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Preface

The 10th International Workshop on Fuzzy Logic and Applications, WILF 2013,
held in Genoa (Italy) during November 19–22, 2013, covered topics related to
theoretical, experimental, and applied fuzzy techniques and systems with em-
phasis on their applications in the analysis of high-dimensional data.

This event represents the pursuance of an established tradition of biannual in-
terdisciplinary meetings. The previous editions of WILF have been held, with an
increasing number of participants, in Naples (1995), Bari (1997), Genoa (1999),
Milan (2001), Naples (2003), Crema (2005), Camogli (2007), Palermo (2009), and
Trani (2011). Each event has focused on distinct main thematic areas of fuzzy
logic and related applications. From this perspective, one of the main goals of
the WILF workshops series is to bring together researchers and developers from
both academia and high-tech companies and foster multidisciplinary research.

After a rigorous peer-review selection process, we selected 19 high-quality
manuscripts from the submissions received from all over the world. These were
accepted for presentation at the conference and are published in this volume. In
addition to regular papers, the present volume comprises the contributions of
the three keynote speakers:

– Isabelle Bloch (Telecom ParisTech and CNRS LTCI Paris, France) “Model-
Based Image Interpretation Under Uncertainty and Fuzziness”

– Frank Klawonn (Ostfalia University of Applied Sciences, Wolfenbüttel, Ger-
many) “What Can Fuzzy Cluster Analysis Contribute to Clustering of High-
Dimensional Data?”

– Paulo Lisboa (Liverpool John Moores University, Liverpool, UK) “Inter-
pretability in Machine Learning — Principles and Practice”

The contributions of the two tutorial presenters are also included:

– Nahla Ben Amor (University of Tunis, Tunisia) “Possibilistic Graphical Mod-
els: From Reasoning to Decision Making”

– Corrado Mencar (University of Bari, Italy) “Interpretable Fuzzy Systems”

The success of this workshop is to be credited to the contribution of many
people, in particular to the Program Committee members for their commitment
to provide high-quality, contructive reviews, to the keynote speakers and the
tutorial presenters, and to the local Organizing Committee for the support in
the organization of the workshop events.

September 2013 Francesco Masulli
Gabriella Pasi
Ronald Yager
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What Can Fuzzy Cluster Analysis Contribute

to Clustering of High-Dimensional Data?

Frank Klawonn1,2

1 Bioinformatics & Statistics
Helmholtz-Centre for Infection Research

Inhoffenstr. 7, D-38124 Braunschweig, Germany
frank.klawonn@helmholtz-hzi.de
2 Department of Computer Science

Ostfalia University of Applied Sciences
Salzdahlumer Str. 46/48, D-38302 Wolfenbuettel, Germany

f.klawonn@ostfalia.de

Abstract. Cluster analysis of high-dimensional data has become of spe-
cial interest in recent years. The term high-dimensional data can refer
to a larger number of attributes – 20 or more – as they often occur in
database tables. But high-dimensional data can also mean that we have
to deal with thousands of attributes as in the context of genomics or
proteomics data where thousands of genes or proteins are measured and
are considered in some analysis tasks as attributes.

A main reason, why cluster analysis of high-dimensional data is differ-
ent from clustering low-dimensional data, is the concentration of norm
phenomenon, which states more or less that the relative differences be-
tween distances between randomly distributed points tend to be more
and more similar in higher dimensions.

On the one hand, fuzzy cluster analysis has been shown to be less
sensitive to initialisation than, for instance, the classical k-means algo-
rithm. On the other, standard fuzzy clustering is stronger affected by
the concentration of norm phenomenon and tends to fail easily in high
dimensions. Here we present a review of why fuzzy clustering has special
problems with high-dimensional data and how this can be amended by
modifying the fuzzifier concept. We also describe a recently introduced
approach based on correlation and an attribute selection fuzzy clustering
technique that can be applied when clusters can only be found in lower
dimensions.

1 Introduction

Cluster analysis is an exploratory data analysis technique which aims at par-
titioning data into groups (clusters). Instances in the same cluster should be
similar, instances from different clusters should be dissimilar. This might sound
like a very well defined task, but there are actually various open questions in-
volved whose answers are not unique at all.

Although the original intension of cluster analysis is a grouping of the data
in terms of a partition, clustering is often applied to identify one or a few single

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 1–14, 2013.
c© Springer International Publishing Switzerland 2013



2 F. Klawonn

clusters containing only a fraction of the whole data set. We will not discuss this
question in more detail in this paper.

Cluster analysis is based on the concept of similarity or – the dual notion
– distance. Some clustering techniques like hierarchical clustering require only
the pairwise distances between the instances in the data set to form the clusters.
Whether these distances are based on the Euclidean distance, on some correlation
measure or other notions, is not important for this type of clustering algorithm.
Most clustering algorithms are designed to handle real-valued data, i.e. the data
set is assumed to be a subset of Rm. In this paper, we will also restrict our
considerations to such data. It should be noted that it is common to carry out
a normalisation of the single dimensions – see for instance [1] – before cluster
analysis is applied. Normalisation is not the topic of this paper. So we assume
that the data set to be clustered is already normalised if a normalisation is
recommended.

For such data, clustering is then often based on the Euclidean distance or –
more generally – on a metric derived from an Lp-norm. There are still different
notions of what a cluster is. In most cases, clusters are assumed to be “compact
clouds” of data. Sometimes, a more general notion of a cluster as a “dense and
connected region” is considered. Especially for high-dimensional spaces, it can be
difficult to define what a densely populated region is, since the high-dimensional
space is more or less always sparsely populated with data and the density can
vary significantly.

Figure 1 illustrates the notion of ideal clusters in three dimensions. There are
three clusters that are well-separated from each other. Unfortunately, clusters
in higher dimensions cannot be visualised in such a simple way and, even worse,
high-dimensional data have peculiar properties making it more difficult to define
what clusters are and to identify clusters in high-dimensional data.

In the following section, we will shortly recall problems caused by high-
dimensional data in the context of cluster analysis. Section 3 provides a brief
review on ideas of fuzzy cluster analysis, especially of those concepts that are
relevant for clustering high-dimensional data. Specific advantages and disad-
vantages of applying fuzzy clustering to high-dimensional data are discussed in
Section 4.

2 What Are Clusters in High-Dimensional Data?

Data of dimensionality 30 or more can easily be found in many applications like
industrial production where measurements from a larger number of sensors are
recorded simultaneously and constantly. Patient data in medicine including labo-
ratory results can also have a large number of attributes. But there are also data
with 10,000 or more dimensions, especially in the field of biology and medicine.
High throughput technologies like microarrays can measure the expression of
far more than 10,000 genes easily. It might then be interesting to cluster ex-
pression profiles of patients for better treatment and offer personalised medicine
(see for instance [2]). In [3] growth curves of more than 4000 mutants of bateria
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Fig. 1. Ideal clusters

under more than 100 conditions, i.e. dimensions, were measured by the VITEK R©2
technology and clustered.

High-dimensional data exhibit properties that differ from low-dimensional
data and these properties seem sometimes counterintuitive. One of the main
causes for the differing properties of high-dimensional data is the concentration
of norm phenomenon (CoN). It can formally be described in the following way1

[5,6]. Let Xm be an m-dimensional random vector and let dm(x) denote the
distance of x ∈ Rm to the origin of the coordinate system based on a suitable
distance measure, for instance the Euclidean distance. Let n ∈ N be the size

of the sample that is taken from the random vector Xm. Let d
(max)
m and d

(min)
m

denote the largest and the smallest distance of a point in the sample to the origin
of the coordinate system. Then

lim
m→∞ Var

(
dm(Xm)

E(dm(Xm))

)
= 0 ⇒ d

(max)
m − d

(min)
m

d
(min)
m

→p 0 (1)

holds, where →p denotes convergence in probability. In other words, when the
relative variance – relative with respect to the mean distance – of the distances

1 This description is taken from [4].
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to the origin converges to zero for higher dimensions, then the relative difference
of the closest and farthest point in the data set goes to zero with increasing
dimensions. The requirement that the relative variance goes to zero is, for in-
stance, satisfied when the random vector Xm is a sample from m independent
and identically distributed random variables with finite expectation and vari-
ance and the Euclidean distance is used as the distance measure. The converse
theorem also holds [6].

It should be noted that the choice of the origin of the coordinate system as
the query point to which the distances of the data points are computed is not of
importance. Equation (1) is also valid for any other query or reference point. The
same applies to the distance measure. It should be noted that other Lp-norms
than the Euclidean norms can slightly mitigate the effect of CoN, but cannot
avoid it. Without a deviation from the strict axioms of a norm, it is impossible
to avoid CoN. Other distances, like fractional distances are investigated in [7].
Unbounded distance measures on compact subsets of Rm are proposed in [8]. A
discussion on various distance measures in connection with CoN is provided in
[9,10].

Why can CoN pose a problem for clustering high-dimensional data? If we have
to deal with well-separated clusters as in Figure 1, just in more dimensions,
CoN does not apply to the data set as a whole. It only applies to the single
clusters. CoN mainly causes an algorithmic problem. Especially for prototype-
based clustering algorithms that start with initial, more or less randomly defined
cluster centres and then try to adjust and fit these cluster centres step by step
to the data. Such a randomly defined cluster centre will have roughly the same
distance to all data clusters and therefore to all data due to CoN. This means
that it is extremely difficult for the algorithm to adjust such cluster centres,
since more or less all data points fit equally bad to all clusters. This algorithmic
problem will be discussed in more detail in Section 4.

But there are more difficulties with high-dimensional data than just this algo-
rithmic problem. Even for low-dimensional data, there might be dimensions or
attributes that do not contribute to the clustering which is usually not a series
problem since one or a few irrelevant attributes will have little effects. But if
the large majority of attributes in high-dimensional data is irrelevant for the
clusters and the distances are computed using all attributes, this simply means
the largest part of the distance is noise. Indeed, for high-dimensional data it
cannot be expected that all attributes contribute to the clusters. Therefore, for
high-dimensional data it is very common to apply subspace clustering (see for
instance [11,12,13]). Figure 2 illustrates by a three-dimensional example what
subspace clustering aims at. The attribute z is irrelevant for the clusters. A pro-
jection of the data set to the x/y-plane would already reveal the clusters. So the
suitable subspace in this case would be the x/y-plane. Of course, the projection
plane in which clusters are detected does not need to be axes-parallel. If only
axes-parallel projections are considered, subspace clustering can be seen as a
feature selection technique.
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Fig. 2. Clusters in a subspace

Challenges for subspace clustering are the search for the right projection in
which the clusters can be found and the possibility of spurious clusters in very
high-dimensional data [4].

If subspace clustering is restricted to axes-parallel projections, it assumes
that all clusters are characterised by the corresponding subset of attributes.
This idea can be generalised in the sense that each cluster has its individual
subset of attributes that are relevant for it. This situation is illustrated for a
low-dimensional data set in Figure 3. For each of the three clusters one of the
three dimensions is irrelevant. The values of the irrelevant attribute spread over
the whole range of values and the attribute does not provide any information for
the cluster. This concept of clusters was discussed in [14], but not in the context
of high-dimensional data. This idea is related to biclustering [15,16] or two-
mode clustering [17] where records and attributes are clustered simultaneously.
Correlation clustering is an even more general concept of clustering for high-
dimensional data. It is assumed that each cluster is located in its own subspace
which can be a simple hyperplane or a more complex structure (see for instance
[13]).

After a brief review of fuzzy clustering concepts, we will discuss how fuzzy
techniques can contribute to clusters in high-dimensional data in the sense of
Figures 1 and 3. Subspace clustering will not be discussed in detail here.
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Fig. 3. Clusters in individual subspaces

3 Fuzzy Cluster Analysis

Fuzzy c-means clustering (FCM) [18,19] can be viewed as a generalisation of the
classical k-means clustering algorithm [20]. In both cases the number of clusters
must be fixed in advance. There are additional techniques to determine the
number of clusters. But determining the number of cluster is another issue and
will not be discussed in the context of this paper. FCM uses cluster centres or
prototypes. These prototypes should be positioned in such a way that the sum
of the (squared Euclidean) distances dij between data point xj in cluster i and
cluster centre vi are minimised. Each data point xj is assigned to the clusters i
in terms of degrees uij . FCM is therefore based on the objective function

f =

k∑
i=1

n∑
j=1

uw
ijdij (2)

to be minimised under the constraints

k∑
i=1

uij = 1 for all j = 1, . . . , n. (3)

It is assumed that c clusters should be found in the data set. If the so-called
fuzzifier w is chosen as w = 1, FCM reduces to the classical k-means algorithm.
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The larger the fuzzifier w is chosen, the more fuzzy or overlapping the clus-
ters tend to be. An alternating optimisation scheme is applied to minimise the
objective function (2). Cluster centres are initialised randomly. Assuming these
cluster centres to be fixed, there is a closed-form solution for the minimum of
(2) as a function of the membership degrees uij .

uij =
1∑c

k=1

(
dij

dkj

) 1
w−1

, (4)

Then these membership degrees are considered to be fixed and a closed-form
solution for the minimum of (2) as a function of the cluster centres vi can be
calculated.

vi =

∑n
j=1 u

w
ijxj∑n

j=1 u
w
ij

, (5)

This alternating update scheme of the membership degrees and the cluster cen-
tres is repeated until convergence, i.e. until the changes are below a chosen
threshold. Of course, this alternating optimisation scheme cannot guarantee con-
vergence to the global mimimum of the objective function (2). It will usually only
converge in a local optimum that might not reflect a good or desired clustering
result.

One advantage of FCM is that it is less sensitive to the initialisation. This is
not only an empirical observation. It can be demonstrated that the introduction
of the fuzzifier can reduce the number of undesired local minima in the objec-
tive function [21]. Nevertheless, FCM has other disadvantages and can lead to
undesired results, especially when clusters tend to vary in density. Therefore, in
[22], the concept of polynomial fuzzifier (PFCM) was introduced. The objective
function (2) is changed to

f =

k∑
i=1

n∑
j=1

(
αu2

ij + (1 − α)uij

)
dij (6)

where α ∈ [0, 1] is a fixed parameter. This is nothing else, but a convex com-
bination of the FCM objective function with fuzzifier w = 2 and the k-means
objective function. For α = 1, one obtains FCM with fuzzifier w = 2 and for
α = 0 it results in standard k-means clustering. In this way, PFCM combines
the advantages of FCM and k-means clustering.

k-means and its fuzzified versions can also be extended to fit more flexible
cluster shapes [23] or clusters of different sizes [24]. For a more detailed overview
on fuzzy cluster analysis we refer to [25,26]. To be able to adapt to more flexible
cluster shapes means also that more parameters are introduced, leading to more
local minima of the objective function. Even worse, for high-dimensional data,
basic assumptions of such more complex clustering approaches migt be violated.
The Gustafson-Kessel algorithm [23] suffers from this problem in a similar way
as EM clustering based on Gaussian mixture models. Both approaches estimate
the cluster shape based on a covariance matrix. For very high-dimensional data
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the covariance matrices are often degenerated. For 10,000-dimensional data the
covariance matrices of the clusters are automatically degenerated when the num-
ber of data points is less than 10,000.

Nevertheless, we will consider one specific extension of (fuzzy) clustering which
reflects the idea of clusters as shown in Figure 3. A weighting of attributes is
introduced into the objective function (2) by modifying the distance.

dij =
m∑
s=1

βt
i,s

(
x
(s)
j − v

(s)
i

)2
(7)

where x
(s)
j and v

(s)
i are the values of the s-th attribute of the data point xj and

the cluster centre vi, respectively. βi,s is the weight that attribute s obtains for
cluster i. The weights must satisfy the constraint

m∑
s=1

βi,s = 1. (8)

t > 1 is a fixed parameter which controls how much the clusters are forced to
focus on attributes. For t → 1, each cluster will put its full weight on only one
attribute. For t → ∞ all attributes will obtain the same weight as in the usual
clustering algorithms. The algorithm is described in detail in [14].

4 Fuzzy Cluster Analysis for High-Dimensional Data

Let us first consider the case of high-dimensional data where clusters are well-
separated as illustrated in Figure 1 for the low-dimensional case. As mentioned
above, this mainly turns out to be an algorithmic problem. If we knew the lo-
cation of the cluster centres, we could easily verify that we have well-separated
clusters. Standard k-means has a high chance to get lost in a local minimum
where some prototypes cover more than one data cluster and other protoytpes
split a data cluster into smaller artificial clusters. As mentioned above, FCM
can reduce the number of local minima in the objective function and one would
expect that FCM could therefore better cope with high-dimensional data. Un-
fortunately, FCM performs even worse for high-dimensional data than k-means
clustering. It happens very often that all or most of the prototypes – the com-
puted cluster centres – gather closely around the centre of gravity of the whole
data set. Taking a closer look at the update equation (4) of FCM and taking
CoN into account, this is no surprise. The membership degrees are computed
based on the relative distances of the data points to the prototypes. At the start
of FCM, the prototypes will usually not be close to the centres of the data clus-
ters. In this case, CoN shows its effects and all data points will have roughly the
same relative distance to a prototype, so that the membership degrees also be-
come roughly the same for all data points. When the prototypes are updated by
Equation (5), all data points obtain roughly the same weight and the prototypes
end up close the centre of gravity of the whole data set.
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Fig. 4. The objective function of fuzzy clustering has a local minimum in the centre of
all data points for high-dimensional data

Figure 4 from [27] explains this effect. It shows the objective function (2) of
fuzzy clustering reduced to one parameter for a specific data set. The data set
consists of a fixed number of well-separated clusters – each of them concentrated
in a single point – distributed uniformly on the surface of an (m−1)-dimensional
unit hypersphere. The cluster prototypes are first all placed into the origin, i.e.
the centre of gravity of all the data points. Then the cluster prototypes are
moved along the lines connecting each cluster prototype with one of the true
cluster centres. So at 0 on the x-axis in Figure 4 all prototypes are at the origin
(radius=0), at 0.5 they are halfway between the origin and the true cluster
centres and at 1 each of the prototypes is placed exactly in one of the cluster
centres. As can be seen from the figure, the clear global minimum of the objective
function is at 1, i.e. when all prototypes are placed in the true cluster centres.
But there is a local minimum at the origin, separated by a local maximum
from the global minimum. The local maximum is shifted more to the right for
higher dimensions. Since the algorithm to minimise the objective function of
fuzzy clustering can be viewed as a gradient descent technique [28], the cluster
prototypes will end up in the local minimum at the origin when the initialisation
is not close enough to the true cluster centres.

According to [27], one possible solution to this problem is an adjustment of
the fuzzifier. The higher the dimension of the data, the smaller the fuzzifier
should be chosen. This is, however, a tedious parameter adjustment task and it
is difficult to define rules of thumb for the choice of the fuzzifier based on the
dimensionality of the data set. But it was demonstrated in [27] that PFCM does
not suffer from the problems of FCM. In contrast to FCM, PFCM assigns zero
membership degrees to data points that are very far away from a prototype.
But it also avoids the problems of k-means clustering. Since k-means clustering
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Fig. 5. Distribution of the per data point maximum membership degrees for standard
FCM (left) and FCM with attribute selection (right)

assigns each data point to a unique cluster, a prototype has no information about
data points that are close, but a little bit closer to another cluster. The objective
function of PFCM will also have the undesired local minimum shown for FCM in
Figure 4. However, the local maximum will be very close to zero and PFCM will
only get lost in the undesired local minimum when all prototypes are initialised
very close to the centre of gravity of the whole data set. It was also demonstrated
in [27] with various benchmark data sets that PFCM performs much better than
k-means clustering and FCM.

Another interesting clustering approach for high-dimensional data borrowing
from fuzzy concepts was recently introduced in [29]. The underlying principle
of the clustering algorithm is based on the following obvious observation. For
each point in the data set consider its distances to all other data points. For
any two points in the data set, the correlation between their distance lists can
be computed. One would expect a higher correlation for points from the same
cluster than for points from different clusters. The algorithm puts points with
a high correlation in their distance lists together in one cluster. The correlation
measure plays a crucial role in this algorithm. The most popular Pearson corre-
lation is very sensitive to outliers which are very common in the distance lists.
The points in the same cluster will yield small distance values, all others large
ones, so that the Pearson correlation will not be a proper choice. Rank correla-
tion coefficients like Kendall’s tau do not have these problems. However, rank
correlation coefficients are not well suited for real-valued data with noise. They
only consider whether one value is greater than another. But for similar values,
i.e. distances of points far away from the considered cluster, it is more or less a
random event which distance is larger. A more suitable correlation coefficient for
this clustering concept is the robust gamma introduced in [30,31]. This robust
gamma correlation coefficient is based on fuzzy orderings and fuzzy equivalence
relations and gives little weight to the ordering of almost identical values, i.e.
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similar distance values in the clustering context. The same benchmark data sets
as in [27] were used in [29] to evaluate the performance of this clustering ap-
proach with respect to high-dimensional data. The results were again far better
than the ones obtained by k-means clustering and FCM.

Finally, we investigate whether it is possible to detect clusters as illustrated
in Figure 3 in high-dimensional data on the basis of the distance function in
Equation (7) with a weighting of attributes. We consider an artificial data set of
20 dimensions. There are 20 clusters and each of them contains 50 data points.
For each cluster, all but one attribute follow a standard normal distribution
with mean 0 and variance 1. For each dimension, there is one cluster in which
the corresponding attribute follows a normal distribution with mean 8, so that
only in this specific dimension, the cluster is very well separated from the other
clusters.

We first apply standard FCM. For each of the 1000 data points, we choose the
highest membership degree to the 20 clusters and plot a histogram over these
membership degrees. This histogram is shown on the left-hand side of Figure 5.
The maximum membership degrees are all very close to 0.05. For 20 clusters,
the average membership degree will be 0.05. This means no data point has a
significantly high membership degree to any cluster. Incorporating the attribute
selection technique as described in [14], we obtain the histogram on the right-
hand side of Figure 5 which indicates that clusters have been better identified.
But how well were the clusters identified?
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In order to see this we take a look at the weights βi,s, i.e. how much influence
attribute s has on cluster i. Figure 6 visualises these weights in the form of a
heatmap. The rows correspond to the clusters, the columns to the attributes.
The positive result is that each cluster more or less focuses on a single attribute,
i.e. in each cluster all except one attribute have a weight close to zero. The
negative result is that some clusters have chosen to focus on the same attribute
which means that these clusters share the same data cluster. And therefore, some
clusters have not been discovered. This problem actually comes along with the
problem of determining the number of clusters. We have assumed the number of
clusters to be known in advance, which is not a realistic assumption. One way
to determine the number of clusters, is to start the clustering algorithm with a
sufficiently large number of clusters and then merge similar clusters together in
a similar way as described in the compatible cluster merging strategy in [32]. In
this way, one would discover the 20 clusters correctly.

5 Conclusions

Fuzzy cluster analysis can contribute to clustering high-dimensional data. One
must, however, be very careful with the choice of the methods. Standard FCM
has even more difficulties with high-dimensional data than k-means clustering
unless the fuzzifier is carefully adapted to the number of dimensions. PFCM as a
mixture of crisp and fuzzy clustering can better cope with high-dimensional data.
The underlying assumption is in any case that (almost) all attributes are actu-
ally relevant for the clusters. If clusters should be found in subspaces, subspace
clustering techniques are a better choice. If it is assumed that each cluster has
its own specific set of characteristic attributes, FCM or PFCM in combination
with weighting of attributes can be applied. This approach is, however, limited
to data of moderate dimensionality, since the number of additional parameters
is c ·m where c is the number of clusters and m is the dimensionality of the data
set. For m = 10, 000, this approach is not really feasible from the computational
point of view.
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1. Berthold, M., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data
Analysis: How to Intelligently Make Sense of Real Data. Springer, London (2010)

2. Kerr, G., Ruskin, H., Crane, M.: Techniques for clustering gene expression data.
Computers in Biology and Medicine 38(3), 383–393 (2008)
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Abstract. Theoretical advances in machine learning have been reflected in 
many research implementations including in safety-critical domains such as 
medicine. However this has not been reflected in a large number of practical 
applications used by domain experts.  This bottleneck is in a significant part 
due to lack of interpretability of the non-linear models derived from data. This  
lecture will review five broad categories of interpretability in machine learning 
- nomograms, rule induction, fuzzy logic, graphical models & topographic 
mapping. Links between the different approaches will be made around the 
common theme of designing interpretability into the structure of machine learn-
ing models, then using the armoury of advanced analytical methods to achieve 
generic non-linear approximation capabilities. 

1 Introduction 

The practical application of decision support systems of various types is the eventual 
outlet for machine learning research. While commercial products has existed for some 
time including in safety-related applications [1] and much research is published in 
medical decision support [2-3], there are still very few routinely used products, given 
the huge volume of the available literature and the fast pace of theoretical develop-
ments in computational intelligence.  This is especially the case outside of signal 
processing where pragmatic applications of fuzzy logic and neural networks have 
been commercially exploited [4]. This observation raises important issues about the 
practical utility of machine learning methods more generally, hence the societal value 
of the research investment in this area. 

In many application domains, the key limitation of generic non-linear methods is 
lack of interpretation.  This is key especially in safety-related applications but also 
more widely, since learning systems are generally one of several components in an 
integrated software application, for instance for decision support, where central as-
pects of acceptance testing are verification and validation (v&v). Verification tests 
that the system is correctly matching the initial specification and design (‘doing things 
right’) and validation tests that the software system as a whole meets its intended 
operational purpose (‘doing the right things’). 
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In the context of machine learning applications, the requirement of verifiability in-
cludes not just computational integrity but also a sound match with the domain user 
expertise. This includes checking that a predictive model is not exploiting data arti-
facts instead of the correct data structure, and also controlling any risks arising from 
model operation in response to novel data i.e. unexpected outliers [5]. 

Validation of predictive models is a test of the generality of the model i.e. its valid-
ity in generalising to out-of-sample data.  This aspect has been the subject of much 
theoretical research. 

In summary, the requirements for v&v are met in part if machine learning models 
are designed to be interpretable, in the sense that they meet the following require-
ments [6]: 

• Mapping to domain knowledge. 
• Ensure safe operation across the full range of operational inputs. 
• Accurate modelling of non-linear effects. 

The latter aspect is the default condition for machine learning models beyond gene-
ralised statistical models. The other two requirements are the reality checks that are 
needed before a system can be put to practical use. The last two bullet points capture 
two complementary aspects of the model: reliability, in other words knowing when 
the model output can be trusted, and uncertainty of model predictions, which meas-
ures the precision of predictions when the model is reliable. 

This position paper relates specifically to the importance of mapping learning 
models to expert knowledge. 

The first thing to note is that predictive accuracy is not enough for predictive sys-
tems. This is because few data bases are artefact free by design, therefore the more 
powerful a non-linear predictive model is, so the better it becomes at exploiting  
structural noise, in the form of artifacts of the data acquisition  process, so that  
improvements in predictive accuracy can be achieved which in no way represent ge-
neralisations to future data. An example of this would be if image acquisition for pre-
dictive modelling contains central figures to be detected against a mixed background, 
but the camera setting is not controlled to ensure that depth of focus is maintained 
across the full data set, with the consequence that the images containing the features 
of interest have the background out-of-focus while the images omitting the central 
figures are totally in focus. Any blur detector will consistently separate images into 
the correct sets, while capturing no information at all about the structure of the fea-
tures of interest. In more generally data-based applications artifacts are easily intro-
duced unknowingly, potentially resulting in fictional generalisation accuracy unless 
the operation of the classifier is explained. 

How do these basic principles of interpretability apply in practice to machine learn-
ing models? To start answering this question we need to look into the range of infor-
mation processing methods, shown in fig. 1.  
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Fig. 1. Information processing has in practice significant overlaps between different high level 
requirements. This diagram is intended as a pragmatic landscape of modelling methodologies, 
noting their different aims and the overlaps in the approaches to implementation. 

Broadly speaking machine learning approaches are alone in the spectrum in their 
lack of interpretability. At either end, both signal processing and knowledge-based 
methods are accessible to direct interpretation and that is a major part both in theory 
and in practice. Statistical methods are in part restricted by modelling assumptions, 
but this parametric requirement in return opens a route to interpretation. In fact 
classes of models such as logistic regression were originally designed to explain vari-
ation in the data, as an extension of ANOVA for many covariates. The prediction 
would result naturally from the model insights generated in explaining the variation in 
the data. 

In recent decades, the focus on predictive accuracy [7] has lost sight of the value of 
interpretation in data analysis.  The rest of the paper presents a very brief overview of 
current analytical methods with interpretation capabilities, together with emerging 
directions that provide alternative approaches to traceability of data-driven models. 

2 Competing Methodologies, or Complementary? 

Traceability is a central pillar of data analysis. It comes in the form of modeling from 
first principles e.g. in probability theory, in breaking down random variation and  
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attributing effects to individual variables with analysis of variance, and also in sepa-
rating signal from noise using significance testing.  The limitations of the more tradi-
tional statistical approaches lie in the analysis of high-dimensional data and in the 
attribution of covariate effects in predictive models. 

The earliest systematic methodologies for predictive inference with multivariate 
data relied on parametric model representations either to generate data in each class or 
to directly model class separation, i.e. in the form of generative or discriminative 
models [8].  

Arguably the most widely used statistical models in any practical application are 
linear regression and logistic regression, extending with different parametric assump-
tions into the class of generalized linear models.  They all share a single linear scor-
ing index β.x mapped onto the outcome variable through appropriately chose link 
functions.  This methodology enables the use of a visual representation of the influ-
ence of each variable in the model response, as which is measured by the produce of a 
linear coefficient and the size of the covariate attribute. This representation is the 
nomogram.  

In the case of non-linear models, a potential framework to extend the use of nomo-
grams is to represent the model using linear combinations of non-linear kernels.  This 
approach is returned to in the next section. 

Alternatively, data can be directly visualized through dimensionality reduction, for 
which principal components is as well-known and it can be extended for labeled data 
into a similar set of optimal linear projections, where the optimality is to separate the 
labeled cohorts [9]. 

When the data set is no linearly separable, visualization can be achieved with latent 
variable models [10]. This is a powerful class of models for mapping high-
dimensional data into relevant low-dimensional manifolds.  However, the interpreta-
tion of latent variable representations is not straightforward since the attribution of 
influence for particular outcome responses applies to a composite variable and not to 
each individual covariate. Similar issues arise with related methods for direct non-
linear visualization in the form of manifold learning methods, typically SOM and 
GTM, but also principal manifolds for static data and invariant manifolds for dynami-
cal systems [11]. 

To many users understanding is best represented by deduction.  For data-driven 
models, this typically involves the use of rule induction methods, which may have 
mutually exclusive tree structures but can alternatively apply non-orthogonal search 
methods to detect overlapping but low-order rules [12, 13]. Interestingly, these me-
thods show that successful prediction does not equate with the correct decision boun-
daries for the Boolean logic generating the data [14]. 

Fuzzy logic is an established methodology of particular power to model reasoning 
with linguistic information. This can be driven by data, generating the necessary rules 
for predictive inference.  

Nevertheless, when analytical classifiers are replaced with rules extracted to ex-
plain their operation, it is found that very little accuracy is lost and the rules apply 
typically to all but a small percentage of the data which are correctly identified as 
outliers [15]. 
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In the case of rich data sets, the mapping of multivariate associations requires effi-
cient structure finding algorithms that are scalable for many variables [16].  In the 
case where non-linear associations are captured with discrete data, fuzzy logic sys-
tems may be used to provide multiple interpolation from quantized variables back to 
the real-valued domain [17]. 

A final generic approach to reasoning to promote traceablity is to convert predic-
tive inference into efficient retrieval of relevant reference cases.  This is the metho-
dology of case based reasoning [18]. It also has potential for combining with fuzzy 
predicates to model possibilistic reasoning [19]. 

3 New Directions 

The methodologies to-date largely fit into separate silos with little interaction between 
them. In other cases, there is still too high a reliance on heuristic approaches. 

A current interest is to represent generic non-linear models using nomograms. This 
requires a parametric representation capable of representing non-linear decision 
boundaries, but using linear combinations of discriminant functions. To do this effec-
tively further requires the integration of these guiding principles into a parsimonious 
framework such as the SVM. An interpretation of SVM classifiers in terms of univa-
riate effects and bivariate interactions is an emerging direction that is already showing 
promise [20].  

Turning to case based reasoning, the need to principled approaches requires a  
rigorous definition of a central and ubiquitous concept in pattern recognition – the 
similarity between two sets of observations.  This has been discussed within linear 
methods with the definition, for instance of the Mahalanobis distance, and also in 
terms of information content with the definition of Fisher information.  The latter is a 
bona fide metric and so can be used to define a local, Riemannian metric, that defines 
the similarity locally between a pair of data points infinitesimally close to each other. 
This, in turn, can be efficiently mapped onto geodesic distances [21]. 

A final emerging direction is to use principled similarity metrics to define similari-
ty matrices which define networks of observations, from which prototypes can be 
derived using spectral methods [22]. 

4 Conclusions 

The wide range of reviewed methodologies clearly shows that interpretability is a 
many faceted.  There are different approaches that may be regarded as complementa-
ry, but no general agreement on what makes a predictive inference model interpreta-
ble. To some extent, this value judgment depends heavily on both the nature of a  
particular application and the subjective interests of the domain user. Many of these 
approaches seem to be treated separately and could potentially gain from combining 
into integrated approaches to data modeling. 

More generally, machine learning has generated particularly powerful paradigms 
that are especially difficult to render interpretable.  In this respect, new research  
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directions are emerging that provide principled and efficient approaches to replicate 
current models using rules, graphs, networks and even nomograms.   

Given that non-linear modeling capability has long been established for widely dif-
ferent algorithms among them the broad class of artificial neural networks, it seems 
that the really important question for making machine learning more relevant to prac-
tice is not whether we can model regression and classification data, but how can this 
be best done with parametric or semi-parametric models that are interpretable by de-
sign.  In other words, it is now possible to construct a restricted class of non-linear 
models, with defined interpretation capabilities, that form the basis for data modeling. 
It is only then that we can remove the risk of developing effective artifact detectors 
and be sure that the right predictions are being achieved by the right reasons. 

Acknowledgements. The author is grateful to V. van Belle, I.H.Jarman, T.A. Etchells 
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Interpretability of Fuzzy Systems
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Abstract. Fuzzy systems are convenient tools for modelling complex phenom-
ena because they are capable of conjugating a non-linear behaviour with a trans-
parent description of knowledge in terms of linguistic rules. In many real-world
applications, fuzzy systems are designed through data-driven design techniques
which, however, often carry out precise systems that are not endowed with knowl-
edge that is interpretable, i.e. easy to read and understand. In a nutshell, inter-
pretability is not granted by the mere adoption of fuzzy logic, this representing a
necessary yet not a sufficient requirement for modelling and processing linguistic
knowledge. Furthermore, interpretability is a quality that is not easy to define and
quantify. Therefore, several open and challenging questions arise while consider-
ing interpretability in the design of fuzzy systems, which are briefly considered in
this paper along with some answers on the basis of the current state of research.

1 Introduction

Fuzzy systems are endowed with the capability of conjugating a complex behavior with
a simple description, in terms of linguistic knowledge, that is interpretable, i.e. easy to
read and understand by human users. In the simplest cases, the design of fuzzy systems
is accomplished manually, with human knowledge purposely injected into fuzzy rules in
order to model the desired behavior. (The rules could be eventually tuned to improve the
system accuracy.) But the great success of fuzzy logic led to the development of many
data-driven design techniques that made feasible the automatic design of fuzzy systems;
however, these automatic techniques are often aimed at maximizing the accuracy of the
fuzzy systems, which result almost unintelligible. Therefore, the fundamental plus of
fuzzy logic is lost and the derived models are comparable to other black-box models
(like neural networks) in terms of knowledge interpretability.

Roughly speaking, interpretability is not granted a priori by the mere adoption of
fuzzy logic for knowledge representation, yet it is a highly requested quality, especially
in some applicative domains (like Medicine) where fuzzy systems can be used to sup-
port critical decisions upon which users (e.g. physicians) must rely. Additionally, inter-
pretability is a quality that is not easy to define and quantify; therefore, several open and
challenging questions arise while considering interpretability in fuzzy systems: What is
interpretability? Why interpretability is worth considering? How to ensure interpretabil-
ity? How to assess interpretability? How to design interpretable fuzzy models? These
questions are briefly considered in this paper along with some tentative answers on the
basis of the current state of research.
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2 What Is Interpretability and Why It Is Important?

Defining interpretability is challenging because it deals with the the relation occurring
between two heterogeneous entities: a fuzzy system and a human user acting as an inter-
preter of the system’s knowledge base and working engine. To pave the way for defin-
ing such a relation, some fundamental properties need to be incorporated into a fuzzy
system, so that its formal description becomes compatible with the user’s knowledge
representation. The definition of interpretability, therefore, calls for the identification of
several features; among them, the adoption of a fuzzy inference engine based on fuzzy
rules is straightforward to approach the linguistic-based formulation of concepts which
is typical of human abstract thought.

A distinguishing feature of a fuzzy rule-based system is the double level of knowl-
edge representation: (i) the semantic level made by the fuzzy sets defined in terms of
their membership functions, as well as the aggregation functions used for inference, and
(ii) the syntactic level of representation, in which knowledge is represented in a formal
structure where linguistic variables are involved and reciprocally connected by some
formal operators (e.g. “AND”, “THEN”, etc.). A mapping is defined to provide the in-
terpretative transition that is quite common in the mathematical context: semantics is
assigned to a formal structure by mapping symbols (linguistic terms and operators) to
objects (fuzzy sets and aggregation functions).

In principle, the mapping of linguistic terms to fuzzy sets could be arbitrary. Never-
theless, the mere use of symbols in the high level of knowledge representation implies
the establishment of a number of semiotic relations that are fundamental for the preser-
vation of interpretability of a fuzzy system. In particular, linguistic terms — as usually
picked from natural language — must be fully meaningful for the expected reader since
they denote concepts, i.e. mental representations that allow the reader to draw appro-
priate inferences about the entities she encounters. As a consequence, concepts and
fuzzy sets are implicitly connected by means of the common linguistic terms they are
related to; the key essence of interpretability is therefore the property of cointension [1]
between fuzzy sets and concepts, consisting in the capability of referring to similar
classes of objects: such a possibility is assured by the use of common linguistic terms.

The notion of semantic cointension is further strengthened by the Comprehensibility
Postulate [2], which asserts that «The results of computer induction should be symbolic
descriptions of given entities, semantically and structurally similar to those a human
expert might produce observing the same entities. [...] ». The key-point of the postu-
late, which has been conceived in the general context of Machine Learning but can be
directly applied to fuzzy systems, is the human centrality of the results of a computer in-
duction process; the importance of the human component implicitly suggests this aspect
to be taken into account in the quest for interpretability.

Actually, the semantic cointension is related to one facet of the interpretability pro-
cess, which can be referred to as comprehensibility of the content and behavior of a
fuzzy system. On the other hand, when we turn to consider the cognitive capabilities of
human brains and their intrinsic limitations, then a different facet of the interpretabil-
ity process can be defined in terms of readability of the bulk of information conveyed
by a fuzzy model. In that case, simplicity is required to perform the interpretation pro-
cess because of the limited ability to store information in the human brain’s short term
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memory [3]. Comprehensibility and readability represent two facets of a common qual-
ity and both of them are to be considered for the design of interpretable fuzzy systems.

Interpretability is a complex requirement that has an impact on the design process.
Therefore, it must be justified by strong arguments, like those briefly otlined in the
following:

1. In an interpretable fuzzy system the acquired knowledge can be easily verified and
related to the domain knowledge of a human expert. In particular, it is easy to verify
if the acquired knowledge expresses new and interesting relations about the data;
also, the acquired knowledge can be refined and integrated with expert knowledge.

2. The use of natural language as a mean for knowledge communication enables the
possibility of interaction between the user and the system. Interactivity is meant to
explore the acquired knowledge; in practice, it can be done at symbolical level (by
adding new rules or modifying existing ones) and at numerical level (by modify-
ing the fuzzy sets denoted by linguistic terms, or by adding new linguistic terms
denoting new fuzzy sets).

3. The acquired knowledge can be easily validated against common-sense knowledge
and domain-specific knowledge. This capability enables the detection of seman-
tic inconsistencies that may have different causes (misleading data involved in
the inductive process, local minimum where the inductive process may have been
trapped, data overfitting, etc.). This kind of anomaly detection is important to drive
the inductive process towards a qualitative improvement of the acquired knowledge.

4. The most important reason to adopt interpretable fuzzy models is their inherent
ability to convince end-users about the reliability of a system (especially those users
not concerned with knowledge acquisition techniques). An interpretable fuzzy rule-
based model is endowed with the capability of explaining its inference process so
that users may be confident on how it produces its outcomes. This is particularly
important in such domains as medical diagnosis, where a human expert is the ulti-
mate responsible of critical decisions.

3 How to Ensure Interpretability?

Interpretability is a quality of fuzzy systems that is not immediate to quantify. Never-
theless, a quantitative definition is required both for assessing the interpretability of a
fuzzy system and for designing new fuzzy systems. A common approach for a quantita-
tive definition of interpretability is based on the adoption of a number of constraints and
criteria that, taken as a whole, provide for a (at least partial) definition of interpretability.

In literature a large number of interpretability constraints and criteria can be found
[4,5]. An usual approach is to organize the interpretability constraints in a hierarchi-
cal fashion (fig. 1), which starts from the most basic components of a fuzzy system,
namely the involved fuzzy sets, and goes on toward more complex levels, such as fuzzy
partitions, fuzzy rules, up to considering the model as a whole.

At the lowest level, interpretability concerns each single fuzzy set, with the role of
expressing an elementary yet imprecise concept that can be denoted by a linguistic term.
Thus, fuzzy sets are the building blocks to translate a numerical domain into a linguis-
tically quantified domain that can be used to communicate knowledge. However, not
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−> Coverage
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−> Locality
−> Completeness
−> Logical view
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Fuzzy Sets

Fuzzy Partitions

Fuzzy Rules

Fuzzy Rule Bases

Fig. 1. Interpretability constraints and criteria in different abstraction levels

all fuzzy sets can be related to elementary concepts, since the membership function of
a fuzzy set may be very awkward but still legitimate from a mathematical viewpoint.
Actually, a sub-class of fuzzy sets should be considered, so that its members can be eas-
ily associated to elementary concepts and tagged by the corresponding linguistic labels.
Fuzzy sets of this sub-class must verify a number of basic interpretability constraints,
including the following:

One-Dimensionality. Usually fuzzy systems are defined on multidimensional domains
characterized by several features. However, each fuzzy set being denoted by a lin-
guistic term should be defined on a single feature, whose domain becomes the uni-
verse of discourse, which is assumed as a closed interval on the real line.
Relations among features are represented as combinations of one-dimensional fuzzy
sets, which can be linguistically interpreted as compound propositions.

Normality. At least one element of the universe of discourse is a prototype for the
fuzzy set, i.e. it is characterized by a full membership degree. A normal fuzzy
set represents a concept that fully qualifies at least one element of the universe
of discourse, i.e. the concept has at least one example that fulfills it (fig. 2(a)).

Continuity. The membership function is continuous on the universe of discourse. As
a matter of fact, most concepts that can be naturally represented through fuzzy sets
derived from a perceptual act, which comes from external stimuli that usually vary
in continuity. Therefore, continuous fuzzy sets are better in accordance with the
perceptive nature of the represented concepts.

Convexity. In a convex fuzzy set, given three elements of the universe of discourse,
the degree of membership of the middle element is always greater than or equal
to the minimum membership degrees of the side elements. This constraint encodes
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(a) Normality
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(b) Convexity

Fig. 2. Fuzzy sets where some interpretability constraints are verified (–) or violated (- -). In
subnormal fuzzy sets (a), the related concept does not fully apply to any element of the universe
of discourse. Non-convex fuzzy sets (b) represent compound concepts that should be split into
elementary concepts.

the rule that if a property is satisfied by two elements, then it is also satisfied by an
element settled between them (fig. 2(b)).

A collection of fuzzy sets defined on the same universe of discourse forms a fuzzy
partition, which defines in the very essence the semantics of a linguistic variable. A
fuzzy partition defines a relation among fuzzy sets. Such a relation must be co-intensive
with the relation connecting the elementary concepts represented by the fuzzy sets in-
volved in the fuzzy partition. That is the reason why the design of fuzzy partitions is so
crucial for the overall interpretability of a fuzzy system. The most critical interpretabil-
ity constraints for fuzzy partitions are:

Justifiable Number of Elements. The number of fuzzy sets included in a linguistic
variable must be small enough so that they can be easily remembered and recalled
by users. Psychological studies suggest at most nine fuzzy sets or even less. Usually,
three to five fuzzy sets are convenient choices to set the partition cardinality.

Distinguishability. Since fuzzy sets are denoted by distinct linguistic terms, they
should refer to well distinguished concepts. Therefore, fuzzy sets in a partition
should be well separated, although some overlapping is admissible because usually
perception-based concepts are not completely disjoint (fig. 3(a)).

Coverage. Each element of the universe of discourse must belong to at least one fuzzy
set of the partition with a membership degree not less than a threshold. This re-
quirement involves that each element of the universe of discourse has some quality
that is well represented in the fuzzy partition (fig. 3(b)).

Relation Preservation. The concepts that are represented by the fuzzy sets in a fuzzy
partition are usually cross-related (e.g., LOW preceding MEDIUM, this preceding
HIGH, and so on). Relations of this type must be preserved by the corresponding
fuzzy sets in the fuzzy partition (see fig. 4 for a subtle violation of this constraint).

Prototypes on Special Elements. In many problems some elements of the universe of
discourse have some special meaning. A common case is the meaning of the bounds
of the universe of discourse, which usually represent some extreme qualities (e.g.,
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Fig. 3. Fuzzy partitions where some interpretability constraints are verified or violated. (a) It is
easy to assign distinct fuzzy sets that are distinguishable (continuous line), while a fuzzy set that
overlaps with another (dashed line) almost has the same semantics (hence the same linguistic
label). (b) Some elements in the universe of discourse are under-represented by the fuzzy sets of
the partition (grey areas). Usually the coverage threshold is set to 0.5.

VERY LARGE or VERY SMALL). Other examples are possible, which are more
problem-specific (e.g., the typical human body temperature). In all these cases,
the prototypes of some fuzzy sets of the partition must coincide with such special
elements.

In most problems a number of linguistic variables must be defined, one for each
feature. Different assignments of linguistic variables can be combined together to form
fuzzy rules. A fuzzy rule is a unit of knowledge that has the twofold role of determining
the system behavior and communicating this behavior in a linguistic form. Some of the
most general interpretability constraints and criteria for fuzzy rules are the following:

Description Length. The description length of a fuzzy rule is the number of linguis-
tic variables involved in the rule. A small number of linguistic variables in a rule
implies both high readability and semantic generality, hence short rules should be
preferred in fuzzy systems.

Granular Outputs. The main strength of fuzzy systems is their ability to represent
and process imprecision in both data and knowledge. Imprecision is part of fuzzy
inference, therefore the inferred output of a fuzzy system should carry information
about the imprecision of its knowledge. This can be accomplished by using fuzzy
sets as outputs. Defuzzification collapses fuzzy sets into single scalars; it should be
therefore used only when strictly necessary and in those situations where outputs
are not subject of user interpretation.

The set of rules that defines the behavior of a fuzzy system is named rule base. As
previously stated, the interpretability of a rule base taken as a whole has two facets: (i)
a structural facet (readability), which is mainly related to the easiness of reading the
rules, and (ii) a semantic facet (comprehensibility), which is related to the information
conveyed to the users to understand the system behavior. The following interpretability
constraints and criteria are commonly defined to ensure the structural and semantic
interpretability of fuzzy rule bases:
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Fig. 4. A subtle case where relation preservation can be violated. Two Gaussian fuzzy sets are
defined with different width: if the two fuzzy sets are denoted by implicitly ordered linguistic
labels (e.g. MEDIUM and HIGH), then a point exists beyond which the implicit order is violated
(in the example, the rightmost elements are more MEDIUM than HIGH even though the contrary
is expected by the implicit semantics of the linguistic terms).

Compactness. A compact rule base is defined by a small number of rules. This is a
typical structural constraint that advocates for simple representation of knowledge
in order to allow easy reading and understanding.

Average Firing Rules. When an input is applied to a fuzzy system, the rules whose
conditions are verified to a degree greater than zero are “firing”, i.e. they contribute
to the inference of the output. On the average, the number of firing rules should be
as small as possible, so that users are able to understand the contributions of the
rules in determining the output.

Logical View. Fuzzy rules resemble logical propositions when their linguistic descrip-
tion is considered. Since linguistic description is the main mean for communicating
knowledge, it is necessary that logical laws are applicable to fuzzy rules; otherwise,
the system behavior may result counter-intuitive. Therefore the validity of some ba-
sic laws of the propositional logic (like Modus Ponens) and the truth-preserving op-
erations (e.g., application of distributivity, reflexivity, etc.) should be verified also
for fuzzy rules.

Completeness. The behavior of a fuzzy system is well defined for all inputs in the
universe of discourse; however when the maximum firing strength determined by
an input is too small, it is not easy to justify the behavior of the system in terms of
the activated rules. It is therefore required that for each possible input at least one
rule is activated with a firing strength greater than a threshold.

Locality. Each rule should define a local model, i.e. a fuzzy region in the universe
of discourse where the behavior of the system is mainly due to the rule and only
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marginally by other rules that are simultaneously activated. A moderate overlapping
of local models is admissible in order to enable a smooth transition from a local
model to another when the input values gradually shift from one fuzzy region to
another.

On summary, a number of interpretable constraints and criteria apply to all levels
of a fuzzy system. Sometimes interpretability constraints are conflicting (e.g. distin-
guishability vs. coverage) and, in many cases, they conflict with the overall accuracy
of the system. A balance is therefore required, asking in its turn for a way to assess
interpretability in a qualitative but also a quantitative way. This is the main subject of
the next Section.

4 How to Assess Interpretability?

Assessing interpretability represents is hard because the analysis of interpretability is
extremely subjective. In fact, it clearly depends on the background knowledge and expe-
rience of who is in charge of making the evaluation. Hence, it is necessary to consider
both objective and subjective indexes. On the one hand, objective indexes are aimed
at making feasible fair comparisons among different fuzzy models designed for solv-
ing the same problem. On the other hand, subjective indexes are thought for guiding
the design of customized fuzzy models, thus making easier to take into account users’
preferences and expectations during the design process [6]. Gacto et al. [7] proposed a
double axis taxonomy regarding semantic and structural properties of fuzzy systems, at
both partition and rule base levels. Accordingly, they pointed out four groups of indexes
(see fig. 5).

Structural indexes are mainly designed to assess the readability of a fuzzy system,
while semantic indexes concern the quantification of its comprehensibility. Accord-
ingly, structural indexes at the partition level relate the number of features and the num-
ber of membership functions per feature to the readability of a fuzzy partition; at the
rule-base level the structural indexes relate readability with the number of rules and the
total rule-length (i.e. the sum of all linguistic variables used in each rule).

The indexes that try to assess the comprehensibility of a fuzzy system are far more
complex. At the partition level it is worth mentioning the Context-Adaptation index [8],
which is based on fuzzy ordering relations. As another example, the GM3M index [9]
combines three indexes that assess how much a single fuzzy set changed after a tuning
process. The Semantic Cointension index [10] belongs to the set of indexes at the rule-
base level. For classification problems, this index evaluates the degree of fulfillment
of a number of logical laws exhibited by a given fuzzy rule base. Finally, the CO-
Firing based Comprehensibility Index [11] measures the complexity of understanding
the fuzzy inference process in terms of information related to co-firing rules, i.e. rules
firing simultaneously with a given input.

Even though there has been a great effort in the last years to propose new inter-
pretability indexes, a universal index is still missing. Hence, defining such an index
remains an open problem.
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Fig. 5. Some interpretability indexes organized in a double-axis taxonomy (adapted from [7]).

5 How to Design Interpretable Fuzzy Systems?

The behavior of a fuzzy system directly depends on two aspects, the composition of the
knowledge base (fuzzy partitions and fuzzy rules) and the way in which it implements
the fuzzy inference process. Therefore, the design process of a fuzzy system includes
two main tasks: (i) generation of the rule base, and (ii) definition of the inference engine.

As concerning the generation of the rule base, usually two objectives are addressed:
accuracy and interpretability. These two objectives are conflicting, especially because of
the readability facet of interpretability, which introduces a strong bias in the definition
of the rule base. Accordingly, different design strategies could be devised [12]:

Linguistic Fuzzy Modeling with Improved Accuracy. A fuzzy system is firstly de-
fined by taking into account interpretability criteria only (e.g. by defining fuzzy
partitions regardless of the available data); as a successive step, its accuracy can be
improved, e.g. by fine tuning the fuzzy sets in each partition. In essence, two ways
of improving the accuracy in linguistic models can be considered by performing
the improvement: by slightly changing the rule structure to make it more flexible,
or by extending the model design to other components beyond the rule base, such
as the fuzzy partitions, operators, etc. [13].

Precise Fuzzy Modeling with Improved Interpretability. This design strategy gives
high priority to accuracy, ofter resulting in mostly incomprehensible fuzzy systems
that need a post-processing step aimed at improving interpretability by minimizing
the loss of accuracy. This fact is usually attained by merging or removing fuzzy
sets in order to reduce redundancy and the presence of irrelevant information. Fur-
thermore, an efficient way to improve the interpretability is to select a subset of
significant fuzzy rules that represent in a more compactly way the behavior to be
modeled. Finally, actions can be undertaken to improve interpretability of specific
models, e.g. by enforcing locality of rules in Takagi-Sugeno systems [14].

Multi-objective Design. As an alternative approach, the multi-objective design takes
into account both objectives simultaneously: the result is a set of fuzzy systems,
characterized by different levels of accuracy and interpretability, which are pro-
posed to the user for a final choice that depends on her needs [15]. Multi-objective
design is usually carried out through evolutionary computation, according to dif-
ferent approaches, including fine tuning the parameters of an existing fuzzy system
or generating fuzzy partitions and/or rules from scratch [16].
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Ad-hoc Algorithms. Often, the interpretability/accuracy tradeoff is accomplished in
a two stage approach: first, one objective is maximized (either accuracy or inter-
pretability), then, the model is tuned so as to maximize the other objective. A differ-
ent approach consists in employing ad-hoc algorithms that intrinsically embody a
number of interpretability constraints in their scheme for generating fuzzy systems
from data. Such algorithms are aimed at generating fuzzy systems that maximize
accuracy: because of their nature, the resulting fuzzy systems are interpretable and
maximally accurate (relatively to the constraints they verify). The DC* algorithm
[17] is an example of ad-hoc algorithm specialized for classification problems.

As concerning the definition of the inference engine, although there are studies ana-
lyzing the behavior of the existing fuzzy operators for different purposes, unfortunately
this question has not been considered yet as a whole from the interpretability point
of view. Keeping in mind the interpretability requirement, the implementation of the
inference engine must address a number of design choices, such as the logical oper-
ators, the implication function, the inference mechanism (First Aggregate Then Infer,
or vice-versa) and the defuzzification operator, if necessary. Some preliminary studies
[18] aim at relating the choice of operators with the interpretability objective; however
the research in this direction is still open.

6 Real-World Applications

The usefulness of interpretable fuzzy systems is appreciable in all application areas that
put humans at the center of computing. As an example, environmental issues are often
challenging because of the complex dynamics, the high number of variables and the
consequent uncertainty characterizing the behavior of subjects under study. Real-world
environmental applications of interpretable fuzzy systems include: harmful bioaerosol
detection [19]; modeling habitat suitability in river management [20]; modeling pesti-
cide loss caused by meteorological factors in agriculture [21] and so on.

One of the most prominent application domains where interpretable fuzzy systems
could be successfully used is Medicine (and health-care). In almost all medical contexts
intelligent systems can be invaluable decision support tools, but people are the ultimate
actors in any decision process. As a consequence, people need to rely on intelligent
systems, whose reliability can be enhanced if their outcomes may be explained in terms
that are comprehensible by human users. Interpretable fuzzy systems could play a key
role in this area because of the concrete possibility of acquiring knowledge from data
and communicating it to users. In literature several approaches have been proposed to
apply interpretable fuzzy systems in different medical problems, like assisted diagno-
sis [22], prognosis prediction [23], patient subgroup discovery [24], etc.

Finance is a sector where human-computer cooperation is very tight. Cooperation
is carried out in different ways, including the use of computers to provide business
intelligence for decision support in financial operations. In many cases financial deci-
sions are ultimately made by experts, who can benefit from automated analyses of big
masses of data flowing daily in markets. To this pursuit, Computational Intelligence
approaches are spreading among the tools used by financial experts in their decisions,
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including interpretable fuzzy systems for stock return predictions [25], exchange rate
forecasting [26], portfolio risk monitoring [27], etc.

