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Preface

The 10th International Workshop on Fuzzy Logic and Applications, WILF 2013,
held in Genoa (Italy) during November 19-22, 2013, covered topics related to
theoretical, experimental, and applied fuzzy techniques and systems with em-
phasis on their applications in the analysis of high-dimensional data.

This event represents the pursuance of an established tradition of biannual in-
terdisciplinary meetings. The previous editions of WILF have been held, with an
increasing number of participants, in Naples (1995), Bari (1997), Genoa (1999),
Milan (2001), Naples (2003), Crema (2005), Camogli (2007), Palermo (2009), and
Trani (2011). Each event has focused on distinct main thematic areas of fuzzy
logic and related applications. From this perspective, one of the main goals of
the WILF workshops series is to bring together researchers and developers from
both academia and high-tech companies and foster multidisciplinary research.

After a rigorous peer-review selection process, we selected 19 high-quality
manuscripts from the submissions received from all over the world. These were
accepted for presentation at the conference and are published in this volume. In
addition to regular papers, the present volume comprises the contributions of
the three keynote speakers:

— Isabelle Bloch (Telecom ParisTech and CNRS LTCI Paris, France) “Model-
Based Image Interpretation Under Uncertainty and Fuzziness”

— Frank Klawonn (Ostfalia University of Applied Sciences, Wolfenbiittel, Ger-
many) “What Can Fuzzy Cluster Analysis Contribute to Clustering of High-
Dimensional Data?”

— Paulo Lisboa (Liverpool John Moores University, Liverpool, UK) “Inter-
pretability in Machine Learning — Principles and Practice”

The contributions of the two tutorial presenters are also included:

— Nahla Ben Amor (University of Tunis, Tunisia) “Possibilistic Graphical Mod-
els: From Reasoning to Decision Making”
— Corrado Mencar (University of Bari, Italy) “Interpretable Fuzzy Systems”

The success of this workshop is to be credited to the contribution of many
people, in particular to the Program Committee members for their commitment
to provide high-quality, contructive reviews, to the keynote speakers and the
tutorial presenters, and to the local Organizing Committee for the support in
the organization of the workshop events.

September 2013 Francesco Masulli
Gabriella Pasi
Ronald Yager



Organization

WILF 2013 was jointly organized by the DIBRIS, University of Genoa, Italy,
the EUSFLAT, European Society for Fuzzy Logic and Technology, the IEEE,
Computational Intelligence Society, Italian Chapter, the INNS, International
Neural Network Society, SIG Italy, and the SIREN, Italian Neural Networks
Society.

Conference Chairs

Francesco Masulli
Gabriella Pasi
Ronald Yager

Program Committee

Plamen Angelov
Valentina Emilia Balas

Sanghamitra Bandyopadhyay

Andrzej Bargiela
Eric Benoit

Gloria Bordogna
Humberto Bustince
Christer Carlsson
Giovanna Castellano
Oscar Castillo
Gianpiero Cattaneo
Giulianella Coletti
Celia Da Costa Pereira
Mario Fedrizzi

Anna Maria Fanelli
Brunella Gerla
Ashish Ghosh
Fernando Gomide
Ugur Halici
Katsuhiro Honda
Janusz Kacprzyk
Nik Kasabov

Laszl6 Koczy

Etienne Kerre

University of Genoa, Italy
University of Milano-Bicocca, Italy
Tona College, New York, USA

Lancaster University, UK
Aurel Vlaicu University of Arad, Romania
Indian Statistical Institute, Kolkata, India
University of Nottingham, UK
LISTIC Université de Savoie, France
CNR, Italy
UPNA, Spain
Abo Akademi University, Finland
University of Bari, Italy
Tijuana Institute of Technology, Mexico
University of Milano-Bicocca, Italy
University of Perugia, Italy
Université de Nice Sophia Antipolis, France
University of Trento, Italy
University of Bari, Italy
University of Insubria, Varese, Italy
Indian Statistical Institute, Kolkata, India
University of Campinas, Sao Paulo, Brazil
METU, Ankara, Turkey
Osaka Prefecture University, Japan
Polish Academy of Sciences, Warsaw, Poland
Auckland University of Technology,

New Zealand
Budapest University of Technology and

Economics, Hungary
Ghent University, Belgium



VIII Organization
Frank Klawonn

Donald Kraft

Vladik Kreinovich
Malay Kumar Kundu
Luis Magdalena

Francesco Marcelloni
Corrado Mencar
Javier Montero
Anca Ralescu
Alexander Shostak
Eulalia Szmidt

Domenico Tegolo
Slawomir Zadrozny

Scientific Secretariat

Stefano Rovetta
Mahdi Amina,
Angela Locoro
Hassan Mahmoud
Raffaella Rosasco

Ostfalia University of Applied Sciences,
Wolfenbiittel, Germany

Colorado Technical University, USA

University of Texas at El Paso, USA

Indian Statistical Institute, Kolkata, India

European Centre for Soft Computing, Mieres,
Asturias, Spain

University of Pisa, Italy

University of Bari, Italy

Universidad Complutense de Madrid, Spain

University of Cincinnati, USA

University of Latvia, Latvia

Systems Research Institute Polish Academy of
Sciences, Poland

University of Palermo, Italy

Polish Academy of Sciences, Warsaw, Poland

University of Genoa, Italy
University of Genoa, Italy
University of Genoa, Italy
University of Genoa, Italy
University of Genoa, Italy

WILF Steering Committee

Antonio Di Nola
Francesco Masulli
Gabriella Pasi
Alfredo Petrosino

University of Salerno, Italy

University of Genoa, Italy

University of Milano-Bicocca, Italy
University of Naples Parthenope, Italy

Congress Management

Rosa D’Eventi, Genoa (Italy)

Financing Institutions

DIBRIS, University of Genoa, Italy
EUSFLAT, European Society for Fuzzy Logic and Technology



Table of Contents

Fuzzy Machine Learning and Interpretability

What Can Fuzzy Cluster Analysis Contribute to Clustering of

High-Dimensional Data? ......... ... . i

Frank Klawonn

Interpretability in Machine Learning — Principles and Practice .........

P.J.G. Lisboa

Interpretability of Fuzzy Systems ....... ... ... ... .. .. ... . ...

Corrado Mencar

Feature Selection Based on Fuzzy Mutual Information ................

Michela Antonelli, Pietro Ducange, and Francesco Marcelloni

A New Heuristic Function for DC* .. ... .. ... .. . . ..

Marco Lucarelli, Corrado Mencar, Ciro Castiello, and
Anna Maria Fanelli

Learning Membership Functions for Fuzzy Sets through Modified

Support Vector Clustering .......... ...,

Dario Malchiodi and Witold Pedrycz

Using Fuzzy Multilayer Perceptrons for the Classification of Time

ST ES o et

Toni Pimentel, Fernando M. Ramos, and Sandra Sandri

Imputation of Possibilistic Data for Structural Learning of Directed

Acyclic Graphs ... ...

Maroua Haddad, Nahla Ben Amor, and Philippe Leray

Adding Real Coefficients to Lukasiewicz Logic: An Application to

Neural Networks . ..ot

Antonio Di Nola, Brunella Gerla, and loana Leustean

Theory

Possibilistic Graphical Models: From Reasoning to Decision Making . . ..

Nahla Ben Amor

15

22

36

44

52

60

68

7

86



X Table of Contents

Ranking Triangular Fuzzy Numbers Using Fuzzy Set Inclusion Index . ..

Azedine Boulmakoul, Mohamed Haitam Laarabi,
Roberto Sacile, and Emmanuel Garbolino

Towards Categorical Fuzzy Logic Programming ......................

Patrik Eklund, M. Angeles Galdn, Robert Helgesson,
Jari Kortelainen, Ginés Moreno, and Carlos Vdzquez

Probability-Possibility Transformation: Application to Bayesian and

Possibilistic Networks .. ...

Yosra Ben Slimen, Raouia Ayachi, and Nahla Ben Amor

The Equation Z(S(x,y), z) = T (Z(x, 2),Z(y, z)) for t-representable
t-conorms and t-norms Generated from Continuous, Archimedean

OPEerations . . . ...ttt

Michat Baczyniski

Evaluation and Ranking of Intuitionistic Fuzzy Quantities.............

Luca Anzilli, Gisella Facchinetti, and Giovanni Mastroleo

Approximation of Fuzzy Measures Using Second Order Measures:

Estimation of Andness Bounds ............. .

Marta Cardin and Silvio Giove

Neighbor-Based Similarities ........... .. . i it

Stefano Rowvetta, Francesco Masulli, and Hassan Mahmoud

Applications

Model-Based Image Interpretation under Uncertainty and Fuzziness .. ..

Isabelle Bloch

A Fuzzy System for Background Modeling in Video Sequences . ... .....

Elisa Calvo-Gallego, Piedad Broz, and Santiago Sdnchez-Solano

Shape Annotation by Incremental Semi-supervised Fuzzy Clustering. . . .

Giovanna Castellano, Anna Maria Fanelli, and
Maria Alessandra Torsello

Proficiency of Fuzzy Logic Controller for Stabilization of Rotary

Inverted Pendulum based on LQR Mapping ............. ... .. ... ....

Moez Ul Hassan, Muhammad Bilal Kadri, and Imran Amin

A Fuzzy Approach to Cloud Admission Control for Safe Overbooking. . .

Carlos Vizquez, Luis Tomds, Ginés Moreno, and Johan Tordsson

100

109

122

131

139

150

161

171

184

193

201

212



Table of Contents

Rule Learning in a Fuzzy Decision Support System for the
Environmental Risk Assessment of GMOs ...........................
Francesco Camastra, Angelo Ciaramella, Valeria Giovannelli,
Matteo Lenmer, Valentina Rastelli, Salvatore Sposato,
Antonino Staiano, Giovanni Staiano, and Alfredo Starace

A Fuzzy Cellular Automata for SIR Compartmental Models ...........
Walley da Costa, Liliam Medeiros, and Sandra Sandri

Author Index . ... ... .

XI



What Can Fuzzy Cluster Analysis Contribute
to Clustering of High-Dimensional Data?

Frank Klawonn!-2

! Bioinformatics & Statistics
Helmholtz-Centre for Infection Research
Inhoffenstr. 7, D-38124 Braunschweig, Germany
frank.klawonn@helmholtz-hzi.de
2 Department of Computer Science
Ostfalia University of Applied Sciences
Salzdahlumer Str. 46/48, D-38302 Wolfenbuettel, Germany
f.klawonn@ostfalia.de

Abstract. Cluster analysis of high-dimensional data has become of spe-
cial interest in recent years. The term high-dimensional data can refer
to a larger number of attributes — 20 or more — as they often occur in
database tables. But high-dimensional data can also mean that we have
to deal with thousands of attributes as in the context of genomics or
proteomics data where thousands of genes or proteins are measured and
are considered in some analysis tasks as attributes.

A main reason, why cluster analysis of high-dimensional data is differ-
ent from clustering low-dimensional data, is the concentration of norm
phenomenon, which states more or less that the relative differences be-
tween distances between randomly distributed points tend to be more
and more similar in higher dimensions.

On the one hand, fuzzy cluster analysis has been shown to be less
sensitive to initialisation than, for instance, the classical k-means algo-
rithm. On the other, standard fuzzy clustering is stronger affected by
the concentration of norm phenomenon and tends to fail easily in high
dimensions. Here we present a review of why fuzzy clustering has special
problems with high-dimensional data and how this can be amended by
modifying the fuzzifier concept. We also describe a recently introduced
approach based on correlation and an attribute selection fuzzy clustering
technique that can be applied when clusters can only be found in lower
dimensions.

1 Introduction

Cluster analysis is an exploratory data analysis technique which aims at par-
titioning data into groups (clusters). Instances in the same cluster should be
similar, instances from different clusters should be dissimilar. This might sound
like a very well defined task, but there are actually various open questions in-
volved whose answers are not unique at all.

Although the original intension of cluster analysis is a grouping of the data
in terms of a partition, clustering is often applied to identify one or a few single

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 1-{[4] 2013.
© Springer International Publishing Switzerland 2013



2 F. Klawonn

clusters containing only a fraction of the whole data set. We will not discuss this
question in more detail in this paper.

Cluster analysis is based on the concept of similarity or — the dual notion
— distance. Some clustering techniques like hierarchical clustering require only
the pairwise distances between the instances in the data set to form the clusters.
Whether these distances are based on the Euclidean distance, on some correlation
measure or other notions, is not important for this type of clustering algorithm.
Most clustering algorithms are designed to handle real-valued data, i.e. the data
set is assumed to be a subset of R™. In this paper, we will also restrict our
considerations to such data. It should be noted that it is common to carry out
a normalisation of the single dimensions — see for instance [1] — before cluster
analysis is applied. Normalisation is not the topic of this paper. So we assume
that the data set to be clustered is already normalised if a normalisation is
recommended.

For such data, clustering is then often based on the Euclidean distance or —
more generally — on a metric derived from an LP-norm. There are still different
notions of what a cluster is. In most cases, clusters are assumed to be “compact
clouds” of data. Sometimes, a more general notion of a cluster as a “dense and
connected region” is considered. Especially for high-dimensional spaces, it can be
difficult to define what a densely populated region is, since the high-dimensional
space is more or less always sparsely populated with data and the density can
vary significantly.

Figure [ illustrates the notion of ideal clusters in three dimensions. There are
three clusters that are well-separated from each other. Unfortunately, clusters
in higher dimensions cannot be visualised in such a simple way and, even worse,
high-dimensional data have peculiar properties making it more difficult to define
what clusters are and to identify clusters in high-dimensional data.

In the following section, we will shortly recall problems caused by high-
dimensional data in the context of cluster analysis. Section [ provides a brief
review on ideas of fuzzy cluster analysis, especially of those concepts that are
relevant for clustering high-dimensional data. Specific advantages and disad-
vantages of applying fuzzy clustering to high-dimensional data are discussed in
Section [

2 What Are Clusters in High-Dimensional Data?

Data of dimensionality 30 or more can easily be found in many applications like
industrial production where measurements from a larger number of sensors are
recorded simultaneously and constantly. Patient data in medicine including labo-
ratory results can also have a large number of attributes. But there are also data
with 10,000 or more dimensions, especially in the field of biology and medicine.
High throughput technologies like microarrays can measure the expression of
far more than 10,000 genes easily. It might then be interesting to cluster ex-
pression profiles of patients for better treatment and offer personalised medicine
(see for instance [2]). In [3] growth curves of more than 4000 mutants of bateria
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Fig. 1. Ideal clusters

under more than 100 conditions, i.e. dimensions, were measured by the VITEK®2
technology and clustered.

High-dimensional data exhibit properties that differ from low-dimensional
data and these properties seem sometimes counterintuitive. One of the main
causes for the differing properties of high-dimensional data is the concentration
of norm phenomenon (CoN). It can formally be described in the following Wa
[BU6]. Let X,, be an m-dimensional random vector and let d,,(z) denote the
distance of £ € R™ to the origin of the coordinate system based on a suitable
distance measure, for instance the Euclidean distance. Let n € N be the size
of the sample that is taken from the random vector X,,. Let dE,ﬂ“ ax) and dﬁ,‘? in)
denote the largest and the smallest distance of a point in the sample to the origin
of the coordinate system. Then

) do (Xm) > dgrrlnax) o dgrr;nin)
lim Var =0 = ) —, 0 1
Jom Vor (i o W

m
holds, where —, denotes convergence in probability. In other words, when the
relative variance — relative with respect to the mean distance — of the distances

! This description is taken from [4].



4 F. Klawonn

to the origin converges to zero for higher dimensions, then the relative difference
of the closest and farthest point in the data set goes to zero with increasing
dimensions. The requirement that the relative variance goes to zero is, for in-
stance, satisfied when the random vector X,, is a sample from m independent
and identically distributed random variables with finite expectation and vari-
ance and the Euclidean distance is used as the distance measure. The converse
theorem also holds [6].

It should be noted that the choice of the origin of the coordinate system as
the query point to which the distances of the data points are computed is not of
importance. Equation (J) is also valid for any other query or reference point. The
same applies to the distance measure. It should be noted that other LP-norms
than the Euclidean norms can slightly mitigate the effect of CoN, but cannot
avoid it. Without a deviation from the strict axioms of a norm, it is impossible
to avoid CoN. Other distances, like fractional distances are investigated in [7].
Unbounded distance measures on compact subsets of R™ are proposed in [§]. A
discussion on various distance measures in connection with CoN is provided in
[9U10]).

Why can CoN pose a problem for clustering high-dimensional data? If we have
to deal with well-separated clusters as in Figure [Il just in more dimensions,
CoN does not apply to the data set as a whole. It only applies to the single
clusters. CoN mainly causes an algorithmic problem. Especially for prototype-
based clustering algorithms that start with initial, more or less randomly defined
cluster centres and then try to adjust and fit these cluster centres step by step
to the data. Such a randomly defined cluster centre will have roughly the same
distance to all data clusters and therefore to all data due to CoN. This means
that it is extremely difficult for the algorithm to adjust such cluster centres,
since more or less all data points fit equally bad to all clusters. This algorithmic
problem will be discussed in more detail in Section [4l

But there are more difficulties with high-dimensional data than just this algo-
rithmic problem. Even for low-dimensional data, there might be dimensions or
attributes that do not contribute to the clustering which is usually not a series
problem since one or a few irrelevant attributes will have little effects. But if
the large majority of attributes in high-dimensional data is irrelevant for the
clusters and the distances are computed using all attributes, this simply means
the largest part of the distance is noise. Indeed, for high-dimensional data it
cannot be expected that all attributes contribute to the clusters. Therefore, for
high-dimensional data it is very common to apply subspace clustering (see for
instance [IT/12I13]). Figure [ illustrates by a three-dimensional example what
subspace clustering aims at. The attribute z is irrelevant for the clusters. A pro-
jection of the data set to the z/y-plane would already reveal the clusters. So the
suitable subspace in this case would be the x/y-plane. Of course, the projection
plane in which clusters are detected does not need to be axes-parallel. If only
axes-parallel projections are considered, subspace clustering can be seen as a
feature selection technique.
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Fig. 2. Clusters in a subspace

Challenges for subspace clustering are the search for the right projection in
which the clusters can be found and the possibility of spurious clusters in very
high-dimensional data [4].

If subspace clustering is restricted to axes-parallel projections, it assumes
that all clusters are characterised by the corresponding subset of attributes.
This idea can be generalised in the sense that each cluster has its individual
subset of attributes that are relevant for it. This situation is illustrated for a
low-dimensional data set in Figure Bl For each of the three clusters one of the
three dimensions is irrelevant. The values of the irrelevant attribute spread over
the whole range of values and the attribute does not provide any information for
the cluster. This concept of clusters was discussed in [I4], but not in the context
of high-dimensional data. This idea is related to biclustering [I5/16] or two-
mode clustering [I7] where records and attributes are clustered simultaneously.
Correlation clustering is an even more general concept of clustering for high-
dimensional data. It is assumed that each cluster is located in its own subspace
which can be a simple hyperplane or a more complex structure (see for instance
[13)).

After a brief review of fuzzy clustering concepts, we will discuss how fuzzy
techniques can contribute to clusters in high-dimensional data in the sense of
Figures [l and Bl Subspace clustering will not be discussed in detail here.
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3 Fuzzy Cluster Analysis

Fuzzy c-means clustering (FCM) [I8/19] can be viewed as a generalisation of the
classical k-means clustering algorithm [20]. In both cases the number of clusters
must be fixed in advance. There are additional techniques to determine the
number of clusters. But determining the number of cluster is another issue and
will not be discussed in the context of this paper. FCM uses cluster centres or
prototypes. These prototypes should be positioned in such a way that the sum
of the (squared Euclidean) distances d;; between data point x; in cluster ¢ and
cluster centre v; are minimised. Each data point z; is assigned to the clusters i
in terms of degrees u;;. FCM is therefore based on the objective function

k n
f=02 ulidy (2)

i=1 j=1

to be minimised under the constraints
Zuij =1 foralj=1,...,n. (3)

It is assumed that ¢ clusters should be found in the data set. If the so-called
fuzzifier w is chosen as w = 1, FCM reduces to the classical k-means algorithm.
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The larger the fuzzifier w is chosen, the more fuzzy or overlapping the clus-
ters tend to be. An alternating optimisation scheme is applied to minimise the
objective function (@)). Cluster centres are initialised randomly. Assuming these
cluster centres to be fixed, there is a closed-form solution for the minimum of
@) as a function of the membership degrees w;;.

1
Uij = 1 (4)

w—1
Zk 1 (d,w )

Then these membership degrees are considered to be fixed and a closed-form
solution for the minimum of (&) as a function of the cluster centres v; can be

calculated. .
Z] 1 uzyxj
v; = n y (5)
Zj:l uj

This alternating update scheme of the membership degrees and the cluster cen-
tres is repeated until convergence, i.e. until the changes are below a chosen
threshold. Of course, this alternating optimisation scheme cannot guarantee con-
vergence to the global mimimum of the objective function (2]). It will usually only
converge in a local optimum that might not reflect a good or desired clustering
result.

One advantage of FCM is that it is less sensitive to the initialisation. This is
not only an empirical observation. It can be demonstrated that the introduction
of the fuzzifier can reduce the number of undesired local minima in the objec-
tive function [2I]. Nevertheless, FCM has other disadvantages and can lead to
undesired results, especially when clusters tend to vary in density. Therefore, in
[22], the concept of polynomial fuzzifier (PFCM) was introduced. The objective
function () is changed to

ZZ au; + (1 — a)uy) di (6)

=1 j=1

where o € [0,1] is a fixed parameter. This is nothing else, but a convex com-
bination of the FCM objective function with fuzzifier w = 2 and the k-means
objective function. For a = 1, one obtains FCM with fuzzifier w = 2 and for
a = 0 it results in standard k-means clustering. In this way, PFCM combines
the advantages of FCM and k-means clustering.

k-means and its fuzzified versions can also be extended to fit more flexible
cluster shapes [23] or clusters of different sizes [24]. For a more detailed overview
on fuzzy cluster analysis we refer to [25J26]. To be able to adapt to more flexible
cluster shapes means also that more parameters are introduced, leading to more
local minima of the objective function. Even worse, for high-dimensional data,
basic assumptions of such more complex clustering approaches migt be violated.
The Gustafson-Kessel algorithm [23] suffers from this problem in a similar way
as EM clustering based on Gaussian mixture models. Both approaches estimate
the cluster shape based on a covariance matrix. For very high-dimensional data
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the covariance matrices are often degenerated. For 10,000-dimensional data the
covariance matrices of the clusters are automatically degenerated when the num-
ber of data points is less than 10,000.

Nevertheless, we will consider one specific extension of (fuzzy) clustering which
reflects the idea of clusters as shown in Figure Bl A weighting of attributes is
introduced into the objective function (2)) by modifying the distance.

dy = oL () =)’ )
s=1

where xg-s) and ’UZ-(S) are the values of the s-th attribute of the data point z; and

the cluster centre v;, respectively. 3; s is the weight that attribute s obtains for
cluster i. The weights must satisfy the constraint

> Bis = L (8)

t > 1 is a fixed parameter which controls how much the clusters are forced to
focus on attributes. For t — 1, each cluster will put its full weight on only one
attribute. For t — oo all attributes will obtain the same weight as in the usual
clustering algorithms. The algorithm is described in detail in [I4].

4 Fuzzy Cluster Analysis for High-Dimensional Data

Let us first consider the case of high-dimensional data where clusters are well-
separated as illustrated in Figure [I] for the low-dimensional case. As mentioned
above, this mainly turns out to be an algorithmic problem. If we knew the lo-
cation of the cluster centres, we could easily verify that we have well-separated
clusters. Standard k-means has a high chance to get lost in a local minimum
where some prototypes cover more than one data cluster and other protoytpes
split a data cluster into smaller artificial clusters. As mentioned above, FCM
can reduce the number of local minima in the objective function and one would
expect that FCM could therefore better cope with high-dimensional data. Un-
fortunately, FCM performs even worse for high-dimensional data than k-means
clustering. It happens very often that all or most of the prototypes — the com-
puted cluster centres — gather closely around the centre of gravity of the whole
data set. Taking a closer look at the update equation (@) of FCM and taking
CoN into account, this is no surprise. The membership degrees are computed
based on the relative distances of the data points to the prototypes. At the start
of FCM, the prototypes will usually not be close to the centres of the data clus-
ters. In this case, CoN shows its effects and all data points will have roughly the
same relative distance to a prototype, so that the membership degrees also be-
come roughly the same for all data points. When the prototypes are updated by
Equation (f), all data points obtain roughly the same weight and the prototypes
end up close the centre of gravity of the whole data set.
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Fig. 4. The objective function of fuzzy clustering has a local minimum in the centre of
all data points for high-dimensional data

Figure [ from [27] explains this effect. It shows the objective function (2] of
fuzzy clustering reduced to one parameter for a specific data set. The data set
consists of a fixed number of well-separated clusters — each of them concentrated
in a single point — distributed uniformly on the surface of an (m —1)-dimensional
unit hypersphere. The cluster prototypes are first all placed into the origin, i.e.
the centre of gravity of all the data points. Then the cluster prototypes are
moved along the lines connecting each cluster prototype with one of the true
cluster centres. So at 0 on the x-axis in Figure M all prototypes are at the origin
(radius=0), at 0.5 they are halfway between the origin and the true cluster
centres and at 1 each of the prototypes is placed exactly in one of the cluster
centres. As can be seen from the figure, the clear global minimum of the objective
function is at 1, i.e. when all prototypes are placed in the true cluster centres.
But there is a local minimum at the origin, separated by a local maximum
from the global minimum. The local maximum is shifted more to the right for
higher dimensions. Since the algorithm to minimise the objective function of
fuzzy clustering can be viewed as a gradient descent technique [28], the cluster
prototypes will end up in the local minimum at the origin when the initialisation
is not close enough to the true cluster centres.

According to [27], one possible solution to this problem is an adjustment of
the fuzzifier. The higher the dimension of the data, the smaller the fuzzifier
should be chosen. This is, however, a tedious parameter adjustment task and it
is difficult to define rules of thumb for the choice of the fuzzifier based on the
dimensionality of the data set. But it was demonstrated in [27] that PFCM does
not suffer from the problems of FCM. In contrast to FCM, PFCM assigns zero
membership degrees to data points that are very far away from a prototype.
But it also avoids the problems of k-means clustering. Since k-means clustering
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Fig. 5. Distribution of the per data point maximum membership degrees for standard
FCM (left) and FCM with attribute selection (right)

assigns each data point to a unique cluster, a prototype has no information about
data points that are close, but a little bit closer to another cluster. The objective
function of PFCM will also have the undesired local minimum shown for FCM in
Figure @ However, the local maximum will be very close to zero and PFCM will
only get lost in the undesired local minimum when all prototypes are initialised
very close to the centre of gravity of the whole data set. It was also demonstrated
in [27] with various benchmark data sets that PFCM performs much better than
k-means clustering and FCM.

Another interesting clustering approach for high-dimensional data borrowing
from fuzzy concepts was recently introduced in [29]. The underlying principle
of the clustering algorithm is based on the following obvious observation. For
each point in the data set consider its distances to all other data points. For
any two points in the data set, the correlation between their distance lists can
be computed. One would expect a higher correlation for points from the same
cluster than for points from different clusters. The algorithm puts points with
a high correlation in their distance lists together in one cluster. The correlation
measure plays a crucial role in this algorithm. The most popular Pearson corre-
lation is very sensitive to outliers which are very common in the distance lists.
The points in the same cluster will yield small distance values, all others large
ones, so that the Pearson correlation will not be a proper choice. Rank correla-
tion coefficients like Kendall’s tau do not have these problems. However, rank
correlation coefficients are not well suited for real-valued data with noise. They
only consider whether one value is greater than another. But for similar values,
i.e. distances of points far away from the considered cluster, it is more or less a
random event which distance is larger. A more suitable correlation coefficient for
this clustering concept is the robust gamma introduced in [30J3T]. This robust
gamma, correlation coefficient is based on fuzzy orderings and fuzzy equivalence
relations and gives little weight to the ordering of almost identical values, i.e.
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similar distance values in the clustering context. The same benchmark data sets
as in [27] were used in [29] to evaluate the performance of this clustering ap-
proach with respect to high-dimensional data. The results were again far better
than the ones obtained by k-means clustering and FCM.

Finally, we investigate whether it is possible to detect clusters as illustrated
in Figure [ in high-dimensional data on the basis of the distance function in
Equation () with a weighting of attributes. We consider an artificial data set of
20 dimensions. There are 20 clusters and each of them contains 50 data points.
For each cluster, all but one attribute follow a standard normal distribution
with mean 0 and variance 1. For each dimension, there is one cluster in which
the corresponding attribute follows a normal distribution with mean 8, so that
only in this specific dimension, the cluster is very well separated from the other
clusters.

We first apply standard FCM. For each of the 1000 data points, we choose the
highest membership degree to the 20 clusters and plot a histogram over these
membership degrees. This histogram is shown on the left-hand side of Figure [l
The maximum membership degrees are all very close to 0.05. For 20 clusters,
the average membership degree will be 0.05. This means no data point has a
significantly high membership degree to any cluster. Incorporating the attribute
selection technique as described in [I4], we obtain the histogram on the right-
hand side of Figure Bl which indicates that clusters have been better identified.
But how well were the clusters identified?
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Fig. 6. Heatmap for the weights 3; s
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In order to see this we take a look at the weights f3; 5, i.e. how much influence
attribute s has on cluster i. Figure [0] visualises these weights in the form of a
heatmap. The rows correspond to the clusters, the columns to the attributes.
The positive result is that each cluster more or less focuses on a single attribute,
i.e. in each cluster all except one attribute have a weight close to zero. The
negative result is that some clusters have chosen to focus on the same attribute
which means that these clusters share the same data cluster. And therefore, some
clusters have not been discovered. This problem actually comes along with the
problem of determining the number of clusters. We have assumed the number of
clusters to be known in advance, which is not a realistic assumption. One way
to determine the number of clusters, is to start the clustering algorithm with a
sufficiently large number of clusters and then merge similar clusters together in
a similar way as described in the compatible cluster merging strategy in [32]. In
this way, one would discover the 20 clusters correctly.

5 Conclusions

Fuzzy cluster analysis can contribute to clustering high-dimensional data. One
must, however, be very careful with the choice of the methods. Standard FCM
has even more difficulties with high-dimensional data than k-means clustering
unless the fuzzifier is carefully adapted to the number of dimensions. PFCM as a
mixture of crisp and fuzzy clustering can better cope with high-dimensional data.
The underlying assumption is in any case that (almost) all attributes are actu-
ally relevant for the clusters. If clusters should be found in subspaces, subspace
clustering techniques are a better choice. If it is assumed that each cluster has
its own specific set of characteristic attributes, FCM or PFCM in combination
with weighting of attributes can be applied. This approach is, however, limited
to data of moderate dimensionality, since the number of additional parameters
is ¢-m where ¢ is the number of clusters and m is the dimensionality of the data
set. For m = 10,000, this approach is not really feasible from the computational
point of view.
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References

1. Berthold, M., Borgelt, C., Hoppner, F., Klawonn, F.: Guide to Intelligent Data
Analysis: How to Intelligently Make Sense of Real Data. Springer, London (2010)

2. Kerr, G., Ruskin, H., Crane, M.: Techniques for clustering gene expression data.
Computers in Biology and Medicine 38(3), 383-393 (2008)

3. Pommerenke, C., Miisken, M., Becker, T., Dotsch, A., Klawonn, F., Haussler, S.:
Global genotype-phenotype correlations in pseudomonas aeruginosa. PLoS Patho-
genes 6(8) (2010), doi:10.1371/journal.ppat.1001074



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Fuzzy Cluster Analysis and High-Dimensional Data 13

Klawonn, F., Hoppner, F., Jayaram, B.: What are clusters in high dimensions and
are they difficult to find? In: Proc. CHDD 2013, Springer, Berlin (to appear, 2013)
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217-235. Springer, Heidelberg (1998)

Durrant, R.J., Kaban, A.: When is 'nearest neighbour’ meaningful: A converse
theorem and implications. J. Complexity 25(4), 385-397 (2009)

Frangois, D., Wertz, V., Verleysen, M.: The concentration of fractional distances.
IEEE Trans. Knowl. Data Eng. 19(7), 873-886 (2007)

Jayaram, B., Klawonn, F.: Can unbounded distance measures mitigate the curse of
dimensionality? Int. Journ. Data Mining, Modelling and Management 4, 361-383
(2012)

Aggarwal, C.C.: Re-designing distance functions and distance-based applications
for high dimensional data. SIGMOD Record 30(1), 13-18 (2001)

Hsu, C.M., Chen, M.S.: On the design and applicability of distance functions in
high-dimensional data space. IEEE Trans. Knowl. Data Eng. 21(4), 523-536 (2009)
Domeniconi, C., Papadopoulos, D., Gunopulos, D.: Subspace clustering of high
dimensional data. In: Proceedings of STAM Conference on Data Mining 2004, pp.
517-521 (2004)

Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: A
review. ACM SIGKDD Explorations Newsletter 6(1), 90-105 (2004)

Kriegel, H.P., Kroger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1-58 (2009)

Keller, A., Klawonn, F.: Fuzzy clustering with weighting of data variables. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8, 735-746
(2000)

Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: A
survey. IEEE Trans. Comput. Biol. Bioinf. 1(1), 24-45 (2004)

Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Aluru,
S. (ed.) Handbook of Computational Molecular Biology. Chapman and Hall, Boca
Raton (2006)

Van Mechelen, 1., Bock, H.H., De Boeck, P.: Two-mode clustering methods: a
structured overview. Statistical Methods in Medical Research 13, 363-394 (2004)
Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. Cybernetics and Systems 3(3), 32-57 (1973)

Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York
(1973)

Jayaram, B., Klawonn, F.: Can fuzzy clustering avoid local minima and undesired
partitions? In: Moewes, C., Nurnberger, A. (eds.) Computational Intelligence in
Intelligent Data Analysis. SCI, vol. 445, pp. 31-44. Springer, Heidelberg (2013)
Klawonn, F., Hoppner, F.: What is fuzzy about fuzzy clustering? Understanding
and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.J., Bradley,
E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254-264. Springer,
Heidelberg (2003)

Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In:
IEEE CDC, San Diego, pp. 761-766 (1979)



14

24.

