evaluate the impact of a certain event on the remaining variables. Such process, called
inference, consists on computing a-posteriori possibility distributions of each variable
Xi given an evidence e.

Example 1. Let us consider the Bayesian network and the possibilistic network in Fig.
1(a) and Fig. 1 (b), respectively (sharing the same DAG). The joint distributions of BN
and ΠG⊗ using Equations (7) and (8) are presented in Fig. 1 (c).

(a) (b) (c)

Fig. 1. A Bayesian network (a), a possibilistic network (b) and their joint distributions (c)
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4 Transformation from Bayesian to Possibilistic Networks

Probability-possibility transformations can be useful to study the coherence between
probabilistic and possibilistic frameworks and, more precisely, the consistency of de-
rived distributions. Our idea consists in applying such transformations from Bayesian
networks to possibilistic networks and interpreting their behavior on joint distributions.
Formally, using existing transformations, we can define transformation from Bayesian
to possibilistic networks in a local manner as follows:

Definition 1. Let BN be a Bayesian network and p be its joint distribution. Let TR be
a transformation rule. Let BNtoΠN be the function that transforms BN into ΠNTR

⊗
using TR under the setting ⊗ s.t. ⊗ = {∗,min}. Let PDtoΠD be the function that
transforms a probability distribution into a possibilistic one using TR. Formally, ΠNTR⊗
is the transformation of BN using TR if, ∀Xi ∈ V ,

Π(Xi | Ui) = PDtoΠD(P (Xi | Ui), TR) (9)

ΠNTR
⊗ = BNtoΠN(BN, TR,⊗) (10)

Example 2. Table 2 depicts the transformation of conditional tables of the Bayesian
network of Fig. 1 (a) using KT, OT, ST, VT and V Ti.

Table 2. Transformation of conditional distributions

Π(A) ΠKT ΠOT,V Ti ΠST ΠV T

a1 1 1 1 1
a2 0.66 0.4 0.8 0.4

Π(B | A) ΠKT ΠOT,V Ti ΠST ΠV T

b1 | a1 1 1 1 1
b2 | a1 0.5 0.4 0.7 0.5
b3 | a1 0.16 0.1 0.3 0.1
b1 | a2 1 1 1 1
b2 | a2 0.6 0.5 0.8 0.27
b3 | a2 0.4 0.2 0.6 0.2

This local transformation does not ensure the same results as a global one. In other
words, the transformation of the joint distribution underlying the initial Bayesian net-
work is not equivalent to the transformation of its local conditional distributions, which
can affect the inference results. Let πTR

p be the transformation of the joint distribution
encoded by a Bayesian network BN using the transformation TR and let πTR

⊗ be the
joint distribution relative to ΠNTR⊗ obtained using Definition 1. The following exam-
ple illustrates the problem described above.

Example 3. Table 3 presents the transformation of global distributions of the Bayesian
network of Fig. 1 (a) and of the resulted possibilistic network ΠN⊗ using KT, OT, ST,
VT and V Ti.
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Table 3. Possibility distributions using different transformations

A B p KT OT, V Ti ST VT
πKT
p πKT

∗ πKT
min πOT,V Ti

p πOT,V Ti∗ πOT,V Ti
min πST

p πST
∗ πST

min πV T
p πV T

∗ πV T
min

a1 b1 0.36 1 1 1 1 1 1 1 1 1 1 1 1
a1 b2 0.18 0.5 0.5 0.5 0.44 0.4 0.4 0.8 0.7 0.7 0.38 0.5 0.5
a1 b3 0.06 0.16 0.16 0.16 0.06 0.1 0.1 0.36 0.3 0.3 0.06 0.1 0.1
a2 b1 0.2 0.55 0.66 0.66 0.64 0.4 0.4 0.84 0.8 0.8 0.45 0.4 0.4
a2 b2 0.12 0.33 0.4 0.6 0.26 0.2 0.4 0.62 0.64 0.8 0.19 0.108 0.27
a2 b3 0.08 0.22 0.26 0.4 0.14 0.08 0.2 0.46 0.48 0.6 0.09 0.08 0.2