Industrial applications could take advantage from interpretable fuzzy systems when
there is the need of explaining the behavior of complex systems and phenomena, like in
fault detection [28]. Also, control plans for systems and processes can be designed with
the aid of fuzzy rule-based systems. In such cases, a common practice is to start with an
initial expert knowledge (used to design rules which are usually highly interpretable)
that is then tuned to increase the accuracy of the controller. However, any unconstrained
tuning could destroy the original interpretability of the knowledge base, whilst, by tak-
ing into account interpretability, the possibility of revising and modifying the controller
(or the process manager) can be enhanced [29].

The advantages of interpretability in integrating expert knowledge and enabling user
interaction can be appreciated in very specific sectors like robotics. As a matter of fact,
the complexity of robot behavior modeling can be tackled by an integrated approach
where a first modeling stage is carried out by combining human expert and empirical
knowledge acquired from experimental trials. This integrated approach requires that
the final knowledge base is provided to experts for further maintenance: this task could
be done effectively only if the acquired knowledge is interpretable by the user. Some
concrete applications of this approach can be found in robot localization systems [30]
and motion analysis [31,32].

Finally, the focus of intelligent systems on social issues has noticeably increased in
recent years. For reasons that are common to all the previous application areas, inter-
pretable fuzzy systems have been applied in a wide variety of scopes, including Quality
of Service improvement [33], data mining with privacy preservation [34], social net-
work analysis [11], and so on.

7 Future Trends

The blur nature of interpretability requires continuous investigations on possible defi-
nitions that enable a computable treatment of this quality in fuzzy systems. As an ex-
ample, the problem of interpretability of fuzzy systems can be intended as a particular
instance of the more general problem of communication between granular worlds [35],
where many aspects of interpretability could be treated in a more abstract way.

On a more concrete scale, a prominent objective is the adoption of a common frame-
work for characterizing and assessing interpretability, where novel metrics could be de-
vised (especially for assessing subjective aspects of interpretability) and integrated with
objective interpretability measures to define more significant interpretability indexes.

Interpretability assessment is tightly related to designing interpretable fuzzy systems.
A current research trend in designing interpretable fuzzy models makes use of multi-
objective genetic algorithms in order to deal with the conflicting design objectives of
accuracy and interpretability. The effectiveness and usefulness of these approaches re-
quire a verification process, especially for highly dimensional problems. In this case the
combination of linguistic and graphical approaches could be a promising approach for
descriptive and exploratory analysis of interpretable fuzzy systems [36].

Finally, the use of novel forms of representation may help in representing very
complex relationships in comprehensible ways, thus yielding a valid aid in design-
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ing interpretable fuzzy systems. A multi-level representation could enhance the inter-
pretability of fuzzy systems by providing different granularity levels for knowledge
representation, whereas the highest granulation levels give a coarse —yet immediately
comprehensible— description of knowledge, while lower levels provide for more de-
tailed knowledge. Besides representation levels, other forms of representation, different
from the classical rule-based, may be of help in representing complex relationship in
comprehensible ways.

8 Conclusions

Interpretability is a very complex requirement for designing fuzzy systems, yet it is
fundamental if such systems have to be accessible to users that use computers as tools
for decision making, strategy planning, etc. The very essence of this paper is to arise
questions and give some tentative answers to the issue of interpretability. In particular,
the paper aims at viewing interpretability also from the semantic viewpoint, which de-
parts from the commonplace belief that often confuses interpretability with structural
simplicity. Based on this different viewpoint, new forms of quantification, assessment
and design of interpretable fuzzy systems are topics of current scientific investigation.

As a final remark, it is worth observing that interpretability is one aspect of the
multi-faceted problem of human-centered design of fuzzy systems [37]. Other facets
include acceptability (e.g., according to ethical rules), interestingness of fuzzy rules,
applicability (e.g., with respect to Law), etc. Many of them are not yet in the research
mainstream but they clearly represent promising future trends.
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Abstract. In the framework of fuzzy rule-based models for regression
problems, we propose a novel approach to feature selection based on
the minimal-redundancy-maximal-relevance criterion. The relevance of a
feature is measured in terms of a novel definition of fuzzy mutual infor-
mation between the feature and the output variable. The redundancy is
computed as the average fuzzy mutual information between the feature
and the just selected features. The approach results to be particularly
suitable for selecting features before designing fuzzy rule-based systems
(FRBSs). We tested our approach on twelve regression problems using
Mamdani FRBSs built by applying the Wang and Mendel algorithm. We
show that our approach is particularly effective in selecting features by
comparing the mean square errors achieved by the Mamdani FRBSs gen-
erated using the features selected by a state of the art feature selection
algorithm and by our approach.

Keywords: Feature Selection, Fuzzy Mutual Information, Regression
Problems, High Dimensional Datasets.

1 Introduction

Nowadays, several real-world applications require to identify regression models
from input-output instances generally described by a large number of features.
Often, some of these features are irrelevant or redundant, thus making the most
popular learning algorithms inefficient and inaccurate. Thus, a lot of research
activity has been devoted to design techniques for reducing dimensionality.

In the literature, dimensionality reduction is usually performed by feature
selection. In general, feature selection algorithms are characterized by a search
strategy that finds the optimal subset of features and by an evaluation crite-
rion that assesses the relevance of each feature. Sequential search algorithms are
among the most popular heuristic search strategies: they add (forward sequential
selection (FSS)) or subtract (backward sequential selection (BSS)) features at
each iteration in order to find the optimal subset [9]. As regards the evaluation
criterion, several measures have been proposed: they can be grouped into dis-
tance, information and dependency measures [3]. Mutual Information (MI) is an
information measure that quantifies the dependence of two variables: the value
of MI is equal to zero for independent variables and increases with the increase
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of the dependence between the variables. MI has been extensively used as evalu-
ation measure for feature selection in classification problems [7]. In [2] MI is used
to measure both the relevance and the redundancy of a feature in the frame-
work of the minimal-redundancy-maximal-relevance criterion (mRMR) adopted
in the feature selection process. In particular, the relevance is measured as the
MI between the feature and the target class, and the redundancy is computed
as the average MI between the feature and the just selected features.

There are a few approaches that use the MI for feature selection in regression
problems. In [8] the authors study the behavior of MI as a relevance measure
on several regression problems. In [11] MI is used for selecting relevant spectral
variables in an FSS algorithm. To the best of our knowledge, no approach to
feature selection based on MI has been proposed when the regression problems
are tackled by fuzzy rule-based models. In this context, we propose a new filter
approach for feature selection which extends to the fuzzy case the mRMR crite-
rion proposed in [4]. In particular, we introduce a definition of fuzzy MI between
linguistic variables based on the fuzzy entropy proposed in [10]. This definition
differs from the MI between a random variable and a fuzzy random variable
proposed in [12] for classification problems. Indeed, we compute the fuzzy MI
between two fuzzy variables rather than between a crisp and a fuzzy variable.

In order to evaluate the effectiveness of the proposed feature selection ap-
proach, we use as comparative approach a similar method that uses a measure
of crisp correlation as evaluation criteria, namely the Correlation Feature Selec-
tion algorithm (CFS) [6]. The subsets of features selected by the two algorithms
are evaluated by applying the Wang and Mendel (WM) algorithm [14] to the
dataset characterized by the selected features (we recall that this algorithm gen-
erates an FRBS from numerical data) and comparing the accuracies achieved by
the two generated FRBSs. Using twelve high dimensional regression datasets, we
show that our method selects features that produce FRBSs more accurate than
the ones generated with the subset of features selected by CFS. We statistically
validate this result applying the Wilcoxon signed-rank test.

2 Fuzzy Mutual Information

Let X = {X1, . . . , Xf , . . . , XF } be the set of input variables, XF+1 be the output
variable and Pf = {Af,1, . . . , Af,Tf

} be a strong fuzzy partition of Tf fuzzy sets
defined on variable Xf .

The mutual information between two variables S and T , is defined as [2]:

MI(S, T ) = H(S) + H(T ) − H(S, T ) (1)

where H(S) and H(T ) are the entropy of the variables S and T , respectively,
and H(S, T ) is the joint entropy of S and T .

Similar to (1), we define the Fuzzy Mutual Information (FMI) of two fuzzy
variables Xs and Xt as:

FMI(Xs, Xt) = H(Xs) + H(Xt) − H(Xs, Xt) (2)
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Let us assume that Ps and Pt are strong fuzzy partitions consisting of Ts

and Tt fuzzy sets, respectively, defined on Xs and Xt. Then, the fuzzy entropy
H(Xs) of the variable Xs can be computed as [10]:

H(Xs) = −
Ts∑
i=1

P (As,i) · logP (As,i) (3)

where P (As,i) is the probability of the fuzzy set As,i and is defined for a distri-
bution {x1, . . . , xN} with respect to a probability distribution P = {p1, . . . , pN}
as P (As,i) =

∑N
i=1 μAs,i(xi) · pi where μAs,i(xi) is the membership degree of xi

to the fuzzy set As,i.
Similarly, the fuzzy joint entropy H(Xt, Xs) can be computed as:

H(Xt, Xs) = −(

Tt∑
i=1

Ts∑
j=1

P (At,i, As,j) · logP (At,i, As,j)) (4)

The joint probability P (At,i, As,j) is computed as in [5]:

P (At,i, As,j) =

N1∑
k=1

N2∑
h=1

μAt,i∩As,j(xk,t, xh,s) · p(xk,t, xh,s) (5)

where N1 and N2 are the numbers of different values for the variables Xs and
Xt in the dataset, respectively, and μAt,i∩As,j = μAt,i(xk,t) · μAs,j (xh,s).

3 The Fuzzy Mutual Information Feature Selection
Algorithm

Our feature selection method is based on an FSS scheme: starting from the empty
feature subset G = {∅}, it sequentially adds to G the feature that maximizes
the evaluation criterion when combined with the features that have already been
selected and therefore included in G. As regards the evaluation process, we asses
each feature on the basis of the mRMR criterion. This criterion measures the
relevance of a feature Xi by considering the FMI between Xi and the output
variable XF+1, and its redundancy by considering the FMI between Xi and the
subset of previously selected features. Actually, in order to avoid bias toward
multivalued features, in [4] the Normalized Mutual Information (NMI) is used
in place of MI. The NMI between two variables S and T is defined as the MI
between S and T normalized by the lowest value of the entropies of S and T .

We extend this concept to two fuzzy variables by defining the Normalized
Fuzzy Mutual Information (NFMI) as:

NFMI(Xs, Xt) =
FMI(Xs, Xt)

min{H(Xs), H(Xt)}
(6)

Accordingly, the relevance of the feature Xi to be added to the subset G =
{Xg}, g = 1, . . . , |G|, of selected features is evaluated by NFMI(Xi, XF+1) and
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its redundancy is computed as the average value of NFMI(Xi, Xg), computed
for all Xg ∈ G . The evaluation function used at each iteration is a fuzzy exten-
sion of the index proposed in [4]. We denote this index as Fuzzy Index (FI) and
define FI as:

FI(Xi) = NFMI(Xi, XF+1) − 1

|G|
∑

Xj∈G

NFMI(Xi, Xj) (7)

The minuend in (7) measures the relevance of the feature Xi in terms of NFMI
between the feature and the output variable, while the subtrahend assesses the
amount of redundancy between the feature Xi and the just selected features
contained in subset G = {Xg}, g = 1, . . . , |G|. At each iteration, the feature
with the highest value of FI is selected and added to subset G.

The complete fuzzy mutual information feature selection (FMIFS) algorithm
can be summarized as follows:

1. Let X and G be the set X = {X1, . . . , Xf , . . . , XF } containing all the fea-
tures and the subset G = {∅} of selected features;

2. For each feature Xi ∈ X, i = {1, . . . , F}, compute NFMI(Xi, XF+1);
3. Select the feature X̂i that maximizes NFMI(Xi, XF+1);
4. Remove X̂i from the set X and add X̂i to the set G;
5. Repeat until stopping condition is false

(a) For each Xi ∈ X calculate FI(Xi)
(b) Select the feature X̂i that maximizes the index FI
(c) Remove X̂ifrom the set X and add X̂i to the set G;

In our experiments we choose as stopping criterion the cardinality of the subset
G: we fix the desired number NF of features and stop the feature selection
algorithm when the cardinality |G| of the subset G is equal to NF .

4 Experimental Results

We tested our feature selection algorithm on twelve high dimensional regression
datasets extracted from three repositories, namely the KEEL repository, the
UCI Machine Learning Repository and the Torgo’s repository. The first column
of Table 1 shows the name of each dataset, the number of instances (NI ) and
the overall number of features (F ).

In order to evaluate the effectiveness of the feature selection algorithm, we
generate an FRBS from the data characterized only by the selected features.
The FRBS generation can be performed by using several different approaches.
For the sake of simplicity, in this paper we adopted the well-known WM algo-
rithm [14]. We are conscious that this heuristic approach does not guarantee
high accuracies. However, the aim of using the WM algorithm is to compare
different filter feature selection approaches and not to achieve the highest values
of accuracy. To compare different feature selection algorithms we generate the
FRBSs by applying the WM algorithm to the dataset characterized by the se-
lected features and then we compute the accuracy in terms of mean square error
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(MSE) as MSE = 1
2·|N |

∑|N |
l=1(F (xl) − yl)2 where |N | is the size of the dataset,

F (xl) is the output obtained from the MFRBS when the lth input pattern is
considered, and yl is the desired output.

We compare the results obtained by our algorithm with a similar approach,
namely the CFS algorithm [6]. CFS uses an FSS scheme to generate the can-
didate feature subsets, and ranks these subsets by considering the correlation
between each feature and the output variable, along with the degree of redun-
dancy between them. At each iteration, each feature that has not been already
included in the current subset is tentatively added to it and the resulting set
of features is evaluated, thus producing a numeric measure. The feature that
allows obtaining the highest value of this measure is selected. If no improvement
is produced by adding the feature to the current subset, the FSS process ends
and the current subset of features is provided.

The objective of our experiment is twofold. First we aim to show how the MSE
varies with the increase of the number of features selected by both FMIFS and
CFS. Second, we aim to prove the effectiveness of introducing fuzziness in the
concept of mutual information. We carried out a 5-fold cross validation. In Figure
1, due to space limits, for only four datasets, we show the average MSEs (y axis)
calculated on both the training set and the test set for the two feature selection
algorithms, against the number NF (x axis) of selected features. As regards
FMIFS, we consider NF ranging from 1 to the total number of features (we recall
that FMIFS stops when a pre-fixed number of selected features is achieved). Since
CFS stops if no feature produces an improvement when it is added to the current
subset, NF ranges from 1 to the number of features computed by CFS. From
the figure, we can observe that for most of the datasets, at the same number
NF of features, FMIFS finds subsets of features that produce FRBSs with a
lower MSE than the ones produced using the subsets found by CFS on both the
training and test sets. In order to compare the numerical results of CFS and
FMIFS, since the stopping criteria of the two methods are different, for each
dataset we fix the value of NF in FMIFS as the value of the number of features
found by CFS on the corresponding fold. In this way we can compare the MSEs
of FRBSs built using subsets of features of the same cardinality. In Table 1 we
show the mean values of the MSEs obtained on both the training and test sets
and the number NF of features found by CFS. From this table, we can derive
that the subsets of features generated by FMIFS produce FRBSs more accurate
than the ones generated with the subsets produced by CFS.

To statistically verify this observation, we apply the Wilcoxon signed-rank
test, a non-parametric statistical test that detects significant differences between
two sample means [13]. Since this test is based on the ranking of the differences
of two sample means, in order to make this difference comparable, in regression
problems where the MSEs can be characterized by a different order of magnitude,
we adopt a normalized difference DIFF = MSECFS−MSEFMIFS

MSECFS
[1].

Table 2 shows the results of the Wilcoxon test on both the training and the
test sets. In both cases, since the p-value is lower than the level of significance
α = 0.05, the null hypothesis is rejected, thus testifying that the two distributions
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Fig. 1. MSEs versus the number NF of selected features
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Table 1. MSEs obtained on the training and test sets by the FRBSs built using the
subsets of features selected by FMIFS and CFS, respectively

Dataset (NI/F) MSETR MSETS NF

WI (1461/9)
FMIFS 2.81E+00 2.89E+00

3.0
CFS 3.27E+00 3.36E+00

MV (40768/10)
FMIFS 3.71E+00 3.71E+00

4.0
CFS 4.13E+00 4.13E+00

FO (517/12)
FMIFS 1.54E+03 3.00E+03

4.8
CFS 2.60E+03 2.80E+03

TR (1049/15)
FMIFS 8.61E-02 8.95E-02

2.0
CFS 2.77E-01 2.88E-01

BA (337/16)
FMIFS 1.78E+05 3.13E+05

6.8
CFS 2.14E+05 3.53E+05

PA (5875/19)
FMIFS 2.69E+01 2.77E+01

6.0
CFS 2.41E+01 2.43E+01

CA (8192/21)
FMIFS 1.07E+01 1.10E+01

11.8
CFS 1.18E+01 1.21E+01

PT (14998/26)
FMIFS 3.78E+02 3.79E+02

4.0
CFS 1.28E+03 1.28E+03

BK (8192/32)
FMIFS 3.67E-03 4.98E-03

6.4
CFS 3.75E-03 4.93E-03

PU (8192/32)
FMIFS 7.55E-05 5.09E-04

11.8
CFS 7.93E-05 6.76E-04

AIL (13750/40)
FMIFS 2.22E-08 2.40E-08

20.0
CFS 2.71E-08 2.77E-08

CR (1994/101)
FMIFS 8.01E-03 1.23E-02

9.8
CFS 7.61E-03 1.15E-02

Table 2. Results of the Wilcoxon signed-rank test on the MSEs obtained by the FRBSs
built using the subsets of features selected by FMIFS and CFS, respectively

FMIFS vs CFS R+ R- Hypotesis p-value

Training Set 70 8 Rejected 0.013
Test Set 66 12 Rejected 0.033

are statistically different. These results confirm the effectiveness of FMIFS as
feature selection approach for fuzzy rule-based models in regression problems.

5 Conclusion

In this paper, we have proposed a new fuzzy index as evaluation function in
the process of feature selection for high dimensional regression problems tack-
led by fuzzy rule-based models. The proposed index is based on the minimal-
redundancy-maximal-relevance criterion. Further, we have used a forward
sequential selection scheme to perform the feature selection. To evaluate the
effectiveness of the proposed method, we have adopted a heuristic approach,
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namely the Wang and Mendel algorithm, to generate FRBSs from the data de-
scribed by the selected features. Then, we have computed the mean square error
obtained by the FRBSs. We have adopted twelve regression datasets. We have
compared the accuracies obtained by the FRBSs generated by using the features
selected by both our approach and a similar forward feature selection method,
namely CFS. The results show that for most of the datasets our method finds
subsets of features that produce FRBSs with a lower MSE than the ones pro-
duced by the subsets selected by CFS on both the training and test sets. We have
statistically validated this statement by applying the Wilcoxon signed-rank test
to the distribution of the MSEs: the null hypothesis is rejected with a level of
significance α = 0.05, thus confirming that on average our method outperforms
CFS.
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Abstract. DC* (Double Clustering with A*) is an algorithm capable
of generating highly interpretable fuzzy information granules from pre-
classified data. These information granules can be used as bulding-blocks
for fuzzy rule-based classifiers that exhibit a good tradeoff between inter-
pretability and accuracy. DC* relies on A* for the granulation process,
whose efficiency is tightly related to the heuristic function used for esti-
mating the costs of candidate solutions. In this paper we propose a new
heuristic function that is capable of exploiting class information to over-
come the heuristic function originally used in DC* in terms of efficiency.
The experimental results show that the proposed heuristic function al-
lows huge savings in terms of computational effort, thus making DC* a
competitive choice for designing interpretable fuzzy rule-based classifiers.

1 Introduction

Several real world problems require more than just accurate solutions. In many
cases, users (physicians, managers, etc.) have to be convinced about the reli-
ability of the knowledge base, and hence they may be interested in systems
capable to offer good support in terms of both accuracy and comprehensibility
of the knowledge base. When intelligent systems are used to acquire knowledge
from data, a methodology is required to derive interpretable knowledge that fi-
nal users can easily understand. To this aim, the Theory of Fuzzy Information
Granulation provides ways for summarizing data into Fuzzy Information Gran-
ules (FIGs), which are the building blocks of interpretable knowledge bases [1].
The interpretability requirement is (partially) achieved by fulfilling a number of
constraints in the granulation process [2].

To achieve interpretable granulation, some algorithms have been proposed,
like HFP [3], fuzzy decision trees [4], or more complex methodologies, such as
HILK++ [5] and complete systems like FISPRO [6] and GUAJE [7]. In this
scenario we proposed the DC* (Double Clustering with A*) algorithm [8,9],
derived from the more general Double Clustering Framework DCf [10]. DC*
generates an interpretable Fuzzy Rule Base (FRB) based on FIGs, from a dataset
of numerical pre-classified data. In particular, DC* identifies the minimal number
of information granules in the problem space and exploits them to build the final
FRB. The granularity level, i.e. the maximum number of FIGs, is set by the user.

DC* is based on A*, a search algorithm which has exponential complexity in
the worst case. Furthermore, its efficiency heavily relies on the heuristic function
involved in the search process. In this paper we improve the original version of
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DC* with a new heuristic function, which exploits class information to acceler-
ate the search process. As shown by the experimental results, the new proposed
heuristic function highly improves the efficiency of DC* without compromising
the quality of the derived solutions. In section 2 an overview of DC* is pro-
vided. Section 3 is dedicated to the heuristic functions: the original heuristic is
overviewed (3.1) and the new heuristic is presented in more details (3.2). Com-
parative experimental results are discussed in section 4. Finally, section 5 draws
some conclusive remarks.

2 The Double Clustering with A* (DC*)

DC* is an instance of the Double Clustering Framework [10]. Given a multi-
dimensional numerical dataset of pre-classified data, the aim of DC* is to auto-
matically generate an interpretable FRB that describes data through linguistic
terms. As implied by the name, DC* is mainly composed by two clustering steps:
the clustering on multi-dimensional data and the clustering over each input fea-
ture. Those two steps define an optimal partition of the feature space in terms of
the number of information granules. A final step of fuzzy granulation, based on
Strong Fuzzy Partitions (SFPs), transforms the resulting input space partition
into a FRB that fulfills a number of general-purpose interpretability constraints,
such as: normality, convexity, continuity, distinguishability, completeness, left-
most/rightmost fuzzy sets [2].

The first step of DC* is aimed at data compression, which is performed by the
class-aware quantization algorithm LVQ1 [11]. Given a (user-defined) number of
prototypes, LVQ1 moves the prototypes into the feature space with an iterative
process, aiming at best representing the dataset class distribution.

The second step of DC* performs the clustering over each input feature (one-
dimensional clustering). Firstly, the prototypes are projected over each feature
carrying class information. The concept of cut must be introduced to understand
the working mechanism of DC*. A cut is the boundary of an information granule,
defined on an input feature; in practice, a cut is defined by the midpoint between
two prototype projections belonging to different classes. All the identifiable cuts
over the problem space are named candidate cuts. The objective of the one-
dimensional clustering is to select a subset of cuts that is optimal. In order to
define optimality, the concept of hyper-box (HB) must be introduced. Given the
feature space and a subset of cuts, a HB is a subspace of the feature space
delimited by cuts. A HB can include zero or more multi-dimensional prototypes:
a HB is said pure if it is empty or all its prototypes belong to the same class;
otherwise it is said impure (fig. 1). A pure and non-empty HB is a “surrogate” for
an information granule. Since the prototypes contained in a HB are surrounded
by data samples, then most of these samples are also contained in the HB.

The main objective of the second step of DC* is therefore to find a minimal
subset of cuts producing pure HBs. It is worth to mention that this process takes
into account both the prototype class information and all the input features
simultaneously. This clustering problem has exponential complexity. To tackle
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Fig. 1. A bi-dimensional input space with six prototypes of three different classes
(square, circle, triangle). The prototype projections labeled with class information are
also shown. The application of two cuts (chosen among all the possible candidate cuts)
provides a partition of the feature space in four HBs: three pure HBs (one of them is
empty) and one impure HB.

the problem, DC* exploits a strategy based on the A* search algorithm, which
operates an informed search on the solution space defined by the set of all possible
clustering configurations, i.e. all the possible subsets of cuts from the candidate
cuts. A specific design of the components of A* is required, namely the goal test,
the successor operator, the cost function (including the heuristic function) and
the priority queue. In this paper we focus on the heuristic function; for further
details on the other components, the reader is referred to [9,12].

The last DC* step is the fuzzy granulation of the input features exploiting the
optimal partition derived by A*. The cuts included in the optimal partition are
used to define SFPs (the process is described in detail in [13]), and each fuzzy
set is labeled with a linguistic term (fig. 2).

Each non-empty HB (in a solution they are all pure) corresponds to a fuzzy
information granule defined as the Cartesian product of one-dimensional fuzzy
sets included in the SFPs. These fuzzy information granules can be used to define
fuzzy classification rules that are collected in a highly interpretable FRB.

3 Heuristic Functions

In this section the heuristic function used in the original version of DC* and
the proposed heuristic function are presented in detail. In general, a heuristic
function is an estimation of the distance from a state to the closest goal state. In
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Fig. 2. Example of fuzzy partition of an input feature obtained from four cuts

order to be used in A*, a heuristic function has to be admissible or optimistic,
i.e. it never overestimates the cost to reach a goal state from a current state.
The admissibility property ensures that A* will reach the goal state visiting
fewer states than other search algorithms. This must hold in DC* where, in
particular, states correspond to subsets of candidate cuts and the heuristic value
is an optimistic estimation of the number of cuts to be added to a state in order
to reach a goal state, i.e. a subset of cuts that generates pure HBs only. The
heuristic function contributes to the cost function, which is defined as the sum
of the number of cuts in a state and the heuristic value, and deeply influences
the order in which A* explores states in the solution space.

3.1 Original Heuristic Function

This section describes the heuristic function used in the original version of DC*.
We first note that each HB in a state is identified as a Cartesian product of
intervals, being each interval delimited by two cuts. Given two (impure) HBs,
they are connected if they share the same interval on at least one feature. This
implies that at least a single cut is necessary to split the two connected HBs
into pure HBs. All impure HBs are collected and grouped by connections. It is
worth to notice that a HB can belong to more than one set. The algorithm for
computing the heuristic value selects the largest set of connected HBs, increases
the heuristic value by 1 (the needed cut) and then removes the HBs from all
the sets. This process is repeated until there are no more impure HBs to be
processed. At the end of this iterative process the value of the heuristic function
is provided. It corresponds to the minimal estimation of the number of cuts
needed to move from a state to a goal state.

3.2 The New Heuristic Function

In this section the new proposed heuristic function is presented. The main idea is
to exploit prototype class information included in an impure HB to optimistically
estimate the minimum number of cuts needed to separate prototypes of different
classes. By definition, in an impure HB there are at least two prototypes with
two different class labels. It means that there is the need of at least one cut to
split the impure HB into two new pure HBs (i.e. one HB for each class label).
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Generally speaking, given an impure HB including prototypes with nc different
class labels, at least nc different pure HBs must be derived through the splitting
process. Given n sets THB

d of candidate cuts (one for each feature d = 1, . . . , n)
that intersect the impure HB, the application of subsets of cuts SHB

d ⊆ THB
d ,

d = 1, . . . , n splits the HB into a number of HBs equal to:

nHB =
n∏

d=1

(
|SHB

d | + 1
)

being n the total number of features and |SHB
d | the cardinality of SHB

d . To
ensure the split of an impure HB into pure HBs, the relation nHB ≥ nc must be
satisfied. In particular, due to the admissibility property of the heuristic function,
the number of cuts needed to define the minimum number of HBs, is defined as

nHB
Theur

=

n∑
d=1

|SHB
d |

such that nHB ≥ nc and nHB is minimal (see also fig. 3). It is worth to mention
that nHB

Theur
is an estimation that refers to an impure HB only, and not to all

impure HBs in a state σ. To extend this idea to the whole input space, and hence
to improve the heuristic informative power without loosing the admissibility
property, the concept of connected HBs is exploited. Roughly speaking, taking
into account an impure HB and calculating the value of nHB

Theur
, it must be noted

that the applied cuts can intersect other HBs that are connected. Therefore,
to preserve the admissibility property of the heuristic function, the heuristic
values of connected HBs cannot be simply summed together. Thus, to compute
the heuristic value for a non-goal state σ (typically composed by more than
one impure HB) satisfying the admissibility property, the following procedure is
adopted:

1. h(σ) ← 0
2. HBimpure ← {hb|hb ∈ σ ∧ hb is impure}
3. hbmaxClass ← maxnc HBimpure

4. h(σ) ← h(σ) + nhbmaxClass

Theur

5. HBconn ← {hb|hb ∈ HBimpure ∧ connected(hb, hbmaxClass)}
6. HBimpure ← HBimpure \ HBconn

7. repeat from 3 until HBimpure = ∅

The final value of h (σ) is provided as the heuristic value for the state σ.

4 Experimentation Results and Discussion

The experimental objective is to provide a performance comparison between the
original and the proposed heuristic functions. In particular, for a fair comparison,
two versions of A* (one for each heuristic function) are applied on the same
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Fig. 3. Example of two non-goal states. In white, two impure HBs with four different
classes are depicted. For both the HBs nHB

Theur
= 2. The HB in (a) requires two cuts

while the HB in (b) requires three cuts for splitting into pure HBs. HBs in checked
white/gray are connected to the white HBs (dashed lines indicate other candidate cuts
in THB

d ).

prototypes obtained by the first DC* step (the data compression phase). The
performances of the two heuristic functions are tested on seven different datasets
selected from the UCI repository1; all these datasets include only numerical, pre-
classified data without missing values. Two different numbers of prototypes are
tested for each dataset (prototypes are proportionally assigned to the classes
according to the class distribution in the dataset).

The key information that shows the different efficiency of the heuristic func-
tions is the number of states explored by A*, which is the most expensive oper-
ation in DC*. In table 1 the summarized results of the experiments are shown.
(For the Shuttle dataset with 21 prototypes computed by the original version of
DC* we stopped the execution after 6 hours of execution time and reported the
number of explored states.)

Due to the optimality of A*, for each dataset both the versions returned the
same solution (i.e. the same cut configurations), but through a different number
of explored states. It is possible to observe that for datasets with two classes
there is no gain in efficiency because the two heuristic functions work in the
same way. On the other hand, for datasets with more than two classes, the
ability of the proposed heuristic in exploiting class information is apparent: the
proposed heuristic function allows huge savings by exploring a very small number
of states.

The proposed heuristic function proved to considerably boost the efficiency
of DC*, making it a competitive alternative of other well known algorithms for
extracting interpretable knowledge from data. In fact, in the worst case scenario
considered in the experimentation (namely, the case of Statlog-Shuttle data with

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 1. Datasets and experimental comparative results. Shuttle with 21 prototypes
computed by the original heuristic is incomplete. *The second feature has been removed
because it exhibits a constant value. **Class “4” has been removed since it is not
represented by any sample.

Dataset classes numb. of explored states % savingprototypes original proposed
Iris 3 21 408 111 72.79%

samples 150 / features 4 42 652 139 78.68%
Wine 3 20 5,454 1,026 81.19%

samples 178 / features 13 40 23,053 3,451 85.03%
Breast Cancer Wisconsin 2 30 34 34 0.00%
samples 683 / features 9 60 61 61 0.00%

Vertebral Column (3 classes) 3 12 9,089 742 91.84%
samples 310 / features 6 24 53,727 13,556 74.77%

Ionosphere 2 10 97 97 0.00%
samples 351 / features 33(34)* 20 23,143 23,143 0.00%

Glass Identification 6(7)** 9 10,720 1,095 89.79%
samples 214 / features 9 18 257,854 38,826 84.94%

Statlog-Shuttle 7 12 276,842 5,533 98.00%
samples 58,000 / features 9 21 >2,827,876 120,487 >95.74%

21 prototypes), the generation of the information granules required about 15
minutes to complete2. Furthermore, as concerning the accuracy/interpretability
tradeoff —which is indepenent from the heuristic function— recent results show
that DC* is competitive with other interpretability-oriented algorithms, such as
HFP [12].

5 Conclusions

The experimental results show that DC* is a good candidate for automatically
designing fuzzy rule-based classifiers that exhibit high interpretability and good
accuracy. It is also easy to tune because it requires the specification of just one
hyper-parameter, namely the number of prototypes for the first step, which has
a clear semantics as it regulates the level of granularity of the derived knowl-
edge base. Therefore, DC* can be used both to generate few fuzzy information
granules for a rough description of data and, alternatively, to design an accurate
classifier through a greater number of fuzzy information granules.

Future research is aimed at further improving the efficiency of DC* so that
it can be applied to large-scale problems. This affects both steps of DC*; for
the second one, in particular, we aim at exploiting the advantages of both A*
and Evolutionary Computation to derive a hybrid approach to generate optimal
solutions in reasonable time. This approach is under current investigation.
2 Experiments have been conducted on a virtual machine (VMware) equipped with

four x86 vCPUs @ 2.35GHz and 8GB of vRAM.
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Abstract. We propose an algorithm for inferring membership functions
of fuzzy sets by exploiting a procedure originated in the realm of support
vector clustering. The available data set consists of points associated with
a quantitative evaluation of their membership degree to a fuzzy set. The
data are clustered in order to form a core gathering all points definitely
belonging to the set. This core is subsequently refined into a membership
function. The method is analyzed and applied to several real-world data
sets.

1 Introduction

Designing fuzzy sets has been one of the pivotal problems in the methodol-
ogy and practice of the technology of fuzzy sets. Fuzzy sets come with different
interpretations, cf. [1]. There are several general approaches ranging from expert-
driven methods to data-driven techniques and an entire spectrum of hybrid-like
strategies combining these two development modes, cf. [2]. Various shapes of
membership functions are proposed [3], sometimes being directly linked with
the ensuing computational facets of fuzzy sets; here we can refer to triangular
fuzzy sets and their role in fuzzy modeling and a degranulation process [2,4]. In-
tensive pursuits in the construction of membership functions are not surprising
at all: evidently fuzzy sets form a backbone of fuzzy models, fuzzy classifiers and
fuzzy reasoning schemes. Fuzzy sets used in these constructs directly impact their
performance as well as contribute to the interpretability (readability) of these
modeling constructs. Fuzzy sets formed through an expert-driven approach are
reflective of the perception of concepts captured by humans; however the esti-
mation process could exhibit some inconsistencies associated with the elicitation
process itself (bottleneck of knowledge acquisition). On the other hand, data-
driven approaches rely on available experimental data and fuzzy sets obtained
in this manner are reflective of the nature of the available experimental evidence
(which is going to be used intensively when forming fuzzy predictors or classi-
fiers). In this domain, we encounter techniques using which fuzzy sets (treated
as information granules) arise as a summarization of numeric data; one can refer
here to fuzzy clustering or other mechanisms of vector quantization [5]. With
this regard a prudent formulation of the optimization process and its relevance
vis-à-vis the semantics of fuzzy set(s) to be developed is of paramount relevance.
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Having this mind, we propose a modified support vector clustering in which we
take advantage of the formulation and the nonlinear nature of the optimization
problem falling within the realm of well-established methods of support vector
machines. This formulation supports a construction of diversified membership
functions.

A thorough parametric analysis of the resulting construct is presented. We
demonstrate how the parameters (and a tradeoff of their values) of the method
impact the shape (trapezoidal, quadratic, and bimodal) of membership function
of the fuzzy set being formed. A series of illustrative examples is provided to
visualize the flexibility of the construct considered here.

The paper is structured as follows: we start with a suitable modification of the
support vector clustering algorithm and elaborate on a selection of numeric val-
ues of the essential parameters of the method. Subsequently, we present a series
of experiments showing in detail on how membership functions are constructed.

2 Modifying the SV Clustering Algorithm

Let a sample {x1, . . . , xm} in a domain X be given, together with an associ-
ated set of membership grades {μ1, . . . , μm} to some unknown fuzzy set A. The
problem of inferring μA can be divided into two parts, namely: i) determining
the shape of A, and ii) inferring the parameters of the membership function μA.
These tasks are addressed by starting from the following hypothesis.

– Set A1 = {x ∈ X s. t. μA(x) = 1} contains all points in X whose images
through a mapping Φ belong to a sphere of unknown center a and radius R.

– The membership μA(x) only depends on the distance between Φ(x) and a.

It has been shown that the set A1 can be estimated through a modified
support-vector clustering procedure [6] provided with x1, . . . , xm and μ1, . . . , μm:
the problem is concerned with searching for the smallest sphere, having a and R
respectively as center and radius, enclosing the images of x1, . . . , xm produced
through a transformation Φ. More precisely, we use from a starting point the
typical relaxation of this problem based on slack variables ξ1, . . . , ξm. As our
target is that of learning a fuzzy set having as inputs some points x1, . . . , xm

and their membership values μ1, . . . , μm, we consider the constraints in the form:

μi||Φ(xi) − a||2 ≤ μiR
2 + ξi , (1)

(1 − μi)||Φ(xi) − a||2 ≥ (1 − μi)R
2 − τi , (2)

ξi ≥ 0, τi ≥ 0 . (3)

It is easy to see that when μi = 1 the constraints read in the same way as
those in the problem of support vector clustering. In other words, we try to
confine the images of xi through Φ within a sphere centered at a and having
radius R. On the other hand, when μi = 0, the same set of constraint model the
opposite target, i.e., exclusion of Φ(xi) from the sphere.
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Thus we can consider the following extension of the support vector cluster-
ing procedure: minimize R2 + C

∑
(ξi + τi) under constraints (1-3). Its Wolfe

dual formulation is concerned with the maximization of
∑m

i=1(αiμi − βi(1 −
μi))k(xi, xi) −

∑m
i,j=1(αiμi − βi(1 − μi))(αjμj − βj(1 − μj))k(xi, xj) subject to

the constraints
∑m

i=1(αiμi−βi(1−μi)) = 1 and 0 ≤ αi, βi ≤ C, where k denotes
the kernel function associated to the dot product computation in the image of
Φ (that is, k(xi, xj) = Φ(xi) ·Φ(xj)). Denoting with a star the optimal value for
a variable, Karush-Kuhn-Tucker (KKT) conditions [7] read

α∗
i

(
R∗2μi + ξ∗i − μi||Φ(xi) − a∗||2

)
= 0 , (4)

β∗
i

(
(1 − μi)||Φ(xi) − a∗||2 − R∗2(1 − μi) + τ∗i

)
= 0 , (5)

γ∗
i ξ

∗
i = 0, δ∗i τ

∗
i = 0 . (6)

It is easy to show that when either 0 < α∗
i < C or 0 < β∗

i < C it will necessary
hold both ξ∗i = 0 and ||Φ(xi) − a∗|| = R∗2. Thus the corresponding xi has an
image through Φ lying on the border of the learnt sphere S and will be called
support vector. KKT conditions show that:

– α∗
i = 0 implies ξ∗i = 0 and R2(x) ≤ R∗2, so Φ(xi) lies in S or in its surface,

– α∗
i = C implies R2(x) = R∗2 +

ξ∗i
μi

, thus Φ(xi) doesn’t lie inside S,

– β∗
i = 0 implies τ∗i = 0, so that R2(x) ≥ R∗2, thus Φ(xi) doesn’t lie inside S,

– β∗
i = C implies R2(x) = R∗2 − τ∗

i

1−μi
, thus Φ(xi) doesn’t lie outside S,

where R2(x) = ||Φ(x) − a∗||2. Given any point x ∈ X , it can be shown that
R2(x) = k(x, x) − 2

∑m
i=1(α∗

iμi − β∗
i (1 − μi))k(x, xi) +

∑m
i,j=1(α∗

iμi − β∗
i (1 −

μi))(α
∗
jμj − β∗

j (1 − μj))k(xi, xj) so that it is possible to compute the distance
between the center of the learnt sphere and the image of the given point x.
In particular, all points x with membership μA(x) = 1 satisfy R2(x) ≤ R2

1,
where R2

1 = R2(xi) for any support vector xi. Moreover, as R2 spans between
a minimum and a maximum value when the membership value of its argument
decreases from 1 to 0, the membership function μA can then be reconstructed
in the following way:

– scaling R2 to R′(x) = M−R2(x)
M−R2

1
, where M = maxx R

2(x), so that R′ ap-

proaches 0 and 1, respectively, when R2 approaches its maximum and R2
1;

– approximating μA with the function

μ̂(x) =

{
1 if R′(x) ≥ 1 ,

R′(x) otherwise .
(7)

The proposed procedure can produce membership functions of different shape.
Figure 1 shows examples of the output for three different unidimensional mem-
bership functions, namely a trapezoidal, a quadratic and a bimodal one. In all
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Fig. 1. Output of the proposed procedure (dashed curves) for different unidimensional
membership functions (plain curves), inferred from samples of 50 item each (each sam-
ple point is drawn as a bullet colored according to its membership value, ranging from
gray to black)

experiments we used a sample of m = 50 points uniformly distributed across the
universe of discourse, associated with the corresponding membership value.

Inferring a membership function requires to strike the trade-off parameter
C, as well as additional kernel parameters, an operation which is known in the
literature as model selection [8]. In order to suitably select among the avail-
able methodologies it is worth studying the properties of parameters and their
relations with the problem under study.

Figure 2 shows the results of an experiment aimed at understanding the role
of involved parameters: having fixed: (i) a membership function (the dashed
trapezoid in all graphs), (ii) a labeled sample, and (iii) a Gaussian kernel of
parameter σ = 0.12 (see the beginning of Sect. 3), the learning procedure has
been run several times using different values for C. The graphs in Fig. 2(a)–(c)
highlight how an increase in C causes an enlargement of the inferred fuzzy set’s
core, intended as the subset of X whose elements are assigned unit membership.
In particular, as C reaches the unit value the fuzzy set tends to a regular set
enclosing all points in the labeled sample having non-zero membership values.

Similarly, we can start from the same membership function and labeled sam-
ple, set C to the best value found during the previous run, and change σ. The
results, summarized in Fig. 2(d)–(f), show how the role of this parameter is that
of modifying the shape of the membership function, which becomes more plastic
as σ decreases toward zero. This experiment suggests a three-phase procedure
for finding the optimal values for C and σ consisting in: 1. selecting a value C0

in order to include in the inferred fuzzy set’s core all points having unit mem-
bership; 2. selecting a value σ0 in order to reasonably fit the data; 3. performing
a fine-grained grid search centered around C0 and σ0.

3 Experiments

In all applications described in this paper the procedure relied on the Gaus-
sian kernel defined by k(x1, x2) = exp

(
−||x1 − x2||2/(2σ2

)
). When using this

kind of kernel [9] the optimization problem simplifies to the minimization of∑m
i,j=1(αiμi −βi(1−μi))(αjμj −βj(1−μj))k(xi, xj); indeed, a Gaussian kernel
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Fig. 2. (a)–(c): Increasing C has the effect of enlarging the learnt membership function
core. (d)–(f): Increasing σ has the effect of changing the learnt membership function
shape. Each graph is labelled with the corresponding parameter value.

k satisfies k(x, x) = 1, so that the constraints insure the equivalence between
the original objective function and 1 −

∑m
i,j=1(αiμi − βi(1 − μi))(αjμj − βj(1 −

μj))k(xi, xj).
The computation of M was carried out used a Monte Carlo maximization and

choosing a suitable number of samples in each experiment.

3.1 Inferring Membership Functions from Real-World Data

As a first example consider the body mass index (BMI) defined as the ratio
between the weight and the squared height of a person, respectively measured in
kilograms and meters. The World Health organization uses this quantity as an
age- and gender-independent index for classification of weight categories in adult
people, according to Table 1 [10]. Focusing on the category of normal weight we
selected two mappings μ1 and μ2, shown in the table, associating each BMI
range to a membership value. Subsequently we drew samples of 150 BMI values
located uniformly in the interval [10, 45] and computed their membership value.

Table 1. Classification of weight in function of the BMI, according to the World
health organization [10]. Columns μ1 and μ2 show the values giving rise to the learnt
membership functions shown in Fig. 3(a) and (b), respectively.

Classification BMI range μ1 μ2 Classification BMI range μ1 μ2

Severe thinness BMI < 16 0 0 Pre-obese 25 ≤ BMI < 30 0.5 0.7
Moderate thinness 16 ≤ BMI < 17 0.2 0.4 Obese class I 30 ≤ BMI < 35 0.2 0.4
Mild thinness 17 ≤ BMI < 18.5 0.5 0.7 Obese class II 35 ≤ BMI < 40 0.1 0.2
Normal range 18.5 ≤ BMI < 25 1 1 Obese class III BMI ≥ 40 0 0
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Fig. 3. (a)–(b): Learnt membership functions for normal weight according to Table 1,
respectively referring to the values shown in columns μ1 and μ2 of the table. (c): Inferred
membership function for the fuzzy set expressing the notion of normal physique in adult
women in the US, in function of weight (X axis, measured in kilograms) and height (Y
axis, measured in centimeters).

This allowed us to infer the membership functions (one for each mapping)
shown in Fig. 3(a)–(b), setting σ = 4 and C = 0.05. Note how learnt membership
function’s shape is affected by the way categories are associated to numeric
values for memberships. This is a key aspect for accommodating available domain
knowledge coming from the experts in the field.

The proposed methodology is not confined to single-dimensional problems. In-
deed, the kernel trick allows the inference to consider fuzzy sets defined on any
space over which a kernel can be defined. Consider for instance the fuzzy notion
of normal physique defined in terms of weight and height of a person. Figure 3(c)
shows the results of a toy experiment aimed at capturing this notion, having as
a starting point the distribution of weight and height, respectively measured in
kilograms and centimeters, in adult women in the US [11]. Dividing the observa-
tion range in function of the data percentiles it is possible to obtain two functions
μweight and μheight approximating the corresponding memberships. Finally, con-
sidering a sample of 150 points uniformly drawn in [50, 114] × [150, 175] (the
Cartesian product of the operational ranges in observed data) and building the
membership value of each of its element (w, h) as μ(w, h) = μweight(w)μheight(h),
the proposed procedure learnt the membership function shown in Fig. 3(c).

3.2 Inferring Membership Functions in Absence of Membership
Values

The method is also applicable to datasets not explicitly mentioning member-
ship values. Consider for instance the Iris dataset [12], introduced by Fisher in
1936 and gathering 150 samples from three different species of the iris flower
(namely, Iris setosa, Iris virginica and Iris versicolor). The observations, de-
scribed through length and width of the petal and the sepal, are assigned to one
of the previously mentioned species. The proposed learning procedure can be ap-
plied as follows: focusing on a given class, say Iris setosa, denote {x1, . . . , x150}
the dataset observations and set μi = 1 if xi belongs to class Iris setosa, and 0
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Fig. 4. Scatter plot of the Iris dataset and inferred membership functions for the cor-
responding classes. Bullets represent samples projected on their two first principal
components, and colored according to their classes (in blue, green and red respectively
for Iris virginica, Iris versicolor, and Iris setosa). Each graph also shows the density
plot of the inferred membership function.

otherwise. Apply subsequently the learning procedure in order to infer a mem-
bership function μsetosa. Idem for membership functions μvirginica and μversicolor.
Given an observation x, assign it to the class it belongs to with maximal member-
ship grade. Figure 4 shows a density plot of the membership functions inferred
after application of the PCA procedure [13] selecting the first two principal com-
ponents, for sake of visualization, and using a Gaussian kernel. Each plot shows
the class it refers to, as well as the used values for parameters C and σ, chosen
through a trial and error procedure.

We performed a more extensive experiment involving a repeated holdout
scheme, in which 70% of a random permutation of the sample was used in order
to infer the three membership functions, using the parameters highlighted in
Fig. 4; the latter were subsequently tested on the remaining 30% of the data.
Table 2 resumes average and standard deviation of the obtained error both in the
training and the testing phase of 500 such procedures, starting each time from a
different permutation and analyzing two, three and four principal components.
These results show how even a very simple learning strategy (no complex pro-
cedures for fine tuning the parameters’ choice such as a cross-validation) lead to
an average test performance around 95%.

Table 2. Results of 500 holdout procedures on the Iris dataset. Each row shows average
and standard deviation (columns Avg. and Stdev., respectively) of train and test error,
in function of the number of principal components extracted from the original sample.

N. of principal Train error Test error
components Avg. Stdev. Avg. Stdev.

2 0.00488 0.00653 0.04720 0.03143
3 0.00152 0.00349 0.06067 0.03128
4 0.00169 0.00374 0.05738 0.03347
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4 Conclusions

This paper introduced a method for inferring the membership function to a
fuzzy set on the basis of partial information, consisting in two finite sets: the
former containing a sample of points, and the latter gathering measurements
of the membership grades for points in the former set. The method relies on a
special support vector clustering for the provided points, which is subsequently
transformed into the inferred membership function.
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Abstract. In the last decades, rainforests all over the world have been subjected
to high rates of land use change due to deforestation. Tracking and understanding
the trends and patterns of these changes is crucial for the creation and implemen-
tation of effective policies for sustainable development and environment protec-
tion. Here we propose the use of Fuzzy Multilayer Perceptrons (Fuzzy MLP) for
classification of land use and land cover patterns in the Brazilian Amazon, using
time series of vegetation index, taken from NASA’s MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) sensor. Results show that the combination of
degree of ambiguity and fuzzy desired output, two of the Fuzzy MLP techniques
implemented here, provides an overall accuracy ranging from 89% to 96%.

1 Introduction

Statistics in the real world are often based on a sequence of pieces of data indexed by
time. This compound type of data is referred to as time series and occur in all types of
activities, from human-related ones, such as financial markets, company sales, demo-
graphic information of a geographical entity, etc, to those related to natural phenomena,
such as the appearance of sunspots in a star or the decay of atoms in a piece of matter.

The basis of time series analysis is that repetitive behavior patterns can be identi-
fied and modeled. The repetition, occurring in either smooth or turbulent behavior, is
essential for generalization [11]. Time series are invariably non-stationary, and the as-
sumptions about their structures made by traditional methods are difficult to verify [7],
making the use of such methods unsuitable even for “moderately entangled” systems
[2]. In addition, real world data may show an overlap of many processes, exhibiting
different dynamics.

Time series analysis focuses on three basic objectives: prediction of short-term pro-
gressions, modeling long-term behavior and characterization of underlying properties
[2]. Conventional models – to test the hypothesis that complex and potentially causal
relationships exist between various elements of a time series – based on parametric
methods, express these relationships in a variety of ways. The most popular is the au-
toregressive model based on the hypothesis that causality connects the value of the
series at a given moment of time to the values of the time series at some of the previ-
ous moments. On the other hand, computational intelligence techniques such as fuzzy
systems, genetic algorithms, artificial neural networks and hybrid systems, do not make
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assumptions about the structure of the data, and provide a “universal approach” to the
nonlinear mapping of complex functions [15] [16].

The combination of Fuzzy Inference Systems (FIS) [17] [14] and Neural Networks
(NN) [3] [6] incorporate strengths of both, such as machine learning and generaliza-
tion ability, from NN, and qualitative reasoning and capability of uncertainty modeling,
from FIS [11]. Fuzzy Neural Networks names a class of such hybrid approaches, that
incorporate fuzzy concepts in a neural network [9]. It includes Fuzzy Multilayer Per-
ceptrons [8] [5] [9], based on a classic Multilayer Perceptron neural network (MLP).

In the last decades, rainforests all over the world have been subjected to high rates
of land use change due to deforestation. Tracking and understanding the trends and
patterns of these changes is crucial for the creation and implementation of effective
policies for sustainable development and environment protection. In the particular case
of Brazil, there exists, on the one hand, a large amount of data derived from satellite
images that can be used for the classification of temporal patterns of land use change
on rainforest areas. On the other hand, there is, however, a shortage of professionals
trained for satellite image interpretation, able to convert this mass of data into useful
knowledge, what makes the use of automated techniques imperative to deal with the
problem.

Here we investigate the use of Fuzzy MLPs in classification of land use and land
cover temporal patterns in the Brazilian Amazon. For this, we use time series of veg-
etation indices recorded in images taken from MODIS (Moderate Resolution Imaging
Spectroradiometer) sensor, on board of NASA’s Aqua and Terra satellites. We com-
pare the basic MLP algorithm with two extensions, one involving the concept of fuzzy
desired output [8] and another involving a degree of ambiguity [9]. We also propose
a classification confidence index for the system, that can help improve the quality of
decision-making by the end user.

2 Fuzzy Multilayer Perceptrons

Multilayer Perceptrons (MLPs) using the Backpropagation learning mechanism are the
most common neural networks found in the literature [6] [3], and have been used in a
wide range of applications, including pattern recognition. Essentially, a MLP network
is a feedforward multilayer mechanism that utilizes a supervised learning model based
on the adjustment of its parameters (weights) according to the error between the actual
and desired outputs of the network [12].

There exists a vast literature about the combination of fuzzy systems and multilayer
perceptrons (see, for example, [13], [8] and [5] and references therein). In the conven-
tional approaches for pattern classification using MLPs ([3], [12]), the number of nodes
of the output layer in an application usually corresponds to the number of classes con-
sidered in that application. A method commonly used to produce the network output is
the winner-take-all, which allocates value 1 (one) for the winner neuron and 0 (zero)
to its competitors. Thus, the winner neuron represents the network prediction about the
class to which the input pattern belongs.

In Fuzzy MLPs, each desired output of the modified multilayer perceptron is in
the range [0, 1], and refers to the degree of membership of the input pattern to its
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corresponding output class (fuzzy desired output) [8], [9]. Consequently, the errors can
be propagated back regarding the exact likeness, which is reflected in the desired output.

In [8], a Fuzzy MLP has been proposed, here called MLP-D, which makes use of
two parameters: the mean and standard deviation vectors of the training set. Let C =
{c1, ..., cl} be a set of classes, and X = {x1, ..., xm} be a set of training patterns, with
each xi ∈ X described as a feature vector xi = (xi,1, ..., xi,n). Let μk : X → [0, 1]
denote the membership function that describes how much a pattern in X is compatible
with the k-th class in C. According to [8], the following steps should be executed, in
order to obtain the fuzzy desired output:

– Calculate the weighted distance between each input pattern and each class in C,
taking into account the mean and standard deviation vectors of the training patterns.
The weighted distance of training pattern xi to the k-th class is defined by:

zik =

√√√√ n∑
j=1

(
xij − okj

σkj
)2, (1)

where okj and σkj respectively denote the average and standard deviation of the
values for the j-th feature of the elements in the training set of the k-th class (when
all the training data are the same, σkj is set to 1);

– Once the weighted distance is defined, calculate the membership values with re-
spect to each class (μk for k ∈ C), using the following equation:

μk(xi) =
1

1 + ( zikfd
)fe

, (2)

where fe and fd are fuzzy parameters that control the amount of imprecision for
this class and zik is calculated in Equation (1).

The idea behind the membership function is that the greater the distance of an input
pattern to class ck, the less similar is the pattern to class ck, and thus the lower will be
the output value of the function membership function.

One of the learning methods of conventional MLP network is by minimizing the
mean square error (LMS) between the desired output and the output vector calculated
by the network. In this training process, each pattern has the same importance. However,
it is reasonable to decrease the importance of patterns that are in areas of overlapping
classes, and which are primarily responsible for misclassification. One way to imple-
ment that is to consider the amount of correction in the weight vector produced by the
input pattern, according to the degree of ambiguity of a pattern.

In [9], a method incorporating a degree of ambiguity Fuzzy MLPs has been proposed,
here called MLP-G. The degree of ambiguity is defined as follows:

A = (μ(1)(xi) − μ(2)(xi))
m, (3)

where μ(1)(xi) (respec. μ(2)(xi)) highest (respec. second highest) class membership
degree for a pattern xi in X and m is a enhancement/reduction fuzzy parameter. Pa-
rameter m increases (m < 1), maintains (m = 1) or decreases (m > 1) the influence
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of the ambiguity of a pattern training, as well as determines the strength of this in-
crease/decrease.

Based on the techniques described above, we implemented four classification tech-
niques: i) the usual MLP, ii) MLP with ambiguity degree (MLP-G), iii) MLP with fuzzy
desired output (MLP-D), and iv) MLP with ambiguity and fuzzy desired output (MLP-
GD). In the next section, we present their application to the problem of classification of
land use and land cover temporal patterns in the Brazilian Amazon, using time series of
vegetation index.