25.

26.

27.

28.

29.

30.

31.

32.

F. Klawonn

Keller, A., Klawonn, F.: Adaptation of cluster sizes in objective function based
fuzzy clustering. In: Leondes, C. (ed.) Intelligent Systems: Technology and Appli-
cations. Database and Learning Systems, vol. IV, pp. 181-199. CRC Press, Boca
Raton (2003)

Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing. Kluwer, Boston (1999)

Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley,
Chichester (1999)

Winkler, R., Klawonn, F., Kruse, R.: Fuzzy c-means in high dimensional spaces.
Fuzzy System Applications 1, 1-17 (2011)

Hoppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means
and its derivatives. IEEE Transactions on Fuzzy Systems 11, 682-694 (2003)
Krone, M., Klawonn, F., Jayaram, B.: RaCoCl: Robust rank correlation based
clustering — an exploratory study for high-dimensional data. In: FuzzlEEE 2013,
Hyderabad (2013)

Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis of
fuzzy orderings: Initial steps. Mathware and Soft Computing 15, 5-20 (2008)
Bodenhofer, U., Krone, M., Klawonn, F.: Testing noisy numerical data for mono-
tonic association. Information Sciences 245, 21-37 (2013)

Krishnapuram, R., Freg, C.: Fitting an unknown number of lines and planes to
image data through compatible cluster merging. Pattern Recognition 25, 385-400
(1992)



Interpretability in Machine Learning
— Principles and Practice
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Abstract. Theoretical advances in machine learning have been reflected in
many research implementations including in safety-critical domains such as
medicine. However this has not been reflected in a large number of practical
applications used by domain experts. This bottleneck is in a significant part
due to lack of interpretability of the non-linear models derived from data. This
lecture will review five broad categories of interpretability in machine learning
- nomograms, rule induction, fuzzy logic, graphical models & topographic
mapping. Links between the different approaches will be made around the
common theme of designing interpretability into the structure of machine learn-
ing models, then using the armoury of advanced analytical methods to achieve
generic non-linear approximation capabilities.

1 Introduction

The practical application of decision support systems of various types is the eventual
outlet for machine learning research. While commercial products has existed for some
time including in safety-related applications [1] and much research is published in
medical decision support [2-3], there are still very few routinely used products, given
the huge volume of the available literature and the fast pace of theoretical develop-
ments in computational intelligence. This is especially the case outside of signal
processing where pragmatic applications of fuzzy logic and neural networks have
been commercially exploited [4]. This observation raises important issues about the
practical utility of machine learning methods more generally, hence the societal value
of the research investment in this area.

In many application domains, the key limitation of generic non-linear methods is
lack of interpretation. This is key especially in safety-related applications but also
more widely, since learning systems are generally one of several components in an
integrated software application, for instance for decision support, where central as-
pects of acceptance testing are verification and validation (v&v). Verification tests
that the system is correctly matching the initial specification and design (‘doing things
right’) and validation tests that the software system as a whole meets its intended
operational purpose (‘doing the right things’).

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 15-21] 2013.
© Springer International Publishing Switzerland 2013
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In the context of machine learning applications, the requirement of verifiability in-
cludes not just computational integrity but also a sound match with the domain user
expertise. This includes checking that a predictive model is not exploiting data arti-
facts instead of the correct data structure, and also controlling any risks arising from
model operation in response to novel data i.e. unexpected outliers [5].

Validation of predictive models is a test of the generality of the model i.e. its valid-
ity in generalising to out-of-sample data. This aspect has been the subject of much
theoretical research.

In summary, the requirements for v&v are met in part if machine learning models
are designed to be interpretable, in the sense that they meet the following require-
ments [6]:

e Mapping to domain knowledge.
e Ensure safe operation across the full range of operational inputs.
e Accurate modelling of non-linear effects.

The latter aspect is the default condition for machine learning models beyond gene-
ralised statistical models. The other two requirements are the reality checks that are
needed before a system can be put to practical use. The last two bullet points capture
two complementary aspects of the model: reliability, in other words knowing when
the model output can be trusted, and uncertainty of model predictions, which meas-
ures the precision of predictions when the model is reliable.

This position paper relates specifically to the importance of mapping learning
models to expert knowledge.

The first thing to note is that predictive accuracy is not enough for predictive sys-
tems. This is because few data bases are artefact free by design, therefore the more
powerful a non-linear predictive model is, so the better it becomes at exploiting
structural noise, in the form of artifacts of the data acquisition process, so that
improvements in predictive accuracy can be achieved which in no way represent ge-
neralisations to future data. An example of this would be if image acquisition for pre-
dictive modelling contains central figures to be detected against a mixed background,
but the camera setting is not controlled to ensure that depth of focus is maintained
across the full data set, with the consequence that the images containing the features
of interest have the background out-of-focus while the images omitting the central
figures are totally in focus. Any blur detector will consistently separate images into
the correct sets, while capturing no information at all about the structure of the fea-
tures of interest. In more generally data-based applications artifacts are easily intro-
duced unknowingly, potentially resulting in fictional generalisation accuracy unless
the operation of the classifier is explained.

How do these basic principles of interpretability apply in practice to machine learn-
ing models? To start answering this question we need to look into the range of infor-
mation processing methods, shown in fig. 1.
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Fig. 1. Information processing has in practice significant overlaps between different high level
requirements. This diagram is intended as a pragmatic landscape of modelling methodologies,
noting their different aims and the overlaps in the approaches to implementation.

Broadly speaking machine learning approaches are alone in the spectrum in their
lack of interpretability. At either end, both signal processing and knowledge-based
methods are accessible to direct interpretation and that is a major part both in theory
and in practice. Statistical methods are in part restricted by modelling assumptions,
but this parametric requirement in return opens a route to interpretation. In fact
classes of models such as logistic regression were originally designed to explain vari-
ation in the data, as an extension of ANOVA for many covariates. The prediction
would result naturally from the model insights generated in explaining the variation in
the data.

In recent decades, the focus on predictive accuracy [7] has lost sight of the value of
interpretation in data analysis. The rest of the paper presents a very brief overview of
current analytical methods with interpretation capabilities, together with emerging
directions that provide alternative approaches to traceability of data-driven models.

2 Competing Methodologies, or Complementary?

Traceability is a central pillar of data analysis. It comes in the form of modeling from
first principles e.g. in probability theory, in breaking down random variation and
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attributing effects to individual variables with analysis of variance, and also in sepa-
rating signal from noise using significance testing. The limitations of the more tradi-
tional statistical approaches lie in the analysis of high-dimensional data and in the
attribution of covariate effects in predictive models.

The earliest systematic methodologies for predictive inference with multivariate
data relied on parametric model representations either to generate data in each class or
to directly model class separation, i.e. in the form of generative or discriminative
models [8].

Arguably the most widely used statistical models in any practical application are
linear regression and logistic regression, extending with different parametric assump-
tions into the class of generalized linear models. They all share a single linear scor-
ing index f.x mapped onto the outcome variable through appropriately chose link
functions. This methodology enables the use of a visual representation of the influ-
ence of each variable in the model response, as which is measured by the produce of a
linear coefficient and the size of the covariate attribute. This representation is the
nomogram.

In the case of non-linear models, a potential framework to extend the use of nomo-
grams is to represent the model using linear combinations of non-linear kernels. This
approach is returned to in the next section.

Alternatively, data can be directly visualized through dimensionality reduction, for
which principal components is as well-known and it can be extended for labeled data
into a similar set of optimal linear projections, where the optimality is to separate the
labeled cohorts [9].

When the data set is no linearly separable, visualization can be achieved with latent
variable models [10]. This is a powerful class of models for mapping high-
dimensional data into relevant low-dimensional manifolds. However, the interpreta-
tion of latent variable representations is not straightforward since the attribution of
influence for particular outcome responses applies to a composite variable and not to
each individual covariate. Similar issues arise with related methods for direct non-
linear visualization in the form of manifold learning methods, typically SOM and
GTM, but also principal manifolds for static data and invariant manifolds for dynami-
cal systems [11].

To many users understanding is best represented by deduction. For data-driven
models, this typically involves the use of rule induction methods, which may have
mutually exclusive tree structures but can alternatively apply non-orthogonal search
methods to detect overlapping but low-order rules [12, 13]. Interestingly, these me-
thods show that successful prediction does not equate with the correct decision boun-
daries for the Boolean logic generating the data [14].

Fuzzy logic is an established methodology of particular power to model reasoning
with linguistic information. This can be driven by data, generating the necessary rules
for predictive inference.

Nevertheless, when analytical classifiers are replaced with rules extracted to ex-
plain their operation, it is found that very little accuracy is lost and the rules apply
typically to all but a small percentage of the data which are correctly identified as
outliers [15].
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In the case of rich data sets, the mapping of multivariate associations requires effi-
cient structure finding algorithms that are scalable for many variables [16]. In the
case where non-linear associations are captured with discrete data, fuzzy logic sys-
tems may be used to provide multiple interpolation from quantized variables back to
the real-valued domain [17].

A final generic approach to reasoning to promote traceablity is to convert predic-
tive inference into efficient retrieval of relevant reference cases. This is the metho-
dology of case based reasoning [18]. It also has potential for combining with fuzzy
predicates to model possibilistic reasoning [19].

3 New Directions

The methodologies to-date largely fit into separate silos with little interaction between
them. In other cases, there is still too high a reliance on heuristic approaches.

A current interest is to represent generic non-linear models using nomograms. This
requires a parametric representation capable of representing non-linear decision
boundaries, but using linear combinations of discriminant functions. To do this effec-
tively further requires the integration of these guiding principles into a parsimonious
framework such as the SVM. An interpretation of SVM classifiers in terms of univa-
riate effects and bivariate interactions is an emerging direction that is already showing
promise [20].

Turning to case based reasoning, the need to principled approaches requires a
rigorous definition of a central and ubiquitous concept in pattern recognition — the
similarity between two sets of observations. This has been discussed within linear
methods with the definition, for instance of the Mahalanobis distance, and also in
terms of information content with the definition of Fisher information. The latter is a
bona fide metric and so can be used to define a local, Riemannian metric, that defines
the similarity locally between a pair of data points infinitesimally close to each other.
This, in turn, can be efficiently mapped onto geodesic distances [21].

A final emerging direction is to use principled similarity metrics to define similari-
ty matrices which define networks of observations, from which prototypes can be
derived using spectral methods [22].

4 Conclusions

The wide range of reviewed methodologies clearly shows that interpretability is a
many faceted. There are different approaches that may be regarded as complementa-
ry, but no general agreement on what makes a predictive inference model interpreta-
ble. To some extent, this value judgment depends heavily on both the nature of a
particular application and the subjective interests of the domain user. Many of these
approaches seem to be treated separately and could potentially gain from combining
into integrated approaches to data modeling.

More generally, machine learning has generated particularly powerful paradigms
that are especially difficult to render interpretable. In this respect, new research
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directions are emerging that provide principled and efficient approaches to replicate
current models using rules, graphs, networks and even nomograms.

Given that non-linear modeling capability has long been established for widely dif-
ferent algorithms among them the broad class of artificial neural networks, it seems
that the really important question for making machine learning more relevant to prac-
tice is not whether we can model regression and classification data, but how can this
be best done with parametric or semi-parametric models that are interpretable by de-
sign. In other words, it is now possible to construct a restricted class of non-linear
models, with defined interpretation capabilities, that form the basis for data modeling.
It is only then that we can remove the risk of developing effective artifact detectors
and be sure that the right predictions are being achieved by the right reasons.

Acknowledgements. The author is grateful to V. van Belle, .H.Jarman, T.A. Etchells
and H. Ruiz for helpful discussions and production of figures for this paper.
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Abstract. Fuzzy systems are convenient tools for modelling complex phenom-
ena because they are capable of conjugating a non-linear behaviour with a trans-
parent description of knowledge in terms of linguistic rules. In many real-world
applications, fuzzy systems are designed through data-driven design techniques
which, however, often carry out precise systems that are not endowed with knowl-
edge that is interpretable, i.e. easy to read and understand. In a nutshell, inter-
pretability is not granted by the mere adoption of fuzzy logic, this representing a
necessary yet not a sufficient requirement for modelling and processing linguistic
knowledge. Furthermore, interpretability is a quality that is not easy to define and
quantify. Therefore, several open and challenging questions arise while consider-
ing interpretability in the design of fuzzy systems, which are briefly considered in
this paper along with some answers on the basis of the current state of research.

1 Introduction

Fuzzy systems are endowed with the capability of conjugating a complex behavior with
a simple description, in terms of linguistic knowledge, that is interpretable, i.e. easy to
read and understand by human users. In the simplest cases, the design of fuzzy systems
is accomplished manually, with human knowledge purposely injected into fuzzy rules in
order to model the desired behavior. (The rules could be eventually tuned to improve the
system accuracy.) But the great success of fuzzy logic led to the development of many
data-driven design techniques that made feasible the automatic design of fuzzy systems;
however, these automatic techniques are often aimed at maximizing the accuracy of the
fuzzy systems, which result almost unintelligible. Therefore, the fundamental plus of
fuzzy logic is lost and the derived models are comparable to other black-box models
(like neural networks) in terms of knowledge interpretability.

Roughly speaking, interpretability is not granted a priori by the mere adoption of
fuzzy logic for knowledge representation, yet it is a highly requested quality, especially
in some applicative domains (like Medicine) where fuzzy systems can be used to sup-
port critical decisions upon which users (e.g. physicians) must rely. Additionally, inter-
pretability is a quality that is not easy to define and quantify; therefore, several open and
challenging questions arise while considering interpretability in fuzzy systems: What is
interpretability? Why interpretability is worth considering? How to ensure interpretabil-
ity? How to assess interpretability? How to design interpretable fuzzy models? These
questions are briefly considered in this paper along with some tentative answers on the
basis of the current state of research.

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 22— 2013.
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2  What Is Interpretability and Why It Is Important?

Defining interpretability is challenging because it deals with the the relation occurring
between two heterogeneous entities: a fuzzy system and a human user acting as an inter-
preter of the system’s knowledge base and working engine. To pave the way for defin-
ing such a relation, some fundamental properties need to be incorporated into a fuzzy
system, so that its formal description becomes compatible with the user’s knowledge
representation. The definition of interpretability, therefore, calls for the identification of
several features; among them, the adoption of a fuzzy inference engine based on fuzzy
rules is straightforward to approach the linguistic-based formulation of concepts which
is typical of human abstract thought.

A distinguishing feature of a fuzzy rule-based system is the double level of knowl-
edge representation: (i) the semantic level made by the fuzzy sets defined in terms of
their membership functions, as well as the aggregation functions used for inference, and
(ii) the syntactic level of representation, in which knowledge is represented in a formal
structure where linguistic variables are involved and reciprocally connected by some
formal operators (e.g. “AND”, “THEN”, etc.). A mapping is defined to provide the in-
terpretative transition that is quite common in the mathematical context: semantics is
assigned to a formal structure by mapping symbols (linguistic terms and operators) to
objects (fuzzy sets and aggregation functions).

In principle, the mapping of linguistic terms to fuzzy sets could be arbitrary. Never-
theless, the mere use of symbols in the high level of knowledge representation implies
the establishment of a number of semiotic relations that are fundamental for the preser-
vation of interpretability of a fuzzy system. In particular, linguistic terms — as usually
picked from natural language — must be fully meaningful for the expected reader since
they denote concepts, i.e. mental representations that allow the reader to draw appro-
priate inferences about the entities she encounters. As a consequence, concepts and
fuzzy sets are implicitly connected by means of the common linguistic terms they are
related to; the key essence of interpretability is therefore the property of cointension [1]]
between fuzzy sets and concepts, consisting in the capability of referring to similar
classes of objects: such a possibility is assured by the use of common linguistic terms.

The notion of semantic cointension is further strengthened by the Comprehensibility
Postulate [2], which asserts that «The results of computer induction should be symbolic
descriptions of given entities, semantically and structurally similar to those a human
expert might produce observing the same entities. [...] ». The key-point of the postu-
late, which has been conceived in the general context of Machine Learning but can be
directly applied to fuzzy systems, is the human centrality of the results of a computer in-
duction process; the importance of the human component implicitly suggests this aspect
to be taken into account in the quest for interpretability.

Actually, the semantic cointension is related to one facet of the interpretability pro-
cess, which can be referred to as comprehensibility of the content and behavior of a
fuzzy system. On the other hand, when we turn to consider the cognitive capabilities of
human brains and their intrinsic limitations, then a different facet of the interpretabil-
ity process can be defined in terms of readability of the bulk of information conveyed
by a fuzzy model. In that case, simplicity is required to perform the interpretation pro-
cess because of the limited ability to store information in the human brain’s short term
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memory [3]. Comprehensibility and readability represent two facets of a common qual-
ity and both of them are to be considered for the design of interpretable fuzzy systems.

Interpretability is a complex requirement that has an impact on the design process.
Therefore, it must be justified by strong arguments, like those briefly otlined in the
following:

1. In an interpretable fuzzy system the acquired knowledge can be easily verified and
related to the domain knowledge of a human expert. In particular, it is easy to verify
if the acquired knowledge expresses new and interesting relations about the data;
also, the acquired knowledge can be refined and integrated with expert knowledge.

2. The use of natural language as a mean for knowledge communication enables the
possibility of interaction between the user and the system. Interactivity is meant to
explore the acquired knowledge; in practice, it can be done at symbolical level (by
adding new rules or modifying existing ones) and at numerical level (by modify-
ing the fuzzy sets denoted by linguistic terms, or by adding new linguistic terms
denoting new fuzzy sets).

3. The acquired knowledge can be easily validated against common-sense knowledge
and domain-specific knowledge. This capability enables the detection of seman-
tic inconsistencies that may have different causes (misleading data involved in
the inductive process, local minimum where the inductive process may have been
trapped, data overfitting, etc.). This kind of anomaly detection is important to drive
the inductive process towards a qualitative improvement of the acquired knowledge.

4. The most important reason to adopt interpretable fuzzy models is their inherent
ability to convince end-users about the reliability of a system (especially those users
not concerned with knowledge acquisition techniques). An interpretable fuzzy rule-
based model is endowed with the capability of explaining its inference process so
that users may be confident on how it produces its outcomes. This is particularly
important in such domains as medical diagnosis, where a human expert is the ulti-
mate responsible of critical decisions.

3 How to Ensure Interpretability?

Interpretability is a quality of fuzzy systems that is not immediate to quantify. Never-
theless, a quantitative definition is required both for assessing the interpretability of a
fuzzy system and for designing new fuzzy systems. A common approach for a quantita-
tive definition of interpretability is based on the adoption of a number of constraints and
criteria that, taken as a whole, provide for a (at least partial) definition of interpretability.

In literature a large number of interpretability constraints and criteria can be found
[445]. An usual approach is to organize the interpretability constraints in a hierarchi-
cal fashion (fig. [Il), which starts from the most basic components of a fuzzy system,
namely the involved fuzzy sets, and goes on toward more complex levels, such as fuzzy
partitions, fuzzy rules, up to considering the model as a whole.

At the lowest level, interpretability concerns each single fuzzy set, with the role of
expressing an elementary yet imprecise concept that can be denoted by a linguistic term.
Thus, fuzzy sets are the building blocks to translate a numerical domain into a linguis-
tically quantified domain that can be used to communicate knowledge. However, not
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Fig. 1. Interpretability constraints and criteria in different abstraction levels

all fuzzy sets can be related to elementary concepts, since the membership function of
a fuzzy set may be very awkward but still legitimate from a mathematical viewpoint.
Actually, a sub-class of fuzzy sets should be considered, so that its members can be eas-
ily associated to elementary concepts and tagged by the corresponding linguistic labels.
Fuzzy sets of this sub-class must verify a number of basic interpretability constraints,
including the following:

One-Dimensionality. Usually fuzzy systems are defined on multidimensional domains
characterized by several features. However, each fuzzy set being denoted by a lin-
guistic term should be defined on a single feature, whose domain becomes the uni-
verse of discourse, which is assumed as a closed interval on the real line.
Relations among features are represented as combinations of one-dimensional fuzzy
sets, which can be linguistically interpreted as compound propositions.

Normality. At least one element of the universe of discourse is a prototype for the
fuzzy set, i.e. it is characterized by a full membership degree. A normal fuzzy
set represents a concept that fully qualifies at least one element of the universe
of discourse, i.e. the concept has at least one example that fulfills it (fig. 2(a)).

Continuity. The membership function is continuous on the universe of discourse. As
a matter of fact, most concepts that can be naturally represented through fuzzy sets
derived from a perceptual act, which comes from external stimuli that usually vary
in continuity. Therefore, continuous fuzzy sets are better in accordance with the
perceptive nature of the represented concepts.

Convexity. In a convex fuzzy set, given three elements of the universe of discourse,
the degree of membership of the middle element is always greater than or equal
to the minimum membership degrees of the side elements. This constraint encodes
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(a) Normality (b) Convexity

Fig. 2. Fuzzy sets where some interpretability constraints are verified (-) or violated (- -). In
subnormal fuzzy sets (a), the related concept does not fully apply to any element of the universe
of discourse. Non-convex fuzzy sets (b) represent compound concepts that should be split into
elementary concepts.

the rule that if a property is satisfied by two elements, then it is also satisfied by an
element settled between them (fig. 2(D)).

A collection of fuzzy sets defined on the same universe of discourse forms a fuzzy
partition, which defines in the very essence the semantics of a linguistic variable. A
fuzzy partition defines a relation among fuzzy sets. Such a relation must be co-intensive
with the relation connecting the elementary concepts represented by the fuzzy sets in-
volved in the fuzzy partition. That is the reason why the design of fuzzy partitions is so
crucial for the overall interpretability of a fuzzy system. The most critical interpretabil-
ity constraints for fuzzy partitions are:

Justifiable Number of Elements. The number of fuzzy sets included in a linguistic
variable must be small enough so that they can be easily remembered and recalled
by users. Psychological studies suggest at most nine fuzzy sets or even less. Usually,
three to five fuzzy sets are convenient choices to set the partition cardinality.

Distinguishability. Since fuzzy sets are denoted by distinct linguistic terms, they
should refer to well distinguished concepts. Therefore, fuzzy sets in a partition
should be well separated, although some overlapping is admissible because usually
perception-based concepts are not completely disjoint (fig. B(a)).

Coverage. Each element of the universe of discourse must belong to at least one fuzzy
set of the partition with a membership degree not less than a threshold. This re-
quirement involves that each element of the universe of discourse has some quality
that is well represented in the fuzzy partition (fig. B(b)).

Relation Preservation. The concepts that are represented by the fuzzy sets in a fuzzy
partition are usually cross-related (e.g., LOW preceding MEDIUM, this preceding
HIGH, and so on). Relations of this type must be preserved by the corresponding
fuzzy sets in the fuzzy partition (see fig. 4l for a subtle violation of this constraint).

Prototypes on Special Elements. In many problems some elements of the universe of
discourse have some special meaning. A common case is the meaning of the bounds
of the universe of discourse, which usually represent some extreme qualities (e.g.,



Interpretability of Fuzzy Systems 27

(a) Distinguishability (b) Coverage

Fig. 3. Fuzzy partitions where some interpretability constraints are verified or violated. (a) It is
easy to assign distinct fuzzy sets that are distinguishable (continuous line), while a fuzzy set that
overlaps with another (dashed line) almost has the same semantics (hence the same linguistic
label). (b) Some elements in the universe of discourse are under-represented by the fuzzy sets of
the partition (grey areas). Usually the coverage threshold is set to 0.5.

VERY LARGE or VERY SMALL). Other examples are possible, which are more
problem-specific (e.g., the typical human body temperature). In all these cases,
the prototypes of some fuzzy sets of the partition must coincide with such special
elements.

In most problems a number of linguistic variables must be defined, one for each
feature. Different assignments of linguistic variables can be combined together to form
fuzzy rules. A fuzzy rule is a unit of knowledge that has the twofold role of determining
the system behavior and communicating this behavior in a linguistic form. Some of the
most general interpretability constraints and criteria for fuzzy rules are the following:

Description Length. The description length of a fuzzy rule is the number of linguis-
tic variables involved in the rule. A small number of linguistic variables in a rule
implies both high readability and semantic generality, hence short rules should be
preferred in fuzzy systems.

Granular Outputs. The main strength of fuzzy systems is their ability to represent
and process imprecision in both data and knowledge. Imprecision is part of fuzzy
inference, therefore the inferred output of a fuzzy system should carry information
about the imprecision of its knowledge. This can be accomplished by using fuzzy
sets as outputs. Defuzzification collapses fuzzy sets into single scalars; it should be
therefore used only when strictly necessary and in those situations where outputs
are not subject of user interpretation.

The set of rules that defines the behavior of a fuzzy system is named rule base. As
previously stated, the interpretability of a rule base taken as a whole has two facets: (i)
a structural facet (readability), which is mainly related to the easiness of reading the
rules, and (ii) a semantic facet (comprehensibility), which is related to the information
conveyed to the users to understand the system behavior. The following interpretability
constraints and criteria are commonly defined to ensure the structural and semantic
interpretability of fuzzy rule bases:
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Fig. 4. A subtle case where relation preservation can be violated. Two Gaussian fuzzy sets are
defined with different width: if the two fuzzy sets are denoted by implicitly ordered linguistic
labels (e.g. MEDIUM and HIGH), then a point exists beyond which the implicit order is violated
(in the example, the rightmost elements are more MEDIUM than HIGH even though the contrary
is expected by the implicit semantics of the linguistic terms).

Compactness. A compact rule base is defined by a small number of rules. This is a
typical structural constraint that advocates for simple representation of knowledge
in order to allow easy reading and understanding.

Average Firing Rules. When an input is applied to a fuzzy system, the rules whose
conditions are verified to a degree greater than zero are “firing”, i.e. they contribute
to the inference of the output. On the average, the number of firing rules should be
as small as possible, so that users are able to understand the contributions of the
rules in determining the output.

Logical View. Fuzzy rules resemble logical propositions when their linguistic descrip-
tion is considered. Since linguistic description is the main mean for communicating
knowledge, it is necessary that logical laws are applicable to fuzzy rules; otherwise,
the system behavior may result counter-intuitive. Therefore the validity of some ba-
sic laws of the propositional logic (like Modus Ponens) and the truth-preserving op-
erations (e.g., application of distributivity, reflexivity, etc.) should be verified also
for fuzzy rules.

Completeness. The behavior of a fuzzy system is well defined for all inputs in the
universe of discourse; however when the maximum firing strength determined by
an input is too small, it is not easy to justify the behavior of the system in terms of
the activated rules. It is therefore required that for each possible input at least one
rule is activated with a firing strength greater than a threshold.

Locality. Each rule should define a local model, i.e. a fuzzy region in the universe
of discourse where the behavior of the system is mainly due to the rule and only
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marginally by other rules that are simultaneously activated. A moderate overlapping
of local models is admissible in order to enable a smooth transition from a local
model to another when the input values gradually shift from one fuzzy region to
another.

On summary, a number of interpretable constraints and criteria apply to all levels
of a fuzzy system. Sometimes interpretability constraints are conflicting (e.g. distin-
guishability vs. coverage) and, in many cases, they conflict with the overall accuracy
of the system. A balance is therefore required, asking in its turn for a way to assess
interpretability in a qualitative but also a quantitative way. This is the main subject of
the next Section.

4 How to Assess Interpretability?

Assessing interpretability represents is hard because the analysis of interpretability is
extremely subjective. In fact, it clearly depends on the background knowledge and expe-
rience of who is in charge of making the evaluation. Hence, it is necessary to consider
both objective and subjective indexes. On the one hand, objective indexes are aimed
at making feasible fair comparisons among different fuzzy models designed for solv-
ing the same problem. On the other hand, subjective indexes are thought for guiding
the design of customized fuzzy models, thus making easier to take into account users’
preferences and expectations during the design process [6]. Gacto et al. [[7] proposed a
double axis taxonomy regarding semantic and structural properties of fuzzy systems, at
both partition and rule base levels. Accordingly, they pointed out four groups of indexes
(see fig.[3).

Structural indexes are mainly designed to assess the readability of a fuzzy system,
while semantic indexes concern the quantification of its comprehensibility. Accord-
ingly, structural indexes at the partition level relate the number of features and the num-
ber of membership functions per feature to the readability of a fuzzy partition; at the
rule-base level the structural indexes relate readability with the number of rules and the
total rule-length (i.e. the sum of all linguistic variables used in each rule).

The indexes that try to assess the comprehensibility of a fuzzy system are far more
complex. At the partition level it is worth mentioning the Context-Adaptation index [8]],
which is based on fuzzy ordering relations. As another example, the GM3M index [9]
combines three indexes that assess how much a single fuzzy set changed after a tuning
process. The Semantic Cointension index [[10] belongs to the set of indexes at the rule-
base level. For classification problems, this index evaluates the degree of fulfillment
of a number of logical laws exhibited by a given fuzzy rule base. Finally, the CO-
Firing based Comprehensibility Index [11] measures the complexity of understanding
the fuzzy inference process in terms of information related to co-firing rules, i.e. rules
firing simultaneously with a given input.

Even though there has been a great effort in the last years to propose new inter-
pretability indexes, a universal index is still missing. Hence, defining such an index
remains an open problem.
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Fig. 5. Some interpretability indexes organized in a double-axis taxonomy (adapted from [7]]).

5 How to Design Interpretable Fuzzy Systems?

The behavior of a fuzzy system directly depends on two aspects, the composition of the
knowledge base (fuzzy partitions and fuzzy rules) and the way in which it implements
the fuzzy inference process. Therefore, the design process of a fuzzy system includes
two main tasks: (i) generation of the rule base, and (ii) definition of the inference engine.

As concerning the generation of the rule base, usually two objectives are addressed:
accuracy and interpretability. These two objectives are conflicting, especially because of
the readability facet of interpretability, which introduces a strong bias in the definition
of the rule base. Accordingly, different design strategies could be devised [12]:

Linguistic Fuzzy Modeling with Improved Accuracy. A fuzzy system is firstly de-
fined by taking into account interpretability criteria only (e.g. by defining fuzzy
partitions regardless of the available data); as a successive step, its accuracy can be
improved, e.g. by fine tuning the fuzzy sets in each partition. In essence, two ways
of improving the accuracy in linguistic models can be considered by performing
the improvement: by slightly changing the rule structure to make it more flexible,
or by extending the model design to other components beyond the rule base, such
as the fuzzy partitions, operators, etc. [[13].

Precise Fuzzy Modeling with Improved Interpretability. This design strategy gives
high priority to accuracy, ofter resulting in mostly incomprehensible fuzzy systems
that need a post-processing step aimed at improving interpretability by minimizing
the loss of accuracy. This fact is usually attained by merging or removing fuzzy
sets in order to reduce redundancy and the presence of irrelevant information. Fur-
thermore, an efficient way to improve the interpretability is to select a subset of
significant fuzzy rules that represent in a more compactly way the behavior to be
modeled. Finally, actions can be undertaken to improve interpretability of specific
models, e.g. by enforcing locality of rules in Takagi-Sugeno systems [[14].

Multi-objective Design. As an alternative approach, the multi-objective design takes
into account both objectives simultaneously: the result is a set of fuzzy systems,
characterized by different levels of accuracy and interpretability, which are pro-
posed to the user for a final choice that depends on her needs [[15]. Multi-objective
design is usually carried out through evolutionary computation, according to dif-
ferent approaches, including fine tuning the parameters of an existing fuzzy system
or generating fuzzy partitions and/or rules from scratch [16].
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Ad-hoc Algorithms. Often, the interpretability/accuracy tradeoff is accomplished in
a two stage approach: first, one objective is maximized (either accuracy or inter-
pretability), then, the model is tuned so as to maximize the other objective. A differ-
ent approach consists in employing ad-hoc algorithms that intrinsically embody a
number of interpretability constraints in their scheme for generating fuzzy systems
from data. Such algorithms are aimed at generating fuzzy systems that maximize
accuracy: because of their nature, the resulting fuzzy systems are interpretable and
maximally accurate (relatively to the constraints they verify). The DC* algorithm
[L7] is an example of ad-hoc algorithm specialized for classification problems.

As concerning the definition of the inference engine, although there are studies ana-
lyzing the behavior of the existing fuzzy operators for different purposes, unfortunately
this question has not been considered yet as a whole from the interpretability point
of view. Keeping in mind the interpretability requirement, the implementation of the
inference engine must address a number of design choices, such as the logical oper-
ators, the implication function, the inference mechanism (First Aggregate Then Infer,
or vice-versa) and the defuzzification operator, if necessary. Some preliminary studies
[[18]] aim at relating the choice of operators with the interpretability objective; however
the research in this direction is still open.

6 Real-World Applications

The usefulness of interpretable fuzzy systems is appreciable in all application areas that
put humans at the center of computing. As an example, environmental issues are often
challenging because of the complex dynamics, the high number of variables and the
consequent uncertainty characterizing the behavior of subjects under study. Real-world
environmental applications of interpretable fuzzy systems include: harmful bioaerosol
detection [19]]; modeling habitat suitability in river management [20]; modeling pesti-
cide loss caused by meteorological factors in agriculture [21] and so on.

One of the most prominent application domains where interpretable fuzzy systems
could be successfully used is Medicine (and health-care). In almost all medical contexts
intelligent systems can be invaluable decision support tools, but people are the ultimate
actors in any decision process. As a consequence, people need to rely on intelligent
systems, whose reliability can be enhanced if their outcomes may be explained in terms
that are comprehensible by human users. Interpretable fuzzy systems could play a key
role in this area because of the concrete possibility of acquiring knowledge from data
and communicating it to users. In literature several approaches have been proposed to
apply interpretable fuzzy systems in different medical problems, like assisted diagno-
sis [22]], prognosis prediction [23]], patient subgroup discovery [24]], etc.

