
Emergence, Complexity and Computation ECC

Applications 
of Membrane 
Computing in 
Systems and 
Synthetic Biology

Pierluigi Frisco
Marian Gheorghe
Mario J. Pérez-Jiménez Editors



Emergence, Complexity and Computation

Volume 7

Series editors

Ivan Zelinka, Technical University of Ostrava, Ostrava, Czech Republic
e-mail: ivan.zelinka@vsb.cz

Andrew Adamatzky, University of the West of England, Bristol, UK
e-mail: adamatzky@gmail.com

Guanrong Chen, City University of Hong Kong, Hong Kong
e-mail: eegchen@cityu.edu.hk

Editorial Board

Ajith Abraham, MirLabs, USA
Ana Lucia C. Bazzan, Universidade Federal do Rio Grande do Sul, Porto Alegre

RS Brasil
Juan C. Burguillo, University of Vigo, Spain
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To Gheorghe Păun



Preface

Membrane Computing was introduced in 2000 [1], as a research topic in Natural

Computing. It soon became a very active research area and just three years after

the publication of this seminal paper, the Institute for Scientific Information (ISI)

identified the paper as being fast breaking in the field of Computer Science [2].

Since then the field has flourished giving birth to many research topics, triggering

connections with many other research areas and producing interesting applications.

The models introduced are called membrane (or P) systems. Many theoretical

aspects related to computability, complexity and decidability have been investi-

gated for various classes of membrane systems—accounts of these developments

have been reported in [3–6]. Membrane systems have been employed for solving

various problems in Computer Science, Graphics, Linguistics, Robotics, and other

fields [7]. A recently published comprehensive handbook [8] provides a thorough

overview of the main theoretical developments, it points to the main links between

membrane systems and other computational models and describes some of the

most important applications in this field and some of the tools developed

throughout the years.

In parallel to investigations of the key research questions related to Membrane

Computing and their applications, there have been studies related to the use of the

Membrane Computing paradigm in modelling biological systems. These appli-

cations represent not only significant contributions to modelling various processes

and phenomena in Biology, but they also point out interesting and challenging

problems in studying the complexity and emergent properties of such systems.

Some of the contributions related to these applications have been collected in a

special issue of BioSystems [9], but there is no monograph dedicated to such

issues, and this is a clear gap in the literature of membrane systems. The present

monograph aims to fill this gap.

The authors invited to write chapters for this volume have already published

papers on a broad spectrum of problems related to Biology, from modelling and

simulations, to system analysis and identification, and to the development of

methods and tools necessary in supporting these investigations. There have been

reported studies on modelling oscillating and catalytic chemical reactions [10],

diffusing processes with geometrically constrained molecules [11] or occurring in a

signal transduction pathway [12]. Stable oscillatory states in budding yeast [13],

biochemical signalling pathways [14] and Fas pathways [15] have been considered.
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Classes of probabilistic membrane systems have been introduced for studying

populations and ecosystems [16] and metabolic P systems, a special class of

deterministic systems, have been utilised in solving complex problems in biotic

systems [17, 18]. Membrane systems have been used to model and simulate the

behaviour of logical gates [19] and register machines [10] in a synthetic biology

setting. Slightly more general models, like agent-based approaches, have been

utilised for studying three-dimensional multiscale phenomena in human epidermis

[20]. The definition of formal languages for specifying complex molecular inter-

actions in biological systems [21], verification tools for non-deterministic [22] and

stochastic systems [23], and the development of complex platforms for specifica-

tion, analysis and simulation of systems and synthetic biology problems [24] have

been considered. Appropriate sets of methods and tools [17, 18] have been

developed and efficient implementations of classes of membrane systems for

complex simulations [25] have been produced.

The chapters contained in this monograph give a clear image of the depth and

breadth of the applications of membrane systems for the study of various bio-

logical processes and phenomena.

• In Chap. 1, Infobiotics Workbench: A P Systems-Based Tool for Systems and
Synthetic Biology, a comprehensive overview of an integrate software platform,

the Infobiotics Workbench, and of its usage in specifying, simulation, verifi-

cation and parameter optimisation of models operating at the cellular and

intercellular levels is provided.

• In Chap. 2, Statistical Model Checking of Membrane Systems with Peripheral
Proteins: Quantifying the Role of Estrogen in Cellular Mitosis and DNA
Damage, a methodology and a software platform for integrating a membrane

system simulator with a statistical model checker are described. These are used

for studying the dosage of antagonist that minimises the uncontrolled replication

of abnormal cells.

• In Chap. 3, Molecular Diffusion and Compartmentalisation in Signal Trans-
duction Pathways: An Application of Membrane Systems to the Study of Bac-
terial Chemotaxis, intracellular diffusion processes are studied. A class of

membrane systems, called s-DPP, is used in analysing both single volume

pathways and multivolume diffusion interactions.

• In Chap. 4, Membrane Systems-Based Models for Specifying Dynamical Pop-
ulation Systems, a class of probabilistic systems for studying population

dynamics of ecosystems is presented. The theory behind the simulation of such

models is presented, a software platform allowing the specification, simulation

on different platforms, including CUDA, and analysis of such systems is

described and a complex case study analysed.

• In Chap. 5, Membrane Systems and Tools Combining Dynamical Structures with
Reaction Kinetics for Applications in Chronobiology, three relevant studies in

chronobiology are addressed, proving their convergent results. These case

studies are specified and analysed with a software package, called SRSim,

allowing spatial interaction rules and a powerful visualisation engine.
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• In Chap. 6, Biochemical Networks Discrete Modelling Inspired by Membrane
Systems, a new version of Gillespie algorithm is presented. Comparisons

between this model and others based on differential equations and Gillespie

method are performed on a number of case studies.

• In Chap. 7, MP Modelling for Systems Biology: Two Case Studies, a class of

deterministic membrane systems, namely metabolic P (MP) systems, is

described. The modelling capabilities of such models, expanding from meta-

bolic systems to more general dynamical systems, and the power of a regression

algorithm allowing the identification of MP models from the time series asso-

ciated with observations are studied.

• In Chap. 8, Modelling and Analysis of E.coli Respiratory Chain, a more general

modelling approach, based on agent systems, and a method to derive a class of

membrane systems specifications, called kernel P systems are presented. This

process, which allows the formal verification of such specifications by using

model checking methods, is illustrated by a prototype model of E.coli respira-

tory chain.

The entire description of all the examples discussed in this monograph together

with simulation results and tools utilised are provided as auxiliary materials by the

authors. Each chapter contains a link to webpages describing the case study(ies)

presented.

The book is addressed to researchers interested in applications of discrete

models in Biology, the interplay between membrane systems and other approaches

and methods in specifying and analysing complex systems and revealing their

behaviour. The readers are encouraged to use and assess the models described in

the book chapters and the tools provided. Comments and suggestions for

improving the functionality of the models and the usability of the tools are

welcome.

This book is dedicated to Gheorghe Păun, the initiator and the main driving

force behind the research in Membrane Computing. We thank Gheorghe for his

continuous support, contagious enthusiasm and for being an example and source of

inspiration.

We acknowledge the support and advice of our colleagues, Erzsébet Csuhaj-Varjú

and Oscar Ibarra, during the process of elaborating this book and to thank the

publisher for a friendly and efficient collaboration.

Pierluigi Frisco

Marian Gheorghe

Mario J. Pérez-Jiménez
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Chapter 1
Infobiotics Workbench: A P Systems Based Tool
for Systems and Synthetic Biology

Jonathan Blakes, Jamie Twycross, Savas Konur, Francisco Jose
Romero-Campero, Natalio Krasnogor and Marian Gheorghe

Abstract This chapter gives an overview of an integrated software suite, the
Infobiotics Workbench, which is based on a novel spatial discrete-stochastic P
systems modelling framework. The Workbench incorporates three important fea-
tures, simulation, model checking and optimisation. Its capability for building,
analysing and optimising large spatially discrete and stochastic models of multi-
cellular systems makes it a useful, coherent and comprehensive in silico tool in
systems and synthetic biology research.

1.1 Introduction

Membrane computing is a growing area of research in computer science and, more
specifically, natural computation. Membrane computing assumes that the processes
taking place in the compartments of a living cell can be interpreted as computations.
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The devices of this model are called P systems. A P system consists of a cell-like
membrane structure, in the compartments of which one places multisets of objects
which evolve according to given rules. Because a set of rules is a mathematical entity,
it can be analysed with formal rigour to discover the relationships between rules and
their subjects, potential sequences of events, and the reachability of certain states.

The Infobiotics Workbench is an integrated stochastic P systems based platform
for computer-aided modelling, design and analysis of large-scale biological systems
which consists of three key components: (a) a simulator for a modelling language—
discussed in Sect. 1.4.2; (b) a model checking module—see Sect. 1.4.3; and (c) a
model structure and parameter optimisation engine—details in Sect. 1.4.4. The avail-
ability of deterministic and multi-compartment stochastic simulation of population
models enables comparisons between macroscopic and mesoscopic interpretations
of molecular interaction networks and investigation of temporo-spatial phenomena
in multicellular systems. Model checking can be used to increase confidence in sim-
ulated observations by quantifying the probability of reaching definable states for
all possible trajectories [75]. The optimisation component of the Workbench enables
designs of synthetic circuits matching a set of desired temporal dynamics (spec-
ified as time series of molecular species quantities) to be automatically composed
from modules of abstract networks motifs and/or completely specified bioparts (with
corresponding DNA sequences) drawn from libraries of reusable model components.

The modelling language allows specifications of cellular populations distributed
over different geometric surfaces, like lattices. The simulation results capabilities of
the Infobiotics Workbench enables molecular populations to be animated as a surface
over the cellular population for a visually rich semi-quantitative analysis of behaviour
in space as well as time. Time series of molecular quantities (as concentrations or
number of molecules) in individual or averaged simulation runs can be plotted for
any combination of species, compartments and timepoints, enabling a fine-grained
quantitative comparison of expected and simulated temporal dynamics at multiple
locations in spatial models. Histograms are used to estimate the distributions of
molecular species across cellular components or runs at different timepoints, possibly
revealing differentiation of cell states as initially homogeneous populations diverge
through emergent behaviours arising from the (stochastic) application of reaction
rules.

This chapter is divided into the following sections: an overview of various for-
malisms used in modelling biological systems; a presentation of the lattice population
P systems; a description of the key components of the Infobiotics Workbench; a case
study; and finally discussions regarding the benefits of the modelling framework
presented over other similar approaches and future developments.

1.2 Overview

In this section, we give an overview of established and emerging mathematical and
computational formalisms used to model biological systems.



1 Infobiotics Workbench 3

1.2.1 Mathematical Continuous Models

The vast majority of models used in systems biology have, until recently, been
mathematical, based on systems of coupled ordinary differential equations (ODEs).
In an ODE model each molecular species in the model is defined as a single variable
which represents its concentration over time. The correctness of an ODE model relies
on the assumption that concentrations vary (with respect to time) continuously and
deterministically. ODEs aim to approximate the stochastic process, but actually rep-
resent the limit of the stochastic process as the number of molecules and volume are
taken to infinity while maintaining their ratio constant. This assumption is only valid
when the number of molecules is sufficiently high (an approximate lower bound is
103 molecules) and reactions are fast.

1.2.2 Stochastic Discrete Models

When the number of particles of the reacting species is small and reactions are slow,
as is frequently the case for genetic regulation in biological systems, the previous
assumption is questionable and the deterministic continuous approach to chemical
kinetics should be complemented by an alternative approach. In this respect, one
has to recognise that the individual chemical reaction steps occur discretely and are
separated by time intervals of random length. Discrete and stochastic approaches
are more accurate in this situation, and these mechanistic formulations also have the
advantage of being closer to the molecular biological interactions that constitute our
understanding. Stochastic models are apparently closer to the underlying model on
which ODEs are based (the CME) and may produce behaviour that is more typical
of real systems.

In a discrete species population model of a chemical system, the state of the system
is defined by the number of molecules of each chemical species at any given time.
The Chemical Master Equation (CME) completely determines the probabilities of
each reaction in a well-mixed chemical system, at constant temperature and volume,
given the current state. The assumption of well-mixed systems allows the analysis to
consider populations (multisets) of molecules, rather than individual molecules with
spatial positions, and thus use a single rate constant for mass action kinetics.

The CME represents a continous-time Markov chain which can capture the noise
(stochasticity) in the system. Unfortunately the CME is actually a system of as many
coupled ordinary differential equations as there are combinations of molecules that
can exist in the system, and can only be solved analytically for a very few simple
systems [58]. Fortunately a more tractable approach exists. Instead of solving the
CME we can construct numerical realisations of the system’s state over time, that is,
generate trajectories of the system using a kinetic Monte Carlo algorithm, Gillespie’s
stochastic simulation algorithm (SSA) [55], in exact compliance with the CME.
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Gillespie initially produced two SSAs that simulate every reaction in the system:
the First Reaction Method [54] and the simpler but equivalent Direct Method [55];
and subsequently showed these to be a rigorous derivation of the CME [56]. More
efficient exact SSAs have been introduced since, including the dominant Next Reac-
tion Method (NRM) [51] which scales logarithmically with the number of reactions,
the Next Subvolume Method [38] as a variation on NRM for discrete-space intra-
cellular models, the Partial-propensity Direct Method [106] scaling at most linearly
with the number of species (often far fewer than reactions), and the Composition-
Rejection SSA [117] offering constant-time performance for 105 or greater reac-
tions. Approximate methods, that simulate batches of fast non-critical reactions,
include τ -leaping (established in Ref. [57] and optimised in Ref. [21]) and the
slow-scale SSA [22]. These offer accelerated performance for stiff systems, with
an acceptable and tunable loss of accuracy, and enable larger models to be simulated
in reasonable time.

1.2.3 Executable Modeling Formalisms

The formalisation of biological systems using alternatives to mathematical equations
has recently received much interest as a deeper mechanistic understanding of biolog-
ical systems is sought through modelling. Formalisms where molecular populations
and interactions are modelled as discrete entities and events have come to be known
collectively as Executable Biology. Executable biology [42, 43], or algorithmic
systems biology [102], propose the application of established computational for-
malisms from other domains, and domain specific languages for the formalisation
and implementation of biological models. Below we review a selection of these
alternative representations, their capabilities and implementations.

The Systems Biology Markup Language (SBML) [69] is an XML dialect used
to store and exchange models of biological systems between different tools. SBML
files store information about model compartments, species and reactions, as well as
events, units, etc. that are relevant to some models and approaches but not others.
Tools for the visual specification of models in SBML, e.g. CellDesigner [47], e-cell
[125], VCell [87] and COPASI [68], enable the visual creation of models from a
collection of symbols for various types of molecular and interactions.

Cellular automata were studied in the early 1950s as a possible model for biolog-
ical systems ([124], p. 48). This formalism, inspired from cellular biology, has been
extensively used in modelling a broad spectrum of biological systems, amongst them
pattern formation (morphogenesys) [31], ecology and population biology, immunol-
ogy, oscillations, diffusion processes, fibroblast aggregation, ant trails and others (for
more details see the overview paper [39]). In the paper coining the term algorithmic
systems biology, cellular automata are mentioned amongst the models employing
explicitly computational aspects [102].

Cellular automata have been connected to membrane systems for different
modelling reasons. In Ref. [26] it is studied the behaviour of HIV infection by
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comparing a cellular automaton model and a conform-P system model with respect
to the robustness related to various initial conditions and parameters. The possibil-
ity of converting a cellular automaton into a generalised P systems has been also
investigated [89].

Boolean networks [72] are one of the oldest examples of executable biological
modelling formalisms. They represent the interactions of genes as a directed graph.
Each node of a Boolean network can represent a gene that is either active, or inactive.
Edges between nodes contribute either positively (activation) or negatively (inactiva-
tion) to the node at which they are directed (providing the node from which the edge
extends is active), modelling hierarchies of genetic regulations. Boolean networks
are deterministic given their starting configuration for which there are 2n possible
system-wide states where n is the number of nodes.

Boolean networks are qualitative in terms of quantities and time. With only topo-
logical data and binary relationships required to build a model, Boolean networks
can usually be constructed when data is scarce, and are therefore often chosen as a
modelling formalism for their amenability to analysis rather than realism [41].

Similarly qualitative but more fine-grained are Statecharts, a method devised for
the engineering of complex reactive systems. Statecharts have been used to success-
fully model the interactions of two signalling pathways, specifying the fates of the
six vulval precursor cells, which provide a mechanism for pattern formation during
the C.elegans development [44].

Petri nets are formalisms that model systems with concurrent behaviour and are
particularly suited to modelling discrete asynchronous distributed systems. Petri nets
were initially applied to biological pathways [107, 108] for semi-quantitative analy-
sis in terms of discrete number of objects and uniform time intervals. A bibliography
[123] of Petri nets applications in biomolecular modelling, simulation and analysis
summarises developments up to 2002. More recent contributions include the ubiqui-
tously studied ERK signal transduction pathway [53], receptor signalling and kinase
cascades, cell-cycle regulation and wound healing [52], and synthetic biology [65].

A quantitative notion of time is introduced by stochastic Petri nets [88, 120], where
each transition has an associated rate from which a period of time is calculated upon
firing and added to the global clock, typically using a stochastic simulation algorithm.
Coloured Petri nets [71] can provide a novel way of dealing with the combinatorial
explosion of states, where differently coloured tokens can represent molecules of
the place’s species with various modifications, or alternatively molecules in different
cells without extrapolating the Petri net [49].

There are numerous tools deployed to create and analyse Petri nets. We refer the
reader to Ref. [97] for the database of the available tools.

Process algebras (or process calculi) are a diverse family of related formalisms
that describe distributed concurrent processes, such as the objects inside a computer
program or a collection of programs, interacting. π -calculus [86], for concurrent
mobile processes, is an accepted model for interacting systems with communication
topologies that evolve dynamically [92]. For biological models, process algebras
consider molecules with binding sites asprocesses with communication channels.
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In standard π -calculus the system evolves in uniform time steps with each
communication being equally likely, irrespective of the number of channels; such a
simulation is semi-quantitative in the same way as a standard Petri net.

Stochastic π -calculus (initially proposed as Sπ [101]) enables fully quantitative
simulations by associating a rate constant with each channel. BioSPI [104], the
first stochastic π -calculus simulator [109], could simulate systems with hundreds
of processes in the order of seconds [103]. The current leading implementation of
a stochastic π -calculus simulator is SPiM [98]. A more intuitive understanding of
π -calculus is made possible by a graphical representation [99] that visualises the
state-space of each process as a graph and has been incorporated into SPiM. In Ref.
[99] a graphical execution model was defined and proved equivalent to Sπ .

Performance Evaluation Process Algebra (PEPA) is an alternative stochastic
process algebra that has been applied to modelling signalling pathways [15–18] and
synthetic biology designs [50]. PEPA can be used for reagent-centric and pathway-
centric modelling [17]. Bio-PEPA [25] is a biologically-oriented modification of
PEPA incorporating stoichiometry and the use of kinetic laws in rate functions.

BlenX [30] is a high level textual language grounded in process algebra, explicitly
designed to model biological entities and their interactions, providing several features
not found up until now in stochastic process algebras. For example, it uses a type
file which specifies stochastic rates between interacting types rather than embedding
those rates into the model as stochastic constants. BlenX is supported by a set of
tools collectively known as Beta Workbench [29] including a graphical model editor,
stochastic simulator and a plotter for displaying model execution time courses. A
unique feature of the plotter is the ability to plot causality, where each simulation
event (molecular interaction) is drawn as a box inside the box of the event that led
to it. Other prototype tools being developed to support BlenX include KInfer which
performs model and kinetics inference by estimating reactions and rate constants
from real concentration data measured at discrete time points.

We refer the reader to Ref. [61] for an extensive review on the application of
process algebras to biological modelling up to 2006. Other notable works include
GEC [93] and LCS [94].