3 Application in Time Series of Vegetation Index

The time series selected for study in this work were obtained from the work of Freitas
[1], available at the site https://www.dsr.inpe.br/laf/series/ (see Figure 1 for an illustra-
tive example). The study area is a rectangle comprising approximately 10.5km2 at the
east of the state of Mato Grosso, Brazil, whose geographical opposite coordinates are
situated at (−12.331945,−52.422560) and (−12.372355,−52.458480). Within this
study area we selected a representative sample of 168 pixels in images taken from
MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, on board of NASA’s
Aqua and Terra satellites. Each pixel corresponds to a 250m2 area.

Fig. 1. Time series using vegetation index EV1-2, showing patterns of land cover and use [1]

The time series correspond to 11 years worth of EVI-2 vegetation index observa-
tions, from August 2000 to June 2011, totaling 1848 (168 × 11) annual patterns. We
have used MODIS 16-days product, i.e. a composite image is generated every 16 days.
Considering the total period of 11 years, the available data consists of 265 observations
per pixel recorded by the satellites.

We have chosen to use exactly 23 (approximately 365/16) observations per year per
pixel. This yields a total of 253 (23 × 11) observations per pixel, considering the whole
period. Therefore, in order to run our experiments, we disregarded 12 of the 265 original
observations from the original data.

Once the patterns were chosen, it was necessary to classify them into classes of land
use and land cover. Having neither an available expert to precisely classify a significant
amount of samples nor the ground truth, we adopted the following procedure.
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First, by visual inspection, based on the classifications shown in [1], we pre-classified
the 1848 patterns into four large classes: forest, deforestation, pasture and agriculture.
Second, for each class, we computed the average pattern and the corresponding vari-
ance, and then selected only those patterns fully contained within the envelope defined
by the mean value plus or minus k standard deviations (k ∗ σ). The procedure has been
validated in [10]. Figure 2 illustrates this filtering procedure for k=1.

Fig. 2. Vegetation index time series for classes with indication of means and one standard
deviation

From the initial 1848 patterns, we have created two sets of patterns: set I contains
the 205 patterns obtained using k = 1, and set II contains 1363 patterns obtained with
k = 2. Values k = 1 and k = 2 correspond to more or less conservative attitudes,
respectively, considering an absence of solid expertise and/or ground truth. Set I con-
tains 139 patterns of forest, 18 of deforestation, 35 of pasture and 13 of agriculture.
Set II contains 641 patterns of forest, 100 of deforestation, 279 of pasture and 343 of
agriculture.

We performed a series of tests on sets I and II, using a 4-folder cross-validation
process (3 parts for training and 1 part for validation). We applied 4 methods on the
data: the original MLP neural network (MLP), MLP using the degree of ambiguity
(MLP-G), MLP using fuzzy desired output (MLP-D) and MLP using the degree of
ambiguity and fuzzy desired output (MLP-GD). For both (MLP-D) and (MLP-GD), we
obtained the best results with fd = fd = 2 in a series of trial-and-error experiments.
Table 1 presents the results for sets I and II, showing the mean rates for each method
used in the 4 folders, considering the individual classes and the overall results.

We see that all methods produced very good results in general, for both sets I and
II. Set I produced better results than set II for individual accuracies of classes forest
(F) and pasture (P), whereas set II produced better results for deforestation (D). In
relation to agriculture, set II was better than set I, except for method MLP-GD, which is
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Table 1. Mean individual accuracy for classes F (forest), D (deforestation), P (pasture) and A
(agriculture) and mean global accuracy, for sets I and II, for methods MLP, MLP-G, MLP-D and
MLP-GD

System Accuracy
Individual Global

I II I II
F D P A F D P A

MLP 100.00% 94.74% 94.63% 67.52% 98.33% 98.20% 86.40% 89.73% 89.22% 93.16 %
MLP-G 100.00% 93.91% 96.57% 83.33% 98.95% 97.47% 88.12% 89.45% 93.45% 93.50%
MLP-D 100.00% 95.29% 95.10% 79.62% 99.83% 97.67% 89.83% 80.86% 92.50% 92.05%
MLP-GD 100.00% 94.58% 96.84% 92.78% 99.47% 97.80% 86.86% 90.08% 96.05% 93.55%

also the best result for that class. In what regards individual accuracies, method MLP-
GD was either better than its counterparts for all classes in both sets I and II, or with
results closely resembling the best ones. In what regards the global results, method
MLP-GD fared better, for both sets I and II. For global results, set I fared better than
set II for methods MLP-GD and MLP-D and worse for methods MLP and MLP-G. The
best global results were produced by method MLP-GD for set I. In conclusion, method
MLP-GD and set I were more appropriate in the treatment of the data.

Using the fuzzy membership functions derived by the classifiers, we obtain a sys-
tem classification confidence index, by applying Shannon entropy on the normalized
membership functions. This index is illustrated in Figure 3, that indicates the vegeta-
tion index evolution inside each of the 11 yearly patterns for a set of selected pixels,
considering both sets I (left side) and II (right side), using MLP-GD. In the figure, the
difference in tonality in each pattern indicates the system confidence in its own judg-
ment; the darkest the color, the highest the confidence.

The figure shows a uniform series of forest patterns for the first pixel. We can see
that the difference between sets I and II is the confidence of the system on its own
classification: set I produces results with higher confidence. The same tendency can be
seen for the other pixels in the figure.

In what regards the second pixel in the figure, the system considers that, according to
set I, the area was a forest in the first two years, suffered deforestation in the third year,
became pasture on the fourth year, and was then used for agriculture in the remaining 7
years, thus following a logical order. In set II, however, the second year was classified
as pasture, before becoming deforestation on the third year and again pasture on the
fourth year, which is not consistent in terms of temporal evolution of patterns in the
region.

The third pixel in the figure illustrates a less satisfactory result. We see that, accord-
ing to set I, after pasture begins on the 6th year, it becomes forest on the 10th year
to return to pasture on the 11th year. On the 10th year, the region was probably also
covered by pasture, albeit possibly a dirtier pasture than the other pasture years. Note,
however, that the system gives low confidence for that assessment. Using set II, only
a sequence of forest patterns followed by a sequence of pasture patterns are detected,
bypassing the expected deforestation step between them.



66 T. Pimentel, F.M. Ramos, and S. Sandri

1)

2)

3)

Fig. 3. Results of experiments of for 3 pixels, using sets I (left side) and II (right side)

4 Conclusions

The use of products and techniques of remote sensing and GIS in environmental
analysis has become increasingly common. In the case of land use and land cover,
these techniques contribute expressively for speed, efficiency and reliability in analyses
involving the processes of degradation of natural vegetation, monitoring of forest re-
sources, development of conservation policies, as well as several other factors that can
cause changes in vegetation.

In this work, we investigated the combination of fuzzy and neural systems for clas-
sifying land use and land cover patterns in the Brazilian Amazon region, using time
series of vegetation indices from NASA’s MODIS sensor. For this, we implemented a
Fuzzy Multilayer Perceptrons (MLP) using four approaches: MPL alone, MLP with de-
gree of ambiguity, MLP with fuzzy desired output and MLP with degree of ambiguity
and fuzzy desired output. We have obtained very good overall results. In particular, the
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combination of degree of ambiguity and fuzzy desired output provided the best results,
ranging from 89% to 96%.

The application of a pattern filtering procedure to the raw data proved to be useful in
the absence of ground truth. However, this technique has also its limitations, illustrated
by the difficulty in distinguishing between forest and dirty pasture in some pixels.

Last but not least, we have used the fuzzy classification results to derive classification
confidence to help the end user improve the quality of decision making.
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Abstract. One recent focus of research in graphical models is how to
learn them from imperfect data. Most of existing works address the
case of missing data. In this paper, we are interested by a more gen-
eral form of imperfection i.e. related to possibilistic datasets where some
attributes are characterized by possibility distributions. We propose a
structural learning method of Directed Acyclic Graphs (DAGs), which
form the qualitative component of several graphical models, from possi-
bilistic datasets. Experimental results show the efficiency of the proposed
method even in the particular case of missing data regarding the state
of the art Closure under tuple intersection (CUTS) method [1].

1 Introduction

Over the last three decades, a lot of effort has been put into learning graphi-
cal models from data but most of proposed methods are relative to probabilis-
tic models and especially Bayesian networks [2]. Such methods depend chiefly
on data nature i.e. perfect or imperfect data. Learning from imperfect data
addresses the particular case of missing data via the standard Expectation Max-
imization method [3]. In this paper, we are interested in learning networks struc-
ture from a more general form of imperfect data: possibilistic data in which some
attributes are characterized by possibility distributions. Such a data were han-
dled essentially to learn possibilistic classifiers namely naive possibilistic net-
works [4, 5], possibilistic decision trees [6] and possibilistic clustering [7]. The
idea to learn possibilistic networks [1, 8], which are the possibilistic counterpart
of Bayesian networks [2], from possibilistic datasets seems to be natural. Nev-
ertheless, despite the multitude of works related to propagation in possibilistic
networks [1, 8, 9], as far as we know, the unique attempt to learn them from
data was carried out by Borgelt et al. [1] from missing data and not possibilis-
tic ones. This paper addresses the problem of learning networks structure from
possibilistic datasets which presents a part of the learning process of possibilis-
tic networks. In fact, we only address the structure learning problem i.e. the
output of the proposed method is a DAG which is not characterized by any nu-
merical data even if the proposed learning process is ensured in the possibilistic
framework. Semantically, the resultant structure is closest to a qualification via
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possibilistic conditional distributions, in the same spirit of the work of Borgelt
et al. [1].

This paper is organized as follows: Section 2 recalls basics of possibility theory
and briefly introduces possibilistic networks. Section 3 proposes a new approach
to learn networks structure from possibilistic datasets. Finally, Section 4 reports
and analyzes experimental results.

2 Background on Possibility Theory and Possibilistic
Networks

We first give the necessary background on possibility theory. For more details,
we refer to [10]. Let X1, ..., Xn be a set of state variables whose values are
ill-known such that D1, ..., Dn are their respective domains. We denote by xi

instances of a variable Xi. The joint domain of X1, ..., Xn is the universe of
discourse Ω = D1 × ... × Dn. The agents knowledge about the value of Xi can
be encoded by a possibility distribution π corresponding to a mapping from the
universe of discourse Ω to the unit interval [0, 1]. For any state ω ∈ Ω, π(ω) = 1
means that ω realization is totally possible for variables X1, ..., Xn and π(ω) = 0
means that ω is an impossible state. The particularity of the possibilistic scale
is that it can be interpreted in two-fold: in an ordinal manner i.e. the possibility
degrees reflect only an ordering between the possible values and in a numerical
interpretation i.e. the possibility degrees make sense in the ranking scale. Given a
possibility distribution π, we can define for any subset A ⊆ Ω two dual measures
Π(A) = max

ω∈A
π(ω) and N(A) = 1 − Π(Ā) where Π assesses at what level A is

consistent with our knowledge represented by π whereas N evaluates at what
level Ā is impossible.

Possibilistic networks [1, 8] represent the possibilistic counterpart of Bayesian
networks [2] having similarly two components: a graphical component composed
of a DAG which encodes a set of independence relations (i.e. each variable
Xi ∈ V is conditionally independent of its non-descendent given its parents)
and a numerical component corresponding to the set of conditional possibility
distributions relative to each node Xi ∈ V in the context of its parents. The two
interpretations of the possibilistic scale lead naturally to two different ways to
define possibilistic networks [1, 8]: qualitative also called min-based possibilistic
networks based onmin-based conditioning and quantitative also called product-
based possibilistic networks based on the product-based conditioning [10].

Several researchers were interested by possibilistic networks since they provide
an interesting alternative to Bayesian networks especially in some situations
when the probabilistic reasoning is controversial, like the case of total ignorance.
The vast majority of these works concern propagation algorithms [1, 8, 9] and
the unique attempt to learn possibilistic networks from data was proposed by
Borgelt et al. [1] and it is restricted to datasets with missing values. Our goal
in this work is to consider the more general case of possibilistic datasets as
described in next section.
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3 New Approach to Learn Networks Structure from
Possibilistic Datasets

To learn DAG structure from possibilistic datasets, we propose two phases
namely, possibilistic data imputation and learning. Before detailing our ap-
proach, we first define these latters. A possibilistic dataset D is defined as a
collection of tuples (denoted by ti) which can be dispatched into p certain tu-
ples, denoted by CT , and q uncertain ones, denoted by UT , where attributes
are characterized by possibility distributions. Each tuple ti is characterized by
its frequency, denoted by fr(ti) i.e. number of occurrence in the dataset.

Example 1. Let us consider Table 1 presenting an example of a possibilistic
dataset with three variables (A,B,C) such that A and C are ternary and B is
binary. The first five tuples are certain and the last five ones are uncertain. Tuple
1 (resp. 2,3,4,5) corresponds to a1b2c3 (resp. a3b1c2, a1b2c1, a2b1c3, a3b1c3).

3.1 Possibilistic Data Imputation

Given a possibilistic dataset, the first phase is to impute uncertain tuples. More
precisely, we start by computing the similarity between certain and uncertain
tuples. There are several measures in literature that can be applied to reflect
closeness between two objects (tuples in our case), we propose to use information
affinity [6]. This choice is justified by the fact that this measure satisfies main
properties of similarity measures [6]. Moreover, it has been successfully applied
in the context of possibilistic learning of decision trees [6]. Let ti and tj be
two distinct tuples each characterized by n attributes. Let πk

i (resp. πk
j ) be the

possibility distribution relative to the kth attribute of ti (resp. tj) such that m
is the number of its values, then the information affinity between ti and tj is
expressed by:

InfoAff(ti, tj) =

∑n
k=1 Aff(πk

i , π
k
j )

n
(1)

where Aff(πk
i , π

k
j ) is the similarity degree between πk

i and πk
j based on two

quantities: inconsistency degree, Inc(πk
i , π

k
j ) = 1 − max

ω∈Ω
{πk

i (ω) ∧ πk
j (ω)} where

∧ can be taken as min or product operator1 and Manhattan distance i.e.

d(πk
i , π

k
j ) =

m∑
l=1

|πk
i (ωl)−πk

j (ωl)|
m . Formally, Aff(πk

i ,
k
j ) is expressed by:

Aff(πk
i , π

k
j ) = 1 −

κ ∗ d(πk
i , π

k
j ) + λ ∗ Inc(πk

i ,
k
j )

κ + λ
(2)

where κ > 0 and λ > 0. In the remaining, we take λ = κ = 1 and ∧ is the min
operator. Once the similarity between uncertain and certain tuples is computed,
we can integrate uncertain tuples into the certain set updating thereby certain

1 Using the min operator instead of the product means that we give less importance
to the inconsistency degree.
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tuples frequencies. Let tu be an uncertain tuple and NCT (tu) be its nearest cer-
tain tuples i.e. tuples having the highest information affinity. Then, we propose
two methods to handle tu:

1. Maximum frequency method : The idea is to search the most frequent tuple
among NCT (tu), denoted by tuc , to which we affect the uncertain tuple as
follows:

fr(tuc ) = fr(tuc ) + InfoAff(tu, t
u
c ) ∗ fr(tu) (3)

Note that if several tuples have the same maximum frequency, then, we
choose randomly one of them as tuc .

2. Dispatching method : The idea, here, is to dispatch the information affinity
value between tu and NCT (tu) as follows:

∀tc ∈ NCT (tu), fr(tc) = fr(tc) +
InfoAff(tu, tc)

|NCT (tu)| ∗ fr(tu) (4)

If |NCT (tu)| = 1, Maximum frequency and Dispatching become identical.

Example 2. Let us consider the possibilistic dataset in Table 1. Table 2 presents
information affinity values between certain and uncertain tuples and Table 3
presents the updated dataset applying Dispatching and Maximum frequency.

Table 1. An example of a possi-
bilistic dataset

A B C
a1 a2 a3 b1 b2 c1 c2 c3

fr(ti)

1 1 0 0 0 1 0 0 1 3
2 0 0 1 1 0 0 1 0 4
3 1 0 0 0 1 1 0 0 1
4 0 1 0 1 0 0 1 0 2
5 0 0 1 1 0 0 0 1 1

6 0.1 0 1 0.7 1 0.5 1 0.3 2
7 0 1 0 1 0.8 1 0.6 0.2 1
8 1 0 0.5 1 0.2 1 0 0 1
9 1 1 1 1 0 1 1 1 1
10 0 1 0 1 1 0 1 0 1

n 16

Table 2. Computing similarities between
certain and uncertain tuples

����CT
UT

6 7 8 9 10

1 0.44 0.32 0.41 0.44 0.36
2 0.79 0.5 0.53 0.77 0.63
3 0.5 0.54 0.68 0.44 0.36
4 0.51 0.77 0.4 0.77 0.91
5 0.59 0.38 0.53 0.77 0.36

Table 3. Updating frequencies using Dis-
patching and Maximum frequency

CT Dispatching fr(ti) Max frequency
fr(ti)

1 a1b2c3 3 3
2 a3b1c2 5.84 6.36
3 a1b2c1 1.68 1.68
4 a2b1c2 3.95 3.68
5 a3b1c3 1.25 1∑

15.72 15.72

3.2 Learning Structure Phase

At this level, we proceed to learn networks structure using the updated dataset
denoted by D′ and we can apply any algorithm, originally proposed to learn
Bayesian networks. In this paper, we propose using two score-based algorithms
which have been already applied in the possibilistic framework [1].
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– Maximum Weight Spanning Tree (MWST) [11]: This algorithm associates
a weight (local score) to each pair of variables Xi, Xj ∈ V . MWST finds a
subset of edges where the total of their weights is maximized.

– Greedy Parent Search algorithm (GPS) [12]: This algorithm requires a topo-
logical order to reduce the search space. At the beginning, the value of the
score is computed for a variable Xi. Then, in turn, each of the parent can-
didates Xj is temporarily added and the score is recomputed. The parent
candidate that yields the highest value of the scores is selected as a first
parent and is permanently added.

These two algorithms are based on local scores to guide the search in graph can-
didates. In the current work, we retain two scores, namely, possibilistic mutual
information and possibilistic χ2 measure which are direct adaptations of proba-
bilistic independence tests mutual information [13] and χ2 [14]. In fact, Borgelt
et al. showed that these adaptations yield to good structure in the context of
learning possibilistic networks [1]. Given two variables Xi and Xj in V, then:

– Possibilistic mutual information is expressed by:

dmi(Xi, Xj) = −
∑

xi∈Di
xj∈Dj

Π(xi, xj).log2
Π(xi, xj)

min (Π(xi), Π(xj))
(5)

– Possibilistic χ2 measure is expressed by:

dχ2(Xi, Xj) =
∑

xi∈Di
xj∈Dj

(min(Π(xi), Π(xj) − Π(xi, xj))
2

min(Π(xi), Π(xj))
(6)

Note that these scores are computed in a binary manner which fit well with
MWST that generates trees. A generalization to more than two variables is also
easy to achieve for the case of GPS. In fact, the score between a variable Xi and
any set of candidate parents, denoted by Z, can be computed by a projection of
each tuple ti in the updated dataset D′ into an instance z of Z in order to retain
those matching to it. The possibility degree of z can be computed as follows. Let
Projz(D′) be this tuple set then:

Π(z) =

max
ti∈Projz(D′)

fr(ti)∑
ti∈D′

fr(ti)
(7)

4 Experimental Study

To evaluate Dispatching and Maximum frequency methods, we propose two sets
of experiments:
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– CUTS vs Dispatching and Maximum frequency: this experiment allows us
to compare proposed methods with the state of the art one i.e. CUTS [1].
To this end, we should consider the particular case of datasets with missing
values since this is the unique case where we can apply the three methods.

– Dispatching vs Maximum frequency: in this second experiment, we are in-
terested by comparing Dispatching and Maximum frequency methods. We
propose, in particular, to study the impact of data quality (% of missing
data and possibilistic data) on the learned structures.

The evaluation consists in assessing quality of learned structures applying MWST
and GPS with possibilistic mutual information and possibilistic χ2 using the
global score weighted sum of possibility degrees [1]. This evaluation schema has
been already applied in the same context in [1]. Weighted sum of possibility de-
grees of a DAG G given a dataset D, denoted by Q(G,D), consists in summing
possibility distributions of possible tuples ti in D determined from G, weighted
with their number of occurrence denoted by w(ti). This quantity is expressed
by:

Q(G,D) =
∑
t∈D

w(ti).π(ti) (8)

Weighted sum of possibility degrees can easily be computed if all tuples are
certain because their possibility distributions are unique. Nevertheless, in the
case of uncertain tuples, we use an aggregate: in the case of datasets with missing
values we may use min, mean or max of possibility distributions of certain tuples
that are compatible with it (i.e. a possible certain tuple that can be derived
from it e.g. if we consider tuple 9 in Table 1, then a possible compatible tuple
is {0, 0, 1, 1, 0, 0, 0, 1}) as proposed by Borgelt et al. in [1]. However, in the case
of possibilistic datasets, the compatibility between tuples is meaningless. So, we
propose to use the maximum of possibility degrees of nearest certain tuples as
aggregate. Note that weighted sum of possibility degrees should be minimized.

As an example of dataset, we consider for all experiments, Danish Jersey cattle
blood type determination dataset which contains 500 sample cases described by
21 attributes. This dataset also contains an important number of missing data
(≈ 10% of values). In each experiment, we generate 10 bootstrap samples by
selecting randomly 40% of the entire dataset. Each algorithm is evaluated by
calculating the mean and the standard deviation of weighted sum of possibility
degrees of learned networks structures. The order used in GPS corresponds to
the one cited in Danish Jersey cattle blood type determination dataset.

4.1 CUTS vs Dispatching and Maximum Frequency Methods

The first experiment concerns the comparison between CUTS and Dispatching
and Maximum frequency in the particular case of missing data. Table 4 shows
results relative to this experiment. As we have mentioned, to treat uncertain
tuples in weighted sum of possibility degrees, we may choose the min, mean or
max of compatible tuples of possibility degrees. Table 4 shows that Dispatching
and Maximum frequencyyield better results than CUTS. This is an obvious result
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Table 4. Weighted sum of possibility degrees of learned structures using min, mean
and maxi aggregations

max mean min execution
time

MWST

dmi

CUTS 2+/- 0.2 1,8+/-0.1 1,7+/-0.1 2.5+/-0.2
Dispatching 1,9+/-0.1 1,8+/-0.1 1,6+/-0.1 2.8+/-0.2

Maximum frequency 1,9+/-0.1 1,7+/-0.1 1,6+/-0.1 2.8+/-0.2

dχ2

CUTS 2+/-0.2 1,9+/-0.1 1,8+/-0.1 2.7+/-0.4
Dispatching 2+/-0.1 1,8+/-0.1 1,7+/-0.1 2.9+/-0.1

Maximum frequency 2+/-0.1 1,8+/-0.1 1,7+/-0.1 2.8+/-0.1

GPS

dmi

CUTS 1,9+/-0.2 1,7+/-0.2 1,5+/-0.1 18.5+/-0.2
Dispatching 1,9+/-0.1 1,7+/-0.1 1,5+/-0.1 17+/-0.3

Maximum frequency 1,9+/-0.1 1,7+/-0.1 1,5+/-0.1 18 +/-0.7

dχ2

CUTS 1,9+/-0.2 1,7+/-0.1 1,5+/-0.1 33.7+/-0.6
Dispatching 1,9+/-0.1 1,7+/-0.1 1,5+/-0.1 38.3+/-0.2

Maximum frequency 1,9+/-0.1 1,6+/-0.1 1,5+/-0.1 38.1+/-0.2

due to the way in which uncertain tuples are handled, in fact, in Dispatching
and Maximum frequency, their frequency corresponds to their similarity (less
than 1) and not their real frequency (1) as it is the case in CUTS. By this way,
we can deflate considerably possibility distributions and thereby, we make them
more informative for discovering dependencies between attributes. Table 4 (last
column) shows also that these three methods run in approximately equal time
durations. The complexity of Dispatching and Maximum frequency is O(p*q).

4.2 Dispatching vs Maximum Frequency

The first experiment shows a very close behavior of Dispatching and Maximum
frequency. Thus, we focus now on comparing them by varying the percentage of
missing and possibilistic data in the dataset. Thus, we generate four synthetic
datasets by randomly removing 10%, 20%, 30% and 40% of values. Figure 1
shows that adding missing data reduces learned structures quality. In fact, this
operation introduces noise to the dataset which allows the emergence of cor-
rupted dependencies. Obviously, in this situation, both methods perform less
better but, we remark that they remain stable i.e. not very sensitive to noise.
The last experiment covers four synthetic datasets generated by varying the
percentage of missing data in the dataset replaced by possibility distributions
(possibilistic data). Figure 1 gives results of this experiment. Unsurprisingly, the
quality of learned structures is better when we replace missing data with possi-
bility distributions in both methods Dispatching and Maximum frequency. This
is due to the fact that possibility distributions are more specific than missing
data (total ignorance). We also note that Dispatching and Maximum frequency
behave almost the same way regarding missing and possibilistic data except in
the case of MWST where Maximum frequency leads to slightly better learned
structures. Maximum frequency is based on most frequent observations exclud-
ing dependencies discovered from very rare observations generally not relevant
to the problem.
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Fig. 1. Weighted sum of possibility degrees of learned structures from missing and
possibilistic data

5 Conclusion

This paper addresses the problem of structural learning of DAGs from possi-
bilistic datasets. The proposed approach is first based on imputation to handle
uncertain tuples. To this end, two solutions are proposed: Dispatching and Max-
imum frequency. Then, we proceed to the learning phase where we can apply
any of the learning structure algorithms. Experimental study shows that both
Dispatching and Maximum frequency yield better structures than the closest ex-
isting method to our work i.e. CUTS [1]. It also shows that they have almost the
same behavior with GPS and MWST learning algorithms with a slight advantage
to Maximum frequency with MWST. The output of the proposed approach is a
DAG without any numerical data which may represent the qualitative compo-
nent of several graphical models. That said, the semantic of generated structures
fits better with possibilistic networks and more precisely product-based ones. Fu-
ture work concerns evaluation methods of learned networks structure to make it
more specific to the possibilistic framework. We also tend to learn possibilistic
networks parameters from data which remains a real challenge.
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Abstract. In this paper we shall deal with an extension of �Lukasiewicz
propositional logic obtained by considering scalar multiplication with
real numbers, and we focus on the description of its Lindenbaum alge-
bra, i.e., the algebra of truth functions. We show the correspondence
between truth tables of such logic and multilayer perceptrons in which
the activation function is the truncated identity.

Keywords: Many-valued logic, �Lukasiewicz logic, McNaughton func-
tions, Neural Networks, MV-algebras, Riesz MV-algebras.

1 Introduction

Many-valued logics are the logical instrument to use when dealing with more
than two truth values. In particular, in the big class of many-valued logics a
leading role belongs to �Lukasiewicz logic that has truth values in the real interval
[0, 1] and whose connectives are the �Lukasiewicz t-norm

x � y = max(x + y − 1, 0)

as interpretation of conjunction, and the involution ¬x = 1−x as interpretation
of negation.

The importance of �Lukasiewicz logic is mainly due to the fact that it is a
deductive system that is logically sound and complete with respect to interpre-
tations in the interval [0, 1] and, further, when interpreted in [0, 1] all connectives
become continuous functions.

Differently from what happens in classical propositional logic, a functional
completeness theorem does not hold: not all the functions from [0, 1]n to [0, 1]
are truth tables of some �Lukasiewicz formula. But a characterization of such
functions exists: McNaughton theorem [13] ensures that they are exactly the
class of continuous piecewise linear functions with integer coefficients. Then a
natural question arises: how to modify the logic in order to obtain, as truth
functions, all the continuous piecewise linear functions. The answer has been
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given in [8,9] where a logical system RL corresponding to Riesz MV-algebras
(unit interval of vector lattices) is given.

Many-valued logic has been proposed in [5] to model neural networks: it is
shown there that, by taking as activation function � the identity truncated to zero
and one (i.e., �(x) = (1 ∧ (x ∨ 0))), it is possible to represent the corresponding
neural network as combination of propositions of �Lukasiewicz calculus. In [2],
formulas of Rational �Lukasiewicz logic have been studied in correspondence with
multilayer perceptrons.

In this paper we extend the latter result and we show that multilayer percep-
trons whose activation function is the identity truncated to zero and one, can
be fully interpreted as logical objects, since they are equivalent to (equivalence
classes of) formulas of RL. This result can be seen as a generalization of the well
known correspondence between boolean circuits and formulas of classical propo-
sitional logic (see also [7]). On one hand to have a logical representation (in a
given logic) of neural networks could widen the interpretability, amalgamability
and reuse of these objects. On the other hand, neural networks could be used to
learn formulas from data and as circuital counterparts of (functions represented
by) formulas.

2 MV-Algebras, Riesz MV-Algebras and Related Logical
Systems

The algebraic structures related with �Lukasiewicz infinite-valued logic are called
MV-algebras. An MV-algebra is a structure (A,⊕,∗ , 0), where (A,⊕, 0) is an
abelian monoid and the following identities hold for all x, y ∈ A:

MV(1) (x∗)∗ = x,
MV(2) 0∗ ⊕ x = 0∗,
MV(3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

The real unit interval [0, 1] equipped with the operations

x∗ = 1 − x and x ⊕ y = min(1, x + y)

for any x, y ∈ [0, 1] (the standard MV-algebra) generates the verity of MV-
algebras, i.e. an equation holds in any MV-algebra if and only if it holds in [0, 1].
We refer to [6] for all the unexplained notions concerning MV-algebras. On any
MV-algebra A the following operations are defined for any x, y ∈ A:

1 = 0∗, x � y = (x∗ ⊕ y∗)∗, x → y = x∗ ⊕ y
0x = 0, mx = (m − 1)x⊕ x for any m ≥ 1.

We recall that an �-group is a structure (G,+, 0,≤) such that (G,+, 0) is a
group, (G,≤) is a lattice and any group translation is isotone [3]. If G is an
abelian �-group and u ∈ G, we define [0, u] = {x ∈ G | 0 ≤ x ≤ u} and

x ⊕ y = (x + y) ∧ u, x∗ = u − x for any x, y ∈ [0, u].
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Then [0, u]G = ([0, u],⊕,¬, 0) is an MV-algebra [6, Proposition 2.1.2]. So for
example, from the abelian �-group R of real numbers (equipped with the usual
linear ordering) and considering the unit element 1, one obtain the standard
MV-algebra [0, 1].

In [15] Mundici proved that MV-algebras are categorically equivalent with
abelian lattice-ordered groups with strong unit (i.e. an element u ∈ G such that
u ≥ 0 and for any x ∈ G there is a natural number n such that x ≤ nu.). Hence
any MV-algebra is the unit interval of some abelian �-group.

A Riesz space (vector lattice) [12] is a structure (V, ·,+, 0,≤) such that
(V,+, 0,≤) is an abelian �-group, (V, ·,+, 0) is a real vector space and, in addi-
tion, x ≤ y implies r · x ≤ r · y , for any x, y ∈ V and r ∈ R, r ≥ 0. A Riesz
space is unital if the underlaying �-group has strong unit.

A simple example of Riesz space is once again the set of real numbers with
operations of sum and multiplication and with the usual linear ordering.

If (V, u) is a Riesz space with strong unit then the unit interval [0, u]V is closed
with respect to the scalar multiplication with scalars from [0, 1]. The structure

[0, u]V = ([0, u], ·,⊕,∗ , 0),

where ([0, u],⊕, ∗, 0) is the MV-algebra defined as above and · : [0, 1]× [0, u]V →
[0, u]V satisfies the axioms of the scalar product is the fundamental example in
the theory of Riesz MV-algebras, initiated in [9].

Definition 1. A Riesz MV-algebra is a structure

(R, ·,⊕,∗ , 0),

where (R,⊕,∗ , 0) is an MV-algebra and the operation · : [0, 1] ×R → R satisfies
the following identities for any r, q ∈ [0, 1] and x, y ∈ R:

(RMV1) r · (x � y∗) = (r · x) � (r · y)∗,
(RMV2) (r � q∗) · x = (r · x) � (q · x)∗,
(RMV3) r · (q · x) = (rq) · x,
(RMV4) 1 · x = x.

In the following we write rx instead of r ·x for r ∈ [0, 1] and x ∈ R. Note that
rq is the real product for any r, q ∈ [0, 1].

Theorem 1. An equation σ in the theory of Riesz MV-algebras holds in all
Riesz MV-algebras if and only if it holds in the standard Riesz MV-algebra [0, 1].

2.1 The Propositional Calculus RL

We denote by L∞ the ∞-valued propositional �Lukasiewicz logic. Recall that L∞
has ¬ (unary) and → (binary) as primitive connectives and, for any ϕ and ψ we
have the following derived connectives:

ϕ ⊕ ψ := ¬ϕ → ψ ϕ � ψ := ¬(¬ϕ ⊕ ψ)
ϕ ∨ ψ := (ϕ → ψ) → ψ ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)
� := (ϕ → ϕ) ⊥ := ¬�.
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The language of RL contains the language of L∞ and a family of unary con-
nectives {∇r|r ∈ [0, 1]}. We denote by Form(RL) the set of formulas defined
inductively as usual.

Let R be a Riesz MV-algebra. An evaluation is a function e : Form(RL) → R
which satisfies the following conditions for any ϕ, ψ ∈ Form(RL) and r ∈ [0, 1]:
(e1) e(ϕ → ψ) = e(ϕ)∗ ⊕ e(ψ),
(e2) e(¬ϕ) = e(ϕ)∗,
(e3) e(∇rϕ) = (re(ϕ)∗)∗.

As a consequence of Theorem 1, the propositional calculus RL is complete
with respect to [0, 1]. In order to define the scalar multiplication we introduce
new connectives Δrϕ := ¬(∇r¬ϕ). Note that e(Δrϕ) = re(ϕ).

Definition 2. The term function ϕ̃ : [0, 1]n → [0, 1] associated with a formula
ϕ(v1, . . . , vn) is the uniquely defined function such that ϕ̃(x1, . . . , xn) = e(ϕ),
where e is an evaluation such that e(vi) = xi for any i ∈ {1, . . . , n}.

The set {ϕ̃ | ϕ ∈ Form(RL)} is a Riesz MV-algebra with operations defined
pointwisely.

2.2 Term Functions and Continuous Piecewise Linear Functions

In the following, we characterize the class of functions that can be defined by
formulas in RL.

Recall that f : Rn → R is a linear function if f(x1, . . . , xn) = a1x1 + . . . +
anxn + b with ai, b ∈ R.

Definition 3. Let n > 1 be a natural number. A function f : Rn → R is a
piecewise linear function if there exists a finite number of linear functions

q1 . . . , qk : Rn → R

such that for any (x1, . . . , xn) ∈ Rn there is i ∈ {1, . . . , k} such that f(x1, . . . , xn)
= qi(x1, . . . , xn).

We denote by PLn the set of continuous piecewise linear functions f : [0, 1]n →
[0, 1]. The following can be proved by structural induction on the formulas.

Theorem 2. If ϕ is a formula of RL with propositional variables from {v1, · · · ,
vn} then ϕ̃ ∈ PLn.

The continuous piecewise linear functions f : [0, 1]n → [0, 1] with integer coef-
ficients are called McNaughton functions and they are in one-one correspondence
with the formulas of �Lukasiewicz logic by McNaughton theorem [13]. The contin-
uous piecewise linear functions with rational coefficients correspond to formulas
of Rational �Lukasiewicz logic, a propositional calculus developed in [10] that has
divisible MV-algebras as models. In Theorem 3 we prove that any continuous
piecewise linear function with real coefficients f : [0, 1]n → [0, 1] is the term
function of a formula from RL.

For now on we define � : R → [0, 1] by
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�(x) = (x ∨ 0) ∧ 1 for any x ∈ R.

Proposition 1. For any linear function f : [0, 1]n → R there exists a formula
ϕ of RL such that � ◦ f = ϕ̃.

Proof of this proposition can be found in [9]. For a comparison on the case of
McNaughton functions and McNughton functions with rational coefficients, we
refer the reader to [1].

Following the proof in [9], we define here a recursive function whose input is
a linear function f : [0, 1]n → R and whose output is a formula ϕ of RL such
that � ◦ f = ϕ̃. If f : [0, 1]n → R is a linear function, then

f(x1, . . . , xn) = cnxn + · · · + c1x1 + c0

with c0, . . ., cn ∈ R. Note that for any c ∈ R there is a natural number m such
that c = r1 + · · · + rm where r1, . . ., rm ∈ [−1, 1]. Hence

f(x1, . . . , xn) = rmym + · · · rp+1yp+1 + rp + · · · + r1

where m ≥ 1 and 0 ≤ p ≤ m are natural numbers, rj ∈ [−1, 1] \ {0} for any
j ∈ {1, . . . ,m} and yj ∈ {x1, . . . , xn} for any j ∈ {p + 1, · · · ,m}.

In the sequel we represent a monomial rxi as a pair (r, i) so, in consequence,
a linear function is represented as a list of pairs (r, i) where c ∈ [−1, 1] and
i ∈ {0, . . . , n}. In this representation a pair (r, 0) will represent the free term r.
The input of the recursive function Formula is a nonempty list of pairs.

function Formula((r1, i1), . . . , (rm, im))
{
(F1) if rk ≤ 0 for any k ∈ {1, . . . ,m} then return(⊥);

(F2) find k ∈ {1, . . . ,m} such that rk > 0;
if ik = 0 then ψ := Δrk� else ψ := Δrkxik;

(F3) if m = 1 then return(ψ);
(F4) ϕ =Formula((r1, i1), . . . , (rk−1, ik−1), (rk+1, ik+1), . . . , (rm, im)) ;

χ =Formula((−r1, i1), . . . , (−rk−1, ik−1), (−rk+1, ik+1), . . . , (−rm, im)) ;

return((ϕ⊕ ψ)� ¬χ)
}

Note that in the above algorithm Δ1ϕ can be replaced by ϕ for any formula ϕ,
since � ϕ ↔ Δ1ϕ in RL. Further simplifications in RL can be done, but they
are beyond the scope of the above algorithm.

Example 1. We illustrate how the algorithm works on a simple example.
If f : [0, 1]2 → [0, 1], f(x1, x2) = x2 − 0.3x1 then we call the function
function Formula((1, 2), (−0.3, 1))
{
(F2) k = 1, rk = 1, ik = 2; ψ := Δ1x2;

(F4) ϕ =Formula((−0.3, 1)) ; χ =Formula((0.3, 1)) ;

return((ϕ ⊕ ψ) � ¬χ)
}
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One can easily see that ϕ = ⊥ and χ = Δ0.3x1, so the function returns

(ϕ ⊕ ψ) � ¬χ = (⊥ ⊕ Δ1x2) � ¬Δ0.3x1

which is logically equivalent with x2 � ¬Δ0.3x1.

Theorem 3. For any f : [0, 1]n → [0, 1] from PLn there is a formula ϕ of RL
such that f = ϕ̃.

Proof. Let f : [0, 1]n → [0, 1] be a continuous piecewise linear function and let
p1, . . . , pu be the linear functions that are the pieces of f in the sense that for
every x ∈ [0, 1]n there exists i ∈ {1, . . . , u} such that f(x) = pi(x).

Let Σ denote the set of permutations of {1, . . . , u} and for every σ ∈ Σ let

Pσ = {x ∈ [0, 1]n | pσ(1)(x) ≤ . . . ≤ pσ(u)(x)}.

In other words Pσ is a polyhedron such that the set of restrictions of linear
functions p1, . . . , pu to Pσ is totally ordered, increasingly with respect to {σ(1),
. . . , σ(u)}. We denote by iσ the index such that

f(x) = pσ(iσ)(x) for every x ∈ Pσ.

Using the Max-Min representation from [16] (see also [13,14])

f =
∧
σ∈Σ

iσ∨
j=1

pσ(j),

where we stress that pσ(j) : [0, 1]n → R are linear functions. We note that

f = � ◦ f =
∧
σ∈Σ

iσ∨
j=1

� ◦ pσ(j).

By Proposition 1, for any σ ∈ Σ and j = 1, . . . , iσ there is a formula ϕσj

such that � ◦ pσ(j) = ϕ̃σj . In consequence, if we set ϕ =
∧

σ∈Σ

∨iσ
j=1 ϕσj then

f = ϕ̃. ��

For any n ≥ 1, the set PLn is a Riesz MV-algebra with the operations defined
componentwise. If RLn is the Lindenbaum-Tarski algebra of RL defined on for-
mulas with variables from {v1, . . . , vn}, then RLn is the free Riesz MV-algebra
with n free generators by standard results in universal algebra (see [4] and [1]
for the case of free algebras related to many-valued logics) . Since the func-
tion [ϕ] �→ ϕ̃ is obviously an isomorphism between RLn and PLn the following
corollary is straightforward.

Corollary 1. PLn is the free Riesz MV-algebra with n free generators.

Elements of PLn will be also called RL functions.
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3 Neural Networks

Among the many possible neural networks typologies and structures, we focus
our attention on multilayer perceptrons. These are feedforward neural networks
with one or more hidden layers. A multilayer perceptron with l hidden layers
[11], n inputs and one output can be represented as a function F : [0, 1]n → [0, 1]
such that F (x1, . . . , xn) =

φ

⎛⎝n(l)∑
k=1

ωl
okφ

⎛⎝n(l−1)∑
j=1

ωl−1
kj φ

(
. . .

(
n∑

i=1

ω1
lixi + bi

)
. . .

)))
, (1)

where φ : R → [0, 1] is a monotone-nondecreasing continuous function (referred
to as activation function), ωl

ok is the synaptic weight from neuron k in the l-th
hidden layer to the single output neuron o, ωl−1

kj is the synaptic weight from
neuron j in the (l− 1)-th hidden layer to neuron k in the l-th hidden layer, and
so on for the other synaptic weights.

In the simplest case, a multilayer perceptron has exactly one hidden layer.
This network can be represented as a function G : [0, 1]n → [0, 1]:

G(x1, . . . , xn) = φ

⎛⎝ n∑
1=1

αiφ

⎛⎝ n∑
j=1

wijxj + bi

⎞⎠⎞⎠ , (2)

where n̄ is the number of neurons in the hidden layer.

Let N be the class of multilayer perceptrons where the activation function
is the continuous piecewise linear function �(x) = max(min(1, x), 0), and the
synaptic weights are real numbers.

3.1 RL and Neural Networks

In order to establish a correspondence between neural networks and RL func-
tions, we need the following

Lemma 1. The activation function � maps any finite weighted sum of functions
in PLn into a function in PLn.

We want now to associate a neural network to each RL formula of n variables.

By using neural networks we can express linear combinations, but we need to
define networks corresponding to minimum and maximum.

Proposition 2. For every x, y ∈ [0, 1], one-layer neural networks

F1(x, y) = �(y) − �(y − x)

F2(x, y) = �(y) + �(x − y)

coincide respectively with min(x, y) and max(x, y).
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Proof. If x ≤ y then �(y) = y, �(y − x) = y − x and �(x − y) = 0, hence
F1(x, y) = x and F2(x, y) = y.

If y ≤ x then �(y) = y, �(y − x) = 0 and �(x− y) = x− y, hence F1(x, y) = y
and F2(x, y) = x.

We can hence describe neural representation of RL functions.

Theorem 4. (i) For every l, n, n(2), . . . , n(l) ∈ N, and ωij , bi ∈ R, the function
F : [0, 1]n �−→ [0, 1] defined as F (x1, . . . , xn) =

�

⎛⎝n(l)∑
k=1

ωok�

⎛⎝n(l−1)∑
j=1

ωkj�
(
. . .

(
n∑

i=1

ωlixi + bi

)
. . .

)))
,

is a RL function.
(ii) For any RL function f , there exist l, n, n(2), . . . , n(l) ∈ N, and ωij , bi ∈ R

such that f(x1, . . . , xn) =

�

⎛⎝n(l)∑
k=1

ωok�

⎛⎝n(l−1)∑
j=1

ωkj�
(
. . .

(
n∑

i=1

ωlixi + bi

)
. . .

)))
.

Proof. (i) By Lemma 1.
(ii) By Theorem 3 we have

f(x) = min
σ∈Σ

max
1≤j≤iσ

�(pσ(j)(x)).

For every σ and j, the function �(pσ(j)(x)) is a network with one hidden layer.
Then applying networks as in Proposition 2 we get the claim.

By using a simple variation of Weierstrass theorem it is possible to show that
continuous piecewise linear functions are able to approximate every continuous
function with an error as low as desired. Then we have the following

Corollary 2. The class N of functions associated with multilayer perceptrons
as in Equation 1, with ωij ∈ R and φ = � truncated identity, is dense in the
class of continuous functions.

From the corollary it follows that the use of only truncated identity � as
activation function is not a severe restriction on the class of neural networks
which can be obtained; they can approximate every neural network representing
a continuous function.
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Abstract. Graphical models are important tools to efficiently represent and an-
alyze uncertain information in knowledge-based systems. The most prominent
representatives of these models refer to probability theory. In particular, Bayesian
networks [27, 29] have been largely developed and used in real world applica-
tions. However, such networks are only appropriate when all numerical data are
available, which is not always the case. Indeed, there are some situations such
as the case of total ignorance, which are not well handled and which can make
the probabilistic reasoning unsound. Therefore non-probabilistic graphical mod-
eling has recently emerged as a promising new area of research. In particular,
possibilistic networks [4, 8, 21] appear as noteworthy alternative to probabilistic
networks whenever it is necessary to model both uncertainty and imprecision.
In fact possibility theory [15] offers a natural and simple model to handle such
data and presents an appropriate framework for experts to express their opinions
numerically or qualitatively. This leads to two variants of possibilistic networks:
product-based networks and min-based networks (also known as qualitative pos-
sibilistic networks). The first part of this talk adresses the reasoning problem in
possibilistic networks. Several propagation algorithms will be presented with a
focus on qualitative networks. The second part concerns the decisional aspect in
possibility theory and in particular the sequential decision making in possibilis-
tic decision trees. In fact, the development of possibilistic decision theory has
lead to the proposition of a series of possibilistic criteria, namely: optimistic and
pessimistic possibilistic qualitative criteria [17], possibilistic likely dominance
[14, 20], binary possibilistic utility [23] and possibilistic Choquet integrals [32].
Thus a theoretical study on the complexity of the problem of finding an optimal
strategy depending on the monotonicity property of the optimization criteria will
be proposed. Details about different parts of this talk can be found in [1–5].

Keywords: Graphical models, Possibility theory, Causality, Propagation algo-
rithms, Decision making, Possibilistic decision trees.

1 Background on Possibility Theory

Possibility theory, issued from Fuzzy Sets theory, was introduced by Zadeh [35] and
further developed by Dubois and Prade [15]. This subsection briefly recalls some basic
elements, for more details we refer to [15].

Let V = {X1, X2, ..., XN} be a set of variables. We denote by xi any instance of Xi

and by DXi the domain associated with Xi. Ω = DX1×· · ·×DXN denotes the universe

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 86–99, 2013.
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of discourse, which is the Cartesian product of all variable domains V . Vectors ω ∈ Ω
are often called realizations or simply “states” (of the world). The agent’s knowledge
about the value of the xi’s can be encoded by a possibility distribution π : Ω → [0, 1];
π(ω) = 1 means that realization ω is totally possible and π(ω) = 0 means that ω is
an impossible state. It is generally assumed that there exist at least one state ω which
is totally possible - π is said then to be normalized. Extreme cases of knowledge are
presented by:

– complete knowledge i.e. ∃ω0 s.t. π(ω0) = 1 and ∀ω �= ω0, π(ω) = 0.
– total ignorance i.e. ∀ω ∈ Ω, π(ω) = 1 (all values in Ω are possible).

From π, one can describe the uncertainty about the occurrence of an event A ⊆ Ω
via two dual measures: the possibility Π(A) and the necessity N(A) expressed by:

Π(A) = sup
ω∈A

π(ω). (1)

N(A) = 1 − Π(Ā) = 1 − sup
ω/∈A

π(ω). (2)

Measure Π(A) evaluates to which extend A is consistent with the knowledge repre-
sented by π while N(A) corresponds to the extent to which ¬A is impossible and thus
evaluates at which level A is certainly implied by the π.

The particularity of the possibilistic scale is that it can be interpreted twofold: when
the possibilistic scale is interpreted in an ordinal manner, i.e. when the possibility de-
gree reflects only an ordering between the possible values, the minimum operator is
used to combine different distributions.

Conditioning is a crucial notion when studying independence relations. It consists
in modifying our initial knowledge, encoded by the possibility distribution π by the
arrival of a new fully certain piece of information e. Let us denote φ = [e] the set
of models of e. The initial distribution π is then replaced by another one denoted by
π

′
= π(. | φ) (we generally assume that φ �= ∅ and that Π(φ) > 0). One important and

natural postulate for possibilistic conditioning stipulates that π
′

should be normalized.
This can be ensured in two different ways depending on whether we are in a qualitative
or numerical setting leading to two possible definitions of possiblistic conditioning:

– In an ordinal setting, we assign to the best elements of φ, the maximal possibility
degree (i.e. 1), then we obtain:

π(ω | φ) =

⎧⎨⎩
1 if π(ω) = Π(φ) and ω ∈ φ
π(ω) if π(ω) < Π(φ) and ω ∈ φ
0 otherwise.

(3)

This corresponds to the min-based conditioning.
– In a numerical setting , we proportionally shift up all elements of φ:

π(ω | φ) =

{
π(ω)
Π(φ) if ω ∈ φ

0 otherwise.
(4)

This corresponds to the product-based conditioning.
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These two definitions of conditioning satisfy a unique equation close to the Bayesian
rule, of the form:

∀ω, π(ω) = π(ω | φ) ⊗ Π(φ). (5)

respectively for ⊗ are the minimum (for (3)) and the product (for (4)) operators.
The min-based conditioning (3) corresponds to the least specific solution of Equation
(5) first proposed by Hisdal [25]. If Π(φ) = 0 then, by conventionπ(ω |m φ) = π(ω |p
φ) = 1.

2 Possibilistic Networks

Possibilistic networks are defined as counterparts of Bayesian networks [29] in the con-
text of possibility theory. They share the same basic components, namely:
(i) a graphical component which is a DAG (Directed Acyclic Graph) G= (V,E) where
V = {X1, X2, ..., XN} denotes a set of nodes representing variables and E a set of
edges encoding conditional (in)dependencies between them.
(ii) a numerical component associating a local normalized conditional possibility dis-
tribution to each variable Xi ∈ V in the context of its parents (denoted by Ui).

The two definitions of possibilistic conditioning lead to two variants of possibilistic
networks: in the numerical context, we get product-based networks, while in the ordinal
context, we get min-based networks (also known as qualitative possibilistic networks).
Let ΠG⊗ be a possibilistic network (where ⊗ is either the min or the product operator
∗ depending on the semantic underlying it), then we can compute the joint possibility
distribution encoded by ΠG⊗ using the following chain rule:

π⊗(X1, . . . , XN ) = ⊗i=1..N Π(Xi | Ui). (6)

For example, Table 1 gives local distributions (Π(A) and Π(B | A)) relative to a
small network ΠG⊗ with two binary variable A and B such that A is the parent of B
and the joint possibility distributions relative to ΠG∗ and ΠGmin (i.e. π∗ and πmin)

Table 1. Example of the numerical component of a possibilistic network

A B Π(A) Π(B | A) π∗ πmin

a1 b1 1 1 1 1
a1 b2 1 0.8 0.8 0.8
a2 b1 0.4 0.8 0.32 0.4
a2 b2 0.4 1 0.4 0.4

It is important to note that the semantic behind edges in the graphical component
can be generalized to direct causal relationships instead of simple (in)dependencies be-
tween variables. In such a case we talk about causal possibilistic networks [7] which are
possibilistic counterparts of probabilistic causal networks [30]. Clearly, a causal possi-
bilistic network is a proper possibilistic network but the contrary is not always true.
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This means that its structure is more meaningful and more expressive. For instance, al-
though the two networks A → B and B ← A are equivalent (i.e. they encode the same
joint distribution), only one of them is a correct causal network. In fact, if we consider
the first network A causes B, then, manipulating the value of A affects B which is not
true with the second structure (i.e. B ← A) where B is a cause of A, then manipulat-
ing A will not affect B. It is important to note that exactly as possibilistic networks,
the two interpretations of the possibilistic scale lead to two kinds of possibilistic causal
networks: min-based ones in an ordinal setting and product-based ones in a numerical
setting.

The main purpose of building possibilistic networks or possibilistic causal networks
is to use them for inference (or propagation) i.e. studying how the realization of specific
values of some variables affects the remaining ones. Obviously this process depends on
the semantic of the network at hand. More precisely, given a possibilistic network, we
can determine how the observation of specific values of some variables (i.e. evidence,
also called observation) affects remaining ones while if we deal with causal networks,
network’s information can be updated by the presence of two types of information:
observations or interventions which represent external events, coming from outside the
system and forcing some variables to take some specific values.

Similarly to the probabilistic case [12], possibilistic propagation (causal or not) is
an NP-complete problem in both product and min based networks. The first possibilis-
tic propagation algorithms were simple adaptations of standard message passing algo-
rithms initially designed for Bayesian networks [27, 29]. We can mention, in particular,
the adaptation of Pearl’s algorithm and Junction tree algorithm [8, 21]. These adapta-
tions show that product-based networks are very close to Bayesian networks sharing
the same features (especially the product operator) and having the same theoretical
and practical results. This is not the case with min-based networks due to the speci-
ficity of the minimum operator (e.g. idempotency property) and this motivates us to
develop several new propagation algorithms for such networks. In what follows, we
first detail the anytime possibilistic propagation algorithm which is an approximate ap-
proach that avoids the transformation of the initial network into a junction tree, then
we present some variants of compilation-based propagation algorithms (also available
for the causal inference) showing, specifically the power of the qualitative setting with
the compilation technique recently proposed by Darwiche et al. for Bayesian networks
[13, 28].

2.1 Anytime Possibilistic Propagation Algorithm

This algorithm (detailed in [4]) is inspired from the junction tree algorithm [27] with
the crucial difference that it avoids the transformation step of the initial network into
a junction tree which is known to be a hard problem [12]. Thus given a min-based
possibilistic network ΠGmin, this algorithm locally computes for any instance a of a
variable of interest A the possibility distribution Π(a) inferred from ΠGmin according
to the following major steps:
- Initialization. This first step transforms the initial DAG into an equivalent secondary
structure, called moral graph by associating to each variable Xi a cluster Ci grouping
Xi with its parents Ui. Then for each edge connecting two nodes Xi and Xj , we add
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an undirected edge in the moral graph between the clusters Ci and Cj labeled with a
separator Sij corresponding to their intersection. The moral graph is quantified by as-
sociating to each cluster Ci a potential using the initial conditional distributions. Lastly,
we should incorporate the instance of interest a in the cluster relative to A.

– One-parent stability. This step ensures that any cluster agrees with each of its parents
on the distributions defined on common variables. This procedure is performed via
a message passing mechanism between different clusters. Each separator collects
information from its corresponding clusters, then diffuses it to each of them, in order
to update them by taking the minimum between their initial potential and the one
diffused by their separator. This operation is repeated until there is no modification
on the cluster’s potentials. It can be shown that the one-parent stability is reached
after a finite number of message passes, and hence it is a polynomial procedure.

– n-parents stability. The previous step does not always guarantee local computations
(from clusters) of the possibility measure Π(A). Thus, the aim of n-parents stability
is to improve the resulted possibility degree by considering stability with respect to
a greater number of parents. Therefore, we will increase the parents number by first
considering two parents, then three parents until reaching n parents where n is the
cardinality of the parent set relative to each cluster. Obviously, the higher the number
of parents considered in the stability procedure, the better the quality of results.

– Handling the evidence. Given any new evidence e, the computation of Π(a | e)
is performed via two calls of the previous steps in order to compute successively
Π(e) and Π(a ∧ e). Then using the min-based conditioning (Equation 3), we get
Π(a | e).

This algorithm is said to be anytime since the longer it runs, the closer to the exact
marginals it gets. In order to study the efficiency of this algorithm, we test the quality of
generated marginals from different stability procedures by comparing them with exact
ones (generated by the exact junction tree algorithm [8, 21]). This experimental study
[4] was carried on random possibilistic networks (varying the number of nodes, their
cardinalities and the maximum number of parents) and it shows that the stability degree,
even at one-parent, is a good estimation of exact marginals (96,42%). This result is
interesting since it means that with networks having complex structures with a great
number of nodes, we can use efficiently the one-parent stability which is a polynomial
procedure. Indeed, in such cases the exact algorithm generates huge clusters where local
computations are impossible and blocks. Moreover, experimental study shows that the
refined stability procedures improve the rate of correct exact marginals (for instance
n-nodes stability provides 99.87% of exact marginals), without a huge increasing of
running time (e.g. with a DAG having 60 nodes, the additional running time is between
10 and 60 seconds).