Finance is a sector where human-computer cooperation is very tight. Cooperation
is carried out in different ways, including the use of computers to provide business
intelligence for decision support in financial operations. In many cases financial deci-
sions are ultimately made by experts, who can benefit from automated analyses of big
masses of data flowing daily in markets. To this pursuit, Computational Intelligence
approaches are spreading among the tools used by financial experts in their decisions,
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including interpretable fuzzy systems for stock return predictions [25], exchange rate
forecasting [26], portfolio risk monitoring [27], etc.

Industrial applications could take advantage from interpretable fuzzy systems when
there is the need of explaining the behavior of complex systems and phenomena, like in
fault detection [28]]. Also, control plans for systems and processes can be designed with
the aid of fuzzy rule-based systems. In such cases, a common practice is to start with an
initial expert knowledge (used to design rules which are usually highly interpretable)
that is then tuned to increase the accuracy of the controller. However, any unconstrained
tuning could destroy the original interpretability of the knowledge base, whilst, by tak-
ing into account interpretability, the possibility of revising and modifying the controller
(or the process manager) can be enhanced [29].

The advantages of interpretability in integrating expert knowledge and enabling user
interaction can be appreciated in very specific sectors like robotics. As a matter of fact,
the complexity of robot behavior modeling can be tackled by an integrated approach
where a first modeling stage is carried out by combining human expert and empirical
knowledge acquired from experimental trials. This integrated approach requires that
the final knowledge base is provided to experts for further maintenance: this task could
be done effectively only if the acquired knowledge is interpretable by the user. Some
concrete applications of this approach can be found in robot localization systems [30]
and motion analysis [31/32].

Finally, the focus of intelligent systems on social issues has noticeably increased in
recent years. For reasons that are common to all the previous application areas, inter-
pretable fuzzy systems have been applied in a wide variety of scopes, including Quality
of Service improvement [33]], data mining with privacy preservation [34], social net-
work analysis [11]], and so on.

7 Future Trends

The blur nature of interpretability requires continuous investigations on possible defi-
nitions that enable a computable treatment of this quality in fuzzy systems. As an ex-
ample, the problem of interpretability of fuzzy systems can be intended as a particular
instance of the more general problem of communication between granular worlds [35],
where many aspects of interpretability could be treated in a more abstract way.

On a more concrete scale, a prominent objective is the adoption of a common frame-
work for characterizing and assessing interpretability, where novel metrics could be de-
vised (especially for assessing subjective aspects of interpretability) and integrated with
objective interpretability measures to define more significant interpretability indexes.

Interpretability assessment is tightly related to designing interpretable fuzzy systems.
A current research trend in designing interpretable fuzzy models makes use of multi-
objective genetic algorithms in order to deal with the conflicting design objectives of
accuracy and interpretability. The effectiveness and usefulness of these approaches re-
quire a verification process, especially for highly dimensional problems. In this case the
combination of linguistic and graphical approaches could be a promising approach for
descriptive and exploratory analysis of interpretable fuzzy systems [360].

Finally, the use of novel forms of representation may help in representing very
complex relationships in comprehensible ways, thus yielding a valid aid in design-
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ing interpretable fuzzy systems. A multi-level representation could enhance the inter-
pretability of fuzzy systems by providing different granularity levels for knowledge
representation, whereas the highest granulation levels give a coarse —yet immediately
comprehensible— description of knowledge, while lower levels provide for more de-
tailed knowledge. Besides representation levels, other forms of representation, different
from the classical rule-based, may be of help in representing complex relationship in
comprehensible ways.

8 Conclusions

Interpretability is a very complex requirement for designing fuzzy systems, yet it is
fundamental if such systems have to be accessible to users that use computers as tools
for decision making, strategy planning, etc. The very essence of this paper is to arise
questions and give some tentative answers to the issue of interpretability. In particular,
the paper aims at viewing interpretability also from the semantic viewpoint, which de-
parts from the commonplace belief that often confuses interpretability with structural
simplicity. Based on this different viewpoint, new forms of quantification, assessment
and design of interpretable fuzzy systems are topics of current scientific investigation.

As a final remark, it is worth observing that interpretability is one aspect of the
multi-faceted problem of human-centered design of fuzzy systems [37]. Other facets
include acceptability (e.g., according to ethical rules), interestingness of fuzzy rules,
applicability (e.g., with respect to Law), etc. Many of them are not yet in the research
mainstream but they clearly represent promising future trends.

Acknowledgements. The author is grateful to Dr. José M. Alonso and Dr. Ciro Castiello
for their support in relation to the work presented in the paper.
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Feature Selection Based on Fuzzy Mutual
Information
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Abstract. In the framework of fuzzy rule-based models for regression
problems, we propose a novel approach to feature selection based on
the minimal-redundancy-maximal-relevance criterion. The relevance of a
feature is measured in terms of a novel definition of fuzzy mutual infor-
mation between the feature and the output variable. The redundancy is
computed as the average fuzzy mutual information between the feature
and the just selected features. The approach results to be particularly
suitable for selecting features before designing fuzzy rule-based systems
(FRBSs). We tested our approach on twelve regression problems using
Mamdani FRBSs built by applying the Wang and Mendel algorithm. We
show that our approach is particularly effective in selecting features by
comparing the mean square errors achieved by the Mamdani FRBSs gen-
erated using the features selected by a state of the art feature selection
algorithm and by our approach.

Keywords: Feature Selection, Fuzzy Mutual Information, Regression
Problems, High Dimensional Datasets.

1 Introduction

Nowadays, several real-world applications require to identify regression models
from input-output instances generally described by a large number of features.
Often, some of these features are irrelevant or redundant, thus making the most
popular learning algorithms inefficient and inaccurate. Thus, a lot of research
activity has been devoted to design techniques for reducing dimensionality.

In the literature, dimensionality reduction is usually performed by feature
selection. In general, feature selection algorithms are characterized by a search
strategy that finds the optimal subset of features and by an evaluation crite-
rion that assesses the relevance of each feature. Sequential search algorithms are
among the most popular heuristic search strategies: they add (forward sequential
selection (FSS)) or subtract (backward sequential selection (BSS)) features at
each iteration in order to find the optimal subset [9]. As regards the evaluation
criterion, several measures have been proposed: they can be grouped into dis-
tance, information and dependency measures [3]. Mutual Information (MI) is an
information measure that quantifies the dependence of two variables: the value
of MI is equal to zero for independent variables and increases with the increase
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© Springer International Publishing Switzerland 2013
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of the dependence between the variables. MI has been extensively used as evalu-
ation measure for feature selection in classification problems [7]. In [2] MI is used
to measure both the relevance and the redundancy of a feature in the frame-
work of the minimal-redundancy-maximal-relevance criterion (mRMR) adopted
in the feature selection process. In particular, the relevance is measured as the
MI between the feature and the target class, and the redundancy is computed
as the average MI between the feature and the just selected features.

There are a few approaches that use the MI for feature selection in regression
problems. In [§] the authors study the behavior of MI as a relevance measure
on several regression problems. In [IT] MI is used for selecting relevant spectral
variables in an FSS algorithm. To the best of our knowledge, no approach to
feature selection based on MI has been proposed when the regression problems
are tackled by fuzzy rule-based models. In this context, we propose a new filter
approach for feature selection which extends to the fuzzy case the mRMR crite-
rion proposed in [4]. In particular, we introduce a definition of fuzzy MI between
linguistic variables based on the fuzzy entropy proposed in [L0]. This definition
differs from the MI between a random variable and a fuzzy random variable
proposed in [I2] for classification problems. Indeed, we compute the fuzzy MI
between two fuzzy variables rather than between a crisp and a fuzzy variable.

In order to evaluate the effectiveness of the proposed feature selection ap-
proach, we use as comparative approach a similar method that uses a measure
of crisp correlation as evaluation criteria, namely the Correlation Feature Selec-
tion algorithm (CFS) [6]. The subsets of features selected by the two algorithms
are evaluated by applying the Wang and Mendel (WM) algorithm [14] to the
dataset characterized by the selected features (we recall that this algorithm gen-
erates an FRBS from numerical data) and comparing the accuracies achieved by
the two generated FRBSs. Using twelve high dimensional regression datasets, we
show that our method selects features that produce FRBSs more accurate than
the ones generated with the subset of features selected by CFS. We statistically
validate this result applying the Wilcoxon signed-rank test.

2  Fuzzy Mutual Information

Let X = {X1,...,Xy,...,Xr} be the set of input variables, X g1 be the output
variable and Py = {Ay1,..., A1, } be a strong fuzzy partition of Ty fuzzy sets
defined on variable X.

The mutual information between two variables S and T, is defined as [2]:

MI(S,T) = H(S) + H(T) — H(S,T) 1)

where H(S) and H(T) are the entropy of the variables S and T, respectively,
and H(S,T) is the joint entropy of S and T

Similar to (), we define the Fuzzy Mutual Information (FMI) of two fuzzy
variables X, and X; as:

FMI(X,, X;) = H(X,) + H(X,) — H(X,, X}) (2)
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Let us assume that P; and P; are strong fuzzy partitions consisting of T
and T} fuzzy sets, respectively, defined on X and X;. Then, the fuzzy entropy
H(X,) of the variable X can be computed as [10]:

Ts

H(X;) = - ZP(AS,Z') ~log P(As,;) (3)

i=1

where P(A, ;) is the probability of the fuzzy set A, ; and is defined for a distri-
bution {1, ...,z } with respect to a probability distribution P = {p1,...,pn}
as P(As;) = Zfil pa,;(x;) - pi where pa, ,(2;) is the membership degree of x;
to the fuzzy set A, ;.

Similarly, the fuzzy joint entropy H (X}, Xs) can be computed as:

HXt7 ZZPAtu sy IOgP(At'MAS])) (4)

=1 j=1

The joint probability P(A;;, As ;) is computed as in [5]:

1 2
At i A Z ZﬂAt iNAg, xk ts Th, s) 'p(xk,taxh,s) (5)
k=1h=1

where Ny and Ns are the numbers of different values for the variables X, and
X in the dataset, respectively, and 4, ;na, ;, = pa,  (Tt) - pa, ; (Ths).

3 The Fuzzy Mutual Information Feature Selection
Algorithm

Our feature selection method is based on an F'SS scheme: starting from the empty
feature subset G = {@}, it sequentially adds to G the feature that maximizes
the evaluation criterion when combined with the features that have already been
selected and therefore included in G. As regards the evaluation process, we asses
each feature on the basis of the mRMR criterion. This criterion measures the
relevance of a feature X; by considering the FMI between X; and the output
variable Xry1, and its redundancy by considering the FMI between X; and the
subset of previously selected features. Actually, in order to avoid bias toward
multivalued features, in [] the Normalized Mutual Information (NMI) is used
in place of MI. The NMI between two variables S and T is defined as the MI
between S and T normalized by the lowest value of the entropies of S and T'.

We extend this concept to two fuzzy variables by defining the Normalized
Fuzzy Mutual Information (NFMI) as

FMI(X,, X;) (6)
min{H (X,), H(X;)}

Accordingly, the relevance of the feature X; to be added to the subset G =
{Xg}, 9= ., |G|, of selected features is evaluated by NFMI(X;, Xpy1) and

NFEMI(X,, X;) =
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its redundancy is computed as the average value of NFMI(X;, X,), computed
for all X, € G . The evaluation function used at each iteration is a fuzzy exten-
sion of the index proposed in [4]. We denote this index as Fuzzy Index (FI) and
define FT as:
FI(X;))=NFMI(X;,Xp41) — L Z NFMI(X;, X;) (7)
o 2,

The minuend in ([7) measures the relevance of the feature X; in terms of NFMI
between the feature and the output variable, while the subtrahend assesses the
amount of redundancy between the feature X; and the just selected features
contained in subset G = {X,}, g = 1,...,|G|. At each iteration, the feature
with the highest value of FI is selected and added to subset G.

The complete fuzzy mutual information feature selection (FMIFS) algorithm
can be summarized as follows:

1. Let X and G be the set X = {X1,...,Xy,..., Xr} containing all the fea-
tures and the subset G = {@} of selected features;
. For each feature X; € X, i = {1,..., F}, compute NFMI(X;, Xpi1);
. Select the feature X; that maximizes NEMI(X;, Xpi1);
. Remove X’Z from the set X and add X’Z to the set G;
. Repeat until stopping condition is false
(a) For each X; € X calculate FI(X;)
(b) Select the feature X; that maximizes the index FT
(c) Remove X;from the set X and add X; to the set G;

U W N

In our experiments we choose as stopping criterion the cardinality of the subset
G: we fix the desired number NF' of features and stop the feature selection
algorithm when the cardinality |G| of the subset G is equal to NF'.

4 Experimental Results

We tested our feature selection algorithm on twelve high dimensional regression
datasets extracted from three repositories, namely the KEEL repository, the
UCIT Machine Learning Repository and the Torgo’s repository. The first column
of Table [l shows the name of each dataset, the number of instances (NI) and
the overall number of features (F').

In order to evaluate the effectiveness of the feature selection algorithm, we
generate an FRBS from the data characterized only by the selected features.
The FRBS generation can be performed by using several different approaches.
For the sake of simplicity, in this paper we adopted the well-known WM algo-
rithm [I4]. We are conscious that this heuristic approach does not guarantee
high accuracies. However, the aim of using the WM algorithm is to compare
different filter feature selection approaches and not to achieve the highest values
of accuracy. To compare different feature selection algorithms we generate the
FRBSs by applying the WM algorithm to the dataset characterized by the se-
lected features and then we compute the accuracy in terms of mean square error
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(MSE) as MSE = |N‘ Z‘Nl( F(2') — y")? where |N| is the size of the dataset,

F(z!) is the output obtained from the MFRBS when the [*" input pattern is
considered, and y' is the desired output.

We compare the results obtained by our algorithm with a similar approach,
namely the CFS algorithm [6]. CFS uses an FSS scheme to generate the can-
didate feature subsets, and ranks these subsets by considering the correlation
between each feature and the output variable, along with the degree of redun-
dancy between them. At each iteration, each feature that has not been already
included in the current subset is tentatively added to it and the resulting set
of features is evaluated, thus producing a numeric measure. The feature that
allows obtaining the highest value of this measure is selected. If no improvement
is produced by adding the feature to the current subset, the FSS process ends
and the current subset of features is provided.

The objective of our experiment is twofold. First we aim to show how the MSE
varies with the increase of the number of features selected by both FMIFS and
CFS. Second, we aim to prove the effectiveness of introducing fuzziness in the
concept of mutual information. We carried out a 5-fold cross validation. In Figure
[ due to space limits, for only four datasets, we show the average MSEs (y axis)
calculated on both the training set and the test set for the two feature selection
algorithms, against the number NF' (x axis) of selected features. As regards
FMIFS, we consider N F ranging from 1 to the total number of features (we recall
that FMIF'S stops when a pre-fixed number of selected features is achieved). Since
CFS stops if no feature produces an improvement when it is added to the current
subset, NF ranges from 1 to the number of features computed by CFS. From
the figure, we can observe that for most of the datasets, at the same number
NF of features, FMIFS finds subsets of features that produce FRBSs with a
lower MSE than the ones produced using the subsets found by CFS on both the
training and test sets. In order to compare the numerical results of CFS and
FMIFS, since the stopping criteria of the two methods are different, for each
dataset we fix the value of NF in FMIFS as the value of the number of features
found by CFS on the corresponding fold. In this way we can compare the MSEs
of FRBSs built using subsets of features of the same cardinality. In Table [ we
show the mean values of the MSEs obtained on both the training and test sets
and the number NF of features found by CFS. From this table, we can derive
that the subsets of features generated by FMIFS produce FRBSs more accurate
than the ones generated with the subsets produced by CFS.

To statistically verify this observation, we apply the Wilcoxon signed-rank
test, a non-parametric statistical test that detects significant differences between
two sample means [I3]. Since this test is based on the ranking of the differences
of two sample means, in order to make this difference comparable, in regression
problems where the MSEs can be characterized by a different order of magnitude,
we adopt a normalized difference DIFF = MSECFSSéyiEFMIFS .

Table ] shows the results of the Wilcoxon test on both the training and the
test sets. In both cases, since the p-value is lower than the level of significance
a = 0.05, the null hypothesis is rejected, thus testifying that the two distributions
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Table 1. MSEs obtained on the training and test sets by the FRBSs built using the
subsets of features selected by FMIFS and CFS, respectively

Dataset (NI/F) MSETRr MSErs NF
W TR pEm e
mv @ores/10)  Teps®  Dhploe rismieo 40
PO 1712 TEps®  JGomios  osomios 48
TR (1049/15) s ST 01 5 83B.01 20
BA (337/16) s > 1im o8 553810 68
PA (5875/19) RS S aiBro1 5 49B 101 6.0
CA (8192/21) o it 121101 1.8
PT (14998/26) e L o8m 108 388103 40
BK (8192/32) e S0 4.937-03 64
PU (8192/32) P g Gremor 118
AIL (13750/40) Fg[FH;S 3:%5:82 giigg:gz 200
CR (1994/101) FAIES ST e 9.8

Table 2. Results of the Wilcoxon signed-rank test on the MSEs obtained by the FRBSs
built using the subsets of features selected by FMIFS and CFS, respectively

FMIF'S vs CFS R+ R- Hypotesis p-value
Training Set 70 8 Rejected 0.013
Test Set 66 12 Rejected 0.033

are statistically different. These results confirm the effectiveness of FMIFS as
feature selection approach for fuzzy rule-based models in regression problems.

5 Conclusion

In this paper, we have proposed a new fuzzy index as evaluation function in
the process of feature selection for high dimensional regression problems tack-
led by fuzzy rule-based models. The proposed index is based on the minimal-
redundancy-maximal-relevance criterion. Further, we have used a forward
sequential selection scheme to perform the feature selection. To evaluate the
effectiveness of the proposed method, we have adopted a heuristic approach,
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namely the Wang and Mendel algorithm, to generate FRBSs from the data de-
scribed by the selected features. Then, we have computed the mean square error
obtained by the FRBSs. We have adopted twelve regression datasets. We have
compared the accuracies obtained by the FRBSs generated by using the features
selected by both our approach and a similar forward feature selection method,
namely CFS. The results show that for most of the datasets our method finds
subsets of features that produce FRBSs with a lower MSE than the ones pro-
duced by the subsets selected by CFS on both the training and test sets. We have
statistically validated this statement by applying the Wilcoxon signed-rank test
to the distribution of the MSEs: the null hypothesis is rejected with a level of
significance o = 0.05, thus confirming that on average our method outperforms
CFS.
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Abstract. DC* (Double Clustering with A*) is an algorithm capable
of generating highly interpretable fuzzy information granules from pre-
classified data. These information granules can be used as bulding-blocks
for fuzzy rule-based classifiers that exhibit a good tradeoff between inter-
pretability and accuracy. DC* relies on A* for the granulation process,
whose efficiency is tightly related to the heuristic function used for esti-
mating the costs of candidate solutions. In this paper we propose a new
heuristic function that is capable of exploiting class information to over-
come the heuristic function originally used in DC* in terms of efficiency.
The experimental results show that the proposed heuristic function al-
lows huge savings in terms of computational effort, thus making DC* a
competitive choice for designing interpretable fuzzy rule-based classifiers.

1 Introduction

Several real world problems require more than just accurate solutions. In many
cases, users (physicians, managers, etc.) have to be convinced about the reli-
ability of the knowledge base, and hence they may be interested in systems
capable to offer good support in terms of both accuracy and comprehensibility
of the knowledge base. When intelligent systems are used to acquire knowledge
from data, a methodology is required to derive interpretable knowledge that fi-
nal users can easily understand. To this aim, the Theory of Fuzzy Information
Granulation provides ways for summarizing data into Fuzzy Information Gran-
ules (FIGs), which are the building blocks of interpretable knowledge bases [I].
The interpretability requirement is (partially) achieved by fulfilling a number of
constraints in the granulation process [2].

To achieve interpretable granulation, some algorithms have been proposed,
like HFP [3], fuzzy decision trees [4], or more complex methodologies, such as
HILK++ [5] and complete systems like FISPRO [6] and GUAJE [7]. In this
scenario we proposed the DC* (Double Clustering with A*) algorithm [89],
derived from the more general Double Clustering Framework DCf [I0]. DC*
generates an interpretable Fuzzy Rule Base (FRB) based on FIGs, from a dataset
of numerical pre-classified data. In particular, DC* identifies the minimal number
of information granules in the problem space and exploits them to build the final
FRB. The granularity level, i.e. the maximum number of FIGs, is set by the user.

DC* is based on A*, a search algorithm which has exponential complexity in
the worst case. Furthermore, its efficiency heavily relies on the heuristic function
involved in the search process. In this paper we improve the original version of
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DC* with a new heuristic function, which exploits class information to acceler-
ate the search process. As shown by the experimental results, the new proposed
heuristic function highly improves the efficiency of DC* without compromising
the quality of the derived solutions. In section [ an overview of DC* is pro-
vided. Section Blis dedicated to the heuristic functions: the original heuristic is
overviewed (B1) and the new heuristic is presented in more details (8:2). Com-
parative experimental results are discussed in section @l Finally, section Bl draws
some conclusive remarks.

2 The Double Clustering with A* (DC¥*)

DC* is an instance of the Double Clustering Framework [10]. Given a multi-
dimensional numerical dataset of pre-classified data, the aim of DC* is to auto-
matically generate an interpretable FRB that describes data through linguistic
terms. As implied by the name, DC* is mainly composed by two clustering steps:
the clustering on multi-dimensional data and the clustering over each input fea-
ture. Those two steps define an optimal partition of the feature space in terms of
the number of information granules. A final step of fuzzy granulation, based on
Strong Fuzzy Partitions (SFPs), transforms the resulting input space partition
into a FRB that fulfills a number of general-purpose interpretability constraints,
such as: normality, convexity, continuity, distinguishability, completeness, left-
most/rightmost fuzzy sets [2].

The first step of DC* is aimed at data compression, which is performed by the
class-aware quantization algorithm LVQ1 [II]. Given a (user-defined) number of
prototypes, LVQ1 moves the prototypes into the feature space with an iterative
process, aiming at best representing the dataset class distribution.

The second step of DC* performs the clustering over each input feature (one-
dimensional clustering). Firstly, the prototypes are projected over each feature
carrying class information. The concept of cut must be introduced to understand
the working mechanism of DC*. A cut is the boundary of an information granule,
defined on an input feature; in practice, a cut is defined by the midpoint between
two prototype projections belonging to different classes. All the identifiable cuts
over the problem space are named candidate cuts. The objective of the one-
dimensional clustering is to select a subset of cuts that is optimal. In order to
define optimality, the concept of hyper-boz (HB) must be introduced. Given the
feature space and a subset of cuts, a HB is a subspace of the feature space
delimited by cuts. A HB can include zero or more multi-dimensional prototypes:
a HB is said pure if it is empty or all its prototypes belong to the same class;
otherwise it is said impure (fig.[l). A pure and non-empty HB is a “surrogate” for
an information granule. Since the prototypes contained in a HB are surrounded
by data samples, then most of these samples are also contained in the HB.

The main objective of the second step of DC* is therefore to find a minimal
subset of cuts producing pure HBs. It is worth to mention that this process takes
into account both the prototype class information and all the input features
simultaneously. This clustering problem has exponential complexity. To tackle
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Fig.1. A bi-dimensional input space with six prototypes of three different classes
(square, circle, triangle). The prototype projections labeled with class information are
also shown. The application of two cuts (chosen among all the possible candidate cuts)
provides a partition of the feature space in four HBs: three pure HBs (one of them is
empty) and one impure HB.

the problem, DC* exploits a strategy based on the A* search algorithm, which
operates an informed search on the solution space defined by the set of all possible
clustering configurations, i.e. all the possible subsets of cuts from the candidate
cuts. A specific design of the components of A* is required, namely the goal test,
the successor operator, the cost function (including the heuristic function) and
the priority queue. In this paper we focus on the heuristic function; for further
details on the other components, the reader is referred to [912].

The last DC* step is the fuzzy granulation of the input features exploiting the
optimal partition derived by A*. The cuts included in the optimal partition are
used to define SFPs (the process is described in detail in [I3]), and each fuzzy
set is labeled with a linguistic term (fig. [2).

Each non-empty HB (in a solution they are all pure) corresponds to a fuzzy
information granule defined as the Cartesian product of one-dimensional fuzzy
sets included in the SFPs. These fuzzy information granules can be used to define
fuzzy classification rules that are collected in a highly interpretable FRB.

3 Heuristic Functions

In this section the heuristic function used in the original version of DC* and
the proposed heuristic function are presented in detail. In general, a heuristic
function is an estimation of the distance from a state to the closest goal state. In
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Fig. 2. Example of fuzzy partition of an input feature obtained from four cuts

order to be used in A*, a heuristic function has to be admissible or optimistic,
i.e. it never overestimates the cost to reach a goal state from a current state.
The admissibility property ensures that A* will reach the goal state visiting
fewer states than other search algorithms. This must hold in DC* where, in
particular, states correspond to subsets of candidate cuts and the heuristic value
is an optimistic estimation of the number of cuts to be added to a state in order
to reach a goal state, i.e. a subset of cuts that generates pure HBs only. The
heuristic function contributes to the cost function, which is defined as the sum
of the number of cuts in a state and the heuristic value, and deeply influences
the order in which A* explores states in the solution space.

3.1 Original Heuristic Function

This section describes the heuristic function used in the original version of DC*.
We first note that each HB in a state is identified as a Cartesian product of
intervals, being each interval delimited by two cuts. Given two (impure) HBs,
they are connected if they share the same interval on at least one feature. This
implies that at least a single cut is necessary to split the two connected HBs
into pure HBs. All impure HBs are collected and grouped by connections. It is
worth to notice that a HB can belong to more than one set. The algorithm for
computing the heuristic value selects the largest set of connected HBs, increases
the heuristic value by 1 (the needed cut) and then removes the HBs from all
the sets. This process is repeated until there are no more impure HBs to be
processed. At the end of this iterative process the value of the heuristic function
is provided. It corresponds to the minimal estimation of the number of cuts
needed to move from a state to a goal state.

3.2 The New Heuristic Function

In this section the new proposed heuristic function is presented. The main idea is
to exploit prototype class information included in an impure HB to optimistically
estimate the minimum number of cuts needed to separate prototypes of different
classes. By definition, in an impure HB there are at least two prototypes with
two different class labels. It means that there is the need of at least one cut to
split the impure HB into two new pure HBs (i.e. one HB for each class label).
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Generally speaking, given an impure HB including prototypes with n,. different
class labels, at least n. different pure HBs must be derived through the splitting
process. Given n sets TP of candidate cuts (one for each feature d = 1,...,n)
that intersect the impure HB, the application of subsets of cuts SH#B C THB
d=1,...,n splits the HB into a number of HBs equal to:

n

H (IS45]+1)

being n the total number of features and |SZB| the cardinality of SHB. To
ensure the split of an impure HB into pure HBs, the relation n’® > n. must be
satisfied. In particular, due to the admissibility property of the heuristic function,
the number of cuts needed to define the minimum number of HBs, is defined as

”Thpw Z |SdHB\

such that n'2 > n. and n'8 is minimal (see also fig. B]). It is worth to mention
that n% ]‘:”w is an estimation that refers to an impure HB only, and not to all
impure HBs in a state 0. To extend this idea to the whole input space, and hence
to improve the heuristic informative power without loosing the admissibility
property, the concept of connected HBs is exploited. Roughly speaking, taking
into account an impure HB and calculating the value of n25 it must be noted
that the applied cuts can intersect other HBs that are connected Therefore,
to preserve the admissibility property of the heuristic function, the heurlstlc
values of connected HBs cannot be simply summed together. Thus, to compute
the heuristic value for a non-goal state o (typically composed by more than
one impure HB) satisfying the admissibility property, the following procedure is
adopted:

h(o) <0

HBjmpure < {hblhb € o A hb is impure}
hbmazClass < maXy, HBzmpure

h(a) ¢ h(o) + nhPmesclass

HBoonn — {hbl1b & H Bompure A connected(hb, hbymasciass)}
HBimpure <~ HBimpure \ HBconn

repeat from 3 until HB;ppure = 0

Nt Wi

The final value of h (o) is provided as the heuristic value for the state o.

4 Experimentation Results and Discussion

The experimental objective is to provide a performance comparison between the
original and the proposed heuristic functions. In particular, for a fair comparison,
two versions of A* (one for each heuristic function) are applied on the same
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Fig. 3. Example of two non-goal states. In white, two impure HBs with four different
classes are depicted. For both the HBs nqlghfw = 2. The HB in (a) requires two cuts
while the HB in (b) requires three cuts for splitting into pure HBs. HBs in checked
white/gray are connected to the white HBs (dashed lines indicate other candidate cuts
in THB),

prototypes obtained by the first DC* step (the data compression phase). The
performances of the two heuristic functions are tested on seven different datasets
selected from the UCI repositorﬂ; all these datasets include only numerical, pre-
classified data without missing values. Two different numbers of prototypes are
tested for each dataset (prototypes are proportionally assigned to the classes
according to the class distribution in the dataset).

The key information that shows the different efficiency of the heuristic func-
tions is the number of states explored by A*, which is the most expensive oper-
ation in DC*. In table [[l the summarized results of the experiments are shown.
(For the Shuttle dataset with 21 prototypes computed by the original version of
DC* we stopped the execution after 6 hours of execution time and reported the
number of explored states.)

Due to the optimality of A*, for each dataset both the versions returned the
same solution (i.e. the same cut configurations), but through a different number
of explored states. It is possible to observe that for datasets with two classes
there is no gain in efficiency because the two heuristic functions work in the
same way. On the other hand, for datasets with more than two classes, the
ability of the proposed heuristic in exploiting class information is apparent: the
proposed heuristic function allows huge savings by exploring a very small number
of states.

The proposed heuristic function proved to considerably boost the efficiency
of DC*, making it a competitive alternative of other well known algorithms for
extracting interpretable knowledge from data. In fact, in the worst case scenario
considered in the experimentation (namely, the case of Statlog-Shuttle data with

!http://archive.ics.uci.edu/ml/
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Table 1. Datasets and experimental comparative results. Shuttle with 21 prototypes
computed by the original heuristic is incomplete. *The second feature has been removed
because it exhibits a constant value. **Class “4” has been removed since it is not
represented by any sample.

numb. of explored states

Dataset classes o % saving
prototypes original proposed
Iris 3 21 408 111 72.79%
samples 150 / features 4 42 652 139 78.68%
Wine 5 20 5,454 1,026 81.19%
samples 178 / features 13 40 23,053 3,451  85.03%
Breast Cancer Wisconsin 9 30 34 34 0.00%
samples 683 / features 9 60 61 61 0.00%
Vertebral Column (3 classes) 3 12 9,089 742 91.84%
samples 310 / features 6 24 53,727 13,556  74.77%
Tonosphere 9 10 97 97 0.00%
samples 351 / features 33(34)* 20 23,143 23,143  0.00%
Glass Identification 6(7)** 9 10,720 1,095  89.79%
samples 214 / features 9 18 257,854 38,826  84.94%
Statlog-Shuttle 7 12 276,842 5,533  98.00%
samples 58,000 / features 9 21 >2,827,876 120,487 >95.74%

21 prototypes), the generation of the information granules required about 15
minutes to completdd. Furthermore, as concerning the accuracy/interpretability
tradeoff —which is indepenent from the heuristic function— recent results show
that DC* is competitive with other interpretability-oriented algorithms, such as
HFP [12].

5 Conclusions

The experimental results show that DC* is a good candidate for automatically
designing fuzzy rule-based classifiers that exhibit high interpretability and good
accuracy. It is also easy to tune because it requires the specification of just one
hyper-parameter, namely the number of prototypes for the first step, which has
a clear semantics as it regulates the level of granularity of the derived knowl-
edge base. Therefore, DC* can be used both to generate few fuzzy information
granules for a rough description of data and, alternatively, to design an accurate
classifier through a greater number of fuzzy information granules.

Future research is aimed at further improving the efficiency of DC* so that
it can be applied to large-scale problems. This affects both steps of DC*; for
the second one, in particular, we aim at exploiting the advantages of both A*
and Evolutionary Computation to derive a hybrid approach to generate optimal
solutions in reasonable time. This approach is under current investigation.

2 Experiments have been conducted on a virtual machine (VMware) equipped with
four x86 vCPUs @ 2.35GHz and 8GB of vRAM.
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Abstract. We propose an algorithm for inferring membership functions
of fuzzy sets by exploiting a procedure originated in the realm of support
vector clustering. The available data set consists of points associated with
a quantitative evaluation of their membership degree to a fuzzy set. The
data are clustered in order to form a core gathering all points definitely
belonging to the set. This core is subsequently refined into a membership
function. The method is analyzed and applied to several real-world data
sets.

1 Introduction

Designing fuzzy sets has been one of the pivotal problems in the methodol-
ogy and practice of the technology of fuzzy sets. Fuzzy sets come with different
interpretations, cf. [I]. There are several general approaches ranging from expert-
driven methods to data-driven techniques and an entire spectrum of hybrid-like
strategies combining these two development modes, cf. [2]. Various shapes of
membership functions are proposed [3], sometimes being directly linked with
the ensuing computational facets of fuzzy sets; here we can refer to triangular
fuzzy sets and their role in fuzzy modeling and a degranulation process [2[4]. In-
tensive pursuits in the construction of membership functions are not surprising
at all: evidently fuzzy sets form a backbone of fuzzy models, fuzzy classifiers and
fuzzy reasoning schemes. Fuzzy sets used in these constructs directly impact their
performance as well as contribute to the interpretability (readability) of these
modeling constructs. Fuzzy sets formed through an expert-driven approach are
reflective of the perception of concepts captured by humans; however the esti-
mation process could exhibit some inconsistencies associated with the elicitation
process itself (bottleneck of knowledge acquisition). On the other hand, data-
driven approaches rely on available experimental data and fuzzy sets obtained
in this manner are reflective of the nature of the available experimental evidence
(which is going to be used intensively when forming fuzzy predictors or classi-
fiers). In this domain, we encounter techniques using which fuzzy sets (treated
as information granules) arise as a summarization of numeric data; one can refer
here to fuzzy clustering or other mechanisms of vector quantization [5]. With
this regard a prudent formulation of the optimization process and its relevance
vis-a-vis the semantics of fuzzy set(s) to be developed is of paramount relevance.
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Having this mind, we propose a modified support vector clustering in which we
take advantage of the formulation and the nonlinear nature of the optimization
problem falling within the realm of well-established methods of support vector
machines. This formulation supports a construction of diversified membership
functions.