Membrane computing [91] is a branch of natural computing that emphasises
the compartmentalised nature of biological systems and its power in computation.
The central objects are P systems, that consist of a membrane structure, the regions
of which contain rewriting rules operating on multisets of objects [112]. The P
system evolves by the repeated application of rules, mimicking chemical reactions
and transportation across membranes, and halts when no more rules can be applied.

The closeness of this representation to the biology make P systems highly suited
as a communication device between computer scientists and biologists collaborating
on a model. Some of the most well-studied P systems with relevance for modelling
biological systems are presented below.

• Deterministic and non-deterministic P systems consisting of a broad range of
models:
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– Metabolic P systems (MP systems) have diverged considerably from the
non-deterministic, compartmentation-based notion of P systems, being coarse-
grained models of the fluxes between molecular populations within a single
membrane computed by means of the metabolic algorithm (MA)—its equa-
tional formulation is in Ref. [79]. A methodology for inferring and validating
the model has been elaborated [82]. An overall presentation of these systems is
available in Ref. [80] and a comprehensive description in [81]. MP systems are
supported by the MetaPlab [85] software, previously Psim [11].

– Non-deterministic P systems are used in a context where the rules are selected
according to a waiting time algorithm involving a mass action law principle
[70]; this model is successfully utilised to analyse the behaviour of different
biochemical signalling networks. Another special class of P systems, called
conformon-P systems, deals with systems having rewriting and communication
rules using together with multisets, some numerical values that help controlling
the computation. These models have been used to study how some diseases
spread [26].

• Probabilistic (stochastic) P systems include several classes of P systems:

– Stochastic P systems (SP systems) [114] directly apply stochastic rate constants
and Gillespie’s stochastic simulation algorithms to P systems, with boundary
rules that make the specification of molecule transport between enclosed and
enclosing members simple and intuitive. These are discussed in much greater
detail in Sect. 1.3.

– Dynamical Probabilistic P systems (DPP) [96] use standard P systems with
a novel rule application method to model biological phenomena in a discrete
and stochastic way (motivated by the investigation of maximal parallelism in
nature). In a procedure not unlike propensity calculation in the Gillespie algo-
rithm DPP rules are dynamically assigned a probability that is the product of the
possible combinations of reactant objects and an associated rate. A tau leaping
variant of it is also provided [24] which is packaged in the BioSimWare software
platform [7].

– Probabilistic Dynamics Population P systems represent a class of P systems
meant to provide an accurate model of multi-environmental systems; it has
applications to ecosystems, where the methodology consists of a modular spec-
ification including probabilistic rules [28] describing transformations within
compartments as well as communications between compartments and coopera-
tions involving different parts of the environment. This approach is included in
the P-Lingua framework [115] and has a number of implementations, including
one that uses GPU hardware [83]. An integrated software environment, called
MeCoSim, is supporting the modelling language with an editor and different
visualisation options [95].

– Probabilistic P systems with peripheral proteins focuses on trans-membrane
operations where a Gillespie algorithm is used for describing the system behav-
iour; a specification language is integrated into the simulation environment
Cyto-sim [23].
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• Extension of P systems with string objects for modelling protein binding domains
with ligands have been considered for specifying oscillatory phenomena; a soft-
ware environment, called SRSim, which incorporates spatial rules and a strong
visualisation engine is available [67].

In this volume some of the above mentioned variants of P systems, like metabolic
P systems, non-deterministic P systems, dynamical probabilistic P systems, prob-
abilistic dynamics P systems and probabilistic P systems with peripheral proteins,
appear as models of various biological systems or scenarios.

A general-purpose class of computational tools has been introduced for tackling
the challenge of a combinatorial explosion in the number of interactions that arises
when many species with coincidental modifications, conformations or states need
to be represented explicitly. Some of the most prominent rule-based systems that
deal with these issues are NFsim [118], BioNetGen [40], Kappa [27] and little b
[78]. While each of these approaches can model some aspects regarding pathways
and their molecular components, none of the approaches can fully capture “quan-
titative dynamics, interactions among molecular entities and structural organisation
of cells” [112].

1.3 Lattice Population P Systems

Many multicellular biological systems have a spatial component where molecule
exchange between adjacent cells determines the overall phenotypes. However, this
structure cannot be captured by stochastic P systems, which have only a hierarchical
membrane structure of compartments within other compartments or a simple popu-
lation of such entities. Therefore, stochastic P systems need to be augmented with
an additional level of organisation, a 2D geometric lattice on which a population of
P systems can be placed and over which molecules can be translocated. Rules that
move objects from one P system to another on the lattice are associated a vector
that describes where to put that molecules. We call this extension of stochastic P
systems Lattice Population P systems (LPP systems for short) and, in the tradition
of P systems, proceed with their formal definition (published in Ref. [114]).

Each cell type with its compartmentalised structure, characteristic molecular
species and molecular processes, is represented using a stochastic system accord-
ing to Definition 1. The rules of each such system are possibly specified in a modular
way. The spatial distribution of cells in the population is represented using a finite
point lattice, Definition 2, and finally different copies of the corresponding stochas-
tic system representing each cell type are distributed over the points of the lattice
according to the spatial distribution of an LPP systems in Definition 3.

Before providing the formal definitions mentioned above let us notice that the
idea of a lattice of functional units has been discussed for conformon-P systems [26]
and stochastic P systems distributed in communicating environments [9] have been
studied.
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Definition 1 A stochastic P system (SP system) is a formal rule-based specification
of a multicompartmental and discrete dynamical system with stochastic semantics
given by a tuple:

S P = (O, L , μ, M1, . . . , Mn, R1, . . . , Rn) (1.1)

where:

• O is a finite set (alphabet) of objects specifying the entities involved in the system
(genes, RNAs, proteins, etc.);

• L = {l1, . . . , ln} is a finite set of labels naming compartments (e.g. nucleus);
• μ is membrane structure composed of n ≥ 1 membranes defining the regions or

compartments of the system. The outermost membrane is called the skin membrane;
• Mi = (li , wi , si ), for each 1 ≤ i ≤ n, is the initial configuration of the com-

partment or region defined by the membrane i , where li ∈ L is the label of the
membrane, wi ∈ O∗ is a finite multiset of objects and si is a finite set of strings
over O (in this presentation the strings will not be used);

• Rlk = {rlk
1 , . . . , rlk

mlk
}, for each 1 ≤ k ≤ n is a set of multiset rewriting rules

describing the interactions between the molecules, such as complex formation
and gene regulation. Each set of rewriting rules Rlk is specifically associated to
the compartment identified by the label lk . These multiset rewriting rules are of
the following form:

rlk
i : o1 [ o2 ]l

c
lk
i→ o′

1 [ o′
2 ]l (1.2)

where o1, o2 and o′
1, o′

2 are multisets of objects (possibly empty), over O , representing
the molecular species consumed and produced in the corresponding molecular inter-
action. The square brackets and the label l describe the compartment involved in
the interaction. An application of a rule of this form changes the content of the
membrane with label l by replacing the multisite o2 with o′

2 and the content of the

membrane outside by replacing the objects o1 with o′
1. The stochastic constant clk

i
is used to compute the propensity of the rule by multiplying it by the number of
available reactants in the membrane, where the same object is not counted twice
for homogenous bimolecular reactions [6]. The propensity associated with each rule
is used to compute the probability and time needed to apply it (according to the
stochastic semantics of Gillespie’s theory of chemical kinetics [54]).

Definition 1 provides the formalism needed for the specification of an individual
cell with its structure given by μ and the outer membrane called the skin membrane.
To specify the possible spatial distribution of cells assembled into colonies and tissues
we define an array of regularly distributed points according to a finite point lattice
or grid [77] capable of describing the spatial geometries (see Fig. 1.1).

This model looks very similar to a cellular automaton although in lattice popula-
tion P systems we have considered that each cell of the grid has a cell-like stochastic
membrane system inside and this type of grid has been chosen to illustrate a specific
geometry we have considered so far. Our model is more general than a cellular
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Fig. 1.1 A square lattice

automaton and in the future some more complex geometries describing 3D complex
structures will be introduced.

Definition 2 Given B = {v1, . . . , vn} a list of linearly independent basis vectors,
o ∈ R

n a point referred to as origin and a list of integer bounds (αmin
1 , αmax

1 ,

. . . , αmin
n , αmax

n ), a finite point lattice generated by:

Lat = (B, o, (αmin
1 , αmax

1 , . . . , αmin
n , αmax

n )) (1.3)

is the collection of regularly distributed points, P(Lat), obtained as follows:

P(Lat) = {o +
n∑

i=1

αi vi : ∀i = 1, . . . , n (αi ∈ Z ∧ αmin
i ≤ αi ≤ αmax

i )} (1.4)

Given a finite point lattice, generated by Lat, each point x = o + ∑n
i=1 αi vi ∈

P(Lat) is uniquely identified by the coefficients {αi : i = 1, . . . , n} and conse-
quently it will be denoted as x = (α1, . . . , αn).
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Fig. 1.2 SP systems containing reactions of a gene network, single (a) and distributed over the
LPP system lattice (b)

SP systems are distributed on the lattice according to an LPP system (see
Definition 3), as shown in Fig. 1.2.

Definition 3 A lattice population P system, or LPP system for short, is a formal
specification of an ensemble of cells distributed according to a specific geometric
disposition given by the following tuple:
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L P P = (Lat, {S P1, . . . , S Pp}, Pos, {T1, . . . , Tp}) (1.5)

where

• Lat defines a finite point lattice in R
n (typically n = 2) as in Definition 2 that

describes the geometry of cellular population.
• S P1, . . . , S Pp are SP systems as in Definition 1 specifying the different cell types

in the population.
• Pos : P(Lat) → {S P1, . . . , S Pp} is a function distributing different copies of

the SP systems S P1, . . . , S Pp over the points of the lattice.
• Tk = {rk

1 , . . . , rk
nk

} for each 1 ≤ k ≤ p is a finite set of rewriting rules termed
translocation rules that are added to the skin membrane of the respective SP system
S Pk in order to allow the interchange of objects between SP systems located in
different points in the lattice. These rules are of the following form:

rk
i : [ obj ]k

v
∼� [ ]k′

ck
i→ [ ]k

v
∼� [ obj ]k′ (1.6)

where obj is a multiset of objects, v is a vector in R
n and ck

i is the stochastic constant
used in our algorithm to determine the dynamics of rule applications. The application
of a rule of this form in the skin membrane with the label l of the SP system S Pk

located in the point p, Pos(p) = S Pk , removes the objects obj from this membrane
and places them in the skin membrane of the SP system S Pk′ located at the point
p + v, Pos(p + v) = S Pk′ . Note that vectors allow for any topology to be encoded
in the lattice geometry.

Molecular reaction networks can, to a certain degree, be decomposed into modules
acting as discrete entities carrying out particular tasks [64]. It has been shown that
there exist specific modules termed motifs that appear recurrently in transcriptional
networks performing specific functions like response acceleration and noise filtering
[1]. Modularisation is also a central technique used in the engineering of synthetic
cellular systems by combining well-characterised and standardised cellular models
[19] as exemplified in the MIT BioBricks project [116].

Definition 4 gives the definition of a P system module that we use [113] to decom-
pose large sets of rules into more meaningful and reusable subsets. Other similar
concepts of modularity in P systems for various other classes of P systems. Modules
of a conformon-P systems are discussed in Ref. [46]. In [32] P modules are intro-
duced with the aim of facilitating a modular decomposition of complex P systems,
whereas in Ref. [66] it is defined as a functional unit fulfilling some elementary
computational tasks. In the context of generalised communicating P systems [122]
it is introduced a concept of a module as a network of cells. Subsequently we intro-
duce the concept of a module for stochastic P systems with the aim of capturing
some high level behaviour which can be characterised by some specific parameters
and which outlines some generic names that are instantiated with specific values in
various contexts.
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Definition 4 A P system module, Mod, is parameterised with three finite ordered
sets of variables O = {O1, . . . , Ox }, C = {C1, . . . , Cy} and Lab = {L1, . . . , Lz}
(objects, stochastic rate constants and compartment labels respectively), and consists
of a finite set of rewriting rules of the form in Eq. (1.3):

Mod(O, C, Lab) = {r1, . . . , rm} (1.7)

The objects, stochastic constants and labels of the rules in module Mod can
contain variables from O , C or Lab which are instantiated with specific values
o = {o1, . . . , ox }, c = {c1, . . . , cy} and lab = {l1, . . . , lz} for O , C and Lab
respectively as in:

Mod({o1, . . . , ox }, {c1, . . . , cy}, {l1, . . . , lz}) (1.8)

the rules are obtained by applying the corresponding substitutions O1 = o1, . . . ,

Ox = ox , C1 = c1, . . . , Cy = cy and L1 = l1, . . . , Lz = lz .
Our definition of P system module allows the hierarchical description of a complex

module, M(O, C, Lab), by obtaining its rules as the set union of simpler modules,
M(O, C, Lab) = M1(O1, C1, Lab1) ∪ · · · ∪ Mq(Oq , Cq , Labq) with O = O1 ∪
· · · ∪ Oq , C = C1 ∪ · · · ∪ Cq and Lab = Lab1 ∪ · · · ∪ Labq .

Finally, the set of rules, Rlk , in SP systems can be specified in a modular way
as the set union of several instantiated P system modules, Rlk = M1(o1, c1, lab1)

∪ · · · ∪ Mqk (oqk , cqk , labqk ).
The use of modularity allows us to define libraries or collections of modules:

Lib = {Mod1(O1, C1, Lab1), . . . , Modp(Op, C p, Labp)} (1.9)

An SP system model may contain instantiations of modules from multiple
libraries, and the same module can be instantiated multiple times with different
parameters. In Sect. 1.5 we provide examples for SP system models, libraries and
lattice systems.

P systems modules can be made more or less abstract by changing the number of
components exposed as parameters (species identities and stochastic rate constants).
Motifs of biological networks, corresponding to the topology of the underlying reac-
tion network modelled at a particular level of detail, can be captured by fully abstract
modules where all components are parameters. In this usage the names of parameters
should indicate the role that their values will play in the module.

Well-characterised synthetic biological parts and devices can be captured by fully
concrete modules (i.e. without parameters) because the identity of every species and
the stochastic rate constants of each reaction are validated.
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1.4 Infobiotics Workbench

The Infobiotics Workbench (IBW)1 is an integrated software suite of tools to
perform in silico experiments for LPP models in Systems and Synthetic Biology [14].
Models are simulated either using stochastic simulation or deterministic numerical
integration using mcss, an application for simulating multi-compartment stochastic
P system models, and visualised in time and space with the Infobiotics Dashboard.
Model structure and parameters can be optimised with evolutionary algorithms using
POptimizer, and properties of a model’s temporo-spatial behaviour calculated using
probabilistic or simulative model checking with pmodelchecker.

The Infobiotics Dashboard window uses an adjustable tabbed interface to display
multiple views on to files (Fig. 1.3). LPP DSL specifications of Infobiotics models
can be edited with the simple editor provided by the Dashboard or an external editor
of the user’s choosing.

In IBW, the experiments can be accessed through the integrated interface or with
individual GUIs outside the workbench. Experiments are parameterised with XML
parameter files, edited interactively with help and validation, and performed within
the GUI. Figure 1.4 summarises the overall flow of information through the compo-
nents of the Infobiotics Workbench.

Fig. 1.3 The Infobiotics Dashboard with multiple text editors displaying LPP system DSL files for
a pulse generating synthetic biology model

1 http://www.infobiotics.org

http://www.infobiotics.org
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Fig. 1.4 Flow of information through the components of the Infobiotics Workbench. Data is passed
between components as files. Parameter files (.params), referencing model files (.sbml, .lpp
or.xml), are produced by the Infobiotics Dashboard and supplied to the experiment executables for
simulation (mcss), model checking (pmodelchecker) and optimisation (POptimizer). Executa-
bles communicate progress to stdout which is read and interpreted by the Dashboard to report
the percentage completed and estimate time remaining. Files produced by the experiments (.h5
simulation data, .psm model checking property probabilities) are presented by the Dashboard for
analysis, and can be exported as tabulated data, images and video files
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1.4.1 Modelling in LPP Systems

For LPP system models to be specified and manipulated by computers it is necessary
that they have a machine-readable equivalent. LPP system XML is a set of machine-
readable data formats which closely mirrors our formal definitions. It allows us to
define, in a single file or multiple files, modules of stochastic P system rules, P
systems with initial multisets and instantiations of modules of rules, a geometric
lattice and distribution of P systems over the lattice, which together constitute an
LPP system model.

The LPP XML formats are well suited to software development with LPP sys-
tems, but clearly writing models in XML by hand and reading them back is a cum-
bersome process with syntax obscuring information. A parser for an LPP system
DSL (domain-specific language) that is essentially the XML formats without the
angle-brackets, quotes and some closing tags has been developed. The parser is used
to read DSL files directly, but it also silently converts them into XML.

The LPP formalism enables three types of modelling component reuse:

• Inter-model reuse: Modules (in libraries), SP systems and lattices (encoding neigh-
bourhood relationships between SP systems in 2D space) reside in different files
which can be referred to by multiple LPP system models.

• Intra-model reuse: Multiple copies of different SP system can be placed within each
LPP system, facilitating the building of models of homogeneous or heterogeneous
bacterial colonies or tissues.

• Intra-submodel reuse: Parameterisable modules of rules can be instantiated mul-
tiple times within each compartment of an SP system, using different parameters
(species identities and rule constants).

Modules of rules are a means of grouping sets of reactions that repeatedly occur
together within a model, and by moving modules into libraries they can be shared
between sets of models. We use modules as a means of constraining model structure
optimisation to biological plausible reaction interaction networks and maintaining a
consistent level of detail across models.

1.4.2 Simulation

Simulation recreates the dynamics of a system as described by a model. Quantitative
simulations enables measurements of model features changing in time which can be
compared with observations of the real system for validation and predictive purposes.
The Infobiotics Workbench simulator, mcss, offers a choice of two types of quantita-
tive simulations: deterministic numerical approximation with standard solvers, and
execution of the model with stochastic simulation algorithms. In addition to providing
a baseline implementation of the canonical Gillespie Direct Method, mcss imple-
ments an optimised multi-compartmental SSA with queue [113] that takes advantage
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of the compartmentalised nature of LPP system models by storing the next reaction
to fire for each compartment in the heap and only recalculating the propensities
of the reactions in the compartments where a reaction occurs, both compartments
involved in a species translocation. This greatly improves performance, decreasing
the simulation time of models with tens of thousands of compartments and hundreds
of reactions and species per compartment.

In order to perform deterministic simulations mcss derives a set of ordinary dif-
ferent equations from the stochastic rules of the entire LPP system: each pool of
identical objects in different compartments is treated as a separate continuous vari-
able whose rate of change is determined by mass-action kinetics involving only the
variables corresponding to reactants and products of those rules affecting the pool.
A solution of the resultant equations is obtained using algorithms provided by the
GNU Scientific Library (GSL) [48], including explicit 4th order Runge–Kutta and
implicit ODE solvers.

When a model is simulated via the GUI, the output data file of a completed
simulation is auto-loaded into the simulation results interface under a new tab, as
shown in Fig. 1.5. The purpose of this interface is to enable the user to select a subset
of the datapoints logged during a simulation (for some or all of the runs, species,
compartments and timepoints), which can then be visualised using the provided time
series, histogram or surface plotting functions (explained in detail below), or exported
in various data formats for manipulation by third party software.