As depicted in Table 3, if we are in a numerical setting, the values of πTR
p are differ-

ent from those of πTR
∗ and, if we deal with an ordinal setting, the order between πTR

p

and πTR
min is not preserved, as well. For instance, for the transformation ST, more pre-

cisely for a1b2 and a2b2, we can see that 0.8 > 0.62 while 0.7 < 0.8. It is also the case
of VT for a1b2 and a2b1. Suppose, now, that we have the evidence B = b2, then for
πST
p we have a1 > a2 while the same evidence implies a2 > a1 for πST

min. This means
that, considering πST

min as the consistent transformation of the initial Bayesian network
and using it to infer evidence can lead to erroneous results.

The question that may arise is the following: Do all transformations suffer from the
problem of information loss? The answer can be found in the following example.

Example 4. Let us consider the BN of Fig. 2 (a) s.t p > q. This implies that p > 0.5
and q < 0.5, which in its turn implies that 0.5p > 0.5q > 0.25. Fig. 2 (c) shows the
joint distributions where x < 1, y < 1 and z < 1 and TR can be any transformation
(i.e. KT, OT, ST, VT, V Ti).

We start by interpreting product-based networks which only rely on numerical val-
ues. It is obvious, from columns 4 and 5 of Fig. 2 (c), that there is a loss of information
since values of πTR

p and πTR
∗ are different. When we deal with min-based networks,

the focus is only on the order induced by values. In fact, the order of πTR
p of the initial

network BN is {a1b1 > a1b2 > (a2b1 = a2b2)}, while the order relative to πTR
min is

{(a1b1 = a2b1 = a2b2) > a1b2}.

(a) (b) (c)

Fig. 2. A BN (a), its transformation into a possibilistic one (b) and their joint distributions (c)
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Following this problem, we propose two new properties. The first one (resp. the sec-
ond one), presented in Definition 2 (resp. Definition 3), is applicable for transforming
Bayesian networks into min-based possibilistic networks (resp. product-based possi-
bilistic networks). These properties should be seen as extensions of Dubois and Prade
Consistency principle described above.

Definition 2. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a min-based possibilistic network ΠNTR

min. Let p be the joint distribu-
tion relative to BN computed using Equation (7) and πTR

p be its transformation by TR.
Let πTR

min be the joint distribution relative to ΠNTR
min using Equation (8) (s.t ⊗ = min).

Let δ(πTR
p ) and δ(πTR

min) be the order underlying πTR
p and πTR

min, respectively. Then TR
is said to be consistent iff: (i) δ(πTR

p ) = δ(πTR
min) and (ii) �(πTR

p ) = �(πTR
min)

Definition 3. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a product-based possibilistic network ΠNTR∗ . Let p be the joint dis-
tribution relative to BN computed using Equation (7) and πTR

p be its transformation by
TR. Let πTR

∗ be the joint distribution relative to ΠNTR
∗ using Equation (8) (s.t ⊗ = ∗).

Then TR is said to be consistent iff: πTR
p = πTR

∗

Clearly, the formulas (ii) in Definition 2. guarantees the normalized values in both or-
dinal and numerical settings. We point out that this property is ensured by existing
transformations.

5 Conclusion

Our objective in this paper is to study the transformation of Bayesian networks into
possibilistic networks using existing transformations proposed in literature. We found
out that switching from one model to another does not preserve the information incor-
porated in joint distributions (either numerical values for ΠN∗ or the order induced by
values for ΠNmin). Such result allows us to conclude that such transformations are
inappropriate in the case of graphical models. Indeed, we have shown that it leads to
erroneous inference results. A deep study on this behavior shows that this loss of in-
formation is due to the non-compatibility of product and min operators, in the ordinal
setting. In our future work, we will deeply explore the impact of this loss of information
on inference result for both product-based possibilistic networks and min-based possi-
bilistic networks and propose two new transformations that respect the properties we
proposed in order to transform Bayesian networks into possibilistic ones.
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