A thorough parametric analysis of the resulting construct is presented. We
demonstrate how the parameters (and a tradeoff of their values) of the method
impact the shape (trapezoidal, quadratic, and bimodal) of membership function
of the fuzzy set being formed. A series of illustrative examples is provided to
visualize the flexibility of the construct considered here.

The paper is structured as follows: we start with a suitable modification of the
support vector clustering algorithm and elaborate on a selection of numeric val-
ues of the essential parameters of the method. Subsequently, we present a series
of experiments showing in detail on how membership functions are constructed.

2 Modifying the SV Clustering Algorithm

Let a sample {z1,...,zm,} in a domain X be given, together with an associ-
ated set of membership grades {1, ..., ftm} to some unknown fuzzy set A. The
problem of inferring pa can be divided into two parts, namely: i) determining
the shape of A, and ii) inferring the parameters of the membership function pi4.
These tasks are addressed by starting from the following hypothesis.

— Set Ay = {z € X s. t. pa(x) = 1} contains all points in X whose images
through a mapping @ belong to a sphere of unknown center a and radius R.

— The membership pa(x) only depends on the distance between @(x) and a.

It has been shown that the set A; can be estimated through a modified

support-vector clustering procedure [6] provided with x1, ..., 2, and p1, ...,
the problem is concerned with searching for the smallest sphere, having a and R
respectively as center and radius, enclosing the images of x1, ..., x,;, produced
through a transformation @. More precisely, we use from a starting point the
typical relaxation of this problem based on slack variables &1,...,&,,. As our
target is that of learning a fuzzy set having as inputs some points x1,..., T,
and their membership values p1, . . ., i, we consider the constraints in the form:
pilld(zi) —al* < R+ & | (1)

(1 — po)||®(:) — a2 > (1 — p) B2 — 7, | (2)

& =>0,7,>0. (3)

It is easy to see that when p; = 1 the constraints read in the same way as
those in the problem of support vector clustering. In other words, we try to
confine the images of x; through @ within a sphere centered at a and having
radius R. On the other hand, when p; = 0, the same set of constraint model the
opposite target, i.e., exclusion of @(z;) from the sphere.
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Thus we can consider the following extension of the support vector cluster-
ing procedure: minimize R% + C' Y (§; + 7;) under constraints (I3]). Its Wolfe
dual formulation is concerned with the maximization of > ;" (a;p; — Bi(1 —
i)k (is xi) — 320y (ips — Bi(1 — pa)) (g — B (1 — 1)) k(i ;) subject to
the constraints Z;ll(ai,ui —Bi(1—p;)) =1and 0 < a;, 8; < C, where k denotes
the kernel function associated to the dot product computation in the image of
& (that is, k(xi, z;) = @(x;) - @(x;)). Denoting with a star the optimal value for
a variable, Karush-Kuhn-Tucker (KKT) conditions [7] read

af (R + & = pillolws) = a*[2) =0, )
81 (1= i) — 'l = R3(1 =) +77) =0 (5)
Ve =0, 6T17=0. (6)

It is easy to show that when either 0 < of < C or 0 < g7 < C'it will necessary
hold both & = 0 and ||®(z;) — a*|| = R**. Thus the corresponding z; has an
image through & lying on the border of the learnt sphere S and will be called
support vector. KKT conditions show that:

*

— of =0 implies £ = 0 and R*(x) < R*?, so ®(x;) lies in S or in its surface,
— of = C implies R?(z) = R** + f:, thus @(z;) doesn’t lie inside S,

— Bf =0 implies 77 = 0, so that R?*(z) > R*?, thus &(z;) doesn’t lie inside S,
— Bf = C implies R?*(z) = R*? — 11;, thus @(z;) doesn’t lie outside S,

where R%(z) = ||®(z) — a*||%. Given any point z € X, it can be shown that
R2(2) = h(o,a) — 237 (adpis — B (L — o) h(a,s) + S (s — BE(L —
i) (g — B (1 — py))k(xi, ;) so that it is possible to compute the distance
between the center of the learnt sphere and the image of the given point x.
In particular, all points x with membership pa(x) = 1 satisfy R?(x) < R?,
where R? = R?(x;) for any support vector x;. Moreover, as R? spans between
a minimum and a maximum value when the membership value of its argument
decreases from 1 to 0, the membership function g4 can then be reconstructed
in the following way:

— scaling R? to R/(z) = MAZR;(f), where M = max, R*(z), so that R’ ap-

—tu

proaches 0 and 1, respectively, when R? approaches its maximum and R?;
— approximating g4 with the function

1 if Ri(z) > 1,

(@) =19 . : (7)
R/'(x) otherwise .

The proposed procedure can produce membership functions of different shape.

Figure [Tl shows examples of the output for three different unidimensional mem-

bership functions, namely a trapezoidal, a quadratic and a bimodal one. In all
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Fig. 1. Output of the proposed procedure (dashed curves) for different unidimensional
membership functions (plain curves), inferred from samples of 50 item each (each sam-
ple point is drawn as a bullet colored according to its membership value, ranging from
gray to black)

experiments we used a sample of m = 50 points uniformly distributed across the
universe of discourse, associated with the corresponding membership value.

Inferring a membership function requires to strike the trade-off parameter
C, as well as additional kernel parameters, an operation which is known in the
literature as model selection [8]. In order to suitably select among the avail-
able methodologies it is worth studying the properties of parameters and their
relations with the problem under study.

Figure 2 shows the results of an experiment aimed at understanding the role
of involved parameters: having fixed: (i) a membership function (the dashed
trapezoid in all graphs), (ii) a labeled sample, and (iii) a Gaussian kernel of
parameter o = 0.12 (see the beginning of Sect. []), the learning procedure has
been run several times using different values for C. The graphs in Fig. 2(a)—(c)
highlight how an increase in C causes an enlargement of the inferred fuzzy set’s
core, intended as the subset of X whose elements are assigned unit membership.
In particular, as C' reaches the unit value the fuzzy set tends to a regular set
enclosing all points in the labeled sample having non-zero membership values.

Similarly, we can start from the same membership function and labeled sam-
ple, set C' to the best value found during the previous run, and change o. The
results, summarized in Fig. 2(d)—(f), show how the role of this parameter is that
of modifying the shape of the membership function, which becomes more plastic
as o decreases toward zero. This experiment suggests a three-phase procedure
for finding the optimal values for C' and ¢ consisting in: 1. selecting a value Cj
in order to include in the inferred fuzzy set’s core all points having unit mem-
bership; 2. selecting a value o in order to reasonably fit the data; 3. performing
a fine-grained grid search centered around Cjy and oy.

3 Experiments

In all applications described in this paper the procedure relied on the Gaus-
sian kernel defined by k(z1,22) = exp (—||z1 — 22||?/(20?)). When using this
kind of kernel [9] the optimization problem simplifies to the minimization of
Z?fj:l(ami — Bi(1— i) (5 — B (1 — pj))k(xs, z5); indeed, a Gaussian kernel
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Fig. 2. (a)—(c): Increasing C has the effect of enlarging the learnt membership function
core. (d)—(f): Increasing o has the effect of changing the learnt membership function
shape. Each graph is labelled with the corresponding parameter value.

k satisfies k(z,z) = 1, so that the constraints insure the equivalence between
the original objective function and 1 — Z?szl(ami —Bi(1 = ) (o5 — B (1 —
i) k(i ;).

The computation of M was carried out used a Monte Carlo maximization and
choosing a suitable number of samples in each experiment.

3.1 Inferring Membership Functions from Real-World Data

As a first example consider the body mass index (BMI) defined as the ratio
between the weight and the squared height of a person, respectively measured in
kilograms and meters. The World Health organization uses this quantity as an
age- and gender-independent index for classification of weight categories in adult
people, according to Table [ [I0]. Focusing on the category of normal weight we
selected two mappings p' and p?, shown in the table, associating each BMI
range to a membership value. Subsequently we drew samples of 150 BMI values
located uniformly in the interval [10,45] and computed their membership value.

Table 1. Classification of weight in function of the BMI, according to the World
health organization [I0]. Columns ' and p? show the values giving rise to the learnt
membership functions shown in Fig. Bla) and (b), respectively.

Classification BMI range  p' p® Classification BMI range pu* p?
Severe thinness BMI < 16 0 0 Pre-obese 25 < BMI < 30 0.5 0.7
Moderate thinness 16 < BMI < 17 0.2 0.4  Obese class I 30 < BMI < 350.2 0.4
Mild thinness 17 < BMI < 18.5 0.5 0.7  Obese class IT 35 < BMI < 40 0.1 0.2
Normal range 185 <BMI<251 1 Obese class IIT BMI>40 0 0
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(a) p! (b) p? ()

Fig. 3. (a)—(b): Learnt membership functions for normal weight according to Table [I]
respectively referring to the values shown in columns p' and p? of the table. (c): Inferred
membership function for the fuzzy set expressing the notion of normal physique in adult
women in the US, in function of weight (X axis, measured in kilograms) and height (Y
axis, measured in centimeters).

This allowed us to infer the membership functions (one for each mapping)
shown in Fig.B(a)—(b), setting 0 = 4 and C' = 0.05. Note how learnt membership
function’s shape is affected by the way categories are associated to numeric
values for memberships. This is a key aspect for accommodating available domain
knowledge coming from the experts in the field.

The proposed methodology is not confined to single-dimensional problems. In-
deed, the kernel trick allows the inference to consider fuzzy sets defined on any
space over which a kernel can be defined. Consider for instance the fuzzy notion
of normal physique defined in terms of weight and height of a person. Figure[3c)
shows the results of a toy experiment aimed at capturing this notion, having as
a starting point the distribution of weight and height, respectively measured in
kilograms and centimeters, in adult women in the US [11]. Dividing the observa-
tion range in function of the data percentiles it is possible to obtain two functions
Hweight a0d [iheight approximating the corresponding memberships. Finally, con-
sidering a sample of 150 points uniformly drawn in [50,114] x [150,175] (the
Cartesian product of the operational ranges in observed data) and building the
membership value of each of its element (w, h) as p(w, h) = fiweight (W) thheight (1),
the proposed procedure learnt the membership function shown in Fig. [B(c).

3.2 Inferring Membership Functions in Absence of Membership
Values

The method is also applicable to datasets not explicitly mentioning member-
ship values. Cousider for instance the Iris dataset [12], introduced by Fisher in
1936 and gathering 150 samples from three different species of the iris flower
(namely, Iris setosa, Iris virginica and Iris versicolor). The observations, de-
scribed through length and width of the petal and the sepal, are assigned to one
of the previously mentioned species. The proposed learning procedure can be ap-
plied as follows: focusing on a given class, say Iris setosa, denote {x1,...,T150}
the dataset observations and set p; = 1 if x; belongs to class Iris setosa, and 0
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(b) (C' =100, 0 =0.225)  (c) (C' =10, o = 0.5)

Fig. 4. Scatter plot of the Iris dataset and inferred membership functions for the cor-
responding classes. Bullets represent samples projected on their two first principal
components, and colored according to their classes (in blue, green and red respectively
for Iris virginica, Iris versicolor, and Iris setosa). Each graph also shows the density
plot of the inferred membership function.

otherwise. Apply subsequently the learning procedure in order to infer a mem-
bership function pisetosa- Idem for membership functions fivirginica and fversicolor-
Given an observation z, assign it to the class it belongs to with maximal member-
ship grade. Figure [l shows a density plot of the membership functions inferred
after application of the PCA procedure [I3] selecting the first two principal com-
ponents, for sake of visualization, and using a Gaussian kernel. Each plot shows
the class it refers to, as well as the used values for parameters C' and o, chosen
through a trial and error procedure.

We performed a more extensive experiment involving a repeated holdout
scheme, in which 70% of a random permutation of the sample was used in order
to infer the three membership functions, using the parameters highlighted in
Fig. @ the latter were subsequently tested on the remaining 30% of the data.
Tablelresumes average and standard deviation of the obtained error both in the
training and the testing phase of 500 such procedures, starting each time from a
different permutation and analyzing two, three and four principal components.
These results show how even a very simple learning strategy (no complex pro-
cedures for fine tuning the parameters’ choice such as a cross-validation) lead to
an average test performance around 95%.

Table 2. Results of 500 holdout procedures on the Iris dataset. Each row shows average
and standard deviation (columns Avg. and Stdev., respectively) of train and test error,
in function of the number of principal components extracted from the original sample.

N. of principal — Train error Test error
components  Avg. Stdev. Avg. Stdev.
2 0.00488 0.00653 0.04720 0.03143
3 0.00152 0.00349 0.06067 0.03128
4 0.00169 0.00374 0.05738 0.03347



4

Learning Fuzzy Sets through Modified Support Vector Clustering 59

Conclusions

This paper introduced a method for inferring the membership function to a
fuzzy set on the basis of partial information, consisting in two finite sets: the
former containing a sample of points, and the latter gathering measurements
of the membership grades for points in the former set. The method relies on a
special support vector clustering for the provided points, which is subsequently
transformed into the inferred membership function.
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Abstract. In the last decades, rainforests all over the world have been subjected
to high rates of land use change due to deforestation. Tracking and understanding
the trends and patterns of these changes is crucial for the creation and implemen-
tation of effective policies for sustainable development and environment protec-
tion. Here we propose the use of Fuzzy Multilayer Perceptrons (Fuzzy MLP) for
classification of land use and land cover patterns in the Brazilian Amazon, using
time series of vegetation index, taken from NASA’s MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) sensor. Results show that the combination of
degree of ambiguity and fuzzy desired output, two of the Fuzzy MLP techniques
implemented here, provides an overall accuracy ranging from 89% to 96%.

1 Introduction

Statistics in the real world are often based on a sequence of pieces of data indexed by
time. This compound type of data is referred to as time series and occur in all types of
activities, from human-related ones, such as financial markets, company sales, demo-
graphic information of a geographical entity, etc, to those related to natural phenomena,
such as the appearance of sunspots in a star or the decay of atoms in a piece of matter.

The basis of time series analysis is that repetitive behavior patterns can be identi-
fied and modeled. The repetition, occurring in either smooth or turbulent behavior, is
essential for generalization [11]]. Time series are invariably non-stationary, and the as-
sumptions about their structures made by traditional methods are difficult to verify [[7]],
making the use of such methods unsuitable even for “moderately entangled” systems
[2]. In addition, real world data may show an overlap of many processes, exhibiting
different dynamics.

Time series analysis focuses on three basic objectives: prediction of short-term pro-
gressions, modeling long-term behavior and characterization of underlying properties
[2]]. Conventional models — to test the hypothesis that complex and potentially causal
relationships exist between various elements of a time series — based on parametric
methods, express these relationships in a variety of ways. The most popular is the au-
toregressive model based on the hypothesis that causality connects the value of the
series at a given moment of time to the values of the time series at some of the previ-
ous moments. On the other hand, computational intelligence techniques such as fuzzy
systems, genetic algorithms, artificial neural networks and hybrid systems, do not make
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(© Springer International Publishing Switzerland 2013
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assumptions about the structure of the data, and provide a “universal approach” to the
nonlinear mapping of complex functions [15]] [[16].

The combination of Fuzzy Inference Systems (FIS) [17] [14] and Neural Networks
(NN) [3]] [6] incorporate strengths of both, such as machine learning and generaliza-
tion ability, from NN, and qualitative reasoning and capability of uncertainty modeling,
from FIS [11]. Fuzzy Neural Networks names a class of such hybrid approaches, that
incorporate fuzzy concepts in a neural network [9]. It includes Fuzzy Multilayer Per-
ceptrons [I8] [S]] [9], based on a classic Multilayer Perceptron neural network (MLP).

In the last decades, rainforests all over the world have been subjected to high rates
of land use change due to deforestation. Tracking and understanding the trends and
patterns of these changes is crucial for the creation and implementation of effective
policies for sustainable development and environment protection. In the particular case
of Brazil, there exists, on the one hand, a large amount of data derived from satellite
images that can be used for the classification of temporal patterns of land use change
on rainforest areas. On the other hand, there is, however, a shortage of professionals
trained for satellite image interpretation, able to convert this mass of data into useful
knowledge, what makes the use of automated techniques imperative to deal with the
problem.

Here we investigate the use of Fuzzy MLPs in classification of land use and land
cover temporal patterns in the Brazilian Amazon. For this, we use time series of veg-
etation indices recorded in images taken from MODIS (Moderate Resolution Imaging
Spectroradiometer) sensor, on board of NASA’s Aqua and Terra satellites. We com-
pare the basic MLP algorithm with two extensions, one involving the concept of fuzzy
desired output [8]] and another involving a degree of ambiguity [9)]. We also propose
a classification confidence index for the system, that can help improve the quality of
decision-making by the end user.

2 Fuzzy Multilayer Perceptrons

Multilayer Perceptrons (MLPs) using the Backpropagation learning mechanism are the
most common neural networks found in the literature [[6] [3], and have been used in a
wide range of applications, including pattern recognition. Essentially, a MLP network
is a feedforward multilayer mechanism that utilizes a supervised learning model based
on the adjustment of its parameters (weights) according to the error between the actual
and desired outputs of the network [12].

There exists a vast literature about the combination of fuzzy systems and multilayer
perceptrons (see, for example, [[13]], [8] and [5] and references therein). In the conven-
tional approaches for pattern classification using MLPs ([3]], [12]), the number of nodes
of the output layer in an application usually corresponds to the number of classes con-
sidered in that application. A method commonly used to produce the network output is
the winner-take-all, which allocates value 1 (one) for the winner neuron and 0 (zero)
to its competitors. Thus, the winner neuron represents the network prediction about the
class to which the input pattern belongs.

In Fuzzy MLPs, each desired output of the modified multilayer perceptron is in
the range [0, 1], and refers to the degree of membership of the input pattern to its
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corresponding output class (fuzzy desired output) [8]], [9]. Consequently, the errors can
be propagated back regarding the exact likeness, which is reflected in the desired output.

In [8], a Fuzzy MLP has been proposed, here called MLP-D, which makes use of
two parameters: the mean and standard deviation vectors of the training set. Let C' =
{c1,...,c1} be a set of classes, and X = {x1, ..., z,,} be a set of training patterns, with
each z; € X described as a feature vector x; = (21, ..., Zin). Let pg : X — [0, 1]
denote the membership function that describes how much a pattern in X is compatible
with the k-th class in C. According to [8]], the following steps should be executed, in
order to obtain the fuzzy desired output:

— Calculate the weighted distance between each input pattern and each class in C,
taking into account the mean and standard deviation vectors of the training patterns.
The weighted distance of training pattern z; to the k-th class is defined by:

n

zn = | D (" My, (1)

=1 Ok
where oy; and oy; respectively denote the average and standard deviation of the
values for the j-th feature of the elements in the training set of the k-th class (when
all the training data are the same, oy is set to 1);

— Once the weighted distance is defined, calculate the membership values with re-
spect to each class (uy for k € C), using the following equation:

1

REATE 2)

pk (i) =

where f. and fy are fuzzy parameters that control the amount of imprecision for
this class and z;j, is calculated in Equation (1).

The idea behind the membership function is that the greater the distance of an input
pattern to class cg, the less similar is the pattern to class cg, and thus the lower will be
the output value of the function membership function.

One of the learning methods of conventional MLP network is by minimizing the
mean square error (LMS) between the desired output and the output vector calculated
by the network. In this training process, each pattern has the same importance. However,
it is reasonable to decrease the importance of patterns that are in areas of overlapping
classes, and which are primarily responsible for misclassification. One way to imple-
ment that is to consider the amount of correction in the weight vector produced by the
input pattern, according to the degree of ambiguity of a pattern.

In [9], a method incorporating a degree of ambiguity Fuzzy MLPs has been proposed,
here called MLP-G. The degree of ambiguity is defined as follows:

A= (pay(wi) — pzy()™, 3

where f1(1)(z;) (respec. ju(2)(2;)) highest (respec. second highest) class membership
degree for a pattern x; in X and m is a enhancement/reduction fuzzy parameter. Pa-
rameter m increases (m < 1), maintains (m = 1) or decreases (m > 1) the influence
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of the ambiguity of a pattern training, as well as determines the strength of this in-
crease/decrease.

Based on the techniques described above, we implemented four classification tech-
niques: i) the usual MLP, ii) MLP with ambiguity degree (MLP-G), iii) MLP with fuzzy
desired output (MLP-D), and iv) MLP with ambiguity and fuzzy desired output (MLP-
GD). In the next section, we present their application to the problem of classification of
land use and land cover temporal patterns in the Brazilian Amazon, using time series of
vegetation index.

3 Application in Time Series of Vegetation Index

The time series selected for study in this work were obtained from the work of Freitas
[1]], available at the site https://www.dsr.inpe.br/laf/series/ (see Figure [ for an illustra-
tive example). The study area is a rectangle comprising approximately 10.5km? at the
east of the state of Mato Grosso, Brazil, whose geographical opposite coordinates are
situated at (—12.331945, —52.422560) and (—12.372355, —52.458480). Within this
study area we selected a representative sample of 168 pixels in images taken from
MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, on board of NASA’s
Aqua and Terra satellites. Each pixel corresponds to a 250m? area.

Coordinates: (-11.951420, -54.186010}

« unfilterad « filtered

| Agriculture

| Forest |
I I
M Deforestation
R\ f f
i ; Little Vegetation | / A\

Fig. 1. Time series using vegetation index EV1-2, showing patterns of land cover and use [[1]

The time series correspond to 11 years worth of EVI-2 vegetation index observa-
tions, from August 2000 to June 2011, totaling 1848 (168 x 11) annual patterns. We
have used MODIS 16-days product, i.e. a composite image is generated every 16 days.
Considering the total period of 11 years, the available data consists of 265 observations
per pixel recorded by the satellites.

We have chosen to use exactly 23 (approximately 365/16) observations per year per
pixel. This yields a total of 253 (23 x 11) observations per pixel, considering the whole
period. Therefore, in order to run our experiments, we disregarded 12 of the 265 original
observations from the original data.

Once the patterns were chosen, it was necessary to classify them into classes of land
use and land cover. Having neither an available expert to precisely classify a significant
amount of samples nor the ground truth, we adopted the following procedure.
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First, by visual inspection, based on the classifications shown in [1I], we pre-classified
the 1848 patterns into four large classes: forest, deforestation, pasture and agriculture.
Second, for each class, we computed the average pattern and the corresponding vari-
ance, and then selected only those patterns fully contained within the envelope defined
by the mean value plus or minus % standard deviations (k * o). The procedure has been
validated in [[10]. Figure 2 illustrates this filtering procedure for k=1.

Forest Deforestation

Pasture Agriculture

Fig. 2. Vegetation index time series for classes with indication of means and one standard
deviation

From the initial 1848 patterns, we have created two sets of patterns: set I contains
the 205 patterns obtained using k£ = 1, and set II contains 1363 patterns obtained with
k = 2. Values k = 1 and k = 2 correspond to more or less conservative attitudes,
respectively, considering an absence of solid expertise and/or ground truth. Set I con-
tains 139 patterns of forest, 18 of deforestation, 35 of pasture and 13 of agriculture.
Set II contains 641 patterns of forest, 100 of deforestation, 279 of pasture and 343 of
agriculture.

We performed a series of tests on sets I and II, using a 4-folder cross-validation
process (3 parts for training and 1 part for validation). We applied 4 methods on the
data: the original MLP neural network (MLP), MLP using the degree of ambiguity
(MLP-G), MLP using fuzzy desired output (MLP-D) and MLP using the degree of
ambiguity and fuzzy desired output (MLP-GD). For both (MLP-D) and (MLP-GD), we
obtained the best results with f; = fy = 2 in a series of trial-and-error experiments.
Table [1l presents the results for sets I and II, showing the mean rates for each method
used in the 4 folders, considering the individual classes and the overall results.

We see that all methods produced very good results in general, for both sets I and
IL. Set I produced better results than set II for individual accuracies of classes forest
(F) and pasture (P), whereas set II produced better results for deforestation (D). In
relation to agriculture, set I was better than set I, except for method MLP-GD, which is
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Table 1. Mean individual accuracy for classes F (forest), D (deforestation), P (pasture) and A
(agriculture) and mean global accuracy, for sets I and II, for methods MLP, MLP-G, MLP-D and
MLP-GD

System Accuracy
Individual Global
I I I I
F D P A F D P A

MLP 100.00% 94.74% 94.63% 67.52% 98.33% 98.20% 86.40% 89.73% 89.22% 93.16 %
MLP-G  100.00% 93.91% 96.57% 83.33% 98.95% 97.47% 88.12% 89.45% 93.45% 93.50%
MLP-D  100.00% 95.29% 95.10% 79.62% 99.83% 97.67% 89.83% 80.86% 92.50% 92.05%
MLP-GD 100.00% 94.58% 96.84% 92.78% 99.47% 97.80% 86.86% 90.08% 96.05% 93.55%

also the best result for that class. In what regards individual accuracies, method MLP-
GD was either better than its counterparts for all classes in both sets I and II, or with
results closely resembling the best ones. In what regards the global results, method
MLP-GD fared better, for both sets I and II. For global results, set I fared better than
set II for methods MLP-GD and MLP-D and worse for methods MLP and MLP-G. The
best global results were produced by method MLP-GD for set I. In conclusion, method
MLP-GD and set I were more appropriate in the treatment of the data.

Using the fuzzy membership functions derived by the classifiers, we obtain a sys-
tem classification confidence index, by applying Shannon entropy on the normalized
membership functions. This index is illustrated in Figure[3] that indicates the vegeta-
tion index evolution inside each of the 11 yearly patterns for a set of selected pixels,
considering both sets I (left side) and II (right side), using MLP-GD. In the figure, the
difference in tonality in each pattern indicates the system confidence in its own judg-
ment; the darkest the color, the highest the confidence.

The figure shows a uniform series of forest patterns for the first pixel. We can see
that the difference between sets I and II is the confidence of the system on its own
classification: set I produces results with higher confidence. The same tendency can be
seen for the other pixels in the figure.

In what regards the second pixel in the figure, the system considers that, according to
set I, the area was a forest in the first two years, suffered deforestation in the third year,
became pasture on the fourth year, and was then used for agriculture in the remaining 7
years, thus following a logical order. In set II, however, the second year was classified
as pasture, before becoming deforestation on the third year and again pasture on the
fourth year, which is not consistent in terms of temporal evolution of patterns in the
region.

The third pixel in the figure illustrates a less satisfactory result. We see that, accord-
ing to set I, after pasture begins on the 6th year, it becomes forest on the 10th year
to return to pasture on the 11th year. On the 10th year, the region was probably also
covered by pasture, albeit possibly a dirtier pasture than the other pasture years. Note,
however, that the system gives low confidence for that assessment. Using set II, only
a sequence of forest patterns followed by a sequence of pasture patterns are detected,
bypassing the expected deforestation step between them.
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Fig. 3. Results of experiments of for 3 pixels, using sets I (left side) and II (right side)

4 Conclusions

The use of products and techniques of remote sensing and GIS in environmental
analysis has become increasingly common. In the case of land use and land cover,
these techniques contribute expressively for speed, efficiency and reliability in analyses
involving the processes of degradation of natural vegetation, monitoring of forest re-
sources, development of conservation policies, as well as several other factors that can
cause changes in vegetation.

In this work, we investigated the combination of fuzzy and neural systems for clas-
sifying land use and land cover patterns in the Brazilian Amazon region, using time
series of vegetation indices from NASA’s MODIS sensor. For this, we implemented a
Fuzzy Multilayer Perceptrons (MLP) using four approaches: MPL alone, MLP with de-
gree of ambiguity, MLP with fuzzy desired output and MLP with degree of ambiguity
and fuzzy desired output. We have obtained very good overall results. In particular, the
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combination of degree of ambiguity and fuzzy desired output provided the best results,
ranging from 89% to 96%.

The application of a pattern filtering procedure to the raw data proved to be useful in

the absence of ground truth. However, this technique has also its limitations, illustrated
by the difficulty in distinguishing between forest and dirty pasture in some pixels.

Last but not least, we have used the fuzzy classification results to derive classification

confidence to help the end user improve the quality of decision making.
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Abstract. One recent focus of research in graphical models is how to
learn them from imperfect data. Most of existing works address the
case of missing data. In this paper, we are interested by a more gen-
eral form of imperfection i.e. related to possibilistic datasets where some
attributes are characterized by possibility distributions. We propose a
structural learning method of Directed Acyclic Graphs (DAGs), which
form the qualitative component of several graphical models, from possi-
bilistic datasets. Experimental results show the efficiency of the proposed
method even in the particular case of missing data regarding the state
of the art Closure under tuple intersection (CUTS) method [1].

1 Introduction

Over the last three decades, a lot of effort has been put into learning graphi-
cal models from data but most of proposed methods are relative to probabilis-
tic models and especially Bayesian networks [2]. Such methods depend chiefly
on data nature i.e. perfect or imperfect data. Learning from imperfect data
addresses the particular case of missing data via the standard Expectation Max-
imization method [3]. In this paper, we are interested in learning networks struc-
ture from a more general form of imperfect data: possibilistic data in which some
attributes are characterized by possibility distributions. Such a data were han-
dled essentially to learn possibilistic classifiers namely naive possibilistic net-
works[4, B, possibilistic decision trees [0] and possibilistic clustering [7]. The
idea to learn possibilistic networks [I}, []], which are the possibilistic counterpart
of Bayesian networks [2], from possibilistic datasets seems to be natural. Nev-
ertheless, despite the multitude of works related to propagation in possibilistic
networks [II 8 @], as far as we know, the unique attempt to learn them from
data was carried out by Borgelt et al. [I] from missing data and not possibilis-
tic ones. This paper addresses the problem of learning networks structure from
possibilistic datasets which presents a part of the learning process of possibilis-
tic networks. In fact, we only address the structure learning problem i.e. the
output of the proposed method is a DAG which is not characterized by any nu-
merical data even if the proposed learning process is ensured in the possibilistic
framework. Semantically, the resultant structure is closest to a qualification via
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possibilistic conditional distributions, in the same spirit of the work of Borgelt
et al. [I].

This paper is organized as follows: Section 2 recalls basics of possibility theory
and briefly introduces possibilistic networks. Section 3 proposes a new approach
to learn networks structure from possibilistic datasets. Finally, Section 4 reports
and analyzes experimental results.

2 Background on Possibility Theory and Possibilistic
Networks

We first give the necessary background on possibility theory. For more details,
we refer to [I0]. Let Xi,..., X, be a set of state variables whose values are
ill-known such that D, ..., D,, are their respective domains. We denote by x;
instances of a variable X;. The joint domain of Xj,..., X, is the universe of
discourse {2 = Dy X ... x D,. The agents knowledge about the value of X; can
be encoded by a possibility distribution 7 corresponding to a mapping from the
universe of discourse {2 to the unit interval [0, 1]. For any state w € 2, 7(w) =1
means that w realization is totally possible for variables X7, ..., X,, and w(w) =0
means that w is an impossible state. The particularity of the possibilistic scale
is that it can be interpreted in two-fold: in an ordinal manner i.e. the possibility
degrees reflect only an ordering between the possible values and in a numerical
interpretation i.e. the possibility degrees make sense in the ranking scale. Given a
possibility distribution 7, we can define for any subset A C {2 two dual measures
II(A) = rurjleaim(w) and N(A) = 1 — I1(A) where IT assesses at what level A is

consistent with our knowledge represented by 7 whereas N evaluates at what
level A is impossible.

Possibilistic networks [11, [8] represent the possibilistic counterpart of Bayesian
networks [2] having similarly two components: a graphical component composed
of a DAG which encodes a set of independence relations (i.e. each variable
X,; € V is conditionally independent of its non-descendent given its parents)
and a numerical component corresponding to the set of conditional possibility
distributions relative to each node X; € V in the context of its parents. The two
interpretations of the possibilistic scale lead naturally to two different ways to
define possibilistic networks [I}, §]: qualitative also called min-based possibilistic
networks based onmin-based conditioning and quantitative also called product-
based possibilistic networks based on the product-based conditioning [10].

Several researchers were interested by possibilistic networks since they provide
an interesting alternative to Bayesian networks especially in some situations
when the probabilistic reasoning is controversial, like the case of total ignorance.
The vast majority of these works concern propagation algorithms [Il 8, 9] and
the unique attempt to learn possibilistic networks from data was proposed by
Borgelt et al. [I] and it is restricted to datasets with missing values. Our goal
in this work is to consider the more general case of possibilistic datasets as
described in next section.
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3 New Approach to Learn Networks Structure from
Possibilistic Datasets

To learn DAG structure from possibilistic datasets, we propose two phases
namely, possibilistic data imputation and learning. Before detailing our ap-
proach, we first define these latters. A possibilistic dataset D is defined as a
collection of tuples (denoted by ¢;) which can be dispatched into p certain tu-
ples, denoted by CT', and ¢ uncertain ones, denoted by UT, where attributes
are characterized by possibility distributions. Each tuple ¢; is characterized by
its frequency, denoted by fr(t;) i.e. number of occurrence in the dataset.