2.2 Compilation-Based Propagation in Min-based Possibilistic Networks

Recently, inference has been studied using new techniques, namely knowledge compi-
lation [13, 28] which consists in preprocessing a propositional theory only once in an
off-line phase, in order to make frequent on-line queries efficient [10]. The basic idea
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of compilation-based inference methods consists in encoding the initial network into a
propositional base, usually a conjunctive normal form (CNF) and compiling it into a
target compilation language that guarantees a polynomial inference.

In [3], we propose a possibilistic adaptation of the standard probabilistic inference
approach of [13] and a purely possibilistic inference method based on the transforma-
tion of possibilistic networks into possibilistic knowledge bases [6]. The possibilistic
adaptation does not take into account any numerical value in the encoding phase. In
other terms, it associates a propositional variable per parameter, regardless of its value.
Consequently, we propose to refine such encoding by dealing with specific values of
parameters. In fact, two types of encoding strategies are explored. The first one, named
local structure and used in both probabilistic and possibilistic networks, consists in
assigning one propositional variable per equal parameters per possibility table. This en-
coding strategy does not take into account specific features of possibility theory such as
the ordinal nature of uncertainty scale, which motivates us to propose a new encoding
strategy, named possibilistic local structure and dealing with equal parameters from a
global point of view. This latter is exclusively useful for min-based possibilistic net-
works since it exploits the idempotency property of the min operator. Our experimental
results point out that the possibilistic local structure is the most compact one in terms
of CNF parameters since it requires less variables and clauses than local structure [1].
In fact, the purely possibilistic encoding strategy, which takes advantage of the idempo-
tency property of the min operator, allows us to associate a unique propositional variable
per equal parameters per all possibility conditional tables. This means that possibilistic
local structure deals with equal parameters globally per all tables, while local structure
is only restricted to a local point of view, i.e., per a unique table. However, this reduction
of CNF parameters generates compiled bases with higher edges. This is especially due
to the higher number of shared variables incurring several interactions among clauses.
This study points out that the inference time relies strongly on the compiled base size,
i.e., the smaller the compiled base is the faster inference will be.

Moreover, in [2] we deal with interventions in possibilistic causal networks under
a compilation framework. More precisely, we explored two different techniques: the
most intuitive one, called mutilation, consists in ignoring relations between the inter-
vened variable and its direct causes. The rest of the network remains intact. Hence,
causal inference resides in applying the inference algorithm to the mutilated possibilis-
tic network. A different but equivalent approach to represent intervention in possibilis-
tic causal networks, called augmentation, is to consider it as an additional variable into
the system. We proposed mutilated-based approaches and augmented-based approaches
aiming to compute the effect of both observations and interventions in an efficient man-
ner in possibilistic causal networks. Mutilated-based approaches are not sensitive to
the number of interventions since the compiled base is mutilated instead of the initial
possibilistic network, which enables the handling of a set of interventions without the
need for re-compiling the network each time an intervention occurs. This is not the
case of augmented-based approaches since the augmented network is compiled after
performing the set of interventions. Our study shows that augmented-based approaches
outperform mutilated-based approaches even in the extreme case in which an extra node
is associated for each network variable.
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2.3 Possibilistic Decision Trees

For several decades, there has been a growing interest in Operation Research and more
recently in Artificial Intelligence towards the foundations and computational methods
of decision making under uncertainty. This is especially relevant for applications to se-
quential decision making under uncertainty, where a suitable strategy needs to be found,
that associates a decision to each state of the world. Several representation formalisms
can be used for sequential decision problems, such as decision trees [31] and influence
diagrams [26]. We focus here on decision trees, since this framework is simple and al-
lows an explicit representation of the decision problem. Even in this simple, explicit,
case, the set of potential strategies is combinatorial (i.e., its size increases exponen-
tially with the size of the tree). The determination of an optimal strategy for a given
representation and a given decision criterion is then an algorithmic issue in itself.

Decision trees are graphical representations of sequential decision problems under
the assumption of full observability. This framework proposes an explicit modeling of
sequential decision problems, by representing each possible scenario by a path from the
root to the leaves of the tree. Formally, the graphical component of a decision tree T is
composed of a set of nodes N and a set of edges E such that the set N contains three
kinds of nodes:

– D = {D0, . . . , Dm} is the set of decision nodes (represented by rectangles). The
labeling of the nodes is supposed to be in accordance with the temporal order i.e.
if Di is a descendant of Dj , then i > j. The root node of the tree is necessarily a
decision node, denoted by D0.

– LN = {LN1, . . . , LNk} is the set of leaves, also called utility leaves: ∀LNi ∈
LN , u(LNi) is the utility of being eventually in node LNi. For the sake of sim-
plicity we assume that only leave nodes lead to utilities.

– C = {C1, . . . , Cn} is the set of chance nodes represented by circles.
For any Xi ∈ N , Succ(Xi) ⊆ N denotes the set of its children. Moreover, for any
Di ∈ D, Succ(Di) ⊆ C: Succ(Di) is the set of actions that can be decided when
Di is observed. For any Ci ∈ C, Succ(Ci) ⊆ LN ∪ D: Succ(Ci) is indeed the set
of outcomes of the action Ci - either a leaf node is observed, or a decision node is
reached (and then a new action should be executed).

In classical, probabilistic, decision trees [31] the uncertainty pertaining to the possi-
ble outcomes of each Ci ∈ C, is represented by a conditional probability distribution
pi on Succ(Ci), such that ∀N ∈ Succ(Ci), pi(N) = P (N |path(Ci)) where path(Ci)
denotes all the value assignments to chance and decision nodes on the path from the root
to Ci. In the present work, we obviously use a possibilistic labeling (for illustration see
Figure 1). More precisely, for any Ci ∈ C, the uncertainty pertaining to the more or less
possible outcomes of each Ci is represented by a conditional possibility distribution πi

on Succ(Ci), such that ∀N ∈ Succ(Ci), πi(N) = Π(N |path(Ci)).
Solving a decision tree amounts at building a strategy that selects an action (i.e. a

chance node) for each reachable decision node. Formally, we define a strategy as a
function δ from D to C ∪ {⊥}. δ(Di) is the action to be executed when a decision node
Di is observed. δ(Di) = ⊥ means that no action has been selected for Di (because
either Di cannot be reached or the strategy is partially defined). Admissible strategies
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Fig. 1. Example of a possibilistic decision tree with C = {C1, C2, C3, C4, C5, C6}, D =
{D0, D1, D2} and LN = U = {0, 1, 2, 3, 4, 5}

should be: sound1 and complete2. Let Δ be the set of sound and complete strategies that
can be built from the decision tree. Any strategy δ ∈ Δ can be viewed as a connected
subtree of the decision tree whose arcs are of the form (Di, δ(Di)) i.e. there being
exactly one decision arc left at each decision node.

Strategies can be evaluated and compared thanks to the notion of lottery reduction.
Recall indeed that leaf nodes in LN are labeled with utility degrees. Then a chance
node can be seen as a simple lottery (for the rightmost chance nodes) or as a compound
lottery (for the inner chance nodes). This means that each strategy δ ∈ Δ is a compound
lottery that can be reduced to an equivalent simple one (denoted by Reduction(δ)) and
compared to remaining strategies so that to define the optimal one.

A popular criterion to compare decisions under risk is the expected utility (EU)
model axiomatized by Von Neumann and Morgenstern [34]. This model relies on a
probabilistic representation of uncertainty. Thus for standard probabilistic decision trees,
where the goal is to maximize expected utility, an optimal strategy can be computed in
polytime (with respect to the size of the tree) thanks to an algorithm of Dynamic Pro-
gramming which builds the best strategy backwards, optimizing the decisions from the
leaves of the tree to its root. The completeness of such an algorithm is possible since
the EU model satisfies the monotonicity property.

When the information about uncertainty cannot be quantified in a simple, probabilis-
tic way, the topic of possibilistic decision theory is often a natural one to consider. The
development of possibilistic decision theory has lead to the proposition and often of the
characterization of a series of possibilistic criteria, namely:
- Qualitative possibilistic utilities (Upes, Uopt, PU ): Under the assumption that the
utility scale and the possibility scale are commensurate and purely ordinal, Dubois
and Prade [17] have proposed the following qualitative pessimistic (denoted by Upes)

1 ∀Di ∈ D, δ(Di) ∈ Succ(Di) ∪ {⊥}.
2 (i) δ(D0) �= ⊥ and (ii)∀Di s.t. δ(Di) �= ⊥,∀N ∈ Succ(δ(Di)), either δ(N) �= ⊥ or
N ∈ LN .
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and optimistic (denoted by Uopt) utility degrees for evaluating any simple lottery L =
〈λ1/u1, . . . , λn/un〉 (s.t. λi = π(ui) is the possibility that the decision leads to an
outcome of utility ui):

Upes(L) = min
i=1..n

max(ui, 1 − λi). (7)

Uopt(L) = max
i=1..n

min(ui, λi). (8)

Upes generalizes the Wald criterion and estimates to what extend it is certain (i.e.
necessary according to measure N ) that L reaches a good utility. Its optimistic counter-
part, Uopt, estimates to what extend it is possible that L reaches a good utility. Because
decision makers are rather cautious than adventurous, the former is generally preferred
to the latter. Note that the preference order induced by Uopt and Upes is transitive [17].

Claiming that the lotteries realized in the best prize or in the worst prize play an
important role in decision making, Giang and Shenoy [23] have proposed a bipolar
model (PU ) in which the utility of an outcome is a pair u = 〈u, u〉 where max(u, u) =
1: the utility is binary in this sense that u is interpreted as the possibility of getting the
ideal, good reward (denoted �) and u is interpreted as the possibility of getting the anti
ideal, bad reward (denoted ⊥). The normalization constraint max(u, u) = 1, implies
that the set U = {〈u, u〉 ∈ [0, 1]2,max(λ, μ) = 1} is totally ordered by the relation
!pu defined by:

〈u, u〉 !pu 〈v, v〉 ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u = v = 1 and u ≤ v
or
u ≥ v and u = v = 1
or
u = v = 1 and v < 1

(9)

Each ui = 〈ui, ui〉 in the utility scale is thus understood as a small lottery
〈ui/�, ui/⊥〉. A lottery 〈λ1/u1, . . . , λn/un〉 can be viewed as a compound lottery,
and its PU utility is computed by reduction:

PU(〈λ1/u1, . . . , λn/un〉)
= Reduction(λ1/〈u1/�, u1/⊥〉, . . . , λn/〈un/�, un/⊥〉)
= 〈 max

j=1..n
(min(λj , uj))/�, max

j=1..n
(min(λj , uj))/⊥〉

(10)

We thus get, for any lottery L a binary utility PU(L) = 〈u, u〉 in U . Lotteries can
then be compared according to Equation (9):

L !PU L′ ⇐⇒ Reduction(L) !pu Reduction(L′). (11)

In [24] Giang and Shenoy show that the order induced by PU is transitive and that it
collapses with the one induced by Uopt (resp. Upes) whenever for any lottery, the pos-
sibility u (resp. u) of getting the worst (resp. the best) utility is equal to 1.
- Possibilistic likely dominance (LΠ , LN ): When the scales evaluating the utility and
the possibility of the outcomes are not commensurate, [14, 20] propose to prefer, among
two possibilistic decisions, the one that is more likely to overtake the other. Such a rule
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does not assign a utility degree to the decisions, but draws a pairwise comparison. Al-
though designed on a Savage-like framework rather than on lotteries, it can be trans-
lated on lotteries. This rule states that given two lotteries L1 = 〈λ1

1/u
1
1, . . . , λ

1
n/u

1
n〉

and L2 = 〈λ2
1/u

2
1, . . . , λ

2
n/u

2
n〉, L1 is as least as good as L2 as soon as the likelihood

(here, the necessity or the possibility) of the event “The utility of L1 is as least as good
as the utility of L2” is greater or equal to the likelihood of the event “The utility of L2

is as least as good as the utility of L1”. Formally:

L1 !LN L2 iff N(L1 ! L2) ≥ N(L2 ! L1). (12)

L1 !LΠ L2 iff Π(L1 ! L2) ≥ Π(L2 ! L1). (13)

where Π(L1 ! L2) = sup
u1
i ,u

2
js.t. u1

i≥u2
j

(λ1
i ⊗ λ2

j ) and

N(L1 ! L2) = 1 − sup
u1
i ,u

2
js.t. u1

i<u2
j

(λ1
i ⊗ λ2

j ),

such that ⊗ = min for ordinal setting and ⊗ = ∗ for numerical setting.

The preference order induced on the lotteries is not transitive, but only quasi-transitive
[14]. Note that contrary to Upes, Uopt and PU , which are purely ordinal, possibilistic
likely dominance can be defined in the ordinal setting or the numerical setting of pos-
sibility theory.
- Order of Magnitude Expected Utility (OMEU ): Order of Magnitude Expected Util-
ity theory relies on a qualitative representation of beliefs, initially proposed by Spohn
[33], via Ordinal Conditional Functions, and later popularized under the term kappa-
rankings. Formally, κ : 2Ω → Z+ ∪ {+∞} is a kappa-ranking if and only if it obeys
to the following axioms:
(S1) min

ω∈Ω
κ({ω}) = 0,

(S2) κ(A) =

{
min
ω∈A

κ({ω}) if A �= ∅ and A ⊆ Ω

+∞ otherwise.

Note that an event A is more likely than an event B if and only if κ(A) < κ(B):
kappa-rankings have been termed as disbelief functions. As pointed out by [16], there
exists a close link between kappa-rankings and possibility measures, insofar as any
kappa-ranking can be represented by a possibility measure, and vice versa. An Or-
der of Magnitude Expected Utility (OMEU) model can then be defined. Considering
that an order of magnitude lottery L = 〈κ1/μ1, . . . , κn/μn〉 represents some proba-
bilistic lottery, it is possible to compute its order of magnitude of the expected utility:
OMEU(L) = mini=1,n{κi + μi}. Given two lotteries L1 and L2, the preference rela-
tion !OMEU is thus defined by:

L1 !OMEU L2 iff OMEU(L1) ≥ OMEU(L2). (14)

The preference order induced on the lotteries is transitive [22].
- Possibilistic Choquet integrals (ChN , ChΠ ): In presence of heterogeneous informa-
tion, i.e. when the knowledge about the state of the world is possibilistic while the utility
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degrees are numerical and compensatory Choquet integrals appear as a right way to ex-
tend expected utility to non-Bayesian models [11]. Like the EU model, this model is
a numerical, compensatory, way of aggregating uncertain utilities. But it does not nec-
essarily resort on a Bayesian modeling of uncertain knowledge. Indeed, this approach
allows the use of any monotonic set function μ also called capacity or fuzzy measure.
Such measure captures probability measures, necessity and possibility measures and
belief functions etc. as particular cases.

Chμ(L) = u1 + Σ
i=2,n

(ui − ui−1) . μ(L ≥ ui). (15)

If μ is a probability measure then Chμ(L) is simply the expected utility of L. In the
possibilistic framework, we should consider for cautious decision makers the necessity
measure N and for adventurous ones, the possibility measure Π [32] which give the
following expressions:

ChN (L) = u1 + Σ
i=2,n

(ui − ui−1) . N(L ≥ ui). (16)

ChΠ(L) = u1 + Σ
i=2,n

(ui − ui−1) . Π(L ≥ ui). (17)

Let O be one of the possibilistic decision criteria presented above (i.e. Upes, Uopt,
PU , LΠ , LN , OMEU, ChN , ChΠ ), a strategy δ ∈ Δ, is said to be optimal w.r.t. the
preference order !O iff ∀δ′ ∈ Δ,Reduction(δ) !O Reduction(δ′). Formally, for any
criterion O, the corresponding decision problem can be defined as follows:
[DT-OPT-O] (Strategy optimization w.r.t. an optimization criterion O in possibilistic
decision trees)
INSTANCE: A possibilistic Decision Tree T , a level α.
QUESTION: Does there exist a strategy δ ∈ Δ such that Reduction(δ) ≥O α?

The complexity of this problem depends on the monotonicity property - when the
criterion is transitive, this property indeed allows a polytime solving of the problem by
Dynamic Programming. In [5, 19], we show that most possibilistic decision criteria,
except possibilistic Choquet integrals, satisfy monotonicity and that the corresponding
optimization problems can be solved in polynomial time by Dynamic Programming
(Table 2 summarizes different complexity results).

For the particular case of possibilistic Choquet integrals, we proved that the the prob-
lem is NP-hard and that it can be solved by implicit enumeration via a Branch and
Bound algorithm that extends the use of Dynamic Programming. This algorithm takes
as argument a partial strategy δ and an upper bound of the Choquet value ChN or ChΠ

of the best extension of the partial strategy. It returns the Choquet value of the best strat-
egy found so far. As initial value for δ we retain the empty strategy (δ(Di) = ⊥, ∀Di).
For δopt, we can start with the strategy provided by the Dynamic Programming algo-
rithm: indeed, even not necessarily providing an optimal strategy, this algorithm gen-
erally provides a good one. At each step, the current partial strategy, δ, is developed
by the choice of an action for some unassigned decision node. When several decision
nodes are candidate, the one with the minimal rank (i.e. the former one according to the
temporal order) is developed first. The recursive procedure backtracks when either the
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Table 2. Results about the complexity of DT −OPT −O

Upes Uopt PU LΠ LN OMEU ChN ChΠ

P P P P P P NP-complete NP-complete

current strategy is complete (then δopt may be updated) or proves to be worst than the
current δopt in any case. Our first experiments suggest that this approach is computa-
tionally sustainable.

So, it appears that the use of possibilistic decision criteria does not lead to an increase
in complexity, except for Choquet integrals. This is an interesting result that allows the
extension of our work to more sophiticated decisional graphical models as possibilistic
influence diagrams [18].

3 Conclusion and Future Work

In this work, we addressed two key challenges related to a new research area rela-
tive to possibilitic graphical models. We focus on reasoning and decision showing the
specificities of the possibilistic framework especially in its ordinal interpretation. It is
important to note that possibilitic graphical models should not be seen as competitive
with standard probabilistic graphical models but as complementary tools that should be
used according to the problem at hand and to the available data. There are many more
issues for further research about possibilistic graphical models. In particular, the unique
attempt to learn such models from data was proposed by Borgelt et al. in [9] with a
restriction to datasets with missing values. Thus we recently investigate this topic by
considering the more general case of possibilistic datasets.
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Abstract. In this paper, an original ranking operator is introduced for
Triangular Fuzzy Numbers. The purpose is to elaborate fast and effi-
cient algorithms dealing with complicated operations and big data in
fuzzy decision-making. The proposed ranking operator takes advantage
of the topological relationship of two triangles, besides the Inclusion In-
dex concept — which is an index indicating the Degree of Inclusion in the
MIN of two Fuzzy Numbers, a way to approach the ”strongly included
in”. Consequently, the ranking result can mostly be deduced directly,
allowing an efficient ranking process.
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1 Introduction

In many applications of the fuzzy set theory to decision making, we are faced
with the problem of selecting one from a collection of possible solutions, and in
general we want to know which is the best one [1]. Therefore, several proposi-
tions emerged whilst addressing this issue: [2] proposed a signed distance-based
ranking, which allowed the distance evaluation between two fuzzy numbers; [3]
suggested a centroid-based distance method; [4] introduced the user viewpoint-
based evaluation of fuzzy sets as a pre-step to ordering using a satisfaction
function; and several other approaches. These methods may not be adequately
efficient when processing large amounts of data; since we are interested by risk
fuzzification in decision-making on dangerous goods transport such in [5–9]. We
propose a ranking method that ensures the reduction of operations and steps;
to the point of making decisions directly without comparison operations.

This work is based mainly on five papers: [10] provided the mathematical
foundations of operations on fuzzy numbers, while [11, 12] fully exploited the
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properties of the operator MIN of fuzzy numbers, especially for TFNs. Those
proposed in [13, 14] concern the fuzzy inclusion. The structure of this paper is
organized as follows: in Section 2, the main concepts on which the proposed ap-
proach is based are introduced; in Section 3, the results obtained by the classifi-
cation of the different topological relationship of two TFNs. Finally, conclusions,
perspective and questions are drawn in Section 4.

2 Methodology

2.1 Background

Triangular Fuzzy Number. TFNs are represented as 〈k, α, β〉. Its mathemat-
ical definition is:

Definition 1 (TFN Membership Function). A TFN denoted by Λ =
〈k, α, β〉 or

(
Λ−, Λ0, Λ+

)
, has the membership function

Λ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ Λ−

1 − k−x
α for Λ− < x < Λ0

1 for x = Λ0

1 − x−k
β for Λ0 < x < Λ+

0 for x ≥ Λ+

(1)

with Λ0 = k, Λ− = k−α and Λ+ = k+β. k is called the kernel (or mean) value
fo the TFN since its membership value is 1. α, β are the left and right hand
spreads of Λ respectively.

In addition to different shapes of fuzzy sets, Puri and Ralescu [15] introduced,
in 1986, the Fuzzy Random Variables, which covers random experiments whose
outcomes are neither numbers or vectors in Rn. As for fuzzy numbers, the sta-
tistical aspect of Fuzzy Random Variables lacks of arithmetic linearity. However,
the ordering of these variables are not a part of the scope of this paper.

Lattice Operators MIN and MAX. The method proposed, hereinafter,
for ranking the TFNs is based mainly on the lattice operators MIN and MAX
[11, 16]. Indeed, Dubois & Prade [10] and Klir [16] ensured that the triple
(R,MIN,MAX) is a distributive lattice, in which MIN and MAX represented
the meet and join, respectively. It is necessary to highlight therefore that the use
of real numbers operators min and max are not applicable, since they are ex-
pressed by the terms of the pair (R,≤). By extending min and max on TFNs,
we can use them to formulate the proposed method. The lattice operator MIN
definition is based on any two TFNs A and B as described by Klir [16]

MIN (A,B) (z) = sup
z=min(x,y)

min [A (x) , B (y)] (2)

for all x, y, z ∈ R. Chiu and Wang introduced in [11] a Theorem pointing out
the simplicity of the implementation MIN and MAX as follows,
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Theorem 1 (Chiu-Wang-2002). For any two TFNs A and B, defined on the
universal set R, with continuous membership function and (A ∩ B) �= ∅, let
xm(∈ R) be the point such that (A ∩ B) (xm) � (A ∩ B) (x) for all x ∈ R and
A (xm) = B (xm), moreover, xm is between two mean values of A and B (if the
number of xm is not unique, any one point of those xm is suitable). Then the
operation MIN can be implemented as

MIN (A,B) (z) =

{
(A ∪ B) (z) , as z < xm,
(A ∩ B) (z) , as z � xm,

(3)

where z ∈ Z = R, and ∪ and ∩ denote the standard fuzzy intersection and union,
respectively.

The theorem given above provides a simple procedure for the implementation
of MIN operator. It facilitates the quick checking of results promised by the
ranking operator that have been built.

Inclusion Index (InI). It is a quantitative indicator expressing the Degree of
Inclusion, whose definition consists in considering that E ⊆ F ⇔ (Card(E∩F ) =
Card(E)) with E and F are fuzzy sets, as introduced by Dubois & Prade [10]
and Bordogna [13]. Then the degree is given by:

Discrete Sets

∂(E ⊆ F ) =

∑
‖E ∩ F‖∑

‖E‖

=

∑
x∈X

T (μE(x), μF (x))∑
x∈X

μE(x)

Continuous Sets

∂(E ⊆ F ) =

∫
‖E ∩ F‖∫

‖E‖

=

∫
X T (μE(x), μF (x))∫

X
μE(x)

(4)

where T is a triangular norm and ‖ ‖ denote the standard fuzzy cardinal
operator Card; μE and μF are respectively the membership function of E
and F . Sometimes, we do not have to compute the degree of inclusion since
MIN(A,B) ∈ {A,B} — according to Dubois & Prade [10] and Klir [16]. There-
fore, a partially ordering of so-called comparable fuzzy sets is obtained. Other-
wise, when MIN(A,B) /∈ {A,B} they are called non-comparable fuzzy sets.

Intuitively, if the minimum of fuzzy sets A and B is neither A nor B, then
the minimum will be one of the sets A and B where the fuzzy set MIN(A,B)
is more strongly included. Thus the InI will be used for this purpose.

In fact, Koczy and Hirota [17] introduced in 1993, the concept of similarity
between two fuzzy terms, in order to reduce the number of rules in a fuzzy knowl-
edge base. The similarity was measured with the index “degree of overlapping”;
and from their distance, their closeness is derived.

The following subsection includes our proposal for a new ranking operator of
TFNs.
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2.2 The Proposed Approach for TFN Ranking

Proposed Operators. We introduce hereinafter the definition of the proposed
ranking operators “≺”, “'” and “(”:

Definition 2 (Ranking Operators). For every fuzzy sets A and B, the rank-
ing operators are defined by the following implications:

If MIN ∈ {A,B}⎧⎪⎨
⎪⎩

A ≺ B ⇔ MIN = A

A � B ⇔ MIN = B

A � B ⇔ MIN = A and MIN = B

Else⎧⎪⎨
⎪⎩

A ≺ B ⇔ ∂ (MIN ⊆ A) > ∂ (MIN ⊆ B)

A � B ⇔ ∂ (MIN ⊆ A) < ∂ (MIN ⊆ B)

A � B ⇔ ∂ (MIN ⊆ A) = ∂ (MIN ⊆ B)

(5)

In constrast, a majority of relative cases exists between two TFNs, where a direct
deduction of the InI without any calculation has to be applied. Fig. 1 introduces
the different situations that encompass all possibles cases [12].

3 Results Analysis

3.1 Classification Results

The InI application led to the classification of 10 different cases. Indeed, since we
have six points 〈A−, A0, A+〉 and 〈B−, B0, B+〉 for all TFN A,B, so the number
of possibilities is equal to 1

2C
6
3 = 6!

2×3!(6−3)! = 10. We divided by 2 to eliminate

the 10 remaining possibilities that are symmetric to those presented hereinafter.
Fuzzy Disjoint: Obviously A ≺ B since ∀x,A(x) < B(x) (see Fig. 2-C1).
Fuzzy Weak Overlapping: A ≺ B, it is deduced from the Theorems 1 and

(5) since MIN (A,B) = A (see Fig. 2-C2).
Fuzzy Overlapping: Four possibles cases have been defined. The first three,

C3, C4 and C5, in the Fig. 3 indicate, according to Theorems 1 and (5), that
A ≺ B. The fourth, C6, cannot be deduced directly by not being able to deduce
intuitively the InI, since MIN (A,B) /∈ {A,B}, {x | MIN (A,B) (x) > 0} �
{x | A (x) > 0} and {x | MIN (A,B) (x) > 0} � {x | B (x) > 0}, for all x ∈ R.
The comparison of the area of the Triangle B (TFN topology), with the area of
the Triangle M indicated on the Fig. 3-C6, respectively SB and SM , allows the
deduction of the results. In fact, the surface measurement of the two triangles
Ainc and Binc is adequate to deduce the InI; since Ainc, Binc ⊆ MIN (A,B)
but Ainc, Binc � A ∩ B. By comparing SB and SM , which is similar to the
comparison of SAinc and SBinc , the ranking is carried out.

Fuzzy Inclusion: Finally, the Fig. 4 introduces the last four cases. The
first two, C7 and C8, we have MIN (A,B) /∈ {A,B}. However for all x ∈ R,
{x | MIN (A,B) (x) > 0} ⊆ {x | A (x) > 0} and {x | MIN (A,B) (x) > 0} �
{x | B (x) > 0}, therefore it is obvious that A ≺ B according to the degree of
inclusion concept (5). As previously with the overlapping case, the ranking of
C9 and CX can be inferred by comparing SB with SM .
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3.2 Properties of the TFN Ranking Operators

Method Reasonableness Proof. Wang and Kerre [18] propose a reasonable
axioms for ranking fuzzy numbers. We have proven the reasonableness of our
ranking method by studying it according to the theorem introduced in [18].
However, due to constraints on the number of pages the axioms and proofs will
not be detailed here.

Comparison with Other Ranking Methods. Thorough comparison have
been undertaken with various major approaches. Notably the comparison with
the maximizing and minimizing set method proposed by Chen [19], which is a
commonly used approach, highly cited and has wide applications according to
[20]. Hereinafter, we present some of the examples on which our studies took as
a comparing means.

Example 1: Asady and Zendehnam [21] consider the three TFNs A =
(5, 6, 7; 1), B = (5.9, 6, 7; 1) and C = (6, 6, 7; 1) shown in Fig. 5-a. The appli-
cation of most methods such Chen’s approach [19], and the proposed method
infer the following outcome: A ≺ B ≺ C. Whereas, with the Cheng method [22]
infer C ≺ B ≺ A.

Example 2: The ranking of TFNs in the Fig. 5-b,C = (−0.70,−0.40,−0.25; 1),
B = (−0.58,−0.32,−0.17; 1) and A = (−0.50,−0.30,−0.20; 1) results in C ≺
B ≺ A. The same result is obtained by Choobineh [23] and Chu [24] methods,
however the Cheng [22] and Chen [19] methods results in A ≺ B ≺ C.

Example 3: Consider the two TFNs — as in Ezzati et al. [25] — A =
(3, 6, 9; 1) and B = (5, 6, 7; 1) shown in Fig. 5-c. It is a common problem, and
yet a very controversial one. Indeed, A and B have the same symmetrical spread
[26] and most existing methods fail to rank them properly [27]. By using the
approaches in [2, 24, 28, 29], we obtain A ( B; and with [25] the ranking
order resulted is A ' B. Different ranking results are obtained when different
indices of optimism are considered among the approaches [30]. Ezzati et al.
[25] consider that the decision makers prefer the result A ' B and adds, it is
intuitive. However, by applying our approach A ≺ B since A has a greater degree
of inclusion in MIN (A,B) than B. Therefore A has a greater tendency to be
lower than B.

Example 4: Consider the followings set, see [25] and [2]: A = (0.4, 0.5, 1; 1),
B = (0.4, 0.7, 1; 1), C = (0.4, 0.9, 1; 1), see Fig. 5-d. With the proposed method
we get A ≺ B ≺ C, as well as with most of approaches (such [19, 21–25, 28, 30]).
But Cheng [31] obtains A ≺ C ≺ B.

Fig. 1. All possible topological situations for two TFNs



Ranking Triangular Fuzzy Numbers Using Fuzzy Set Inclusion Index 105

Fig. 2. Topological Representation of the Situation 1 & 2: Disjoint & Weak cases

Fig. 3. Topological Representation of the Situation 3: overlapping cases

Fig. 4. Topological Representation of the Situation 4: inclusion cases
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Fig. 5. 4 controversial examples: (a) shows 3 positives TFNs; (b) shows 3 negatives
TFNs; (d) shows same symmetrical spread TFNs; (d) shows same support TFNs

4 Conclusion

In this paper, a new method for ranking TFNs is introduced, which is based on
the Inclusion Index (InI) concept. It allows a simple and intuitive ordering of
TFNs. As a result, our approach allowed us to deduce directly in 70% of cases
the comparison of two TFNs. Moreover, we observed the similarity of results
obtained with either other suggested approaches outcomes and human intuition,
which proves its efficiency. However, some issues need to be asked: Can we use
other InI defined on fuzzy sets? Is the proposed approach generalizable to all
shapes of fuzzy numbers? Future developments of this work will address these
issues in depth. Deployment of this approach for computing the fuzzy shortest
path within hazardous materials transportation context, is also a priority in our
research areas.
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the underlying category for monads with categories capturing uncer-
tainty in a more canonic way. This is indeed important concerning terms
and sentences, as classic logic programming, and also predicate logic
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1 Introduction

Intuitively speaking, terms are produced by signatures such that variables and
constants are terms, and if t1, . . . , tn are terms then also ω(t1, . . . , tn) is a term,
where ω resides in the given signature. Categorically, it is well known that terms
may be produced by functors that are extendible to monads (see e.g. [7,14]),
whereas sentences are produced by functors. Indeed, variables may be substi-
tuted by terms, but sentence variables are dubious. For example, we may have
terms P (x) and Q(y), where P and Q are predicate symbols residing in the
signature, with x and y as variables. We might now produce a sentence in some
abstract form like as a pair (P (x), Q(x)), intuitively then corresponding to “P (x)
is inferred by Q(y)” to check whether that sentence is valid or not. Here, the
‘pairing operation’ is not given in the underlying signature, but clearly appears
within a sentence constructor. This indeed reveals that substitution with sen-
tences makes no sense. The distinction between monads for representing terms
and functors only to represent sentences makes the situation concerning substi-
tution very transparent.

The overall scope of logic in this paper is that of generalized general logic
[14], extending the frameworks of institutions [13] and general logic [24]. Mor-
phisms between logics play an important role, and such morphisms are built
up of morphisms respectively between underlying signatures, terms, sentences,
and so on, all the way through all building blocks of logic. This means that the
‘set of terms’ and ‘set of sentences’ cannot be simple sets, so that we would
have straightforward mappings between them. Categorically, they are based on
functors and monads, which provides a richer algebraic structure and constraints
morphisms between logics in a more canonic way. In logic programming, informal
production of sets of terms and well-formed formulas in fact leads to confusion
concerning the borderline between terms and sentences. In [21], notation and
concepts mention ‘signature’, ‘functions’ (operators of formal universal algebra
based signatures), and ‘predicates’. In this conventional view, predicates are typ-
ically seen as different from operators in some underlying signature, and such
treatments are also ‘unsorted’, or in fact one-sorted concerning the underlying
set of terms.

In first-order logic based logic programming we are immediately confronted
with the issue of the underlying signature. Informal treatments of first-order
logic are not always clear about predicates being operator symbols or simply
relations or functions, the latter confusing semantics with syntax in a way where
the ‘semantic jacket’ acts as a ‘dress code’ for syntactic treatment of predi-
cate symbols. Even more confusing is the adoption in [21] to say that operator
symbols in signatures are ‘function symbols’, and the Boolean like operators rep-
resenting predicates are called a ‘predicate symbols’. Indeed, in [21], first-order
logic is called a ‘first order theory’ consisting of alphabet, language, and so on,
but these notion are not in harmony with the necessity to keep terms apart from
sentences. Such verbose notations and names as used in [21] are not clear about
the distinction between terms and sentences, and an alphabet is simply assumed
to contain both operator as a well as predicate symbols. This means that terms
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and sentences are lumped together within that informal language description.
The use of ‘function’ in this context is obviously misleading as ω is only a syn-
tactic symbol, but its semantic counterpart is a function (in the sense of ZFC),
which in [21] is called a ‘mapping’.

In our categorical approach, ‘alphabet’ is the underlying signature of sorts
and operators, and we are always many-sorted. In [21] the treatment is basically
one-sorted, and operators are called ‘constants’ and ‘functions’. The confusion
concerning terms and sentences also leads to technicalities involving interpreta-
tions and models. The classical treatment of models is using sets rather than
algebras, which in turns invites or even enforces [21] to say that “the identifica-
tion of a Herbrand interpretation as a subset of the Herbrand base will be made
throughout”. Strictly speaking, we do not have subsets in this case.

In this paper we will have predicates as operators, so atoms are terms, but
program clauses become sentences. Basically this means that conjunction of
predicates are still terms, but clauses involving implication is not a term, since
implication is not included as an operator in the underlying signature. We will
categorically aim at being precise so that notions like ‘ground terms’, ‘well-
formed formulas’ in predicate logic, ‘predicates’ or ‘predicate symbols’, and
‘atoms’ can be explained more strictly in the categorical machinery.

Preliminary notions used in this paper appear in a working version [10], and
the categorical framework of our monad constructions appear in [7].

These monads make use of constructions in categorical algebra more broadly,
which goes back to the study of natural equivalences [5]. Monoidal closed cate-
gories emerges more or less in [4], and attained its simple and clean formulation
in [22]. This is the categorical realm of this paper, and the categorical notation
adopted in this paper is the same as in [7].

2 Traditional Extensions from Two-Valued to
Many-Valued Logic Programming

In traditional two-valued logic, and once negation is given, implication and con-
junction are defined by one another. In the intuitionistic tradition, negation as
a basic building block is avoided, and then implication and conjunction needs
to be otherwise related, and this is done by the residuation property, which cat-
egorically is an adjoint situation, given as a Galois connection. This enables to
define negation, if negation is desired. Residuated lattices have been extensively
studied and are appealing algebraic structures for semantics of logic, and indeed
because of the tight bound between implication and conjuction.

In many-valued logic, this ‘semantic jacket’ has been adopted in several ap-
proaches. E.g. in [2], this residuated situation appears in what is called ‘implica-
tion algebras’, and later on, e.g. in [23], where the name ‘multi-adjoint’ is used
in this context. ‘Multi-adjointness’ in logic programming then refers to the use
of residuated lattices that provides the desired semantic jacket that prescribes
the behaviour of the truth values.

All this is, from the viewpoint of that semantic jacket, basically an exten-
sion of two-valued logic to many-valued logic using algebras of truth values.
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The underlying language involving its terms and sentences remain traditional.
It also follows the tradition of extending propositional calculus to predicate cal-
culus, where the implication operator receives a similar semantic. Traditional
predicate logic is set-theoretic, not functorial, about its ‘set of sentences’. Many-
valued logic programming has followed that same tradition, and then the se-
mantics, which restricts to management of truth values, is adopted using this
semantic jacket provided by that residuated situation. The acronym ‘MALP’ for
multi-adjoint logic programming has then been quite widely adopted, and as
an acronym is seen as a specific version of fuzzy logic programming. ‘Adjoint-
ness’ refers to the residuated situation, and ‘multi’ to the allowance of using
particular lattices for each separate logic program. Much of this work basically
keeps the classical constructions of logic programming as they are e.g. in [21],
and many-valued extensions indeed focus on the many-valued extensions of the
truth values. It does deal with uncertainty issues, but restricted to consequences
of algebraic manipulation of truth values. It is also seen to represent ‘approxi-
mate reasoning’, which it certainly does, but as restricted to that focus on truth
values, leaving all the other bits and pieces of logic as they are in a two-valued
setting.

As mentioned before, our scope is logic as categorical object, that is con-
structed functorially and monadically, with morphisms between respective sub-
structures in logic. Thus we do not propose to have a ‘universal logic’, and
further, logic programs in our setting is the axiom system in a particular logic.
This means e.g. that logic programs can have different inference rules, and mor-
phisms between logic programs makes no sense unless we would have morphisms
between their underlying logics, which in turn include appropriate transforma-
tions between their respective inference systems.

Resolution in these approaches eventually enters the scene, and theory de-
velopments are confronted e.g. with fixpoint issues and inference rules. This
then is mostly ad hoc as typically seen e.g. in [1,3,15,19,20,25,28,34]. Essentially,
they differ in the underlying notion of uncertainty theory and vagueness theory
(probability theory, possibilistic logic, fuzzy logic and multi-valued logic) and
how uncertainty/vagueness values, associated to rules, are managed. Annotated
logic programming [17] also falls within adoption of such jackets.

Fixpoint considerations [33] are interesting in these settings, even if it cannot
be expected that the relation between fixpoints and least Herbrand models ap-
pears as it is in a many-valued extension. Nevertheless, analyzing this fixpoint
situation [30] reveals some crucial underlying structures that are important to
consider in dealing with soundness and completeness issues. Operational and
fix-point semantics are provided also in [23], and these considerations has been
extended with a declarative semantics based on model-theory [16].

Further, there are a number of independently developed more general lan-
guage based approaches to fuzzy logic programming, where there are less con-
siderations involving first-order aspects, and more papers covering truth value
considerations only. For the first-order aspects see [18,27] for some historically
important contributions. Categories for logic programming enters the scene in
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[29] with co-equalizers seen to correspond precisely to most general unifiers. A
word of caution, however, is that co-equalizers as such do not suffice as cate-
gorical constructions when we move over to the many-valued setting. This then
affects the resolution principle as an algorithm that has been subject of fuzzifi-
cation e.g. in [1,19,23]. This mostly focuses on truth values more than extending
the underlying language. Similarly for fixpoint considerations, interpretations
are considered mostly as points in sets, and uncertainties are added [34]. The
fixpoint semantics framework has been enriched with a declarative semantics
based on model-theory as described in [16].

3 Signatures, Terms and Sentences

Throughout this paper we assume the readers are familiar with categorical con-
cepts. However, this section starts with introducing some categorical concepts
needed in the paper. Then, signatures and term monads are recalled and we in-
troduce sentences in a logic programming context. Finally, we show how fixpoints
can be considered.

3.1 Some Categorical Concepts and Notations

Let C be a category and S a set of sorts. Then, CS is a category with objects
XS = (Xs)s∈S where each Xs ∈ Ob(C). The morphisms between XS and YS are
fS : XS → YS where fS = (fs)s∈S and each fs ∈ homC(Xs, Ys). The composition
of morphisms is defined sortwise, thus, fS ◦ gS = (fs ◦ gs)s∈S .

We may sometimes need to pick an object Xs in Ob(C) when XS is given in
a form or another. For this purpose we define a functor args : CS → C such that
argsXS = Xs and argsfS = fs. Especially, when working in SetS , card(S) > 1,
we may define two emptifying functors: φS\s : SetS → SetS such that φS\sXS =
X ′

S , where for all t ∈ S\{s} we have X ′
t = Xt, and X ′

s = ∅. Similarly we define
the functor φs : SetS → SetS as φsXS = X ′

S , where for all t ∈ S\{s} we have
X ′

t = ∅, and X ′
s = Xs. Actions on morphisms are defined in obvious way.

Clearly, a functor F : C → D may be extended to a functor FS = (F)s∈S : CS →
DS (for all s ∈ S, the functor remains the same). For example, the powerset
functor P : Set → Set as well as the many-valued powerset functor L : Set → Set

both determine functors on SetS , we write PS = (P)s∈S and LS = (L)s∈S . Also
functors Gs : CS → D, s ∈ S, are of interest, because we can determine a functor
G : CS → DS such that for all XS ∈ Ob(CS) we have GXS = (GsXS)s∈S . Notice
that we have now Gs = args ◦ G.

Now, assume any two functors F,G : C → D. A natural transformation τ be-
tween F and G, denoted by τ : F → G, assigns for each C-object X a D-morphism
τX : FX → GX satisfying Gf ◦ τX = τY ◦ Ff for all f ∈ homC(X,Y ). Notice
that CS is also a category, thus we may have natural transformations, between
functors on CS , for example.

Finally, we recall a monad F over a category C, which is a triple (F, η, μ),
where F : C → C is a (covariant) functor, and η : id → F and μ : F ◦ F → F are
natural transformations for which μ ◦Fμ = μ ◦μF and μ ◦Fη = μ ◦ηF = idF hold.
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3.2 Signatures and the Term Monad Construction

A many-sorted signature Σ = (S,Ω) consists of a set S of sorts (or types), and
a set Ω of operators. Here S as an index set, whereas Ω may be an object in
SetS . Operators in Ωs are written as ω : s1 × · · · × sn → s.

It is convenient to use the notation Ωs1×···×sn→s for the set, as an object in
Set, of operators ω : s1 × · · · × sn → s ∈ Ωs with n given, and Ω→s for the
set of constants ω :→ s. With these notations we keep explicit track of operator
sorts as well as their arities and we consider

Ωs =
∐

s1,...,sn
n≤k

Ωs1×···×sn→s.

On algebraic structures for truth values, we mostly prefer to use quantales
as they play an important role when invoking the use of monoidal closed cate-
gories for the formal construction of signatures. Quantales fulfill the properties
of residuated lattices, and complete residuated lattices are quantales. We fur-
ther restrict to quantales Q that are commutative and unital, as this makes
the Goguen category1 Set(Q) to be a symmetric monoidal closed category and
therefore also biclosed. This Goguen category carries all structure needed for
modelling uncertainty using underlying categories for fuzzy terms over appro-
priate signatures, and as constructed by their term monads [7]. Note indeed
that the signature, as a categorical object itself, also carries uncertainty, which
is brought up partly to represent the overall uncertainties attached to fuzzy
terms. Recall that (A,α) ⊗ (B, β) = (A × B,α � β) provides the monoidal op-
eration on objects in the Goguen category. If � is the meet operator, then ⊗ is
the categorical product.

A signature (S, (Ω,α)) over Set(Q) then typically has S as a crisp set, and
α : Ω → Q then assigns uncertain values to operators. For the term monad
construction we need objects (Ωs1×···×sn→s, αs1×···×sn→s) for the operators ω :
s1×· · ·×sn → s with n given, and (Ω→s, α→s) for the constants ω :→ s. These
objects are provided by respective pullbacks using (Ω,α).

In our general term functor construction we have

Ψm,s((Xt)t∈S) = Ωs1×...×sn→s ⊗
⊗

i=1,...,n

Xsi ,

and this specializes, in the case of the Goguen category, to

Ψm,s(((Xt, δt))t∈S) = (Ωs1×...×sn→s, αs1×...×sn→s) ⊗
⊗

i=1,...,n

(Xsi , δsi)

= (Ωs1×...×sn→s ×
∏

i=1,...,n

Xsi , αs1×...×sn→s �
⊙

i=1,...,n

δsi).

The inductive steps start with T1
Σ,s =

∐
m∈Ŝ Ψm,s, and, for ι > 1, proceeds with

Tι
Σ,sXS =

∐
m∈Ŝ Ψm,s(T

ι−1
Σ,tXS�Xt)t∈S), and Tι

Σ,sfS =
∐

m∈Ŝ Ψm,s(T
ι−1
Σ,tfS�ft)t∈S).

1 Objects in the Goguen category are pairs (A,α), where α : A → Q is a mapping.
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This then allows us to define the functors Tι
Σ by Tι

ΣXS = (Tι
Σ,sXS)s∈S, and

Tι
ΣfS = (Tι

Σ,sfS)s∈S. There is a natural transformation Ξι+1
ι : Tι

Σ → Tι+1
Σ such

that (Tι
Σ)ι>0 is an inductive system of endofunctors with Ξι+1

ι as its connecting
maps. The inductive limit F = ind lim−→Tι

Σ exists, and the final term functor

TΣ is TΣ = F � idSetS . We also have TΣXS = (TΣ,sXS)s∈S, and TΣ is strictly
not idempotent, but only “idempotent like”, as there is a natural isomorphism
between TΣTΣ and TΣ .

For more detail concerning this term construction, see [7].

3.3 Sentences in a Logic Programming Context

Let then Σ0 = (S0, Ω0) be a signature over Set, and TΣ0 be the term monad
over SetS0 . For the variables in XS0 , the set of terms TΣ0XS0 , as an object of
SetS0 , then correspond to the ‘terms’, and similarly TΣ0∅S0 will be the set of
so called ‘ground terms’ in the sense of [21].

In order to introduce predicates as operators in a separate signature, and then
composing that resulting ‘predicate’ functor with the term functor, we assume
that Σ contains a sort bool, which does not appear in connection with any
operator in Ω, i.e., we set S = S0 ∪{bool}, bool �∈ S0, and Ω = Ω0. This means
that TΣ,boolXS = Xbool, and for any substitution σS : XS → TΣXS , we have
σbool(x) = x for all x ∈ Xbool. The composition of the ‘predicate’ functor with
TΣ is intuitively expected to be the desired ‘predicates as terms’ functor.

We can now also separate propositional logic from predicate logic, and also de-
cide whether or not to include negation. The key effect in doing this arrangement
is that implication becomes ‘sentential’ where as conjunction (and negation, if
included) produces terms from terms.

To proceed towards this goal, let ΣPL = (SPL, ΩPL) be the underlying two-
valued propositional logic signature, where SPL = S, and ΩPL = {F, T :→
bool,& : bool × bool → bool,¬ : bool → bool} ∪ {Pi : si1 × · · · × sin →
bool | i ∈ I, sij ∈ S}. Similarly as bool leading to no additional terms, except
for additional variables being terms when using Σ, the sorts in SPL, other than
bool, will lead to no additional terms except variables. Adding predicates as
operators even if they produce no terms seems superfluous at first sight, but the
justification is seen when we compose these term functors with TΣ.

In the many-valued case we would have some sort lat, so that A(lat) = L,
the underlying set of a complete lattice L. Now, L could indeed more specifically
be a residuated lattice, when conjunction is desired to be residuated with the
implication operator (in the lattice), or a quantale, justifying the use of monoidal
closed subcategories. The choice of the lattice or quantale is typically justified
by the application context.

It is important also to notice indeed that it is possible to include the both sorts
bool and lat in the same signature, if one needs to distinguish the two-valued
case from the many-valued case also on the syntactic level.

In the many-valued propositional logic signature Σmv
PL = (Smv

PL, Ω
mv
PL) constants

clearly map algebraically to uncertainty values. In what follows we will not ex-
plicitly distinguish between Σmv and Σ, so whenever we write Σ, the underlying
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lattice representing the algebra may be two-valued or many-valued. We now in-
troduce the notation ΣPL\¬ for the signature where the operator ¬ is removed,
and ΣPL\¬,& for the signature where both ¬ and & are removed.

The ZFC-set of ‘terms’ over Σ may now be given by⋃
s∈S

(TΣ,s ◦ φS\bool)XS ,

and now the ZFC-set of propositional logic formulas are⋃
s∈S

(args ◦ TΣPL
◦ φbool)XS = (argbool ◦ TΣPL

◦ φbool)XS .

We use the expression args ◦ TΣPL instead of TΣPL,s for convenience. Note how

(argbool ◦ TΣPL\¬,&
◦ φbool)XS = {F, T}.

Sentences, i.e., formulas in propositional logic are now obviously given by the
functor

SenPL = argbool ◦ TΣPL
◦ φbool,

and sentences in ‘Horn clause logic’ can now be given by the functor

SenHCL = (argbool)2 ◦ (((TΣPL\¬,&
◦ TΣ) × (TΣPL\¬ ◦ TΣ)) ◦ φS\bool)

= (argbool)2 ◦ ((TΣPL\¬,&
× TΣPL\¬) ◦ TΣ ◦ φS\bool)

Note that SenHCLXS is an object in Set, and therefore the pair (h, b) ∈ SenHCL

XS , as a sentence representing the ‘Horn clause’, means that h is an ‘atom’ and
b is a conjunction of ‘atoms’. Further, (h, T) is a ‘fact’, (F, b) is a ‘goal clause’,
and (F, T) is a ‘failure’.

This obviously relates to similar approaches for using sentence functors in
other logics. Intuitively, the identity functor is the sentence functor for lambda
terms as ‘sentences’ in λ-calculus, and id2 is the sentence functor for equations
as ‘sentences’ in equational logic [9].

Before proceeding, now note a fundamental appearance of the residuated sit-
uation. The quantale, as a residuated lattice, uses the residuation at least for
the underlying signature to work properly in the setting of monoidal biclosed
categories, but is in no way at that point necessarily related to ‘implication’ as
appearing in Horn clauses. In our treatment we therefore clearly show where
and how residuation can be introduced. Indeed, residuation as possibly used for
uncertainty consideration in terms has nothing to do with residuation related
properties as possible used for uncertainty on sentence level.

We are now in a position to introduce variable substitutions. Indeed, because
we have a monad TΣ = (TΣ , η, μ), we may now perform a variable substitution
σS : φS\boolXS → TΣφS\boolYS , that is, variables φS\boolXS are subsituted by
terms TΣφ

S\boolYS . The substitution is defined sortwise σS = (σs)s∈S such that
σs : args(φS\boolXS) → TΣ,sφ

S\boolYS . We have the following:
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μ ◦ TΣσS : TΣφ
S\boolXS → TΣφS\boolYS

σhead
S = TΣPL\¬,&

(μ ◦ TΣσS) : (TΣPL\¬,&
◦ TΣ)φS\boolXS

→ (TΣPL\¬,&
◦ TΣ)φS\boolYS

σbody
S = TΣPL\¬(μ ◦ TΣσS) : (TΣPL\¬ ◦ TΣ)φS\boolXS

→ (TΣPL\¬ ◦ TΣ)φS\boolYS

(σhead
S , σbody

S ) = (TΣPL\¬,&
× TΣPL\¬)(μ ◦ TΣσS) :

((TΣPL\¬,&
×TΣPL\¬)◦TΣ)φS\boolXS → ((TΣPL\¬,&

×TΣPL\¬)◦TΣ)φS\boolYS

Finally,
σHC = (σhead

bool , σ
body
bool ) : SenHCLXS → SenHCLYS

Notice that σhead
S , σbody

S and (σhead
S , σbody

S ) are morphisms in SetS but σHC is
a morphism in Set.

It is now clear that a candidate for the underlying category can be the Goguen
category Set(Q). Further, and as will be explored in subsequent papers, replace-
ment of TΣ with the composed functor Q ◦ TΣ [12], provides another style of
fuzzy extension.

3.4 Algebras, Models and Fixpoints

In the two-valued case, A(bool) is often {false, true}, so that A(F) = false and
A(T) = true. Further, A(&) : A(bool) × A(bool) → A(bool), is expected to
be defined by the usual ‘truth table’. Further A(s0) is usually denoted by D so
that the semantics for a (syntactic) n-ary operator ω : s0 × · · · × s0 → s0 is an
n-ary operation (function) A(ω) : Dn → D. Generally speaking, a many-sorted
algebra is not a traditional algebra, not even a tuple of traditional algebras,
since an operator ω may touch many sorts and then the semantics of ω is not
an n-ary function on some set. For example, we may assign for a signature
ΣPL = (SPL, ΩPL) a pair, the ‘many-sorted algebra’, (TΣPLXS , (A(ω))ω∈ΩPL),
where Xs = ∅ if s �= bool. Then, (

⋃
s∈S(args ◦ TΣPL)XS , (F, T,&,¬)) serves as

a traditional Boolean algebra, when certain equational laws are given.
For a finite set of program clauses Γ = {(h1, b1), . . . , (hn, bn)} ⊆ SenHCLXS ,

based on Σ and ΣPL, we assign a SetS object

(UΓ )S = TΣ∅S = (TΣ,s∅S)s∈S

where TΣ,s∅S is the set of all ground terms of type s, and indeed TΣ,bool∅S = ∅.
Note how

⋃
s∈S(UΓ )s corresponds to the traditional and unsorted view of the

Herbrand universe as a ZFC-set.
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We are also interested in the Set-object

BΓ = (argbool ◦ TΣPL\¬,&
◦ TΣ) ∅S

corresponding to the Herbrand base in the traditional sense [21].
Herbrand interpretations of a program Γ are subsets I ⊆ BΓ , that is, I ∈

PBΓ .
For sake of convenience, when dealing with the immediate consequences op-

erator for the fixpoint considerations, we will need the Herbrand expression base

B&
Γ = (argbool ◦ TΣPL\¬ ◦ TΣ) ∅S .

Note that a Herbrand interpretation I canonically extends to a Herbrand
expression interpretation I& ⊆ B&

Γ . Similarly, when I ∈ LBΓ , one might ex-
tend I to Herbrand fuzzy expression interpretation I& (semantically) as fol-
lows: for an element b ∈ B&

Γ of the form b = b1& · · ·&bn we have I&(b) =∧
{I(b1), . . . , I(bn)} and for an atom element b ∈ B&

Γ , I&(b) = I(b). However,
it is questionable to call I ∈ LBΓ to an interpretation.

Note that in this paper we avoid describing the informal passage [21] from
‘interpretation’ to ‘Herbrand interpretation’, which categorically means describ-
ing the shift from algebras to term algebras. The Herbrand interpretation is the
‘ground term algebra’ [21] in the universal algebra sense. This is the TΣ-algebra,
rather than the Σ-algebra which corresponds to ‘interpretation’, and in all case
we are ‘ground’ in the sense of the variable sets in the tuples being empty sets.

The extension to the many-valued case is now a question about composing
with the many-valued powerset functor L with term functors, producing a style
of “logic with fuzzy” or having the term functors work over the Goguen category,
producing a style of “fuzzy logic”. It should therefore not be looked at simply
from the viewpoint of replacing the functor P to L with L as the underlying
complete lattice, and extending the Herbrand interpretations to Herbrand fuzzy
interpretations of a program Γ by I ∈ LBΓ . We will here look more into the first
situation, as the “squeezing in” of L can indeed be done in two ways. Either we
annotate it “outside”, as mentioned above, with sentences in such a ‘annotated
fuzzy Horn clause logic’ can be given by the sentence functor L ◦ SenHCL and
then proceed to produce interpretations for fuzzy sets of predicates

LBΓ = (L ◦ argbool ◦ TΣPL\¬,&
◦ TΣ) ∅S .