Fig. 1.5 The simulation results interface
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The simulation GUI has the following useful features to make the analysis simple,
customisable and reproducible:

• Individual entries, multiple or all runs, species and compartments can be selected.
• The list of species names can be sorted in either ascending or descending alpha-

betical order, and filtered by name.
• The list of compartments can similarly be sorted or filtered by name, and com-

partments can additionally be sorted by their X and Y positions on the lattice.
• The number of time points to use can be adjusted by changing the interval values

of the from, to and every spinboxes.
• The data units of the model components can be set, and the display units, in which

simulation results are to be handled and presented in plots, can be specified for
timepoints, species quantities and compartment volumes. For instance, species
amounts may be interpreted as either molecules, moles or concentrations, the
choice determines which display units are available.

• The user can choose whether or not to average the amounts of each species in
each compartment over the set of selected runs (default for stochastic simulations,
hidden along with the list of runs for deterministic simulations). Averaging over
many runs can approximate the deterministic outcome for systems where stochas-
ticity is of lesser importance.

• The Dashboard displays the number of time series and surfaces, and estimate the
memory requirements of each action, allowing the user to determine how quickly
the action can be performed and whether the results will be comprehensible.

• The selected and rescaled datapoints can be exported from the Infobiotics Dash-
board by clicking the Export data as... button to open a save file dia-
log limited to files with the extensions .csv (comma-separated value), .xls
(Microsoft Excel) and .npz (NumPy).

• Distributions of the average quantity of each selected species at a single timepoint
can be plotted as histograms for either each selected compartment over all selected
runs, or each selected run over all selected compartments.

• With the time series plotting functionality, users can make exact (combined) or
relative (stacked/tiled) quantitative comparisons of the temporal behaviour
of multiple molecular species in multiple compartments, between several, or aver-
aged over many, simulation runs. These plots can be exported as images for further
comparison with experimental observations. Figure 1.6 shows the time series plot-
ting interface for the stacked style. When working on a stacked or tiled plot, the
Refine time series selection button will open a dialog in which the
order and visibility of subplots can be adjusted.

When averaging over multiple runs, each line is the sample mean and each marker
is overlaid with error bars of either the standard deviation of the
sample (SD) or the confidence interval (CI) describing the accuracy
of the standard deviation.
The figure toolbar provided by Matplotlib [84] enables zooming, panning, Subplot
configuration: adjustment of the spacing between multiple plots and the figure
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Fig. 1.6 Time series: stacked plot style

boundary and exporting plot image, as it appears for publication in bitmap and
vector formats.

• The Infobiotics Dashboard enables users to visualise how species quantities change
in time and 2D space by using 3D heat-mapped meshes or surface (where the
vertices of the mesh correspond to model lattice points and the height of the peaks to
the species quantities), to capture the distribution of each selected species over the
model at a single timepoint. Multiple surfaces, one per species, each corresponding
to particular species, can be visualized simultaneously side-by-side for qualitative
comparison. The overlaid scalar bars map heat as colour to quantities.

Figure 1.7 shows an example in which two surfaces plots of 1,600 compartments
(40 x 40) are rendered. Time is progressed either manually, by dragging the time-
point index slider, or automatically using the Play/Pause button.
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Fig. 1.7 Surface plots showing expression patterns of two fluorescent proteins

Surfaces plots provide an intuitive means of qualitatively gauging the behaviour of
population level models, that may (cautiously) be compared to microscopy data.

1.4.3 Model Checking

By encoding a biological system into a formal system we can make inferences about
the system and discover novel knowledge about the system properties. A central
mission of executable biology is to apply model checking techniques to biological
systems. Model checking goes beyond repeated simulation and observation to pro-
vide a formal verification method that the model of real-life system is correct in all
circumstances. Namely, model checking a system means exhaustively enumerating
all of its possible states over the range of possible inputs and transitions to produce
every possible sequence of events, which cannot be done using simulation.

Probabilistic model checking is a probabilistic variant of classical model checking
augmented with quantitative information regarding the likelihood that certain transi-
tions occur and the times which they do so. Probabilistic model checking works with
Discrete time Markov Chains (DTMCs), Continuous time Markov chains (CTMCs)
or Markov Decision Processes (MDPs). A continuous time Markov chain (CTMC) is
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defined by a set of states, a set of initial states and a transition rate matrix from which
the rate at which a transition occurs between each pair of states is taken as a parame-
ter of an exponential distribution. Queries which check model properties are defined
as logical statements, often probabilistic logics: CSL (Continuous Stochastic Logic)
[3] for CTMCs, PCTL (Probabilistic Computation Tree Logic) [63] for DTMCs and
MDPs.

The Infobiotics Workbench is equipped with a model checking module, called
pmodelchecker. Properties of stochastic P system models can be expressed as prob-
abilistic logic formulas and automatically verified using third party model checking
softwares, namelyPrism [74, 76] andMC2 [33–35]. pmodelchecker [110] extends
this capability to LPP system models by acting as wrapper interface between LPP
systems and the model checkers Prism and MC2.

To perform probabilistic model checking with Prism, LPP systems are loaded and
automatically converted into a Reactive Modules specification (a CTMC) [2] that
Prism can accept as input. Parameters are created for the lower and upper bounds of
the number of molecules of each species in each compartment: the user defined values
of which are used to constrain the potential state space of the Prism model. Prism
is then called to perform statistical model checking using its own discrete event
simulator, performing simulations up to a specified maximum number of runs or a
confidence threshold (typically 95 %). The state space and the generated transitions
matrix can also be used to “Build” an efficient representation of the complete Markov
chain and then “Verify” whether each property is satisfied in all states of the model.
Such exhaustive verification is generally infeasible for all but very small models
due to the size of the underlying CTMC, but can be useful for checking critical
components of small reaction networks, such as synthetic bioparts.

To perform statistical model checking with MC2, previous simulation results
can be reused or a new simulation can be performed with a large number of runs
to achieve higher confidence in the model checking results. With model checking,
properties such as the probability of a species exceeding a certain threshold after a
certain time can be determined to a specified degree of confidence (corresponding
to the number of independent simulation runs for simulative model checking).

The Infobiotics Dashboard provides two parameterisation interfaces to pmod-
elchecker, one for each of the model checkers it uses, as some of the parameters
are specific to one but not the other. Figure 1.8 illustrates the Prism interface showing
the P system model, Temporal Formulas and Results file parameter widgets.

Multiple formulas can be loaded from, and must be saved to, a file. The currently
selected formula can be edited or removed, or a new formula added via the respective
buttons. Formulas are edited manually and can be parameterised with variables that
are finite ranges with equal steps.

Once a model checking experiment has completed the results interface is loaded
from the file specified by the results_file parameter. The output is the same for
either model checking experiment: for each formula a list of the probability of each
property being fulfilled for each combination of formula parameters, usually time
plus several others (e.g. Fig. 1.9). The varying probabilities of each property can be
plotted in two ways: a 2D plot of the probability that the property is satisfied against
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Fig. 1.8 pmodelchecker parameterisation interfaces

all values of one variable (Fig. 1.9a) or a 3D plot of probability against all values two
variables (Fig. 1.9b), at a single value of each remaining variable. The constant values
of the remaining variables can be set using sliders which are dynamically added to the
results interface above the plot depending on availability and the currently selected
axis variables. In this way both 2D and 3D plots can be used to visualise queries
with greater numbers of variables, enabling the results of N-dimensional queries to
be interrogated in a consistent manner.

1.4.4 Optimisation

Both stochastic and deterministic models are dependent on the correct model struc-
ture and accurate rate constants to accurately reproduce cellular behaviour. Unfortu-
nately well-characterised rate constants are in very short supply, and those that are
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Fig. 1.9 Model checking experiments results interface. a 1 variable 2D plot. b 2 variable 3D plot

known for some models are used as ersatz values in models of similar systems. In the
scenario, where the components and interactions are known but other parameters are
not, it is acceptable to try estimate the rate constants using parameter optimisation
to fit model dynamics to laboratory observations.

POptimizer is the model optimisation component of the Infobiotics Workbench.
Optimisation is the process of maximising or minimising certain criteria by adjusting
variable components of a model, fitting simulated behaviour (quantitative measure-
ments sampled at various time intervals) to observed or desired behaviour in the case
of natural or synthetic biological systems respectively. There are two aspects of P
system models that can be readily varied to optimise temporal behaviour:

1. numerical model parameters—the values of the stochastic rate constants associ-
ated with rules can be tuned to fit the given target,

2. model structure—the composition of the rulesets governing the possible state
transitions of the compartments can be altered to produce alternative reaction
networks that recreate the target dynamics more precisely.

Both seek to minimise the distance between the stochastically simulated quantities
of molecular species and a set of user-provided values of the same species at each
target timepoint; a quantitative means of evaluating the fitness of candidate models
and discriminating between them in a automated manner.

POptimizer searches the parameter and structure spaces of single compart-
ment stochastic P systems with implementations of state-of-the-art population-based
optimisation algorithms: Covariance Matrix Adaptation Evolution Strategies
(CMA-ES) [62], Estimation of Distribution Algorithms (EDA), Differential Evo-
lution (DE) [119] and Genetic Algorithms (GA) [59]. Optimisation is limited to
single compartment models, partly due to the increased complexity of algorithmi-
cally manipulating spatially distributed or hierarchically organised compartmental



24 J. Blakes et al.

structures (and the distinction made between these by the LPP formalism), but more
pragmatically because repeated stochastic simulation of each individual in a popu-
lation of (potentially unfeasible) single compartment models (with suboptimal rate
constants) is very computationally expensive. Simulating many copies of those com-
partments, interacting on a 2D lattice would multiply the cost and providing suitable
or accurate target data would be difficult also. Thus model optimisation is generally
only tractable with smaller models (as with model verification). However, submodels
can be optimised in isolation and then reintegrated, provided they can be decoupled:
the assumption made by the modularised, engineering approach to synthetic biology.

POptimizer uses a nested genetic algorithm [20, 111] to generate a set of candi-
date models, initially by random choice and thereafter by mutating the fittest individ-
uals of the previous generation, performing several rounds of parameter optimisation
on each individual to ensure that the candidates are given a fair chance of fitting the
desired behaviour (as previous rate constants may be unsuited to the updated reaction
network) before using the final fitness to select the next generation.

The output of an optimisation experiment is the fittest model produced. For a visual
comparison of the output models suitability and the optimisation algorithms success,
time series of the target and the optimised output are plotted for each species, as shown
in Fig. 1.10. A summary of the experiments inputs and the modules that comprise the
optimised model are captured from POptimizer and displayed alongside the time
series.

Fig. 1.10 POptimizer results interface
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1.5 Case Study

In this section, we demonstrate the use of the IBW features in a case study. Here,
we select the pulse generator example, which consists of the synthetic bacterial
colony designed by Ron Weiss’ group in Refs. [4, 5]. This model implements the
propagation of a wave of gene expression in a bacterial colony. For other applications
of this modelling see Refs. [45, 121].

The pulse generator consists of two different bacterial strains, sender cells and
pulsing cells (see Fig. 1.11):

• Sender cells contain the gene luxI from Vibrio fischeri. This gene codifies the
enzyme LuxI responsible for the synthesis of the molecular signal 3OC6-HSL
(AHL). The luxI gene is expressed constitutively under the regulation of the
promoter PLtetO1 from the tetracycline resistance transposon.

• Pulsing cells contain the luxR gene from Vibrio fischeri that codifies the
3OC6-HSL receptor protein LuxR. This gene is under the constitutive expres-
sion of the promoter PluxL. It also contains the gene cI from lambda phage
codifying the repressor CI under the regulation of the promoter PluxR that is
activated upon binding of the transcription factor LuxR_3OC6_2. Finally, this
bacterial strain carries the gene gfp that codifies the green fluorescent protein
under the regulation of the synthetic promoter PluxPR combining the Plux pro-
moter (activated by the transcription factor LuxR_3OC6_2) and the PR promoter
from lambda phage (repressed by the transcription factor CI).

The bacterial strains above are distributed in a specific spatial distribution. As
shown in Fig. 1.12, sender cells are located at one end of the bacterial colony and
the rest of the system is filled with pulsing cells.

Fig. 1.11 Two different bacterial strains of the pulse generator. a Sender cell b Pulsing cell
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Fig. 1.12 Spatial distribution of sender and pulsing cells

1.5.1 LPP Model

As discussed in Sect. 1.3, the Infobiotics Workbench accepts system models in LPP
language to activate its features. LPP systems are an extension of stochastic P systems
with spacial dimension. Namely, they allow us to model a 2D geometric lattice on
which a population of stochastic P systems could be placed and over which molecules
could be translocated.

Here, we give a short account on the LPP model. Our model of the pulse gen-
erator uses a module library describing the regulation of the different promoters
used in the two bacterial strains. An additional module library describing several
post-transcriptional regulatory mechanisms is also used in our model. The bacter-
ial strain, sender cell, producing the signal 3OC6-HSL (AHL) is modelled using the
SP-system model. The bacterial strain, pulsing cell, producing a pulse of GFP protein
as a response to the signal 3OC6-HSL (AHL) is modelled using another SP-system
model. In order to prevent any modelling issues in our framework, we add an extra
cell to represent the boundary of the system. The geometry of a bacterial colony of
the cell type or bacterial strain represented in the previous model is captured using a
rectangular lattice. Finally, the model of the synthetical bacterial colony is obtained
by distributing cellular clones of the sender cell strain at one end of the lattice and
cellular clones of the pulsing cell strain over the rest of the points.
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1.5.2 Simulations

The final model has 341 compartments (11 × 31), 28 molecular species and 8,783
rules in total. 5 stochastic simulation runs of 800 simulated seconds required an
average of 2 min and 4 s wall clock time on a single 2.20 GHz core of an Intel(R)
Core(TM) i7-2670QM. The enhanced multi-compartmental stochastic simulation
algorithm performed 65,679,239 total reactions per run on average, achieving a rate
of 528,968 reactions per second. It should be noted the time required to simulate
a model is highly dependent on the structure of the reaction network in addition to
the number of the compartments and reactions, and that flucutations in the number
of molecules in the system as its state changes can dramatically impact the rate of
simulation.

The IBW interface enables the user to select a subset of the datapoints logged
during a simulation for each species, which can then be visualised using the provided
time series, histogram or surface plotting functions.

Figures 1.13 and 1.14 show the spatial propagation of a pulse of GFP over the
bacterial colony and a single pulsing cell, respectively. As the figures show, the GFP
protein propagates through pulsing cells until the concentration level drops to 0.

Figure 1.15 shows the concentration of the PluxPR_LuxR2_GFP promoter,
which regulates the expression of the protein GFP, in different cells. As shown in
the figure, the concentration first increases, and then permanently becomes zero after
100 s. This explains the behaviour observed in Fig 1.14, because when the promoter
concentration becomes zero, the protein GFP cannot be expressed.

Figure 1.16 shows the signal molecule signal3OC6 amount over time. The
figure suggests that the further away the pulsing cells are from the sender cells the
less likely they are to produce a pulse.

Fig. 1.13 Spatial propagation of GFP over the bacterial colony
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Fig. 1.14 Propagation of GFP over a pulsing cell

Fig. 1.15 signal3OC6 level over time

1.5.3 Model Checking

We now present our results of the system analysis using the probabilistic model
checking techniques. Before presenting the experiments performed, we give a brief
overview on the property specification in Prism and MC2 model checkers.

PRISM

In Prism, properties are specified in Continuous Stochastic Logic (CSL) [3]—an
extension of Probabilistic Continuous Time Logic (PCTL) [63] for CTMCs.

CSL fomulas are interpreted over CTMCs. The execution of a CTMC constructs
a set of paths, which are infinite sequences of states. Apart from the usual operators
from classical logic such as ∧ (and), ∨ (or) and ⇒ (implies),CSLhas the probabilistic
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Fig. 1.16 signal3OC6 level over time

operator P∼r , where 0 ≤ r ≤ 1 is a probability bound and ∼∈ {<,>,≤,≥,=}.2
Intuitively, a state, s, of a model satisfies P∼r [ϕ] if, and only if, the probability
of taking a path from s satisfying the path formula ϕ is bounded by ‘∼ r ’. The
following path formulas ϕ are allowed: Xφ; Fφ; Gφ; φUψ ; and φU≤kψ (Note that
the operators Fφ and Gφ can actually be derived from φUψ).

As an example, the property that “the probability of ϕ eventually occurring is
greater than or equal to b” can expressed in CSL as follows:

P≥b[true U ϕ] .

The informal meanings of such formulas are:

• Xφ is true at a state on a path if, and only if, φ is satisfied in the next state on the
path;

• Fφ is true at a state on a path if, and only if, φ holds at some present/future state
on that path;

• Gφ is true at a state on a path if, and only if, φ holds at all present/future states on
that path;

• φUψ is true at a state on a path if, and only if, φ holds on the path up until ψ

holds; and
• φU≤kψ is true at a state on a path if, and only if, ψ satisfied within k steps on the

path and φ is true up until that moment.

As well as the probabilistic operator P∼r , CSL also includes S∼r and R∼r opera-
tors to express properties regarding the steady-state behaviour and expected values
of rewards respectively. There are four different types of reward formulas, which
are the reachability reward R∼r [Fϕ], cumulative reward R∼r [C ≤ t], instantaneous
reward R∼r [I = t] and steady-state reward R∼r [S]. The informal semantics of these
formulas are given below [75]:

2 The P∼r operator is the probabilistic counter-part of path-quantifiers ∀ and ∃ of CTL.
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• S∼r [ϕ] asserts that the steady-state probability of being in a state satisfying ϕ

meets the bound ∼ r .
• R∼r [Fϕ] the expected reward accumulated before a state satisfying ϕ is reached

meets the bound ∼ r .
• R∼r [C ≤ t] refers to the expected reward accumulated up until time t .
• R∼r [I = t] asserts that the expected value of the state reward at time instant t

meets the bound ∼ r .
• R∼r [S] asserts the long-run average expected reward meets the bound ∼ r .

MC2

In MC2, properties are specified in a variant of Probabilistic Linear Temporal Logic
(PLTL) [90] (which is a probabilistic extension of Linear Temporal Logic (LTL)
[100]. This variant is called PLTLc [35], the discrete time steps of which correspond
to the logging interval of the simulation.

PLTLc formulas are interpreted over a finite set of finite paths (e.g.,
simulation traces and time series). The PLTLc language extends the syntax of
LTL with numerical constraints and a probability operator. Therefore, in addi-
tion to the standard boolean operators (e.g., ∧, ∨ and ⇒) and temporal operators
(e.g., Xφ, Fφ, Gφ and φUψ), PLTLc includes numerical constraints in the form of
value ∼ value (∼∈ {<,>,≤,≥,=, �=}), where value is defined as follows [35]:

value ::=
Int | Real | [molecule] | max[molecule] | d[molecule] | $fVariable
value + value | value − value | value ∗ value | value/value

where Int denotes integer numbers, Real denotes real numbers, $fVariable
denotes free variables, [molecule] denotes molecular concentrations of biochemi-
cal species, max[molecule] denotes a function which “operates over all the values
of a species and returns the maximum of the species value in simulation runs” [35] and
d[molecule] denotes a function which returns “the derivative of the concentration
of the species at each time point” [35] in a simulation run.

PLTLc also includes the probabilistic operators P∼r , where 0 ≤ r ≤ 1 is a
probability bound and ∼∈ {<,>,≤,≥} (without equality “=”).

Property Patterns

Model checking is a very useful method to analyse the expected behaviour of
biological models. It formalises simulation and observation to verify that the model
of a biological system is correct in all circumstances.

Although model checking is a well-established and widely used formal method,
it requires formulating properties in a dedicated formal syntax, and hence, formal
specification can be a very complex and error-prone task especially for non-expert
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users. For example, the question what is the probability that the number of molecules
exceeds 100 within 60min in 90% of the cases is expressed in CSL as follows:

P=0.9[true U≤60 molecules ≥ 100].

Clearly, this property is very simple to express in natural language, but it is difficult
(for non-experts) to specify formally as it requires familiarity with the syntax of the
formalism. In the case of more complex properties, the formal specification of certain
properties might become a more cumbersome task.