Ezample 1. Let us consider Table [I] presenting an example of a possibilistic
dataset with three variables (A, B, C) such that A and C are ternary and B is
binary. The first five tuples are certain and the last five ones are uncertain. Tuple
1 (resp. 2,3,4,5) corresponds to ajbacs (resp. agbice, arbaci, asbics, asbics).

3.1 Possibilistic Data Imputation

Given a possibilistic dataset, the first phase is to impute uncertain tuples. More
precisely, we start by computing the similarity between certain and uncertain
tuples. There are several measures in literature that can be applied to reflect
closeness between two objects (tuples in our case), we propose to use information
affinity [6]. This choice is justified by the fact that this measure satisfies main
properties of similarity measures [6]. Moreover, it has been successfully applied
in the context of possibilistic learning of decision trees [6]. Let ¢; and ¢; be
two distinct tuples each characterized by n attributes. Let 75 (resp. 7rf) be the
possibility distribution relative to the k' attribute of ¢; (resp. t;) such that m
is the number of its values, then the information affinity between ¢; and ¢; is

expressed by:
n k &
InfoAff(ti,t;) = D k-1 Aff(ﬂ'i7ﬂ-j) N

n

where Aff (Wf,ﬁf) is the similarity degree between ¥ and 77;? based on two

quantities: inconsistency degree, Inc(xf,7F) =1 — mag{wf (w) A7F(w)} where
we

A can be taken as min or product operato and Manhattan distance i.e.

= ¥ (wi) =k (wy)]

d(mk, mh) = . Formally, Aff(7F ") is expressed by:

J m (Y]
k -k kk
bk K d(m, m8) + X Inc(n),?)
Aff(ﬁiaﬂj)*1* j/@—&—)\ ! (2)

where k > 0 and A > 0. In the remaining, we take A = k = 1 and A is the min
operator. Once the similarity between uncertain and certain tuples is computed,
we can integrate uncertain tuples into the certain set updating thereby certain

! Using the min operator instead of the product means that we give less importance
to the inconsistency degree.
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tuples frequencies. Let ¢,, be an uncertain tuple and NCT(t,,) be its nearest cer-
tain tuples i.e. tuples having the highest information affinity. Then, we propose

two methods to handle t,:

1. Maximum frequency method: The idea is to search the most frequent tuple

among NCT'(t,), denoted by t¥

follows:

, to which we affect the uncertain tuple as

frte) = fr(td) + InfoAf f(tu, t) * fr(tu) 3)

Note that if several tuples have the same maximum frequency, then, we
choose randomly one of them as t\.

2. Dispatching method: The idea, here, is to dispatch the information affinity
value between t,, and NCT'(t,) as follows:

Vt. € NCT(ty), fr(te) = fr(te) +

InfoAf f(tu,tc)

INCT(t,)| * fr(tu) (4)

If INCT (t,)| = 1, Mazimum frequency and Dispatching become identical.

Ezample 2. Let us consider the possibilistic dataset in Table[Il Table [2] presents
information affinity values between certain and uncertain tuples and Table Bl
presents the updated dataset applying Dispatching and Mazimum frequency.

Table 1. An example of a possi-
bilistic dataset

A B C
a1 az as bl b2 cC1 C2 C3 fr(ti)
1 1.0 0 0 1 0 0 1 3
2 0 01 1 0 0 1 O 4
3 1.0 0 0 1 1 0 O 1
4 0 1 0 1 0 O 1 O 2
5 0 0 1 1 0 0 0 1 1
6 01 0 1 07 1 05 1 0.3 2
7 0 1 0 1 08 1 0.60.2 1
8 1 0051021 0 O 1
9 1 1 1 1 0 1 1 1 1
10 0 1.0 1 1 0 1 O 1

3
[y
=

3.2 Learning Structure Phase

Table 2. Computing similarities between
certain and uncertain tuples

ur

cT 6 7 8 9 10
0.44 0.32 0.41 0.44 0.36
0.79 0.5 0.53 0.77 0.63
0.5 0.54 0.68 0.44 0.36
0.51 0.77 0.4 0.77 0.91

0.59 0.38 0.53 0.77 0.36

U W N

Table 3. Updating frequencies using Dis-
patching and Maximum frequency

cT Dispatching fr(t;) Maz frequency

fr(ts)
1 a1b2(;3 3 3
2 a3b1(;2 5.84 6.36
3 a1bscy 1.68 1.68
4 azbica 3.95 3.68
5 agbics 1.25 1
Z 15.72 15.72

At this level, we proceed to learn networks structure using the updated dataset
denoted by D’ and we can apply any algorithm, originally proposed to learn
Bayesian networks. In this paper, we propose using two score-based algorithms
which have been already applied in the possibilistic framework [1].
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— Maximum Weight Spanning Tree (MWST) [11]: This algorithm associates
a weight (local score) to each pair of variables X;, X; € V. MWST finds a
subset of edges where the total of their weights is maximized.

— Greedy Parent Search algorithm (GPS) [12]: This algorithm requires a topo-
logical order to reduce the search space. At the beginning, the value of the
score is computed for a variable X;. Then, in turn, each of the parent can-
didates X is temporarily added and the score is recomputed. The parent
candidate that yields the highest value of the scores is selected as a first
parent and is permanently added.

These two algorithms are based on local scores to guide the search in graph can-
didates. In the current work, we retain two scores, namely, possibilistic mutual
information and possibilistic x> measure which are direct adaptations of proba-
bilistic independence tests mutual information [I3] and x? [14]. In fact, Borgelt
et al. showed that these adaptations yield to good structure in the context of
learning possibilistic networks [I]. Given two variables X; and X, in V, then:

— Possibilistic mutual information is expressed by:

II(zi,x;)
mi( X, X;) = — I (xi, xj). V]
i ( i) I;‘ ( xj)lngmin(H(fi),H(fj))
x;ED;

()

— Possibilistic x> measure is expressed by:

(min (I (x;), I (x;) — I(x;, ;)

min(I1(z,), I1(z;)) ©)

de (X5 Xj) = Y
r;€D;
z;€D;

Note that these scores are computed in a binary manner which fit well with
MWST that generates trees. A generalization to more than two variables is also
easy to achieve for the case of GPS. In fact, the score between a variable X; and
any set of candidate parents, denoted by Z, can be computed by a projection of
each tuple t; in the updated dataset D’ into an instance z of Z in order to retain
those matching to it. The possibility degree of z can be computed as follows. Let
Proj.(D’) be this tuple set then:

ma r(t;
tieProj}:(D’)f ( Z)

> fr(t:)

t,eD’

I(z) = (7)
4 Experimental Study

To evaluate Dispatching and Maximum frequency methods, we propose two sets
of experiments:
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— CUTS vs Dispatching and Mazimum frequency: this experiment allows us
to compare proposed methods with the state of the art one i.e. CUTS [IJ.
To this end, we should consider the particular case of datasets with missing
values since this is the unique case where we can apply the three methods.

— Dispatching vs Mazimum frequency: in this second experiment, we are in-
terested by comparing Dispatching and Mazimum frequency methods. We
propose, in particular, to study the impact of data quality (% of missing
data and possibilistic data) on the learned structures.

The evaluation consists in assessing quality of learned structures applying MWST
and GPS with possibilistic mutual information and possibilistic x? using the
global score weighted sum of possibility degrees [1]. This evaluation schema has
been already applied in the same context in [I]. Weighted sum of possibility de-
grees of a DAG G given a dataset D, denoted by Q(G, D), consists in summing
possibility distributions of possible tuples ¢; in D determined from G, weighted
with their number of occurrence denoted by w(t;). This quantity is expressed
by:
Q(G, D) = w(t;).w(t;) (8)
teD

Weighted sum of possibility degrees can easily be computed if all tuples are
certain because their possibility distributions are unique. Nevertheless, in the
case of uncertain tuples, we use an aggregate: in the case of datasets with missing
values we may use min, mean or mazx of possibility distributions of certain tuples
that are compatible with it (i.e. a possible certain tuple that can be derived
from it e.g. if we consider tuple 9 in Table[I] then a possible compatible tuple
is {0,0,1,1,0,0,0,1}) as proposed by Borgelt et al. in [I]. However, in the case
of possibilistic datasets, the compatibility between tuples is meaningless. So, we
propose to use the maximum of possibility degrees of nearest certain tuples as
aggregate. Note that weighted sum of possibility degrees should be minimized.

As an example of dataset, we consider for all experiments, Danish Jersey cattle
blood type determination dataset which contains 500 sample cases described by
21 attributes. This dataset also contains an important number of missing data
(=~ 10% of values). In each experiment, we generate 10 bootstrap samples by
selecting randomly 40% of the entire dataset. Each algorithm is evaluated by
calculating the mean and the standard deviation of weighted sum of possibility
degrees of learned networks structures. The order used in GPS corresponds to
the one cited in Danish Jersey cattle blood type determination dataset.

4.1 CUTS vs Dispatching and Maximum Frequency Methods

The first experiment concerns the comparison between CUTS and Dispatching
and Mazimum frequency in the particular case of missing data. Table @ shows
results relative to this experiment. As we have mentioned, to treat uncertain
tuples in weighted sum of possibility degrees, we may choose the min, mean or
maz of compatible tuples of possibility degrees. Table dl shows that Dispatching
and Mazimum frequencyyield better results than CUTS. This is an obvious result
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Table 4. Weighted sum of possibility degrees of learned structures using min, mean
and maxi aggregations

max mean min execution

time
CUTS 2+/- 0.2 1,84/-0.1 1,74+/-0.1 2.5+4/-0.2
dmi Dispatching 1,94/-0.1 1,8+/-0.1 1,64/-0.1 2.84/-0.2
MWST Maximum frequency 1,9+4/-0.1 1,74+/-0.1 1,6+ /-0.1 2.8+/-0.2
CUTS 2+/-0.2 1,94/-0.1 1,84/-0.1 2.7+/-0.4
d, 2 Dispatching 2+/-0.1 1,84+/-0.1 1,7+/-0.1 2.9+4/-0.1
Maximum frequency 24+/-0.1 1,84+/-0.1 1,7+/-0.1 2.8+/-0.1
CUTS 1,94/-0.2 1,74/-0.2 1,54/-0.1 18.5+/-0.2
dimi Dispatching 1,9+4/-0.1 1,74/-0.1 1,5+/-0.1 174+/-0.3
aPs Maximum frequency 1,9+4/-0.1 1,74+/-0.1 1,54+/-0.1 18 +/-0.7
CUTS 1,9+/-0.2 1,7+/-0.1 1,5+/-0.1  33.7+/-0.6
dXQ Dispatching 1,94/-0.1 1,74+/-0.1 1,54/-0.1 38.3+/-0.2
Maximum frequency 1,94/-0.1 1,6+/-0.1 1,54+/-0.1 38.1+/-0.2

due to the way in which uncertain tuples are handled, in fact, in Dispatching
and Mazimum frequency, their frequency corresponds to their similarity (less
than 1) and not their real frequency (1) as it is the case in CUTS. By this way,
we can deflate considerably possibility distributions and thereby, we make them
more informative for discovering dependencies between attributes. Table @l (last
column) shows also that these three methods run in approximately equal time
durations. The complexity of Dispatching and Mazimum frequency is O(p*q).

4.2 Dispatching vs Maximum Frequency

The first experiment shows a very close behavior of Dispatching and Mazimum
frequency. Thus, we focus now on comparing them by varying the percentage of
missing and possibilistic data in the dataset. Thus, we generate four synthetic
datasets by randomly removing 10%, 20%, 30% and 40% of values. Figure [l
shows that adding missing data reduces learned structures quality. In fact, this
operation introduces noise to the dataset which allows the emergence of cor-
rupted dependencies. Obviously, in this situation, both methods perform less
better but, we remark that they remain stable i.e. not very sensitive to noise.
The last experiment covers four synthetic datasets generated by varying the
percentage of missing data in the dataset replaced by possibility distributions
(possibilistic data). Figure [l gives results of this experiment. Unsurprisingly, the
quality of learned structures is better when we replace missing data with possi-
bility distributions in both methods Dispatching and Maximum frequency. This
is due to the fact that possibility distributions are more specific than missing
data (total ignorance). We also note that Dispatching and Mazimum frequency
behave almost the same way regarding missing and possibilistic data except in
the case of MWST where Maximum frequency leads to slightly better learned
structures. Mazimum frequency is based on most frequent observations exclud-
ing dependencies discovered from very rare observations generally not relevant
to the problem.
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Fig. 1. Weighted sum of possibility degrees of learned structures from missing and
possibilistic data

5 Conclusion

This paper addresses the problem of structural learning of DAGs from possi-
bilistic datasets. The proposed approach is first based on imputation to handle
uncertain tuples. To this end, two solutions are proposed: Dispatching and Maz-
imum frequency. Then, we proceed to the learning phase where we can apply
any of the learning structure algorithms. Experimental study shows that both
Dispatching and Mazimum frequency yield better structures than the closest ex-
isting method to our work i.e. CUTS [I]. It also shows that they have almost the
same behavior with GPS and MWST learning algorithms with a slight advantage
to Mazximum frequency with MWST. The output of the proposed approach is a
DAG without any numerical data which may represent the qualitative compo-
nent of several graphical models. That said, the semantic of generated structures
fits better with possibilistic networks and more precisely product-based ones. Fu-
ture work concerns evaluation methods of learned networks structure to make it
more specific to the possibilistic framework. We also tend to learn possibilistic
networks parameters from data which remains a real challenge.
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Abstract. In this paper we shall deal with an extension of Lukasiewicz
propositional logic obtained by considering scalar multiplication with
real numbers, and we focus on the description of its Lindenbaum alge-
bra, i.e., the algebra of truth functions. We show the correspondence
between truth tables of such logic and multilayer perceptrons in which
the activation function is the truncated identity.

Keywords: Many-valued logic, Lukasiewicz logic, McNaughton func-
tions, Neural Networks, MV-algebras, Riesz MV-algebras.

1 Introduction

Many-valued logics are the logical instrument to use when dealing with more
than two truth values. In particular, in the big class of many-valued logics a
leading role belongs to Lukasiewicz logic that has truth values in the real interval
[0, 1] and whose connectives are the Lukasiewicz t-norm

@y =max(x+y—1,0)

as interpretation of conjunction, and the involution —x = 1 — z as interpretation
of negation.

The importance of Lukasiewicz logic is mainly due to the fact that it is a
deductive system that is logically sound and complete with respect to interpre-
tations in the interval [0, 1] and, further, when interpreted in [0, 1] all connectives
become continuous functions.

Differently from what happens in classical propositional logic, a functional
completeness theorem does not hold: not all the functions from [0, 1]™ to [0, 1]
are truth tables of some Lukasiewicz formula. But a characterization of such
functions exists: McNaughton theorem [I3] ensures that they are exactly the
class of continuous piecewise linear functions with integer coefficients. Then a
natural question arises: how to modify the logic in order to obtain, as truth
functions, all the continuous piecewise linear functions. The answer has been

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 77-85] 2013.
© Springer International Publishing Switzerland 2013
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given in [8/9] where a logical system RL corresponding to Riesz MV-algebras
(unit interval of vector lattices) is given.

Many-valued logic has been proposed in [5] to model neural networks: it is
shown there that, by taking as activation function g the identity truncated to zero
and one (i.e., p(x) = (1 A (2 V0))), it is possible to represent the corresponding
neural network as combination of propositions of Lukasiewicz calculus. In [2],
formulas of Rational Lukasiewicz logic have been studied in correspondence with
multilayer perceptrons.

In this paper we extend the latter result and we show that multilayer percep-
trons whose activation function is the identity truncated to zero and one, can
be fully interpreted as logical objects, since they are equivalent to (equivalence
classes of) formulas of RL. This result can be seen as a generalization of the well
known correspondence between boolean circuits and formulas of classical propo-
sitional logic (see also [7]). On one hand to have a logical representation (in a
given logic) of neural networks could widen the interpretability, amalgamability
and reuse of these objects. On the other hand, neural networks could be used to
learn formulas from data and as circuital counterparts of (functions represented
by) formulas.

2 MV-Algebras, Riesz MV-Algebras and Related Logical
Systems

The algebraic structures related with Lukasiewicz infinite-valued logic are called
MV-algebras. An MV-algebra is a structure (A, ®,*,0), where (A, ®,0) is an
abelian monoid and the following identities hold for all x,y € A:

MV(1) (a*)* ==,
MV(2) 0* &z = 0%,
MV(@3) (z*@y) @y=(y @) ®ur.

The real unit interval [0, 1] equipped with the operations

z*=1—zand @y =min(l,z + y)
for any x,y € [0,1] (the standard MV-algebra) generates the verity of MV-
algebras, i.e. an equation holds in any MV-algebra if and only if it holds in [0, 1].

We refer to [6] for all the unexplained notions concerning MV-algebras. On any
MV-algebra A the following operations are defined for any x,y € A:

1=0520y=@"0y) 2 >y=2"dy
0x =0, mz = (m — 1)z @ x for any m > 1.

We recall that an ¢-group is a structure (G, +,0, <) such that (G,+,0) is a
group, (G, <) is a lattice and any group translation is isotone [3]. If G is an
abelian ¢-group and u € G, we define [0,u] = {z € G |0 <z <wu} and

z2@y=(x+y)Au, 2* =u—z for any z,y € [0,u].
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Then [0,u]q = ([0, u],®,—,0) is an MV-algebra [6l Proposition 2.1.2]. So for
example, from the abelian ¢-group R of real numbers (equipped with the usual
linear ordering) and considering the unit element 1, one obtain the standard
MV-algebra [0, 1].

In [15] Mundici proved that MV-algebras are categorically equivalent with
abelian lattice-ordered groups with strong unit (i.e. an element u € G such that
u > 0 and for any = € G there is a natural number n such that z < nu.). Hence
any MV-algebra is the unit interval of some abelian ¢-group.

A Riesz space (vector lattice) [12] is a structure (V,-,+,0,<) such that
(V,+,0,<) is an abelian ¢-group, (V,-,+,0) is a real vector space and, in addi-
tion, z < y implies r-x < r -y, forany x, y € V and r € R, r > 0. A Riesz
space is unital if the underlaying ¢-group has strong unit.

A simple example of Riesz space is once again the set of real numbers with
operations of sum and multiplication and with the usual linear ordering.

If (V,u) is a Riesz space with strong unit then the unit interval [0, u]y is closed
with respect to the scalar multiplication with scalars from [0, 1]. The structure

[O?U‘}V = ([O,U], 'a@a*ao)a

where ([0, u], ®,*,0) is the MV-algebra defined as above and - : [0, 1] % [0, u]y —
[0, u]y satisfies the axioms of the scalar product is the fundamental example in
the theory of Riesz MV-algebras, initiated in [9].

Definition 1. A Riesz MV-algebra is a structure
(Ra B @a* ) 0)7

where (R, ®,*,0) is an MV-algebra and the operation - : [0,1] x R — R satisfies
the following identities for any r, q € [0,1] and x, y € R:

(RMV1) r-(z0y*) = (r-z)o(r-y)",
(RMV2) (roq¢*) -z=(r-z)0o(¢-2)*,
(RMV3) r-(q-z) = (rq) =z,

(RMV,) 1-x = x.

In the following we write rx instead of r-x for r € [0,1] and € R. Note that
rq is the real product for any r, g € [0,1].

Theorem 1. An equation o in the theory of Riesz MV-algebras holds in all
Riesz MV-algebras if and only if it holds in the standard Riesz MV-algebra [0, 1].

2.1 The Propositional Calculus RL

We denote by L, the co-valued propositional Lukasiewicz logic. Recall that £
has — (unary) and — (binary) as primitive connectives and, for any ¢ and ¢ we
have the following derived connectives:

POYi=—p =9 P OY:i==(-p )
eVY:i=(p—=Y) =Y  pAp:==(-p V1)
T:=(p— o) 1L =T,
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The language of RL contains the language of L., and a family of unary con-
nectives {V.|r € [0,1]}. We denote by Form(RL) the set of formulas defined
inductively as usual.

Let R be a Riesz MV-algebra. An evaluation is a function e : Form(RL) — R
which satisfies the following conditions for any ¢, ¢ € Form(RL) and r € [0, 1]:
(1) e(p — 1) = e()" ® (),

(€2) e(—p) = e(y)",
(e3) e(Vrp) = (re(9))".

As a consequence of Theorem [I the propositional calculus RL is complete
with respect to [0, 1]. In order to define the scalar multiplication we introduce
new connectives A, := =(V,—¢p). Note that e(A,q¢) = re(p).

Definition 2. The term function ¢ : [0,1]™ — [0, 1] associated with a formula
o(v1,...,vy,) is the uniquely defined function such that @(x1,...,2,) = e(yp),
where e is an evaluation such that e(v;) = x; for any i € {1,...,n}.

The set {@ | ¢ € Form(RL)} is a Riesz MV-algebra with operations defined
pointwisely.

2.2 Term Functions and Continuous Piecewise Linear Functions

In the following, we characterize the class of functions that can be defined by
formulas in RL.

Recall that f : R® — R is a linear function if f(z1,...,2,) = a121 + ... +
anTy + b with a;,b € R.

Definition 3. Let n > 1 be a natural number. A function f:R™ - R is a
piecewise linear function if there exists a finite number of linear functions

q...,q:R" =R

such that for any (x1,...,2,) € R™ thereisi € {1,...,k} such that f(x1,...,zp)
=qi(z1,...,2n).

We denote by PL, the set of continuous piecewise linear functions f : [0,1]" —
[0, 1]. The following can be proved by structural induction on the formulas.

Theorem 2. If ¢ is a formula of RL with propositional variables from {vq, - - |
Un} then @ € PL,,.

The continuous piecewise linear functions f : [0,1]" — [0, 1] with integer coef-
ficients are called McNaughton functions and they are in one-one correspondence
with the formulas of Lukasiewicz logic by McNaughton theorem [13]. The contin-
uous piecewise linear functions with rational coefficients correspond to formulas
of Rational Lukasiewicz logic, a propositional calculus developed in [10] that has
divisible MV-algebras as models. In Theorem [3l we prove that any continuous
piecewise linear function with real coefficients f : [0,1]™ — [0,1] is the term
function of a formula from RL.

For now on we define ¢ : R — [0, 1] by
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o(x) = (xV0)A1l for any z € R.

Proposition 1. For any linear function f :[0,1]" — R there exists a formula
@ of RL such that po f = .

Proof of this proposition can be found in [9]. For a comparison on the case of
McNaughton functions and McNughton functions with rational coefficients, we
refer the reader to [I].

Following the proof in [9], we define here a recursive function whose input is
a linear function f : [0,1]" — R and whose output is a formula ¢ of RL such
that po f = @. If f:]0,1]™ — R is a linear function, then

f(xla"'axn) =CpTp + -+ 121+ Co
with c¢g, ..., ¢, € R. Note that for any ¢ € R there is a natural number m such
that ¢ =ry + -+ 4+ ry, where 11, ..., ry € [—1,1]. Hence

f@e, o n) = TmlYm + - Tpp1Yper F 1+ 11

where m > 1 and 0 < p < m are natural numbers, r; € [—1,1] \ {0} for any
je{l,...,m}and y; € {z1,...,zn} forany j € {p+1,--- ,m}.

In the sequel we represent a monomial ra; as a pair (r,4) so, in consequence,
a linear function is represented as a list of pairs (r,¢) where ¢ € [—1,1] and
i € {0,...,n}. In this representation a pair (r,0) will represent the free term r.
The input of the recursive function Formula is a nonempty list of pairs.

function Formula((71,%1),..., (Tm,im))

{

(F1) if 7, <0 for any k€ {l,...,m} then return(l);

(F2) find k€ {1,...,m} such that r; > 0;
if ip =0 then ¢ := A, T else ¢ := A, x4 ;

(F3) if m =1 then return(y);

(F4) ¢ =Formula((ri,41),..., (Thk—1,%k—1)s (Tht1,%k+41);s -+ (Pmyim))
x =Formula((—71,41),. .., (—Th=1,%k=1), (—Tkt1, tkt1)s -« s (—Tmyim)) ;
return((p $ ) ® =x)

}

Note that in the above algorithm A;¢ can be replaced by ¢ for any formula ¢,
since F ¢ <> Ajp in RL. Further simplifications in RL can be done, but they
are beyond the scope of the above algorithm.

Ezxample 1. We illustrate how the algorithm works on a simple example.
If £:00,12 — [0,1], f(z1,72) = 22 — 0.371 then we call the function
function Formula((1,2),(—0.3,1))

{

(F2) k=1, rpe=1, ip=2; ¢¥:= Az,

(F4) ¢ =Formula((—0.3,1)) ; x =Formula((0.3,1)) ;
return((¢ & 1Y) © —x)



82 A. Di Nola, B. Gerla, and I. Leustean

One can easily see that ¢ = 1 and x = Ag 321, so the function returns
(@) ©—x = (LD A1x2) © =2A0371
which is logically equivalent with zo ® =Ag.321.

Theorem 3. For any f :[0,1]™ — [0,1] from PL,, there is a formula ¢ of RL
such that f = .

Proof. Let f :[0,1]™ — [0,1] be a continuous piecewise linear function and let
P1,---,Py be the linear functions that are the pieces of f in the sense that for
every x € [0,1]™ there exists ¢ € {1,...,u} such that f(x) = p;(x).

Let X' denote the set of permutations of {1,...,u} and for every o € X' let

Pa = {X € [0’ 1}71 ‘ pa’(l)(x) S ce. S po(u)(x)}

In other words P, is a polyhedron such that the set of restrictions of linear
functions p1,...,p, to P, is totally ordered, increasingly with respect to {o(1),
..., 0(u)}. We denote by i, the index such that

(%) = Poi,) (%) for every x € P,.

Using the Max-Min representation from [16] (see also [13I14])

[= /\ \/pa(j),

oeX j=1

where we stress that p,(;) : [0,1]" — R are linear functions. We note that

f=o00of= /\ \79°Po(j)-

ceX j=1

By Proposition [ for any 0 € X and j = 1,...,i, there is a formula ¢,
such that ¢ o py(;) = poj. In consequence, if we set ¢ = A . \/;F’Zl ©o; then
f=e. O

For any n > 1, the set PL,, is a Riesz MV-algebra with the operations defined
componentwise. If RL,, is the Lindenbaum-Tarski algebra of RL defined on for-
mulas with variables from {v1,...,v,}, then RL,, is the free Riesz MV-algebra
with n free generators by standard results in universal algebra (see [4] and [I]
for the case of free algebras related to many-valued logics) . Since the func-
tion [¢] — @ is obviously an isomorphism between RL,, and PL,, the following
corollary is straightforward.

Corollary 1. PL, is the free Riesz MV-algebra with n free generators.

Elements of PL,, will be also called RL functions.
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3 Neural Networks

Among the many possible neural networks typologies and structures, we focus
our attention on multilayer perceptrons. These are feedforward neural networks
with one or more hidden layers. A multilayer perceptron with [ hidden layers
[11], n inputs and one output can be represented as a function F : [0, 1]™ — [0, 1]
such that F'(z1,...,z,) =

n® n(=D) n
oY who | S wglgﬁ(... <Zw}x+b>>>> (1)
k=1 i=1

Jj=1

where ¢ : R — [0, 1] is a monotone-nondecreasing continuous function (referred

to as activation function), w!, is the synaptic weight from neuron k in the I-th

hidden layer to the single output neuron o, wi;l is the synaptic weight from

neuron j in the (I — 1)-th hidden layer to neuron k in the I-th hidden layer, and
so on for the other synaptic weights.

In the simplest case, a multilayer perceptron has exactly one hidden layer.
This network can be represented as a function G : [0,1]" — [0, 1]:

G(@1,...,20) = ¢ Zaz‘¢ sz‘jijrbz‘ ; (2)
1=1 =1

where 7 is the number of neurons in the hidden layer.

Let A be the class of multilayer perceptrons where the activation function
is the continuous piecewise linear function ¢(r) = max(min(1,z),0), and the
synaptic weights are real numbers.

3.1 RL and Neural Networks

In order to establish a correspondence between neural networks and RL func-
tions, we need the following

Lemma 1. The activation function o maps any finite weighted sum of functions
in PL, into a function in PL,.

We want now to associate a neural network to each RL formula of n variables.

By using neural networks we can express linear combinations, but we need to
define networks corresponding to minimum and maximum.

Proposition 2. For every z,y € [0, 1], one-layer neural networks

Fi(z,y) = oly) — o(y — x)
Fy(z,y) = o(y) + o(z — y)

coincide respectively with min(x,y) and max(z,y).
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Proof. f x < y then o(y) = vy, oy —x) = y — « and o(x — y) = 0, hence
Fi(z,y) =z and F3(z,y) = y.

If y <z then o(y) =y, o(y —x) =0 and o(x —y) =  — y, hence Fi(x,y) =y
and Fy(z,y) = x.

We can hence describe neural representation of RL functions.

Theorem 4. (i) For every [,n,n® ..., n) € N, and w;;,b; € R, the function
F:[0,1]" — [0,1] defined as F(z1,...,x,) =

n® (=1 n
0 ZwokQ Z ijg<... (Zwlixi+bi> >>> ,
k=1 =1

j=1

is a RL function.
(ii) For any RL function f, there exist I,n,n® ... . n® € N, and wij, by € R
such that f(z1,...,z,) =

NO) =1 n
0 ZWOkQ Z wkjg(... (thxieri) >>> .
k=1 i=1

Jj=1

Proof. (i) By Lemmal/[l
(ii) By Theorem [3 we have
f(x) = min max o(pa(;)(x)).

For every o and j, the function o(p,(;)(x)) is a network with one hidden layer.
Then applying networks as in Proposition [2] we get the claim.

By using a simple variation of Weierstrass theorem it is possible to show that
continuous piecewise linear functions are able to approximate every continuous
function with an error as low as desired. Then we have the following

Corollary 2. The class N of functions associated with multilayer perceptrons
as in Equation [1, with w;; € R and ¢ = o truncated identity, is dense in the
class of continuous functions.

From the corollary it follows that the use of only truncated identity o as
activation function is not a severe restriction on the class of neural networks
which can be obtained; they can approximate every neural network representing
a continuous function.
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Abstract. Graphical models are important tools to efficiently represent and an-
alyze uncertain information in knowledge-based systems. The most prominent
representatives of these models refer to probability theory. In particular, Bayesian
networks [27, |29] have been largely developed and used in real world applica-
tions. However, such networks are only appropriate when all numerical data are
available, which is not always the case. Indeed, there are some situations such
as the case of total ignorance, which are not well handled and which can make
the probabilistic reasoning unsound. Therefore non-probabilistic graphical mod-
eling has recently emerged as a promising new area of research. In particular,
possibilistic networks [4, |8, 121] appear as noteworthy alternative to probabilistic
networks whenever it is necessary to model both uncertainty and imprecision.
In fact possibility theory [15] offers a natural and simple model to handle such
data and presents an appropriate framework for experts to express their opinions
numerically or qualitatively. This leads to two variants of possibilistic networks:
product-based networks and min-based networks (also known as qualitative pos-
sibilistic networks). The first part of this talk adresses the reasoning problem in
possibilistic networks. Several propagation algorithms will be presented with a
focus on qualitative networks. The second part concerns the decisional aspect in
possibility theory and in particular the sequential decision making in possibilis-
tic decision trees. In fact, the development of possibilistic decision theory has
lead to the proposition of a series of possibilistic criteria, namely: optimistic and
pessimistic possibilistic qualitative criteria [[17], possibilistic likely dominance
[14, 20], binary possibilistic utility [23] and possibilistic Choquet integrals [32].
Thus a theoretical study on the complexity of the problem of finding an optimal
strategy depending on the monotonicity property of the optimization criteria will
be proposed. Details about different parts of this talk can be found in [1-5].

Keywords: Graphical models, Possibility theory, Causality, Propagation algo-
rithms, Decision making, Possibilistic decision trees.

1 Background on Possibility Theory

Possibility theory, issued from Fuzzy Sets theory, was introduced by Zadeh [35] and
further developed by Dubois and Prade [[15]. This subsection briefly recalls some basic
elements, for more details we refer to [[15].

LetV = {X1, Xo, ..., X } be a set of variables. We denote by x; any instance of X;
and by Dx, the domain associated with X;. {2 = Dx, x- - -x Dx, denotes the universe

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 86—@] 2013.
(© Springer International Publishing Switzerland 2013
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of discourse, which is the Cartesian product of all variable domains V. Vectors w € (2
are often called realizations or simply “states” (of the world). The agent’s knowledge
about the value of the x;’s can be encoded by a possibility distribution 7 : 2 — [0, 1];
m(w) = 1 means that realization w is totally possible and 7(w) = 0 means that w is
an impossible state. It is generally assumed that there exist at least one state w which
is totally possible - 7 is said then to be normalized. Extreme cases of knowledge are
presented by:

— complete knowledge i.e. 3wy s.t. m(wp) = 1 and Yw # wp, 7(w) = 0.
— total ignorance i.e. Yw € 2, m(w) = 1 (all values in {2 are possible).

From 7, one can describe the uncertainty about the occurrence of an event A C 2
via two dual measures: the possibility I7(A) and the necessity IV (A) expressed by:

IT(A) = sup 7(w). (1)
wEA
N(A):l—H(/_l)zl—supﬂ'(w). 2)
wgA

Measure IT(A) evaluates to which extend A is consistent with the knowledge repre-
sented by 7 while N (A) corresponds to the extent to which —A is impossible and thus
evaluates at which level A is certainly implied by the 7.

The particularity of the possibilistic scale is that it can be interpreted twofold: when
the possibilistic scale is interpreted in an ordinal manner, i.e. when the possibility de-
gree reflects only an ordering between the possible values, the minimum operator is
used to combine different distributions.