A fuzzy interpretation in this case is then just a mapping I : BΓ → L, and
uncertainties arising from terms and substitutions remain unaffected. On the
other hand, we may go “inside” to produce the substitution fuzzy Horn clause
logic with the sentence functor

SenSFHCL = (argbool)2 ◦ ((TΣPL\¬,&
× TΣPL\¬) ◦ LS ◦ TΣ ◦ φS\bool)

so that ground predicates over fuzzy sets of terms is the set

BL
Γ = (argbool ◦ TΣPL\¬,&

◦ LS ◦ TΣ) ∅S
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with the corresponding extension BL,&
Γ being defined in the obvious way. The

resulting fuzzy sets of ground predicates then comes about from considering the
swapper

ς : TΣPL\¬,&
◦ LS → LS ◦ TΣPL\¬,&

which is given in [6] for the many-sorted case, and in [11] for the one-sorted
case. Indeed we can use argboolςTΣ∅S : BL

Γ → LBΓ . Note also how LBL
Γ would

correspond to a Herbrand base like the set with uncertainty considerations both
for the sets of clauses, as well as sets of terms.

Moving to fixpoints, we first consider crisp ground term substitution, that is,
a SetS-morphism σS : XS → TΣ∅S . By the previous discussion, this induces
a morphism σHC : SenHCLXS → SenHCL∅S . We can now define a mapping
� : LBΓ → LBΓ , where the underlying lattice L for the many-valued powerset
functor L is a complete lattice, by

�(I)(σhead
bool (h)) =

∨
(h,b)∈Γ

I&(σbody
bool (b)).

When (h, b) ∈ BΓ × BΓ is such that (h, b) �∈ RσHC (the range of σHC), then
�(I)(h) = I(h) and �(I)(b) = I(b).

Clearly, � is monotonic, and it is now well-known that � has the least and
greatest fixpoints.

This, however, is a simpler approach to fuzzy models, as substitutions re-
main crisp. For fuzzy ground term substitution, that is, a SetS-morphism of the
form σL

S : XS → LSTΣ∅S, corresponding σL,head
S and σL,body

S mappings can be
provided with LS “inside”.

A mapping �L : LBL
Γ → LBL

Γ , considering the effect of substitutions with
fuzzy sets of terms, can now, using argboolςTΣ∅S : BL

Γ → LBΓ , be considered in
various forms, e.g., as

�L(I)(σL,head
bool (h)) = (

∨
t∈BΓ

(argboolςTΣ∅S (h))(t)) ∧ IL,&(σL,body
bool (b)).

In this case, �L is also monotonic.

4 Conclusions

What is Logic? Logic is a structure containing signatures, terms, sentences, struc-
tured sets of sentences, entailments, algebras, satisfactions, axioms, theories and
proof calculi. Signature have sorts (types) and operators, and algebras provide
the meaning of the signature. All terms are constructed (syntactically) using
operators in the signature, and sentences have terms as building blocks. Entail-
ment is the relation between the structured sets of sentences, representing what
we already know, and sentences representing knowledge we are trying to arrive
at. Satisfaction is the semantic counterpart to entailment providing the notion
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of valid conclusions. Axioms prescribe what we take for granted at start, and
act as the logic program. Inference rules say how we can jump to conclusions in
a chain of entailments.

Further, unsortedness and many-sortedness are clearly different, and so are
crisp and fuzzy cases. Moreover, we should distinguish between “fuzzy logic
programming”, which requires considerations of underlying categories [8], from
“logic programming with fuzzy”, which is more about composing with term
monads using Set as the underlying category [12].

Fuzzy considerations in logic are then indeed similarly related to structures
which contain fuzzy signatures, fuzzy terms, fuzzy sentences, fuzzy structured
sets of sentences, fuzzy entailments, fuzzy algebras, fuzzy satisfactions, fuzzy
axioms, fuzzy theories and fuzzy proof calculi.

Details related to generalized general logic appear in [14], and further devel-
opments in particular related to sentence constructions will appear in [9].
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34. Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370
(2001)



Probability-Possibility Transformation:
Application to Bayesian and Possibilistic Networks
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Abstract. Probability-possibility transformation is a purely mechanical trans-
formation of probabilistic support to possibilistic support and vice versa. In this
paper, we apply the most common transformations to graphical models, i.e.,
Bayesian into possibilistic networks. We show that existing transformations are
not appropriate to transform Bayesian networks to possibilistic ones since they
cannot preserve the information incorporated in joint distributions. Therefore, we
propose new consitency properties, exclusively useful for graphical models trans-
formations.

Keywords: Probability-Possibility transformation, Bayesian networks, Possibilis-
tic networks.

1 Introduction

Probability and possibility theories are two ways to express uncertainty. Several bridges
between these two frameworks were established. Especially, several researches ad-
dressed the problem of transformation of possibilistic distributions into probabilistic
ones and vice versa. The first interest underlying these transformations is to study the
coherence between these frameworks and, more precisely, the consistency of derived
distributions. Another interest is to make a benefit advantage of each framework. Fol-
lowing this idea, we are interested by transformations between Bayesian networks [13]
and their adaptation in the possibilistic framework i.e. possibilistic networks [13]. In
fact, these graphical models, which share the same graphical component i.e. Directed
Acyclic Graph (DAG), are quantified using different distributions (i.e., probability dis-
tributions in the case of Bayesian networks and possibility ones in the case of possibilis-
tic networks). Recently, the inference topic in possibilistic networks has been explored
using compilation techniques [1]. It has been shown that the qualitative setting of possi-
bility theory goes beyond the probabilistic framework and the quantitative possibilistic
framework since it takes advantage of specific properties of the minimum operator. So,
our objective in this paper is to study the possibility of switching from one model to
another in order to reason in an efficient way.

This paper is organized as follows: Section 2 presents most common transformations.
Section 3 presents some basics of Bayesian and possibilistic networks. Section 4 studies
the particular case of transforming Bayesian networks into possibilistic ones.
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2 Probability-Possibility Transformation

Possibility theory introduced by Zadeh [14] and developed by Dubois and Prade [6] lies
at the crossroads between fuzzy sets, probability and non-monotonic reasoning. The ba-
sic building block in possibility theory is the notion of possibility distribution [6]: let
V = {X1, ..., XN} be a set of state variables whose values are ill-known such that
D1 . . .Dn are their respective domains. Ω = D1 × . . . × DN denotes the universe of
discourse, which is the cartesian product of all variable domains in V . Vectors ω ∈ Ω
are often called realizations or simply “states” (of the world). In what follows, we use
xi to denote possible instances of Xi. The agent’s knowledge about the value of the xi’s
can be encoded by a possibility distribution π : Ω → [0, 1] where π(ω) = 1 means that
ω is totally possible and π(ω) = 0 means that ω is an impossible state. It is generally
assumed that there exist at least one state ω which is totally possible, π is then said to
be normalized. We denote by �(π) the set of totally possible states in π. From π, one
can compute, for any event A ⊆ Ω, the possibility measure Π(A) = supω∈A π(ω) that
evaluates to which extend A is consistent with the knowledge represented by π. The
particularity of the possibilistic scale is that it can be interpreted twofold: either in an
ordinal manner, when the possibility degree reflects only an ordering between the pos-
sible values, so the minimum operator is used to combine different distributions, or, in a
numerical manner, so possibility distributions are combined using the product operator.

Several researchers tackle different bridges between probability and possibility the-
ory. When we deal with those transformations, two cases can be distinguished, those
relative to subjective probabilities [8] and those relative to objective ones. In this pa-
per, we focus on these latters which were used in several practical problems such as:
constructing a fuzzy membership function from statistical data [11], combining prob-
abilities and possibilities information in expert systems [9] and reducing the compu-
tational complexity [7]. Roughly speaking, transforming probabilistic distributions to
possibilistic ones, denoted by p → π, is useful when weak source of information makes
probabilistic data unrealistic or to reduce the complexity of the solution or to combine
different types of data. However, transformation, denoted by π → p, is useful in the
case of decision making. Interestingly enough, when transforming p → π, some infor-
mation is lost because we transform point value probabilities to interval values ones. In
contrast, π → p adds information to some possibilistic incomplete knowledge.

2.1 Consistency Principle

In order to describe different transformations, several properties, called consistency
principle, were proposed in literature. We retain, in particular, three of them:

Zadeh Consistency Principle: Zadeh [14] defined the probability-possibility consis-
tency principle such as ”a high degree of possibility does not imply a high degree of
probability, and a low degree of probability does not imply a low degree of possibility”.
The degree of consistency between p and π is defined by: C(π, p) =

∑
i=1...n πi ∗ pi.

Zadeh [14] pointed out that C(π, p) is not a precise law or a relationship between pos-
sibility and probability distributions. It is an approximate formalization of the heuristic
connection stating that lessening the possibility of an event tends to lessen its probabil-
ity but not vice-versa.
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Klir Consistency Principle: The concept of consistency condition was redefined by
Klir [10]. Assume that the elements of Ω are ordered in such a way that pi > 0 and
pi ≥ pi+1, ∀ i = {1..n}. Any transformation should be based on these assumptions:
– A scaling assumption that forces each value πi to be a function of pi/p1 (where
p1 ≥ . . . ≥ pn).
– An uncertainty invariance assumption according to which p and π must have the same
amount of uncertainty.
– Consistency condition: πi ≥ pi stating that what is probable must be possible, so π
can be seen as an upper-bound of p.
Dubois and Prade [5] gave an example to show that the scaling assumption of Klir may
sometimes lead to violation of the consistency principle. The second assumption is also
debatable because it assumes that possibilistic and probabilistic information measures
are commensurate.

Dubois and Prade Consistency Principle: Dubois and Prade defined the consistency
principle, differently, using these assumptions [4]:
– Consistency condition: Pi < Πi, ∀ i = {1..n}.
– Preference preservation: Assuming that π has the same form as p, then ∀(ω1, ω2) ∈
Ω2, p(ω1) > p(ω2) ⇒ π(ω1) > π(ω2) and p(ω1) = p(ω2) ⇒ π(ω1) = π(ω2).
– Maximum specificity: Let π1 and π2 be two possibility distributions, then π2 is more
specific than π1 iff: ∀ω ∈ Ω, π2(ω) ≤ π1(ω).

2.2 Probability-Possibility Transformation Rules

Several transformation rules are proposed in literature. We present the most com-
mon ones, namely: Klir transformation (KT), Optimal transformation (OT), Symmetric
transformation (ST) and Variable transformation (VT).

Klir Transformation (KT): Assume that the elements of Ω are ordered in such a way
that: ∀ i = {1..n}, pi > 0, pi ≥ pi+1 and πi > 0, πi ≥ πi+1 with pn+1 = 0
and πn+1 = 0. Klir has considered the principle of uncertainty preservation under two
scales [10]:

– The ratio scale: p → π and π → p, named the normalized transformations, are
defined by:

πi =
pi
p1

, pi =
πi

n
∑n

i=1 πi
(1)

– The log-interval scale: p → π and π → p are defined by:

πi = (
pi
p1

)α , pi =
π

1
α

i∑n
i=1(πi)

1
α

(2)

where α is a parameter that belongs to the open interval ]0, 1[.

Optimal Transformation (OT): proposed by Dubois and Prade [4] and also called
”Asymmetric Transformation”, is defined as follows:

πi =
∑

j/pj≤pi

pj , pi =

n∑
j=1

πj − πj+1

j
(3)
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OT is optimal because it gives the most specific possibility distribution i.e. that loses
less information [7], and it’s asymmetric since the two formulas in Equation (3) are not
converse. Sandri et al. [7] suggested a Symmetric Transformation (ST) that needs less
computation but it is quite far from the optimum. It is defined by:

πi =

n∑
j=1

min(pi, pj) (4)

Variable Transformation (VT): It’s a p → π transformation proposed by Mouchaweh
et al. [12] and expressed as follows: assume that the elements of Ω are ordered in such
a way that: ∀ i = {1..n}, pi > 0, pi ≥ pi+1 and πi > 0, πi ≥ πi+1 with pn+1 = 0
and πn+1 = 0, then:

πi = (
pi
p1

)k.(1−pi) (5)

where k is a constant belonging to the interval: 0 ≤ k ≤ logpn

(1−pn). log(
pn
p1

) .

Bouguelid [3] proposed V Ti, which is an improvement of VT, to make it as specific as
OT. So, a parameter ki is set for each πi. Formally: ∀ i = {1..n},

πi = (
pi
p1

)ki.(1−pi) (6)

where ki belongs to the interval: 0 ≤ ki ≤ log(pi+pi+1+...+pn)

(1−pi). log(
pi
p1

)
, ∀i = {2..n}.

Table 1 summarizes characteristics of KT, OT, ST, VT and V Ti. For each transforma-
tion, it is mentioned if it deals with discrete (D) and-or continuous case (C) and if it
satisfies consistency principle (Cs), preference preservation (PP) and maximum speci-
ficity (MS). Clearly, OT and V Ti are the most interesting rules in the discrete case for
p → π.

Table 1. Summary of transformations

TR p → π π → p Properties
D C Cs PP MS

KT × × × × ×
OT × × × × × × ×
ST × × × × × ×
VT × × ×
VTi × × × × ×

3 Basics on Bayesian and Possibilistic Networks

Bayesian networks [13] are powerful probabilistic graphical models for representing
uncertain knowledge. Studying the possibilistic counterpart of Bayesian networks leads
to two variants, namely: min-based possibilistic networks corresponding to the ordinal
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interpretation of the possibilistic scale and product-based possibilistic networks corre-
sponding to the numerical interpretation [2]. It is well-known that product-based pos-
sibilistic networks are close to Bayesian networks since they share the same features
(essentially the product operator) with almost the same theoretical and practical results
[2]. This is not the case for min-based possibilistic networks due to the particularities of
the min operator (e.g. the idempotency). Over a set of N variables V = {X1, .., XN},
Bayesian networks (denoted by BN ) and possibilistic networks (denoted by ΠG⊗
where ⊗ = min in the ordinal setting, and ⊗ = ∗ in the numerical one) share the
same two components:
– A graphical component composed of a DAG, G= (V,E) where V denotes a set of
nodes representing variables and E a set of edges encoding links between nodes.
– A numerical component that quantifies different links. Uncertainty of each node Xi

is represented by a local normalized conditional probability or possibility distribution
in the context of its parents.
Given a Bayesian network BN on N variables, we can compute its joint probability
distribution by the following chain rule :

p(X1, . . . , XN) = ∗i=1..N P (Xi | Ui) (7)
In a similar manner, the joint possibility distribution of a possibilistic network ΠG⊗ is
defined by the ⊗-based chain rule, where ⊗ = min for the ordinal setting and ⊗ = ∗
for the numerical one, expressed by:

π⊗(X1, . . . , XN ) = ⊗i=1..N Π(Xi | Ui) (8)
One of the most interesting treatments that can be applied for possibilistic networks is
to evaluate the impact of a certain event on the remaining variables. Such process, called
inference, consists on computing a-posteriori possibility distributions of each variable
Xi given an evidence e.

Example 1. Let us consider the Bayesian network and the possibilistic network in Fig.
1(a) and Fig. 1 (b), respectively (sharing the same DAG). The joint distributions of BN
and ΠG⊗ using Equations (7) and (8) are presented in Fig. 1 (c).

(a) (b) (c)

Fig. 1. A Bayesian network (a), a possibilistic network (b) and their joint distributions (c)
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4 Transformation from Bayesian to Possibilistic Networks

Probability-possibility transformations can be useful to study the coherence between
probabilistic and possibilistic frameworks and, more precisely, the consistency of de-
rived distributions. Our idea consists in applying such transformations from Bayesian
networks to possibilistic networks and interpreting their behavior on joint distributions.
Formally, using existing transformations, we can define transformation from Bayesian
to possibilistic networks in a local manner as follows:

Definition 1. Let BN be a Bayesian network and p be its joint distribution. Let TR be
a transformation rule. Let BNtoΠN be the function that transforms BN into ΠNTR

⊗
using TR under the setting ⊗ s.t. ⊗ = {∗,min}. Let PDtoΠD be the function that
transforms a probability distribution into a possibilistic one using TR. Formally, ΠNTR⊗
is the transformation of BN using TR if, ∀Xi ∈ V ,

Π(Xi | Ui) = PDtoΠD(P (Xi | Ui), TR) (9)

ΠNTR
⊗ = BNtoΠN(BN, TR,⊗) (10)

Example 2. Table 2 depicts the transformation of conditional tables of the Bayesian
network of Fig. 1 (a) using KT, OT, ST, VT and V Ti.

Table 2. Transformation of conditional distributions

Π(A) ΠKT ΠOT,V Ti ΠST ΠV T

a1 1 1 1 1
a2 0.66 0.4 0.8 0.4

Π(B | A) ΠKT ΠOT,V Ti ΠST ΠV T

b1 | a1 1 1 1 1
b2 | a1 0.5 0.4 0.7 0.5
b3 | a1 0.16 0.1 0.3 0.1
b1 | a2 1 1 1 1
b2 | a2 0.6 0.5 0.8 0.27
b3 | a2 0.4 0.2 0.6 0.2

This local transformation does not ensure the same results as a global one. In other
words, the transformation of the joint distribution underlying the initial Bayesian net-
work is not equivalent to the transformation of its local conditional distributions, which
can affect the inference results. Let πTR

p be the transformation of the joint distribution
encoded by a Bayesian network BN using the transformation TR and let πTR

⊗ be the
joint distribution relative to ΠNTR⊗ obtained using Definition 1. The following exam-
ple illustrates the problem described above.

Example 3. Table 3 presents the transformation of global distributions of the Bayesian
network of Fig. 1 (a) and of the resulted possibilistic network ΠN⊗ using KT, OT, ST,
VT and V Ti.
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Table 3. Possibility distributions using different transformations

A B p KT OT, V Ti ST VT
πKT
p πKT

∗ πKT
min πOT,V Ti

p πOT,V Ti∗ πOT,V Ti
min πST

p πST
∗ πST

min πV T
p πV T

∗ πV T
min

a1 b1 0.36 1 1 1 1 1 1 1 1 1 1 1 1
a1 b2 0.18 0.5 0.5 0.5 0.44 0.4 0.4 0.8 0.7 0.7 0.38 0.5 0.5
a1 b3 0.06 0.16 0.16 0.16 0.06 0.1 0.1 0.36 0.3 0.3 0.06 0.1 0.1
a2 b1 0.2 0.55 0.66 0.66 0.64 0.4 0.4 0.84 0.8 0.8 0.45 0.4 0.4
a2 b2 0.12 0.33 0.4 0.6 0.26 0.2 0.4 0.62 0.64 0.8 0.19 0.108 0.27
a2 b3 0.08 0.22 0.26 0.4 0.14 0.08 0.2 0.46 0.48 0.6 0.09 0.08 0.2

As depicted in Table 3, if we are in a numerical setting, the values of πTR
p are differ-

ent from those of πTR
∗ and, if we deal with an ordinal setting, the order between πTR

p

and πTR
min is not preserved, as well. For instance, for the transformation ST, more pre-

cisely for a1b2 and a2b2, we can see that 0.8 > 0.62 while 0.7 < 0.8. It is also the case
of VT for a1b2 and a2b1. Suppose, now, that we have the evidence B = b2, then for
πST
p we have a1 > a2 while the same evidence implies a2 > a1 for πST

min. This means
that, considering πST

min as the consistent transformation of the initial Bayesian network
and using it to infer evidence can lead to erroneous results.

The question that may arise is the following: Do all transformations suffer from the
problem of information loss? The answer can be found in the following example.

Example 4. Let us consider the BN of Fig. 2 (a) s.t p > q. This implies that p > 0.5
and q < 0.5, which in its turn implies that 0.5p > 0.5q > 0.25. Fig. 2 (c) shows the
joint distributions where x < 1, y < 1 and z < 1 and TR can be any transformation
(i.e. KT, OT, ST, VT, V Ti).

We start by interpreting product-based networks which only rely on numerical val-
ues. It is obvious, from columns 4 and 5 of Fig. 2 (c), that there is a loss of information
since values of πTR

p and πTR
∗ are different. When we deal with min-based networks,

the focus is only on the order induced by values. In fact, the order of πTR
p of the initial

network BN is {a1b1 > a1b2 > (a2b1 = a2b2)}, while the order relative to πTR
min is

{(a1b1 = a2b1 = a2b2) > a1b2}.

(a) (b) (c)

Fig. 2. A BN (a), its transformation into a possibilistic one (b) and their joint distributions (c)
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Following this problem, we propose two new properties. The first one (resp. the sec-
ond one), presented in Definition 2 (resp. Definition 3), is applicable for transforming
Bayesian networks into min-based possibilistic networks (resp. product-based possi-
bilistic networks). These properties should be seen as extensions of Dubois and Prade
Consistency principle described above.

Definition 2. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a min-based possibilistic network ΠNTR

min. Let p be the joint distribu-
tion relative to BN computed using Equation (7) and πTR

p be its transformation by TR.
Let πTR

min be the joint distribution relative to ΠNTR
min using Equation (8) (s.t ⊗ = min).

Let δ(πTR
p ) and δ(πTR

min) be the order underlying πTR
p and πTR

min, respectively. Then TR
is said to be consistent iff: (i) δ(πTR

p ) = δ(πTR
min) and (ii) �(πTR

p ) = �(πTR
min)

Definition 3. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a product-based possibilistic network ΠNTR∗ . Let p be the joint dis-
tribution relative to BN computed using Equation (7) and πTR

p be its transformation by
TR. Let πTR

∗ be the joint distribution relative to ΠNTR
∗ using Equation (8) (s.t ⊗ = ∗).

Then TR is said to be consistent iff: πTR
p = πTR

∗

Clearly, the formulas (ii) in Definition 2. guarantees the normalized values in both or-
dinal and numerical settings. We point out that this property is ensured by existing
transformations.

5 Conclusion

Our objective in this paper is to study the transformation of Bayesian networks into
possibilistic networks using existing transformations proposed in literature. We found
out that switching from one model to another does not preserve the information incor-
porated in joint distributions (either numerical values for ΠN∗ or the order induced by
values for ΠNmin). Such result allows us to conclude that such transformations are
inappropriate in the case of graphical models. Indeed, we have shown that it leads to
erroneous inference results. A deep study on this behavior shows that this loss of in-
formation is due to the non-compatibility of product and min operators, in the ordinal
setting. In our future work, we will deeply explore the impact of this loss of information
on inference result for both product-based possibilistic networks and min-based possi-
bilistic networks and propose two new transformations that respect the properties we
proposed in order to transform Bayesian networks into possibilistic ones.
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Abstract. In this article we continue investigations presented at pre-
vious WILF 2011 conference which are connected with distributivity
of implication operations over t-representable t-norms and t-conorms.
Our main goal is to show the general method of solving the follow-
ing distributivity equation I(S(x, y), z) = T (I(x, z), I(y, z)), when S
is a t-representable t-conorm on LI generated from two continuous,
Archimedean t-conorms, T is a t-representable t-norm on LI gener-
ated from two continuous, Archimedean t-norms and I is an unknown
function.

Keywords: Interval-valued fuzzy sets, Triangular norm, Triangular
conorm, Distributivity equations, Functional equations.

1 Introduction

Distributivity of (classical) fuzzy implications over different fuzzy logic connec-
tives has been studied in the recent past by many authors (see chronologically [2],
[32], [12], [29], [30], [11],[3],[8]). These equations have a very important role to
play in efficient inferencing in approximate reasoning, especially in fuzzy con-
trol systems. Given an input “x̃ is A′”, the role of an inference mechanism is
to obtain a fuzzy output B′ that satisfies some desirable properties. The most
important inference schemas are fuzzy relational inference and similarity based
reasoning. In the first case the inferred output B′ is obtained either as

(i) sup −T composition, as in the compositional rule of inference (CRI) of Zadeh
(see [33]), or

(ii) inf −I composition, as in the Bandler-Kohout Subproduct (BKS) (see [13]),

of A′ and given rules. Since all the rules of an inference engine are exercised dur-
ing every inference cycle, the number of rules directly affects the computational
duration of the overall application.

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 131–138, 2013.
c© Springer International Publishing Switzerland 2013
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To reduce the complexity of fuzzy “IF-THEN” rules, Combs and Andrews [16]
proposed an equivalent transformation of the CRI to mitigate the computational
cost. In fact, they required of the following classical tautology

(p ∧ q) → r = (p → r) ∨ (q → r).

so we see that the distributivity of fuzzy implications over t-norms (or t-conorms)
play a major role in this transformation. Subsequently, there were many discus-
sions (see [14], [15], [20], [28]), most of them pointed out the need for a theoretical
investigation required for employing such equations. Later, the similar method
but for similarity based reasoning was demonstrated by Jayaram [24]. For an
overview of the most important methods that reduce the complexity of different
inference systems and concrete examples see [10, Chapter 8].

Recently, in [4], [5], [6] (for the full article see [9]) and [7] we have discussed
the distributivity equation of implications

I(x, T1(y, z)) = T2(I(x, y), I(x, z))

over t-representable t-norms generated from continuous Archimedean t-norms, in
interval-valued fuzzy sets theory. In these articles we have obtained the solutions
for each of the following functional equations, respectively:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (A)

g(min(u1 + v1, a),min(u2 + v2, a)) = g(u1, u2) + g(v1, v2), (B)

h(min(u1 + v1, a),min(u2 + v2, a)) = min(h(u1, u2) + h(v1, v2), b), (C)

k(u1 + v1, u2 + v2) = min(k(u1, u2) + k(v1, v2), b), (D)

where a, b > 0 are fixed real numbers, f : L∞ → [0,∞], g : La → [0,∞], h : La →
[0, b], and k : L∞ → [0, b] are unknown functions. The above we use the following
notation

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2},
La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}.

More precisely, the solutions of Eq. (A) have been presented in [4, Proposi-
tion 3.2], the solutions of Eq. (B) have been presented in [5, Proposition 4.2],
the solutions of Eq. (C) have been presented in [9, Proposition 5.2] and the
solutions of Eq. (D) have been presented in [7, Proposition 3.2].

In this paper we continue these investigations, but for the following functional
equation

I(S(x, y), z) = T (I(x, z), I(y, z)), (D-ST)

satisfied for all x, y, z ∈ LI , when S is a t-representable t-conorm on LI generated
from two continuous, Archimedean t-conorms S1, S2, T is a t-representable
t-norm on LI generated from two continuous, Archimedean t-norms T1, T2 and
I is an unknown function.

Please note that the solutions for this Eq. (D-ST) in the classical case, i.e. for
classical continuous Archimedean t-norms and t-conorms have been presented
by the author in [8].
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2 Interval-Valued Fuzzy Sets

One possible extension of fuzzy sets theory is interval-valued fuzzy sets theory
introduced, independently, by Sambuc [31] and Gorza�lczany [23], in which to
each element of the universe a closed subinterval of the unit interval is assigned
– it can be used as an approximation of the unknown membership degree. Let
us define

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2},
(x1, x2) ≤LI (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2]. One can easily
observe that LI = (LI ,≤LI ) is also a complete lattice with units 0LI = [0, 0]
and 1LI = [1, 1].

Definition 2.1. An interval-valued fuzzy set on X is a mapping A : X → LI .

Another extension of fuzzy sets theory is intuitionistic fuzzy sets theory in-
troduced in 1983 by Atanassov [1].

Definition 2.2. An intuitionistic fuzzy set A on X is a set

A = {(x, μA(x), νA(x)) : x ∈ X},

where μA, νA : X → [0, 1] are called, respectively, the membership function and
the non-membership function. Moreover they satisfy the condition

μA(x) + νA(x) ≤ 1, x ∈ X.

Let us define

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2.

It is important to notice that in [19] it is shown that interval-valued fuzzy
sets theory is equivalent, from the mathematical point of view, to intuitionistic
fuzzy sets theory (see [1] and [21]). In fact, we can see the point (x1, x2) ∈ L∗

as the interval [x1, 1−x2] ∈ LI (and vice-verse). Since we are limited in number
of pages, in this article we will discuss main results in the language of interval-
valued fuzzy sets, but they can be easily transformed to the intuitionistic case.

3 Basic Fuzzy Connectives

We assume that the reader is familiar with the classical results concerning basic
fuzzy logic connectives, but we briefly mention some of the results employed in
the rest of the work.
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Definition 3.1. Let L = (L,≤L) be a complete lattice. An associative, com-
mutative operation T : L2 → L is called a t-norm if it is increasing and 1L is
the neutral element of T . An associative, commutative operation S : L2 → L is
called a t-conorm if it is increasing and 0L is the neutral element of S.

The following characterizations of classical t-norms are well-known in the
literature.

Theorem 3.2 ([26], cf. [25, Theorem 5.1]). For a function T : [0, 1]2 → [0, 1]
the following statements are equivalent:

(i) T is a continuous Archimedean t-norm, i.e., if for every x, y ∈ (0, 1) there

is an n ∈ N such that x
[n]
T < y.

(ii) T has a continuous additive generator, i.e., there exists a continuous, strictly
decreasing function f : [0, 1] → [0,∞] with f(1) = 0, which is uniquely de-
termined up to a positive multiplicative constant, such that

T (x, y) = f−1(min(f(x) + f(y), f(0))), x, y ∈ [0, 1].

Theorem 3.3 ([26], cf. [25, Corollary 5.5]). For a function S : [0, 1]2 → [0, 1]
the following statements are equivalent:

(i) S is a continuous and Archimedean t-conorm, i.e., if for every x, y ∈ (0, 1)

there is an n ∈ N such that x
[n]
S > y.

(ii) S has a continuous additive generator, i.e., there exists a continuous, strictly
increasing function s : [0, 1] → [0,∞] with s(0) = 0, which is uniquely deter-
mined up to a positive multiplicative constant, such that

S(x, y) = s−1(min(s(x) + s(y), s(1))), x, y ∈ [0, 1]. (1)

In our article we shall consider the following special classes of t-norms and
t-conorms on LI .

Definition 3.4 (see [17]).

(i) A t-norm T on LI is called t-representable if there exist t-norms T1 and T2

on ([0, 1],≤) such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)], [x1, x2], [y1, y2] ∈ LI .

(ii) A t-conorm S on LI is called t-representable if there exist t-conorms S1 and
S2 on ([0, 1],≤) such that S1 ≤ S2 and

S([x1, x2], [y1, y2]) = [S1(x1, y1), S2(x2, y2)], [x1, x2], [y1, y2] ∈ LI .

It should be noted that not all t-norms and t-conorms on LI are t-representable
(for counterexamples see [17]).

One possible definition of an implication on LI is based on the well-accepted
notation introduced by Fodor and Roubens [22] (see also [10], [18] and [27]).

Definition 3.5. Let L = (L,≤L) be a complete lattice. A function I : L2 → L is
called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the following conditions:
I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L and I(1L, 0L) = 0L.
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4 On Eq. (D-ST) for t-representable t-conorms and
t-norms

In this section we will show how we can use solutions discussed earlier in Section 1
to obtain all solutions of our main distributivity equations

I(S(x, y), z) = T (I(x, z), I(y, z)), x, y, z ∈ LI ,

where I is an unknown function, S is a t-representable t-conorm on LI gener-
ated from continuous, Archimedean t-conorms S1, S2 and T is a t-representable
t-norm on LI generated from continuous, Archimedean t-norms T1, T2.

Assume that projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2,

for [x1, x2] ∈ LI . At this situation our distributivity equation has the following
form

I([S1(x1, y1), S2(x2, y2)],[z1, z2])

=[T1(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),

T2(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2])))]

for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . As a consequence we obtain the following
two equations

pr1(I([S1(x1, y1), S2(x2, y2)], [z1, z2]))

= T1(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),

pr2(I([S1(x1, y1), S2(x2, y2)], [z1, z2]))

= T2(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2]))),

which are satisfied for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . Now, let us fix arbitrarily

[z1, z2] ∈ LI and define two functions g
[z1,z2]
1 , g

[z1,z2]
2 : LI → LI by

g
[z1,z2]
1 (·) := pr1 ◦ I(·, [z1, z2]),

g
[z1,z2]
2 (·) := pr2 ◦ I(·, [z1, z2]).

Thus we have shown that if S and T on LI are t-representable, then

g
[z1,z2]
1 ([S1(x1, y1), S2(x2, y2)]) = T1(g

[z1,z2]
1 ([x1, x2]), g

[z1,z2]
1 ([y1, y2])),

g
[z1,z2]
2 ([S1(x1, y1), S2(x2, y2)]) = T2(g

[z1,z2]
2 ([x1, x2]), g

[z1,z2]
2 ([y1, y2])).

Let us assume that S1 = S2 is a continuous, Archimedean t-conorm generated
from continuous generator s and T1 = T2 is a continuous, Archimedean t-norm
generated from continuous generator t. Using the representations of t-conorms
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(Theorem 3.3) and t-norms (Theorem 3.3) we can transform our problem to the
following equations:

g
[z1,z2]
1 ([t−1(min(t(x1) + t(y1), t(0))), t−1(min(t(x2) + t(y2), t(0)))])

= s−1(min(s(g
[z1,z2]
1 ([x1, x2])) + s(g

[z1,z2]
1 ([y1, y2])), s(1))).

Hence

s ◦ g
[z1,z2]
1 ([t−1(min(t(x1) + t(y1), t(0))), t−1(min(t(x2) + t(y2), t(0)))])

= min(s(g
[z1,z2]
1 ([x1, x2])) + s(g

[z1,z2]
1 ([y1, y2])), s(1)).

Let us put t(x1) = u1, t(x2) = u2, t(y1) = v1 and t(y2) = v2. Of course
u1, u2, v1, v2 ∈ [0, t(0)]. Moreover [x1, x2], [y1, y2] ∈ LI , thus x1 ≤ x2 and y1 ≤ y2.
The generator t is strictly decreasing, so u1 ≥ u2 and v1 ≥ v2. If we put

f[z1,z2](u, v) := s ◦ pr1 ◦ I([t−1(u), t−1(v)], [z1, z2]),

where u, v ∈ [0, t(0)], u ≥ v, then we get the following functional equation

f[z1,z2](min(u1 + v1, t(0)),min(u2 + v2, t(0)))

= min(f[z1,z2](u1, u2) + f[z1,z2](v1, v2), s(1)), (2)

satisfied for all (u1, u2), (v1, v2) ∈ Lt(0). Of course function f[z1,z2] : L
t(0) → [0,∞]

is unknown above. In a same way we can repeat all the above calculations, but
for the function g2, to obtain the following functional equation

f [z1,z2](min(u1 + v1, t(0)),min(u2 + v2, t(0)))

= min(f [z1,z2](u1, u2) + f [z1,z2](v1, v2), s(1)), (3)

satisfied for all (u1, u2), (v1, v2) ∈ Lt(0), where

f [z1,z2](u, v) := s ◦ pr2 ◦ I([t−1(u), t−1(v)], [z1, z2])

is an unknown function.
Observe that considering different values for t(0) and s(1), i.e., the following

four cases:

– t(0) = s(1) = ∞,
– t(0) < ∞ and s(1) = ∞,
– t(0) < ∞ and s(1) < ∞,
– t(0) = ∞ and s(1) < ∞,

our equations (2) and (3) are becoming one of the previously considered equa-
tions (A) - (D). Therefore, using solutions already presented in the literature
(cf. Section 1), we are able to obtain (separately) the description of the horizon-
tal section I(·, [z1, z2]) for a fixed [z1, z2] ∈ LI . Now, taking into account both
equations (2) and (3), it is possible to find solutions I for which the range is
LI . Since we are limited in number of pages it is not possible to show all these
solutions, in particular fuzzy implications, but it is our goal for the future work.
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3. Baczyński, M.: On the distributivity of fuzzy implications over continuous and
Archimedean triangular conorms. Fuzzy Sets and Systems 161(10), 1406–1419
(2010)
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11. Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpo-
tent or strict triangular conorms. IEEE Trans. Fuzzy Syst. 17(3), 590–603 (2009)

12. Balasubramaniam, J., Rao, C.J.M.: On the distributivity of implication operators
over T and S norms. IEEE Trans. Fuzzy Syst. 12(2), 194–198 (2004)

13. Bandler, W., Kohout, L.J.: Semantics of implication operators and fuzzy relational
products. Internat. J. Man-Mach. Stud. 12, 89–116 (1980)

14. Combs, W.E.: Author’s reply. IEEE Trans. Fuzzy Syst. 7(3), 371–373 (1999)
15. Combs, W.E.: Author’s reply. IEEE Trans. Fuzzy Syst. 7(4), 477–478 (1999)
16. Combs, W.E., Andrews, J.E.: Combinatorial rule explosion eliminated by a fuzzy

rule configuration. IEEE Trans. Fuzzy Syst. 6(1), 1–11 (1998)
17. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic

fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)
18. Deschrijver, G., Cornelis, C., Kerre, E.E.: Implication in intuitionistic and

interval-valued fuzzy set theory: construction, classification and application. In-
ternat. J. Approx. Reason. 35(1), 55–95 (2004)

19. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy
set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)

http://dx.doi.org/10.1016/j.ins.2013.06.013


138 M. Baczyński
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Abstract. We deal with the problem of evaluating and ranking intu-
itionistic fuzzy quantitities (IFQs). We call IFQ an intuitionistic fuzzy
set (IFS) described by a pair of fuzzy quantities, where a fuzzy quantity
is defined as the union of two, or more, convex fuzzy sets that may be
non-normal. We suggest an evaluation defined by a pair index based on
“value” & “ambiguity” and a ranking method based on them. This new
formulation contains as particular cases the ones proposed by Fortemps
and Roubens [13], Yager and Filev [24, 25] and follows a completely
different approach.

Keywords: Fuzzy quantities, Intuitionistic fuzzy quantities, Evalua-
tion, Ranking, Ambiguity.

1 Introduction

In many practical applications the available information corresponding to a fuzzy
concept may be incomplete, that is the sum of the membership degree and
the non-membership degree may be less than one. A possible solution is to
use ”Intuitionistic fuzzy sets” (IFSs) introduced by Atanassov [5, 6, 8]. Several
proposals of ”Intuitionistic fuzzy numbers” evaluation and ranking are present
in literature [14, 11, 15, 17–21]. Due to the connection between IFSs and Interval
type-2 fuzzy sets and industrial applications that have used interval type-2 fuzzy
logic systems [16, 23, 10], we have thought that it may be interesting to work
on a better characterization of particular IFSs in which the two memberships
may be not normal and not fuzzy convex. In this direction the definition of
Intuitionistic Fuzzy Quantities (IFQs) is present in a previous paper [2]. These
fuzzy sets are defined by a pair of Fuzzy Quantities (FQs) that may be obtained
as the union of N convex fuzzy sets with continuous membership functions. In
the same paper we have introduced an IFQs evaluation formula that takes the
cue from a previous definition introduced for FQs in [12], based on a geometrical
approach with N = 2 components. The transition from two to more than two
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requires to redefine all what we have done before, using a different approach
that may be more useful in presence of a higher number of components. In this
direction an approach based on total variation of bounded variation functions
is introduced in [3]. To reach an evaluation and consequent ranking of IFQs,
we work on FQs evaluation and ranking. The new proposed definition contains
as particular case the heuristic proposal of Fortemps and Roubens [13] for FQs
and the definition proposed by Yager and Filev [24, 25] and by Facchinetti and
Pacchiarotti [12]. Using the same approach we introduce a general definition of
ambiguity and by evaluation and ambiguity we introduce a way to rank IFQs.

In Section 2 we give basic definitions and notations. In Section 3 we introduce
our definition of fuzzy quantity and illustrate our general evaluation method. In
Section 4 we propose a definition of ambiguity for fuzzy quantities. In Section 5
and Section 6 we use the previous model to evaluate and rank intuitionistic fuzzy
quantities.

2 Preliminaries and Notation

Let X denote a universe of discourse. A fuzzy set A in X is defined by a mem-
bership function μA : X → [0, 1] which assigns to each element of X a grade of
membership to the set A. The height of A is hA = heightA = supx∈X μA(x). The
support and the core of A are defined, respectively, as the crisp sets supp(A) =
{x ∈ X ;μA(x) > 0} and core(A) = {x ∈ X ;μA(x) = 1}. A fuzzy set A is normal
if its core is nonempty. The union of two fuzzy set A and B is the fuzzy set A∪B
defined by the membership function μA∪B(x) = max{μA(x), μB(x)}, x ∈ X . The
intersection is the fuzzy set A ∩ B defined by μA∩B(x) = min{μA(x), μB(x)}.
A fuzzy number A is a fuzzy set of the real line R with a normal, convex and
upper-semicontinuous membership function of bounded support (see, e.g., [9]).
From the definition given above there exist four numbers a1, a2, a3, a4 ∈ R, with
a1 ≤ a2 ≤ a3 ≤ a4, and two functions fA, gA : R → [0, 1] called the left side and
the right side of A, respectively, where fA is nondecreasing and right-continuous
and gA is nonincreasing and left-continuous, such that

μA(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < a1
fA(x) a1 ≤ x < a2
1 a2 ≤ x ≤ a3
gA(x) a3 < x ≤ a4
0 a4 < x .

The α-cut of a fuzzy set A, 0 ≤ α ≤ 1, is defined as the crisp set Aα =
{x ∈ X ;μA(x) ≥ α} if 0 < α ≤ 1 and as the closure of the support if α = 0.
Every α-cut of a fuzzy number is a closed interval Aα = [aL(α), aR(α)], for
0 ≤ α ≤ 1, where aL(α) = inf Aα and aR(α) = supAα.

In the following we will employ the mid-spread representation of intervals.
The middle point and the spread of the interval I = [a, b] will be denoted,
respectively, by

mid(I) =
a + b

2
, spr(I) =

b − a

2
.
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3 Evaluation of Fuzzy Quantities

In [4] we give a definition of fuzzy quantity and propose a general evalua-
tion model. Furthermore, we show that the evaluation methods presented by
Fortemps and Roubens [13] and Yager and Filev [24, 25] are special cases of our
approach. In this section we review this model.

3.1 Fuzzy Quantities

Definition 1. Let N be a positive integer and let a1, a2, . . . , a4N be real numbers
with a1 < a2 ≤ a3 < a4 ≤ a5 < a6 ≤ a7 < a8 ≤ a9 < · · · < a4N−2 ≤ a4N−1 <
a4N . We call fuzzy quantity

A = (a1, a2, . . . , a4N ; h1, h2, . . . , hN , h1,2, h2,3, . . . , hN−1,N ) (1)

where 0 < hj ≤ 1 for j = 1, . . . , N and 0 ≤ hj,j+1 < min{hj, hj+1} for j =
1, . . . , N − 1, the fuzzy set defined by a continuous membership function μ : R →
[0, 1], with μ(x) = 0 for x ≤ a1 or x ≥ a4N , such that for j = 1, 2, . . . , N

(i) μ is strictly increasing in [a4j−3, a4j−2], with μ(a4j−3) = hj−1,j and
μ(a4j−2) = hj,

(ii) μ is constant in [a4j−2, a4j−1], with μ ≡ hj,
(iii) μ is strictly decreasing in [a4j−1, a4j ], with μ(a4j−1) = hj and μ(a4j) =

hj,j+1,

and for j = 1, 2, . . . , N − 1

(iv) μ is constant in [a4j , a4j+1], with μ ≡ hj,j+1,

where h0,1 = hN,N+1 = 0. Thus the height of A is

hA = max
j=1,...,N

hj .

Remark 1. When N = 1 the fuzzy quantity A = (a1, a2, a3, a4;h1) defined in (1)
is fuzzy convex, that is every α-cut Aα is a closed interval, with a continuous
membership function of bounded support and with height hA = h1. Note that
if h1 = 1 then A is a fuzzy number.
When N ≥ 2 the fuzzy quantity A defined in (1) is a non-convex fuzzy set
with N humps and height hA = maxj=1,...,N hj . Such a fuzzy quantity can be
obtained as the union of N convex fuzzy sets.

Proposition 1. Let A be the fuzzy quantity defined in (1) with height hA. Then
each α-cut Aα, with 0 ≤ α ≤ hA, is the union of a finite number of disjoint
intervals. That is for each α ∈ [0, hA] there exist an integer nα, with 1 ≤ nα ≤ N ,
and Aα

1 , . . . , A
α
nα

disjoint intervals such that

Aα =

nα⋃
i=1

Aα
i =

nα⋃
i=1

[aLi (α), aRi (α)] (2)

where we have denoted Aα
i = [aLi (α), aRi (α)]. Thus nα is the number of intervals

producing the α-cut Aα.
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Fig. 1. Example of fuzzy quantity with N = 2

Proof. See [4].

For example, if N = 1, that is if A is a convex fuzzy quantity with height
hA = h1, we have nα = 1 and α-cuts Aα = [aL(α), aR(α)] = [aL1 (α), aR1 (α)] for
0 ≤ α ≤ hA.
Moreover, in the case N = 2 with h1 < h2 (see Fig. 2)

– for 0 < α ≤ h1,2 we have nα = 1 and Aα = Aα
1 = [aL1 (α), aR1 (α)],

– for h1,2 < α ≤ h1 we have nα = 2 and

Aα = Aα
1 ∪ Aα

2 = [aL1 (α), aR1 (α)] ∪ [aL2 (α), aR2 (α)]

– for h1 < α ≤ h2 we have nα = 1 and Aα = Aα
1 = [aL1 (α), aR1 (α)].

The following result shows a relation between the number of intervals producing
each α-cut and the values hj , hj,j+1.

Proposition 2. Let A be the fuzzy quantity defined in (1) with α-cuts given by
(2). Then

Fig. 2. α-cuts
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∫ hA

0

nα dα =

N∑
j=1

hj −
N−1∑
j=1

hj,j+1 (3)

where hA = maxj=1,...,N hj.

Proof. See [4].

3.2 The Evaluation Model

In [13] Fortemps and Roubens propose an empiric approach to the evaluation
of a particular fuzzy quantity. In [12] the authors give a general formula for the
union of two convex fuzzy quantities. In [4] we formalize the model presented in
[13] and provide the following expression for the value of the fuzzy quantity A
defined in (1) with α-cuts given by (2) and height hA = maxj=1,...,N hj

V1(A) =
1∫ hA

0 nα dα

∫ hA

0

nα∑
i=1

mid(Aα
i ) dα . (4)

The above formulation allows us to understand how the Fortemps and Roubens
evaluation works on α-cuts. If we rewrite (4) as

V1(A) =
1∫ hA

0 nα dα

∫ hA

0

(
1

nα

nα∑
i=1

mid(Aα
i )

)
nα dα

we find that the value of A is calculated applying first a horizontal aggregation,
in which the value of each α-cut Aα is the arithmetic mean of the midpoints of its
intervals and by a vertical aggregation in which the evaluation of A is obtained
as a weighted average of α-cuts values, where the weights are connected with
the number of intervals producing every α-cut.

In [24, 25] Yager and Filev define the value of the fuzzy quantity A by

V2(A) =
1

hA

∫ hA

0

∑nα

i=1 mid(Aα
i )spr(Aα

i )∑nα

j=1 spr(Aj
α)

dα . (5)

Thus, in Yager and Filev evaluation the value of A is calculated applying first
a horizontal aggregation, in which the value of each α-cut Aα is a weighted
average of the midpoints of its intervals, where the weights are connected with
the interval spreads and by a vertical aggregation in which the evaluation of A
is obtained as the arithmetic mean of α-cuts values.

In [4] we highlight some of the weaknesses of the previous methods and propose
a new evaluation by the following definition.

Definition 2.

V3(A) =
1∫ hA

0
nα dα

∫ hA

0

∑nα

i=1 mid(Aα
i )spr(Aα

i )∑nα

j=1 spr(Aα
j )

nα dα . (6)
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Thus, in our evaluation method the value of A is calculated applying first a
horizontal aggregation, in which the value of each α-cut Aα is a weighted average
of the midpoints of its intervals, where the weights are connected with the interval
spreads and by a vertical aggregation in which the evaluation of A is obtained
as a weighted average of α-cuts values, where the weights are connected with
the number of intervals producing every α-cut.
Moreover, in [4] we propose a general formulation for the evaluation of a fuzzy
quantity A with height hA and α-cuts given by (2) by the following definition

Definition 3.

V (A) =
1∫ hA

0
φ(α) dα

∫ hA

0

nα∑
i=1

mid(Aα
i ) pi(α)φ(α) dα (7)

where for each α the weights p(α) = (pi(α))i=1,...,nα satisfy

nα∑
i=1

pi(α) = 1

and the weight function φ : [0, 1] → [0,+∞[ satisfies∫ hA

0

φ(α) dα > 0 .

Thus our general method performs a horizontal aggregation, level by level, with
weights p and a vertical aggregation using a weight function φ. Note that we
obtain V (A) = V1(A) if we choose (p, φ) as{

pi(α) = 1
nα

φ(α) = nα ,
(8)

we obtain V (A) = V2(A) if we choose{
pi(α) =

spr(Aα
i )∑nα

j=1 spr(Aα
j )

φ(α) = 1 ,
(9)

and we obtain V (A) = V3(A) if we choose{
pi(α) =

spr(Aα
i )∑nα

j=1 spr(Aα
j )

φ(α) = nα .
(10)

Remark 2. If A = (a1, a2, a3, a4;h1) is a convex fuzzy quantity with height hA =
h1 and α-cuts Aα = [aL(α), aR(α)], 0 ≤ α ≤ hA, we have nα ≡ 1 and

V (A) =
1∫ hA

0
φ(α) dα

∫ hA

0

aL(α) + aR(α)

2
φ(α) dα .

Moreover (taking into about that nα ≡ 1) we get

V1(A) = V2(A) = V3(A) =
1

hA

∫ hA

0

aL(α) + aR(α)

2
dα .
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4 Ambiguity of Fuzzy Quantities

In this section we propose a definition of ambiguity for fuzzy quantities.

Definition 4. Let A be the fuzzy quantity defined in (1) with α-cuts given by
(2) and height hA = maxj=1,...,N hj. We call ambiguity of the fuzzy quantity A
with respect to (p, φ) the real number

Amb(A) =

∫ hA

0

nα∑
i=1

spr(Aα
i ) pi(α)φ(α) dα . (11)

Thus, fixed (p, φ) we can assign to each fuzzy quantity A the pair
(V (A), Amb(A)). In the following result we compute the ambiguity in some spe-
cial cases.

Proposition 3. (i) If (p, φ) are chosen as in (8) we have the evaluation V1(A)
and the ambiguity

Amb1(A) =
1

2

∫ hA

0

nα∑
i=1

|Aα
i | dα =

1

2

∫ hA

0

|Aα| dα

where | · | is the Lebesgue measure on the real line;
(ii) if (p, φ) are chosen as in (9) we have the evaluation V2(A) and the ambiguity

Amb2(A) =
1

2

∫ hA

0

nα∑
i=1

|Aα
i |wi(α) dα

where wi(α) = |Aα
i |/|Aα|;

(iii) if (p, φ) are chosen as in (10) we have the evaluation V3(A) and the ambiguity

Amb3(A) =
1

2

∫ hA

0

nα∑
i=1

|Aα
i |w′

i(α) dα

where w′
i(α) = nα|Aα

i |/|Aα|.
Proof. The assertions follow substituting (8), (9), (10) in (11), respectively, tak-
ing into about that |Aα

i | = 2 spr(Aα
i ) and thus from (2)

|Aα| =

nα∑
i=1

|Aα
i | = 2

nα∑
i=1

spr(Aα
i ) .

Remark 3. If we choose pi(α) = 1/nα and φ(α) = 1 we obtain the evaluation

V4(A) =
1

hA

∫ hA

0

(
1

nα

nα∑
i=1

mid(Aα
i )

)
dα

and the ambiguity

Amb4(A) =

∫ hA

0

(
1

nα

nα∑
i=1

spr(Aα
i )

)
dα =

1

2

∫ hA

0

nα∑
i=1

|Aα
i |w′′

i (α) dα

where w′′
i (α) = 1/nα.



146 L. Anzilli, G. Facchinetti, and G. Mastroleo

Remark 4. If A = (a1, a2, a3, a4;h1) is a convex fuzzy quantity with height hA =
h1 and α-cuts Aα = [aL(α), aR(α)], 0 ≤ α ≤ hA, we have nα ≡ 1 and

Amb(A) =

∫ hA

0

aR(α) − aL(α)

2
φ(α) dα .

In particular

Ambi(A) =

∫ hA

0

aR(α) − aL(α)

2
dα i = 1, 2, 3, 4 .

Remark 5. In [4] we introduced the approximation interval Ĉ(A) = [ĉL, ĉR] of a
fuzzy quantity A with respect to (p, φ) by

Ĉ(A) =

[∫ hA

0

∑nα

i=1 a
L
i (α) pi(α)φ(α) dα∫ hA

0 φ(α) dα
,

∫ hA

0

∑nα

i=1 a
R
i (α) pi(α)φ(α) dα∫ hA

0 φ(α) dα

]
.

From definitions (7) and (11) we obtain V (A) = mid(Ĉ(A)) and

Amb(A) = spr(Ĉ(A)) ·H(A)

where H(A) =
∫ hA

0 φ(α) dα. If φ(α) = 1 then H(A) = hA. If φ(α) = nα from

(3) we obtain H(A) =
∑N

j=1 hj −
∑N−1

j=1 hj,j+1. We note that these results are
consistent with [1–3].

5 Evaluation of Intuitionistic Fuzzy Quantities

An intuitionistic fuzzy set (IFS) A in X is given by

A = {< x, μA(x), νA(x) > ; x ∈ X}

where μA : X → [0, 1] and νA : X → [0, 1] satisfy the condition 0 ≤ μA(x) +
νA(x) ≤ 1. The numbers μA(x), νA(x) ∈ [0, 1] denote the degree of membership
and a degree of non-membership of x to A, respectively. For each IFS A in X ,
we call πA(x) = 1 −μA(x) − νA(x) the degree of the indeterminacy membership
of the element x in A, that is the hesitation margin (or intuitionistic index)
of x ∈ A which expresses a lack of information of whether x belongs to A
or not. We have 0 ≤ πA(x) ≤ 1 for all x ∈ X . The support of A is defined by
suppA = {x ∈ X ; νA(x) < 1}. An IFS A of the real line is called an intuitionistic
fuzzy number if μA and 1 − νA are membership functions of fuzzy numbers [14]
(see also [7] for different definitions).

Definition 5. We call IFQ an IFS A = 〈μA, νA〉 of the real line such that μA

and 1 − νA are membership functions of fuzzy quantities.

If A is an IFQ we denote by A+ the fuzzy quantity with membership function
μA+ = μA and by A− the fuzzy quantity with membership function μA− =
1 − νA. In the following an IFQ A will be indifferently denoted by A = 〈μA, νA〉
or A = (A+, A−). The last formulation has supported us in the proposal of IFQ
value based on a convex combination of the two evaluations of A+ and A−.
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Definition 6. Let A be an IFQ. We define the value of A with respect to the
parameter ρ ∈ [0, 1] as

Vρ(A) = (1 − ρ)V (A+) + ρV (A−) .

where the values V (A+) and V (A−) are defined by (7).

The choice of the parameter ρ reflects some attitude on the part of the decision
maker [15].

Remark 6. For each x ∈ X the degree of membership of x to the IFQ A is
between μA(x) and 1 − νA(x). The length of the interval [μA(x), 1 − νA(x)],
which is given by πA(x), is the hesitation between the two membership degrees.
When ρ is zero the evaluation Vρ(A) of IFQ A is given by the evaluation of
the fuzzy quantity A+ whose membership function is μA+ = μA and thus we
don’t consider the hesitation region. When ρ is one the evaluation Vρ(A) is
given by the evaluation of the fuzzy quantity A− whose membership function
is μA− = 1 − νA = μA + πA and thus we consider the whole hesitation region.
An intermediate value of the parameter ρ suggests the decision maker’s will to
consider some part of the wavering ones.

6 Ambiguity and Ranking of Intuitionistic Fuzzy
Quantities

We now introduce the definition of ambiguity for an IFQ by using the notion of
ambiguity of fuzzy quantities given in (11).

Definition 7. We define the ambiguity of the IFQ A = (A+, A−) as

Ambρ(A) = (1 − ρ)Amb(A+) + ρAmb(A−)

where the values Amb(A+) and Amb(A−) are defined by (11).
In order to compare two or more IFQs we introduce a function that maps the

set of IFQs into R2 by assigning to every IFQ A the pair (V (A), Amb(A)) where
V (A) and Amb(A) are, respectively, the value and ambiguity of A with respect
to parameter ρ (fixed). The ranking method we propose can be summarized into
the following steps:
1. For two IFQs A and B

if V (A) > V (B) then A ' B; if V (A) < V (B) then A ≺ B;
if V (A) = V (B) then go to the next step.

2. Compare Amb(A) and Amb(B):
if Amb(A) < Amb(B) then A ' B; if Amb(A) > Amb(B) then A ≺ B;
if Amb(A) = Amb(B) then A ∼ B, that is A and B are indifferent.