To facilitate property specification and therefore to increase the accessibility of
useful capabilities of model checking to a wider group of users, we have developed the
NLQ (Natural Language Query) tool, which converts natural language queries into
their corresponding formal specification language. NLQ is based on the prototype
tool introduced in Ref. [36] with extra added features and support for probabilistic
logics used in the model checking module of the Infobiotics Dashboard. Using the
NLQ tool, users can create a set of properties simply by manipulating a configurable
form with graphical user interface elements such as drop-down lists and text fields.3

Another important feature of the NLQ tool is that it provides users with a set of
so called property patterns based on most frequent properties in the model checking
study. Since the seminal paper of Dwyer et al. [37], there have been many develop-
ments in categorising recurring properties into specific property patterns, which can
be considered as generic representations of instances of numerous properties utilised
in different contexts. Indeed, [37] surveyed more than 500 temporal properties and
categorised them into a handful of property patterns. [73] extended this work to
include real-time specification patterns. Reference [60] presented a similar pattern
system for probabilistic properties.

Some of the patterns used in the NLQ tool is shown in Table 1.1. These patterns
provide a coherent set of templates, which guide users to construct formal expressions
to represent desired properties.

Experiments

We now present the results of the probabilistic model checking experiments we
carried out. Due to the well-known scalability issues that model checkers suffer we
reduced the size of the lattice to 4 × 8, where the surrounding cells are boundary
cells and 2 × 2-sender cells are located inside at one edge, which are followed by
4 × 2-pulsing cells (see Fig. 1.12).

Table 1.2 shows the informal specifications of the properties and the corresponding
CSL formulas that Prism accepts as input. It presents query results for each of Prop.
1, 2, 3 and 4. The verification results of Prop. 5, 6, 7 and 8 are illustrated as a 2D plot
in Fig. 1.17, where Row n denotes the nth row of the pulsing cells in the lattice, T

3 At the moment, the NLQ tool is not integrated into the Infobiotics Workbench. But, the properties
it generates can be directly used in IBW’s model checking component.
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Table 1.1 Property patterns

Pattern Example

Occurrence The number of molecules of x exceeds 100 within 50 s in 90 % of the cases

Until Until the concentration of the promoter x is greater than 0.5, the probability
of expressing the gene x is less than 0.01

Universality The concentration of the signalling protein never drops below the threshold

Response If the concentration of the repressor protein is more than 0.5, then the
probability that the regulation of the protein will be repressed is greater
than 0.9

Precedence Only, after the concentration of the repressor protein is more than 0.5, the
probability that the regulation of the protein will be repressed is greater
than 0.9

Steady State In the steady state, the probability that the concentration of the signalling
protein is more than 1nM is greater than 0.9

Reward The expected concentration of the signalling protein at the time instant 100 is
between 0.9 and 1.0 nM

denotes time and y-axis represents the verification result of the corresponding Prism
query.

Based on these results, we have made some observations. Firstly, as Fig. 1.17a,
c suggest, the GFP protein propagates through the pulsing cells. Namely, the GFP
protein is first observed in the rows closer to the sender cells, then the concentration
level drops until it permanently becomes zero. On the other hand, the concentration
level in the next rows shows a similar pattern with some delay, which is proportional
to the distance of the row to the sender cells. This behaviour can also be observed
from Prop. 1, 2, 3 and 4. Figure 1.17d also suggests that the further away the pulsing
cells are from the sender cells the less likely they are of producing a pulse. Clearly,
these results are in line with the simulation results discussed previously.

As verification experiments result show, model checking can provide more insight
into system models than simulations to analyse system dynamics and complex behav-
iour by means of formal queries. Table 1.2 illustrates how the NLQ tool automatically
translates informal queries into formal representations, which can be directly used
to query model checkers.

1.5.4 Supplementary Material

The complete model and experimental results of the pulse generator example can be
downloaded from the IBW website [105]. These include LPP model files, simulation
parameters, simulation results,Prismmodel file, model checking parameters, a list of
Prism properties and model checking experimental results. The interested readers
can try running the experiments themselves. The “README.txt” file provides a
detailed guidance on how to perform the same or similar experiments.
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Table 1.2 Prism properties

Prop. Informal and formal specification Prism vrf.

1 Probability that GFP concentration at row 3 exceeds 100 within
50 s.

P=?[true U≤50 GFP_pulsing_3 ≥ 100] 0.87

2 Probability that GFP concentration at row 3 exceeds 100
between 50 and 100 s.

P=?[true U[50,100] GFP_pulsing_3 ≥ 100] 0.92

3 Probability that GFP protein at row 3 always exists after 200 s.
P=?[G≥200(GFP_pulsing_3 > 0)] 0.0

4 Probability that GFP concentration at row 5 stays greater than
100 before GFP concentration at row 3 exceeds 100.

P=?[GFP_pulsing_5 ≥ 100 W GFP_pulsing_3 ≥ 100] 0.0

5 Probability that GFP concentration at row n ∈ {3, 4, 5, 6}
exceeds 100 at instant T .

P=?[true U[T,T ] GFP_pulsing_n ≥ 100] see Fig. 1.17a

6 Probability that GFP concentration at row n ∈ {3, 4, 5} stays
greater than GFP concentration at row 6 until time instant is
T where GFP concentration at row 6 exceeds GFP
concentration at row n.
P=?

[
GFP_pulsing_n ≥ GFP_pulsing_6 U[T,T ]
GFP_pulsing_6 > GFP_pulsing_n] see Fig. 1.17b

7 Expected GFP concentration at row n ∈ {3, 4, 5, 6} at instant T .
R{“GFP_pulsing_n”}=? [I = T ] see Fig. 1.17c

8 Expected signal3OC6 concentration at row n ∈ {3, 4, 5, 6}
at instant T .

R{“signal3OC6_pulsing_n”}=? [I = T ] see Fig. 1.17d

1.6 Discussions and Conclusions

In this last section we compare the best known tools based on the P system modelling
paradigm which are used in system and synthetic biology. In the last part further
developments for IBW are presented.

As we have seen so far, IBW is a complex software environment combining the
power and flexibility of a formal modelling framework based on stochastic P systems
enhanced with a lattice-based geometry and a modular way of grouping rules. It also
includes an advanced formal verification component consisting of some probabilis-
tic and stochastic model checking tools, PRISM and MC2, together with a natural
language pattern facility allowing to formulate various queries in a free style without
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(a) (b)

(d)(c)

Fig. 1.17 Model checking experiment results. a Probability of GFP exceeds threshold (Prop. 5).
b Probability of relativeGFP (Prop. 6). c ExpectedGFPprotein (Prop. 7). d Expectedsignal3OC6
(Prop. 8)

paying attention to specific syntactic constraints. The other key component of this
tool is a model structure and parameter optimisation engine. These three components
are fully integrated into an environment where they smoothly communicate, models
can be edited and results of various experiments are visualised according to a broad
range of options.

In what follows we compare the IBW set of functions with other similar P systems
based modelling and analysis software platforms presented in Sect. 1.2.3. In order to
asses the modelling capabilities of these tools with respect to their flexibility, analysis
power and efficiency, we have considered features like modularisation, formal veri-
fication capability, structure and/or parameter optimisation aspects and the option to
execute the simulation on parallel hardware architectures. All the considered tools
benefit from an integrated development environment (IDE) with different levels of
complexity. The results of the assessment are presented in Table 1.3.

It is difficult to compare the expressiveness of the modelling languages used by
these tools, as although they all use the same P systems paradigm, they implement
different features - some use deterministic execution style [11], whereas many rely
on probabilistic or stochastic behaviour [7, 14, 23, 28, 67]; SRSim uses strings as
opposed to all the others employing multisets; some use explicitly geometric elements
[14, 67] or a topology of the environment [28], but the others make use only of the
membrane structure.
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Table 1.3 Tools comparison

Tool IDE Modules Verification Optimisation Parallel

MetaPlab Yes No No Yes No
MeCoSim Yes ? No No Yes
BioSimWare Yes No No Yes Yes
Cyto-Sim Yes No Yes No No
SRSim Yes Yes No No No
IBW Yes Yes Yes Yes Yes

It is well-known that most of the systems and synthetic biology models are com-
plex, with a rich combinatorics of biochemical interactions and certain motifs occur-
ring. A way of coping with this aspect is to provide some modularisation capabilities.
P systems by their very nature introduce a type of modularisation by defining com-
partments. In many cases these are utilised as topological components rather than
functional units and do not provide adequate mechanisms to instantiate units of
functionality with the same behaviour, but with different biochemical elements or
concentrations. IBW and SRSim make use of modules directly in their specification
languages, MeCoSim through its associated P-Lingua language define them as blocks
of rules expressing a certain behaviour, without an explicit instantiation mechanism.

Simulations represent the key component of all these tools and these are quite
different as the simulation methods depend on the semantics associated to the P
systems utilised by the tools. We can not compare them as, on the one hand, there is
not much data published regarding the performance of the simulators, and the size
of the models, and, on the other hand, the scope of them is quite broad and different.

The results of the simulations require a form of validation, through experiments,
or in depth analysis, with mathematical and/or computational instruments, comple-
menting the simulation. Such an analysis method is the formal verification approach
based on computational models [42, 43], especially model checking. So far, only
IBW and, very recently, Cyto-Sim [23] support this type of analysis. In IBW this
analysis is fully integrated with the rest, the translation into PRISM is automati-
cally obtained from the specification and the queries formulated for each model are
expressed using natural language patterns. Another feature of these tools that helps
post-simulation analysis is the visualisation capability. This can be observed in some
of these tools, MeCoSim, SRSim, MetaPlab, IBW, as being fully integrated with the
other components.

Biological systems in contrast to complex engineering systems are in many cases
not fully specified. At least two aspects are not always known, the kinetic rates of
some interactions and the structure of certain components. These issues are over-
come by employing optimisation methods for approximating the unknown aspects.
MetaPlab uses such methods to approximate functions associated to rules in MP
models, BioSimWare deals with parameter estimation [12] and IBW provides mech-
anisms for parameter estimation and model structure optimisation in the case of
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stochastic systems. Recently, it is reported the possibility of using similar methods
for BioSimWare [10].

Complex simulations require better algorithms implementing various semantics
associated to P systems models and also the use of novel technologies. In the last years
there have been investigations related to the use of parallel hardware architectures for
speeding-up simulations. IBW has a parallel version that distributes simulation runs
over HPC clusters. BioSimWare has a version running on distributed architectures
such as grid and CUDA [8]. MeCoSim/P-Lingua platform uses CUDA for PDP
systems showing in certain cases significant increase in speed and new exciting
research avenues [83]. However, this facility is not fully integrated in the software
platform.
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Chapter 2
Statistical Model Checking of Membrane
Systems with Peripheral Proteins: Quantifying
the Role of Estrogen in Cellular Mitosis
and DNA Damage

Matteo Cavaliere, Tommaso Mazza and Sean Sedwards

Abstract Systems biology is a natural application of membrane systems, allowing
the analysis of biological systems using the formal technique of model checking. To
overcome the intractable model size of typical biological systems, statistical model
checking may be used to efficiently estimate the probability of properties of interest
with arbitrary levels of confidence. In this chapter we analyse a biological system
linked to breast cancer, using statistical model checking (SMC) applied to membrane
systems. To do this, we have constructed a computational platform that integrates
an SMC library with a stochastic simulator of membrane systems with peripheral
proteins. We present the methodology to investigate the role of estrogen in cellular
mitosis and DNA damage and we use our statistical model checker to find the most
appropriate time-dependent dosage of antagonist that should be used to minimize
the uncontrolled replication of abnormal cells.

2.1 Membrane Systems with Peripheral Proteins

Membrane systems are models of computation inspired by the structure and function
of biological cells. The model was introduced in 1998 by Gh. Păun and since then
many classes of membrane systems have been introduced and studied, with mathe-
matical, computer science and biological motivations. An introductory guide to the
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field can be found in the recent handbook [1], while a review of applications of
membrane computing to biology can be found in [2].

According to the original definition [3], membrane systems comprise an hierar-
chical nesting of membranes that enclose regions (representing the the cellular struc-
ture), in which free-floating objects (representing molecules) exist. Each region can
have associated rules, called evolution rules, for evolving the free-floating objects
and modelling the biochemical reactions present in cellular compartments. Rules
also exist for moving objects in a synchronized manner across membranes, symport
and antiport rules, modelling cellular transport and more general communication
rules [1].

In brane calculi, presented in [4], several operations (pino, exo, phago, mate, drip,
bud) explicitly involving membranes with embedded proteins are considered and for-
malised in the framework of process calculi. An important difference between brane
calculi and membrane computing is that with brane calculi the evolution of the system
takes place on the membranes and not inside the compartments delimited by them.
In [5] the operations of brane calculi are represented in the membrane computing
framework and then studied by using tools from formal language theory. In [6] some
of the membrane operations (pinocytosis and dripping) are considered in combina-
tion with the presence of free-floating objects and objects attached to the membranes,
while in [7] objects (peripheral proteins) are attached to either side of a membrane,
explicitly considering the inner and outer membrane surfaces. The motivation for this
last model is to represent the cellular processes that are controlled by the presence of
specific proteins on the appropriate side of and integral to the membrane: there is a
constant interaction between floating chemicals and embedded proteins and between
peripheral and integral proteins [8]. Essential receptor-mediated processes, such as
endocytosis and signalling, are crucial to cell function and by definition are critically
dependent on the presence of peripheral and integral membrane proteins.

The key features of the model considered in [7] are that in each region of the
system there are floating objects (the floating chemicals) and, in addition, objects can
be associated to each side of a membrane or integral to the membrane (the peripheral
and integral membrane proteins). Systems constructed using this model can perform
the following operations: (i) the floating objects can be processed/changed inside
the regions of the system (emulating biochemical reactions) and (ii) the floating
and attached objects can be processed/changed when they interact (modelling the
interactions of the floating molecules with membrane proteins). A possible use of
the model to study biological processes is shown in [7, 9], while related models are
discussed in [10] and [11], where also the computational aspects are presented.

The use of a formal computational model such as membrane systems can be help-
ful for two reasons: to facilitate the implementation of an executable specification
and allows the use of automatic methods to analyse and to discover features concern-
ing the dynamics of the complex cellular systems, providing in this way algorithms
that can mimic biological phenomena, [12].

In this book chapter we approach this second possibility by presenting model
checking, an algorithmic technique to formally verify the performance of a system
with respect to a property. The system is represented in a language with formal
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semantics (in our case, multiset rewriting) and the property is expressed in temporal
logics (e.g., linear temporal logic, LTL, and computation tree logic, CTL). The
output of standard model checking algorithms for these logics is Boolean: the model
either satisfies the property or it does not. Such algorithms have polynomial time
complexity with respect to the size of the model, but this is generally exponentially
related to the description of the model (i.e., the number of interacting components).
See [13] for a recent historical overview of standard model checking techniques and
[14] for comprehensive coverage.

Many real systems are modelled using some form of non-determinism to account
for unknown interactions and environments. In particular, chemical systems are often
modelled with the implicit assumption that molecules move randomly, with proba-
bilities of interaction proportional to the total number of molecules (so-called mass
action [15]). When non-determinism is expressed with probabilities, it is possible
to quantify the probability of a property using probabilistic model checking [16],
which uses probabilistic or stochastic temporal logics (e.g. probabilistic computaion
tree logic, PCTL, and continuous stochastic logic, CSL) and numerical techniques to
calculate the probability of a property. Probabilistic model-checking algorithms use
the standard model checking algorithms to evaluate whether a formula is satisfied
in a particular state, but incur additional computational cost (polynomial w.r.t. the
model) to calculate the probability of being in the state. Although techniques and
data structures exist to minimise the model [13, 14, 16], in the majority of real appli-
cations (especially biological applications) the model remains intractable. Notable
successes of standard and probabilistic model checking applied to simplified biolog-
ical systems include [12, 17–19]. In particular, in [17] the authors have shown the
use of probabilistic model checking for the analysis of the cell cycle in eukaryotes,
using a modelling language based on membrane systems and process algebra. Plat-
forms based on membrane systems including model checking have been previously
implemented, [20]. A review of the probabilistic models in membrane systems can
be found in [1].

To overcome the state space explosion problem that afflicts most biological mod-
els, in this chapter we employ statistical model checking (SMC), which is an effi-
cient, approximative, variety of probabilistic model checking. SMC has been applied
to biology before (e.g., [21]), but here we present the first SMC investigation of a
biological system using a membrane systems model that explicitly considers the role
of membrane proteins. To achieve this, we present the first self-contained statistical
model checker dedicated to membrane systems with peripheral and integral proteins.

There are important differences between probabilistic and statistical model check-
ing. The characteristic feature of a statistical model checker is that it estimates the
probability of a property by verifying the property against multiple independent exe-
cutions (simulations) of the system. The confidence of the estimate can be guaranteed
to arbitrary levels of confidence by standard statistical bounds (e.g. the Chernoff
bound [22]) and in this way SMC trades certainty for tractability. In comparison
to standard and probabilistic model checking, SMC does not require a finite state
space, does not require decidable logics and is less strict about how the system is
defined. Importantly, SMC is often significantly more efficient than probabilistic
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Fig. 2.1 Typical performance
of probabilistic and statistical
model checking applied to
models of the probabilistic
dining philosophers protocol

model checking for a given level of precision. Figure 2.1 compares the performance
of probabilistic with statistical model checking applied to increasing size models
of the probabilistic dining philosophers protocol, considering the property that if a
philosopher is hungry, he will eventually be fed. The figure shows that the numerical
model checker [23] scales exponentially with increasing numbers of philosophers
(i.e., polynomially w.r.t. a model that increases exponentially), while the statistical
model checker [24] scales linearly (proportional to the length of the property).

Further details of our SMC methodology are given in Sect. 2.2.1.

2.1.1 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting [25].
In this section we recall the theoretical notions and notations necessary in this chapter.

Given the set A we denote by |A| its cardinality and by ≥ the empty set. We denote
by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ≤ we denote the set of all
strings over V . By V + we denote the set of all strings over V excluding the empty
string. The empty string is denoted by τ. The length of a string v is denoted by |v|.
The concatenation of two strings u, v ∈ V ≤ is written uv.

The number of occurrences of the symbol a in the string w is denoted by |w|a .
A multiset is a set where each element may have a multiplicity. Formally, a multiset

over a set V is a map M : V ∗ N, where M(a) denotes the multiplicity of the symbol
a ∈ V in the multiset M .

For multisets M and M → over V , we say that M is included in M → if M(a) ≤ M →(a)

for all a ∈ V . Every multiset includes the empty multiset, defined as M where
M(a) = 0 for all a ∈ V .
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The sum of multisets M and M → over V is written as the multiset (M+M →), defined
by (M + M →)(a) = M(a) + M →(a) for all a ∈ V . The difference between M and
M → is written as (M − M →) and defined by (M − M →)(a) = max{0, M(a) − M →(a)}
for all a ∈ V . We also say that (M + M →) is obtained by adding M to M → (or vice
versa) while (M − M →) is obtained by removing M → from M . For example, given the
multisets M = {a, b, b, b} and M → = {b, b}, we can say that M → is included in M ,
that (M + M →) = {a, b, b, b, b, b} and that (M − M →) = {a, b}.

If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M can be explicitly
described as {(a1, M(a1)), (a2, M(a2)), . . . , (an, M(an))}. The support of a multiset
M is defined as the set supp(M) = {a ∈ V | M(a) > 0}. A multiset is empty (hence
finite) when its support is empty (also finite).

A compact string notation can be used for finite multisets: if M = {(a1, M(a1)),

(a2, M(a2)), . . . , (an, M(an))} is a multiset of finite support, then the string w =
aM(a1)

1 aM(a2)
2 . . . aM(an)

n (and all its permutations) precisely identify the symbols in
M and their multiplicities. Hence, given a string w ∈ V ≤, we can say that it identifies
a finite multiset over V , written as M(w), where M(w) = {a ∈ V | (a, |w|a)}. For
instance, the string bab represents the multiset M(w) = {(a, 1), (b, 2)}, that is the
multiset {a, b, b}. The empty multiset is represented by the empty string τ.