Conditioning is a crucial notion when studying independence relations. It consists
in modifying our initial knowledge, encoded by the possibility distribution 7 by the
arrival of a new fully certain piece of information e. Let us denote ¢ = [e] the set
of models of e. The initial distribution 7 is then replaced by another one denoted by
7 =n(. | ¢) (we generally assume that ¢ # () and that IT(¢) > 0). One important and
natural postulate for possibilistic conditioning stipulates that 7 should be normalized.
This can be ensured in two different ways depending on whether we are in a qualitative
or numerical setting leading to two possible definitions of possiblistic conditioning:

— In an ordinal setting, we assign to the best elements of ¢, the maximal possibility
degree (i.e. 1), then we obtain:

1 ifm(w)=1I(¢)andw € ¢
7w | 6) = { 7(w) if 7lw) < 0(6) andw € ¢ 3

0 otherwise.

This corresponds to the min-based conditioning.
— In a numerical setting , we proportionally shift up all elements of ¢:

m(w)
(w | ) = { (g T €0 )

0 otherwise.

This corresponds to the product-based conditioning.
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These two definitions of conditioning satisfy a unique equation close to the Bayesian
rule, of the form:
Vw, T(w) = m(w | ¢) ® I1(¢). (5)

respectively for ® are the minimum (for (3)) and the product (for @)) operators.
The min-based conditioning (@) corresponds to the least specific solution of Equation
(@) first proposed by Hisdal [23]. If IT(¢) = 0 then, by conventionm(w |, ¢) = 7(w |,
@) =1.

2 Possibilistic Networks

Possibilistic networks are defined as counterparts of Bayesian networks [29] in the con-
text of possibility theory. They share the same basic components, namely:

(i) a graphical component which is a DAG (Directed Acyclic Graph) G= (V, E') where
V = {X1, Xa,..., XN} denotes a set of nodes representing variables and F a set of
edges encoding conditional (in)dependencies between them.

(ii) a numerical component associating a local normalized conditional possibility dis-
tribution to each variable X; € V in the context of its parents (denoted by Us).

The two definitions of possibilistic conditioning lead to two variants of possibilistic
networks: in the numerical context, we get product-based networks, while in the ordinal
context, we get min-based networks (also known as qualitative possibilistic networks).
Let I1G be a possibilistic network (where ® is either the min or the product operator
* depending on the semantic underlying it), then we can compute the joint possibility
distribution encoded by I Gg using the following chain rule:

(X1, ., XN) = @iz1.n (X | Uy). (6)

For example, Table [T] gives local distributions (I7(A) and IT(B | A)) relative to a
small network I1Gg with two binary variable A and B such that A is the parent of B
and the joint possibility distributions relative to IIG, and I1G ,;y, (i.e. 7, and Tp4p)

Table 1. Example of the numerical component of a possibilistic network

A B II(A) II(B | A) 7« Tmin

a1 by 1 1 1 1
a1 b 1 0.8 0.8 0.8
a2z bp 04 0.8 0.32 04
az bo 0.4 1 04 04

It is important to note that the semantic behind edges in the graphical component
can be generalized to direct causal relationships instead of simple (in)dependencies be-
tween variables. In such a case we talk about causal possibilistic networks [[1] which are
possibilistic counterparts of probabilistic causal networks [30]. Clearly, a causal possi-
bilistic network is a proper possibilistic network but the contrary is not always true.
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This means that its structure is more meaningful and more expressive. For instance, al-
though the two networks A — B and B < A are equivalent (i.e. they encode the same
joint distribution), only one of them is a correct causal network. In fact, if we consider
the first network A causes B, then, manipulating the value of A affects B which is not
true with the second structure (i.e. B «— A) where B is a cause of A, then manipulat-
ing A will not affect B. It is important to note that exactly as possibilistic networks,
the two interpretations of the possibilistic scale lead to two kinds of possibilistic causal
networks: min-based ones in an ordinal setting and product-based ones in a numerical
setting.

The main purpose of building possibilistic networks or possibilistic causal networks
is to use them for inference (or propagation) i.e. studying how the realization of specific
values of some variables affects the remaining ones. Obviously this process depends on
the semantic of the network at hand. More precisely, given a possibilistic network, we
can determine how the observation of specific values of some variables (i.e. evidence,
also called observation) affects remaining ones while if we deal with causal networks,
network’s information can be updated by the presence of two types of information:
observations or interventions which represent external events, coming from outside the
system and forcing some variables to take some specific values.

Similarly to the probabilistic case [[12], possibilistic propagation (causal or not) is
an NP-complete problem in both product and min based networks. The first possibilis-
tic propagation algorithms were simple adaptations of standard message passing algo-
rithms initially designed for Bayesian networks [27,129]. We can mention, in particular,
the adaptation of Pearl’s algorithm and Junction tree algorithm [8, [21]]. These adapta-
tions show that product-based networks are very close to Bayesian networks sharing
the same features (especially the product operator) and having the same theoretical
and practical results. This is not the case with min-based networks due to the speci-
ficity of the minimum operator (e.g. idempotency property) and this motivates us to
develop several new propagation algorithms for such networks. In what follows, we
first detail the anytime possibilistic propagation algorithm which is an approximate ap-
proach that avoids the transformation of the initial network into a junction tree, then
we present some variants of compilation-based propagation algorithms (also available
for the causal inference) showing, specifically the power of the qualitative setting with
the compilation technique recently proposed by Darwiche et al. for Bayesian networks
[13,128].

2.1 Anytime Possibilistic Propagation Algorithm

This algorithm (detailed in [4]) is inspired from the junction tree algorithm [27] with
the crucial difference that it avoids the transformation step of the initial network into
a junction tree which is known to be a hard problem [12]. Thus given a min-based
possibilistic network 171G, this algorithm locally computes for any instance a of a
variable of interest A the possibility distribution I7(a) inferred from ITG,,;,, according
to the following major steps:

- Initialization. This first step transforms the initial DAG into an equivalent secondary
structure, called moral graph by associating to each variable X; a cluster C; grouping
X; with its parents U;. Then for each edge connecting two nodes X; and X;, we add
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an undirected edge in the moral graph between the clusters C; and C; labeled with a
separator S;; corresponding to their intersection. The moral graph is quantified by as-
sociating to each cluster C; a potential using the initial conditional distributions. Lastly,
we should incorporate the instance of interest a in the cluster relative to A.

— One-parent stability. This step ensures that any cluster agrees with each of its parents
on the distributions defined on common variables. This procedure is performed via
a message passing mechanism between different clusters. Each separator collects
information from its corresponding clusters, then diffuses it to each of them, in order
to update them by taking the minimum between their initial potential and the one
diffused by their separator. This operation is repeated until there is no modification
on the cluster’s potentials. It can be shown that the one-parent stability is reached
after a finite number of message passes, and hence it is a polynomial procedure.

— n-parents stability. The previous step does not always guarantee local computations
(from clusters) of the possibility measure I (A). Thus, the aim of n-parents stability
is to improve the resulted possibility degree by considering stability with respect to
a greater number of parents. Therefore, we will increase the parents number by first
considering two parents, then three parents until reaching n parents where n is the
cardinality of the parent set relative to each cluster. Obviously, the higher the number
of parents considered in the stability procedure, the better the quality of results.

— Handling the evidence. Given any new evidence e, the computation of I1(a | €)
is performed via two calls of the previous steps in order to compute successively
II(e) and II(a A e). Then using the min-based conditioning (Equation [3), we get
I(a|e).

This algorithm is said to be anytime since the longer it runs, the closer to the exact
marginals it gets. In order to study the efficiency of this algorithm, we test the quality of
generated marginals from different stability procedures by comparing them with exact
ones (generated by the exact junction tree algorithm [, 21]). This experimental study
[4] was carried on random possibilistic networks (varying the number of nodes, their
cardinalities and the maximum number of parents) and it shows that the stability degree,
even at one-parent, is a good estimation of exact marginals (96,42%). This result is
interesting since it means that with networks having complex structures with a great
number of nodes, we can use efficiently the one-parent stability which is a polynomial
procedure. Indeed, in such cases the exact algorithm generates huge clusters where local
computations are impossible and blocks. Moreover, experimental study shows that the
refined stability procedures improve the rate of correct exact marginals (for instance
n-nodes stability provides 99.87% of exact marginals), without a huge increasing of
running time (e.g. with a DAG having 60 nodes, the additional running time is between
10 and 60 seconds).

2.2 Compilation-Based Propagation in Min-based Possibilistic Networks

Recently, inference has been studied using new techniques, namely knowledge compi-
lation (113, 28] which consists in preprocessing a propositional theory only once in an
off-line phase, in order to make frequent on-line queries efficient [[10]. The basic idea
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of compilation-based inference methods consists in encoding the initial network into a
propositional base, usually a conjunctive normal form (CNF) and compiling it into a
target compilation language that guarantees a polynomial inference.

In [3], we propose a possibilistic adaptation of the standard probabilistic inference
approach of [13] and a purely possibilistic inference method based on the transforma-
tion of possibilistic networks into possibilistic knowledge bases [6]. The possibilistic
adaptation does not take into account any numerical value in the encoding phase. In
other terms, it associates a propositional variable per parameter, regardless of its value.
Consequently, we propose to refine such encoding by dealing with specific values of
parameters. In fact, two types of encoding strategies are explored. The first one, named
local structure and used in both probabilistic and possibilistic networks, consists in
assigning one propositional variable per equal parameters per possibility table. This en-
coding strategy does not take into account specific features of possibility theory such as
the ordinal nature of uncertainty scale, which motivates us to propose a new encoding
strategy, named possibilistic local structure and dealing with equal parameters from a
global point of view. This latter is exclusively useful for min-based possibilistic net-
works since it exploits the idempotency property of the min operator. Our experimental
results point out that the possibilistic local structure is the most compact one in terms
of CNF parameters since it requires less variables and clauses than local structure [1].
In fact, the purely possibilistic encoding strategy, which takes advantage of the idempo-
tency property of the min operator, allows us to associate a unique propositional variable
per equal parameters per all possibility conditional tables. This means that possibilistic
local structure deals with equal parameters globally per all tables, while local structure
is only restricted to a local point of view, i.e., per a unique table. However, this reduction
of CNF parameters generates compiled bases with higher edges. This is especially due
to the higher number of shared variables incurring several interactions among clauses.
This study points out that the inference time relies strongly on the compiled base size,
i.e., the smaller the compiled base is the faster inference will be.

Moreover, in [2] we deal with interventions in possibilistic causal networks under
a compilation framework. More precisely, we explored two different techniques: the
most intuitive one, called mutilation, consists in ignoring relations between the inter-
vened variable and its direct causes. The rest of the network remains intact. Hence,
causal inference resides in applying the inference algorithm to the mutilated possibilis-
tic network. A different but equivalent approach to represent intervention in possibilis-
tic causal networks, called augmentation, is to consider it as an additional variable into
the system. We proposed mutilated-based approaches and augmented-based approaches
aiming to compute the effect of both observations and interventions in an efficient man-
ner in possibilistic causal networks. Mutilated-based approaches are not sensitive to
the number of interventions since the compiled base is mutilated instead of the initial
possibilistic network, which enables the handling of a set of interventions without the
need for re-compiling the network each time an intervention occurs. This is not the
case of augmented-based approaches since the augmented network is compiled after
performing the set of interventions. Our study shows that augmented-based approaches
outperform mutilated-based approaches even in the extreme case in which an extra node
is associated for each network variable.
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2.3 Possibilistic Decision Trees

For several decades, there has been a growing interest in Operation Research and more
recently in Artificial Intelligence towards the foundations and computational methods
of decision making under uncertainty. This is especially relevant for applications to se-
quential decision making under uncertainty, where a suitable strategy needs to be found,
that associates a decision to each state of the world. Several representation formalisms
can be used for sequential decision problems, such as decision trees [31] and influence
diagrams [26]. We focus here on decision trees, since this framework is simple and al-
lows an explicit representation of the decision problem. Even in this simple, explicit,
case, the set of potential strategies is combinatorial (i.e., its size increases exponen-
tially with the size of the tree). The determination of an optimal strategy for a given
representation and a given decision criterion is then an algorithmic issue in itself.

Decision trees are graphical representations of sequential decision problems under
the assumption of full observability. This framework proposes an explicit modeling of
sequential decision problems, by representing each possible scenario by a path from the
root to the leaves of the tree. Formally, the graphical component of a decision tree T is
composed of a set of nodes A and a set of edges £ such that the set N contains three
kinds of nodes:

- D ={Dy,...,Dy} is the set of decision nodes (represented by rectangles). The
labeling of the nodes is supposed to be in accordance with the temporal order i.e.
if D; is a descendant of D;, then ¢ > j. The root node of the tree is necessarily a
decision node, denoted by Dy.

- LN = {LNy,...,LN;} is the set of leaves, also called utility leaves: VLN, €
LN, u(LN;) is the utility of being eventually in node LN;. For the sake of sim-
plicity we assume that only leave nodes lead to utilities.

- C={C1,...,C,} is the set of chance nodes represented by circles.

For any X; € NV, Succ(X;) C N denotes the set of its children. Moreover, for any
D; € D, Suce(D;) C C: Suce(D;) is the set of actions that can be decided when
D; is observed. For any C; € C, Succ(C;) € LN U D: Succ(C;) is indeed the set
of outcomes of the action C; - either a leaf node is observed, or a decision node is
reached (and then a new action should be executed).

In classical, probabilistic, decision trees [31] the uncertainty pertaining to the possi-
ble outcomes of each C; € C, is represented by a conditional probability distribution
p; on Suce(C;), such that VN € Suee(C;), pi(N) = P(N|path(C;)) where path(C;)
denotes all the value assignments to chance and decision nodes on the path from the root
to C;. In the present work, we obviously use a possibilistic labeling (for illustration see
Figure[T). More precisely, for any C; € C, the uncertainty pertaining to the more or less
possible outcomes of each C; is represented by a conditional possibility distribution 7,
on Suce(C;), such that VN € Suce(C;), m;(N) = II(N|path(C;)).

Solving a decision tree amounts at building a strategy that selects an action (i.e. a
chance node) for each reachable decision node. Formally, we define a strategy as a
function § from D to CU {_L}. §(D;) is the action to be executed when a decision node
D; is observed. §(D;) = L means that no action has been selected for D; (because
either D; cannot be reached or the strategy is partially defined). Admissible strategies
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Fig. 1. Example of a possibilistic decision tree with C = {Ci,C2,C5,C4,C5,Cs}, D =
{Do, D1, Dz} and LN = U = {0,1,2,3,4,5}

should be: sound| and complenﬂ Let A be the set of sound and complete strategies that
can be built from the decision tree. Any strategy 6 € A can be viewed as a connected
subtree of the decision tree whose arcs are of the form (D;,d(D;)) i.e. there being
exactly one decision arc left at each decision node.

Strategies can be evaluated and compared thanks to the notion of lottery reduction.
Recall indeed that leaf nodes in LN are labeled with utility degrees. Then a chance
node can be seen as a simple lottery (for the rightmost chance nodes) or as a compound
lottery (for the inner chance nodes). This means that each strategy 6 € A is acompound
lottery that can be reduced to an equivalent simple one (denoted by Reduction(d)) and
compared to remaining strategies so that to define the optimal one.

A popular criterion to compare decisions under risk is the expected utility (EU)
model axiomatized by Von Neumann and Morgenstern [34]. This model relies on a
probabilistic representation of uncertainty. Thus for standard probabilistic decision trees,
where the goal is to maximize expected utility, an optimal strategy can be computed in
polytime (with respect to the size of the tree) thanks to an algorithm of Dynamic Pro-
gramming which builds the best strategy backwards, optimizing the decisions from the
leaves of the tree to its root. The completeness of such an algorithm is possible since
the EU model satisfies the monotonicity property.

When the information about uncertainty cannot be quantified in a simple, probabilis-
tic way, the topic of possibilistic decision theory is often a natural one to consider. The
development of possibilistic decision theory has lead to the proposition and often of the
characterization of a series of possibilistic criteria, namely:

- Qualitative possibilistic utilities (Upes, Uopt, PU): Under the assumption that the
utility scale and the possibility scale are commensurate and purely ordinal, Dubois
and Prade [17] have proposed the following qualitative pessimistic (denoted by Up.)

'VD; € D,§(D;) € Suce(D;) U {L}.
2(i) 6(Do) # L and (i)VD; s.t. §(D;) # L,YN € Succ(§(D;)), either §(N) # L or
N e LN.
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and optimistic (denoted by U,,,,) utility degrees for evaluating any simple lottery L =
(A/u1y ... A /un) (s.t. Ay = m(u;) is the possibility that the decision leads to an
outcome of utility u;):

Upes(L) = 'rinlin max(u;, 1 — A;). (7
Uopt (L) = max min(u;, A;). 8)

Upes generalizes the Wald criterion and estimates to what extend it is certain (i.e.
necessary according to measure V) that L reaches a good utility. Its optimistic counter-
part, Uy, estimates to what extend it is possible that L reaches a good utility. Because
decision makers are rather cautious than adventurous, the former is generally preferred
to the latter. Note that the preference order induced by U,,;,; and U, is transitive [[17].

Claiming that the lotteries realized in the best prize or in the worst prize play an
important role in decision making, Giang and Shenoy [23] have proposed a bipolar
model (PU) in which the utility of an outcome is a pair v = (u, ) where max(u, u) =
1: the utility is binary in this sense that w is interpreted as the possibility of getting the
ideal, good reward (denoted T) and w is interpreted as the possibility of getting the anti
ideal, bad reward (denoted ). The normalization constraint max(u,u) = 1, implies
that the set U = {(u,u) € [0,1]%, max(\, ) = 1} is totally ordered by the relation
> pu defined by:

u=v=1landu <wv
or
(U, u) =py (v,0) <= u>vandu=v=1 )
or
u=v=1landv <1

Each u; = (u;,u;) in the utility scale is thus understood as a small lottery
(u;/T,u;/L). Alottery (A1/u1,...,A\n/uy,) can be viewed as a compound lottery,
and its PU utility is computed by reduction:

PU((AM /Uty An/un))
= Reduction(A1/{ur/ T u1/LY, ... An/{tn /T, un/L)) (10)
= { max (min(A;, u;))/T, max (min(};, u;))/ L)

We thus get, for any lottery L a binary utility PU(L) = (u,w) in U. Lotteries can
then be compared according to Equation (@):

L =py L' < Reduction(L) =, Reduction(L"). (11)

In [24] Giang and Shenoy show that the order induced by PU is transitive and that it
collapses with the one induced by U, (resp. Ups) whenever for any lottery, the pos-
sibility u (resp. u) of getting the worst (resp. the best) utility is equal to 1.

- Possibilistic likely dominance (LII, LN ): When the scales evaluating the utility and
the possibility of the outcomes are not commensurate, [[14,120] propose to prefer, among
two possibilistic decisions, the one that is more likely to overtake the other. Such a rule
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does not assign a utility degree to the decisions, but draws a pairwise comparison. Al-
though designed on a Savage-like framework rather than on lotteries, it can be trans-
lated on lotteries. This rule states that given two lotteries L1 = (A /ul,... AL /ul)
and Ly = (\}/u?,... A2 /u?), L is as least as good as Ly as soon as the likelihood
(here, the necessity or the possibility) of the event “The utility of L1 is as least as good
as the utility of Ly” is greater or equal to the likelihood of the event “The utility of Lo
is as least as good as the utility of L1”. Formally:

Ly =N Ly if f N(Li = Lg) > N(La = Ly). (12)
Li=pm Lo if f 1I(Ly = Lo) > I(Ly = Ly). (13)
where IT(Ly = Lo) = sup M ® )‘3) and
u},u?S.t. u}Zu?
N(Li=Ly)=1—  sup (Al @A},

u} ,u?S.t. ui<u
such that ® = min for ordinal setting and ® = * for numerical setting.

2
i

The preference order induced on the lotteries is not transitive, but only quasi-transitive
[14]. Note that contrary to Upcs, Uop: and PU, which are purely ordinal, possibilistic
likely dominance can be defined in the ordinal setting or the numerical setting of pos-
sibility theory.

- Order of Magnitude Expected Utility (OM EU ): Order of Magnitude Expected Util-
ity theory relies on a qualitative representation of beliefs, initially proposed by Spohn
[33], via Ordinal Conditional Functions, and later popularized under the term kappa-
rankings. Formally,  : 2 — Z* U {+oc} is a kappa-ranking if and only if it obeys
to the following axioms:
(s1) min s({w}) =0,

meigﬁc({w}) if AZDand AC 2

+00 otherwise.

Note that an event A is more likely than an event B if and only if k(A) < x(B):
kappa-rankings have been termed as disbelief functions. As pointed out by [16], there
exists a close link between kappa-rankings and possibility measures, insofar as any
kappa-ranking can be represented by a possibility measure, and vice versa. An Or-
der of Magnitude Expected Utility (OMEU) model can then be defined. Considering
that an order of magnitude lottery L = (k1/p41, ..., kn/lin) TEpresents some proba-
bilistic lottery, it is possible to compute its order of magnitude of the expected utility:
OMEU (L) = min;—1 »{ki + f; }. Given two lotteries L, and Lo, the preference rela-
tion = o gy is thus defined by:

(52) K(A) =

Ly momeu Lo iff OMEU(Ly) > OMEU(Ls). (14)

The preference order induced on the lotteries is transitive [22].
- Possibilistic Choquet integrals (Chy, Chr): In presence of heterogeneous informa-
tion, i.e. when the knowledge about the state of the world is possibilistic while the utility
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degrees are numerical and compensatory Choquet integrals appear as a right way to ex-
tend expected utility to non-Bayesian models [[11]. Like the EU model, this model is
a numerical, compensatory, way of aggregating uncertain utilities. But it does not nec-
essarily resort on a Bayesian modeling of uncertain knowledge. Indeed, this approach
allows the use of any monotonic set function p also called capacity or fuzzy measure.
Such measure captures probability measures, necessity and possibility measures and
belief functions etc. as particular cases.

ChH(L) = U + izlgn(ui — UZ‘_1) . ,u(L > UZ) (15)

If 1 is a probability measure then Ch,, (L) is simply the expected utility of L. In the

possibilistic framework, we should consider for cautious decision makers the necessity

measure N and for adventurous ones, the possibility measure I7 [32] which give the
following expressions:

Chy(L) =u1 + '722’ (i —ui—1) . N(L > u;). (16)
Chp(L) =u1 + '722’ (i —ui—1)  II(L > uy;). a7

Let O be one of the possibilistic decision criteria presented above (i.e. Upes, Uopt,
PU, LII, LN,OMEU, Chy, Chjy), a strategy 0 € 4, is said to be optimal w.r.t. the
preference order > iff V6’ € A, Reduction(d) =o Reduction(d'). Formally, for any
criterion O, the corresponding decision problem can be defined as follows:
[DT-OPT-O] (Strategy optimization w.r.t. an optimization criterion O in possibilistic
decision trees)

INSTANCE: A possibilistic Decision Tree 7, a level a.
QUESTION: Does there exist a strategy 6 € A such that Reduction(d) >0 a?

The complexity of this problem depends on the monotonicity property - when the
criterion is transitive, this property indeed allows a polytime solving of the problem by
Dynamic Programming. In [5, [19], we show that most possibilistic decision criteria,
except possibilistic Choquet integrals, satisfy monotonicity and that the corresponding
optimization problems can be solved in polynomial time by Dynamic Programming
(Table 2] summarizes different complexity results).

For the particular case of possibilistic Choquet integrals, we proved that the the prob-
lem is NP-hard and that it can be solved by implicit enumeration via a Branch and
Bound algorithm that extends the use of Dynamic Programming. This algorithm takes
as argument a partial strategy J and an upper bound of the Choquet value Chy or Chy
of the best extension of the partial strategy. It returns the Choquet value of the best strat-
egy found so far. As initial value for ¢ we retain the empty strategy (6(D;) = L,VD,).
For §°P%, we can start with the strategy provided by the Dynamic Programming algo-
rithm: indeed, even not necessarily providing an optimal strategy, this algorithm gen-
erally provides a good one. At each step, the current partial strategy, J, is developed
by the choice of an action for some unassigned decision node. When several decision
nodes are candidate, the one with the minimal rank (i.e. the former one according to the
temporal order) is developed first. The recursive procedure backtracks when either the
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Table 2. Results about the complexity of DT — OPT — O

Upes Uopt PU LII LN OMEU Chn Chrr
P P P P P P NP-complete NP-complete

current strategy is complete (then §°P! may be updated) or proves to be worst than the
current §°P! in any case. Our first experiments suggest that this approach is computa-
tionally sustainable.

So, it appears that the use of possibilistic decision criteria does not lead to an increase
in complexity, except for Choquet integrals. This is an interesting result that allows the
extension of our work to more sophiticated decisional graphical models as possibilistic
influence diagrams [18].

3 Conclusion and Future Work

In this work, we addressed two key challenges related to a new research area rela-
tive to possibilitic graphical models. We focus on reasoning and decision showing the
specificities of the possibilistic framework especially in its ordinal interpretation. It is
important to note that possibilitic graphical models should not be seen as competitive
with standard probabilistic graphical models but as complementary tools that should be
used according to the problem at hand and to the available data. There are many more
issues for further research about possibilistic graphical models. In particular, the unique
attempt to learn such models from data was proposed by Borgelt et al. in [9] with a
restriction to datasets with missing values. Thus we recently investigate this topic by
considering the more general case of possibilistic datasets.
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Abstract. In this paper, an original ranking operator is introduced for
Triangular Fuzzy Numbers. The purpose is to elaborate fast and effi-
cient algorithms dealing with complicated operations and big data in
fuzzy decision-making. The proposed ranking operator takes advantage
of the topological relationship of two triangles, besides the Inclusion In-
dex concept — which is an index indicating the Degree of Inclusion in the
MIN of two Fuzzy Numbers, a way to approach the ”strongly included
in”. Consequently, the ranking result can mostly be deduced directly,
allowing an efficient ranking process.

Keywords: Fuzzy Ranking, Triangular Fuzzy Numbers, Inclusion In-
dex, Degree of Inclusion, Decision Making.

1 Introduction

In many applications of the fuzzy set theory to decision making, we are faced
with the problem of selecting one from a collection of possible solutions, and in
general we want to know which is the best one |1l]. Therefore, several proposi-
tions emerged whilst addressing this issue: [2] proposed a signed distance-based
ranking, which allowed the distance evaluation between two fuzzy numbers; |3]
suggested a centroid-based distance method; [4] introduced the user viewpoint-
based evaluation of fuzzy sets as a pre-step to ordering using a satisfaction
function; and several other approaches. These methods may not be adequately
efficient when processing large amounts of data; since we are interested by risk
fuzzification in decision-making on dangerous goods transport such in |5-9]. We
propose a ranking method that ensures the reduction of operations and steps;
to the point of making decisions directly without comparison operations.

This work is based mainly on five papers: |[10] provided the mathematical
foundations of operations on fuzzy numbers, while [11, [12] fully exploited the
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properties of the operator MIN of fuzzy numbers, especially for TFNs. Those
proposed in |13, 14] concern the fuzzy inclusion. The structure of this paper is
organized as follows: in Section [2] the main concepts on which the proposed ap-
proach is based are introduced; in Section[3] the results obtained by the classifi-
cation of the different topological relationship of two TFNs. Finally, conclusions,
perspective and questions are drawn in Section @l

2 Methodology

2.1 Background

Triangular Fuzzy Number. TFNs are represented as (k, «, 3). Its mathemat-
ical definition is:

Definition 1 (TFN Membership Function). A TFN denoted by A =
(k,a, B) or (/1_,/10,/1+) , has the membership function

0 forx < A~
171“;“' for A= <z < A°
Az) =11 for x = A° (1)
1—15}“ for A° <z < At
0 for x> AT

with A° =k, A= = k—a and AT = k+ 8. k is called the kernel (or mean) value
fo the TFN since its membership value is 1. a, B are the left and right hand
spreads of A respectively.

In addition to different shapes of fuzzy sets, Puri and Ralescu [15] introduced,
in 1986, the Fuzzy Random Variables, which covers random experiments whose
outcomes are neither numbers or vectors in R™. As for fuzzy numbers, the sta-
tistical aspect of Fuzzy Random Variables lacks of arithmetic linearity. However,
the ordering of these variables are not a part of the scope of this paper.

Lattice Operators MIN and M AX. The method proposed, hereinafter,
for ranking the TFNs is based mainly on the lattice operators MIN and M AX
[11, 16]. Indeed, Dubois & Prade |10] and Klir |16] ensured that the triple
(R, MIN, M AX) is a distributive lattice, in which MIN and M AX represented
the meet and join, respectively. It is necessary to highlight therefore that the use
of real numbers operators min and max are not applicable, since they are ex-
pressed by the terms of the pair (R, <). By extending min and max on TFNs,
we can use them to formulate the proposed method. The lattice operator MIN
definition is based on any two TFNs A and B as described by Klir [16]

MIN (A,B)(z)= sup min[A(z),B (y)] ()

z=min(z,y)

for all x,y,z € R. Chiu and Wang introduced in |11] a Theorem pointing out
the simplicity of the implementation MIN and M AX as follows,
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Theorem 1 (Chiu-Wang-2002). For any two TFNs A and B, defined on the
universal set R, with continuous membership function and (AN B) # @, let
Zm(€ R) be the point such that (AN B) (xm) = (AN B) (x) for all x € R and
A () = B (2m), moreover, T, is between two mean values of A and B (if the
number of x,, is not unique, any one point of those x,, is suitable). Then the
operation MIN can be implemented as

_ J(AUB)(2),as z < zm,
MIN (4, B)(z) = {(A NB)(z),as z = Tm, (3)
where z € Z = R, and U and N denote the standard fuzzy intersection and union,
respectively.

The theorem given above provides a simple procedure for the implementation
of MIN operator. It facilitates the quick checking of results promised by the
ranking operator that have been built.

Inclusion Index (InI). It is a quantitative indicator expressing the Degree of
Inclusion, whose definition consists in considering that £ C F' < (Card(ENF) =
Card(E)) with E and F are fuzzy sets, as introduced by Dubois & Prade [10]
and Bordogna [13]. Then the degree is given by:

Discrete Sets Continuous Sets
SIIENFE ENnF
MR =T g aeen = E (@
IGZXT(ME(x),uF(x)) _ Jx T(up(), pr(x)
T D) Jx (@)
weX
where T is a triangular norm and || || denote the standard fuzzy cardinal

operator Card; pgp and pup are respectively the membership function of E
and F. Sometimes, we do not have to compute the degree of inclusion since
MIN(A, B) € {A, B} — according to Dubois & Prade [10] and Klir [16]. There-
fore, a partially ordering of so-called comparable fuzzy sets is obtained. Other-
wise, when MIN (A, B) ¢ {A, B} they are called non-comparable fuzzy sets.

Intuitively, if the minimum of fuzzy sets A and B is neither A nor B, then
the minimum will be one of the sets A and B where the fuzzy set MIN(A, B)
is more strongly included. Thus the Inl will be used for this purpose.

In fact, Koczy and Hirota [17] introduced in 1993, the concept of similarity
between two fuzzy terms, in order to reduce the number of rules in a fuzzy knowl-
edge base. The similarity was measured with the index “degree of overlapping”;
and from their distance, their closeness is derived.

The following subsection includes our proposal for a new ranking operator of
TFNs.
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2.2 The Proposed Approach for TFN Ranking

Proposed Operators. We introduce hereinafter the definition of the proposed
ranking operators “<”, “>”" and “~":

Definition 2 (Ranking Operators). For every fuzzy sets A and B, the rank-
ing operators are defined by the following implications:

If MIN € {A, B} Else
A<B & MIN=A A< B 0(MINCA)>0(MINCB)
A-B < MIN =B As=B & 0(MINC A)<d(MINC B)
A~B <« MIN =A and MIN = B A~B & d(MINC A)=08(MIN C B)

In constrast, a majority of relative cases exists between two TFNs, where a direct
deduction of the Inl without any calculation has to be applied. Fig. [l introduces
the different situations that encompass all possibles cases [12].

3 Results Analysis

3.1 Classification Results

The InI application led to the classification of 10 different cases. Indeed, since we
have six points (A7, A%, A*) and (B~, B®, B*) for all TFN A, B, so the number
of possibilities is equal to éC’g = 2><3!?é73)! = 10. We divided by 2 to eliminate
the 10 remaining possibilities that are symmetric to those presented hereinafter.

Fuzzy Disjoint: Obviously A < B since Va, A(z) < B(x) (see Fig. BC1).

Fuzzy Weak Overlapping: A < B, it is deduced from the Theorems [I] and
() since MIN (A, B) = A (see Fig. 2FC2).

Fuzzy Overlapping: Four possibles cases have been defined. The first three,
C3, C4 and C5, in the Fig. [ indicate, according to Theorems [I and (&), that
A < B. The fourth, C6, cannot be deduced directly by not being able to deduce
intuitively the Inl, since MIN (A,B) ¢ {A,B}, {z| MIN (A,B) (z) >0} ¢
{z | A(z) > 0} and {z | MIN (A, B) (z) > 0} € {x | B(z) > 0}, for all z € R.
The comparison of the area of the Triangle B (TFN topology), with the area of
the Triangle M indicated on the Fig. BLC6, respectively Sp and Sy, allows the
deduction of the results. In fact, the surface measurement of the two triangles
Aine and B is adequate to deduce the Inl; since A;pe, Bine € MIN (A, B)
but Aine, Bine € AN B. By comparing Sp and Sy, which is similar to the
comparison of S4,,. and Sp,,., the ranking is carried out.

Fuzzy Inclusion: Finally, the Fig. @ introduces the last four cases. The
first two, C7 and C8, we have MIN (A, B) ¢ {A, B}. However for all z € R,
{z | MIN (A,B) (x) >0} C {z|A(z) >0} and {z | MIN (A,B)(z) >0} ¢
{z | B (z) > 0}, therefore it is obvious that A < B according to the degree of
inclusion concept (B). As previously with the overlapping case, the ranking of
C9 and CX can be inferred by comparing Sp with Sy;.

inc?
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3.2 Properties of the TFN Ranking Operators

Method Reasonableness Proof. Wang and Kerre [18] propose a reasonable
axioms for ranking fuzzy numbers. We have proven the reasonableness of our
ranking method by studying it according to the theorem introduced in [1§].
However, due to constraints on the number of pages the axioms and proofs will
not be detailed here.