The proposed ranking method satisfies axioms A1 − A5 proposed in [22] as
reasonable properties for the rationality of a ranking method.
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7 Conclusions

We have presented two new results that would be useful both in the evaluation
and ranking of Intuitionistic Fuzzy Quantities. These sets are characterized by
two fuzzy quantities obtained by the union of two or more convex fuzzy sets.
The latter are non-normal fuzzy sets and their union produces non convex and
non-normal fuzzy sets. The evaluation we propose is very general and contains
as particular case other classic definitions. The connection between Intuitionistic
fuzzy sets and type-2 fuzzy sets is easy to find. In fact if we think to a defuzzi-
fication problem of a type-2 inference control system, we, almost surely, meet
with the problem to evaluate an Intuitionistic Fuzzy Quantities. In this direction
many authors have proposed “centroid” definitions for interval type-2 fuzzy logic
systems. The last ones have had a wide number of applications in many fields
[16, 23]. In this direction we think that our paper may produce an interesting
starting point. We may think either to propose the same ranking procedure or to
evaluate them with the intent to connect every interval type-2 fuzzy quantities
to a real number or an interval to face optimization problems in a type-2 fuzzy
context.
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Order Measures: Estimation of Andness Bounds
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Abstract. In this paper we analyze the compensation property of a
second order fuzzy measure in the context of a multi-attribute prob-
lem. In particular, we show that the disjunction/conjunction behavior
(andness/orness) changes with the number of criteria to be aggregated.
Interpreting the spread between the maximum and the minimum orness
as a measure of the representation capability, we obtain two bounds in
function of which asymptotically converge to a limit interval.

Keywords: Fuzzy measures, second order measures, Choquet integral,
andness index, OWA.

1 Introduction

Non additive measures (fuzzy measures, capacities) and the Choquet integral are
widely considered in multi attribute decision problems such as in sensor fusion,
pattern recognition, classification, and so on. The main characteristic consists
in the non linear nature of this approach, which makes it possible to include
interactions among the criteria to be aggregated, as synergies or redundancy,
modulating the compensation degree in function of the preference structure of
the Decision Maker. Unlike from the usual linear approach (weighted averaging),
this method produces an aggregation function whose result varies from a non
complete compensative (andness) in the case of a conjunctive behavior, to the
complete compensative one, in the opposite disjunctive case (orness). Given that
the compensation can be continuously modulated in between the two extreme
cases, an index was introduced (see[12]), to measure the compensative charac-
teristic of the considered measure, the orness degree. This index varies from
zero (completely non compensative) to one (completely compensative), and its
complement to one, the andness degree, measure symmetrically the conjunctive
nature of the measure. Anywise, the number of parameters of a fuzzy measure
increases exponentially with the number of the criteria, and at the same time, as
far as the preference structure of a Decision Maker is concerned, it has been ex-
perimentally verified (see[8]) that in most of the cases a reduced order measure,
i.e. a measure which includes interactions only for subsets of limited cardinality,
suffices to represent the preference structure. In other words, given the limited
capability of the human brain to define interactions between a high number of
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criteria, a reduced order can be considered, typically, a second order measure,
which consider interactions between only a couple of criteria. This choice even
if it drastically reduces the number of parameters to be elicited, in many ap-
plications is not a real limitation. But it is well known that such reduced order
measures cannot represent the two extreme cases, the disjunction and the con-
junction of the criteria, with the exception of the simplest case of the two two
criteria. Thus the reduced order models limit preference representation. To this
end we consider the spread between the maximum (resp.: minimum) and the
minimum (resp.: maximum) orness (resp.: andness) as a measure of the infor-
mation power of a measure, obtaining an inferior bound and a superior bound
for the orness (andness) index in function of the number of criteria. As may be
expected, the spread (difference between the two bounds) reduces with the crite-
ria number, but asymptotically converge to a defined interval, and the reduction
is not so crucial for low values of the number of criteria. Thus we can conclude
that the capability representation of a reduced order model can be sufficient if
the number of criteria is not too high, confirming the fact that for real problems,
a second order measure can be sufficient.

2 Fuzzy Measures and the Choquet Integral in MCDA
Problems

The Choquet integral was widely applied in multi-criteria decision problems,
MCDA for brevity, such as sensors fusion and other real-world problems. The
main reason is due to the capability to consider interaction among the criteria,
thus to be a tool that reflects the preference structure of a Decision Maker or
of the nature of the decision problem. The simpler and widely used Weighted
Averaging (WA) cannot include interactions, given its linear nature, which re-
quire the satisfaction of the Preferential Independence axiom, rarely satisfied in
practice. This implies that WA requires complete compensativeness, i.e. a low
value of a criterion, can be compensated by an high value of another one and this
can be undesirable. As an example, consider the Sustainability of a territorial
unit (town, region, etc.) as a function of the three classical pillars, Economy,
Environmental, Society; a high economic improvement cannot be paid for too
drastic an environmental damage or social inequalities. In other words, an equi-
librated scenario can be preferred, even if its average value is lower. Interactions
among the criteria can be easily formalized using fuzzy measures (non additive
measures, capacities) where a fuzzy measure is a generalization of WA.
Let us recall some well known definitions on Choquet integration (see [4], [5],
[10], [12]). If we consider a finite index set of interacting criteria N = {1, . . . , n}.
a set function υ: 2N → � is said to be a fuzzy measure if υ(∅) = 0 and if
S ⊆ T ⊆ N implies that υ(S) ≤ υ(T ).

We note that if S ⊆ N then υ(S) can be viewed as the importance of the set
of elements S and the measure that is assigned to S can be different from the
sum of the measures of the elements of a partition of S.
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The fuzzy measure is said to be additive if υ(S∪T ) = υ(S)+υ(T ) when S, T ⊆
N and S ∩ T = ∅. Moreover the fuzzy measure is superadditive (subadditive) if
υ(S ∪ T ) � (�)υ(S) + υ(T ) when S, T ⊆ N and S ∩ T = ∅.

If υ is a fuzzy measure υ : 2N → � and x ∈ �n let (·) be a permutation of
N such that x(1) � x(2) . . . � x(n) and Ai = {(i), . . . , (n)}. Then the Choquet
integral of x is:

Cυ(x) =

n∑
i=1

(υ(Ai) − υ(Ai+1)) x(i). (1)

The Choquet integral is an aggregation operator and obviously in the case of
additive measure we have a WA operator

Cυ(x) =

n∑
i=1

ωixi (2)

where the weights are given by ωi = υ({i}). A fuzzy measure υ is symmetric if
it depends only on the cardinality of the set considered

υ(T ) = υ(t) where t = |T | for every T ⊆ N. (3)

In this case it can be proved (see [1], [3], [6], [7] and [17]) that the Choquet
integral reduces to an OWA operator. An OWA operator is defined by

Cυ(x) =
n∑

i=1

ωix(i). (4)

If υ is a fuzzy measure the Möbius transform associated with υ is a function
m : 2N → � defined by:

m(S) =
∑
T⊆S

(−1)s−tυ(T ) with S ⊆ N. (5)

where s = |S| and t = |T |. The inverse transformation is given by:

υ(S) =
∑
T⊆S

m(T ) with S ⊆ N. (6)

If we consider the Möbius representation the boundary conditions are:

m(∅) = 0,
∑
T⊆N

m(T ) = 1 (7)

while the monotonicity conditions can be expressed as∑
T⊆S,i∈T

m(T ) � 0 for every S ⊆ N and i ∈ S. (8)

Using the Möbius representation m of υ the Choquet integral Cυ : �n → � can
be written as

Cυ(x) =
∑
T⊆N

m(T )
∧
i∈T

xi, x ∈ �n. (9)
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To every measure some indices can be assigned. We limit ourselves to quote the
Shapley index which captures the overall importance of a criterion, the inter-
action index to compute the (average) interaction between two criteria, useful
to measure the complementary/substitutivity between them. Again, we quote
the andness (orness) degree, which to some extend measure how much the fuzzy
measure is characterized by a greater or lesser tendency to a conjunctive (dis-
junctive) behavior; for a completely conjunctive (disjunctive) case, the andness
(orness) equals one (zero), and andness and orness degrees sum up to one. The
andness (orness) degree gives a rough idea of the conjunctive/disjunctive prop-
erty of the measure, i.e. the tendency to generate an output more or less close
to the minimum or to the maximum of the inputs. The Choquet integral is a
very general tool for aggregation, see [12] for an axiomatic approach, but the
price to pay is an exponential increase in the necessary parameters, given that
a value needs to be assigned to every subset of criteria, which are 2n. For this
reason, the literature proposed reduced order model, where interactions among
the criteria can appear only for limited cardinality subsets.

3 Reduced Order Models and Parameters Elicitation

A k-order model (reduced order) is a set of fuzzy measures such that there are
no interaction for every coalition with cardinality higher than k. In the Möbius
space, all the parameters relating to coalition with cardinality higher than k are
equal to zero. A reduced order model is usually a simplification, given that it
avoids the possibility of interactions between coalitions with higher order cardi-
nality. But in many real cases, the reduced order model can suffice to represent a
rich preference structure, given the limited power of the human brain to consider
too much complexity relationships. In many application, a second order model
with k = 2 can be sufficient, implying that only interaction among couple of
criteria are explicitly considered, and in the rest of the paper we remain inside
this context. Elicitation of measures is a crucial item in Decision Making and two
methods are usually applied; a direct approach, for which the measure values
are directly assigned, and an indirect ore, where they are implicitly elicited, nor-
mally using a questionnaire designed ad hoc. The direct method presents some
difficulties for assigning a numeric value to every coalition of criteria, due to the
presence of synergies. Conversely, the indirect one seems to me more suitable
for real problems, and it has been widely applied, in different version, in the
past literature(see [9], [11], [15]). Most of them concentrate on the elicitation for
a second order model, avoiding the exponential complexity for a complete one,
which also would imply too much huge number of complex questions for the DM,
subjected to excessive mental effort. We refer to the specialized literature for the
different methods used, such as entropy based, maximum split, least square, and
so on.

Basic concepts about k-additive measures are formally defined below.
A fuzzy measure υ is said to be k-additive if its Möbius transform is such that

m(T ) = 0 for all T ⊆ N with |T | > k and there exists at least one T ⊆ N with
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m(T ) �= 0. We consider in particular 2-additive measures while the 1-additive
measures are obviously additive measures. It can be proved that a 2-additive
fuzzy measure is entirely determined by the value on the singletons {i} and on
the pairs {i, j} of 2N .

We simplify our notation for the Möbius transform of a 2-additive fuzzy mea-
sures by using the following definitions mi = υ({i}),mi,j = υ({i, j}) for all i, j
with i �= j. Then we have the following decomposition formula

υ(T ) =
∑
i∈T

mi +
∑

{i,j}⊆T,i�=j

mi,j for every T ⊆ N, (10)

while the boundary conditions are

m(∅) = 0,
∑
i∈T

mi +
∑

{i,j}⊆N,i�=j

mi,j = 1 (11)

and the monotonicity conditions can be written as

mi � 0, mi +
∑

{i,j}⊆T,i�=j

mi,j for every T ⊆ N and i ∈ T. (12)

Moreover for 2-additive fuzzy measures the Choquet integral is

Cυ(x) =
∑
i∈N

mixi +
∑

{i,j}⊆N,i�=j

mi(xi ∧ xj) (13)

Now we consider second order OWA that are Choquet integral with respect to a
2-additive symmetric fuzzy measure that can be characterized by the following
result (see [1]).

Proposition 1. If we consider the second order OWA

n∑
i=1

ωixi

then the weights are given by

ωi = α + (n − i)β for every i = 1, . . . , n (14)

where α, β are the measures of the subsets of cardinality one and two respectively.

As pointed to in the Introduction, even if for many real world applications a
second order model is sufficient some information is lost. In particular, a second
order model cannot the implement neither the conjunctive nor the disjunctive
cases. In essence, these extremes, which are the bounds for every aggregation op-
erators, can be too drastic. Considering again the example proposed in [16] even
if, ceteris paribus for the worst case, higher values for other pillars are surely
preferred. Thus the minimum operator can be too drastic and normally does not
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corresponds to the real preference function. Thus a second order model even if it
considers interactions between a couple of criteria, can be considered adequate,
if the andness (orness) degree is sufficiently high (small), but not necessarily
equal to one (zero). So the question is which limit of orness (andness) behavior
can be obtained when we use a second order model. In what follows the answer
to this question is solved, analytically computing two bounds for a second order
model, namely, an upper and a lower bound for a second order model.
The andness and orness degree express the relative location of a given aggrega-
tion function with respect to minimum and maximum, respectively. This notion
was considered by Marichal [12] for the Choquet integral with respect to a fuzzy
measure and by Yager [17] for reflecting the andlike or orlike of OWA operators.
The orness index for a Choquet integral is

orness (Cυ) =
1

n− 1

∑
T⊆N

n− t

t + 1
m(T ) (15)

where t = |T | and m is the Möbius transform associated with υ.
The andness index is defined by andness (Cυ) = 1 − orness (Cυ).
If we consider a second order model we get from (15)that

orness (Cυ) =
1

n− 1

(n− 1

2

n∑
i=1

mi +
n − 2

3

n−1∑
i=1

n∑
j=i+1

mi,j

)
. (16)

Now we use the spread between the maximum As and the minimum values of
the andness in function of n, Ai, as a measure of representation power. If n = 2,
the spread equals one (As = 1, Ai = 0 ), and it decreases with n. The values of
As, Ai can be interpreted as how much the second order can approximate the
conjunction (disjunction) operator. For instance, a value of As = 0.9 means that
the second order model is a very good approximation of a complete model, for
what it concerns the conjunctive behavior.

Moreover, we define two fuzzy measures orness-equivalent if they are charac-
terized by the same value of the orness index (they are also andness-equivalent).

Let us observe that it is easy to prove that the orness degree for a second
order OWA is:

orness (Cυ) =
1

n − 1

(n(n− 1)

2
α+

n− 2

3
· n(n− 1)

2
β
)

=
n

2

(
α+

n− 2

2
β
)
. (17)

The following proposition proves that every second order fuzzy measures is
orness-equivalent to an OWA, whose characterizing parameters are the aver-
aging of the Möbius values.

Proposition 2. For every second-order fuzzy measure it exists a second order
OWA which is orness-equivalent to it and with

α =
1

n

n∑
i=1

mi, β =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

mi,j . (18)
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Proof. In order to obtain the result we have to prove that we have defined a se-
cond order OWA and so we consider the weights ωi = α+ (n− i)β, i = 1, . . . , n.
By the monotonicity conditions we have that mi +

∑
{i,j}⊆N,i�=j mi,j � 0 for

every i ∈ N . Summing up with respect to i we get

n∑
i=1

mi + 2

n−1∑
i=1

n∑
j=i+1

mi,j ≥ 0. (19)

If we prove that ω1 = α+(n−1)β ≥ 0 we can conclude that ωi = α+(n− i)β ≥
0 for every i = 1, . . . , n. We have that

ω1 = α + (n − 1)β = 1
n

∑n
i=1 mi + (n− 1) 2

n(n−1)

∑n−1
i=1

∑n
j=i+1 mi,j =

1
n

(∑n
i=1 mi + 2

∑n−1
i=1

∑n
j=i+1 mi,j

)
≥ 0.

Moreover we get that

n∑
i=1

ωi =

n∑
i=1

α + (n − i)β = nα +
n(n − 1)

2
β =

n∑
i=1

( 1

n

n∑
i=1

mi

)
+

n(n − 1)

2

( 2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

mi,j

)
=
∑
i∈T

mi +
∑

{i,j}⊆N,i�=j

mi,j = 1 (20)

by boundary condition. We conclude that the second order OWA and the second
order fuzzy measure are orness-equivalent.

Of course, the proposition cannot be inverted and for any second order OWA
there are infinite second order fuzzy measure characterized by the same orness
degree.

4 Upper and Lower Bounds

The aim of this section consists into the assessment of the upper and of the lower
bounds for a second order model in function of the number of criteria. Then we
have considered the maximum and the minimum values for orness degree of
the equivalent reduced order fuzzy measure need to be obtained. That is, the
following constrained optimization problem has to be solved

max/min α,β

(
α +

n− 2

3
β
)

(21)

0 � α � 1,−1 � β � 1, (22)

nα +
n(n − 1)

2
β = 1, (23)

α + kβ � 0, 1 � k � n− 1. (24)

The second equation represents the border constraints, while the last one the
monotonicity constraints. Let us observe that the inequality constraints α+(n−
1)β � 0, implies all the previous ones.

We state the main result of the paper.
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Proposition 3. The minimum and the maximum orness of a 2-order OWA
with respect to a, b are respectively

morness =
1

3

n− 2

n− 1
, Morness =

2n− 1

3(n− 1)
. (25)

Proof. We consider the problem

max/min α,β

(
α +

n− 2

3

)
(26)

0 � α � 1,−1 � β � 1, (27)

nα +
n(n − 1)

2
β = 1, (28)

α + (n − 1)β � 0. (29)

By geometrical or algebraic considerations we can solve the constrained op-
timization problem with respect to α, β. We get that the maximum point is(
2
n ,

2
n(1−n)

)
and the minimum point is

(
0, 2

n(n−1)

)
then the minimum value is

m = 1
3
n−2
n−1 while the maximum value is M = 2n−1

3(n−1) .

Now it is possible to note that

lim
n→∞Morness (n) =

2

3
, (30)

and if we consider the minimum value of andness

lim
n→∞mandness (n) =

1

3
. (31)

Finally we note that

mandness + morness = 1 then mandness = 1 − morness = Morness (32)

and similarly Mandness = morness so there is a sort of duality between the
minimum and the maximum cases.
Finally and just to illustrate the practical usefulness of our approach, suppose
that the Environmental Sustainability of a region has to be evaluated on the ba-
sis of five elementary indicators, each of them normalized into the common [0, 1]
scale, like the percentage of Co2 emission over the primary energy consumption,
the percentage of renewable energy over the total energy consumption, the en-
dangered animals or plants over the total, and so on. Let (x1, x2, . . . , x5) be the
normalized values of the five in indicators. As usual, a normalized value close to
zero means an unacceptable situation, and conversely a value close to one a very
good one. As for all the concept like well-being, happiness, sustainability etc.
which are multi-dimensional, the construction of a composite indicator requires
the introduction of a preference function by a Decision Makers, Stakeholders,
Politicians, Experts. In this field, the Choquet integral approach has been showed
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as an efficient tool (see [15]). Again, we remark that the aggregation algorithm
usually requires an andness-like operator, given that Sustainability implies only
partial compensation. In the limit case, the andness operator will be used, mean-
ing that no compensation at all is possible in the mind of the Decision Maker.
Anywise, a pure andness computation can penalize too much the case where only
one indicator is very low, while the other ones are completely satisfied. Thus a
partial compensation can be the right solution. In this spirit, our proposal can be
useful since permitting interactions only among couple of criteria, thus reducing
as most as possible the number of the required parameters. At the same time
it can include partial compensation. Coming back to the example consider the
following two hypothetical scenarios, i.e. vector of the five normalized indicators:

S1 = (1, 0.5, 0, 0, 0), S2 = (1, 1, 1, 1, 0)

The two scenarios differ together for the normalized values of the indicators. In
particular, the first is characterized by unsatisfied values for three indicators,
a medium satisfied value for the second indicator but a completely satisfied
values for the first one. While in the second scenario the first four indicators are
completely satisfied but x5 is completely unsatisfied. Thus let us observe that
for a second order model, being n = 5, from the results of the Proposition 3 we
obtain in the case of maximum andness α = 0, β = 1

10 and consequently:

C(S1) = 1/10(1 + 0.5 + 0.5 + 0 + 0.5 + 0.5 + 0 + 0.5 + 0 + 0) = 0.35

C(S2) = 1/10(1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0 + 0) = 0.6.

If a pure andness were applied, both in the cases we obtain zero, thus the two
scenarios are equally judged, even if the differ a lot for some indicators. At the
same time, a value of andness=3/4 is obtained, meaning that only a medium-low
compensation is possible, as the two numerical results confirm.

5 Conclusions

Fuzzy measures and the Choquet integral are a general tool for multi attribute
decision problems, possibly including interactions among the criteria. The ag-
gregated result can continuously vary from a non compensative up to a compen-
sative behavior, and suitably modulating the measures assigned to each coalition
of criteria, can represent a wide spectrum of preference structure. Nevertheless,
the number of parameters required for a general fuzzy measure increases expo-
nentially with the number of the criteria. For this reason, reduced order measures
were introduced, for which the number of parameters number is strongly reduced.
Limiting the attention to a second order model, which admits interaction only
between couple of parameters, for more than two criteria neither a complete dis-
junctive nor a conjunctive can be reached. The main contribution of this paper
consists in the computation of a disjunctive-conjunctive spread in function of
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the number of criteria, i.e. the maximum andness (minimum orness) and the
minimum andness (maximum orness) that can be achieved by a second order
model. The inferior and superior bounds thus obtained can help the facilitator
of process, to accept or not the possibility to use a second order model, or to
design the criteria structure differently by means of a decision tree in such a
way as to reduce the cardinality of criteria at the same level. This study can
then contribute to confirm or not the suitability of a second order model, often
accepted in real world applications. In a future step, we intend to perform the
same analysis for higher order model.
Finally note that our approach is in the spirit of the paper of Yager [18] but
differs in many aspects, in particular there is not a preliminary ranking of the
criteria to be aggregated.
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13. Mayag, B., Grabisch, M., Labreuche, C.: A representation of preferences by the
Choquet integral with respect to a 2-additive capacity. Theory and Decision 71(3),
297–324 (2011)



160 M. Cardin and S. Giove

14. Mayag, B., Grabisch, M., Labreuche, C.: A characterization of the 2-additive Cho-
quet integral through cardinal information. Fuzzy Sets and Systems 184(1), 84–105
(2011)

15. Meyer, P., Ponthière, G.: Eliciting preferences on Multiattribute Societies with a
Choquet Integral. Computational Economics 37(2), 133–168 (2011)

16. Pinar, M., Cruciani, C., Giove, S., Sostero, M.: Constructing the FEEM Sustain-
ability Index: a Choquet integral application (submitted)

17. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decision making. IEEE Trans. on Systems, Man and Cybernetics 18(1), 183–190
(1988)

18. Yager, R.R.: Prioritized aggregations operators. International Journal of Approxi-
mate Reasoning 48, 263–274 (2008)



Neighbor-Based Similarities

Stefano Rovetta1, Francesco Masulli1,2, and Hassan Mahmoud1

1 University of Genoa, Italy
2 Temple University, Philadelphia PA, USA

Abstract. We present an overview of association criteria that build upon the rela-
tive position of a set of reference data items with respect to given query data items,
and propose fuzzy generalizations that allows to use these criteria as real-valued
similarity measures. Some experimental consistency tests are also presented.

1 Introduction

We have witnessed a shift from feature-based data representation, such as images, to
similarity-based representation, exemplified by complex data in protein-protein inter-
action. This shift has prompted a renewed interest in methods based on similarities
which are not evaluated as distances in some suitable space, but given as inputs ob-
tained from some complex, costly, or unobservable source. In this paper we examine
some proximity measures derived from the analysis of the ordered list of neighbors to
data items.

As opposed to geometric distance, these criteria are applicable even when data are
not Euclidean. We are interested in fuzzy data, since they are more realistic. For the
sake of concreteness, fuzziness in this work is assumed to derive from measurement
uncertainty in an Euclidean setting, similarly to the cases studied by Yager [1]. The
methods studied can be applied in other cases.

These measures may be interesting even when a primary similarity is available. For
popular methods such as kernel classifiers [2] and spectral clustering [3] a suitably
sparse proximity (similarity) matrix has definite computational advantages. In addi-
tion, while nearest neighbor classification criteria are asymmetric, similarities based
on shared neighbor lists are symmetric (and positive semidefinite), which makes them
suitable in applications that require this property.

The rationale of the present work is that similarity can be considered a fuzzy gener-
alization of identity, so it is possible to unify binary, discrete-valued, and continuous-
valued similarity measures under a general fuzzy framework. A family of neighbor-
based similarity measures is surveyed and some of them are experimentally compared.

2 Preliminaries

2.1 Notational Conventions and Background Assumptions

In the following, we assume a training or reference set Y = {y j} of m data points, either
unlabeled or labeled with labels indicated by the (crisp or fuzzy) indicator vector c(y j)
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(of size C for C classes), and a query set X of n data points. An available n×m matrix D
of pairwise primary similarities or distances is assumed, and R will be the n×m matrix
whose row Ri contains the rank of each reference item y j ∈ Y sorted by decreasing
similarity from query item xi ∈ X . Ranks are integers from 1 (the nearest neighbor) to
m. Definitions however will mainly use the index matrix I (again n × m) whose row Ii

contains the indexes of all reference points according to Ri, so that for instance if Ri j =
1, then Ii1 = j (this is the index of the nearest neighbor); more generally IiRi j = RiIi j = j.
The self-relational case is also included. Here Y ≡ X and m = n, therefore all matrices
are square n × n, and ranks 1 is that of the nearest point in X (that is, the query point
itself), rank 2 that of the second nearest. . . up to n.

To simplify the treatment, we will assume that rows of D do not include repeated
values, i.e., we assume no ties in ranking.

2.2 Fuzzy Equality and Inequality

We assume that each data item in X and Y is a fuzzy vector (a vector whose components
are fuzzy numbers), with Gaussian membership of identical variance.

Crisp equality may be expressed by the following indicator function:

δ (x,y) =

{
1 for x− y = 0,
0 otherwise,

(1)

so that δ (x,y) = 1 ⇐⇒ x = y, i.e., δ () indicates that its argument is exactly zero. A
fuzzy generalization eq() of δ () can be interpreted as the indicator of the fuzzy number
“about 0” computed for the value x−y. This is a fuzzy equivalence relation [4], and sev-
eral choices are possible. For instance, in [5] interval values were used, and (in)equality
tests compared the overlap between intervals. Our Gaussian membership assumption
connects fuzzy knowledge and probabilistic uncertainty [1] (one very common source
of imprecise knowledge). Equality may be defined as follows:

eq(a,b) = e−(a−b)2/γ 2
for a, b fuzzy number centroids, (2)

where the fuzziness parameter γ should be tuned to the range of the data under study.
We also need to “overload” the indicator eq() for vector arguments: a natural choice

is based on the logical conjunction of equality for the N individual components,

eq(x,y) =

(
N

∏
p=1

eq(xp,yp)

)1/N

for x, y fuzzy N-vectors. (3)

The geometric mean provides a normalization with respect to N, whereas the simple
product would yield a smaller value for larger N. For scalars (N = 1), (3) reduces to (2).

To model fuzzy inequality, Yager [1] employs the probability distribution of the dif-
ference of two values. In [6] a similar approach was followed, but based on the proba-
bility distribution in a Gaussian dipole, a pair of equal variance Gaussian distributions,
which yields a sigmoid:

λ (a,b) =
1

1 + e(a−b)/γ , (4)
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a natural generalization of the Heaviside indicator with fuzzification parameter γ . In the
limit for γ → 0 the inequality tends to become crisp. The value of λ (a,b) represents the
degree of truth of the statement “a is larger than b”, with value 0 when a + b, 1 when
a , b, and a value approaching 0.5 when a ≈ b. We remark that, similarly to Yager’s
approach, the fuzzy indicator λ () can be used to directly define fuzzy rankings [6].

3 A Taxonomy of Neighbor-Based Similarity Measures

To design neighbor-based similarity values, several choices are possible, although not
all combinations make sense. Here we present these choices along with the naming
conventions. Measures will be given a symbol indicating its supervised / unsupervised
and crisp / fuzzy nature, and further choices will be specified by a subscript, a sequence
of key characters chained in the same order as they are presented in the following. Some
examples are given at the end of this section.

– Supervised vs Unsupervised Measures
Measures based on neighbors assume the existence of a primary pairwise similarity
information, and use it to define a new similarity. In the supervised case this primary
information is given by a class labeling for Y . Classification in the same class is
a kind of similarity measure, binary only in the crisp case, used for instance in
correlation clustering [7].
A base name will be given to each measure as follows: t is a supervised measure, s
an unsupervised measure.

– Crisp vs Fuzzy Measures
Depending on the availability of fuzzy information, measures can be either crisp or
fuzzy. Symbols for crisp measures are plain: t, s; simbols for fuzzy measures have
a “hat”: t̂, ŝ

– Number k of Neighbors
The number k of neighbors considered can range from 1 to |Y |. In general we only
distinguish the case k = 1 from k > 1. A subscript starting with 1 has k = 1; a
subscript starting with k has k �= 1, to be specified.

– Near vs Far Neighbors
The neighbors considered for measuring similarities are usually the nearest to the
items considered. However, some approaches use the farthest neighbors.
A subscript that has 1 or k followed by n indicates that neighbors are the near-
est; if followed by f, neighbors are farthest. Note that all remaining choices are
meaningful only for k > 1, so subscripts starting with 1 end with either n or f.

– List vs Set of Neighbors
Neighbors can conceptually be arranged in a list or in a set. Comparing two lists
requires that all neighbors considered appear with the same rank in both lists. Com-
paring two sets does not take ranks into account, only the existence of points.
The key l indicates list, while s stands for set. This choice does not apply for k = 1.

– Measuring Strategy
There are several ways to evaluate similarity between two data items. Here we
consider three approaches: The number of coincident neighbors or of neighbors
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sharing the same class label can be used directly (this is indicated by the key c).
Or, this number can be offset by a threshold (“ε-insensitive” count), so that if the
shared items are less than this threshold the similarity is zero, and only the excess
is counted (key e). Finally, a binary similarity is obtained by simply considering
counts that are/are not above the threshold (key t).
Note that in the fuzzy case the concepts of “coincident items” and “larger than a
threshold” must be suitably defined, as we did in Subsection 2.2, and give rise to a
fuzzy truth degree rather than a binary value.
This choice does not apply for k = 1.

For instance, the measure t̂1n is a supervised, fuzzy similarity based on the nearest
neighbor only; sknst, a crisp unsupervised similarity, is 1 if the count of the shared near
neighbors among the nearest k (taken in any order) is above threshold t, where k and t
must be specified; and ŝkflc, a fuzzy unsupervised similarity, is the count of fuzzy shared
farthest neighbors taken with their ranks, where k must be specified.

4 A Survey of Some Supervised Measures

4.1 k Nearest Neighbor Classification

The well-known nearest neighbor classification rule [8,9] states that a point is attributed
to the same class as its closest reference point:

c(xi) = c(yIi1 ) . (5)

Therefore, the nearest neighbor similarity between xi and x j is

t1n(xi,x j) =

{
1 if c(yIi1 ) = c(yIj1 ) ,

0 otherwise.
(6)

Nearest neighbor rules can be stated as a Bayes decision criterion working on a crude
estimation of class-conditional data densities [8,10]. Using a set of k neighbors makes
the nearest neighbor rule less sensitive to local variation in data distribution. A point is
in the class that is most represented among the k nearest neighbors, or:

c(xi) = argmax
c

∣∣{y j : c(y j) = c, Ri j ≤ k}
∣∣ , (7)

where |S| = cardinality of S. Once a majority class is established, the k nearest neighbor
similarity is again given by s1n (6).

The number of majority class representatives can be used to introduce a degree of
classification confidence [11], allowing to implement a rejection option in classification
tasks. In the k-nearest neighbor distance, confidence can be used to grade the distance,
making it non-binary. In [11], tknlc is also used.
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4.2 Fuzzy k Nearest Neighbors

Fuzzy supervised nearest neighbor criteria may be based on metrics t̂1n and t̂knst. How-
ever Keller et al. proposed a fuzzy k nearest neighbor classification [12], based on the
idea of applying the fuzzy c-means membership function to Y . The fuzzy k nearest
neighbor classification is a C-vector of memberships u(xi) = [u1(xi), . . . ,uC(xi)], so that

uh(xi) =
∑k

j=1 ch(yIi,1)(1/Di j)
2/(m−1)

∑k
j=1 (1/Di j)

2/(m−1)
, h : 1 . . .C (8)

and the nearest neighbor similarity between xi and x j can be computed as the degree of
similarity between two modified membership vectors

ŝ ′
knlc(xi,x j) =

√
u′(xi) ·u′(x j)

k
, (9)

a variation of ŝknlc where

u′(x)

{
u(x) if u(x) ∈ top k memberships,
0 otherwise.

(10)

Note that, according to this model, the nearest neighbor (k = 1) criterion is always
crisp, unless the target class indicators ch(y j) are fuzzy to start with. This requirement
is not usually satisfied.

When the y j are the centroids of meaningful groupings in data, e.g., class centroids or
centroids of convex components of classes, these criteria are called “nearest centroid”.
Usually, however, they are prototypes [13] or landmarks [14] in the data space, in a
more generic sense. A similar representation, with k ≡ m, has been used in [15].

5 A Survey of Some Unsupervised Measures

5.1 Shared Near Neighbors

A binary similarity measure was proposed by Jarvis and Patrick [16]. The measure is
inherently unsupervised. It assigns two points to the same cluster whenever, among the
k nearest neighbors of each point, at least t are common to both (“shared”). In other
words, it uses the sknst measure: If nn(k) =

∣∣{yp : Rip ≤ k, R jp ≤ k}
∣∣ is the number of

shared near neighbors among the nearest k,

sknst(xi,x j) =

{
1 if nn ≥ t ,
0 otherwise.

(11)

5.2 Shared Farthest Neighbors

Another binary, unsupervised similarity measure was presented in [17]. This measure
assigns two points to the same cluster whenever the farthest neighbor of the two points
is the same:

s1f(xi,x j) =

{
1 if Iin = I jn ,
0 otherwise.

(12)
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This measure can be applied recursively up to depth k, using skflt for a sequence of
thresholds t. Similarly to the k nearest neigbors rule, we can apply this criterion to the
set of k farthest neighbors.

5.3 Fuzzy Shared Near and Far Neighbors

Using the definitions of fuzzy equality and inequality given in Subsection 2.2, fuzzy
neighbor-based similarities can be readily defined. These similarities measure the de-
gree of overlap between the k nearest or farthest neighbors. If the lists of neighbors
include similar, albeit not identical, points, these give some (reduced) contribution to
the measure. The following is the definition of measures, for both nearest and farthest
neighbors, using the “list” representation, i.e., keeping ranks into account:

ŝknlc(xi,x j) =
k

∑
p=1

eq
(
yIip ,yIjp

)
; ŝkflc(xi,x j) =

m

∑
p=m−k+1

eq
(
yIip ,yIjp

)
. (13)

In measures using the “set” representation, data items are required to be included in
the two lists of neighbors, but not necessarily with the same rank in both.

ŝknsc(xi,x j) = ∑ top(k)
{

eq
(
yIip ,yIjq

)
, i = 1 . . .k, j = i . . .k

}
; (14)

ŝkfsc(xi,x j) = ∑ top(k)
{

eq
(
yIip ,yIjq

)
, i = m− k + 1 . . .m, j = i . . .m

}
. (15)

Here top(k) is the top-k query operator, applied to the fuzzy equality level eq() of k(k +
1)/2 pairs of neighbors (either nearest or farthest).

Finally, threshold-based nearest and farthest neighbor measures, according to the
ideas of Jarvis and Patrick, are defined as follows:

ŝknst(xi,x j) = λ (ŝknsc, t) ; ŝkfst(xi,x j) = λ (ŝkfsc, t) . (16)

6 Experiments

Due to the large number of variations and the resulting huge number of comparisons
that would be needed, in this paper it is impossible to provide a complete experimental
validation of the measures described and surveyed. Only selected experiments on some
measures will be presented to illustrate a possible experimental approach.

The experiments have been performed on two datasets from the UCI Machine Learn-
ing Repository [18], Iris [19] and Seeds [20]. Both are simple and not very extensive,
but both present a weak clustering structure, useful to gain understanding on the type of
information revealed by similarity measures. we only take fuzzy unsupervised similari-
ties into account, although data are labeled and supervised approaches are also possible.

The well-known Iris data (150 items with 4 attributes) are distributed in three equal-
sized classes structured into two clusters. Centroid-based clustering methods can ap-
proximate the two touching classes because the resulting distribution is elongated and
such methods make a globular cluster assumption that does not match the distribution
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Iris Seeds

Fig. 1. The datasets used in the experiments, projected onto their first two principal components

k k

Correlation of ’list’ vs ’set’ Correlation of ’near’ vs ’far’

Fig. 2. Correlation coefficient between different measures as a function of k

very well. Methods that do not rely on this assumption (including heat-kernel based
spectral clustering for a range of width parameters) may or may not be able to separate
these classes on the basis of structure only (i.e., in an unsupervised setting). On the
other hand, the first class is extremely well separated.

The Seeds data is 210 items with 7 attributes, in 3 classes, and is somewhat similar
to two of the three classes of the Iris data in that there are no clear clusters; however
the situation here is even worse, since cardinality is similar (70 items per class), dimen-
sionality is higher, and all the three classes are overlapping in one cluster only.

Figure 1 shows the two datasets, projected on their first two principal components.

6.1 Consistency between Measures

Figure 2 shows the value of the correlation coefficient between the fuzzy measures, as
a function of k. This is a consistency test for the measures considered, since correlation
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k k

Correlation with Euclidean distance, Iris Correlation with Euclidean distance, Seeds

Fig. 3. Correlation coefficient of measures with Euclidean distance, as a function of k

is an indication of agreement. The following measures of the “counting” type (c) are
compared, by computing them on both the Iris and the Seeds data sets: ŝknlc, ŝkflc, ŝknsc,
ŝkfsc. These are studies as functions of k. Note that, for better readability, “near”, “far”,
“list”, and “set” are explicited in the graphs rather than using the corresponding one-
character keys.

On the left, the graphs show the correlation of “s” measures (using set of neighbors)
with “l” measures (using list of neighbors) both for “n” (using near neighbors) and
“f” (using far neighbors) versions on the two datasets, as indicated in the figure. On
the right the graphs show the correlation of “n” measures with “f” measures for “s”
and “l” versions, on the two datasets. In both cases we have 2 measures × 2 datasets
= 4 traces. Correlation is decreasing in all traces for the “l” vs “s” case, indicating (as
expected) that the “l” criterion is increasingly selective with k. On the other hand, “n”
and “f” criteria are increasingly similar, with growing k, in all cases, again confirming
a reasonable expectation.

6.2 Consistency with Euclidean Distance

Figure 3 shows the value of the correlation coefficient between fuzzy measures and Eu-
clidean distance, as a function of k, another consistency test. The consistency is higher
for more negative values of the correlation coefficient (since we compare similarities
with distances).

Correlation grows with k, and, somewhat surprisingly, is stronger for measures based
on farthest neighbors rather than on nearest neighbors. An expected result, instead, is
that correlation for “s” measures is higher than for “l” measures.

6.3 Use in Spectral Clustering

A sample experiment on the Iris data is presented here to see the actual behavior of
a similarity measure when used in spectral clustering, here defined as in [21]. Since
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Table 1. Example spectral clustering results

Heat kernel, σ = 0.1 ŝknlc, k = 20

Setosa Versicolor Virginica
cluster 1 50 0 0
cluster 2 0 26 43
cluster 3 0 24 7

Setosa Versicolor Virginica
cluster 1 50 0 0
cluster 2 0 27 33
cluster 3 0 23 17

(contrary to k-means) we are not enforcing a globular cluster assumption, we expect
clusters to be found only for class 1 (Setosa), while the other classes should correspond
much less precisely to clusters.

Confusion matrices between classes and clusters are presented in Table 1 for both
heat kernel with parameter σ = 1 (a non-optimal value) and the ŝknlc similarity (fuzzy
unsupervised k-nearest neighbors, rank-sensitive match count). The heat kernel uses all
the information available, while ŝknlc uses only the list of the first 20 nearest neighbors;
yet, the results are comparable if one does not take the additional effort to select a
suitable heat kernel parameter, a task that in general is known to be tricky [22]. In
particular, the well-clustered class is perfectly separated, while the other two classes
are mixed in the two other clusters.

7 Conclusion and Perspectives of Work

The measures surveyed here can be applied even in the absence of an explicitly com-
putable primary measure. They can be used to turn an asymmetric similarity structure
into a symmetric, positive definite similarity matrix even for non-Euclidean, fuzzy data.
The sample experiments seem to suggest (subject to further extensive verification) that
these measure convey significant information, and are consistent both with each other
and with Euclidean distance.

Since the methodology proposed disregards the nature of the actual primary similar-
ity, requiring only that it induces an ordering in the reference data items, it is notably
flexible and can be applied in several contexts.
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Abstract. Structural models such as ontologies and graphs can encode
generic knowledge about a scene observed in an image. Their use in spa-
tial reasoning schemes allows driving segmentation and recognition of
objects and structures in images. The developed methods include find-
ing a best segmentation path in a graph, global solving of a constraint
satisfaction problem, integrating prior knowledge in deformable models,
and exploring images in a progressive fashion. Conversely, these mod-
els can be specified based on individual information resulting from the
segmentation and recognition process. In particular models relying on
spatial relations between structures are relevant and more flexible than
shape models to be adapted to potential variations, multiple occurrences,
or pathological cases. The problem of semantic gap is addressed by gener-
ating spatial representations (in the image space) of relations initially ex-
pressed in linguistic or symbolic form, within a fuzzy set formalism. This
allows coping with uncertainty and fuzziness, which are inherent both
to generic knowledge and to image information. Applications in medical
imaging and remote sensing imaging illustrate the proposed paradigm.

Keywords: Image understanding, structural models, graphs, spatial re-
lations, fuzzy modeling, model-based segmentation and recognition, con-
straint satisfaction problems.

1 Structural Models

Models constitute an important source of information for image understanding,
that provides generic knowledge, complementary to the actual data and images.
Such models may provide information regarding the objects contained in the
scene, as well as their spatial arrangement. This aspect confers them a structural
nature, in which spatial relations are of prime importance.

Let us consider medical image interpretation as an example. On the one hand,
biological, anatomical or biomechanical models can be used to guide image in-
terpretation. On the other hand, medical images can be exploited in order to
build models of the human body, from an anatomical or functional point of view.

Iconic representations of anatomical knowledge can be found, such as anatom-
ical atlases. Although their use for normal structure recognition is well ac-
knowledged, they remain difficult to exploit in pathological cases. Anatomical
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knowledge is also available in textbooks or dedicated web sites, and expressed
mainly in linguistic form. These models involve concepts that correspond to
anatomical objects, their characteristics, or the spatial relations between them.
Human experts use intensively such concepts and knowledge to recognize visu-
ally anatomical structures in images. This motivates their use in computer aided
image interpretation. Some attempts to formalize this knowledge have been per-
formed, in particular in the form of ontologies (e.g. the Foundational Model of
Anatomy [14]). Such linguistic or ontological descriptions can be found in other
domains, such as remote sensing.

In several applications, shape is not a sufficient information to describe a
scene, and models should involve higher level information, on the structure and
spatial arrangement of the scene. Hence models of spatial relations have to be
developed and included in the models. Graphs are often used to represent the
structural information in image interpretation, where the vertices represent ob-
jects or image regions (and may carry attributes such as their shapes, sizes, and
colors or grey levels), and the edges carry the structural information, such as
the spatial relations among objects, or radiometric contrasts between regions.

In our work, we concentrate mainly on spatial relations, which are strongly
involved in linguistic descriptions. We proposed mathematical models of several
spatial relations, in the framework of fuzzy set theory [5]. Fuzziness is very impor-
tant to model the intrinsic imprecision of spatial relations expressed in a linguis-
tic way. The modeling relies on tools from mathematical morphology [7,9], which
provides a strong algebraic framework. This allows deriving similar models, with
the same properties, in various settings, either quantitative, semi-quantitative
(fuzzy) or qualitative (logics) ones (see [6] for mathematical details), and thus
reasoning at different levels and on different types of information. In particular,
the fuzzy representations can enrich anatomical ontologies [21] and contribute
to fill the semantic gap between symbolic concepts, as expressed in the ontology,
and visual percepts, as extracted from the images. A symbolic concept represent-
ing a given spatial relation can be translated into semi-qualitative representation
using the proposed fuzzy models. The parameters are tuned using learning proce-
dures for each application domain1 [3], leading to a representation in the image
domain. Combination with image information can then be performed. These
ideas were used in particular in our segmentation and recognition methods.

Interactions between models and images can be seen in different directions. A
model can drive the exploration of an image, as described next. Conversely, the
result of an image interpretation process can be used to modify a generic model
to make it specific to the observed case. Moreover, results on several images can
help building generic models. In the sequel, we focus on the first aspect.

1 For instance, a relation such as “close to a given object” is intrinsically fuzzy, and
moreover its concrete meaning depends on the domain. It is typically not the same
for anatomical structures in medical images, and for man-made or natural objects
in satellite images.
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2 Model-Based Structure Recognition and Image
Understanding

The methods we developed for segmentation and recognition of 3D structures in
medical images can be seen as spatial reasoning processes. Two main components
of this domain are spatial knowledge representation and reasoning.

In particular spatial relations constitute an important part of the knowledge
we have to handle, as explained before, since they constitute relevant information
to guide the recognition of structures embedded in a complex environment, and
are more stable and less prone to variability (even in pathological cases) than
object characteristics such as shape or size. Imprecision is often attached to
spatial reasoning in images, and can occur at different levels, from knowledge to
the type of question we want to answer.

The reasoning component includes fusion of heterogeneous spatial knowledge,
decision making, inference, recognition. Two types of questions are raised when
dealing with spatial relations:

1. given two objects (possibly fuzzy), assess the degree to which a relation is
satisfied;

2. given one reference object, define the area of space in which a relation to
this reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination:

– mathematical morphology, which is an algebraic theory that has extensions
to fuzzy sets and to logical formulas, and can elegantly unify the represen-
tation of several types of relations;

– fuzzy set theory, which has powerful features to represent imprecision at
different levels, to combine heterogeneous information and to make decisions;

– formal logics and the attached reasoning and inference power.

The association of these three frameworks for spatial reasoning is an original
contribution of our work, and the lattice structure underlying each of these
frameworks is a core feature, making the use of mathematical morphology rele-
vant and powerful [6].

The interpretation of complex scenes in images often requires (or can benefit
from) a model of the scene. The spatial arrangement of objects or structures is
often crucial for differentiating among objects with similar appearances in the
images, or disambiguating complex cases. Examples occur in many domains,
including medical imaging, in which structural knowledge can help in the in-
terpretation of the images. In magnetic resonance imaging (MRI), for instance,
radiometry is often insufficient for recognizing individual anatomical structures,
and their relative spatial configuration provides an important input into the
recognition process [12]. Other examples occur in aerial and satellite imaging,
robot vision, and video sequence interpretation, among other fields.
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In our work, we often address the image interpretation problem as a joint
problem of image segmentation and object recognition, based on structural in-
formation. The methods summarized in the next section address this question,
and belong to a more general class of model-based or knowledge-based interpre-
tation systems. Only a sketch of each of them is provided here, and mathematical
and technical details can be found in the mentioned references.

3 A Few Approaches

3.1 Morphisms between Graphs

A first recognition approach, called global, uses the first type of question (1).
The idea is to represent all available knowledge about the objects to be recog-
nized. A typical example consists of graph-based representations. The model is
then represented as a graph where nodes are objects and edges represent links
between these objects. Both nodes and edges are attributed. Node attributes are
characteristics of the objects, while edge attributes quantify spatial relations be-
tween the objects. A data graph is then constructed from each image where the
recognition has to be performed, based on a preliminary segmentation into homo-
geneous regions. Each region of the image constitutes a node of this data graph,
and edges represent spatial relations between regions, as for the model graph.
The comparison between representations is performed through the computation
of similarities between model graph attributes and data graph attributes. Note
that it might not be straightforward to design an appropriate similarity function
involving vertex and edge attributes for a specific application.

Although graph representations have become popular in the last 40 years [13],
a number of open problems remain in their efficient implementation. In particu-
lar, when expressing the recognition problem as a graph matching problem be-
tween the image and model graphs, which is an annotation problem, this scheme
often requires solving complex combinatorial problems [13]. Improvements can
be achieved by suppressing iteratively inconsistent annotations using a constraint
propagation procedure, as proposed e.g. in [29,36] for simple geometrical figures
or in [24,32] for the annotation of image segmentations. However, the constraint
propagation procedure does not guarantee a unique annotation. Moreover, all of
these approaches assume a correct initial segmentation of the image. However,
the segmentation problem is a known challenge in image processing, to which
no universal solution exists. The segmentation is usually imperfect, and no iso-
morphism exists between the graphs being matched. An inexact matching must
then be found, for instance by allowing several image regions to be assigned to
one model vertex or by relaxing the notion of morphism to that of fuzzy mor-
phism [10,28]. For example, previous studies [15,16] employ an over-segmentation
of the image, which is easier to obtain. A model structure (i.e. a graph vertex)
is then explicitly associated with a set of regions, and the recognition problem is
expressed as a constraint satisfaction problem. To overcome the complexity is-
sue, a weaker version of the model relations (encoded in the edges) is considered,
and the problem is solved using a modified AC-4 propagation algorithm [25].
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3.2 Progressive Exploration of the Image Using Graphs

A second type of approach relies on the second type of question (2), and is called
here progressive or sequential [8,12,18]. In this approach, objects are recognized
sequentially and their recognition makes use of knowledge about their relations
with respect to other objects. This sequential segmentation framework allows
decomposing the initial problem into several easier-to-solve sub-problems, using
the generic knowledge about the scene. Relations with respect to previously
obtained objects can be combined at two different levels of the procedure. First,
fusion can occur in the spatial domain, using spatial fuzzy sets. The result of
this fusion allows building a fuzzy region of interest in which the search of a
new object will take place, in a process similar to focalization of attention, thus
driving the image exploration. In a sequential procedure, the amount of available
spatial relations increases with the number of processed objects. Therefore, the
recognition of the most difficult structures, usually handled in the last steps, will
be focused in a more restricted area. Another fusion level occurs during the final
decision step, i.e. segmentation and recognition of a structure. For this purpose,
spatial relations are introduced in the evolution scheme of a deformable model,
in which they are combined with other types of numerical information, usually
edge and regularity constraints.

This approach, as pointed out in [12], requires to define the order according
to which the objects have to be recognized and the choice of the most appro-
priate order is a challenging issue. This was addressed in [18], with two original
contributions:

– First, we extended the sequential segmentation framework by introducing a
pre-attentional mechanism based on saliency [22], which is used, in combi-
nation with spatial relations, to derive a criterion for the optimization of the
segmentation order.

– Secondly, we introduced criteria and a data structure which allow us to detect
the potential errors and control the ordering strategy.

The proposed framework has two levels. The first level is a generic bottom-up
module which allows selecting the next structure to segment. This level does
not rely on an initial segmentation or classification, but instead on a focus of
attention and a map of generic features. The sequential approach allows this
level to use two types of knowledge: generic and domain independent features in
unexplored area of the image to segment, and high-level knowledge such as spa-
tial relations linked to the already recognized structures. The selection criterion
is used to optimize the segmentation order and to select the next structure to
segment at each step. The second level achieves recognition and segmentation of
the selected structure, as well as the evaluation of the segmentation. The recog-
nition of the structure is achieved at the same time as the segmentation. This
level is composed by the segmentation method defined in [12], integrating spatial
relations in a deformable model, and an original evaluation method. It uses two
types of a priori information: the spatial information which allows us to reduce
the search area, and a radiometric estimation of the intensity of the structure.
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Therefore, the radiometric estimation needs to discriminate the intensity of the
structure only in the search area and not in the whole image. Once a structure
is segmented and recognized, this level also evaluates the quality of the result
and proposes a strategy to guarantee the spatial consistency of the result and
to potentially backtrack on the segmentation order.

This approach is illustrated in Figure 1.

Fig. 1. General scheme of the sequential segmentation framework (figure reproduced
from [18]). The graph initially represents only the generic knowledge (here about the
brain) and the reference structures. At each step, a structure is selected according to
the saliency of its localization and its relations to other structures. This structure is
then segmented and the result is evaluated. In case of success, the graph is updated and
the process is iterated until the graph is completely specialized or no more structure
can be segmented. In case of failure, the system is constrained to select another path
to segment and the process is iterated.

3.3 Global Method Based on Graphs and CSP

To overcome the problems raised by sequential approaches while avoiding the
need for an initial segmentation, we proposed in [27] an original method that
still employs a structural model, but solves the problem in a global fashion. Our
definition of a solution is the assignment of a spatial region to each model ob-
ject, in a way that satisfies the constraints expressed in the model. We propose a
progressive reduction of the solution domain for all objects by excluding assign-
ments that are inconsistent with the structural model. Constraint networks [30]
constitute an appropriate framework for both the formalization of the problem
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and the optimization. An original feature of the proposed approach is that the
regions are not predetermined, but are instead constructed during the reduction
process. The image segmentation and recognition algorithm therefore differs from
an annotation procedure, and no prior segmentation of the image into meaning-
ful or homogeneous regions is required. This feature overcomes the limitations
of many previous approaches (such as [15,16]). More precisely, a constraint net-
work is constructed from the structural model, and a propagation algorithm is
then designed to reduce the search space, which is an adaptation of AC-3 al-
gorithm [30] with an ordering of constraints to reduce the computational cost
and reduce the domains as much as possible. Finally, an approximate solution is
extracted from the reduced search space. Once the propagation process termi-
nates, the solution space is typically reduced substantially for all of the model
structures. The final segmentation and recognition results can then be obtained
using any segmentation method that is constrained by this solution space.

This approach is illustrated in Figure 2.

3.4 Global Method Based on Nested Conceptual Graphs and Fuzzy
CSP

In this section, we summarize a hybrid method, relying on a preliminary segmen-
tation of the image, which does not need to be perfect, and on a recognition step
to identify the concepts represented in the model [33]. In some applications, for
instance to interpret Earth observation images, multiple instantiations of some
objects should be taken into account (e.g. several boats in a harbor).

In this case, the interpretation relies on a generic model of the scene to be
recognized, encoding objects and groups of objects, spatial relations between
between objects or between groups, along with the imprecision and uncertainty
attached to the formal representations of such relations (this includes complex
relations such as alignment, parallelism, etc. [34,35]). The model is formalized
as a nested conceptual graph [31], which allows representing internal and exter-
nal information, zooming, partial description of an entity, or specific contexts.
Identifying possibly multiple instances of the model in an image is formalized as
a graph homomorphism.

Finding the best homomorphism is performed by solving a fuzzy constraint
satisfaction problems (FCSP) [17], using arc-consistency checking [11]. FCSP
and arc-consistency checking have been extended in [33] to deal with relations
having an arity greater than two and with complex objects. The main contribu-
tion in this work concerns the adaptation of the algorithm to deal with groups
of objects which can be related among them or have a spatial property such as
being aligned. A methodology is then proposed to find the instantiations of a
nested conceptual graph in an unlabeled image. Experimental results on high
resolution satellite images show that the proposed approach successfully recog-
nizes a given spatial configuration (such as harbor or airport) and is robust to
image segmentation errors. The results demonstrate the interest of using complex
spatial relations for the interpretation of images.

This approach is summarized in Figure 3.
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Fig. 2. Overview of the CSP approach for the brain structures example (figure repro-
duced from [27]). For instance, the solution space of the left caudate nucleus (CNl) is
reduced based on the constraint that “the left caudate nucleus (CNl) is exterior (i.e.
to the right in the image) to the left lateral ventricle (LV l)”.
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Fig. 3. Summary of the method for determining the model’s instantiations using nested
conceptual graphs and FCSP (figure reproduced from [33])



180 I. Bloch

4 A Few Examples

The approaches summarized above have been proved useful in a number of appli-
cations. A first example concerns brain structure recognition and segmentation
in 3D MRI images. Both sequential and global approaches have been successfully
applied [12,18,23,27], in particular for ventricles and grey nuclei. These struc-
tures highly benefit from the knowledge expressed in a structural model, since
spatial relations are quite stable while shape and location are much more prone
to inter-individual differences. These relations mainly include adjacency, direc-
tional relations and distances. The recognition and segmentation performed well
even in the presence of large tumors deforming the normal structures.

Sequential approaches have been also applied in other domains, with some-
times more complex relations. Let us mention two examples:

– optical coherence tomography (OCT) is now used for eye imaging, and pro-
vides high resolution images of the retinal layers. In [19,20], a method seg-
menting all visible layers was proposed, integrating spatial constraints be-
tween layers, such as approximate parallelism;

– segmentation of thoracic structures, including pathological ones such as tu-
mors, was performed in [26,37], on 3D CT images. As an example, the heart
was segmented using shape and structural information, modeling the fact
that it is approximately between the lungs.