2.1.2 Membrane Systems with Peripheral and Integral Proteins

Formal language theory can be used to provide a mathematical abstraction for the
bidirectional interactions of floating molecules with cell membranes: biochemical
rules and interactions between peripheral proteins and membranes can be formalised
in terms of multiset rewriting rules.

In this section we introduce the main notions for membrane systems with periph-
eral and integral proteins.

As it is usual in the membrane systems field, a membrane is represented by a pair of
square brackets, [ ]. A membrane structure is an hierarchical nesting of membranes
enclosed by a main membrane called the root membrane. A label is associated to
each membrane and it is written as a superscript of the membrane, e.g. [ ]1. If a
membrane has the label i we call it membrane i . Each membrane is identified by a
unique label in an unique manner (there are no membranes with the same label).

A membrane structure is essentially that of a tree data structure, where the nodes
are the membranes and the arcs represent the containment relation. Being a tree, a
membrane structure can be represented by a string of matching square brackets, e.g.,
[ [ [ ]2 ]1 [ ]3 ]0.

To each membrane there are associated three multisets, u, v and x over V , denoted
by [ ]u|v|x , where V denotes a finite alphabet of objects (the symbol | is not part of
the alphabet V ).



48 M. Cavaliere et al.

Following the terminology used in [9] we say that the membrane is marked by u,
v and x ; x is called the external marking, u the internal marking and v the integral
marking of the membrane. In general, we refer to them as markings of the membrane.

The internal, external and integral markings of a membrane model the proteins
attached to the internal surface, to the external surface and integral to the membrane,
respectively.

In a membrane structure, the region between membrane i and any enclosed mem-
branes is called region i . To each region is associated a multiset of objects w called the
free objects of the region. The free objects are written between the brackets enclosing
the regions, e.g., [ aa [ bb ]1 ]0. The free objects of a membrane model the floating
chemicals within the regions of a cell.

We denote by int (i), ext (i) and i tgl(i) the internal, external and integral markings
of membrane i , respectively. By f ree(i) we denote the free objects of region i . For
any membrane i , distinct from a root membrane, we denote by out (i) the label of
the membrane enclosing membrane i . The finite set of all possible labels is denoted
by Lab.

The string
[ ab [ cc ]2

a| | [ abb ]1
bba|ab|c ]0

represents, for instance, a membrane structure, where to each membrane are associ-
ated markings and to each region are associated free objects. Membrane 1 is internally
marked by bba (i.e., int (1) = bba), has integral marking ab (i.e., i tgl(1) = ab)
and is externally marked by c (i.e., ext (1) = c). To region 1 are associated the free
objects abb (i.e., f ree(1) = abb). To region 0 are associated the free objects ab.
Finally, out (1) = out (2) = 0. Membrane 0 is the root membrane. The string can
also be depicted diagrammatically, as in Fig. 2.2.

As in [9] we consider the rules attachin , attachout , de-attachin and
de-attachout , defined in the following manner:

Fig. 2.2 Graphical representation of [ ab [ cc ]2
a| | [ abb ]1

bba|ab|c ]0
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attachin : [π]i
u|v| ∗ [ ]i

u→|v→|, π ∈ V +, u, v, u→, v→ ∈ V ≤, i ∈ Lab

attachout : [ ]i|v|x π ∗ [ ]i
|v→|x → , π ∈ V +, v, x, v→, x → ∈ V ≤, i ∈ Lab

de−attachin : [ ]i
u|v| ∗ [ π ]i

u→|v→| , π, u→, v→, u, v ∈ V ≤, |uv| > 0, i ∈ Lab

de−attachout : [ ]i|v|x ∗ [ ]i
|v→|x →π, π, v→, x →, v, x ∈ V ≤, |vx | > 0, i ∈ Lab

Using the notion of multiset presented earlier, we describe the formal semantics of
the rules.

The attachin rule is applicable to membrane i if f ree(i) includes π, int (i)
includes u and i tgl(i) includes v. When the rule is applied to membrane i , π is
removed from f ree(i), u is removed from int (i), v is removed from i tgl(i), u→ is
added to int (i) and v→ is added to i tgl(i). The objects not involved in the application
of the rule are left unchanged in their original positions.

The attachout rule is applicable to membrane i if f ree(out (i)) includes π, i tgl(i)
includes v, ext (i) includes x . When the rule is applied to membrane i , π is removed
from f ree(out (i)), v is removed from i tgl(i), x is removed from ext (i), v→ is added
to i tgl(i) and x → is added to ext (i). The objects not involved in the application of
the rule are left unchanged in their original positions.

The de-attachin rule is applicable to membrane i if int (i) includes u and i tgl(i)
includes v. When the rule is applied to membrane i , u is removed from int (i), v is
removed from i tgl(i), u→ is added to int (i), v→ is added to i tgl(i) and π is added to
f ree(i). The objects not involved in the application of the rule are left unchanged
in their original positions.

The de-attachout rule is applicable to membrane i if i tgl(i) includes v and ext (i)
includes x . When the rule is applied to membrane i , v is removed from i tgl(i), x
is removed from ext (i), v→ is added to i tgl(i), x → is added to ext (i) and π is added
to f ree(out (i)). The objects not involved in the application of the rule are left
unchanged in their original positions.

Instances of attachin , attachout , de-attachin and de-attachout rules are depicted
in Fig. 2.3.

Extending the model in [9], we also consider rules that model the shuttling and
translocation of proteins across membranes, as those considered in [10, 11]. In this
case, floating objects can cross membranes depending on the proteins present on the
membrane (proteins may also change during the translocation) Fig. 2.4.

shuttleout : [ π ]i
u|v| ∗ [ ]i

u→|v→| π, π ∈ V +, u, v, u→, v→ ∈ V ≤, i ∈ Lab

shuttlein : [ ]i|v|x π ∗ [ π]i
|v→|x → , π ∈ V +, v, x, v→, x → ∈ V ≤, i ∈ Lab

The operation of translocation and shuttling can be envisaged as an instantaneous
combination of attach and de-attach rules described above. The shuttlein rule is
applicable to membrane i if i tgl(i) includes v, ext (i) includes x and f ree(out (i))
includes π. When the rule is applied to membrane i , v is removed from i tgl(i), x is
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Fig. 2.3 Examples of attachin , attachout , de-attachin and de-attachout rules, showing how
free and attached objects may be rewritten. For example, in the attachin rule one of the two free
instances of b is rewritten to d and added to the membrane’s internal marking

Fig. 2.4 Examples of shuttlein and shuttleout rules, showing how free objects can cross mem-
branes with the help of peripheral and integral proteins

removed from ext (i), v→ is added to i tgl(i), x → is added to ext (i) and π is added to
f ree(i). The objects not involved in the application of the rule are left unchanged
in their original positions.

The shuttleout rule is applicable to membrane i if i tgl(i) includes v, int (i)
includes u and f ree(i) includes π. When the rule is applied to membrane i , v is
removed from i tgl(i), u is removed from int (i), v→ is added to i tgl(i), u→ is added
to int (i) and π is added to f ree(out (i)). The objects not involved in the application
of the rule are left unchanged in their original positions.

We denote by Ratt
V,Lab the set of all possible attach, de-attach and shuttle rules

over the alphabet V and set of labels Lab.
As in [9], we also consider evolution rules that replace the free objects contained

in a region conditional on the markings of the enclosing membrane. These rules
represent the biochemical reactions that take place within the cytoplasm of a cell.
An evolution rule has the following syntax:

evol : [ π ∗ α ]i
u|v|



2 Statistical Model Checking of Membrane Systems with Peripheral Proteins 51

where u, v, α ∈ V ≤, π ∈ V +, and i ∈ Lab.
The semantics of the rule is as follows. The rule is applicable to region i if f ree(i)

includes π, int (i) includes u and i tgl(i) includes v. When the rule is applied to region
i , π is removed from f ree(i) and α is added to f ree(i). The membrane markings
and the objects not involved in the application of the rule are left unchanged in their
original positions.

We denote by Rev
V,Lab the set of all evolution rules over the alphabet V and set of

labels Lab. An instance of an evolution rule is represented in Fig. 2.5.
In general, when a rule has label i we say that a rule is associated to membrane i

(in the case of attach and de-attach rules) or is associated to region i (in the case
of evol rules). For instance, in Fig. 2.3 the attachin is associated to membrane i .

The objects of π, u and v for attachin /evol rules, of π, v and x for attachout

rules, of u and v for de-attachin rules and of v and x for de-attachout rules are the
reactants of the corresponding rules. E.g., in the attach rule [ b ]a|c| ∗ [ ]d|c| , the
reactants are a, b and c.

A membrane system with peripheral and integral proteins is a mathematical model
that considers membranes to which can be associated peripheral proteins, integral
proteins, free objects and using the operations described above. The rules presented
here can be implemented in the computational tool using the appropriate syntax
[26], and present redundancies whose purpose is to allow flexibility during the mod-
elling processes. Several specific restricted variants of the proposed rules have been
investigated and a review can be found in [10].

Here, following [9], we consider the stochastic extension of the model.

Definition 1 A stochastic membrane system with peripheral and integral proteins
and n membranes is a construct

ϕ = (Vϕ,μϕ , (u0 , v0 , x0)ϕ , . . . , (un−1, vn−1, xn−1)ϕ , w0,ϕ , . . . , wn−1,ϕ , Rϕ,

tin,ϕ
, t f in,ϕ

, rateϕ )

• Vϕ is a non-empty alphabet of objects.
• μϕ is a membrane structure with n ∀ 1 membranes injectively labelled by labels

in Labϕ = {0, 1, . . . , n − 1}, where 0 is the label of the root membrane.
• (u0, v0, x0)ϕ = (τ, τ, τ), (u1 , v1 , x1)ϕ , . . . , (un−1, vn−1, xn−1)ϕ ∈ V ≤ × V ≤ ×

V ≤ are called initial markings of the membranes.

Fig. 2.5 evol rule [ a ∗ b ]i
b|c|. Free objects can be rewritten inside the region and the rewriting

can depend on the integral and internal markings of the enclosing membrane
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• w0,ϕ , w1,ϕ , . . . , wn−1,ϕ ∈ V ≤ are called initial free objects of the regions.
• Rϕ ∧ Ratt

V,Lab
ϕ

−{0} ∪ Rev
V,Lab

ϕ
is a finite set of evolution rules, attach/de-attach

and shuttle rules.
• tin,ϕ

, t f in,ϕ
∈ R are called the initial time and the final time, respectively.

• rateϕ : Rϕ ∨−∗ R is the rate mapping. It associates to each rule a reaction rate.

An instantaneous description I of ϕ consists of the membrane structure μϕ with
markings associated to the membranes and free objects associated to the regions. We
denote by I(ϕ) the set of all instantaneous descriptions of ϕ . We say membrane
(region) i of I to denote the membrane (region, respectively) i present in I .

Let I be an arbitrary instantaneous description from I(ϕ) and r an arbitrary rule
from Rϕ . Suppose that r is associated to membrane i ∈ Labϕ if r ∈ Ratt

V,Labϕ−{0}
(or to region i ∈ Labϕ if r ∈ Rev

V,Labϕ
).

If r is applicable to membrane i (or to region i , accordingly) of I , then we say
that r is applicable to I . We denote by r(I ) ∈ I(ϕ) the instantaneous description of
ϕ obtained when the rule r is applied to membrane i (or to region i , accordingly) of
I (in short, we say r is applied to I ).

The initial instantaneous description of ϕ , Iin,ϕ ∈ I(ϕ), consists of the mem-
brane structure μϕ with membrane i marked by (ui , vi , xi )ϕ for all i ∈ Labϕ −{0}
and free objects wi,ϕ associated to region i for all i ∈ Labϕ .

A configuration of ϕ is a pair (I, t) where I ∈ I(ϕ) and t ∈ R; t is called the
time of the configuration. We denote by C (ϕ) the set of all configurations of ϕ . The
initial configuration of ϕ is Cin,ϕ = (Iin,ϕ , tin,ϕ ).

Suppose that Rϕ = {rule1, rule2, . . . , rulem} and let S be an arbitrary sequence
of configurations ⇒C0, C1, . . . , C j , C j+1, . . . , Ch∼, where C j = (I j , t j ) ∈ C (ϕ)

for 0 ≤ j ≤ h. Let a j =
m∑

i=1
pi

j , 0 ≤ j ≤ h, where pi
j is the product of rate(rulei )

and the mass action combinatorial factor [27] for rulei and I j .
The sequence S is an evolution of ϕ if

• for j = 0, C j = Cin,ϕ

• for 0 ≤ j ≤ h − 1, a j > 0, C j+1 = (r j (I j ), t j + dt j ) with r j , dt j as in [27]:

– r j = rulek , k ∈ {1, . . . , m} and k satisfies
k−1∑
i=1

pi
j < ran

→
j · a j ≤

k∑
i=1

pi
j

– dt j = (−1/a j )ln(ran
→→
j )

where ran
→
j , ran

→→
j are two random variables over the sample space (0, 1], uniformly

distributed.
• for j = h, a j = 0 or t j ∀ t f in,ϕ

.

In other words, an evolution of ϕ is a sequence of configurations ⇒C0, C1, . . . , C j ,

C j+1, . . . , Ch∼, starting from the initial configuration of ϕ , where, given the current
configuration C j = (I j , t j ), the next one C j+1 = (I j+1, t j+1), is obtained by
applying the rule r j to the current instantaneous description I j and adding dt j to the
current time t j . The rule r j and the associated dt j are determined by Gillespie’s theory
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of chemically reacting systems [15] applied to the current instantaneous description
I j (i.e., effectively, the rule with the shortest waiting time is selected to be executed).
The evolution of the system halts when all rules have probability zero to be executed
(following from the fact that a j = 0) or when the current time is greater or equal
to the specified final time. The detailed explanation of the application of Gillespie’s
stochastic simulation algorithm [15] to a membrane system with peripheral proteins
can be found in [9] and [28]. Similar implementations of the Gillespie algorithm have
been already proposed in different models of membrane systems where the algorithm
has been specifically adapted and optimized to run in multiple compartments and,
for these reasons, referred to as multi-compartment in [17] and [20].

2.2 Statistical Model Checking for Membrane Systems
with Peripheral Proteins

A stochastic membrane system with peripheral proteins can capture the essential
dynamics of a cellular system. It may be used to address questions concerning the
interplay between the biochemical processes present in the various compartments
and the proteins associated to the cellular membranes. Sometimes, these questions
can be resolved in an analytical manner [29] or by executing the model on a computer,
[9, 28, 30]. In this chapter we use this latter approach (for an analytical approach
see the review [10]). As defined in Sect. 2.1.2, a single evolution of the system
produces an outcome that represents the quantities of the involved entities, floating
molecules, peripheral proteins and compartments. However, because of the stochastic
applications of the rules, each evolution of the system may lead to (a possibly very
large number of) different outcomes.

In what follows, we describe the use of statistical model checking to investigate
biological systems, where properties of interest are specified using temporal logic.

2.2.1 Temporal Logic as a Query Language

Many useful properties of systems can be expressed in terms of maxima, minima or
averages of system variables. With more complex reactive systems, such as biolog-
ical systems, it is often desirable to investigate properties that comprise sequences
of events and events dependent on time. Temporal logic provides a formal means to
express these properties and remains reasonably intuitive for moderately complex
properties. In this chapter we use temporal logic as a query language to investi-
gate temporal properties of a biological system. We have developed a statistical
model checker based on the logic of PLASMA [24]. This logic is also similar to the
bounded linear temporal logic (BLTL) of [21]. Specifically, we have constructed a
tool using PLASMA-lab [31, 32], a statistical model checking library that works with
an external simulator. We have thus created a simulator that implements a language
of stochastic membrane systems with peripheral and integral proteins [33].
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For the purposes of exposition, a logical property φ of our model checker is
constructed using the following abstract syntax:

φ = φ ∃ φ | φ ∧ φ | ¬φ | F≤bφ | G≤bφ | φ U≤bφ | Xφ | π

π = numeric (> | ∀ |= |≤ | <) numeric

∃,∧ and ¬ are the standard logical connectives or, and and not. π is an atomic
proposition constructed from numeric expressions of constants and system variables
using the standard relational operators. X is the next temporal operator (Xφ is true
iff φ is true on the next step). F, G and U are temporal operators bounded by a closed
interval [0, b], where b may refer to steps or time. We use the notation φt and ψt

to denote the value of the propositions φ and ψ at step or time t . F is the finally or
eventually operator (F≤bφ is true iff ∃t ∈ [0, b] : φt is true). G is the globally or
always operator (G≤bφ is true iff ∀t ∈ [0, b] : φt is true). U is the until operator
(ψU≤bφ is true iff ∃t ∈ [0, b] : φt is true ∧(t = 0 ∃ ∀t → ∈ [0, t[: ψt → is true). In the
case of nested temporal operators, the time bound of an inner temporal operator is
relative to the time bound of its directly enclosing operator. Hence, e.g., F≤3G≤4φ

is true iff ∃t ∈ [0, 3],∀t → ∈ [t, t + 4] : φt → is true.
Statistical model checking works by verifying a property φ against N ∈ N inde-

pendent simulation runs. Each simulation run evaluates to true or false and the prob-
ability that φ is true on an arbitrary execution of the system is estimated by the
standard Monte Carlo estimator 1

N

∑N
i=1 1(φ), where 1(·) is an indicator function

that returns one if its argument is true and 0 otherwise. To quantify the confidence of
the estimate, in this chapter we use a Chernoff bound [22] that guarantees, for given
N , that the absolute error of the estimate is less than Δ with probability δ, where
2ΔN = ln(2/δ).

2.3 A Case Study: The Role of Estrogen in Cellular Mitosis
and DNA Damage

At a cellular level, life is punctuated by the recurrence of four major phases: Gap 1
(G1), S, Gap 2 (G2), and M. G1 is in-between mitosis and DNA replication and
is responsible for cell growth. The transition occurring at the restriction point (called
R) during the G1 phase commits a cell to the proliferative cycle. If the conditions
that enforce this transition are not present, the cell exits the cell cycle and enters
a non-proliferative phase (called G0) during which cell growth, segregation and
apoptosis occur. Replication of DNA takes place during the synthesis phase (called
S). It is followed by a second gap phase responsible for cell growth and preparation
for division. Mitosis and production of two daughter cells occur in the M phase.
Switches from one phase to another are canonically regulated by a family of Cyclins
that act as regulatory subunits for the Cyclin-Dependent Kinases (CDKs). According
to the actual phase of the cell cycle, a disparate number of chemicals interact with
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the Cyclin-CDKs complexes to prevent or favour their move into the nucleus and,
consequently, to block or promote the next phase transition [34].

Here we focus on the pre-mitotisG2 phase and model the contention on the Mitosis
Promoting Factor (MPF) (i.e., the Cyclin B1/2-CDKs complex), after the occurrence
of DNA damage, by two key contributors: p53, the “guardian of the genome” [35],
and the estrogens. The predominance of one’s function over the other results in a
proliferative rather than in a quiescent state of the cell.

It is known that p53 is a crucial protein in multicellular organisms, where it regu-
lates the cell cycle and functions as a tumour suppressor. p53 has many mechanisms of
anticancer function. It can (i) activate DNA repair proteins when DNA has sustained
damage; (ii) induce growth arrest by holding the cell cycle at the G1/S regula-
tion point on DNA damage recognition; (iii) initiate apoptosis, the programmed cell
death, if DNA damage proves to be irreparable. In G2 phase and after DNA damage,
activated p53 binds DNA and induces expression of 14-3-3-σ (a.k.a. Stratifin) [36].
Stratifin mRNA exits the nucleus and, after translation, obstructs cell cycle entry by
sequestering MPF, thereby preventing its shuttling to the nucleus [37].