Comparison with Other Ranking Methods. Thorough comparison have
been undertaken with various major approaches. Notably the comparison with
the maximizing and minimizing set method proposed by Chen [19], which is a
commonly used approach, highly cited and has wide applications according to
[20]. Hereinafter, we present some of the examples on which our studies took as
a comparing means.

Example 1: Asady and Zendehnam [21] consider the three TFNs A =
(5,6,7;1), B = (5.9,6,7;1) and C = (6,6,7;1) shown in Fig. Bta. The appli-
cation of most methods such Chen’s approach |19], and the proposed method
infer the following outcome: A < B < C. Whereas, with the Cheng method [22]
infer C' < B < A.

Example 2: The ranking of TFNsin the Fig.B-b, C = (—0.70, —0.40, —0.25; 1),
B = (—0.58,—0.32,—-0.17;1) and A = (—0.50,—0.30,—0.20; 1) results in C' <
B < A. The same result is obtained by Choobineh [23] and Chu [24] methods,
however the Cheng [22] and Chen [19] methods resultsin A < B < C.

Example 3: Consider the two TFNs — as in Ezzati et al. [25] — A =
(3,6,9;1) and B = (5,6,7;1) shown in Fig. Bte. It is a common problem, and
yet a very controversial one. Indeed, A and B have the same symmetrical spread
[26] and most existing methods fail to rank them properly [27]. By using the
approaches in |2, [24, 128, [29], we obtain A ~ B; and with [25] the ranking
order resulted is A > B. Different ranking results are obtained when different
indices of optimism are considered among the approaches [30]. Ezzati et al.
[25] consider that the decision makers prefer the result A = B and adds, it is
intuitive. However, by applying our approach A < B since A has a greater degree
of inclusion in MIN (A, B) than B. Therefore A has a greater tendency to be
lower than B.

Example 4: Consider the followings set, see [25] and |2]: A = (0.4,0.5,1;1),
B =(0.4,0.7,1;1), C = (0.4,0.9,1;1), see Fig. Bld. With the proposed method
we get A < B < C, as well as with most of approaches (such [19, 21425, 128, [30]).
But Cheng [31] obtains A < C' < B.

A= A0 \+ A= A0 At

B~ BO Bt
Fuzzy Weak-Overlapping

B~ B0 Bt
Fuzzy Overlapping

B~ BO Bt

Fuzzy Disjoint Fuzzy Inclusion

Fig. 1. All possible topological situations for two TFNs
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—MIN MAX-----
1 A B 1
0[A- A° AT B B’ BT | 0jA A B~ m A" B’ B*

Fig. 2. Topological Representation of the Situation 1 & 2: Disjoint & Weak cases

A zm B A*

A +

Fig. 4. Topological Representation of the Situation 4: inclusion cases
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12 3 4 5 x

Fig.5. 4 controversial examples: (a) shows 3 positives TFNs; (b) shows 3 negatives
TFNs; (d) shows same symmetrical spread TFNs; (d) shows same support TFNs

4 Conclusion

In this paper, a new method for ranking TFNs is introduced, which is based on
the Inclusion Index (Inl) concept. It allows a simple and intuitive ordering of
TFNs. As a result, our approach allowed us to deduce directly in 70% of cases
the comparison of two TFNs. Moreover, we observed the similarity of results
obtained with either other suggested approaches outcomes and human intuition,
which proves its efficiency. However, some issues need to be asked: Can we use
other Inl defined on fuzzy sets? Is the proposed approach generalizable to all
shapes of fuzzy numbers? Future developments of this work will address these
issues in depth. Deployment of this approach for computing the fuzzy shortest
path within hazardous materials transportation context, is also a priority in our
research areas.
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Abstract. In this paper we investigate the shift from two-valued to
many-valued logic programming, including extensions involving functo-
rial and monadic constructions for sentences building upon terms. We
will show that assigning uncertainty is far from trivial, and the place
where uncertainty should be used is also not always clear. There are a
number of options, including the use of composed monads, and replacing
the underlying category for monads with categories capturing uncer-
tainty in a more canonic way. This is indeed important concerning terms
and sentences, as classic logic programming, and also predicate logic
for that matter, is not all that clear about the distinctive characters of
terms and sentences. Classically, they are sets, and in our approach they
are categorical objects subject to being transformed e.g. by transforma-
tions between functors. Naive set-theoretic approaches, when dealing e.g.
with ‘sets of sentences’ and ‘sets of ground atoms’, may easily lead to
confusion and undesirable constructions if generalizations are performed
only as a shift from ‘set’ to ‘fuzzy set’. We present some basic results
on how adaptation of a strictly categorical framework enables us to be
very precise about the distinction between terms and sentences, where
predicates symbols become part of a signature which is kept apart from
the signature for terms. Implication will not be included in signatures,
but appears integrated into our sentence functors. Doing so we are able
to relate propositional logic to predicate logic in a more natural way.
Integration of uncertainty then becomes much more transparent.
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1 Introduction

Intuitively speaking, terms are produced by signatures such that variables and
constants are terms, and if ¢y, ...,¢, are terms then also w(ty,...,t,) is a term,
where w resides in the given signature. Categorically, it is well known that terms
may be produced by functors that are extendible to monads (see e.g. [7I14]),
whereas sentences are produced by functors. Indeed, variables may be substi-
tuted by terms, but sentence variables are dubious. For example, we may have
terms P(z) and Q(y), where P and @Q are predicate symbols residing in the
signature, with z and y as variables. We might now produce a sentence in some
abstract form like as a pair (P(x), Q(z)), intuitively then corresponding to “P(x)
is inferred by Q(y)” to check whether that sentence is valid or not. Here, the
‘pairing operation’ is not given in the underlying signature, but clearly appears
within a sentence constructor. This indeed reveals that substitution with sen-
tences makes no sense. The distinction between monads for representing terms
and functors only to represent sentences makes the situation concerning substi-
tution very transparent.

The overall scope of logic in this paper is that of generalized general logic
[14], extending the frameworks of institutions [13] and general logic [24]. Mor-
phisms between logics play an important role, and such morphisms are built
up of morphisms respectively between underlying signatures, terms, sentences,
and so on, all the way through all building blocks of logic. This means that the
‘set of terms’ and ‘set of sentences’ cannot be simple sets, so that we would
have straightforward mappings between them. Categorically, they are based on
functors and monads, which provides a richer algebraic structure and constraints
morphisms between logics in a more canonic way. In logic programming, informal
production of sets of terms and well-formed formulas in fact leads to confusion
concerning the borderline between terms and sentences. In [2I], notation and
concepts mention ‘signature’, ‘functions’ (operators of formal universal algebra
based signatures), and ‘predicates’. In this conventional view, predicates are typ-
ically seen as different from operators in some underlying signature, and such
treatments are also ‘unsorted’, or in fact one-sorted concerning the underlying
set of terms.

In first-order logic based logic programming we are immediately confronted
with the issue of the underlying signature. Informal treatments of first-order
logic are not always clear about predicates being operator symbols or simply
relations or functions, the latter confusing semantics with syntax in a way where
the ‘semantic jacket’ acts as a ‘dress code’ for syntactic treatment of predi-
cate symbols. Even more confusing is the adoption in [21] to say that operator
symbols in signatures are ‘function symbols’, and the Boolean like operators rep-
resenting predicates are called a ‘predicate symbols’. Indeed, in [21], first-order
logic is called a ‘first order theory’ consisting of alphabet, language, and so on,
but these notion are not in harmony with the necessity to keep terms apart from
sentences. Such verbose notations and names as used in [21] are not clear about
the distinction between terms and sentences, and an alphabet is simply assumed
to contain both operator as a well as predicate symbols. This means that terms
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and sentences are lumped together within that informal language description.
The use of ‘function’ in this context is obviously misleading as w is only a syn-
tactic symbol, but its semantic counterpart is a function (in the sense of ZFC),
which in [21] is called a ‘mapping’.

In our categorical approach, ‘alphabet’ is the underlying signature of sorts
and operators, and we are always many-sorted. In [21] the treatment is basically
one-sorted, and operators are called ‘constants’ and ‘functions’. The confusion
concerning terms and sentences also leads to technicalities involving interpreta-
tions and models. The classical treatment of models is using sets rather than
algebras, which in turns invites or even enforces [2I] to say that “the identifica-
tion of a Herbrand interpretation as a subset of the Herbrand base will be made
throughout”. Strictly speaking, we do not have subsets in this case.

In this paper we will have predicates as operators, so atoms are terms, but
program clauses become sentences. Basically this means that conjunction of
predicates are still terms, but clauses involving implication is not a term, since
implication is not included as an operator in the underlying signature. We will
categorically aim at being precise so that notions like ‘ground terms’, ‘well-
formed formulas’ in predicate logic, ‘predicates’ or ‘predicate symbols’, and
‘atoms’ can be explained more strictly in the categorical machinery.

Preliminary notions used in this paper appear in a working version [10], and
the categorical framework of our monad constructions appear in [7].

These monads make use of constructions in categorical algebra more broadly,
which goes back to the study of natural equivalences [5]. Monoidal closed cate-
gories emerges more or less in [4], and attained its simple and clean formulation
n [22]. This is the categorical realm of this paper, and the categorical notation
adopted in this paper is the same as in [7].

2 Traditional Extensions from Two-Valued to
Many-Valued Logic Programming

In traditional two-valued logic, and once negation is given, implication and con-
junction are defined by one another. In the intuitionistic tradition, negation as
a basic building block is avoided, and then implication and conjunction needs
to be otherwise related, and this is done by the residuation property, which cat-
egorically is an adjoint situation, given as a Galois connection. This enables to
define negation, if negation is desired. Residuated lattices have been extensively
studied and are appealing algebraic structures for semantics of logic, and indeed
because of the tight bound between implication and conjuction.

In many-valued logic, this ‘semantic jacket’ has been adopted in several ap-
proaches. E.g. in [2], this residuated situation appears in what is called ‘implica-
tion algebras’, and later on, e.g. in [23], where the name ‘multi-adjoint’ is used
in this context. ‘Multi-adjointness’ in logic programming then refers to the use
of residuated lattices that provides the desired semantic jacket that prescribes
the behaviour of the truth values.

All this is, from the viewpoint of that semantic jacket, basically an exten-
sion of two-valued logic to many-valued logic using algebras of truth values.
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The underlying language involving its terms and sentences remain traditional.
It also follows the tradition of extending propositional calculus to predicate cal-
culus, where the implication operator receives a similar semantic. Traditional
predicate logic is set-theoretic, not functorial, about its ‘set of sentences’. Many-
valued logic programming has followed that same tradition, and then the se-
mantics, which restricts to management of truth values, is adopted using this
semantic jacket provided by that residuated situation. The acronym ‘MALP’ for
multi-adjoint logic programming has then been quite widely adopted, and as
an acronym is seen as a specific version of fuzzy logic programming. ‘Adjoint-
ness’ refers to the residuated situation, and ‘multi’ to the allowance of using
particular lattices for each separate logic program. Much of this work basically
keeps the classical constructions of logic programming as they are e.g. in [21],
and many-valued extensions indeed focus on the many-valued extensions of the
truth values. It does deal with uncertainty issues, but restricted to consequences
of algebraic manipulation of truth values. It is also seen to represent ‘approxi-
mate reasoning’, which it certainly does, but as restricted to that focus on truth
values, leaving all the other bits and pieces of logic as they are in a two-valued
setting.

As mentioned before, our scope is logic as categorical object, that is con-
structed functorially and monadically, with morphisms between respective sub-
structures in logic. Thus we do not propose to have a ‘universal logic’, and
further, logic programs in our setting is the axiom system in a particular logic.
This means e.g. that logic programs can have different inference rules, and mor-
phisms between logic programs makes no sense unless we would have morphisms
between their underlying logics, which in turn include appropriate transforma-
tions between their respective inference systems.

Resolution in these approaches eventually enters the scene, and theory de-
velopments are confronted e.g. with fixpoint issues and inference rules. This
then is mostly ad hoc as typically seen e.g. in [TJBIT5IT920/25128/34]. Essentially,
they differ in the underlying notion of uncertainty theory and vagueness theory
(probability theory, possibilistic logic, fuzzy logic and multi-valued logic) and
how uncertainty /vagueness values, associated to rules, are managed. Annotated
logic programming [17] also falls within adoption of such jackets.

Fixpoint considerations [33] are interesting in these settings, even if it cannot
be expected that the relation between fixpoints and least Herbrand models ap-
pears as it is in a many-valued extension. Nevertheless, analyzing this fixpoint
situation [30] reveals some crucial underlying structures that are important to
consider in dealing with soundness and completeness issues. Operational and
fix-point semantics are provided also in [23], and these considerations has been
extended with a declarative semantics based on model-theory [10].

Further, there are a number of independently developed more general lan-
guage based approaches to fuzzy logic programming, where there are less con-
siderations involving first-order aspects, and more papers covering truth value
considerations only. For the first-order aspects see [I8/27] for some historically
important contributions. Categories for logic programming enters the scene in
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[29] with co-equalizers seen to correspond precisely to most general unifiers. A
word of caution, however, is that co-equalizers as such do not suffice as cate-
gorical constructions when we move over to the many-valued setting. This then
affects the resolution principle as an algorithm that has been subject of fuzzifi-
cation e.g. in [IT9I23]. This mostly focuses on truth values more than extending
the underlying language. Similarly for fixpoint considerations, interpretations
are considered mostly as points in sets, and uncertainties are added [34]. The
fixpoint semantics framework has been enriched with a declarative semantics
based on model-theory as described in [16].

3 Signatures, Terms and Sentences

Throughout this paper we assume the readers are familiar with categorical con-
cepts. However, this section starts with introducing some categorical concepts
needed in the paper. Then, signatures and term monads are recalled and we in-
troduce sentences in a logic programming context. Finally, we show how fixpoints
can be considered.

3.1 Some Categorical Concepts and Notations

Let C be a category and S a set of sorts. Then, Cg is a category with objects
Xs = (Xs)ses where each X € Ob(C). The morphisms between Xg and Ygs are
fs: Xs — Ys where fs = (fs)ses and each fs € home(Xs, Ys). The composition
of morphisms is defined sortwise, thus, fsogs = (fs° gs)ses-

We may sometimes need to pick an object X5 in Ob(C) when Xg is given in
a form or another. For this purpose we define a functor arg®: Cs — C such that
arg®Xs = X and arg®fs = fs. Especially, when working in Setg, card(S) > 1,
we may define two emptifying functors: ¢°\® : Setg — Setg such that ¢5\5Xg =
Xg, where for all t € S\{s} we have X{ = X, and X] = @. Similarly we define
the functor ¢° : Setg — Setg as ¢°Xg = X, where for all t € S\{s} we have
X{ =@, and X! = X,. Actions on morphisms are defined in obvious way.

Clearly, a functor F: C — D may be extended to a functor Fg = (F)ses: Cs —
Dg (for all s € S, the functor remains the same). For example, the powerset
functor P: Set — Set as well as the many-valued powerset functor L: Set — Set
both determine functors on Setg, we write Ps = (P)ses and Lg = (L)ses. Also
functors Gg: Cg — D, s € S, are of interest, because we can determine a functor
G: Cg — Dg such that for all Xg € Ob(Cg) we have GXg = (GsXg)ses- Notice
that we have now Gg = arg® o G.

Now, assume any two functors F,G: C — D. A natural transformation 7 be-
tween F and G, denoted by 7: F — G, assigns for each C-object X a D-morphism
7x: FX — GX satisfying Gf o 7x = 7y o Ff for all f € hom¢(X,Y). Notice
that Cg is also a category, thus we may have natural transformations, between
functors on Cg, for example.

Finally, we recall a monad F over a category C, which is a triple (F,n, u),
where F: C — C is a (covariant) functor, and 7: id — F and pu: Fo F — F are
natural transformations for which poFpu = pouF and poFn = ponF = idg hold.
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3.2 Signatures and the Term Monad Construction

A many-sorted signature X = (.5, {2) consists of a set S of sorts (or types), and
a set (2 of operators. Here S as an index set, whereas {2 may be an object in
Setg. Operators in 25 are written as w : sy X -++ X 8, — 8.

It is convenient to use the notation §251* " *»7% for the set, as an object in
Set, of operators w : 81 X --- X 8, — 8 € {2 with n given, and 27° for the
set of constants w :— s. With these notations we keep explicit track of operator
sorts as well as their arities and we consider

0. = H ()S1 X Xsn—rs
s = .

On algebraic structures for truth values, we mostly prefer to use quantales
as they play an important role when invoking the use of monoidal closed cate-
gories for the formal construction of signatures. Quantales fulfill the properties
of residuated lattices, and complete residuated lattices are quantales. We fur-
ther restrict to quantales 9 that are commutative and unital, as this makes
the Goguen category@ Set(9Q) to be a symmetric monoidal closed category and
therefore also biclosed. This Goguen category carries all structure needed for
modelling uncertainty using underlying categories for fuzzy terms over appro-
priate signatures, and as constructed by their term monads [7]. Note indeed
that the signature, as a categorical object itself, also carries uncertainty, which
is brought up partly to represent the overall uncertainties attached to fuzzy
terms. Recall that (A,a) ® (B,8) = (A x B,a ® () provides the monoidal op-
eration on objects in the Goguen category. If ® is the meet operator, then ® is
the categorical product.

A signature (5, (2, «)) over Set(9Q) then typically has S as a crisp set, and
a : 2 — @ then assigns uncertain values to operators. For the term monad
construction we need objects (£251% X878 oS1XX8nrS) for the operators w :
S1 X -+ X 8, — s with n given, and (£27%, %) for the constants w :— s. These
objects are provided by respective pullbacks using ({2, ).

In our general term functor construction we have

Vos(Xehres) = 27 0 Q) Xa,,
1=1,...,n
and this specializes, in the case of the Goguen category, to

wm,s(((Xta(st))tES) _ (Qslx...xsn—w, aslx...xs"—m) ® ® (Xsiaési)

1=1,...,n

81 X...X8p—>8
Xsw « ! " @ @ 5SL)
=1

yeees TV

:(Qslx...xsn—m % H
=1

yeees TV

The inductive steps start with le’s = J1ues Yn,s, and, for « > 1, proceeds with
T o Xs = [nes Vns (T XsU X )ses), and Tt fs = [Teq Pas (T 1 fsU fo)ses)-

! Objects in the Goguen category are pairs (A, a), where o : A — @ is a mapping.
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This then allows us to define the functors T%;, by Ti;Xs = (T ;Xs)ses, and
T fs = (T o fs)ses- There is a natural transformation =/ *! : T — T4 such

-t
that (T%),>0 is an inductive system of endofunctors with =T as its connecting
maps. The inductive limit F = indlimT%; exists, and the final term functor
Ty is Ty = F U idger;. We also have Ty Xs = (Tx s Xs)ses, and Ty is strictly
not idempotent, but only “idempotent like”, as there is a natural isomorphism
between Tx Ty and Tx.

For more detail concerning this term construction, see [7].

3.3 Sentences in a Logic Programming Context

Let then Xy = (So, {2) be a signature over Set, and Ty, be the term monad
over Setg,. For the variables in Xg,, the set of terms Tx,Xg,, as an object of
Setg,, then correspond to the ‘terms’, and similarly Ty, &g, will be the set of
so called ‘ground terms’ in the sense of [21].

In order to introduce predicates as operators in a separate signature, and then
composing that resulting ‘predicate’ functor with the term functor, we assume
that Y contains a sort bool, which does not appear in connection with any
operator in 2, i.e., we set S = Sy U{bool}, bool & Sy, and 2 = 2. This means
that Tx 1001 Xs = Xpoeo1, and for any substitution os : Xg = TxXg, we have
Oboo1 () = x for all z € Xypoo1. The composition of the ‘predicate’ functor with
Ty is intuitively expected to be the desired ‘predicates as terms’ functor.

We can now also separate propositional logic from predicate logic, and also de-
cide whether or not to include negation. The key effect in doing this arrangement
is that implication becomes ‘sentential’ where as conjunction (and negation, if
included) produces terms from terms.

To proceed towards this goal, let Xpr, = (Spr, 2pr) be the underlying two-
valued propositional logic signature, where Spr, = S, and 2p;, = {F,T :—
bool, & : bool X bool — bool,— : bool — bool} U{P; : 84 X --- X 85, —
bool | i € I,s;; € S}. Similarly as bool leading to no additional terms, except
for additional variables being terms when using X', the sorts in Spr,, other than
bool, will lead to no additional terms except variables. Adding predicates as
operators even if they produce no terms seems superfluous at first sight, but the
justification is seen when we compose these term functors with T .

In the many-valued case we would have some sort lat, so that A(1lat) = L,
the underlying set of a complete lattice £. Now, £ could indeed more specifically
be a residuated lattice, when conjunction is desired to be residuated with the
implication operator (in the lattice), or a quantale, justifying the use of monoidal
closed subcategories. The choice of the lattice or quantale is typically justified
by the application context.

It is important also to notice indeed that it is possible to include the both sorts
bool and lat in the same signature, if one needs to distinguish the two-valued
case from the many-valued case also on the syntactic level.

In the many-valued propositional logic signature X757 = (S}, 277 ) constants
clearly map algebraically to uncertainty values. In what follows we will not ex-
plicitly distinguish between Y™ and X', so whenever we write X', the underlying
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lattice representing the algebra may be two-valued or many-valued. We now in-
troduce the notation Xpp\ -, for the signature where the operator — is removed,
and Xpp\ - g for the signature where both — and & are removed.

The ZFC-set of ‘terms’ over Y may now be given by

U (T27s o ¢S\b°01)X57
sesS

and now the ZFC-set of propositional logic formulas are

U (args ° TEPL o ¢b001)XS _ (argbool o TEPL ° ¢b°°1)X5'.
seS

We use the expression arg® o Tyx,,, instead of Tx,, s for convenience. Note how
(argbool ° TEPL\ﬁ,& ° ¢b°°1)XS — {F,T}.

Sentences, i.e., formulas in propositional logic are now obviously given by the
functor
Sean _ argbool ° TEPL ° ¢bool’

and sentences in ‘Horn clause logic’ can now be given by the functor

Sengycr = (argbool)2 ° (((TEPL\ﬁ,& OTZ) X (TEPL\ﬁ ° TZ‘)) o ¢S\bool)

_ (argbool)Q ° ((TEPL\ﬁ‘& X TEPL\ﬁ) oTxo ¢S\bool)

Note that Sengycr, X is an object in Set, and therefore the pair (h,b) € Sengcr,
X, as a sentence representing the ‘Horn clause’, means that h is an ‘atom’ and
b is a conjunction of ‘atoms’. Further, (h,T) is a ‘fact’, (F,b) is a ‘goal clause’,
and (F,T) is a ‘failure’.

This obviously relates to similar approaches for using sentence functors in
other logics. Intuitively, the identity functor is the sentence functor for lambda
terms as ‘sentences’ in A-calculus, and id? is the sentence functor for equations
as ‘sentences’ in equational logic [9].

Before proceeding, now note a fundamental appearance of the residuated sit-
uation. The quantale, as a residuated lattice, uses the residuation at least for
the underlying signature to work properly in the setting of monoidal biclosed
categories, but is in no way at that point necessarily related to ‘implication’ as
appearing in Horn clauses. In our treatment we therefore clearly show where
and how residuation can be introduced. Indeed, residuation as possibly used for
uncertainty consideration in terms has nothing to do with residuation related
properties as possible used for uncertainty on sentence level.

We are now in a position to introduce wvariable substitutions. Indeed, because
we have a monad Ty = (Tx, 7, 1), we may now perform a variable substitution
og: $5\PL X g — TxgS\Peolyy  that is, variables ¢°\°°1 X ¢ are subsituted by
terms T 5¢%\P°1Yg. The substitution is defined sortwise og = (0)ses such that
os: arg® (¢3\PL X o) — Ty ;¢%\P° Y. We have the following:
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o TEUS . TZ¢S\b0°1XS — TZ¢S\b°OlYS

08 =Ty (o Tros) t (Topy g © Tx)d™ " Xs

= (Tpp 0 © Te)o Yy

ogOdy =Tsp (eTxos): (Tep, o TZ)QSS\bOOlXS
= (Tpp 0 Te)g™ oMY
(Jgead’ Ugody) — (TEPL\ﬁ‘& X TEPL\ﬁ)(/L °oTyxos):
(T X T e T)dS X = (Tirpy o X Ty, )o Tr)o 20V

Finally,
HC head _bodyy .
o = (CTboe:l vgbooly) : SenHCLXS — SenHCLYS
Notice that ofead, agOdy and (ofead, Ugf)dy) are morphisms in Setg but ¢ is

a morphism in Set.

It is now clear that a candidate for the underlying category can be the Goguen
category Set(RQ). Further, and as will be explored in subsequent papers, replace-
ment of Ty with the composed functor Q o Ty [12], provides another style of
fuzzy extension.

3.4 Algebras, Models and Fixpoints

In the two-valued case, 2(bool) is often { false,true}, so that 2A(F) = false and
A(T) = true. Further, A(&) : 2A(bool) x A(bool) — A(bool), is expected to
be defined by the usual ‘truth table’. Further 2(sg) is usually denoted by D so
that the semantics for a (syntactic) n-ary operator w : sg X -+- X 89 — 8¢ is an
n-ary operation (function) 2(w) : D™ — D. Generally speaking, a many-sorted
algebra is not a traditional algebra, not even a tuple of traditional algebras,
since an operator w may touch many sorts and then the semantics of w is not
an n-ary function on some set. For example, we may assign for a signature
Ypr = (Spr, 2p1) a pair, the ‘many-sorted algebra’, (Tx,, Xs, (A(w))wenp,),
where Xg = @ if s # bool. Then, (| J,c4(arg®c Tx,,)Xs, (F, T, &, 1)) serves as
a traditional Boolean algebra, when certain equational laws are given.

For a finite set of program clauses I' = {(h1,b1),..., (hn,bn)} C SengcrXs,
based on X and Ypy, we assign a Setg object

(Ur)s =Ts@s = (TxsDs)ses

where T 5 @ g is the set of all ground terms of type s, and indeed T 5 p001Ds = &.
Note how (J,cg(Ur)s corresponds to the traditional and unsorted view of the
Herbrand universe as a ZFC-set.
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We are also interested in the Set-object

bool

Bp:(arg OTZPL\ﬁ,&OTZ) s
corresponding to the Herbrand base in the traditional sense [21].

Herbrand interpretations of a program I are subsets Z C B, that is, Z €
PBr.

For sake of convenience, when dealing with the immediate consequences op-
erator for the fixpoint considerations, we will need the Herbrand expression base

B?z = (arg®®°? °Tsp . °Tx) Ts.

Note that a Herbrand interpretation Z canonically extends to a Herbrand
expression interpretation I C B;‘f. Similarly, when Z € LBp, one might ex-
tend T to Herbrand fuzzy expression interpretation I% (semantically) as fol-
lows: for an element b € B;‘f of the form b = b1& ---&b,, we have I&(b) =
MNZ(b1),...,Z(b,)} and for an atom element b € B¥, T%(b) = Z(b). However,
it is questionable to call Z € LB to an interpretation.

Note that in this paper we avoid describing the informal passage [21] from
‘interpretation’ to ‘Herbrand interpretation’, which categorically means describ-
ing the shift from algebras to term algebras. The Herbrand interpretation is the
‘ground term algebra’ [21] in the universal algebra sense. This is the T s-algebra,
rather than the Y-algebra which corresponds to ‘interpretation’, and in all case
we are ‘ground’ in the sense of the variable sets in the tuples being empty sets.

The extension to the many-valued case is now a question about composing
with the many-valued powerset functor L with term functors, producing a style
of “logic with fuzzy” or having the term functors work over the Goguen category,
producing a style of “fuzzy logic”. It should therefore not be looked at simply
from the viewpoint of replacing the functor P to L with £ as the underlying
complete lattice, and extending the Herbrand interpretations to Herbrand fuzzy
interpretations of a program I" by Z € LBr. We will here look more into the first
situation, as the “squeezing in” of L can indeed be done in two ways. Either we
annotate it “outside”, as mentioned above, with sentences in such a ‘annotated
fuzzy Horn clause logic’ can be given by the sentence functor L o Sengcp and
then proceed to produce interpretations for fuzzy sets of predicates

LBr = (LO al’gbOOl o TEPL\ﬁ,& o TE) dg.

A fuzzy interpretation in this case is then just a mapping Z : B — L, and
uncertainties arising from terms and substitutions remain unaffected. On the
other hand, we may go “inside” to produce the substitution fuzzy Horn clause
logic with the sentence functor

Sensprcr = (arg™)? o (Tzp, o X Topp ) oL o To¢®\2)
so that ground predicates over fuzzy sets of terms is the set

Bp = (arg™" o Ty,  olsoTx) @g
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with the corresponding extension BILJ& being defined in the obvious way. The
resulting fuzzy sets of ground predicates then comes about from considering the
swapper

G TEPL\ﬁ,& o LS — LS OTEPL\ﬁ,&

which is given in [6] for the many-sorted case, and in [I1I] for the one-sorted
case. Indeed we can use arg®l¢r, o : B}: — LBr. Note also how LB}: would
correspond to a Herbrand base like the set with uncertainty considerations both
for the sets of clauses, as well as sets of terms.

Moving to fixpoints, we first consider crisp ground term substitution, that is,
a Setg-morphism og: Xg — Tx@g. By the previous discussion, this induces
a morphism o SenygornXs — Senpgor@s. We can now define a mapping
w : LBp — LBp, where the underlying lattice £ for the many-valued powerset
functor L is a complete lattice, by

(D) (ohest (h) = \/ ZI(opeat (b))
(h,b)el’

When (h,b) € Br x Br is such that (h,b) € R, uc (the range of o), then
w(Z)(h) =Z(h) and w(Z)(b) = Z(b).

Clearly, w is monotonic, and it is now well-known that w has the least and
greatest fixpoints.

This, however, is a simpler approach to fuzzy models, as substitutions re-
main crisp. For fuzzy ground term substitution, that is, a Setg-morphism of the
form o%: Xg — LsTx@g, corresponding Ul:g’head and og’b(’dy mappings can be
provided with Lg “inside”.

A mapping w' : LBL — LBL, considering the effect of substitutions with
fuzzy sets of terms, can now, using argb°°l§T2gs : B} — LB, be considered in
various forms, e.g., as

THT) (001 (1) = (\] (@rg®ersas (1)(1)) AT (061" (B))-
teBp

L

In this case, w" is also monotonic.

4 Conclusions

What is Logic? Logic is a structure containing signatures, terms, sentences, struc-
tured sets of sentences, entailments, algebras, satisfactions, axioms, theories and
proof calculi. Signature have sorts (types) and operators, and algebras provide
the meaning of the signature. All terms are constructed (syntactically) using
operators in the signature, and sentences have terms as building blocks. Entail-
ment is the relation between the structured sets of sentences, representing what
we already know, and sentences representing knowledge we are trying to arrive
at. Satisfaction is the semantic counterpart to entailment providing the notion
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of valid conclusions. Axioms prescribe what we take for granted at start, and
act as the logic program. Inference rules say how we can jump to conclusions in
a chain of entailments.

Further, unsortedness and many-sortedness are clearly different, and so are
crisp and fuzzy cases. Moreover, we should distinguish between “fuzzy logic
programming”, which requires considerations of underlying categories [8], from
“logic programming with fuzzy”, which is more about composing with term
monads using Set as the underlying category [12].

Fuzzy considerations in logic are then indeed similarly related to structures
which contain fuzzy signatures, fuzzy terms, fuzzy sentences, fuzzy structured
sets of sentences, fuzzy entailments, fuzzy algebras, fuzzy satisfactions, fuzzy
axioms, fuzzy theories and fuzzy proof calculi.

Details related to generalized general logic appear in [14], and further devel-
opments in particular related to sentence constructions will appear in [9].
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Application to Bayesian and Possibilistic Networks
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Abstract. Probability-possibility transformation is a purely mechanical trans-
formation of probabilistic support to possibilistic support and vice versa. In this
paper, we apply the most common transformations to graphical models, i.e.,
Bayesian into possibilistic networks. We show that existing transformations are
not appropriate to transform Bayesian networks to possibilistic ones since they
cannot preserve the information incorporated in joint distributions. Therefore, we
propose new consitency properties, exclusively useful for graphical models trans-
formations.

Keywords: Probability-Possibility transformation, Bayesian networks, Possibilis-
tic networks.

1 Introduction

Probability and possibility theories are two ways to express uncertainty. Several bridges
between these two frameworks were established. Especially, several researches ad-
dressed the problem of transformation of possibilistic distributions into probabilistic
ones and vice versa. The first interest underlying these transformations is to study the
coherence between these frameworks and, more precisely, the consistency of derived
distributions. Another interest is to make a benefit advantage of each framework. Fol-
lowing this idea, we are interested by transformations between Bayesian networks [13]]
and their adaptation in the possibilistic framework i.e. possibilistic networks [13]. In
fact, these graphical models, which share the same graphical component i.e. Directed
Acyclic Graph (DAG), are quantified using different distributions (i.e., probability dis-
tributions in the case of Bayesian networks and possibility ones in the case of possibilis-
tic networks). Recently, the inference topic in possibilistic networks has been explored
using compilation techniques [[1]]. It has been shown that the qualitative setting of possi-
bility theory goes beyond the probabilistic framework and the quantitative possibilistic
framework since it takes advantage of specific properties of the minimum operator. So,
our objective in this paper is to study the possibility of switching from one model to
another in order to reason in an efficient way.

This paper is organized as follows: Section 2 presents most common transformations.
Section 3 presents some basics of Bayesian and possibilistic networks. Section 4 studies
the particular case of transforming Bayesian networks into possibilistic ones.