In all these examples, the global organization of the structures, and in partic-
ular their relative orientation, was known. It could then easily be used, knowing
the orientation of the acquired images. When considering ante-natal images, this
is no more true, since the position of the fetus can vary (while the position of the
pregnant woman during the acquisition is known). This question was addressed
in [1,2,4], and a progressive exploration of the images allows deriving both the
global orientation and the recognition of individual structures.

Let us finally mention an application of the FSCP method summarized in
Section 3.4 to the problem of finding harbors in high resolution remote sensing
images [33], based on a conceptual graph. Several instantiations of the model
are then searched for in the image, and here more complex relations, considering
also groups of objects, are used.

These examples will be illustrated during the conference.
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tonio Moreno, Olivier Nempont, Aymeric Perchant, Florence Rossant, Carolina
Vanegas, Julien Wojak.

These developments also benefited from fundings from ANR (French National
Research Agency) and industrial collaborations. I would like also to thank the
collaborating hospitals for the applications in medical imaging, and the CNES
(French National Spatial Agency) for the last example.

References

1. Anquez, J., Angelini, E., Bloch, I.: Automatic Segmentation of Head Structures
on Fetal MRI. In: IEEE International Symposium on Biomedical Imaging (ISBI),
Boston, USA, pp. 109–112 (2009)

2. Anquez, J., Bibin, L., Angelini, E.D., Bloch, I.: Segmentation of the fetal envelope
on ante-natal MRI. In: IEEE International Symposium on Biomedical Imaging
(ISBI), Rotterdam, The Netherlands, pp. 896–899 (2010)

3. Atif, J., Hudelot, C., Fouquier, G., Bloch, I., Angelini, E.: From Generic Knowl-
edge to Specific Reasoning for Medical Image Interpretation using Graph-based
Representations. In: International Joint Conference on Artificial Intelligence,
IJCAI 2007, Hyderabad, India, pp. 224–229 (2007)

4. Bibin, L., Anquez, J., de la Plata Alcalde, J., Boubekeur, T., Angelini, E.D., Bloch,
I.: Whole body pregnant woman modeling by digital geometry processing with de-
tailed utero-fetal unit based on medical images. IEEE Transactions on Biomedical
Engineering 57(10), 2346–2358 (2010)

5. Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A
Review. Image and Vision Computing 23(2), 89–110 (2005)

6. Bloch, I.: Spatial Reasoning under Imprecision using Fuzzy Set Theory, Formal
Logics and Mathematical Morphology. International Journal of Approximate Rea-
soning 41, 77–95 (2006)

7. Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General
Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867
(2009)
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Abstract. Many applications in video processing require the background
modeling as a first step to detect the moving objects in the scene. This
paper presents an approach that calculates the updating weight of a
recursive adaptive filter using a fuzzy logic system. Simulation results
prove the advantages of the fuzzy approach versus conventional methods
such as temporal filters.

Keywords: Background subtraction, moving object detection, video
surveillance, fuzzy logic system.

1 Introduction

Background subtraction is a key task in computer vision. In fact, this is the
first step to detect moving objects in video taken from a stationary camera.
The detection of moving objects is required in many applications such as video
surveillance, traffic monitoring, tracking humans, shadow detection or optical
motion capture. The aim of background subtraction is to separate the moving
objects (foreground) from the static image areas (background). This process is
illustrated for a frame with one moving object in Figure 1(a).

Background subtraction is a topic that has been widely considered in the lit-
erature [1],[2]. The simplest way to model the background is to get a frame of the
scene without moving objects. However, this is not always useful due to several
factors. For instance, a frequent situation is a moving object that suddenly stops
becoming a part of the next background. This situation is illustrated in Figure
1(b) where a car is incorporated to the background scene after parking. Ideally,
a background representation model should be adaptive and robust enough to be
insensitive to variations, such as for instance, changes of illumination, addition or
removal of stationary objects, shadows of moving objects, or complex non-static
backgrounds.

� This work was partially supported by TEC2011-24319 and IPT-2012-0695-390000
projects from the Spanish Government, and P08-TIC-03674 project from the An-
dalusian Regional Government (all with support from FEDER). E. Calvo-Gallego is
supported under the FPU fellowship from the Spanish Government. P. Brox is sup-
ported under the program called Juan de la Cierva from the Spanish Government.

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 184–192, 2013.
c© Springer International Publishing Switzerland 2013

http://www.imse-cnm.csic.es


A Fuzzy System for Background Modeling in Video Sequences 185

����

����

���	
��
��� ����
��
������
�����������

���	
��
��� ����
��
������
�����������

Fig. 1. An example of a modification in the background: (a) The moving object is the
car before parking. (b) The car is incorporated to the background after parking.

In basic background modeling methods, background is generated using an
average, a median [3]-[4], or a histogram analysis over time. For instance, if a
mean filter is selected the background model is obtained as follows:

B(x, y, t) =
1

N

N∑
i=1

I(x, y, t− i) (1)

where B(x,y,t) is the background model for a pixel with coordinates (x,y,t) in the
frame t, N is the number of frames considered in the time domain, and I(x,y,t-i)
is the luminance value of the pixel with the same spatial coordinates (x,y) in the
frame t-i.

Figure 2 shows the background obtained after applying a temporal mean
(top) and a median filter (bottom) using different values of N. As it can be
corroborated, the performance of both kinds of filtering is very dependent on
the value of N. Usually, a large value of N is required to achieve acceptable
results. Otherwise, a ghosting effect appears in areas of the frame where the
moving objects were situated in the previous frames. The correct value of N,
which provides a good background modeling, depends on the video sequence.
For instance, N≥9 for the median filter is an adequate value for the sequence in
Figure 2. From a hardware point of view, the use of a large value of N implies
more memory resources in terms of frame buffers. This is a very important
limitation for embedded platforms that include limited resources.

A well-known group of background subtraction techniques is based on sta-
tistical modeling [5],[6]. The background is represented using a single Gaussian
probality density function on the last pixel values [7], a mixture of Gaussians [8],
or a Kernel Density Estimation [9]. In practical cases, the model in [8] requires be-
tween 3 and 5 Gaussian distributions. In [9], the background distribution is given
by a sum of Gaussian kernels centered in the most recent n background values,
being n as high as 100. This high memory requirement makes its implementation
unfeasible on embedded systems with low-memory resources. Other remarkable
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Fig. 2. (a) Original frame. Filtering with: (b) N=3, (c) N=5, (d) N=7,(e) N=9.

background subtraction techniques use clustering[10], neural networks[11], or
predictive filters [12] to model background.

The main difficulties in developing a background subtraction method are the
presence of illumination changes and dynamic backgrounds. Both critical sit-
uations generate imprecise and uncertain situations that can be handled with
fuzzy logic-based techniques. Some authors have proposed the use of fuzzy logic
to provide background subtraction methods with a good model accuracy [13].
Type-2 Fuzzy Gaussian Mixture Models allow to model robustly dynamic back-
grounds [14]. For foreground detection, the use of a linear saturation function
avoids crisp decision in the classification [15]. Fuzzy integrals (Sugeno and Cho-
quet integrals) consider the color and texture features to deal with illumination
changes and shadows [16]. Fuzzy adaptive learning rates are able to deal with
the critical situations providing an accuracy background model [17].

Background modelling techniques can be classified as recursive or non-
recursive. Clearly, example of non-recursive techniques are temporal mean- and
median-based algorithms. Recursive techniques recursively update a single back-
ground model based on each input frame [7]. In each frame, pixels are recursively
updated using a simple adaptive filter:

B(x, y, t) = α · I(x, y, t) + (1 − α) · B(x, y, t − 1) (2)

where α is an empirical weight that allows to establish a trade-off between sta-
bility and quick update. The performance of this technique relies on the selection
of a correct value of α. The updating process, with an accurate value of α allows
the compensation for changes in illumination and object movement. Our ap-
proach aims to improve the recursive model in equation (2) by using a simple
fuzzy logic system. The idea is to calculate a robust value of α using a fuzzy
system that is able to model uncertainties in the scene. This paper is organized
as follows. Section 2 describes the fuzzy logic-based approach and the tuning of
parameters. Simulations of car traffic videos are included in Section 3. Finally,
the conclusions of this work are expounded in Section 4.
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2 Fuzzy Logic-Based System for Background Modeling

2.1 Description

The aim of this fuzzy system is to model the background dynamically. In order
to detect the moving objects, each pixel of the current frame is evaluated to
measure the difference with the previous frame:

d(x, y, t) = abs(I(x, y, t) − I(x, y, t − 1)) (3)

where I(x,y,t) is the luminance value at the current frame and I(x,y,t-1) is the
luminance of the pixel with the same spatial coordinates in the previous frame.
This measurement is not robust enough since the presence of noise or illumina-
tion variations can introduce mistakes. For this reason, we have assumed that
a moving object in the scene is composed of a set of pixels, that is, the move-
ment should be detected in the current pixel as well as in its surroundings to
be declared as a moving object. Our approach takes into account the above
considerations by using a bi-dimensional convolution,

d conv(x, y, t) =

∑3
i=1(

∑3
j=1 Di,j · Ci,j)∑3

i=1

∑3
j=1 Ci,j

(4)

where Di,j are the elements of the following frame difference matrix

D =

⎛⎝ d(x − 1, y − 1, t) d(x, y − 1, t) d(x + 1, y − 1, t)
d(x − 1, y, t) d(x, y, t) d(x + 1, y, t)

d(x − 1, y + 1, t) d(x, y + 1, t) d(x + 1, y + 1, t)

⎞⎠ (5)

and Ci,j are the elements of the following weight matrix:

C =

⎛⎝1 2 1
2 3 2
1 2 1

⎞⎠ (6)

whose values have been assigned giving more relevance to the current pixel and
the nearest pixels to it.

The measure of frame difference in equation (4) is the input of a fuzzy logic-
based system with one input and one output. In the fuzzification stage, the
membership values of the (d conv) signal to two fuzzy sets associated to the
linguistic label SMALL and LARGE are calculated. The membership functions
of these fuzzy sets are piece-wise linear, as shown in Figure 3(a). This shape
is chosen since it is easily implemented in software and hardware implementa-
tions. Because of linguistic coherence, both membership functions, SMALL and
LARGE, should be complementary. To model the background, the following
knowledge base is applied (see Figure 3(b)):

1. When the d conv signal at the current pixel is SMALL, the consequent as-
serts that a linear interpolation between the luminance of the current pixel
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and the luminance of this pixel in the previous frame is the best way to
model the background. A priori, there is no reason to give more importance
to the luminance of the current pixel since d conv is SMALL.

2. When the d conv signal at the current pixel is LARGE, the consequent states
that the previous background is the best solution.

The new value for the background model is calculated by applying the Fuzzy
Mean defuzzification method (with corresponds to a weighted average), as fol-
lows:

B(x, y, t) = α1 · (0.5 · I(x, y, t) + 0.5 · I(x, y, t − 1)) + α2 · B(x, y, t − 1) (7)

where α1 and α2 are the activation degrees of the first and the second rule,
respectively. Since both membership functions are complementary, that is, their
superposition is always the unitary value, only one of the rules has to be pro-
cessed and the expression in (7) can be replaced as follows:

B(x, y, t) = α1 · (0.5 · I(x, y, t) + 0.5 · I(x, y, t− 1)) + (1 −α1) ·B(x, y, t− 1) (8)

If the expression in (2) is compared with equation (8), we can conclude that
the fuzzy approach implements a recursive adaptive filter but now with continu-
ous values of α. This means that the output of the fuzzy system implements a
recursive adaptive filter where the value of α is calculated as the activation de-
gree of the second rule. Since the membership functions are piecewise-linear, the
transition between the value ‘0’ and ‘1’ of α is linear with the frame difference.

2.2 Tuning of the Membership Function Parameters

Heuristic knowledge does not provide enough information to determine the val-
ues of the antecedents that describe the fuzzy sets in Figure 3(a). In order to
obtain these values, we have employed a tuning process by using the well-Known
supervised learning Marquardt-Levenberg algorithm within of the fuzzy system
development environment Xfuzzy 3.3 [18],[19]. Several training files are gener-
ated for each video test sequence. These files are sets of inputs/output patterns
where the desired output is obtained from the ideal background (a frame where
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Fig. 3. (a) Membership functions for the SMALL and LARGE fuzzy concepts. (b)
Fuzzy rule set.



A Fuzzy System for Background Modeling in Video Sequences 189

Fig. 4. Characteristics of the video test sequences

appears the truly motionless elements of the scene). After the learning process,
for each sequence, two values, a and b, have been obtained and a test, with all
combinations in learned antecedents and sequences, has been carried out. Re-
sults prove that the best performace was achived, in all cases, with one of this
two pairs (a,b): (12,70) and (1.3,14.4). The consequentes of the rules have been
included in the learning process without obtaining sucessful results. This means
that the tuned parameters for the consequents provide poor simulation results.
Before learning, the values of the parameters were (10,20). These initial values
were approximately adjusted after a manual process.

3 Simulation Results

The performance of the fuzzy approach has been analyzed by modeling seven
car traffic video sequences. The main characteristics of these video sequences are
shown in Figure 4. Mean Squared Error (MSE) between the ideal and modeled
background is used as figure of merit to measure the quality of the algorithm:

MSE(t) =
1

M ·N
∑
x,y

(B(x, y, t) − Bideal(x, y, t))
2 (9)

where the frame has a resolution of M · N pixels, B(x, y, t) is the value of the
pixel in the background model, and Bideal(x, y, t) is the pixel value in an ideal
background (it has been obtained directly from a frame of the sequence without
moving objects or removing these objects manually). Strongly related to the
MSE is the PSNR, which is:

PSNR(t) = 20 · log 255√
MSE(t)

(10)

Actually a unique PSNR value is not meaningful, but the comparison be-
tween two values gives a measurement of quality. Generally, an improvement of
0.5dBs in PSNR is quite perceptible by the human visual system. Figure 5 shows
the average PSNR values obtained after processing 90 frames of the sequences.
The fuzzy approach clearly improves the results obtained by the crisp version.
Furthermore, the tuning process outperforms the results achieved by the initial
fuzzy approach. For PETS2006 and Highway1 sequences, the first pair of tuned
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Fig. 5. PSNR results (in dBs) for the crisp and fuzzy approaches

parameters gives a better performance. The second pair of tuned parameters pro-
vides better results in the rest of sequences. The selection of one pair of tuned
parameters or the another one depends on the own features of the sequence.

Figure 6(a) illustrates the background model obtained for one frame in the
‘viptraffic’ sequence. In Figure 6(b), a comparative table with the background
modeling based on the mean and median filtering is shown. The results prove
that the fuzzy approach clearly outperforms all the temporal filters with less
than nine frames in ‘highway2’ sequence.

4 Conclusions

A recursive background modeling approach, which uses a simple fuzzy logic sys-
tem to calculate the value of the updating parameter, is presented in this paper.
Simulation results prove the clear advantages of the fuzzy approach versus a crisp
version. The performance of the fuzzy approach improves after a tuning stage
of the parameters. In comparison with temporal techniques, the fuzzy approach
outperforms these conventional techniques when eight frames or less are used
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Fig. 6. (a) Resultant background for the frame 10 in the viptraffic sequence. (b) MSE
and PSNR results (in dBs) for different background modeling algorithms.



A Fuzzy System for Background Modeling in Video Sequences 191

in the temporal filtering. The proposed technique offers an accurate background
modelling that is suitable for embedded platforms with limited resources since
only two frame buffers are required for its implementation.
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Abstract. Automatic image annotation is an important and challenging
task when managing large image collections. In this paper, we present
an incremental approach for shape labeling, which is useful to image
annotation when new sets of images are available during time. Every
time new shape images are available, a semi-supervised fuzzy clustering
algorithm is used to group shapes into a number of clusters by exploiting
knowledge about classes expressed as a set of pre-labeled shapes. Each
cluster is represented by a prototype that is manually labeled and used to
annotate shapes. To capture the evolution of the image set, the previously
discovered prototypes are added as pre-labeled shapes to the current
shape set before clustering. The performance of the proposed incremental
approach is evaluated on an image dataset from the fish domain, which
is divided into chunks of data to simulate the progressive availability of
shapes during time.

Keywords: image annotation, shape clustering, semi-supervised fuzzy
clustering, incremental fuzzy clustering.

1 Introduction

With the advances of multimedia technologies and the availability of image cap-
turing devices, the size of digital image collections has been increasing rapidly.
In this scenario, the development of systems able to efficiently retrieve images in
large collections is mandatory. Content-based image retrieval (CBIR) was pro-
posed to allow users retrieve relevant images from large collections using visual
features such as color, texture and shape [15], [12]. However, retrieval results
of CBIR systems are not always satisfactory because humans recognize and de-
scribe images based on high-level concepts. This problem, known as ”semantic
gap” [15], can be addressed by image annotation, that is based on learning the
correspondence between visual features and semantics of images.

The choice of visual features is a central tenet in image annotation. Several
works have proved that visual features such as color, texture, and positioning,
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though important, are insufficient to convey the information that could be ob-
tained through shape analysis of objects contained into images [3], [16]. Shape
plays a critical role for the representation of objects contained into images be-
coming a key feature exploited for indexing and retrieval purposes.

Annotation of images on the basis of shapes can be essentially viewed as a
classification process. For each shape, its membership to a semantic category
is derived according to certain similarity measures. Then the shape is classified
into one of the considered categories. This process can be performed by means of
supervised or unsupervised learning algorithms. Supervised techniques require
labeled training data to perform classification, but providing these data is a
very tedious and error-prone task, especially for large image database. Unsu-
pervised learning techniques overcome these limitations. Specifically, clustering
algorithms are applied to group unlabeled shapes so that shapes that are visually
similar are supposed to have similar semantic content and thus they are arranged
into the same cluster. A textual label descriptive of a semantic category can be
associated to each cluster. Thus, a new unlabeled shape can be labeled by associ-
ating it to the cluster that best matches the considered shape. In [5] we proposed
a shape annotation approach that uses unsupervised fuzzy clustering to derive
prototypes that are manually annotated by textual labels corresponding to se-
mantic categories. Thus, a new shape is automatically labeled by associating a
fuzzy set that provides membership degrees of the shape to all semantic classes.
However, unsupervised clustering methods often generate inconsistent clusters
including shapes that, although visually similar, actually belong to different cat-
egories.

Generally, a large number of unlabeled images are available, whereas only a
limited number of labeled reference shapes can be obtained since it is usually
expensive and time consuming to collect them. This has recently motivated an
increasing number of research interests in the semi-supervised learning (SSL)
paradigm [7], which aims to improve the classifier performance by learning from
a combination of both labeled samples and unlabeled data. Along with this idea,
in [6] we proposed a shape annotation approach that employs a fuzzy clustering
algorithm equipped with a partial supervision mechanism to derive consistent
clusters of shapes. The adopted clustering technique, hereafter called SSFCM
(Semi-Supervised FCM) is a modified version of the FCM algorithm originally
proposed in [13]. SSFCM exploits domain knowledge about classes expressed
as a set of pre-labeled data. Using SSFCM, in [6] we grouped all the available
shapes into clusters according to their similarity as well as to a-priori knowledge
about categories of some shapes. Then, a label was associated to each derived
cluster. In this way an entire database of shapes was annotated in a single
clustering step. However the single step approach is not always usable in the
context of image annotation, as it assumes that the entire collection is available
before clustering, while all images may not be available at the beginning of
the analysis. Therefore, when new shapes are added to the collection, the static
annotation scheme developed in [6] rebuilds the clusters starting from scratch by
reprocessing the whole collection, i.e. it does not take advantage of the previously
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built clusters. According to such a scheme, the SSFCM algorithm is applied to
chunks of shapes rather than to the entire dataset. This enables annotation of
shapes when new images are continuously available over time.

The paper is organized as follows. Section 2 describes the incremental scheme
for shape annotation. In sections 3 we provide some preliminary simulation re-
sults. Finally, section 4 concludes the paper.

2 Incremental Scheme for Shape Annotation

We assume that object shapes have already been extracted from the images and
the shapes are available in form of contours. Of course, in many applications
extraction of contours itself is a difficult problem but our focus here is on an-
notating shapes once the contours are extracted. Therefore we consider object
shapes that are described by boundary coordinates. To represent shape bound-
aries, we use Fourier descriptors that are well-recognized to provide robustness
and invariance, obtaining good effectiveness in shape-based indexing and re-
trieval [2]. Thus each shape is described by means of M Fourier descriptors and
denoted by x = (x1, x2, ..., xM ).

The proposed scheme for incremental shape annotation is based on the as-
sumption that sets of shapes belonging to C categories are available during time
and processed as chunks, that is, N1 shapes are available at time t1, N2 at t2
and so on. We denote by Xt the set of shapes available at time t.

The shape chunks are processed as they are made available, by applying the
SSFCM algorithm adopted in [6] to each chunk, as described in section 2.1.

As with any c-means approach, we need to fix the number of clusters each
time the SSFCM algorithm is applied to a chunk. We established to set the
number of clusters K to be always equal to the number of classes C. This does
not cause any information loss. Indeed, if shapes in a chunk come from less than
C classes, then we are overclustering the data, but overclustering does not cause
any information loss. Information loss only occurs when we undercluster the
data. If data in a chunk belong exactly to C classes, then we are partitioning
the data correctly, that is, neither overclustering nor underclustering.

Each time a chunk is clustered, the output partition is condensed into K
labeled prototypes. To capture the evolution of the image set, the prototypes
discovered on one shape chunk are added as pre-labeled shapes to the next data
chunk. Precisely, when the first chunk of shapes is available, the algorithm will
cluster the chunk into K clusters and it will derive a set of K shape prototypes
that are manually labeled. When a second or later chunk of shapes is available, it
will be clustered with the labeled prototypes derived from the previous clustered
chunks1. After each clustering process, the discovered prototypes are used to
annotate all the available shapes. Specifically, each shape is annotated with the
label of the best matching prototype, where matching is based on computing
Euclidean distance between the shape descriptors and the prototype descriptors.

1 How many chunks of history to use for clustering with a new chunk is predefined
by the user.
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Algorithm 1. Incremental shape annotation

Require: X: dataset;
Ensure: P : set of labeled prototypes;
1: H ← ∅ /* Initialization of history */
2: t ← 1 /* Initialization of time step */
3: while ∃ non empty data chunk Xt do
4: Xt ← Xt ∪H /* Add the history to the current data chunk; */
5: Cluster Xt with SSFCM;
6: Derive the set P of labeled prototypes;
7: Annotate shapes in

⋃t
τ=1 Xτ using P ;

8: Update H with P ;
9: t := t+ 1
10: end while
11: return P

The overall scheme of the proposed incremental approach is summarized in
algorithm 1.

2.1 Shape Clustering by SSFCM

The SSFCM algorithm works in the same manner as FCM [4], i.e. it iteratively
derives K clusters by minimizing an objective function. To embed partial su-
pervision in the clustering process, the objective function of SSFCM includes a
supervised learning component, as follows:

J =

K∑
k=1

Nt∑
j=1

um
jkd

2
jk + α

K∑
k=1

Nt∑
j=1

(ujk − bjfjk)md2jk (1)

where

bj =

{
1 if shape xj is labeled
0 otherwise

(2)

fjk denote the true membership values of the labeled shapes to the categories,
djk represents the Euclidean distance between the shape xj and the center of the
k-th cluster, m is the fuzzification coefficient (m ≥ 2) and α is a parameter that
serves as a weight to balance the supervised and unsupervised components of
the objective function. The higher the value of α, the higher the impact coming
from the supervised component is. The second term of J captures the difference
among the true membership of shapes fjk and the membership ujk computed
by the algorithm. The aim to be reached is that, for the labeled shapes, these
values should coincide.

As described in [13], the problem of optimizing the objective function J is con-
verted into the form of unconstrained minimization using the standard technique
of Lagrange multipliers. More specifically, by setting the fuzzification coefficient
m to 2, the objective function is minimized by updating membership values ujk
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according to:

ujk =
1

1 + α

[
1 + α(1 − bj

∑K
l=1 flk)∑K

l=1 d
2
jk/d

2
lk

]
+ αbjfjk (3)

and the centers of clusters according to:

ck =

∑Nt

j=1 u
m
jkxj∑N

j=1 u
m
jk

(4)

The clustering process ends when the difference between the values of J in two
consecutive iterations drops below a prefixed threshold or when the established
maximum iteration number is reached.

Once the clustering process is completed, a prototype is identified for each
cluster. We define the prototypes as medoids (i.e. shapes that belong to the
dataset) rather than means to allow a better interpretation of annotation results.
Specifically we consider the shape with the highest membership to a cluster as
prototype for that cluster. Then, each prototype is manually associated to a
label corresponding to a specific shape category.

Summarizing, the result of SSFCM applied to each chunk is a set P =
{p1, p2, ..., pK} of K labeled prototypes that are used to annotate shapes. Namely,
all shapes belonging to cluster k are labeled by using the text label associated
to prototype pk.

3 Simulation Results

To assess the suitability of the proposed approach, we applied it to the Sur-
rey Fish dataset [1]. consisting of 1,100 shape images, each image expressing
the coordinates of boundary points of a marine animal silouette. In these pre-
liminary experiments we employed a portion of the dataset composed of 265
shapes that have been manually classified into 10 different semantic categories,
as follows: “Seamoths” (11), “Sharks” (58), “Soles” (52), “Tonguefishes” (19),
“Crustaceans” (11), “Eels” (26), “U-Eels” (20), “Pipefishes” (16), “Seahorses”
(11) and “Rays” (41). Figure 1 shows some images in the considered data set
portion, along with their respective classes.

Shark U-Eel Tonguefish Crustacean Eel

Sole Ray Seamoth Seahorse Pipefish

Fig. 1. Sample images from the Surrey Fish dataset
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Similarly to [10], to evaluate our clustering algorithms, we used the average
purity of the obtained clusters, a measure that evaluates the clustering quality.
Precisely, the average purity error is defined as follows:

pur = 1 − 1

K
×

K∑
k=1

|Cd
k |

|Ck|

where K denotes the number of clusters, |Cd
k | denotes the number of points

with the dominant class label in cluster k and |Ck| denotes the number of shapes
in cluster k.

In all the experiments reported hereafter, the algorithm was parameterized as
follows: the number of cluster K was always set to the number of classes in the
dataset (i.e. K = 10), the fuzzification coefficient m was set to 2, the data chunk
size was set to 53 shapes (5 chunks were built starting from the considered data
set), the history is set to 1, meaning that only the prototypes from the previous
data chunks are taken into account. As the SSFCM is not deterministic (because
of the random initialization of the centers), the results presented were averaged
over 10 runs.

At the first time t1, we applied the SSFCM to the union of the first two chunks
(N1 = 106) in order to obtain more stable and significant initial prototypes that
can be exploited in the next steps of the incremental clustering process. In this
way, our experiments concerned 4 different time steps. After clustering a chunk,
10 prototypes were derived and manually annotated by associating to each of
them a label related to the corresponding semantic class. Prototypes derived at
each time were used to annotate all shapes included in the chunks employed in
the previous time step. Specifically, the Euclidean distance between descriptors
of each shape and each prototype was computed and the shape was added to
the cluster corresponding to the prototype with the minimum distance value
and annotated with the respective label. Hence, the quality of the new shape
partition was evaluated by computing the average purity error. In Fig. 2 we
show the values of the average purity error obtained in each time after clustering
each chunk and annotating all shapes contained in the chunks considered in the
previous times.

To evaluate the effectiveness of the proposed incremental approach, we com-
pared the average purity error obtained by the incremental clustering process
in correspondence of the last time step with the average purity error obtained
by applying the SSFCM algorithm in a one-shot way following the experimental
procedure described in [6]. Specifically, SSFCM was applied to a portion of the
data set including 240 shapes to derive a set of prototypes and the remaining
25 shapes were annotated by exploiting the derived prototypes and added to
the corresponding clusters. The average purity error obtained on the derived
shape partition was equal to 0.16 that is slightly higher than the purity error
(0.14) obtained at the end of the incremental clustering process. This demon-
strates that the proposed incremental approach for annotation outperforms the
static one-shot approach. Moreover, in terms of computational time, the one-
shot approach is faster than the incremental clustering scheme. However, the
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Fig. 2. Average purity errors obtained at each time instant

incremental approach has the advantage to be able to update prototypes when
new chunks of data are available. Finally, the incremental approach can take
advantage of the previously built clusters and prototypes when new shapes are
added to the collection while the static annotation scheme needs to rebuild the
clusters starting from scratch by reprocessing the whole collection.

4 Conclusions

In this paper, an incremental scheme for shape annotation has been proposed.
The approach exploits a semi-supervised fuzzy clustering algorithm to derive a
set of prototypes representative of a number of semantic categories. The derived
prototypes are manually annotated by attaching labels related to semantic cat-
egories. The use of shape prototypes, which represent an intermediate level of
visual signatures, facilitates the annotation process, since only a reduced number
of shapes need to be manually annotated. Secondly, the use of prototypes simpli-
fies the search process in a retrieval system. Indeed, since any single user query is
likely to match with high degree only a small number of objects, a large number
of unnecessary comparisons is avoided during search by performing matching
with shape prototypes rather than with specific shapes.

Results on a benchmark dataset containing shapes of marine animals show
that the incremental approach produces partitions which are very close to parti-
tions obtained by one-shot approach that clusters all the data at one time. These
preliminary results encourage the application of the proposed approach to wider
contexts.
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Abstract. Stabilization of an inverted pendulum is one of the most appealing 
and conventional problem for control engineering. This system has extremely 
nonlinear representation and entirely unstable dynamics. The main idea of this 
research was to design control algorithms for the balancing of rotary inverted 
pendulum. 

Research gives an idea about a convenient approach to implement a real-
time control which harmonizes the pendulum in vertical-upright position. Two 
stabilization controllers, LQR (Linear Quadratic Regulator) and Fuzzy Logic 
were designed to deal with the non-linear characteristics of the system.  

Outcome of both control methods commencing computer simulation are 
specified to illustrate the efficiency of these controllers. The projected intelli-
gent hybrid controller is evaluated by means of the conventional controller and 
reliability is demonstrated. The results showed that fuzzy controller exhibit  
improved performance than LQR near the linearized region. 

The paper widened the dynamical representation and initiates the implemen-
tation of the considered schemes comparatively.  

Keywords: rotary inverted pendulum, stabilization, LQR, fuzzy logic control-
ler, simulink. 

1 Introduction 

The control of under actuated system is currently a dynamic field of research which is 
appropriate to the broad application in electromechanical systems like aerospace, ro-
botics and marine vehicles.  Pattern of under actuated systems comprised of flexible-
link robots, walking robots, acrobatic robots, space robots, helicopters, satellites, under 
actuated marine vehicles, the pendubot, spacecraft’s etc[1]. Under actuated systems 
comprised into eight classes [2]. The paper demonstrates the control of the rotary in-
verted pendulum, which belongs to class IIa, as it addresses the tracking problem [3-5]. 
The rotational configuration is on the whole an amendment of the well-known cart-on-
rail pendulum structure.  

Compensations of the rotary inverted pendulum system with unhinged poles and 
non-lowest phase dynamics, nonlinear equations with an uncomplicated arrangement 
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direct to choose RIP for testing new control procedure on as a benchmark. As a result 
engineers like to utilize it for authenticating and estimating the efficiency, robustness, 
and precision of their recommended control techniques[6]. 

This is an extremely typical and intellectual nonlinear control dilemma, and numer-
ous techniques previously exist for its explanation [7], for instance, model-based con-
trol, fuzzy control, neural network(NN) control, pulse step control, genetic algorithms 
(GAs)-based control, and so on.  On the other hand, the controller was complicated to 
wholly stabilize a pendulum system within a short period of time[8, 9].  

In this paper, distinction of LQR and fuzzy logic control for a rotary-type inverted 
pendulum system has been identified.   

Initially, an LQR was utilized to steady the rotary inverted pendulum in such a way 
that the pendulum is at all times to retain it upright position and to uphold the arm 
position in horizontal level surface by making use of a state feedback control to move 
about unhinged poles of a linear system to steady ones.  Accordingly, a Mamdani FIS 
is deliberated which alleviates the pendulum in the linear region, imitating LQR con-
trol just about the stability position.  The linear state feedback law is mapped to the 
system of the fuzzy presumption engine. 

2 Mathematical Modeling of Rotary Inverted Pendulum 

In this section, the model of the rotary inverted pendulum is established. Rotational inverted 
pendulum is a nonlinear system of fourth order with a single input variable. The variables relat-
ing internal states are as follows: a rotation angle of a base (ߠ଴), a rotational velocity of a base 
 .(ሶଵߠ) and its corresponding rotational velocity (ଵߠ) an angle of rotation of the pendulum ,(ሶ௢ߠ)

 

 

Fig. 1. Orientation and parameters of rotaryinverted pendulum 

The input variable for the system is the torque delivered by the motor.  The scheme 
is characterized by two equilibrium points.  The steady equilibrium point is attained 
when the pendulum is leaning upright and pointing downwards.  The second equili-
brium point is also defined for the vertical orientation, but works for the pendulum 
pointing upwards[10]. 
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The experimental bed comprised of three prime mechanisms: the plant, digital and 
analog edge and the digital regulator.  The overall scheme is revealed in Fig. 1. The 
plant embraces of a pendulum and a revolving base type of aluminum rods, an unde-
viating DC motor to progress the base and two optical encoders as the angular point 
sensors. While the base swivels all the way through the angleߠ௢, the pendulum is 
liberated to turn around through its angle ߠଵprepared with the vertical.  Crossing point 
flanked by the digital controller and the plant comprised of two information posses-
sion cards and numerous signal conditioning circuitry[11]. 

The ordinary differential equations that approximately illustrate the dynamics of 
the plant are given by:  

 (1) ܽߴ݌ܭ+݋ߠ݌ܽ =ߠ 

ሷଵߠ  ൌ െ ஼భ௃భ ሶଵߠ ൅ ௠భ௚௟భ௃భ sin ሶଵߠ ൅ ଵܭ  ሷ௢ (2)ߠ

Where: 
 ௔= motor armature voltageߴ ሶଵ= angular speed of the pendulumߠ ଵ= angular displacement of the pendulumߠ ሶ௢= angular speed of the rotating baseߠ ௢ = angular displacement of the rotating baseߠ 
 
Equation (1) and (2) describing the dynamics of the model are extremely nonlinear. 

Table 1 represents the parameters involved in (1) and (2) of the RIP system:  

Table 1. Parameter of Rotary Inverted Pendulum System 

Parameter Description Value Unit 

Kp Parameter of DC Motor 74.8903 rad-s-2-v-1 

ap Parameter of DC Motor 33.0408 s-2 

K1 Torque constant 1.03001x10-3 Kg-m/rad 

g Acceleration due to gravity 9.8006 m/sec2 

m1 Pendulum mass 0.086184 kg 

l1 Pendulum length 0.113 m 

J1 Pendulum inertia 1.3001x10-3 N-m-s2 

C1 Friction constant 2.9794x10-3 N-m-s/rad 

 
For the controller synthesis state variable description of pendulum system is re-

quired.  
This is easily done by defining state variables as:ݔଵ ൌ ଶݔ ,௢ߠ ൌ ଷݔ ,ሶ௢ߠ ൌ ,ଵߠ ସݔ ൌߠሶଵ and control signal ݑ ൌ  :௔ to getߴ 

ሶଵݔ  ൌ  ଶ (3)ݔ 

ሶଶݔ  ൌ െܽ௣ݔଶ ൅  (4) ݑ௣ܭ
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ሶଷݔ  ൌ  ସ (5)ݔ

ሶସݔ  ൌ െ ௄భ௔೛௃భ ܽ௣ ൅ ௠భ௚௟భ௃భ sin ଷݔ െ ஼భ௃భ ସݔ ൅ ௄భ௄೛௃భ  (6) ݑ

 
Linearization of (3), (4), (5) and (6) about vertical unstable equilibrium position 

(i.e.,  ൣθଵ, θଶ, θሶ ଵ, θሶ ଶ൧ ൌ ሾ0, 0, 0, 0ሿ ), results in the linear, time invariant state variable 
model. By using data in Table 1, linearized model of the rotary inverted pendulum 
results in:   

 

 ൦ݔሶଵݔሶଶݔሶଷݔሶସ൪ ൌ ቎0 1 0          00 െ33.04 0          000 049.30 073.41  1െ2.29቏ ቎ݔଵݔଶݔଷݔସ቏ ൅ ቎ 074.890െ111.74቏  (7) ݑ

 ቎ݕଵݕଶݕଷݕସ቏ ൌ ቂ1 0 0 00 0 1 0ቃ ቎ݔଵݔଶݔଷݔସ቏ ൅ ቂ00ቃ  (8)  ݑ

 
Equation (7) and (8) is defined by the following equations: 
 

ሻݐሶሺݔ  ൌ ሻݐሺݔܣ ൅  ሻ (9)ݐሺݑܤ

ሻݐሺݕ  ൌ ሻݐሺݔܥ ൅  (10) ݐሺݑܦ 

 
The linearized model in (7) and (8) are not truly represents the physical system, as 

during the linearization process some of the nonlinearities like motor dynamics, fric-
tion , dead-zone and other characteristics are neglected. 

3 Full State Feedback (LQR) Design 

Linearized model of RIP is completely controllable and observable, therefore linear 
state-feedback strategies, such as the LQR, are applicable.  

In this optimal control technique we try to minimize the defined error as a cost 
function and the Linear Quadratic Regulator (LQR) method minimizes the cost func-
tion (J). 

The performance index for the LQR is 

ܬ  ൌ ׬ ሺݔሺݐሻݔܳٹሺݐሻ ൅ ஶ଴ݐሻሻ݀ݐሺݑܴٹሻݐሺݑ  (11) 

subject to  
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 xሶሺtሻ ൌ Axሺtሻ ൅ Buሺtሻ (12) 

Q and R in Cost Function represent the weighting matrices of suitable dimension 
corresponding to the state x and input u, respectively.  

The minimization of J results in moving suitable minimum phase poles to stabilize 
the RIP system immediately with as little controlling force and state deviations as 
reachable[12]. The control law has the state feedback form 

ሻݐሺݑ  ൌ െΣܭ௜ݔ௜ (13) 

Given fixed Q and R, the feedback gains K in (13) that optimize the function J in 
(11) can be uniquely determined by solving an algebraic Riccati equation given be-
low: 

 

 ܱ ൌ ܩ ൅ ்ܵܣ ൅ ܣܵ െ ்ܵܤଵିܴܤܵ ൅ ܳ (14) 

ܭ  ൌ ܴିଵ(15) ்ܵܤ 

 

 

Fig. 2. Open system response with non zero initial condition. (a): simulation result of pendulum 
angle (ߠଵ); (b): simulation result of pendulum velocity(ߠሶଵ). 

By means of the linearized representation of the system, the subsequent con-
straints are allocated to devise most favorable gain by LQR technique. Unbolt sphere 
poles are initiate as 7.4991, -9.7891, 0 and 33.0400. In view of the fact that single 
pole is lying on the right half of s-plane the system is unbalanced. The unstable re-
sponse of system with non-zero initial condition is shown in Fig. 2. 
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By giving the highest priority on controlling ߠଵ than regulating the base position, 
choose the weighting matrices as 

 ܳ ൌ ݀݅ܽ݃ሺ1,0,5,0ሻAnd ܴ ൌ 1 

The optimal feedback gains for the controller in (13) corresponding to the weighting 
matrices Q and R are: ܭ ൌ ሺെ1, െ1.191, െ9.699, െ0.961ሻ 

On substituting (13) in (12) yields 

 

ሻݐሶሺݔ  ൌ ሾܣ െ  ሻ (16)ݐሺݔሿܭܤ

 

The closed loop system poles are -31.84, -14.02, -5.22 and -2.35. They all lie in the 
left half of s-plane and show the closed loop system is stable. 

Applying the control law above, it is observed that the unstable equilibrium point 
of rotary inverted pendulum remains stable and control performance was found ade-
quate. 

The simulation result for stabilization of rotary inverted pendulum by using LQR 
around unstable equilibrium point with non-zero initial condition is given in Fig. 3. 

 

Fig. 3. Rotary inverted pendulum stabilization response by using LQR with non-zero initial 
condition. (a): simulation result of base angle (ߠ௢); (b): simulation result of base velocity (ߠሶ௢); 
(c): simulation result of pendulum angle (ߠଵ); (d): simulation result of pendulum velocity(ߠሶଵ). 
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4 Fuzzy Logic Controller Design 

Commencing the realistic point of observation, real-time control necessitates  
a number of simplifications of the investigational model, and human intrusion is for 
all time essential for this category of control. In common, a controller based on the 
understanding of the human machinist is preferred for the realistic function.  
Fuzzy controllers utilize heuristic information in mounting plan methodologies  
intended for control of non-linear vibrant systems. This loom eradicates the necessi-
tate for widespread facts and statistical modeling of the system[8]. Within this  
segment the alleviation of the RIP system by means of FLC through a primary  
stipulation is presented. Simulink model of fuzzy control system is shown in  
Fig. 4(a). 

The entire numeral of rules is an exponential purpose of the number of contribution 
and number of association functions. For example for an input system with N mem-
bership purpose for each input Nn rules are derived. 

A four input system through seven connection functions is measured by[13]by 
means of 2401 rules. Encompassing such a huge amount of rules possibly will 
grounds difficulties owing to memory restrictions to accumulate the FIS for actual 
time action using Matlab/Simulink [14]. The instigators of this manuscript originate 
that for n =2, N =7 and originating 49 rules formulate the assemblage progression too 
fluctuating but later than additional alteration to the gain these vacillation can be con-
densed notably. 

The two inputs to the fuzzy controller are the position error of the pendulum eଷ and 
the difference of error eସ. Seven connection functions for every input and output 
which are uniformly distributed across the universe of discourse are revealed inFig. 
4(b), Fig. 4(c) and Fig. 4(d).A Mamdani FIS is deliberated which alleviates the pen-
dulum in the linear zone, imitating LQR control just about the equilibrium position. 
The linear state feedback law is recorded to the policy of the fuzzy presumption en-
gine. In common, designed for a fuzzy controller by means of n inputs and single 
output, the center of the controller output fuzzy set Ysmembership function would be 
situated at: 

 

 ሺ݆ ൅ ݇ ൅ ڮ ݈ሻ ൈ ଶሺேିଵሻ௡ (17) 

 
Whereݏ ൌ ݆ ൅ ݇ ൅ ڮ ݈ is the index of the output fuzzy set ܻ௦, ሼ݆, ݇, … ݈ሽ are the lin-
guistic-numeric indices of the input fuzzy sets, N is the number of connection func-
tions on every input universe of dissertation, and n is the number of inputs. 

We decide triangular membership functions for these, by means of centers speci-

fied by (17) and base widths equal to 
ଵଶ.ହ. 
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Fig. 4.  (a) Simulink model of rotary inverted pendulum with fuzzy logic controller. (b): mem-
bership function of input variable (ߠଵ); (c): membership function of input variable (ߠሶଵ); (d): 
Normalized output variable membership function (ߴ௔); (e): simulation response of pendulum 
angle (ߠଵ) with derived gain; (f): simulation response of pendulum angle (ߠଵ) with tuned gains. 

The rule-base of RIP system is shown in Table II, where -3, -2, -1, 0, 1, 2 and 3 
denote fuzzy linguistic values of negative large, negative medium, negative small, 
zero, positive large, positive medium and positive small respectively. 

Transformation of LQR gains into the scaling gains of fuzzy system is achieved by 
using following formula 

 

 ݃௢݃௜ ൌ ݇௜ (18) 

 
Where k୧ are the LQR gains? For g୭ ൌ െ4.6 the fuzzy systems input gains gଵ, gଶ,gଷ and gସ are 0.1975, 0.2391, 2 and 0.1957 respectively. Simulation results of RIP 
system by using FLC with derived and tuned gains are shown in Fig. 8. 

5 Results 

The simulation results of proposed control system for the rotary inverted  
pendulum with the SIMULINK in MATLAB 7.0 are shown in Fig. 2, Fig. 3, Fig. 4 
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and Fig. 5, respectively for conventional Hybrid controller and Intelligent Hybrid 
Controller. 

Fig. 2 shows that rotary inverted pendulum is highly nonlinear model for consider-
ation. To stabilize the system state feedback control technique was used. Fig. 3 shows 
an adequate stabilization controller response through LQR. 

In Fig.4 angle of the pendulum are shown by using FLC. The pendulum shows 
fluctuating response with calculated gains but after adding tuned gains the response 
becomes more condensed.   

The LQR method for non-zero initial condition couldn't set the pendulum to zero, 
but fuzzy controller doesn't have this problem[6]. The comparison results of both the 
controller with non-zero initial condition are shown in Fig.5. It was observed that both 
FLC and LQR have different steady-state error, settling time and overshoots. Through 
LQR, pendulum never attained its steady state value to zero. Analysis of obtained 
results shows that LQR controller relatively gives the fast response and attained its 
settling state quickly in comparison to FLC, but the pendulum keeps oscillating about 
its reference position. The proposed fuzzy controller is able to stabilize the pendulum 
system by tracking the reference signal remarkably, which indicates the disturbance 
rejection capability of FLC controller  

 

 

Fig. 5. Comparision results of FLC with LQR for the stabilization of rotary inverted pendulum. 
(a): simulation result of pendulum angle (ߠଵ) with LQR; (c): simulation result of pendulum 
angle (ߠଵ) with FLC. 
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Table 2. Inference Rules For Fuzzy Balance Controller 

j k Y 
-3 -3 -1.00 
-3 -2 -0.83 
-3 -1 -0.67 
-3 0 -0.50 
-3 1 -0.33 
-3 2 -0.17 
-3 3 0.00 
-2 -3 -0.83 
-2 -2 -0.67 
-2 -1 -0.50 
-2 0 -0.33 
-2 1 -0.17 
-2 2 0.00 
-2 3 0.17 
-1 -3 -0.67 
-1 -2 -0.50 
-1 -1 -0.33 
-1 0 -0.17 
-1 1 0.00 
-1 2 0.17 
-1 3 0.33 
0 -3 -0.50 
0 -2 -0.33 
0 -1 -0.17 
0 0 0.00 
0 1 0.17 
0 2 0.33 
0 3 0.50 
1 -3 -0.33 
1 -2 -0.17 
1 -1 0.00 
1 0 0.17 
1 1 0.33 
1 2 0.50 
1 3 0.67 
2 -3 -0.17 
2 -2 0.00 
2 -1 0.17 
2 0 0.33 
2 1 0.50 
2 2 0.67 
2 3 0.83 
3 -3 0.00 
3 -2 0.17 
3 -1 0.33 
3 0 0.50 
3 1 0.67 
3 2 0.83 
3 3 1.00 
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6 Conclusion 

The aim of this research was to design a stabilizing controller meant for inverted pen-
dulum and this has been fruitfully attained. 

We subsequently compared the performance of the LQR and FLC for a rotary-type 
inverted pendulum system.  

The robustness of both control techniques is verified by running simulation with 
different initial conditions, which confirms the control efficiency of the method. The 
results showed that fuzzy controller reveal enhanced performance than LQR near the 
linearized region. 

On the whole, the manuscript presents a relative guide to individuals eager to learn 
the control laws on such a typical nonlinear and under actuated system. 
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Abstract. Cloud computing enables elasticity - rapid provisioning and deprovi-
sioning of computational resources. Elasticity allows cloud users to quickly adapt
resource allocation to meet changes in their workloads. For cloud providers, elas-
ticity complicates capacity management as the amount of resources that can be
requested by users is unknown and can vary significantly over time. Overbooking
techniques allow providers to increase utilization of their data centers. For safe
overbooking, cloud providers need admission control mechanisms to handle the
tradeoff between increased utilization (and revenue), and risk of exhausting re-
sources, potentially resulting in penalty fees and/or lost customers. We propose
a flexible approach (implemented with fuzzy logic programming) to admission
control and the associated risk estimation. Our measures exploit different fuzzy
logic operators in order to model optimistic, realistic, and pessimistic behaviour
under uncertainty. The application has been coded with the MALP language by
using the FLOPER system developed in our research group. An experimental
evaluation confirm that our fuzzy admission control approach can significantly
increase resource utilization while minimizing the risk of exceeding the total
available capacity.

Keywords: Cloud Computing, Admission Control, Fuzzy Logic Programming,
Resource Utilization, Risk Assessment.

1 Introduction

Cloud computing is a recently emerged paradigm where computational resources are
leased over the Internet in a self-service manner under a pay-per use pricing scheme.
Organizations and individuals, the cloud users, can thus continuously adjust their cloud
resource allocations to their current needs, so called elasticity [21]. The core of cloud
infrastructure are data centers, large store-house like facilities hosting hundreds of thou-
sands of servers, along with storage and networking equipment, as well as advanced
systems for cooling and power distribution [24]. Through virtualization technologies,
these data centers (cloud providers) can provision applications from multiple users on
the same physical servers and thus make efficient use of their hardware. In cloud data
centers, user applications are packaged as Virtual Machines (VMs) [7], which in essence
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are software implementations of servers that are time-shared on the physical hardware.
Users can thus at any time, themselves or through automatic elasticity management
software, increase or decrease the number of VMs allocated. Consequently, it is com-
mon for cloud providers to require users to specify upper and lower limits to the number
of VMs to be used in a service request [19], or to simply have predefined rules for all
users, e.g., 1-20 VMs per data center for the largest cloud provider, Amazon [6].

For data centers, elasticity results in a long-term capacity allocation problem, as the
exact number of VMs to be used at any time by each user is unknown. Running too few
VMs in total results in poor data center hardware utilization and lowered incomes from
users, whereas having too many VMs may lead to low performance and/or crashes, poor
user experience, and may also have financial consequences if Service Level Agreements
(SLAs) regarding user performance expectations are violated. To handle this trade off,
admission control mechanisms [9] can be used by cloud providers to determine whether
a new user service request should be admitted into the data center or not. In our pre-
vious work [22], we demonstrate how resource overbooking, a technique well-known
from airline revenue management and network bandwidth multiplexing, can be used to
increase provider utilization and revenue, with acceptable risks of running out of hard-
ware capacity. Further examples of previous work in this area includes an algorithmic
framework [9] that uses cloud effective demand to estimate the total physical capacity
required for performing the overbooking, including probability of launching additional
VMs in the future.

However, evaluating risk during admission control with respect to performing re-
source overbooking actions is far from trivial. Overbooking and the associated schedul-
ing problems are multi-dimensional packing problems, commonly solved using heuris-
tics. It is also not clear in the general case how to balance the short and long term
impact when deciding whether to accept a new service. Furthermore, admission control
is associated with several uncertainties, include limited knowledge of future workloads,
potential side effects from co-locating particular VMs, and exact impact on applica-
tions of potential resource shortage. Based on these properties of the admission control
problem, we propose a fuzzy approach to admission control. Since its initial develop-
ment by L. A. Zadeh in the sixties [23], fuzzy logic has become a powerful theoretic
tool for reaching elegant solutions to problems in various fields of software, industry,
etc. More recently, there exist fuzzy extensions of the classical logic language Prolog,
which can be used in a very natural way to solve problems where fuzzy logic plays an
important role. A conceptual overview of how our cloud overbooking framework use
fuzzy logic during admission control is shown in Figure 1. In must be noted that the
risks are calculated for the three capacity dimensions that we consider for each VM:
CPU, memory and I/O. For each one of these, the risk is calculated based on predicted
information about future available capacity (referred to as Free in the rest of the paper),
future amount of unrequested capacity (denoted Unreq) and the capacity requested by
the incoming service (denoted Req). Unreq is the inverse difference between what users
requested and what they really used (Free). All these future expected values are pre-
dicted by using exponential smoothing functions [22].

The structure of this paper is as follows. In Section 2, a brief introduction to the
MALP (Multi-Adjoint Logic Programming) language and the FLOPER system is given.



214 C. Vázquez et al.

Fig. 1. Conceptual picture of the system

In Section 3 we explain the main features of our implementation based on fuzzy logic
programming using MALP and FLOPER. Next, in Section 4, we present our experi-
mental results. Finally, Section 5 concludes the paper and outlines directions for further
research.

2 The Multi-adjoint Logic Language and FLOPER

Multi-Adjoint Logic Programming (see [14,11] for a complete formulation of this frame-
work), MALP in brief, can be thought as a fuzzy extension of Prolog and it is based
on a first order language, L, containing variables, function/constant symbols, predi-
cate symbols, and several connectives such as implications (←1,←2, . . . ,←m), con-
junctions (&1,&2, . . . ,&k), disjunctions (∨1,∨2, . . . ,∨l), and general hybrid operators
(“aggregators” @1,@2, . . . ,@n), used for combining/propagating truth values through
the rules, and thus increasing the language expressiveness. Additionally, our language L
contains the values of a multi-adjoint lattice in the form 〈L,.,←1,&1, . . . ,←n,&n〉,
equipped with a collection of adjoint pairs 〈←i,&i〉 where each &i is a conjunctor
intended to the evaluation of modus ponens [20,12,14]. A rule is a formula “A ←i B
with α”, where A is an atomic formula (usually called the head), B (which is called
the body) is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0 ), truth values
of L and conjunctions, disjunctions and general aggregations, and finally α ∈ L is the
“weight” or truth degree of the rule. The set of truth values L may be the carrier of any
complete bounded lattice, as for instance occurs with the set of real numbers in the in-
terval [0, 1] with their corresponding ordering .R. Consider, for instance, the following
program, P , with associated multi-adjoint lattice 〈[0, 1],.R,←P,&P〉 (where label P
means for Product logic with the following connective definitions for implication and
conjunction symbols, respectively: “←P(x, y) = min(1, x/y)”, “&P(x, y) = x ∗ y”, as
well as “@aver(x, y) = (x + y)/2”):
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Fig. 2. Execution tree for program P and goal oc(X)

R1 : oc(X) <- s(X) &prod (f(X) @aver w(X)) with 1.
R2 : s(madrid) with 0.8. R5 : s(tokyo) with 0.9.
R3 : f(madrid) with 0.8. R6 : f(tokyo) with 0.7.
R4 : w(madrid) with 0.9. R7 : w(tokyo) with 0.6.
R8 : s(istambul) with 0.3. R11 : s(baku) with 0.3.
R9 : f(istambul) with 0.4. R12 : f(baku) with 0.2.
R10 : w(istambul) with 0.8. R13 : w(baku) with 0.5.

This program models, through predicate “oc”, the chances of a city for being an
“olympic city” (i.e., for hosting olympic games). Predicate “oc” is defined in rule
R1, whose body collects the information from three other predicates, “s”, “f” and
“w”, modeling, respectively, the security level, the facilities and the good weather of a
certain city. These predicates are defined in rules R2 to R13 for four cities (Madrid,
Istambul, Tokyo and Baku), in such a way that, for each city, the feature modeled by
each predicate is better the greater the truth value of the rule.

In order to run and manage MALP programs, during the last years we have de-
signed the FLOPER (Fuzzy LOgic Programming Environment for Research) system
[16,15,17,18], which is freely accessible online [10]. The parser of our tool has been
implemented by using the classical DCG’s (Definite Clause Grammars) resource of the
Prolog language, since it is a convenient notation for expressing grammar rules. Once
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the application is loaded inside a Prolog interpreter, it shows a menu which includes
options for loading/compiling, parsing, listing and saving fuzzy programs, as well as
for executing/debugging fuzzy goals. These actions are based on the translation of the
fuzzy code into standard Prolog code: all internal computations (including compiling
and executing) are pure Prolog derivations, whereas inputs (fuzzy programs and goals)
and outputs (fuzzy computed answers) have always a fuzzy taste, thus producing the
illusion on the final user of being working with a purely fuzzy logic programming tool.

Fig. 3. The FLOPER System showing the execution tree for goal “oc(X)”

The FLOPER system is able to manage programs with very different lattices. By using
option “lat” (and “show”), we can associate (and display) a new lattice to a given
program. Such lattice must be loaded into the tool as a pure Prolog program. As an ex-
ample, the following clauses show the program modeling the lattice of the real interval
[0, 1] with the usual ordering relation and connectives (conjunction and disjunction of
the Product logic, as well as the average aggregator) where the meaning of the manda-
tory predicates “member”, “top”, “bot” and “leq” is obvious:

member(X):- number(X), 0=<X, X=<1. bot(0).
leq(X,Y):- X=<Y. top(1).
and_prod(X,Y,Z) :- Z is X*Y.
or_prod(X,Y,Z) :- U1 is X*Y, U2 is X+Y, Z is U2-U1.
agr_aver(X,Y,Z) :- U1 is X+Y, Z is U1/2.