Conversely, estrogens, the primary female sex hormones, promote cell cycle pro-
gression. They are intracellular proteins present both on the cell surface membrane
and in the cytosol. Their actions are assumed to be mediated by estrogen receptors
(ERs) which are found in different ratios in the different tissues of the body:

• ERπ: endometrium, breast cancer cells, ovarian stroma cells and hypothalamus.
• ERα : kidney, brain, bone, heart, lungs, intestinal mucosa, prostate and endothelial

cells.

ERs actions can be selectively enhanced or disabled by some estrogen receptor
modulators, in accordance with the binding affinity level of each estrogenic com-
pound. In the classic model, the estrogen 17 beta estradiol binds to the ER, causing
displacement of chaperone proteins. Dimers of the estrogen-ER complexes can then
act as transcription factors by binding to specific estrogen response element (ERE)
sequences in the promoters of target genes, evoking a wide range of transcriptional
responses.

Efp, a RING-finger-dependent ubiquitin ligase, is a relevant target gene product
of ERπ . It is predominantly expressed in various female organs and is responsible
for the proteolysis of 14-3-3-σ and then it is essential for estrogen-dependent cell
proliferation. Its transcription is mediated by the estrogen-ERπ complex which enters
the nucleus and binds to its ERE. The Efp mRNA can exit the nucleus, translate and
eventually bind to the complex stratifin-MPF, floating in the cytoplasm in an inactive
form. The newly formed complex dissociates into a macromolecule of ubiquitinated
stratifin and one active MPF complex. While the former is targeted for death by
proteolysis, the latter can enter the nucleus and promote mitosis progression.

The described pathway is collected from the Biocarta Pathway Database and
redrawn using Systems Biology Graphical Notation (SBGN) glyphs in Fig. 2.6.

The cell cycle pathway is crucial to the understanding of cancer because one of
the hallmarks of cancer is the uncontrolled proliferation of abnormal or damaged
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Fig. 2.6 SBGN model

cells. The focus of many treatments is therefore to prevent cell division (mitosis) of
such cells. Estrogen is implicated in certain important types of breast cancer (e.g.,
estrogen receptor positive cancer), so in this chapter we present the methodology to
study the role of estrogen in cellular mitosis, analysing the scenario in which DNA
damage occurs. Sources of damage are not discussed in depth here, although they are
commonly ascribed to a prolonged exposure to ionizing or ultraviolet irradiation, or
to sporadic mistakes made by the mitotis machinery. In view of this, we investigate
the relationship between damage, estrogen, its receptor, and a typical antagonist that
acts to prevent mitosis.
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There are many synthetic molecules on the market that play the role of antagonist
to cancer. Tamoxifen, Raloxifene and Anastrozole are some of the most represen-
tative. Their antagonism makes sense when coupled with true agonists, which are
molecules that typically bind to receptors of a cell and trigger a response by that
cell. Agonists often mimic the action of a naturally occurring substance, whereas
antagonists block the action of the agonists or cause an action opposite to that of
the agonists. The current accepted definition of receptor antagonist is based on the
receptor occupancy model: agonists are thought to turn on a single cellular response
by binding to the receptor, thus initiating a biochemical mechanism for change within
a cell. Antagonists are thought to turn off that response by blocking the receptor from
the agonist. Whenever the action of the antagonist results to be irreversible, that is
its effect lasts throughout the lifetime of the antagonist itself, its dynamics can be
described as a key broken off in the lock that prevents any other key from being
inserted.

These antagonists are essentially prodrugs, and we have added them, in an appro-
priate way, to the described pathway (see Fig. 2.6). In particular, Tamoxifen, an
estrogen blocker that belongs to the class of non-steroidal anti-estrogens, causes
cells to remain in the G0 and G1 phases of the cell cycle. In particular, it fights breast
cancer by competing with estrogen for space on the receptors of the tumour tissue.
Each molecule of Tamoxifen that binds to a receptor prevents an estrogen molecule
from engaging at the same place. This can facilitate the treatment of cancer because
without a continuous supply of estrogen, cancer cells do not develop and the ability
of the tumour to spread is reduced.

Recent experimental work has recognised that drug therapies may be more effec-
tive when linked to specific phases of the cell cycle [38] —so-called chronoparma-
ceuticals used in chronotherapy —so we specifically consider the time (delay) of the
damage with respect to availability of cyclins (the molecules that control mitosis).
In this chapter we propose a preliminary study on the interplay between the time of
the DNA damage, the amount of the damage and the presence of antagonists.

2.4 Methodology and Results

Using PLASMA-lab [32], we have implemented a statistical model checker that
allows us to analyse the evolutions of a stochastic membrane systems with peripheral
proteins (defined in Sect. 2.1.2), specified in an appropriate syntax and using queries
expressed in temporal logic (defined in Sect. 2.2.1). The integrated computational
platform can be found at the web-page [26].

The biological model used in our investigation (discussed in Sect. 2.3) is described
in terms of a membrane system in Fig. 2.7, where the corresponding simulator script
can also be found. In our study, we explicitly consider as parameters the amount
of damage, the delay time of the damage and the amount of antagonist. We model
the existence of damage by the production of p53, a well known indicator, that
results from a damage signal that is instantiated as a quantity of molecules denoted
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Fig. 2.7 A stochastic membrane systems with peripheral and integral proteins that presents the
P53-independent G2/M cell cycle arrest pathway, with data collected from the Biocarta Pathways
Database, described in Fig. 2.6 and ranges of proportionality between the coefficients obtained using
preliminary western-blotting experiments. On the left side we present the formal language model
following the formal syntax presented in Sect. 2.1.2 (the membrane labels cyto and nucleopl stands
for cytoplasm and nucleoplasm, respectively); on the right side the equivalent simulator script using
the appropriate syntax. The complete description of the simulator syntax can be found in [9, 28]
and at the platform webpage [26]

as damage. Our modelling language allows us to inject an amount of damage at a
specific time, using the syntax amount damage@delay, where “amount” is a number
of damage molecules and “delay” is the value of the time delay from the start of
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the simulation. As an indicator of mitosis, we define a molecular species denoted
MITOSIS, that is produced by the cyclins in the nucleus. For the purposes of our
investigation, we set an ar bitrary minimum of 300 molecules of MITOSIS to indicate
that mitosis will proceed. Our results remain qualitatively similar if this value is
changed.

To estimate the probability of mitosis we consider the following temporal logic
property:

F≤delay damage = 0∧(X damage = amount ∧(F≤20 M I T O SI S > 300)) (2.1)

This property states that in the interval [0, delay] there will be a time when
damage = 0 and in the next state damage = amount and within 20 time units
M I T O SI S > 300. In our experiments, the value of delay is set to the time at which
we inject damage and amount to the amount of damage injected. Hence, the first part
of the property is guaranteed to be satisfied and is used to detect the precise step that
damage occurs.1 This allows the remainder of the property to be timed relative to the
damage event. The value of 20 time units is chosen to be sufficiently long to capture
all interesting behaviour following the damage.

We performed statistical model checking on the model with our model checking
tool using the property (2.1). Figure 2.8 illustrates the results of considering amounts
of damage in the range [300, 1000] with increments of 25 and delays in the range
[0, 5] with increments of 0.2. Each point is the result of 37 simulations, which is
sufficient (according to the Chernoff bound defined in Sect. 2.2.1) to give a confidence
of ±0.1 with probability 0.95. 0.95 (95 %) is a standard high level of confidence,
while ±0.1 is sufficiently precise to resolve the detail in the figure. Figure 2.9 is
the result of the same experiments, but with 1,000 antagonist. The results for each
figure were generated on a single machine (Intel Core i7 2.8 Ghz, 4 GB RAM) in less

Fig. 2.8 The effect of amount
and delay of damage on
mitosis: the probability of
M I T O SI S > 300 for vari-
ous amounts and time delay
of damage. The figure illus-
trates the general trend that
the probability of mitosis
increases with increasing
delay and decreasing damage
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1 For zero delay we use the simpler property damage = amount ∧ (F≤20 M I T O SI S > 300)
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Fig. 2.9 The effect of
antagonist on the response
to damage: the probability
of M I T O SI S > 300 for
various amounts and delay
of damage in the presence of
1,000 antagonist. In compar-
ison with Fig. 2.8, the figure
demonstrates that antagonist
increases the sensitivity of the
system to damage
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than an hour. The general trends are clear in both figures: the probability of mitosis
increases with increasing delay and decreases with increasing damage; above a delay
of about four time units, mitosis is guaranteed, independent of amount of damage.
This confirms our expectation that cell damage causes cell cycle arrest and that if
the damage occurs after mitosis has begun, it will be too late to have an effect.
Comparing Figs. 2.8 and 2.9, we see that the addition of antagonist increases the
region of the figure where the cell cycle is arrested. In particular, the system is more
sensitive to lower amounts of damage, confirming our understanding of the effect of
an antagonist. We also note that the addition of antagonist has much less effect with
respect to delay.

Having observed that the presence of antagonist increases the sensitivity of the
system to damage, we investigated the amount of antagonist required to cause cell
cycle arrest. The results are plotted in Fig. 2.10 and were achieved in the following
way. We estimated the probability of mitosis, as defined by the property (2.1), consid-
ering three parameters: amount of damage in the range [300, 900] with increments of
25, delay of damage in the range [0, 4] with increments of 0.2, and amount of antag-
onist in the range [0, 2100] with increments of 100. Thus, for each combination of
amount and delay of damage, we constructed a sequence of probabilities correspond-
ing to the amounts of antagonist, each estimated with the same level of confidence
used for Figs. 2.8 and 2.9. The results were generated on a single machine (Intel Core
i7 2.8 Ghz, 4 GB RAM) in less than 14 h. Three qualitatively distinct sequences of
probabilities emerged: (i) probabilities consistently below 0.5 for all considered val-
ues of antagonist (black area in Fig. 2.10); (ii) probabilities consistently above 0.5 for
all considered values of antagonist (yellow area marked with ‘+’ symbols) and (iii)
probabilities decreasing from values above 0.5 to values below 0.5 with increasing
antagonist. Sequences of type (i) correspond to a range of parameters where cell
cycle arrest is inevitable, regardless of antagonist. Sequences of type (ii) correspond
to a range of parameters where either mitosis is inevitable or more than the maxi-
mum amount of antagonist that we tried is required to cause cell cycle arrest. From
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Fig. 2.10 The required
dosage of antagonist to prevent
mitosis: the amount of antago-
nist required to make the prob-
ability of M I T O SI S > 300
less than 0.5 when previously
it was greater than 0.5. In
the black areas the probabil-
ity of M I T O SI S > 300 is
less than 0.5, independent of
antagonist. The ‘+’ symbol
indicates that at least 2,100
antagonist would be required
to prevent mitosis 0
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sequences of type (iii) we were able to estimate the amount of antagonist correspond-
ing to the transition value of 0.5, by interpolating between two adjacent points or
from a single point if, by chance, its value was exactly 0.5.

2.5 Conclusions

Even though the life cycle of cells is not generally synchronized, we recall here that
replication is subject to the presence of cyclins, that are released in a timely way. Our
results then show that it is possible to target cells on time, that is, to occupy estrogen
receptors (ERs) at time points that are maximally effective. This would convey a
double advantage: minimizing the necessary quantity of antagonist and making its
effect optimal. The definition of the most effective dosage curve is indeed not a
simple task, especially in cases where antagonists cannot be specific for particular
cells. For example, in the case of ER+ breast cancer, Tamoxifen is currently taken
once or twice a day and it is usually prescribed at 20 mg for 5 years. This dosage is
due to the unavoidable ineffectiveness of the drug when reaching cells in unfavorable
time points, as well as to the fact that Tamoxifen does not specifically target breast
cancer cells; its molecules circulate within the body and target any cell that contains
an available ER. The consequence of this is that while Tamoxifen works as an anti-
estrogen for the breast, it acts as estrogen (i.e., agonist) in the uterus and, to a lesser
extent, in the heart, blood vessels and bones. In cases like this, a tuned chronotherapy
cannot eliminate the risk of side effects, but can drastically reduce it. The presented
results show that the use of statistical model checking in membrane systems could
be helpful to individuate the appropriate time-dependent dosage of antagonists in
cancer treatments [39].
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3. Gh Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
4. L. Cardelli, Brane calculi, in Computational Methods in Systems Biology, ed. by V. Danos, V.

Schachter. Lecture Notes in Computer Science, vol. 3082 (Springer, Berlin, 2005), pp. 257–278
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Chapter 3
Molecular Diffusion and Compartmentalization
in Signal Transduction Pathways: An
Application of Membrane Systems to the Study
of Bacterial Chemotaxis

Paolo Cazzaniga, Daniela Besozzi, Dario Pescini and Giancarlo Mauri

Abstract In this chapter we present an application of membrane systems to the study
of intracellular diffusive processes. In particular, a class of membrane systems, called
τ -DPP, is used for the modeling, simulation and analysis of bacterial chemotaxis.
Two different models of this signal transduction pathway are presented. The first is
a single volume model used to investigate the properties of bacterial chemotaxis and
to analyze the effects of different perturbations (deletion of chemotactic proteins,
addition of distinct amounts of external ligand, effect of different methylation states
of the receptors) on the system dynamics. The second model represents a multivolume
extension of the former, and it is exploited for the analysis of the diffusive processes
that give rise to the formation of concentration gradients throughout the bacterial
cytoplasm. The outcome of stochastic simulations of both models are exploited to
analyze the process of synchronization of flagella, in order to evaluate the running
and tumbling time intervals of bacterial cells.
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3.1 Introduction

The development of methodologies for mathematical modeling and computer sim-
ulations is nowadays allowing to study the complexity of many biological systems.
In the last decades, a wide variety of models of cellular processes based on different
formalisms have been proposed. Recently, by taking advantage of the biologically
inspired aspects of their underlying structure, membrane systems (or P systems) have
been exploited for the modeling of biological systems and for the investigation of
their dynamical properties. Many classes of P systems have been defined by taking
inspiration from various aspects of living cells, and several applications have
reported the potential of P systems in this field of research [1, 2]. For a compre-
hensive overview of basic P systems, of other classes lately introduced and their
application in Computer Science and Biology, we refer the interested reader to [3],
and to the P systems Web Page [4].

Here, we focus on an application of P systems for the modeling of diffusive events
in a signal transduction pathway, namely, bacterial chemotaxis. Chemotaxis is an effi-
cient signal transduction pathway which allows bacterial cells to move directionally,
in response to specific attractants or repellents occurring in their surroundings. The
pathway consists of several transmembrane and cytoplasmic proteins acting as signal
sensors and response regulators [5], which rule the reversal of the flagellar motor
(governed by the phosphorylation and dephosphorylation of a key protein, CheY).
In homogeneous environments, this process induces a switch between running and
tumbling movements, with a frequency that allows a temporal sampling (through
random walks) of the surrounding space. On the contrary, in the presence of a gra-
dient of attractants or repellents, bacteria are able to respond quickly by reducing
the frequency of flagellar reversal between clockwise and counterclockwise rota-
tions, which cause a longer running motion in a biased direction. The frequency of
switching is then reset to the random walk level if the concentration of the external
ligands remains constant in time. At the molecular scale, this adaptation property
is implemented by the coordinated action of methyltransferase and methylesterase
proteins acting on the transmembrane receptors.

The genetic regulation and biochemical functions of the proteins involved in
chemotaxis are well known, and several models have already been proposed to study
their complex interplay as well as the robustness of this system [6–11]. In the models
we present here, we consider detailed protein-protein interactions for the chemotactic
pathway in E. coli, in response to attractant molecules, which sum up to 32 molecular
species and 62 biochemical reactions. The temporal evolution of the phosphorylated
form of CheY (CheYp) is investigated under different conditions, such as the deletion
of other proteins involved in the pathway, the addition of distinct amounts of external
ligand, and the effect of different methylation states. In particular, we show how to
exploit the concept of virtual volumes in membrane systems to describe and simulate
the occurrence of intracellular concentration gradients of CheYp, and present the
effects of different diffusion coefficients and of a varying number of virtual volumes
over the response of this pathway.



3 Molecular Diffusion and Compartmentalization in Signal Transduction Pathways 67

Indeed, the requirement that living cells are constituted by diluted and
homogeneous compartments can be assumed in some particular cases, but there
are several cellular processes in which the effects of spatial heterogeneity—due to
diffusive events—must be explicitly considered in order to capture the correct system
behavior [12]. In this context, reaction-diffusion (RD) systems are usually used to
describe chemical systems where the spatial distribution of chemicals can influence
the overall system dynamics. The standard computational approach for RD systems
exploits a continuous time and space domain description, based on a set of partial dif-
ferential equations that can be solved analytically or numerically; in addition, other
computational frameworks (e.g., molecular dynamics, Brownian motion, cellular au-
tomata) can be used to analyze such kind of systems [13]. Lastly, spatial approaches
based on Gillespie’s method [14] were also introduced, so as to represent RD systems
as a set of well-stirred chemical reactors that communicate particles with each other
(see [12] for more details). These methods, based on a master equation approach, can
be more appropriate when biological noise plays a major role on the system dynamics
[15, 16]. This formulation adopts a mechanistic perspective on the chemical system,
by describing it as a sequence of collision events among molecules. Each collision
can lead either to a new chemical compound (reactive collision) or to an elastic
scattering (diffusive collision), which does not alter the nature of chemical species
but only their distribution in space. The resulting dynamics is the superposition of a
typical Brownian motion (random walk) with an interaction/reaction process. In the
case that the reaction volume is homogeneous, this picture corresponds to a well-
stirred reactor and the dynamics can be tracked by means of a stochastic simulation
algorithm [14].

In this context, we exploit the multivolume stochastic simulation algorithm
τ -DPP [17] to model and simulate diffusive events in bacterial chemotaxis. The
outcome of the stochastic simulations of this model are fundamental for the inves-
tigation of this system: we exploit these results to analyze the interplay between
stochastic fluctuations of CheYp and the number of cellular flagella, which occur in
a few units in the individual bacterium (around half a dozen in E. coli). The aim of
this analysis is to devise the mean time periods during which the cell either performs
a running or a tumbling motion, considering both the coordination of flagella and
the randomness that is intrinsic in the chemotactic pathway.

Experimental observations show that the running motion requires all flagella to be
simultaneously synchronized in the counterclockwise rotation, which occurs when
CheYp is not interacting with the proteins regulating the flagellar motor. When at
least one flagellum is not coordinated with the others, then the bacterium performs
a tumbling movement. To distinguish between these two states, we assume that the
cell is sensitive to a threshold level of CheYp, that is evaluated as the mean value
of CheYp at steady state. Because of stochastic fluctuations, the amount of CheYp
randomly switches from below to above this value, thus reversing the rotation of
each flagellum from counterclockwise to clockwise. Therefore, we exploit stochas-
tic simulations to link the synchronization of all flagella to the fluctuations of CheYp
as the core component that stands at the basis of chemotactic motions. To this aim,
we define a procedure to identify the synchronization of rotations of all flagella, and
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we use it to compare the mean time intervals of running and tumbling motions—as
well as of the adaptation times after ligand addition—according to a varying number
of flagella. It is worth noting that, in this context, the application of deterministic
methods (e.g., based on ordinary differential equations) is inappropriate, since the
outcome of deterministic simulations would yield a flat temporal evolution of CheYp
amount, not showing any switch between counterclockwise and clockwise rotations
of the flagellar motors. As a consequence, a deterministic model of bacterial chemo-
taxis would not allow to investigate any biologically interesting aspect related to the
synchronization of flagella, that are actually influenced by the stochastic fluctuations
of CheYp.