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 122-[130] 2013.
(© Springer International Publishing Switzerland 2013
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2 Probability-Possibility Transformation

Possibility theory introduced by Zadeh [[14] and developed by Dubois and Prade [6] lies
at the crossroads between fuzzy sets, probability and non-monotonic reasoning. The ba-
sic building block in possibility theory is the notion of possibility distribution [0]: let
V = {Xi1,...,Xn} be a set of state variables whose values are ill-known such that
D ... D, are their respective domains. {2 = D; X ... X Dy denotes the universe of
discourse, which is the cartesian product of all variable domains in V. Vectors w € (2
are often called realizations or simply “states” (of the world). In what follows, we use
x; to denote possible instances of X;. The agent’s knowledge about the value of the z;’s
can be encoded by a possibility distribution 7 : 2 — [0, 1] where m(w) = 1 means that
w is totally possible and 7(w) = 0 means that w is an impossible state. It is generally
assumed that there exist at least one state w which is totally possible, 7 is then said to
be normalized. We denote by T () the set of totally possible states in 7. From 7, one
can compute, for any event A C (2, the possibility measure I7(A) = sup,,c 4 7(w) that
evaluates to which extend A is consistent with the knowledge represented by 7. The
particularity of the possibilistic scale is that it can be interpreted twofold: either in an
ordinal manner, when the possibility degree reflects only an ordering between the pos-
sible values, so the minimum operator is used to combine different distributions, or, in a
numerical manner, so possibility distributions are combined using the product operator.
Several researchers tackle different bridges between probability and possibility the-
ory. When we deal with those transformations, two cases can be distinguished, those
relative to subjective probabilities [8] and those relative to objective ones. In this pa-
per, we focus on these latters which were used in several practical problems such as:
constructing a fuzzy membership function from statistical data [11]], combining prob-
abilities and possibilities information in expert systems [9] and reducing the compu-
tational complexity [[1]. Roughly speaking, transforming probabilistic distributions to
possibilistic ones, denoted by p — , is useful when weak source of information makes
probabilistic data unrealistic or to reduce the complexity of the solution or to combine
different types of data. However, transformation, denoted by m — p, is useful in the
case of decision making. Interestingly enough, when transforming p — 7, some infor-
mation is lost because we transform point value probabilities to interval values ones. In
contrast, m — p adds information to some possibilistic incomplete knowledge.

2.1 Consistency Principle

In order to describe different transformations, several properties, called consistency
principle, were proposed in literature. We retain, in particular, three of them:

Zadeh Consistency Principle: Zadeh [14] defined the probability-possibility consis-
tency principle such as “a high degree of possibility does not imply a high degree of
probability, and a low degree of probability does not imply a low degree of possibility”.
The degree of consistency between p and 7 is defined by: C(m,p) = >°,_, | ™ * p;.
Zadeh [[14] pointed out that C'(7, p) is not a precise law or a relationship between pos-
sibility and probability distributions. It is an approximate formalization of the heuristic
connection stating that lessening the possibility of an event tends to lessen its probabil-
ity but not vice-versa.
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Klir Consistency Principle: The concept of consistency condition was redefined by
Klir [10]. Assume that the elements of (2 are ordered in such a way that p; > 0 and
Di > pit1, V i = {l..n}. Any transformation should be based on these assumptions:
— A scaling assumption that forces each value 7; to be a function of p;/p; (Where
p1 Z ce. Z pn)~

— An uncertainty invariance assumption according to which p and 7 must have the same
amount of uncertainty.

— Consistency condition: m; > p; stating that what is probable must be possible, so 7
can be seen as an upper-bound of p.

Dubois and Prade [5] gave an example to show that the scaling assumption of Klir may
sometimes lead to violation of the consistency principle. The second assumption is also
debatable because it assumes that possibilistic and probabilistic information measures
are commensurate.

Dubois and Prade Consistency Principle: Dubois and Prade defined the consistency
principle, differently, using these assumptions [4]:

— Consistency condition: P; < IT;, ¥V i = {l..n}.

— Preference preservation: Assuming that 7 has the same form as p, then V(wy,ws) €
@2, plun) > plws) = 7(wr) > m(we) and plwr) = plwn) = m(wr) = T(ws).
— Maximum specificity: Let m; and 79 be two possibility distributions, then 7o is more
specific than my iff: Vw € 2, m(w) < mp(w).

2.2 Probability-Possibility Transformation Rules

Several transformation rules are proposed in literature. We present the most com-
mon ones, namely: Klir transformation (KT), Optimal transformation (OT), Symmetric
transformation (ST) and Variable transformation (VT).

Klir Transformation (KT): Assume that the elements of (2 are ordered in such a way
that: vV ¢ = {1..’/7,}, pi >0, p; > piprandm; >0, m > miyg with ppy; = 0
and 7,41 = 0. Klir has considered the principle of uncertainty preservation under two
scales [10]:

— The ratio scale: p — m and m — p, named the normalized transformations, are
defined by:

=l = (1)
K p1 9 K3 n ZZ X 71'1
— The log-interval scale: p — m and m — p are defined by:
1
pi T
T = ( ! )a , Di = 1 (2)

P1 Z (ﬂ'z o
]

)
where « is a parameter that belongs to the open interval |0, 1].

Optimal Transformation (OT): proposed by Dubois and Prade [4] and also called
” Asymmetric Transformation”, is defined as follows:

n
S opopi=d " _j”j“ 3)

J/pi<pi Jj=1
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OT is optimal because it gives the most specific possibility distribution i.e. that loses
less information [[7]], and it’s asymmetric since the two formulas in Equation (@) are not
converse. Sandri et al. [7] suggested a Symmetric Transformation (ST) that needs less
computation but it is quite far from the optimum. It is defined by:

m =Y min(pi,p;) )

Variable Transformation (VT): It’s a p — 7 transformation proposed by Mouchaweh
et al. [12] and expressed as follows: assume that the elements of {2 are ordered in such
awaythat:V i = {l.n}, p; >0, p; > pir1andm; >0, 7 > mipq withp,y1 =0
and 7,41 = 0, then:

bi —py
= ("" )k-(l i) )
b1
where k is a constant belonging to the interval: 0 < k < logpn

(1=pn)-log(7)"
Bouguelid [3] proposed V'T;, which is an improvement of VT, to malie it as specific as
OT. So, a parameter k; is set for each ;. Formally: V i = {1..n},

= (pi )ki‘(lfpi) (6)
P1

where k; belongs to the interval: 0 < k; < loggfjf )+12Jgr(p+)p W Vi={2.n}.

v/ D
Table 1 summarizes characteristics of KT, OT, ST, VT anld V'T;. For each transforma-
tion, it is mentioned if it deals with discrete (D) and-or continuous case (C) and if it
satisfies consistency principle (Cs), preference preservation (PP) and maximum speci-
ficity (MS). Clearly, OT and V'T; are the most interesting rules in the discrete case for
p— .

Table 1. Summary of transformations

TR p— 77— p  Properties

D C Cs PP MS
KT X X X X X
oT X X X X X X X
ST X X X X X X
VT X X X
VTi x X X X X

3 Basics on Bayesian and Possibilistic Networks

Bayesian networks [[13] are powerful probabilistic graphical models for representing
uncertain knowledge. Studying the possibilistic counterpart of Bayesian networks leads
to two variants, namely: min-based possibilistic networks corresponding to the ordinal
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interpretation of the possibilistic scale and product-based possibilistic networks corre-
sponding to the numerical interpretation [2]. It is well-known that product-based pos-
sibilistic networks are close to Bayesian networks since they share the same features
(essentially the product operator) with almost the same theoretical and practical results
[2]]. This is not the case for min-based possibilistic networks due to the particularities of
the min operator (e.g. the idempotency). Over a set of N variables V = {X1,.., Xy},
Bayesian networks (denoted by BN) and possibilistic networks (denoted by I1Gg
where ® = min in the ordinal setting, and ® = x in the numerical one) share the
same two components:

— A graphical component composed of a DAG, G= (V, E) where V denotes a set of
nodes representing variables and E a set of edges encoding links between nodes.

— A numerical component that quantifies different links. Uncertainty of each node X
is represented by a local normalized conditional probability or possibility distribution
in the context of its parents.

Given a Bayesian network BN on N variables, we can compute its joint probability
distribution by the following chain rule :

p(X1,..., XN) = xi=1.nv P(X; | Us) (7
In a similar manner, the joint possibility distribution of a possibilistic network IIGyg, is
defined by the ®-based chain rule, where ® = min for the ordinal setting and ® = *
for the numerical one, expressed by:

(X1, .., XN) = ®iz1.n (X, | Us) (8)
One of the most interesting treatments that can be applied for possibilistic networks is
to evaluate the impact of a certain event on the remaining variables. Such process, called
inference, consists on computing a-posteriori possibility distributions of each variable
X given an evidence e.

Example 1. Let us consider the Bayesian network and the possibilistic network in Fig.
[[(a) and Fig. [Tl (b), respectively (sharing the same DAG). The joint distributions of BN
and ITGg using Equations (Z) and (8) are presented in Fig. [ (c).

Al Bl P | m|m,,
1 2
P(A) 36 34 n(A) all 824 a; | b, ||0.36] 1 1
= - : b, [|0.18| 0.4 | 0.4

a
P(B|A)| al | a2 N(B|A) al a2 |ai| bs||0.06/0.1] 0.1

bl ]0.6|0.5 bl 1 1 a,| b;||02]04] 0.4
b2 ]0.3|0.3 ° b2 0.4 05 a, | b, ||0.12/0.2 | 0.4

b3 0.1]0.2 b3 0.1 0.2 da, b3 0.08|0.08( 0.2

(a) (b) (c)

Fig. 1. A Bayesian network (a), a possibilistic network (b) and their joint distributions (c)
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4 Transformation from Bayesian to Possibilistic Networks

Probability-possibility transformations can be useful to study the coherence between
probabilistic and possibilistic frameworks and, more precisely, the consistency of de-
rived distributions. Our idea consists in applying such transformations from Bayesian
networks to possibilistic networks and interpreting their behavior on joint distributions.
Formally, using existing transformations, we can define transformation from Bayesian
to possibilistic networks in a local manner as follows:

Definition 1. Let BN be a Bayesian network and p be its joint distribution. Let TR be
a transformation rule. Let BNtollI N be the function that transforms BN into I1 Ng R
using TR under the setting ® s.t. @ = {x,min}. Let PDtoII D be the function that
transforms a probability distribution into a possibilistic one using TR. Formally, IT Ng R
is the transformation of BN using TR if, VX; € V,

II(X; | U;) = PDtolI D(P(X; | U;), TR) )
IIN.® = BNtoIIN(BN, TR, ®) (10)

Example 2. Table [2] depicts the transformation of conditional tables of the Bayesian
network of Fig.[Tl(a) using KT, OT, ST, VT and V'T;.

Table 2. Transformation of conditional distributions

M(A) [T [OTVTi ST VT
a1 1 1 1 1

as 0.66 0.4 08 04

(B | A) I5T [[OTVTi [1ST VT
b1 | a1 1 1 1 1
b2 | a1 0.5 0.4 0.7 05
bs| a1 0.16 0.1 03 0.1
b1 | a2 1 1 1 1

b2 | a2 0.6 0.5 0.8 0.27
bs | a2 0.4 0.2 06 02

This local transformation does not ensure the same results as a global one. In other
words, the transformation of the joint distribution underlying the initial Bayesian net-
work is not equivalent to the transformation of its local conditional distributions, which
can affect the inference results. Let wg R be the transformation of the joint distribution
encoded by a Bayesian network BN using the transformation TR and let W%R be the
joint distribution relative to I N, g R obtained using Definition 1. The following exam-
ple illustrates the problem described above.

Example 3. Table[3| presents the transformation of global distributions of the Bayesian
network of Fig.[Il(a) and of the resulted possibilistic network IT N, using KT, OT, ST,
VT and V'T;.
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Table 3. Possibility distributions using different transformations

AB p KT OT, VT; ST VT

71,;(T KT 7KT I?T,VTi 70TV 23;;VT~; 7T§T 75T 75T Z\)/T VT VT
a1 b1 036 1 1 1 1 1 1 1 1 1 1 1 1
a1 b2 018 05 05 05 0.44 0.4 0.4 0.8 0.7 0.7 038 05 05
a1 bz 0.06 0.16 0.16 0.16 0.06 0.1 0.1 036 03 03 006 0.1 0.1
az b1 0.2 0.55 0.66 0.66 0.64 0.4 0.4 0.84 0.8 0.8 045 04 04
az b2 0.12 033 04 0.6 0.26 0.2 0.4 0.62 0.64 0.8 0.19 0.108 0.27

az b3 0.08 0.22 0.26 0.4 0.14 0.08 0.2 046 0.48 0.6 0.09 0.08 0.2

As depicted in Table[3] if we are in a numerical setting, the values of Wg R are differ-
ent from those of 7731 R and, if we deal with an ordinal setting, the order between wg R
and 7777,;12-{” is not preserved, as well. For instance, for the transformation ST, more pre-
cisely for a1 by and agbs, we can see that 0.8 > 0.62 while 0.7 < 0.8. It is also the case
of VT for a;by and a2b;. Suppose, now, that we have the evidence B = bo, then for
757 we have a; > ay while the same evidence implies ap > ay for 7% . This means
that, considering 7L as the consistent transformation of the initial Bayesian network
and using it to infer evidence can lead to erroneous results.

The question that may arise is the following: Do all transformations suffer from the
problem of information loss? The answer can be found in the following example.

Example 4. Let us consider the BN of Fig. 2 (a) s.t p > ¢. This implies that p > 0.5
and ¢ < 0.5, which in its turn implies that 0.5p > 0.5¢ > 0.25. Fig. 2 (c) shows the
joint distributions where x < 1,y < 1 and z < 1 and TR can be any transformation
(i.e. KT, OT, ST, VT, VT)).

We start by interpreting product-based networks which only rely on numerical val-
ues. It is obvious, from columns 4 and 5 of Fig. 2 (c), that there is a loss of information
since values of Wg R and 7T*TR are different. When we deal with min-based networks,
the focus is only on the order induced by values. In fact, the order of Wg R of the initial
network BN is {a1by > a1by > (a2by = azb2)}, while the order relative to 72 is
{(a161 = ash; = a2b2) > a1b2}.

P(A) al |a2 ° allaz A B[ P |[m,™ | my,,"
n(Aa
0505 W1 (el b fosp | 1 1

P(B|A)|a1la2 N(B|A)al a2 | 22|P2]05d ] X
bl |[p|0.5 ° b1 11 a,| by| 0.25 z

b2 |[q|0.5 b2 'y |1 a,| by | 0.25 z

B R< (e

(a) () (©)

Fig. 2. A BN (a), its transformation into a possibilistic one (b) and their joint distributions (c)
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Following this problem, we propose two new properties. The first one (resp. the sec-
ond one), presented in Definition 2 (resp. Definition 3), is applicable for transforming
Bayesian networks into min-based possibilistic networks (resp. product-based possi-
bilistic networks). These properties should be seen as extensions of Dubois and Prade
Consistency principle described above.

Definition 2. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a min-based possibilistic network 11 Ngﬁl. Let p be the joint distribu-
tion relative to BN computed using Equation () and ﬂg R pe its transformation by TR.
Let 1 be the joint distribution relative to IINTE using Equation (8) (s.t @ = min).

min min

Let §(nl) and (w1 %) be the order underlying wl'™ and %t , respectively. Then TR

mn main’
is said to be consistent iff: (i) 6(w} ) = §(x L R) and (i) T (xl ) = T(xLR)
Definition 3. Let TR be a transformation rule used in order to transform a Bayesian
network BN into a product-based possibilistic network IINI'F. Let p be the joint dis-
tribution relative to BN computed using Equation ([2) and 7rpT R be its transformation by
TR. Let w1'® be the joint distribution relative to IT NI using Equation @) (s.t @ = ).
Then TR is said to be consistent iff: 7rpT R =qnTR

Clearly, the formulas (ii) in Definition 2. guarantees the normalized values in both or-
dinal and numerical settings. We point out that this property is ensured by existing
transformations.

5 Conclusion

Our objective in this paper is to study the transformation of Bayesian networks into
possibilistic networks using existing transformations proposed in literature. We found
out that switching from one model to another does not preserve the information incor-
porated in joint distributions (either numerical values for IT N, or the order induced by
values for II N,,;»). Such result allows us to conclude that such transformations are
inappropriate in the case of graphical models. Indeed, we have shown that it leads to
erroneous inference results. A deep study on this behavior shows that this loss of in-
formation is due to the non-compatibility of product and min operators, in the ordinal
setting. In our future work, we will deeply explore the impact of this loss of information
on inference result for both product-based possibilistic networks and min-based possi-
bilistic networks and propose two new transformations that respect the properties we
proposed in order to transform Bayesian networks into possibilistic ones.
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Abstract. In this article we continue investigations presented at pre-
vious WILF 2011 conference which are connected with distributivity
of implication operations over t-representable t-norms and t-conorms.
Our main goal is to show the general method of solving the follow-
ing distributivity equation Z(S(z,y),z) = T(Z(z,z),Z(y, z)), when S
is a t-representable t-conorm on L' generated from two continuous,
Archimedean t-conorms, 7 is a t-representable t-norm on £ gener-
ated from two continuous, Archimedean t-norms and Z is an unknown
function.

Keywords: Interval-valued fuzzy sets, Triangular norm, Triangular
conorm, Distributivity equations, Functional equations.

1 Introduction

Distributivity of (classical) fuzzy implications over different fuzzy logic connec-
tives has been studied in the recent past by many authors (see chronologically [2],
[32], [12], [29], [30], [11],[3],[8]). These equations have a very important role to
play in efficient inferencing in approximate reasoning, especially in fuzzy con-
trol systems. Given an input “Z is A’”, the role of an inference mechanism is
to obtain a fuzzy output B’ that satisfies some desirable properties. The most
important inference schemas are fuzzy relational inference and similarity based
reasoning. In the first case the inferred output B’ is obtained either as

(i) sup —T composition, as in the compositional rule of inference (CRI) of Zadeh
(see [33]), or
(ii) inf —T composition, as in the Bandler-Kohout Subproduct (BKS) (see [13)]),

of A" and given rules. Since all the rules of an inference engine are exercised dur-
ing every inference cycle, the number of rules directly affects the computational
duration of the overall application.

F. Masulli, G. Pasi, and R. Yager (Eds.): WILF 2013, LNAI 8256, pp. 131-[[38] 2013.
© Springer International Publishing Switzerland 2013
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To reduce the complexity of fuzzy “IF-THEN” rules, Combs and Andrews [16]
proposed an equivalent transformation of the CRI to mitigate the computational
cost. In fact, they required of the following classical tautology

pAg) =r=@—=>7)VI(g—=r)

so we see that the distributivity of fuzzy implications over t-norms (or t-conorms)
play a major role in this transformation. Subsequently, there were many discus-
sions (see [14], [I5], [20], [28]), most of them pointed out the need for a theoretical
investigation required for employing such equations. Later, the similar method
but for similarity based reasoning was demonstrated by Jayaram [24]. For an
overview of the most important methods that reduce the complexity of different
inference systems and concrete examples see [10, Chapter §].

Recently, in [4], [5], [6] (for the full article see [9]) and [7] we have discussed
the distributivity equation of implications

I(z, Ti(y, 2)) = T2(Z(2,y), I(z, 2))

over t-representable t-norms generated from continuous Archimedean t-norms, in
interval-valued fuzzy sets theory. In these articles we have obtained the solutions

for each of the following functional equations, respectively:
Jlur +vi,ue +v2) = f(ur,u2) + f(v1,v2), (A
g(min(uq + v1,a), min(us + ve,a)) = g(ur, us) + g(v1, va), (B
h(min(u1 + v1,a), min(ug + va,a)) = min(h(u1, uz) + h(vi,v2),b), (C
E(uy + v1, ug + v2) = min(k(uy, u2) + k(v1,v2),b), (D
where a,b > 0 are fixed real numbers, f: L — [0,00], g: L* — [0,00], h: L* —

[0,0], and k: L — [0, ] are unknown functions. The above we use the following
notation

—_ — — ~—

L% = {(uy,us2) € [0,00]2 | ug > ua},
L = {(u1,uz2) € [0,a]2 | u1 > us}.

More precisely, the solutions of Eq. (A]) have been presented in [4, Proposi-
tion 3.2], the solutions of Eq. (B]) have been presented in [5, Proposition 4.2],
the solutions of Eq. () have been presented in [J, Proposition 5.2] and the
solutions of Eq. (D)) have been presented in [7, Proposition 3.2].

In this paper we continue these investigations, but for the following functional
equation

I(S(x,y),z) :T(I(xvz)vz(yaz))v (D_ST)

satisfied for all -, 3y, € L’, when & is a t-representable t-conorm on £ generated
from two continuous, Archimedean t-conorms Sy, Ss, T is a t-representable
t-norm on £! generated from two continuous, Archimedean t-norms T}, Th and
7 is an unknown function.

Please note that the solutions for this Eq. (D=STJ) in the classical case, i.e. for
classical continuous Archimedean t-norms and t-conorms have been presented
by the author in [8].
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2 Interval-Valued Fuzzy Sets

One possible extension of fuzzy sets theory is interval-valued fuzzy sets theory
introduced, independently, by Sambuc [31] and Gorzalczany [23], in which to
each element of the universe a closed subinterval of the unit interval is assigned
— it can be used as an approximation of the unknown membership degree. Let
us define

L' = {(z1,22) € [0,1)%: 21 < 29},
(x1,22) <pr (Y1,92) <= 21 < y1 Awa < .

In the sequel, if z € L!, then we denote it by x = [z1,22]. One can easily
observe that £f = (L, <;r) is also a complete lattice with units 0.1 = [0,0]
and 1,r = [1,1].

Definition 2.1. An interval-valued fuzzy set on X is a mapping A: X — LT.

Another extension of fuzzy sets theory is intuitionistic fuzzy sets theory in-
troduced in 1983 by Atanassov [I].

Definition 2.2. An intuitionistic fuzzy set A on X is a set
A={(z,pa(x),va(z)) : z€ X},

where pa, va: X — [0,1] are called, respectively, the membership function and
the non-membership function. Moreover they satisfy the condition

pa(r) +va(z) <1, zeX.
Let us define

L* = {(z1,22) € [0,1]* : x1 + a2 <1},
(x1,22) <p+ (Y1,y2) <= 21 < Y1 A Z2 > Yo.

It is important to notice that in [I9] it is shown that interval-valued fuzzy
sets theory is equivalent, from the mathematical point of view, to intuitionistic
fuzzy sets theory (see [I] and [21]). In fact, we can see the point (x1,z2) € L*
as the interval [x1,1 — 22] € L! (and vice-verse). Since we are limited in number
of pages, in this article we will discuss main results in the language of interval-
valued fuzzy sets, but they can be easily transformed to the intuitionistic case.

3 Basic Fuzzy Connectives

We assume that the reader is familiar with the classical results concerning basic
fuzzy logic connectives, but we briefly mention some of the results employed in
the rest of the work.
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Definition 3.1. Let £ = (L,<p) be a complete lattice. An associative, com-
mutative operation T : L? — L is called a t-norm if it is increasing and 1. is
the neutral element of T. An associative, commutative operation S: L? — L is
called a t-conorm if it is increasing and Op is the neutral element of S.

The following characterizations of classical t-norms are well-known in the
literature.

Theorem 3.2 ([26], cf. [25, Theorem 5.1]). For a function T: [0,1]% — [0, 1]
the following statements are equivalent:
(i) T is a continuous Archimedean t-norm, i.e., if for every x,y € (0,1) there

is an n € N such that x[;f] <vy.

(i) T has a continuous additive generator, i.e., there exists a continuous, strictly
decreasing function f: [0,1] — [0,00] with f(1) = 0, which is uniquely de-
termined up to a positive multiplicative constant, such that

T(z,y) = [~ (min(f(z) + f(y), £(0))),  x,y€[0,1].
Theorem 3.3 ([26], cf. [25, Corollary 5.5]). For a function S: [0,1]*> — [0, 1]
the following statements are equivalent:
(i) S is a continuous and Archimedean t-conorm, i.c., if for every x,y € (0,1)

there is an n € N such that x[;] > .

(i) S has a continuous additive generator, i.e., there exists a continuous, strictly
increasing function s: [0,1] — [0, c0] with s(0) = 0, which is uniquely deter-
mined up to a positive multiplicative constant, such that

S(z,y) = s~ (min(s(z) +s(y),s(1))), 2,y €[0,1]. (1)

In our article we shall consider the following special classes of t-norms and
t-conorms on L£'.

Definition 3.4 (see [17]).

(i) A t-norm T on LI is called t-representable if there exist t-norms Ty and Ty
on ([0,1], <) such that Ty < Ty and

T ([x1, 22, [y1,y2]) = [T1(21,y1), Ta(z2,y2)], (21,22, [y1,y2] € L.

(ii) A t-conorm S on L1 s called t-representable if there exist t-conorms S1 and
Sy on ([0,1], <) such that S1 < Sy and

S([w1, 22], [y1,y2]) = [S1(z1, 1), S2(z2,92)], [v1, 2], [y1,ya] € L.

It should be noted that not all t-norms and t-conorms on £! are t-representable
(for counterexamples see [I7]).

One possible definition of an implication on £! is based on the well-accepted
notation introduced by Fodor and Roubens [22] (see also [10], [I8] and [27]).

Definition 3.5. Let £ = (L, <y) be a complete lattice. A functionT: L? — L is
called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the following conditions:
I(OL, OL) = I(lL, 15) = I(OL, 15) = 15 and 1(15705) = OL.
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4 On Eq. (D-ST) for t-representable t-conorms and
t-norms

In this section we will show how we can use solutions discussed earlier in Section[]
to obtain all solutions of our main distributivity equations

I(S(z.y).2) = T(L(x,2),L(y,2)),  z,y.z €L,

where 7 is an unknown function, S is a t-representable t-conorm on £! gener-

ated from continuous, Archimedean t-conorms S7, So and 7T is a t-representable

t-norm on £! generated from continuous, Archimedean t-norms T}, T.
Assume that projection mappings on £! are defined as the following:

pri([z1, x2]) = x1,  pro([w1, 22]) = 22,

for [z1, 7] € L. At this situation our distributivity equation has the following
form

Z([S1(z1,91), S2(x2,y2)],[21, 22])
=[T1(pr1(Z([z1, 22|, [21, 22])), pr1(Z([y1, y2l, [21, 22]))),
Ta(pra(Z([21, 22], [21, 22])), pr2(Z([y1, Y2l [21, 22])))]

for all [z1,z2], [y1,¥2], [21, 22] € LT. As a consequence we obtain the following
two equations

pri(Z([S1(z1,91), S2(22,92)], [21, 22])
= T1(pr1(Z([x1, 22, [21, 22]))), pr1
pra(Z([S1(x1,y1), S2(22,92)], [21, 22])
72

)
(I([ylva}v[Zlsz])))v
)

= To(pr2(Z([z1, z2], [21, 22])), pra(

Z([y1: y2), [21, 22))),

which are satisfied for all [x1, z2], [y1, y2], [21, 22] € L!. Now, let us fix arbitrarily
[21,22] € LT and define two functions g[zl’zr"],g[z1 S N by

g () = pry o Z(, [21, 22)),

[21,22]

g5 V() = pra o Z(:, [21, 22)).

Thus we have shown that if S and 7 on £! are t-representable, then

g (81 (e, y0), Sa(@a, o)) = Ti(g™ ™ (an, 22]). g7 (1, 2))),
g5 ([S1 (a1, y1), Sa (@2, 12)]) = Ta(g5 "2 (21, 22]), 6522 ([, 12))).

Let us assume that S; = S5 is a continuous, Archimedean t-conorm generated

from continuous generator s and 77 = 15 is a continuous, Archimedean t-norm
b

generated from continuous generator ¢. Using the representations of t-conorms
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(Theorem [B3)) and t-norms (Theorem B.3]) we can transform our problem to the
following equations:

g ([ (min(t(z1) + t(y1),1(0))), ¢t~ (min(t(z2) + t(y2), £(0)))])
= s (min(s(g] " ([e1, 22])) + s(977 (y1, v2])), s(1))).

Hence

s 0 g7 ([t= (min(¢(x1) + t(y1), £(0))), ¢~ (min(t(z2) + t(y2), 1(0)))])
= min(s(gl % ([e1, 2])) + s(g77 ([y1, v2)), s(1)).

Let us put t(z1) = w1, t(ze) = ug, t(y1) = v1 and t(y2) = ve. Of course
uy, ug,v1,v2 € [0,t(0)]. Moreover [z1, x2], [y1, y2] € LT, thus z; < x5 and y; < ya.
The generator ¢ is strictly decreasing, so u; > ue and vy > vs. If we put

Jior 2 (W, 0) := s 0 pri o Z([t™H (w), 171 ()], [21, 22]),
where u,v € [0,¢(0)], u > v, then we get the following functional equation

f[zl,ZQ] (min(u1 + vy, t(O)), min(ug + va, t(O)))
= min(f[zl,zZ] (w1, u2) + f[z1,ZQ] (v1,v2),8(1)), (2)

satisfied for all (u1,uz), (v1,v2) € L*9. Of course function Jiz1,20) ¢ LY [0, oc]
is unknown above. In a same way we can repeat all the above calculations, but
for the function gs, to obtain the following functional equation

fEr=2l(min(uy + vi,¢(0)), min(us + v, 1(0)))
= min( 72 (uy, up) + fE022) (01, 09), 5(1)), ®3)

satisfied for all (u1,us), (v1,v2) € LH®), where
FErEl(u,0) == s 0 pra o Z([t7 (u), ¢ (v)], [21, 22])

is an unknown function.
Observe that considering different values for ¢(0) and s(1), i.e., the following
four cases:

— t(0) = (1) = o0,

— t(0) < o0 and s(1) = oo,
— t(0) < o0 and s(1) < oo,
— 1(0) = o0 and s(1) < oo,

our equations (2) and (B)) are becoming one of the previously considered equa-
tions (Al - (D). Therefore, using solutions already presented in the literature
(cf. Section[I), we are able to obtain (separately) the description of the horizon-
tal section Z(-, [21, z2]) for a fixed [z1, 22] € L!. Now, taking into account both
equations ([2]) and (@), it is possible to find solutions Z for which the range is
L'. Since we are limited in number of pages it is not possible to show all these
solutions, in particular fuzzy implications, but it is our goal for the future work.
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Abstract. We deal with the problem of evaluating and ranking intu-
itionistic fuzzy quantitities (IFQs). We call IFQ an intuitionistic fuzzy
set (IFS) described by a pair of fuzzy quantities, where a fuzzy quantity
is defined as the union of two, or more, convex fuzzy sets that may be
non-normal. We suggest an evaluation defined by a pair index based on
“value” & “ambiguity” and a ranking method based on them. This new
formulation contains as particular cases the ones proposed by Fortemps
and Roubens [13], Yager and Filev [24, [25] and follows a completely
different approach.

Keywords: Fuzzy quantities, Intuitionistic fuzzy quantities, Evalua-
tion, Ranking, Ambiguity.

1 Introduction

In many practical applications the available information corresponding to a fuzzy
concept may be incomplete, that is the sum of the membership degree and
the non-membership degree may be less than one. A possible solution is to
use ” Intuitionistic fuzzy sets” (IFSs) introduced by Atanassov |, 16, 8]. Several
proposals of ”Intuitionistic fuzzy numbers” evaluation and ranking are present
in literature [14, [11), 15, 117-21]. Due to the connection between IFSs and Interval
type-2 fuzzy sets and industrial applications that have used interval type-2 fuzzy
logic systems |16, 123, [10], we have thought that it may be interesting to work
on a better characterization of particular IFSs in which the two memberships
may be not normal and not fuzzy convex. In this direction the definition of
Intuitionistic Fuzzy Quantities (IFQs) is present in a previous paper |2]. These
fuzzy sets are defined by a pair of Fuzzy Quantities (FQs) that may be obtained
as the union of N convex fuzzy sets with continuous membership functions. In
the same paper we have introduced an IFQs evaluation formula that takes the
cue from a previous definition introduced for FQs in [12], based on a geometrical
approach with N = 2 components. The transition from two to more than two
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requires to redefine all what we have done before, using a different approach
that may be more useful in presence of a higher number of components. In this
direction an approach based on total variation of bounded variation functions
is introduced in [3]. To reach an evaluation and consequent ranking of IFQs,
we work on FQs evaluation and ranking. The new proposed definition contains
as particular case the heuristic proposal of Fortemps and Roubens [13] for FQs
and the definition proposed by Yager and Filev [24, 25] and by Facchinetti and
Pacchiarotti [12]. Using the same approach we introduce a general definition of
ambiguity and by evaluation and ambiguity we introduce a way to rank IFQs.

In Section 2 we give basic definitions and notations. In Section 3 we introduce
our definition of fuzzy quantity and illustrate our general evaluation method. In
Section 4 we propose a definition of ambiguity for fuzzy quantities. In Section 5
and Section 6 we use the previous model to evaluate and rank intuitionistic fuzzy
quantities.

2 Preliminaries and Notation

Let X denote a universe of discourse. A fuzzy set A in X is defined by a mem-
bership function g4 : X — [0, 1] which assigns to each element of X a grade of
membership to the set A. The height of Ais ha = height A = sup,cx pa(z). The
support and the core of A are defined, respectively, as the crisp sets supp(A) =
{z € X;pa(x) >0} and core(A) = {z € X;pua(x) =1}. A fuzzy set A is normal
if its core is nonempty. The union of two fuzzy set A and B is the fuzzy set AUB
defined by the membership function paup(r) = max{pa(x), up(z)}, z € X. The
intersection is the fuzzy set AN B defined by panp(z) = min{pa(z), us(x)}.
A fuzzy number A is a fuzzy set of the real line R with a normal, convex and
upper-semicontinuous membership function of bounded support (see, e.g., [9]).
From the definition given above there exist four numbers a1, as, az, as € R, with
a1 < as < ag < ay, and t