FLOPER includes two main ways for evaluating a goal, given a MALP program and
its corresponding lattice. Option “run” translates the whole program into a pure Prolog
program and evaluates the (also translated) goal, thus obtaining a list of fuzzy computed
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answers, each one containing the truth-degree and the corresponding variable substitu-
tion for each concrete solution. For instance, in our example we can run goal “oc(X)”
to obtain the following result indicating that the different chances of Baku, Istambul,
Tokyo and Madrid for being “Olympic cities” are respectively 10.5%, 18%, 58.5% and
68%:

>> run.
[Truth_degree=0.105,X=baku]
[Truth_degree=0.180,X=istambul]
[Truth_degree=0.585,X=tokyo]
[Truth_degree=0.680,X=madrid]

On the other hand, option “tree” computes and displays the whole execution (or
derivation) tree for the intended goal. Moreover, it is possible to select the deepest level
to be built (which is obviously mandatory when trees are infinite) via option “depth”
or even to indicate that only the set of leaves be displayed via option “leaves”. Com-
ing back again to our example, we can use option “tree” to obtain the execution tree
for goal “oc(X)”, which is generated by FLOPER in three different formats. Firstly
the tree is displayed in graphical mode, as a PNG file, as shown in Figures 2 and 3.
The tree is composed by two kinds of nodes. Yellow nodes represent states reached by
FLOPER following the state transition system that describes the operational seman-
tics of MALP [14]. The root node represents the first state (composed by the original
goal together with the identity substitution), and subsequent lower nodes are its children
states (that is, states reached from the root). A state contains a formula in the upper side
and a substitution (obtained after composing all substitutions applied from the original
goal to the current state) at the bottom. A final state, if reached, is a fuzzy computed
answer whose associated formula is just an element (truth-degree) of the lattice. Blue
rounded nodes appearing between a pair of yellow nodes (states) represent program
rules; specifically, the program rule that is exploited in order to go from one state (the
upper one) to another (the lower state). These rules are named with letter “R” plus its
position in the program. For example, observe that from the initial state to the next one,
the first rule of the program has been exploited, as shown in the blue intermediate node.
As an exception, when all atoms have been exploited in (the formula of) a certain state,
the following blue node is labeled with word “result”, informing that the next state
contains a fuzzy computed answer.

FLOPER can also generate the execution tree in two textual formats. The first one
contains a plain description of the tree, while the second one provides an XML structure
to that description. In this XML format, tag “node” is used to include all the informa-
tion of a node, such as the rule performed to reach that state (tag “rule”), the formula
of the state (tag “goal”), the accumulated substitution (tag “substitution”) and
the children nodes in a nested way (tag “children”). These XML files can be ac-
curately explored with the Fuzzy XPath application we have recently developed in our
research group with FLOPER [1,2,4,5], in order to perform some interesting debugging
tasks with the same tool, as documented in [3].



218 C. Vázquez et al.

&P(x, y) � x ∗ y |P(x, y) � x+ y − x ∗ y ←P (x, y) � min(1, x/y)

&G(x, y) � min(x, y) |G(x, y) � max{x, y} ←G (x, y) �
{
1 if y ≤ x

x otherwise
&L(x, y) � max(0, x+ y − 1) |L(x, y) � min{x+ y, 1} ←L (x, y) � min{x− y + 1, 1}

Fig. 4. Fuzzy conjunction, disjunction, and implication connectives from Łukasiewicz (pes-
simistic), Gödel (optimistic), and Product (realistic) logics, resp., defined in the real unit interval

3 Implementation Based on Fuzzy Logic Programming

On towards fuzzy formulations of the admission control problem, in this section we
present a flexible method that has been implemented in MALP using FLOPER. As
we have just detailed in the previous section, the MALP language represents a fuzzy
extension of the popular Prolog language in the field of pure (crisp) logic program-
ming [13]. In this fuzzy declarative framework, each program is accompanied with a
lattice for modeling truth-degrees beyond the simpler case of the (crisp) Boolean pair
{true, false}. Hence, fuzzy program rules can utilize fuzzy connectives defined on
such richer lattices for improving the expressive power of classical Prolog clauses. For
instance, some standard connective definitions for conjunctions, disjunctions, and im-
plications in the lattice of real numbers in the unit interval [0, 1] are presented in Figure
4, where labels L, G, and P mean respectively Łukasiewicz logic, Gödel logic, and Prod-
uct logic, with different capabilities for modeling pessimistic, optimistic, and realistic
scenarios, respectively.

In our application we use a refined version of such a lattice, as we try to identify the
notion of truth-degree with the one for “overbooking risk along a time period”. This
means that instead of single values, our program manipulates lists of real numbers as
truth-degrees1 after analyzing the behaviour’s curves representing “free, unrequested,
and requested (CPU/memory/net) resources” also expressed as input lists to the tool.
For instance, if expression “&P(x, y) � x ∗ y” refers to the conjunction of Product
logic for pairs of values, its extended version coping with pairs of lists of values should
look like “&P([x1, . . . , xn], [y1, . . . , yn]) � [x1 ∗ y1, . . . , xn ∗ yn]”. In our application
this connective can be recursively defined with the following code:

and_prod([],[],[]).
and_prod([X|LX],[Y|LY],[Z|LZ]):- Z is X*Y, and_prod(LX,LY,LZ).

In the lattice we have also implemented extended versions managing lists of the re-
maining connectives seen in Figure 4, as well as other connectives like @append (for
concatenating two lists of numbers), @show (which is described afterwards) and the
two connectives @very and @approx (where @very(x) = x2 and @approx(x) =

√
x)

known as linguistic modifiers. These are useful for fine-tuning the more pessimistic
or optimistic shape of the answers produced by our application under this uncertain
scenario.

1 Sometimes accompanied with annotations like max, avg, peak and so on, for readability
reasons.
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Fig. 5. Graphics showing different choices for estimating risk

Thanks to the high expressive power of the previous lattice, it is possible now to
easily design a MALP program composed by a few rules starting with the following
one, which receives as input parameters three lists representing the curves associated to
free, unrequested and requested values, as well as a fourth argument indicating which
resource, or Field, (CPU, network or memory) is considered:

risk([F|Free],[U|Unreq],[R|Req],Field)<-
@append(combine(F,U,R), risk(Free,Unreq,Req,Field))

This definition of predicate “risk” produces a truth degree that is a list of numbers
obtained after contrasting the input curves “Free”, “Unreq” and “Req”. This eval-
uation is recursively performed by calling predicate “combine” with three concrete
values each time in order to compare the requested resources with the free and unre-
quested values.
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In Figure 5 we graphically represent two different alternatives to perform this con-
trast where the background colour moves through white, yellow and red tonalities from
the lower to the higher risk found in each instant. A preliminary version for predicate
“combine” associated to the upper graphic in Figure 5 could be represented by:

combine(Free,Unreq,Req) <- (Req>=Free & [1])|(Req>Unreq & [0.5])

which, in essence, assigns risk 1 (red band) when the requested resource is over the
free value, 0.5 (yellow band) when it is between the free and unrequested values, and 0
(white band) otherwise. Moreover, we have also implemented a more sophisticated ver-
sion based on linear interpolation (down graphic in Figure 5) according the following
formula:

inter(Req,Free,Unreq) = (Req-Unreq)/(Free-Unreq)

Thus, it can return risk 0 when the requested value is below the unrequested one, a risk
in [0,1] (tonalities vary from white through yellow to red as risk grows) if the requested
point is between the other two values, and risk above 1 (tonalities vary from red to
black as risk grows) if the amount of requested capacity is higher than the free one.
When requested is above free, we say that a peak emerges, which allows us to improve
the evaluation of the final risk by taking into account the performance impact of each
peak.

The program is invoked by calling predicate “main” with appropriate parameters:

main(Free,Unreq,Req,Field) <- @show(risk(Free,Unreq,Req,Field))

This rule makes use of connective “@show”, which receives the truth degree (i.e., a
list of numbers) produced by “risk” and returns a new truth degree as a list with the
following shape:

[ avg(n1), min(n2), max(n3),

over([peak(h1, l1, a1),...,peak(hi, li, ai)]),

opt(n4), real(n5), pes(n6) ]

Here, labels “avg”, “min”, and “max” contain the average (n1), minimum (n2), and
maximum (n3) values, respectively, of the input list; “over” gives the list of peaks
(each one is represented by its maximum height (hj), length (lj), and area (aj)) and
finally, “opt”, “real”, and “pes” labels provide an optimistic (n4), realistic (n5),
and pessimistic (n6) estimation -based on the previous elements- about the risk of ac-
cepting the requested task. These estimations are produced by combining the average
measure (appropriately modulated with the @approx and @very connectives, for refer-
ring to the pessimistic and optimistic cases, respectively) together with the disjunctions
of all the peaks by using different versions of the disjunction operators. This is modeled
according to Łukasiewicz, Product, and Gödel fuzzy logics, as shown in the table of
Figure 4, where it is easy to see that ∀x, y ∈ [0, 1], x|Ly ≥ x|Py ≥ x|Gz. This justifies
once again the power of fuzzy logic and the strong expressive resources of MALP for
managing pessimistic, realistic and optimistic scenarios. For instance, when we intro-
duce the following goal into FLOPER:

main([50,20,40,73,99],[25,10,2,51,40],[20,23,45,60,49],cpu)



A Fuzzy Approach to Cloud Admission Control for Safe Overbooking 221

Fig. 6. FLOPER executing our application

The system solves it by generating a list representing the final truth degree associated
to the query, with the following shape:

[ avg(0.9300780175180026), min(0), max(1.3),
over([peak(2,1.3,0.27078683857231306)]),
opt(0.8045594490364215), real(0.9015891243354114), pes(1)]

In Figure 6 we show a screen-shot of FLOPER when executing the previous goal. In
the main window, we can observe (the initial portion of) the derivation tree for this
goal which, in essence, consists in a transition system where each state is coloured
in yellow and transitions appear as blue circles, so the initial state is just the original
goal appearing in the root of the tree, and the final state (not explicitly displayed in the
figure) contains the final truth degree associated to the query. In our case, this solution
corresponds to the text darkened in blue in the box at the bottom of the screen.

4 Experiments

To evaluate our proposal, the fuzzy risk assessment is included into the framework
presented in [22], which only included a simple admission control technique. This way,
the admission control now uses this information to take the decisions about service
acceptance or rejection when performing resource overbooking. In that previous work,
a simulator to test the development was implemented which is reused here to simulate
the cloud infrastructure and emulate the workload.
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Table 1. Performance Summary (Figure 7)

Average utilization Node capacity overpassed (%) Aggregated node capacity overpassed (%)
No Risk 38.9 % (1) 0 0

Pessimistic 69.1 % (1.78) 0 0
Realistic 84.6 % (2.17) 6.99 0.43

Optimistic 92.5 % (2.38) 11.88 0.84

The cloud infrastructure simulated for testing the different risk evaluators consists
of 16 nodes where each one of them has 32 cores. We consider four different types of
VMs (S, M, L and XL), similar to Amazon’s model [6], where each one doubles the
capacity of the previous one, starting from the S VM (1 CPU and 1.7GB of memory).
Those VMs simulate the execution of a dynamic workload made of different kind of
applications (some of them with steady behavior and others with bursty one), profiled
by using monitoring tools after running the real applications. The workload is a mixture
of applications, following a Poisson distribution for submission rates. See [22] for more
details about the testbed and workload generation. With that workload, the performance
evaluation has been carried out by generating service requests according to that Poisson
distribution. Then, the accepted requests (by the admission control) are scheduled and
run on the 16 nodes. During this execution, we measure the utilization and resource
shortage.

Our evaluation is centered on measuring the impact of accurately evaluating the
risks taken by the admission control when performing resource overbooking within
data centers. The different risk values provided by the fuzzy logic engine are compared
against each other and also against a base case where no overbooking is performed –
no risks being taken. Those risk assessments from least risky to most are labeled as
“Pessimistic”, “Realistic”, and “Optimistic” – mapping them to the respective values
calculated by the fuzzy logic engine with those names. The base case is labeled “No
Risk”.

Figure 7 (a) shows the resource utilization achieved by using the different risk val-
ues at the admission control. Clearly, the more risks we take, the higher utilization is
achieved. However, this may have a negative impact regarding running out of resources
if total capacity is overpassed, not only regarding the whole data center utilization but
also regarding every single node into the system. Owing to that fact, Figure 7 (b) shows
a histograms over how many times one of the nodes has overpassed its total capacity,
and how large the impact on the performance is – performance degradation that may end
up in resource SLA violations. The x-axis represents the performance degradation expe-
rienced when total capacity in (at least) one of the nodes is overpassed. So, the smaller
the bars are, the better (less frequent risk situations) and it is desired that they remain
as close to 0 as possible - fewer performance degradation and greater possibilities of
resolving these. Notably, as shown in Figure 7 (a), the total infrastructure capacity is
not overpassed. This means that VM migration can be used to decrease the risks by
moving VMs from the overloaded nodes to the ones that still have enough available
capacity. This way certain overload situations can be avoided, as has been proposed by
Beloglazov et al. [8].

Finally, Table 1 highlights the improvement obtained thanks to performing resource
overbooking (up to 2.38 times) and the cost that this entails. Pessimistic has the lowest
improvement but without any performance degradation, while the other two techniques
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Fig. 7. Resource utilization and risk assessment comparison

present higher utilization rates but at expense of higher performance degradation that
may result in running out of resources. For the realistic and optimistic cases, the total
capacity of a single node has been overpassed around 6 % and 12 % of the time, respec-
tively. Despite this, the total impact on the final performance is not remarkable (below
1%) – calculated as the percent of time the capacity is overpassed at a node, weighted
by the amount of overpassed capacity.

5 Conclusions

In this paper we have used the FLOPER programming environment developed in our
research group for implementing with the fuzzy logic language MALP a real-world
application in the field of cloud computing.

Admission control techniques that apply overbooking actions are a promising so-
lution for low data center resource utilization, a problem that arises from the elastic
nature of cloud applications. However, overbooking actions may lead to performance
degradation if not planned carefully.

We propose an admission control that bases its acceptance or rejection decisions on
the information about the risks being taken. A fuzzy logic engine provides the informa-
tion that allows the admission control to estimate the long-term risks of accepting the
incoming request. That risk assessment is a combination of several parameter regarding
the relationship between available capacity and requested one, such as the difference be-
tween these and the information about the peaks when insufficient capacity is expected,
providing different degrees of risk that leads to more (or less) aggressive decisions re-
garding job acceptance.

The evaluation shows significant increases in resource utilization obtained by our
risk-aware fuzzy admission control methods. Even for the most optimistic estimates,
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available resources are exhausted as little as 0.84% of the time, while increasing utiliza-
tion by 138%. Thus, our fuzzy methods are a promising approach to help the admission
control to evaluate the risks associated with accepting a new service.

Further direction include to extend our work by taking the risk assessment into ac-
count together with the SLA information. One such extension could be to specify differ-
ent costs depending on the risk to be taken or using the different risk values depending
on the penalty that is to be paid in case of SLA violation, i.e., the greater the penalty
the more pessimistic the admission control should be.
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Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS (LNAI), vol. 5571, pp. 44–51.
Springer, Heidelberg (2009)

17. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A Practical Management of Fuzzy
Truth Degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML
2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

18. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Fuzzy Computed Answers Collecting
Proof Information. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS,
vol. 6692, pp. 445–452. Springer, Heidelberg (2011)

19. Rochwerger, B., Breitgand, D., et al.: The Reservoir model and architecture for open feder-
ated cloud computing. IBM J. Res. Dev. 53(4), 535–545 (2009)

20. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Courier Dover Publ. (1983)
21. The NIST Definition of Cloud Computing, http://csrc.nist.gov/

publications/nistpubs/800-145/SP800-145.pdf (visited July 30, 2013)
22. Tomás, L., Tordsson, J.: Improving Cloud Infrastructure Utilization through Overbooking.

In: Proc. of the ACM Cloud and Autonomic Computing Conference, CAC (to appear, 2013)
23. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)
24. Zaharia, M., Hindman, B., et al.: The datacenter needs an operating system. In: Proc. of the

3rd USENIX Conference on Hot Topics in Cloud Computing, p. 17 (2011)

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


Rule Learning in a Fuzzy Decision Support

System for the Environmental Risk Assessment
of GMOs

Francesco Camastra1,�, Angelo Ciaramella1, Valeria Giovannelli2,
Matteo Lener2, Valentina Rastelli2, Salvatore Sposato1, Antonino Staiano1,

Giovanni Staiano2, and Alfredo Starace1

1 Dept. of Science and Technology, University of Naples “Parthenope”, Isola C4,
Centro Direzionale, I-80143, Napoli (NA), Italy

{camastra,angelo.ciaramella,staiano}@ieee.org,
{alfredo.starace,salvatoresposato2010}@gmail.com

2 Nature Protection Dept., Institute for Environmental Protection and Research
(ISPRA), via v. Brancati 48, 00144 Roma,
{valeria.giovannelli,matteo.lener,

valentina.rastelli,giovanni.staiano}@isprambiente.it

Abstract. Aim of the paper is the application of a Learning Classifier
System (LCS) to learn the inference rules in a Fuzzy Decision Support
System (FDSS). The FDSS is used for the Environmental Risk Assess-
ment (ERA) of the deliberate release of genetically modified plants. The
evaluation process permits identifying potential impacts that can achieve
one or more receptors through a set of migration paths. The risk assess-
ment in the FDSS is obtained by using a Fuzzy Inference System per-
formed using jFuzzyLogic library. For the human experts might be hard
developing complex FISs. We propose to use a LCS for automatically
learning the appropriate fuzzy rules from the questionnaires produced
by notifiers, named Fuzzy Rule Learning System (FRLS). FRLS is based
on a special kind of LCS, namely the eXtended Classifier System (XCS).
The derived rules have been validated on real world cases by the human
experts that are in charge of ERA.

Keywords: Learning Classifier System, eXtended Classifier System,
Fuzzy Decision Support System, Risk Assessment, Genetically Modified
Organisms, jFuzzyLogic library.

1 Introduction

The development of genetic engineering in the last years produced a very high
number of genetically modified organisms (GMOs). Whereas in USA the use of
GMOs is widely spread in agriculture, in Europe there are discordant policies
w.r.t. GMO usage. For instance, commercialization of food and feed containing
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or consisting of GMOs is duly approved in European Community (EC), while
cultivation of new genetically modified crops are not adopted. The maize MON
810, approved by the old EC legislation framework, is currently the unique GMO
cultivated in the EC (e.g., Czech Republic, Poland, Spain, Portugal, Romania
and Slovakia). According to EC, the environmental release of GMOs is ruled
by Directive 200118EC and Regulation 18292003EC. The Directive refers to the
deliberate release into the environment of GMOs and sets out two regulatory
regimes: Part C for the placing on the market and Part B for the deliberate
release for any other purpose, i.e., field trials [14]. In both legislations the noti-
fier, i.e., the person who requests the release into the environment of GMO, must
perform an Environmental Risk Assessment (ERA) on the issue. The ERA is for-
mally defined as “the evaluation of risks to human health and the environment,
whether direct or indirect, immediate or delayed, which the deliberate release
or the placing on the market of GMOs may pose”. ERA should be carried out
case by case, meaning that its conclusion may depends on the GM plants and
trait concerned, their intended uses, and the potential receiving environments.
The ERA process should lead to the identification and evaluation of potential
adverse effects of the GMO, and, at the same time, it should be conducted with
a view for identifying if there is a need for risk management and it should pro-
vides the basis for the monitoring plans. The aim of this work is the development
of a decision system that should advise and help the notifier in performing the
ERA about the cultivation of a specific genetically modified plant (GMP). ERA
process is often performed in presence of incomplete and imprecise data. More-
over, it is generally yielded using the personal experience and knowledge of the
notifier. Therefore the usage of fuzzy reasoning in the ERA decision support
system is particularly appropriate as witnessed by the extensive application of
fuzzy reasoning to the risk assessment in disparate fields [1,2,6,9,10,17]. How-
ever, for the human experts might be hard developing complex Fuzzy Inference
System (FIS)s. In this paper we propose to use a LCS, and in particular the
eXtended Classifier System, to learn the appropriate fuzzy rules from the ques-
tionnaires produced by notifiers. The Fuzzy Decision Support System (FDSS)
is inspired by the methodological proposal of performing ERA on GMP field
trials [14]. The methodology would allow to describe the relationships between
potential receptors and the harmful characteristics of a GMP field trial, leading
to the identification of potential impacts. The paper is organized as follows: In
Section 2 the methodological proposal that has inspired the system is described;
The FDSS structure of the Fuzzy System is discussed in Section 3 and the pro-
posed Fuzzy Rule Learning System is presented in 4; Section 5 describes how
experimental results has been performed; finally some conclusions are drawn in
Section 6.

2 The Methodological Approach

The methodological proposal, that has inspired the system object of the paper, is
based on a conceptual model [14]. The schema, shown in Figure 1, illustrates the
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Fig. 1. Conceptual model of the impact source-receptors paths through diverse diffu-
sion factors and migration routes

possible paths of the impact from a specific source to a given receptor through
disparate diffusion factors and migration routes. The model implies that the
notifier fills an electronic questionnaire. The notifier answers are collected in a
relational database management system and, in a second time, become input
of a fuzzy decision support engine that is the system core and provides to the
notifier the overall evaluation of risk assessment related to a specific GM plant.
The questionnaire can be grouped in specific sets of questions where each set
corresponds to a specific box of the diagram of the conceptual model. For each
block the potential effects are calculated by using fuzzy concepts and a fuzzy
reasoning system. The questions can be of two different types, e.g., qualitative
and quantitative. The former is typically descriptive and it is not used by fuzzy
decision support system in the reasoning process. On the contrary, the latter is
used by the fuzzy engine and can be an item chosen within a limited number of
possible replies or a numeric or a boolean value.

3 The Fuzzy Decision Support System

The FDSS has the same architecture of a Fuzzy Logic Control System. Moreover,
the FIS of FDSS has been implemented using the jFuzzyLogic library [4]. A Fuzzy
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Logic Control (FLC) system incorporates the knowledge and experience of a
human operator, the so-called expert, in the design of a system that controls a
process whose input-output relationships are described by a set of fuzzy control
rules, e.g., IF-THEN rules. We recall that the antecedent is the part of rule
delimited by the keywords IF and THEN. Whereas the consequent is the part of
the rule that follows the keyword THEN. The rules involve linguistic variables
(LV s) that express qualitative high level concepts. A typical FLC architecture is
composed of four principal components: a fuzzifier, a fuzzy rule base, an inference
engine and a defuzzifier [12]. In particular, the fuzzy rule base stores the process
knowledge of the domain experts. In most general cases, the fuzzy rule bases
has the form of a Multi-Input-Multi-Output (MIMO) system. In this case the
inference rules are combined by using the connectives AND and ELSE that
can be interpreted as the intersection and the union for different definitions of
fuzzy implications, respectively [3]. For instance, if we consider the LV cultural
cycle duration, the fuzzy inference system of the LVs cultural cycle duration and
vegetative cycle duration could be represented by:

IF vegetative cycle duration is Low AND cultural cycle duration is Low
THEN phenological risk is High
ELSE
IF vegetative cycle duration is High AND cultural cycle duration is Low
THEN phenological risk is Low ELSE
IF vegetative cycle duration is High AND cultural cycle duration is High
THEN phenological risk is High

On the other hand, jFuzzyLogic is an open source software library for fuzzy
systems which allows to design Fuzzy Logic Controllers supporting the standard
Fuzzy Control Programming [11], published by the International Electrotechni-
cal Commission(IEC). The library is written in Java and permits Fuzzy Control
Language (FCL) design and implementation, fulfilling IEC standard. The stan-
dard defines a common language to exchange portable fuzzy control programs
among different platforms. Moreover, jFuzzyLogic allows to implement a Fuzzy
Inference System (FIS). A FIS is usually composed of one or more Function
Blocks (FBs). Each FB has variables (input, output or instances) and one or
more Rule Blocks (RBs). Each RB is composed of a set of rules, as well as Ag-
gregation (i.e, t-norms and t-conorms), Activation (i.e., Minimum and Product)
and Accumulation methods (e.g., Maximum, Bounded sum)[11]. Moreover, sev-
eral implementations of membership functions and defuzzifcators are provided.

4 Learning Classifier Systems

Learning Classifier Systems (LCS) are rule-based, multifaceted, machine learn-
ing algorithms originated and have evolved in the cradle of evolutionary biology
and artificial intelligence [7,8,18,19,15,16]. At the heart of this algorithm is the
idea that, when dealing with complex systems, seeking a single best-fit model
is less desirable than evolving a population of rules which collectively model
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that system. LCSs represent the merge of different fields of research encapsu-
lated with a single algorithm. The core of a LCS is a set of rules (called the
population of classifiers). Rules are typically represented in the form of “IF con-
dition THEN action”. The desired outcome of running the LCS algorithm is for
those classifiers to collectively model an intelligent decision maker. To obtain
that end, LCSs employ two biological metaphors, evolution and learning, where
learning guides the evolutionary component to move toward a better set of rules.
These concepts are respectively embodied by two mechanisms: the genetic algo-
rithm and a learning mechanism appropriate of the given problem. While many
different implementations of LCS algorithms exists, four practically universal
components could be considered: (1) a finite population of classifiers that repre-
sents the current knowledge of the system, (2) a performance component, which
regulates interaction between the environment and the classifier population, (3)
a reinforcement component (also called credit assignment component), which
distributes the reward received form the environment to the classifiers, and (4) a
discovery component which use uses different operators to discover better rules
and improve existing ones. The eXtended Classifier System (XCS ) is a kind of
LCS that differs from the traditional one primarily in its definition of classifier
fitness and its relation to a robust reinforcement learning [19]. XCS noted for
being able to reach optimal performance while evolving accurate and maximally
general classifiers. XCS can be distinguished by the following key features: an
accuracy based fitness, a niche Genetic Algorithm (GA) and an adaption of stan-
dard Q-Learning as credit assignment. Probably the most important innovation
in XCS was the separation of the credit assignment component from the GA
component, based on accuracy.

4.1 Fuzzy Rule Learning System (FRLS)

The FDSS has a knowledge base organized in 123 FBs and it consists of 6215 rules
of the type described in Section 3. FDSS was tested producing about 150 ERAs
related to GM plants (e.g., Bt-maize1 and Brassica napus). The ERAs, yielded
by FDSS, were submitted to a pool of ISPRA 2 experts, not involved in the FDSS
knowledge base definition, in order to assess the consistency and completeness
of FDSS evaluations. A great problem in a such FDSS is the presence of a
high number of rules. To automatically extract an appropriate subset of rules
we propose to use an XCS. Firstly the inference rules are coded in the XCS
framework. In particular, in a “IF condition THEN action” schema each state
of the classifier is a sequence of bits (language 0, 1,#). The action is coded by
0, 1, 2 for Low, Medium and High, respectively. For example, the rule

IF vegetative cycle duration is High AND cultural cycle duration is High
THEN phenological risk is High

1 Maize modified by using a Bt toxin (Bacillus thuringensis) [14].
2 ISPRA is the institute governed by the Italian Ministery of the Environment that is
in charge of GMO risk estimation.
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is coded by the classifier in the following way:

Condition 111111 Action 2 (1)

5 Experimental Results

We present two experimental results obtained by using the FRLS on a subset of
the fuzzy rules of the FDSS. We concentrate on the extraction of the fuzzy rules
adopted in the last step of the ERAs (i.e., potential impacts identification). The
XCS requires some parameters that are initialized as described in [19]. Moreover
the credit assignment can be 100 or 0 for exact or erroneous outputs, respec-
tively. We use a training set composed by 80 rules and a test set of 16 obtained
considering the ERAs, yielded by FDSS, that were submitted to the pool of
ISPRA experts. The performance are considered as the percentage of the rules
individuated in the test set. The prediction error is the difference between the
predict and the real credit and the population has been normalized [19]. We
observed that after 1000 iterations the performance is 100%, the prediction er-
ror decreases with a similar velocity and the population dimension has not an
anomalous behaviour. However, some classifiers have worst performance than
others and this is due by GA. For this reason a condensation mechanism [19]
has been applied in the second experiment. In this case the condensation does
not influence the performance and it improves the accuracy and the computa-
tional complexity. The final result that can be highlighted is that XCS is able
to individuate the condition attributes (i.e., membership functions) that permit
discriminating a determined class of the action part. For instance, we consider
the rule generate by XCS as in Figure 2 that discriminate the class 2. As can be
evidenced, the attributes that permit discriminating the class are the attributes
1, 2, 3 and 5. The other attributes are not fundamental to discriminate the
class. This information is fundamental to identify the appropriate rules, and, in
particular for this example, the one in the test set to have action 2.

6 Conclusions

In this paper the application of a Learning Classifier System for an automatic
learning of the inference rules in a Fuzzy Decision Support System has been
proposed. The FDSS is used for the ERA of the deliberate release of genetically
modified plants. The risk assessment in the FDSS is obtained by using a FIS,
performed using jFuzzyLogic library and a Fuzzy Rule Learning System. The
Fuzzy Rule Learning System is based on a particular LCS that is the eXtended
Classifier System. The learned rules have been validated on real world cases by
the human experts that are in charge of ERA. In the next future we plan to
develop a more general Fuzzy Rule Learning System that automatically learns
the knowledge base of FDSS considering all the set of migration paths.
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Fig. 2. Experimental results
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Abstract. We propose a representation of the dynamics of epidemics through a
compartmental SIR (Susceptible - Infected - Recovered) model, with the com-
bined use of geo-referenced cellular automata and fuzzy systems. In this model,
each cell does not correspond to an individual, but to groups of individuals inhab-
iting the physical space corresponding to the cell. The temporal evolution of the
transmission consider is modeled by changes in the size of groups of individuals
in each category (susceptible, infected and recovered). We applied our model on
the spread of dengue in a region in Southeast Brazil. The application shows that
the proposed model, using only a small set of simple fuzzy rules, is able to repre-
sent qualitatively the behavior of an epidemiological SIR mode, a rather complex
problem.

Keywords: SIR, Infectious Diseases, Cellular Automata, Fuzzy Systems, Dengue.

1 Introduction

Epidemiology math [21] is a an area of science that proposes mathematical models to
be used by policy-makers in infectious diseases control. Compartmental modeling, in
particular, has been widely used to study diseases epidemiology [8], with SIR
(Susceptible-Infected-Recovered) being the mostly used model to deal with the trans-
mission dynamics of infectious diseases [10]. The study of spatial-temporal disease
distribution can provide a wealth of information for the understanding, prediction, eti-
ologic search, and prevention of diseases as well as assessing the impact of health
interventions.

Cellular Automata are able to describe the spatial-temporal evolution of complex
systems, such as the spread of epidemics [15]. A set of transition rules alters the at-
tributes of each cell, according to the attributes of neighboring cells. Transition rules
for cellular automata simulating real systems are sometimes ill-known.

Fuzzy Sets Theory extends classical set theory, allowing intermediate degrees of
membership. It is a significant and powerful representation of uncertainty, valuable rep-
resentation of vague concepts expressed in natural language [11]. This theory allows
the creation of transition rules for cellular automata, ie, the behavior of a cell, by mod-
eling the knowledge of an expert on the behavior of the real system. Some applications

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 234–247, 2013.
c© Springer International Publishing Switzerland 2013



A Fuzzy Cellular Automata for SIR Compartmental Models 235

using fuzzy systems to model transition rules in cellular automata in epidemiological
problems can be found in [17] and [14].

Here we propose a representation of the dynamics of epidemics through a SIR model,
using a combination of cellular automata and fuzzy systems. We also present an appli-
cation of the proposed model on the spread of dengue in a region of Southeast Brazil.

2 General Concepts

This section presents the main concepts and definitions used in this work, with a brief
description of SIR models, cellular automata and fuzzy systems.

2.1 SIR Model

SIR models divide the population into three compartments (or classes) of individuals:

– S: individuals who can contract the disease (Susceptible),
– I: individuals who can transmit the disease (Infected),
– R: individuals who have recovered from the disease (Recovered).

The classic way to present a compartmental model of SIR type is via a set of differ-
ential equations.

Figure 1 illustrates standard SIR models temporal evolution, without renewal of hu-
mans (constant population, no deaths or births and emigration and immigration) and
with renewal, for a disease in which the recovered individuals obtain immunity against
the disease. In Figure 1.b), regarding a SIR model without renewal of humans, the entire
population is initially susceptible to disease, over time this ratio begins to fall, with the
percentage of infected individuals simultaneously increasing, until, finally, the entire
population is recovered and immunized. The exact form and inflection of the curves
depend on the details of the infectious agent. Once the derivative of the infection rate
becomes negative, more people will be recovered from the disease and these two trend
lines will intersect.

2.2 Cellular Automata

Cellular automata were proposed in the 1960s, aiming at modeling biological phenom-
ena such as self-reproductive systems [19]. Cellular automata are self-reproductive
dynamic systems, with time and space described in discrete scales, consisting of a
grid made up of cells. At each point of time, each cell has a state, taken from a pre-
determined finite set of states. The change of state in each time step depends on a set
of transition rules (or bridging function), which are constructed based on the possible
states of the cell itself and its neighboring cells [20].

A cellular automaton can be defined as a 4-tuple (L,E,N, f ), in which:

– L is a regular d - dimensional grid, formed by cells,
– E is a finite set of states,
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a) b)

Fig. 1. Examples of SIR models: a) without and b) with renewal of humans (Source: [1])

– N is a finite set of neighborhoods, of size |N | = n and dimension d, such that for
any cell c in L, its neighborhood N(c) is a subset of L,

– f : En+1 → E is a state transition function (transition rule).

Once the transition rules and an initial state to all cells of the grid have been estab-
lished, the system dynamics can be developed. To ensure a well-defined dynamics of
cellular automata, it is important to obey some boundary conditions. These conditions
indicate how the automaton is characterized beyond its limit and are necessary in or-
der to complete the set of neighboring cells that lie on the edges of the automaton and
influence the result of the application of the transition rules.

2.3 Fuzzy Inference Systems

A fuzzy set can be mathematically defined by assigning to each element of the universe
of discourse a value on a limited scale. This degree represents how much each element
is compatible with (or similar to) the concept represented by fuzzy set [11]. Formally,
a fuzzy set A in the universe of discourse Ω is defined by a membership function A :
Ω → [0, 1].

In a Fuzzy Inference System (FIS), knowledge about a problem is encoded by a
set of rules of thumb, having fuzzy sets in the premise and/or conclusion. Given the
values of a set of input variables (measurements or observations), a value for the output
variable is computed using the rules. In the so-called classical fuzzy systems, whose
main representative is the Mamdani model, knowledge is modeled using rules of the
type

Rj : If x1 is A1,j and ... and xn is An,j Then y is Cj .

Variables xi and y, called linguistic variables, take values in domains Xi and Y , respec-
tively, and Aij and Cj are normalized fuzzy sets associated to them, called fuzzy terms.
A fuzzy set A in X is said to be normalized when ∃ x ∈ X,A(x) = 1.
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In classical fuzzy models, the inference process is described as follows. Let x∗
i ∈ Xi

be the realization value of xi in a given application.

1. The compatibility of the i-th premise of j-th rule with x∗
i is computed as:

αi,j = Ai,j(x
∗
i ), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

2. The overall compatibility of a rule with the input values is calculated as

αj = �(α1,j , ..., αn,j), 1 ≤ j ≤ m.

3. Fuzzy set Cj in the consequent of the rule Rj is combined with αj , yielding a fuzzy
set

C
′
j(y) = I(αj , Cj(y)), ∀y ∈ Y.

4. Fuzzy sets C
′
j are aggregated into a single fuzzy set

C
′
(y) = φ(C1′ (y), ..., Cm′ (y)), ∀y ∈ Y.

5. A crisp value is obtained from C
′

as

y∗ = Def(C
′
).

Conjunctive operator � : [0, 1]2 → [0, 1] is a T-norm, a commutative, associative,
mononotonic operator with neutral element 1. In most applications, the implication op-
erator I : [0, 1]2 → [0, 1] in fact a T-norm, but there exist models that use a residuated
implication operator for I instead [6]. Operator φ is a T-norm when I is a residuated
implication operator and a T-conorm (a commutative, associative, mononotonic opera-
tor with neutral element 0 ) when I is a T-norm. For example, in Mamdani model, we
have � = min and φ = max. Operator Def is a mapping F(Y ) → Y , where F(Y ) is
the set of all fuzzy sets in Y ; in most applications the center of gravity is used for Def .

3 A SIR Framework Using Fuzzy Cellular Automata

In the following, we propose to model the dynamics of a disease in a given community
as a fuzzy cellular automaton, consisting of a two-dimensional geo-referenced grid of
rectangular cells. Our dynamical model is based on the infection transmission rate of a
cell (ρtr), calculated from the rate of infected individuals (ρI ), and the rate of recovered
ones (ρR) in that cell. We consider various levels of geographical vicinity influence and
propose the use of a fuzzy system that has ρI and ρR as input variables and ρtr as output
variable, at each influence level. In a nutshell, in each time step, the transmission rate
calculated for one level of influence modifies the SIR composition of cell for the next
level of influence.
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3.1 Basic Elements of the Proposed SIR Framework

The model is based on a cellular automaton (L,E, V, f) as described in the previous
section. We list below the main elements of our framework:

– Each cell c in the cellular automaton is defined by a vector that represents the
population inhabiting the physical space corresponding to that cell.

– In the simplest model, the data stored on cell c includes the amount of susceptible,
infected and recovered individuals in c, respectively denoted by I , R and S. The
total number of humans is denoted by T and is given by T = I + R + S.

– In some problems, it is also necessary to divide the total infected humans I into m
stages of infection I1, I2, ..., Im.

Here we list some of the particularities of the basic model:

– The number of agents that transmit the disease is not explicit; it is taken implicitly
into account in the number of infected humans.

– The population size of humans (and implicitly of vectors) are considered to be con-
stant. The number of humans in each cell may vary, but we do not consider renewal,
i.e., birth, death, immigration and emigration are not taken into consideration ex-
plicitly.

– We consider that a certain percentage of the population is asymptomatic and that
individuals move to neighboring areas.

– We consider that diseases can have different infections stages.
– Climate variations are not considered, as well as the composition of the population

is terms of age.
– Moore vicinity is assumed, with zero boundary condition [20].

Infection stages can last different lengths of time. However, in our simplified model,
we considered the duration for all stages as the same length of the time step adopted in
the implemented simulation environment.

3.2 Proposed Dynamic Model

Infectious diseases caused by viruses can have one or more hosts. In the case of flu
in humans, the transmission is done from one individual to the other. In dengue, the
transmission cycle is done with two hosts: humans and mosquitoes. In the case of more
than one type of host, the dynamics of the disease can be modeled by addressing the
dynamics of each host. For example in the case of dengue, we could use the SIR model
for humans and SI for the mosquitoes. One can also model the dynamics of this kind
of diseases, considering only the dynamics of a single host explicitly, and leaving the
dynamics of other hosts implicit.

The dynamic model proposed here is the simple one, where transmitting agents (vec-
tors) are not dealt with explicitly. It is thus as if a host infected another individual of
the same type directly. The rules proposed above still apply, in the sense that the larger
is the group of of infected individuals of the first type of hosts, the larger becomes the
group of infected individuals of the second type of hosts, which in turn further enlarges
the group of infected hosts of the first type.
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Here we consider that the closer are infected neighbors to an individual, the larger
their influence in getting that individual also infected. We propose to use the concept of
local influence, considering the individuals inside a cell, and non local influence con-
sidering those from neighboring cells. We consider here that several levels of influence
are possible, and number them; level 0 corresponds to the local influence. Using Moore
vicinity, for instance, we would consider for instance 8 neighbors at the first level of non
local influence, then 33 at the second level, etc. Figure 2 illustrates the cells involved in
different influence levels.

Local Level 1 Level 2 ... Global

Fig. 2. Different areas of influence of infection that may be present in a model, from local to
global, with intermediary levels

When we consider the influence of neighboring cells on the health of individuals
inside a cell, we have to consider the mobility of the infected humans of the cell itself,
as they can move to other cells and favor the infection of individuals on those cells.
Moreover, we have to consider that infected individuals have reduced mobility, due to
their physical condition, except for the asymptomatic ones.

We propose to use the following input parameters to model asymptomatic humans
and human mobility:

– ρasy is the percentage of individuals with asymptomatic infections (no symptoms),
which is related to environmental factors, individual agent and transmitter of the
virus itself;

– ρmob is the human mobility rate to neighboring cells.

For each level of influence, we calculate parameters ρI , ρR and ρtr. The transmission
rate ρtr is used to calculate a new SIR composition for the cell inhabitants; ρtr itself
is derived using a fuzzy system (see below). The levels of influence are considered
sequentially: the composition of a cell is changed after the local influence is treated,
with some susceptible individuals becoming infected, and others recovered, the new
composition is the basis for processing in the next influence level, and so on, until the
influence of all relevant levels are addressed.

Let c be a cell of interest, with its corresponding SIR parameters I , R and S, with
T = S + I + R. Let Nc denote the neighboring cells of c, considering a given level of
influence. Let Iα and Rα denote the number of infected and recovered individuals in a
cell α in Nc. We calculate ρI and ρR, in relation to a cell c, as:

1. Local influence (level 0):
(a) ρI = I/T ;
(b) ρR = R/T .
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2. Non local influence (levels greater than 0):
(a) tI = I × ρmob × ρasy +

∑
α∈Nc

Iα;
(b) tR = R × ρmob +

∑
α∈Nc

Rα;
(c) tT = (S + R) × ρmob + I × ρmob × ρasy +

∑
α∈Nc

Tα;
(d) ρI = tI/tT ;
(e) ρR = tR/tT ,

Values tT , tI and tR respectively quantify the total number of individuals, the number
of infected individuals and the number of recovered individuals in the neighborhood of
a cell, taking into account the individuals from the cell that have mobility (full mobility
for the recovered ones and reduced one for the infected as only the asymptomatic are
considered). The rate of susceptible individuals ρS is not taken into account explicitly,
since it can be determined from ρI and ρR, as ρS = 1 − ρI − ρR.

In some problems, several stages of an infection should considered. In this case, we
propose to change individuals from stage k to stage k+1 after Δk steps. The individuals
in the first stage are the susceptible ones that got infected at the step being processed.
At the end of each time step, individuals in stage I1 move to I2, those in I2 move to
I3 and so on, until people in the last stage move to R. Table 1 illustrates the behavior
of a cell c of the automaton in an iteration, with three infection stages and m levels of
influence (0 to m − 1); level m denotes the final results.

Table 1. Behavior of a cell of the automaton in an iteration, for m levels of influence

T (0) S(0) R(0) I(0) I1(0) I2(0) I3(0) ⇒
⇒ ρR(0) ρR(0) ⇒ ρtr(0) ⇒

⇒ T (1) S(1) R(1) I(1) I1(1) I2(1) I3(1) & tT (1) tI(1) tR(1) ⇒
⇒ ρR(1) ρR(1) ⇒ ρtr(1) ⇒ ...

... ⇒ ρR(m− 1) ρR(m− 1) ⇒ ρtr(m− 1) ⇒
T (m) S(m) R(m) I(m) I1(m) I2(m) I3(m)

3.3 Fuzzy Inference System

Some applications using fuzzy systems to model transition rules in cellular automata in
epidemiological problems can be found in [17] and [14]. These works both extend the
approach proposed by [5] to study the temporal evolution of a disease of type SIR using
cellular automata, taking into account a spacial structure. In [5], the authors consider
that each cell in the automata is occupied by an individual. The disease transmission
takes into account two types of proximity: a local one, considering the cell immediate
neighbours (8) and individuals in a distance of radiusL from that cell. In the second type
of proximity, the interaction between individuals is made considering random values for
L. In [17] and [14], the cells still correspond to individuals but instead of aleatory values
for L, a fuzzy system is used. In both works, a Mamdani fuzzy inference system is used,
having the length L as the output variable in the conclusion of the rules.

Here we propose to create a fuzzy inference system that takes the percentages of
infected and recuperated individuals in a cell to determine the percentage of individuals
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in that cell who are expected to become infected (in the first stage) in the next time step.
More formally, the infection transmission rate determines, for each cell in the grid, the
amount of people in set S that will pass to set I1, after Δ1. These values are then used
to compute the state of each cell at the next time step.

The variables used in the fuzzy rule base are formally defined as:

– Input variables: ρI ∈ [0, 1] (rate of infected individuals in a cell) and ρR ∈ [0, 1]
(rate of recuperated individuals in a cell).

– Output variable: ρtr ∈ [0, 1] (rate of susceptible individuals in a cell that will be-
come infected).

The rate of susceptible individuals ρS ∈ [0, 1] is not taken into account since it can be
determined from ρI and ρR, as ρS = 1 − ρI − ρR.

Here we present a simple general fuzzy cellular automaton, used in the remaining of
this work. Each input and output variable is associated with the same set of linguistic
terms: L (Low), M (Average), H (High) defined on domain [0,1]. The rule base was
defined empirically and is described below:

1. If ρI is L, Then ρtr is L
2. If ρI is M , Then ρtr is M
3. If ρI is H , Then ρtr is H
4. If ρR is L, Then ρtr is H
5. If ρR is H , Then ρtr is L

The three first rules state that the highest the number of infected people, the higher
the chances of susceptible individuals becoming infected. The two last rules state that
the highest the number of recuperated individuals, the lower the chances of susceptible
people becoming infected. Figure 3 illustrates the linguistic variables the dynamics of
dengue (see Section 4).

Fig. 3. Fuzzy terms of input and output used in dengue application
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3.4 Implementation

This dynamical model was implemented using the programming environment for mod-
eling spatial dynamics TerraME [3]. TerraME provides a connection to the geographic
database TerraLib [2], and use Lua programming language [9] for creating models. Ter-
raLib, a class library written in C++, provides functions to decode spatial data, spatio-
temporal data structures and spatial analysis algorithms. It also providing a model for
geographic databases. Lua combines simple procedural syntax with data description
constructs based on associative arrays and extensible semantics. LuaFuzzy library1,
written entirely in Lua, was used to implement a Mamdani fuzzy system.

We have also used TerraView2, a Geographic Information System (GIS), developed
from TerraLib for acquisition of vector and matrix spatiotemporal data, as well as visu-
alization and analysis. Using TerraView, one can construct a Geographical Data Base
(GDB) for a given area. One of the layers of a with a layer may contains census tract
maps, as well as static tables linked to the map, with identification data such as geocode
and the district name for each census tract in an municipality. TerraView has an oper-
ator, called majority class, that determines, from all the polygons that intersect with a
given cell (e.g. sectors tracts), the one that has the largest area of intersection with that
cell. In this way, the attributes of each cell are the same attributes of the census tract
that has the largest area of intersection with that cell.

4 An Application with Dengue Virus Infection

Dengue is an arthropod-borne disease and is caused by four different virus serotypes:
DENV1, DENV2, DENV3 and DENV4. In Brazil, the main vector of transmission is
the Aedes aegypti species. The spread of dengue virus infection in humans for each
serotype can be modeled using compartmental SIR models.

Given the complexity of the epidemiology of dengue, due to interactions between
humans, mosquitoes, infection stages and various serotypes, as well as effective strate-
gies for mosquito survival, computational modeling approach to compartmental mod-
eling can assist in understanding the diffusion process of the disease and its influencing
factors.

4.1 Cell Environment Construction

We have created an application of our model for dengue, using Ilha do Governador
(Governor’s Island), located in the city of Rio de Janeiro, in Brazil. First of all, we have
created a a GDB for Ilha do Governador using TerraView. A grid was created on an area
map, with square cells of 134 x 116 resolution. The attributes of each cell (for example,
the name of the district to which the cell belongs) were defined by the majority class
function, described in the previous section.

By visual inspection on a satellite image, we have manually determined which cells
could be consider as uninhabited (forests, parts of the airport, etc). Any cell whose

1 http://luaforge.net/projects/luafuzzy/
2 http://www.dpi.inpe.br/terraview/index.php

http://luaforge.net/projects/luafuzzy/
http://www.dpi.inpe.br/terraview/index.php
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intersection area with the polygons of census tracts was less than 0.5 (50 %), was also
considered uninhabited (e.g., small areas on the shoreline). Figure 4 depicts Ilha do
Governador, by both census tracts and the obtained cellular space.

The data about the population in Ilha do Governador, as well as the number of regis-
tered dengue cases, were obtained from the Municipal Health and Civil Defense Agency
of the City of Rio de Janeiro3. Both types of data are divided into districts. The dengue
cases are relative to year 2001 and the population data wew obtained from the year 2000
census. We have used the hypothesis that only 40% of the total number of dengue cases
were reported to SINAN (Information System for Notifiable Diseases), corresponding
to the bedridden symptomatic infected individuals. The population was then distributed
evenly in the inhabited areas, according to the district to which they belong. The total
number of cases, calculated from the reported ones, was divided between recovered and
infected individuals, and uniformly distributed in the cells. The number of susceptible
individuals in each cell c have been calculated as the difference between the total num-
ber of humans and the sum of infected and recovered humans, i.e., S = T − (I + R).

a) b)

Fig. 4. Ilha do Governador represented by: a) census tracts b) cellular space (cells in yellow are
considered uninhabited) [4]

4.2 Particularities of the Model

To simulate the spread of dengue virus infection on Ilha do Governador, the transmit-
ting agent (which is implicit in the model) is the Aedes aegypti mosquito species; for
simplicity, we considered that there was only one serotype circulating, DENV3, the
predominant serotype since the 2001 dengue epidemic in Rio de Janeiro [16].

We considered two levels of influence: level 0 (local) and level 1 (non local), formed
by neighboring cells of radius one in Moore vicinity, considering inhabited cells. In the
real world types occur simultaneously influence, but for reasons of implementation and
layout decided to apply the local influence and subsequently non-local (as described in
subsection 3.2) to find the values of ρI and ρR. Using these values as input to the fuzzy
system, we obtained the transmission rate as output. This rate was then used to calculate
the new values of susceptible and individuals people in the 1st stage of infection.

This model has three stages of infection. The period in which people stay in any of
the three stages of the infection is 2 days (Δ1 = Δ2 = Δ3 = 2), ie, a person infected

3 http://www.rio.rj.gov.br/web/smsdc

http://www.rio.rj.gov.br/web/smsdc
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remains a total of 6 days before recovering. At the end of an iteration, people in the last
stage of infection moved to the recovered group. It is considered that at the time t = 0,
all people infected in the cell environment (as constructed in Section 4.2), are in the first
stage of infection.

The input variables of the Fuzzy Inference System and the range of numeric values
defined for the output variable (0 to 0.05) were defined empirically. In the simulations
were used sigmoidal and Gaussian functions.

In the simulation, the rate of human mobility to neighboring cells is 30 % (ρmob =
0.3) and In the simulations, as well as the construction of the cellular environment, it
was considered that 40 % of cases of dengue are symptomatic, ie, ρasy = 0.6.

4.3 Results

Using the the GDB created for Ilha do Governador and the fuzzy rules presented pre-
viously, with the linguistic variables depicted in Figure 3, we have created the fuzzy
system for the dengue dynamics described in the previous section. We ran a the simula-
tion of the model, using this fuzzy system and the parameters described above. We have
used Moore vicinity, yielding 9 and 33 cell neighbors in levels 0 and 1, respectively.
Table 4.3 shows an example of a complete iteration of the automaton in a hypothetical
cell using this simulation.

Table 2. Example of a partial iteration in a hypothetical cell c of the automaton in our application,
with parameters ρasy = .6 and ρmob = .3 and

∑
α∈Nc

Iα = 80,
∑

α∈Nc
Rα = 150 and∑

α∈Nc
Tα = 800. Only two levels of influence have been considered, local (level 0) and the

first one of the non local influence (level 1); level 2 only denotes the final results.

T (0) S(0) R(0) I(0) I1(0) I2(0) I3(0)
100 68 22 10 3 5 2

⇒

⇒ ρI(0) ρR(0)

0.1 0.22
⇒ ρtr(0)

0.0424
⇒

⇒ T (1) S(1) R(1) I(1) I1(1) I2(1) I3(1)
100 65 22 13 6 5 2

&
tT (1) tI(1) tR(1)

829 82 157
⇒

⇒ ρI(1) ρR(1)

0.099 0.19
⇒ ρtr(1)

0.0437
⇒

⇒ T (2) S(2) R(2) I(2) I1(2) I2(2) I3(2)
100 64 24 12 4 3 5

The result for a simulation in our application is shown in Figure 5. We see that
the dynamical model has been able to represent qualitatively the behavior of a SIR
epidemiological model. Changes in the various parameters result in different curves,
but they should all follow the basic SIR graph, because we move the individuals from
one state to the other following the SIR order.

It is important to note here that since the mosquito Aedes aegypti is not modeled
directly, but implied by infected humans, this model only serves as an early example or
illustration of the use of SIR model using fuzzy cellular automata, and is not meant to
serve as a means of forecasting, planning, disease control or similar.
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Fig. 5. Results of the proposed model in a simulation for dengue, without renewal of humans

5 Conclusions and Future Work

We have proposed a SIR model to represent the dynamics of an infectious disease in a
given community. Our dynamical model is based on the infection transmission rate of
a cell, calculated from the rate of infected individuals and the rate of recovered ones
in that cell. We have also proposed to implement this model using a fuzzy cellular au-
tomaton, consisting of a two-dimensional geo-referenced cell grid. Our model considers
various levels of geographical vicinity influence and uses a fuzzy system to calculate
the infection transmission rate. Moreover, we have created an application of our model
for dengue, a viral disease, using Ilha do Governador (Governor’s Island), located in the
city of Rio de Janeiro, in Brazil.

Our approach considers two important characteristics for transmission models of
infectious disease type SIR: the percentage of recovered and the percentage of asymp-
tomatic individuals. The larger the amount of people recovered from the disease (ie
immunized), the slower the disease will be transmitted, since the number of contacts
between the infected and susceptible individuals decreases. On the other hand, the
asymptomatic individuals are directly responsible for the mass continuity of disease
transmission, as they continue their daily mobility normally.

A variety of environmental factors influences the spatial and temporal dynamics of
vector populations in the case of vector transmitted diseases [7]. Studying the factors
influencing spatial patterns of mosquito transmitted diseases such as dengue is some-
what complicated, since it requires refined data about climate, vectors and their aquatic
stages. Such studies and collection types still occur locally in some areas within mu-
nicipalities in Brazil (see, for example, [18]), but are not done in a general basis. Thus,
computational simulation becomes an important tool in the study of scenarios and spa-
tial patterns of disease transmission, as well as to help decision making.

Our fuzzy cellular automaton creates an environment in which the spread of SIR
diseases can be studied, allowing the observation of disease prevalence spatial pat-
terns. The approach has yet to be validated by experts but they already indicate that
the approach is very promising, since the dynamical model has been able to represent
qualitatively the behavior of a SIR epidemiological model. It is important to note that,
however, the model is not aimed at making forecasts about diseases, but rather to gen-
erate temporal, spatial or spatial-temporal scenarios that allow a better understanding
of the complexity as well as the dynamics of disease transmission.
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Disease spread is traditionally modeled using differential equations. The drawback of
this approach is two-fold. On the one hand, it does not take into account spatial hetero-
geneity. On the other hand, as the number of parameters increases, the complexity of the
equations increase drastically. Fuzzy systems can be useful in this context, by incorpo-
rating knowledge from experts. Moreover, fuzzy systems allow for a rapid prototyping
process, which does not always occur when the transition function is analytical, given
its complexity. Expert knowledge can also be an alternative to the better understanding
of a given topic, in the lack of data. That is for instance the case of the study of disease
dynamics, when spatially refined data is poor. The fuzzy approach allows dealing more
easily with different levels of uncertainty and imprecision that occur, when using vague
concepts and parameters of a subjective nature. Our dynamic model has shown that a
small set of simple fuzzy rules is capable of dealing with a rather complex problem.
Another advantage is that these rules are easily understood by disease scholars without
deep mathematical training.

Our model differs from others in the literature for similar problems [17] and [14]. In
those works, each cell corresponds to a single individual, whereas we consider that each
cell is inhabited by a a population of individuals. In our case, the interactions between
groups of susceptible, infected and recuperated humans are considered in a statistical
basis and is thus less subject to individual mobility.

In the future, we intend to extend our model, by incorporating a human renewal
rate, which will allow modeling the epidemic that occurs in cycles, since in this case
there will always exist people susceptible to the disease. We also intend to extend the
basic framework to more complex models of vector transmitted diseases, In this case,
the population of vectors is taken into account explicitly, what requires the use of extra
parameters. For example, in diseases such as dengue, the infection process of the vectors
follows a SI (Susceptible-Infected) model and additional numbers would be needed to
account for them. Also, in the particular case of the dengue model, other serotypes
may be included. Last but not least, intervention measures may be considered, as the
presence of Wolbachia bacteria in mosquitoes or vaccination strategies, considering that
dengue vaccines are nowadays under development.
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