The chapter is structured as follows. In Sect. 3.2 we introduce the basic notions
of membrane systems and of τ -DPP class. In Sect. 3.3 we present the bacterial
chemotaxis system, and the single and multivolume models that we have formalized
by means of τ -DPP. In Sect. 3.4 we present the results concerning the simulation
and analysis of the two models. Section 3.5 concludes the chapter with some final
remarks.

3.2 A Multivolume Modeling Approach with Membrane Systems

In this section we recall the basic notions of membrane systems and of τ -DPP, a com-
putational framework that can be used to formally describe and simulate stochastic
models of complex biological systems.

3.2.1 Membrane Systems

Membrane systems, also called P systems, were introduced in [18] as a class of
unconventional computing devices of distributed, parallel and nondeterministic type,
inspired by the compartmental structure and the functioning of living cells. A
basic P system is defined by a membrane structure where multisets of objects evolve
according to given evolution rules, which also determine the communication of
objects between membranes. A membrane structure consists of a set of membranes
hierarchically embedded in a unique membrane, called the skin membrane. The mem-
brane structure is represented by a string of correctly matching square parentheses,
placed in a unique pair of matching parentheses. Each pair of matching parentheses
corresponds to a membrane and, usually, membranes are univocally labeled with dis-
tinct numbers. For instance, the string μ = [0 [1 ]1 [2 [3 ]3 [4 ]4 ]2 ]0 corresponds to
a membrane structure consisting of 5 membranes placed at three hierarchical levels.
Moreover, the same membrane structure can be also represented by the string
μ≥ = [0 [2 [4 ]4 [3 ]3 ]2[1 ]1 ]0, that is, any pair of matching parentheses at the same
hierarchical level can be interchanged, together with their contents; this means that
the order of pairs of parentheses is irrelevant, what matters is their respective rela-
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tionship. Each membrane identifies a region, delimited by it and by the membranes
(if any) immediately inside it. The number of membranes in a membrane structure
is called the degree of the P system. The whole space outside the skin membrane is
called the environment.

An object can be a symbol or a string over a specified finite alphabet V ; multisets
of objects are usually considered in order to describe the presence of multiple copies
of any given object inside a membrane. A multiset associated with membrane i is
a map Mi : V ≤ N which associates a multiplicity to each object in the multiset
itself. Inside any membrane i , objects in Mi are modified by means of evolution rules,
which are multiset rewriting rules of the form ri : u ≤ v, where u and v are multisets
of objects. The objects from v have associated target indications which determine
the regions where they are to be placed (communicated) after the application of the
rule: if tar = here, then the object remains in the same region; if tar = out , then
the object exits from the region where it is placed and enters the outer region (or even
exits the system, if the rule is applied in the skin membrane); if tar = in j , then the
object enters the membrane labeled with j , j ∈= i , assumed it is placed immediately
inside the region where the rule is applied (otherwise the rule cannot be applied).

When considering P systems as computing devices, a computation is obtained
starting from an initial configuration (described by a fixed membrane structure
containing a certain number of objects and rules) and letting the system evolve.
A universal clock is assumed to exist: at each step, all rules in all regions are simul-
taneously applied to all objects which can be the subject of an evolution rule. That
is, we say that rules are applied in a maximal parallel manner; as well, membranes
evolve simultaneously. If no further rule can be applied, the computation halts and
its result is read in a prescribed way.

In what follows, we consider P systems as a modeling tool for biological systems,
and not from a computing perspective. To this purpose, membranes and regions
are used to characterize cellular compartments or volumes, objects correspond to
biochemical species, and rules describe molecular interactions between species. In
this context, given a rule u ≤ v and objects a1, . . . , ak, b1, . . . , bh ∗ V , we use
the notation n1a1 + · · · + nkak ≤ m1b1 + · · · + mhbh to denote the elements in
the multiset u and v, instead of the classical notation u = an1

1 , . . . , ank
k and v =

bm1
1 , . . . , bmh

h . We also talk about evolution of the P system instead of computation.

3.2.2 τ -DPP

The class of P systems called τ -DPP [17] represents an integration of a mem-
brane structure (as defined in Sect. 3.2.1) with the tau-leaping algorithm [19].
Tau-leaping is an approximated and faster version of the seminal Gillespie’s sto-
chastic simulation algorithm (SSA) [14]. Both algorithms allow to generate the tem-
poral evolution of chemicals contained inside a well stirred volume, in given and
fixed experimental conditions. Chemicals interact with each other by means of given
reactions, whose physical and chemical properties are encompassed in a specified
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stochastic constant associated to each reaction. Reactions are applied according to a
probability distribution, that is determined—at each computation step—by the cur-
rent state of the system (given by the number of molecules of each chemical species)
and by the value of all reaction constants. SSA and tau-leaping share the characteris-
tic that repeated (independent) executions will produce different temporal dynamics,
even starting from the same initial configuration, thus reflecting the inherent noise of
the system. The two algorithms differ with respect to the way reactions are applied.
In SSA, only one reaction can be applied at each step; the reaction that will be actu-
ally simulated, and the waiting time before the next reaction will take place, depend
on two independent random numbers drawn from the uniform unit interval [0, 1]. In
tau-leaping, instead, several reactions can be chosen and executed simultaneously,
by the sampling of Poissonian distributions and by choosing an opportune time in-
crement (we refer to [19] for further details). So doing, the computational burden
typical of SSA in simulating large systems, consisting of many reactions and many
chemical species, can be largely reduced. Indeed, with tau-leaping it is possible to
handle detailed descriptions of many molecular interactions and chemical modifi-
cations (e.g., phosphorylation or methylation states of proteins), providing fast and
reliable stochastic simulations of mechanistic models of complex biological systems
[20]. On the other side, tau-leaping is not guaranteed to reproduce the exact behavior
of the system, but the accuracy of the simulation can be controlled.

More precisely, tau-leaping works as follows. Let us denote by X a well stirred
system in thermal equilibrium, consisting of S molecular species s1, . . . , sS , which
can interact through R chemical reactions r1, . . . , rR . Let Xi (t) be the number of
molecules of chemical si at time t , and x = X(t) → (X1(t), . . . , X S(t)) the state
of the system at time t . The aim of the procedure is to fire several reactions for each
time interval [t, t + τ). In order to find out which reactions will be executed, we
have to calculate the probability that a reaction r j will occur in the next infinitesimal
time interval [t, t + dt), starting from the system state x. This probability is given
by a j (x)dt , which is the propensity function of reaction r j and is defined as a j (x) =
h j (x) · c j , where h j (x) is the number of distinct reactant molecules combinations in
r j , and c j is the stochastic constant associated to r j . Given a state x of the system X ,
we denote by K j (τ, x, t) the exact number of times that a reaction r j will be fired in
the time interval [t, t+τ), so that K(τ, x, t) is the exact probability distribution vector
(having K j (τ, x, t) as elements). For arbitrary values of τ , calculating the values
K j (τ, x, t) is as difficult as resolving the Chemical Master Equation corresponding
to system X . On the contrary, if τ is small enough so that the change in the state x
during [t, t + τ) is so slight that no propensity function will suffer an appreciable
change in its value (this is called the leap condition), then it is possible to evaluate
a good approximation of K j (τ, x, t) by using the Poisson random variables with
mean and variance a j (x) · τ . Hence, starting from the state x and choosing a τ

value that satisfies the leap condition, the state of the system is updated at time t + τ

according to X(t +τ) = x+∑
j=1, ..., R v j Pj (a j (x), τ ), where Pj (a j (x), τ ) denotes

an independent sample of the Poisson random variable with mean and variance
a j (x) · τ , and v j → (v1 j , . . . , vSj ) is the state change vector whose element vi j

represents the stoichiometric change of species si due to reaction r j . Summarizing,
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each iterative step of the algorithm consists of five stages: (1) generate the maximum
changes of each species that satisfy the leap condition; (2) compute the mean and
variance of the changes of the propensity functions; (3) evaluate the leap value τ

exploiting the auxiliary quantities previously computed; (4) toss the reactions to
apply; (5) update the system state (see [19] for further details).

The introduction of τ -DPP [17] for the investigation of biological systems was
motivated by two main problems. The first consists in the fact that the tau-leaping
algorithm is only applicable to well stirred chemical reaction systems contained
inside a single fixed volume. The second problem concerns the improvement of an-
other class of P systems, called DPPs [21], which are membrane systems where
probabilities are associated with the rules, and such values vary during the evolu-
tion of the system, according to a prescribed strategy. However, DPPs only allow
qualitative simulations of the system dynamics, since rules are applied according
to a universal clock in a parallel manner and no time length is associated to their
application.

A solution to the first problem consists in exploiting the framework of DPPs,
since the membrane structure is suitable to represent systems consisting of many
regions [21–23]. The second problem can be solved by extending tau-leaping to the
modeling framework provided by DPPs. Within the framework of P systems, this
algorithm represents a novel tool for the modeling of multivolume systems able to
provide a quantitative description of the system dynamics. Briefly, in τ -DPP instead
of assuming a global clock for the instantaneous and parallel application of the rules,
as it is done in DPPs, each step has a different length, computed according to the
current system state; then, during the time step, a certain number of rules is selected
and executed, according to the tau-leaping algorithm.

τ -DPP is a computational method which can be used to describe and perform sto-
chastic simulations of complex biological systems. For instance, cellular pathways
involving several spatial compartments (as the extracellular ambient, the cytoplasm,
the nucleus, etc.), or multicellular systems like bacterial colonies, or multi-patched
ecological systems as metapopulations, are all examples of complex systems that
could be investigated with τ -DPP. Since τ -DPP represents a general simulation
framework for a broad range of complex systems, in the following we use the generic
terms volume (or region), object (or species) and rule (or reaction), to denote the
compartment where the molecular species can be modified in some way by a bio-
chemical reaction. The correct behavior of the whole system is achieved by letting
all volumes evolve in parallel, and by using the following strategy for the choice of
time increments. At each iteration, τ -DPP considers the current state of each volume
(determined by the current number of objects), and then calculates a time increment
independently in each volume (according to the standard tau-leaping algorithm).
Then, the smallest time increment is selected and used to evaluate the next-step evo-
lution of the entire system. Since all volumes locally evolve according to the same
time increment, τ -DPP is able to correctly work out the global dynamics of the sys-
tem. Moreover, by adopting this procedure, the simulated evolutions of all volumes
get naturally synchronized at the end of each iterative step. The synchronization
is also necessary—and exploited together with a parallel update of all volumes—
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to manage the communication of objects among volumes, whenever prescribed by
specific rules.

Formally, a τ -DPP Υ is defined as

Υ = (V1, . . . , VN , μ,S , M1, . . . , MN , R1, . . . , RN , C1, . . . , CN ),

where:

• V1, . . . , VN , N ≥ 1, are the volumes of the system;
• μ is a membrane structure representing the topological arrangement of the

volumes;
• S = {s1, . . . , sS}, S ≥ 1, is the set of objects, that is, the alphabet of the system;
• M1, . . . , MN are the multisets over S occurring inside the volumes V1, . . . , VN ,

respectively, representing the internal state of the volumes;
• R1, . . . , RN are the sets of rules defined in volumes V1, . . . , VN , respectively.

A rule can be of internal or of communication type (as described below);
• C1, . . . , CN are the sets of stochastic constants associated to the rules defined in

volumes V1, . . . , VN , respectively.

The system Υ is defined by means of a set of N volumes organized according to
the hierarchy specified by the membrane structure μ. The state of the whole system
is characterized by all multisets Mi occurring inside each volume Vi (1 ∀ i ∀ N ).

Inside the volumes, the sets of rules R1, . . . , RN are defined along with the sets of
stochastic constants C1, . . . , CN . The stochastic constants are needed, together with
a combinatorial function depending on the left-hand side of the rule (as explained
in [14]), to compute the probabilities of the rule applications (i.e., their propensity
functions).

Each volume Vi can contain two different kinds of rules, termed internal and
communication rules. An internal rule describes the modification, or evolution of
the objects inside the single volume where it is applied, while a communication rule
sends the objects from the volume where it is applied to an adjacent volume (possibly
modifying the form of these objects during the communication step).

More precisely, internal rules have the general form α1s1 +α2s2 +· · ·+αSsS ≤
β1s1 + β2s2 + · · · + βSsS , where s1, . . . , sS ∗ S are distinct object types and
α1, . . . , αS , β1, . . . , βS ∗ N. For instance, s1, . . . , sS can correspond to molecular
species, and, in this case, α1, . . . , αS, β1, . . . , βS represent stoichiometric coeffi-
cients. The objects appearing in the left-hand side of the rule are called reagents,
while the objects on the right-hand side are called products. Note that, usually, we
consider the case where (at most) two objects appear in the reagents group. The
rationale behind this is that we require biochemical reactions to be (at most) of the
second-order, since the simultaneous collision and chemical interaction of more than
two molecules at a time, has a probability to occur close to zero in real biochemical
systems. Moreover, the interaction among more than two molecules can be modeled
by using a set of successive reactions with lower order.

When dealing with communication rules inside a volume, besides defining the
sets of reagents and products, it is necessary to specify the target volume where
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the products of this rule will be sent (this definition can be easily extended in or-
der to assign a different target volume to each object appearing in the set of prod-
ucts). Formally, a communication rule has the form α1s1 + α2s2 + · · · + αSsS ≤
(β1s1 + β2s2 + · · · + βSsS, tar), where s1, . . . , sS ∗ S are distinct object types,
α1, . . . , αS , β1, . . . , βS ∗ N, and tar can be equal to:

• out : this means that the products of the rule are “sent outside” the source volume
(that is, the region where the rule is applied), to the adjacent outer volume;

• inlabel : this means that the products of the rule are “sent inside” the volume with
the label specified by the target. These rules are only allowed if the target volume
is placed inside the source volume, and the two volumes are adjacent (that is, there
is no other volume placed between the source and the target volume).

• tolabel : this means that the products of the rule are “sent to” the volume with the
label specified by the target. These rules are only allowed if the target volume is
adherent to the source volume (that is, there is no other volume placed between
the source and the target volume).

The condition that at most two objects appear as reagents is usually required also
for communication rules. Communication rules are considered special rules for what
concerns the time increment (τ ) selection procedure, applied in the first stage of the
τ -DPP algorithm. For internal rules, indeed, this procedure is exactly the same as
the tau-leaping algorithm, where the length of the step is computed by bounding
the variation of the molecular amounts. Namely, in order to correctly evaluate the
simulation time increment and to describe the behavior of the system with a good
approximation, the “largest” value of τ that also satisfies the leap condition is chosen,
as fully described in [19].

On the contrary, the variation due to communication rules implies a change in
the amounts of objects inside two different volumes: the reagents inside the source
volume, and the products sent to the destination volume. To correctly estimate the
value of τ when dealing with communication rules, instead of limiting the variation
of both reagents and products (as it is done for internal rules), only the variation of the
reagents inside the source volume is considered (that is, only the left-hand side of the
communication rule is used). Indeed, the value of τ is independent from any objects
that has to be communicated, since these products will be received in the target vol-
ume only at the end of the iteration step. For this reason, for the τ selection procedure,
the right-hand side of a communication rule is neither considered in the source, nor in
the target volume. Obviously, the communicated objects will contribute to update the
system state, which takes place at the end of the iteration step, and will be therefore
considered to determine the state of the target volume for the next iteration step.

3.3 The Modeling of Bacterial Chemotaxis

In this section we introduce the chemotaxis signaling pathway, we define the single
volume mechanistic model that describes the molecular interactions therein involved,
and then introduce the multivolume model, both formalized by means of τ -DPP.
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3.3.1 Bacterial Chemotaxis

Chemotaxis is a signal transduction pathway that allows swimming bacteria to per-
form biased movements in ever-changing environments, by efficiently sensing con-
centration gradients of beneficial or toxic chemicals in their immediate proximity.
The binding of ligand molecules triggers an events cascade involving several trans-
membrane and cytoplasmic proteins, which eventually affects the concentration of
a pivotal response regulator, CheY. This protein rapidly diffuses inside the cell and
interacts with the proteins of the flagellar motors, thus inducing clockwise (CW) and
counterclockwise (CCW) rotation of each flagellum. When flagella are turning CW,
they are uncoordinated and the bacterium performs a tumbling movement, while if
they are all turning CCW, they form a bundle and get coordinated, thus allowing
the cell to swim directionally (the so-called running movement). In a homogeneous
environment, bacteria perform a temporal sampling of their surroundings by mov-
ing with a random walk, that is caused by a high switch frequency of the flagel-
lar motors rotations, that alternate rapid tumbling with short running movements.
In the presence of a ligand concentration gradient, instead, bacteria carry out direc-
tional swimming toward/against the attractants/repellents, by reducing the switch
frequency of flagella rotations, that results in longer running movements. If the lig-
and concentration remains constant in time, then the switch frequency is reset to the
prestimulus level, therefore realizing an adaptation of the chemotactic response to
the change in ligand concentration. In what follows, we consider the chemosensory
system of E. coli bacteria, in response to attractant chemicals.

The chemotactic pathway, depicted in Fig. 3.1, has been well characterized from
a molecular point of view [5, 24, 25]. External signals are detected by transmem-
brane methyl-accepting proteins (MCPs), which are linked to cytoplasmic histidine
protein kinases (CheA) by means of scaffold proteins (CheW). These three proteins
constitute the sensor module (i.e., the receptor complexes) of the whole pathway;
each protein occurs as a dimer in every receptor complex. The role of CheA is to
transduce the presence of an external ligand toward the inside of the cell, by phos-
phorylating two cytoplasmic proteins, called CheY and CheB. The transfer of the
phosphoryl group to these proteins is more probable—that is, the activity of CheA
is stronger—in absence of external ligands. CheY and CheB compete for the bind-
ing to CheA, but the phosphotransfer to CheY is faster than to CheB [25]; this fact
assures that the proper chemotactic response can be generated before the process
of adaptation occurs, as explained hereafter. CheY is the response regulator protein
which, after being phosphorylated, interacts with the proteins FliM of the flagellar
motors, inducing the CW rotation of the flagellum and the tumbling movements
(FliM is a key component of the processes that stands downstream of the chemotaxis
signaling, and therefore will not be explicitly included in our model). In presence
of external ligands, the activity of CheA is reduced: the concentrations of phos-
phorylated CheY diminishes, its interaction with the flagellar motors is reduced,
the CCW rotation is switched on, and bacteria can perform longer running move-
ments. The termination of this signal transduction process is mediated by another
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Fig. 3.1 Signal transduction pathway in bacterial chemotaxis: solid arrows indicate enzyme-
catalyzed reactions, dashed arrows indicate autocatalysis; CH3 denotes the methyl group, P the
phosphoryl group (the dimensions of components are not scaled)

cytoplasmic protein, CheZ, which acts as an allosteric activator of CheY dephos-
phorylation. Concurrently to the processes involving CheY, the chemosensory sys-
tem possesses an adaptation response which depends on the methylation level of the
receptors. Methylation reactions are modulated by the coordinated interplay between
proteins CheR and CheB. Up to 4–6 methyl groups are constantly transferred to the
cytoplasmic domain of MCPs by the constitutively active methyltransferases CheR.
On the other side, the demethylation of MCPs occurs by means of the phosphorylated
form of the methylesterase CheB. The methylation state of MCPs also intervene on
the regulation of CheA: when MCPs are highly methylated, CheA is more active;
when MCPs are unmethylated, the activity of CheA is reduced. In the latter case,
also the concentrations of phosphorylated CheB diminishes, and this in turn lets the
methylation state of MCPs increase, with a consequent renewed activity of CheA,
and so on through a continuous feedback control. Therefore, the cell is able to adapt
to environmental changes and return to the random walk sampling when the concen-
tration gradient of the attractant remains constant in time. This feedback mechanism
also allows bacteria to widen the range of ligand concentration to which they can
respond, making them very sensible to low environmental variations.
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Table 3.1 Molecular amounts of the species initially present in the multiset M1

Molecular species Initial amount

2MCP 4000
2CheW 4000
2CheA 4000
CheY 17000
CheZ 12000
CheR 200
CheB 1700
ATP 1.2 ·106

These values, corresponding to the amounts of the 7 elementary chemotactic proteins initially
occurring in the system, have been taken from [27]. The amount of ATP is kept constant during the
evolution of the system

3.3.2 A Mechanistic Model

In this section, we present the mechanistic model of bacterial chemotaxis that has
been formalized by means of a τ -DPP composed of a single volume, 32 molecular
species and 62 reactions [26].

The τ -DPP ΥSV describing the chemotaxis pathway is defined as

ΥSV = (V1, μ,S , M1, R1, C1),

where:

• V1 is the volume representing the bacterium cytoplasm;
• μ = [1]1;
• S = { 2MCP, 2CheW, 2MCP::2CheW, 2CheA, 2MCP::2CheW::2CheA, ATP,

2MCP::2CheW::2CheAp, CheY, CheYp, CheB, CheBp, CheZ, lig, lig::2MCP::-
2CheW::2CheA, CheR, lig::2MCPm ::2CheW::2CheA, lig::2MCPm ::2CheW::2-
CheAp, 2MCPm ::2CheW::2CheA, 2MCPm ::2CheW::2CheAp } for m = 0, . . . , 4;

• M1 is the set of the initial amounts of molecular species (given in Table 3.1);
• R1 is the set of reactions, reported in Table 3.2;
• C1 is the set of stochastic constants associated to R1, reported in the caption of

Table 3.2.

The initial multiset M1 occurring in the system is reported in Table 3.1, the
amounts of all other molecular species present inS are initially equal to zero, as they
are produced by mimicking the formation and dissociation of protein complexes,
and by describing the phosphorylation/dephosphorylation of cytoplasmic proteins
and the methylation/demethylation of MCPs, in both the conditions of presence and
absence of external ligands.

As described in Sect. 3.2, each reaction in the model is given in the form “reagents
≤ products”, where the notation X + Y is used to represent a molecular interaction
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between species X and Y, while X::Y denotes that X and Y are chemically bound
in the formation of a complex (see Table 3.2). The phosphorylated form of species
X, with X ∗ {CheA, CheB, CheY}, is denoted by Xp, while the methylation state
of receptor MCP is denoted by MCPm , for m = 0, . . . , 4 (that is, five methylation
states are considered).

The reactions in R1 have been “clustered” in Table 3.2 according to the different
molecular interaction mechanisms that they describe:

• association of the three dimers (2MCP, 2CheW and 2CheA) constituting each
ternary receptor complex (reactions 1–4);

• binding and unbinding of ligand molecules to the receptor complex in the five
methylation states (reactions 28–32 and 33–37, respectively);

• methylation and demethylation of MCPs, in absence and in presence of ligand
molecules (reactions 5–8, 9–12 and 38–41, 42–45, respectively);

• autophosphorylation of CheA in the five methylation states of MCPs, in absence
and in presence of ligand molecules (reactions 13–17 and 46–50, respectively);

• phosphotransfer to CheY in the five methylation states of MCPs, in absence and
in presence of ligand molecules (reactions 18–22 and 51–55, respectively);

• phosphotransfer to CheB in the five methylation states of MCPs, in absence and
in presence of ligand molecules (reactions 23–27 and 56–60, respectively);

• dephosphorylation of CheYp and CheBp (reactions 61–62).

According to literature, the ternary receptor complex 2MCPm ::2CheW::2CheA
is assumed to be stable for the duration of the signal transduction process [28];
moreover, the synthesis and degradation rates of all chemotactic proteins are assumed
to occur at a much slower scale than the chemotactic response (hence, the reactions
corresponding to these processes have not been included in the model).

A stochastic constant is associated to each reaction: it is needed to evaluate the
probability of that reaction to occur when performing stochastic simulations, as
explained in [14]. The stochastic constants used for all simulations presented in
Sect. 3.4 are those reported in the caption of Table 3.2 (all values are expressed in
s−1). Some of these values have been derived from literature [29], and some tuned
to account for the following biological features [30, 31]:

(1) the binding affinity of the ligand is directly proportional to the methylation state
of MCPs;

(2) the ligand-receptor binding reactions occur at a faster rate with respect to phos-
phorylation and methylation/demethylation reactions;

(3) the methylation and demethylation activities of CheR and CheBp are, respec-
tively, inversely and directly proportional to the methylation state of MCPs;

(4) the rate of phosphotransfer from CheA to CheY and to CheB depends on the
rate of autophosphorylation of CheA.

According to these constraints, which set the relative magnitude of some constants
with respect to others, the estimation of the unavailable constants has been performed
by testing the effect of a range of values for each constant within every module of the
model. By a module we mean a group of reactions corresponding to a specific process,
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Fig. 3.2 The signal transduction pathway in bacterial chemotaxis. Left chemotactic proteins and
diffusion of CheYp from receptors site to flagella. Right formal representation of the system with
the partition into N virtual volumes

such as, e.g., reactions 1–4 that describe the formation of the receptor complexes.
Within this range, the value for each constant chosen in the end is the one that
yields a good reproduction of the expected behavior of the biological subsystem
described by that module. Then, every other module has been sequentially added to
the previous ones, following the same iterative process, to perform a comprehensive
and biologically correct simulation of the whole pathway.

3.3.3 Multivolume Model: Diffusion in a Signal
Transduction Pathway

To the aim of modeling the diffusive processes in bacterial chemotaxis, here we
present an extension of the single volume model described in Sect. 3.3.2 [32]. In
that model we did not take into account the diffusion of CheYp [33], which moves
from the place where it is phosphorylated (close to one polar region of the cell) to the
location of flagella (randomly and asymmetrically placed along the bacterial surface,
but more frequently occurring at the distal region—see Fig. 3.2, left side). Similarly,
also the non phosphorylated form of this protein, CheY, can diffuse from the anterior
to the distal end of the cell, and back. The dephosphorylation of CheYp is aided by
protein CheZ, which can also diffuse throughout the bacterial cytoplasm [34, 35].

To the purpose of mimicking diffusion events in cellular systems, we consider
the following procedure within τ -DPP for the evaluation of the stochastic constants
associated to communication (diffusion) reactions. Let us denote by Ω ∧ R

3 the
entire bacterial volume (cytoplasm), and consider a subdivision of Ω into N adjacent
and non overlapping subvolumes Vk , k = 1, . . . , N , each one described by a char-
acteristic length hk (that is, Vk = h3

k), such that Ω = ⊕
k Vk . Each Vk represents a

“virtual volume”, that is, a space that does not correspond to a real sub-compartment
of the bacterial cytoplasm Ω , but whose definition is necessary in order to describe
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the local distributions of chemicals and to handle the diffusion of these chemicals
between any couple of neighboring subvolumes. The partition of Ω into virtual
volumes represents a natural extension of the master equation approach [16] to het-
erogeneous (space) systems, whereby each virtual volume can be assumed to be
homogeneous.

In these conditions, for each species Xi that occurs in the virtual volume Vk and
that is free to diffuse, it is possible to define a mean jump frequency, given by D̃i,k =
(6Di )/h2

k [15], which allows to connect the microscopic description of the master
equation with the macroscopic Fick’s diffusion coefficient Di of species Xi , and to
verify if the well-stirred condition still holds. The latter requirement is equivalent
to impose that, inside each virtual volume, the diffusion time τdiff ∼ h2

k/(6Di ) of
species Xi is much smaller than the reaction waiting times τ [36]; this condition
should also be granted for the rate of diffusion of each species between neighboring
subvolumes. This observation allows to derive the expression to evaluate the value
of the stochastic constant associated to the communication reactions of species Xi ,
that is, cdiff

i ∪ Di/h2
k . Therefore, for each diffusing species Xi ∗ {CheZ, CheY,

CheYp} in the bacterial chemotaxis pathway, we consider the length of bacterial
cell L = 3.3 µm and the values of diffusion coefficients DCheZ = 0.66 µm2s−1,
DCheY = DCheYp = 1.26 µm2s−1 reported in [33]. We obtain hk = L/N and,
assuming for instance N = 6, we derive that cdiff

CheZ ∪ 2.18 s−1 and cdiff
CheY =

cdiff
CheYp ∪ 4.17 s−1.

To account for diffusion processes, the single volume model described in
Sect. 3.3.2 has been modified as follows. The internal reactions corresponding to
protein-protein interactions and to the sensing of the external ligand (Table 3.2)
are all assumed to occur inside the virtual volume V1, which corresponds to the
anterior end of the bacterial cell where the chemotactic receptors (MCPs) are placed
(see Fig. 3.2, right side). In addition, communication reactions are included in each
couple of neighboring virtual volumes Vk, Vk+1, for every k = 1, . . . , N − 1, in
order to allow the diffusion of the three species CheZ, CheY, CheYp throughout the
entire volume. We also assume that CheZ is uniformly distributed within the entire
bacterial volume, while CheY is initially present only in the virtual volume V1, where
it is phosphorylated by CheA.

In order to consider different crowding conditions of the bacterial cytoplasm, we
have fixed three different sets of stochastic constants (see Table 3.3) for the diffusion
reactions of CheZ, CheY, CheYp:

(1) in case A, the values of diffusion constants for CheY, CheYp and CheZ are
roughly twice as the derived values cdiff

CheY, cdiff
CheYp, cdiff

CheZ, as assumed in [33].
This case gives rise to a system dynamics where the mean values of the steady
states of CheYp, inside each virtual volume, are very similar each other, up to
stochastic fluctuations;

(2) in case B, the values of diffusion constants for CheY, CheYp and CheZ are 1/10
the values of case A, thus mimicking a cytoplasmic condition where diffusion
is more limited than case A. This case gives rise to a system dynamics where
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the mean values of the steady states of CheYp, inside each virtual volume, are
slightly different each other;

(3) in case C, the values of diffusion constants for CheY, CheYp and CheZ are 1/40
the values of case A, thus mimicking a crowded cytoplasm where diffusion is
strongly inhibited by the presence of obstacles. This case gives rise to a system
dynamics where the mean values of the steady states of CheYp, inside each
virtual volume, are markedly different each other (being the difference more
evident between the two volumes at the opposite poles of the cell).

The τ -DPP ΥMV describing the chemotaxis pathway along with diffusion
processes of the species CheZ, CheY, CheYp is defined as

ΥMV = (V1, . . . , VN , μ,S , M1, . . . , MN , R1, . . . RN , C1, . . . , CN ),

where:

• V1, . . . , VN are the virtual volumes representing the bacterium cytoplasm;
• μ = [1]1 . . . [N ]N is the membrane structure where virtual volumes are arranged

as a chain graph with undirected edges, that is, only adjacent volumes can com-
municate. The volume Ve, namely, the environment which contains volumes
V1, . . . , VN , is not formally represented here;

• S = { 2MCP, 2CheW, 2MCP::2CheW, 2CheA, 2MCP::2CheW::2CheA, ATP,
2MCP::2CheW::2CheAp, CheY, CheYp, CheB, CheBp, CheZ, lig, lig::2MCP::-
2CheW::2CheA, CheR, lig::2MCPm ::2CheW::2CheA, lig::2MCPm ::2CheW::2-
CheAp, 2MCPm ::2CheW::2CheA, 2MCPm ::2CheW::2CheAp } for m = 0, . . . , 4;

• M1, . . . , MN are the sets of initial amounts of molecular species (reported in the
following);

• R1, . . . , RN are the sets of reactions reported in Tables 3.2 and 3.4, as explained
later on;

• C1, . . . , CN are the sets of stochastic constants associated to R1, . . . , RN , given
in the caption of Tables 3.2 and 3.3.

The initial amounts of molecular species occurring in the multiset M1 correspond-
ing to volume V1 are those reported in Table 3.1, except for the value of protein CheZ,

Table 3.3 Values of the stochastic constants of diffusion reactions, in relation to the three cases
considered (A, B, C) and to the number of virtual volumes N (all values are expressed in s−1)

N = 6 N = 12 N = 30 N = 60

case A 10 33 208 833
CheY/CheYp case B 1 3.3 20.8 83.3

case C 0.25 0.825 5.2 20.825
case A 5 17 110 436

CheZ case B 0.5 1.7 11 43.6
case C 0.125 0.425 2.75 10.9
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which is considered uniformly distributed in all virtual volumes; therefore, its amount
inside M1 is reduced to 12000/N . As in the case of the single volume system ΥSV , the
amount of ATP is kept constant during the evolution of ΥMV and the initial amounts
of all other molecular species are equal to zero. The initial multisets M2, . . . , MN

contain only 12000/N monomers of CheZ.
The reactions of the ΥMV contained in R1 are those listed in Table 3.2 with

the addition of the diffusion reactions for the communications of the species CheZ,
CheY, CheYp (Table 3.4). With respect to ΥSV , in ΥMV the value of stochastic
constant corresponding to reaction 61 in Table 3.2 is reduced to 8 × 10−6 s−1. The
sets R2, . . . , RN contain the reaction representing the dephosphorylation of CheYp
aided by protein CheZ, and the diffusion reactions (Table 3.4), since we suppose that
the chemotactic pathway operates only within the volume containing the receptors
(V1 in our model). Note that in the simulation results presented in Sect. 3.4, different
values for the diffusion reactions are used (Table 3.3), as explained above.

3.4 Results

In this section we present the results obtained from the simulation of the dynamics of
ΥSV and ΥMV by investigating, in particular, the phosphorylated form of the pivotal
protein CheY, and by analyzing the running and tumbling average time in different
conditions for both single and multivolume models.

3.4.1 Simulations of ΥSV

The dynamics of CheYp has been analyzed by considering various conditions, such
as the addition and removal of different ligand amounts, distinct methylation states
of MCPs and deletion of other chemotactic proteins.

Table 3.4 Dephosphorylation of CheYp aided by protein CheZ (reaction 1) and diffusion reactions
occurring inside the virtual volumes Vk (where 1 < k < N )

Reagents Products Target volume

1 CheYp + CheZ CheY + CheZ k
2 CheZ CheZ k + 1
3 CheZ CheZ k − 1
4 CheY CheY k + 1
5 CheY CheY k − 1
6 CheYp CheYp k + 1
7 CheYp CheYp k − 1

It is clear that inside volume V1 (VN ), besides reaction 1, only reactions 2, 4, 6 (3, 5, 7) are present.
The stochastic constants associated to diffusion reactions are listed in Table 3.3
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Fig. 3.3 Dynamics of CheYp. Left adaptation response to two consecutive stimuli. Right compar-
ison of transient and steady state response to different ligand amounts

We start by showing in Fig. 3.3, left side, the response of the system to the addition
of two consecutive amounts of external ligand: the first stimulus corresponds to a
ligand amount of 100 molecules, added to the system at time t = 3,000 s and removed
at time t = 6,000 s, while the second stimulus corresponds to a ligand amount of
500 molecules, added at time t = 9,000 s and removed at time t = 12,000 s. Note
that, since the amount of CheYp is equal to 0 at the beginning of the simulation,
its dynamics initially shows a marked increase which then reaches a steady state
level, due to the counteraction of CheZ, CheR and CheB. Starting from this level,
the addition of ligands has been simulated by changing the amount of the species
lig contained within the multiset M1 of ΥSV from 0 to 100 molecules for the first
stimulus (from 0 to 500 molecules for the second stimulus), thus mimicking the
environmental situation where the bacterium encounters a different concentration
of attractant molecules. Vice versa, the removal of ligands has been simulated by
putting the value of lig back to 0 in M1. In the time interval between the addition
and the removal of each ligand stimulus, the amount of ligand molecules has been
kept at the constant value of 100 molecules for the first stimulus and 500 molecules
for the second, thus mimicking the presence of an environmental homogeneous
concentration. These two perturbations have been done in order to test the adaptation
capabilities of the system. In both cases, we can see that the system is able to respond
to a step-increase of the ligands by achieving a sharp and fast decrease in CheYp
(that is, the negative peaks at time instants t = 3,000 s and t = 9,000 s). Immediately
after this transient, the amount of CheYp returns to a steady state value, which differs
from the prestimulus level only for a few tens of molecules, at most, according to the
amount of added ligand. In this phase, the bacterium is returning to the prestimulus
switching and thus to the random walk sampling of its surroundings. When the ligand
is removed, CheYp shows another transient behavior, corresponding to a sharp and
fast increase of its amount. After this second transient, the amount of CheYp correctly
returns to the prestimulus steady state level. These results are in line with experimental
observations, as well as with previous simulations of CheYp dynamics carried out
using different models of bacterial chemotaxis (see, e.g., [10, 11, 37]).
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Table 3.5 Steady state values and minimum/maximum transient values of CheYp after addition
and removal of distinct ligand amounts

Ligand amount SS1 Min SS2 Max SS3

50 molecules 1486.7 1245.4 1500.9 1626.0 1474.7
100 molecules 1486.7 1160.7 1495.1 1645.4 1474.3
500 molecules 1486.7 1078.4 1481.4 1653.2 1469.4
1000 molecules 1486.7 1058.6 1478.2 1665.8 1474.7

In Fig. 3.3, right side, we compare the transients and the steady state levels reached
by CheYp after the addition of distinct ligand amounts to the multiset M1. This figure
shows that the response magnitude at steady state and the adaptation time of CheYp
is only slightly sensitive to the ligand amount, being the relative differences less than
a few tens of molecules and less than a few seconds, respectively. The mean values
of the steady state of CheYp before the stimulus (SS1), after the ligand addition
(SS2) and after the ligand removal (SS3) are reported in Table 3.5, together with the
values of its minimum and maximum values immediately after the ligand addition
and removal (Min and Max, respectively), for the four ligand amounts (50, 100, 500,
1,000 molecules) considered in the right side of Fig. 3.3.

In Fig. 3.4 we show how the dynamics of CheYp changes when CheB is deleted
from the multiset M1 at time t = 3,000 s, in both conditions of absence of external
ligands (left side) and of presence of 100 molecules of ligand (right side) added to
M1 at time t = 3,000 s. CheB is the methylesterase that, once being phosphorylated
by CheA, increases the methylation state of MCPs, thus keeping CheA more active.
This, in turn, causes an increase in the amount of CheYp, which is evident from its
new steady state level reached after CheB deletion, and also from its less negative
transient decrease after ligand addition.

Similarly, in Fig. 3.5 we show the dynamics of CheYp when either CheR (left
side) or CheZ (right side) are deleted from the multiset M1 at time t = 3,000 s,
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t = 3,000 s, without ligand (left) and with simultaneous addition of 100 ligand molecules (right)
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Fig. 3.5 Comparison of dynamics of CheYp in normal condition and after deletion of CheR (left)
and CheZ (right) at t = 3,000 s, both simulated with a simultaneous addition of 100 ligand molecules
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Fig. 3.6 Dynamics of CheYp when only 3 (left) and 2 (right) methylation states are active

simultaneously to the addition of 100 ligand molecules. When CheR is deleted, its
methyltransferase activity is silenced, the MCPs are no more methylated, and hence
the amount of CheYp tends to zero. On the contrary, when CheZ is deleted, all CheY
molecules always remain phosphorylated. For the sake of completeness, we have
also simulated the dynamics of CheYp when either CheB, CheR or CheZ are deleted
from the multiset M1 at time instant t = 0, in order to have a comparison about
the initial temporal evolution of CheYp and the steady state levels it can reach. In
these conditions, the model correctly simulates [6, 38, 39] a very low production
of CheYp when CheR is deleted, and an increased production (albeit with different
magnitudes) when either CheB or CheZ are deleted (data not shown).

Finally, in Fig. 3.6 we compare the dynamics of CheYp in response to the addition
of 100 ligand molecules to M1 at t = 3,000 s, when only 3 (left side) or 2 (right
side) methylation states of the receptors are allowed. In practice, this is achieved
by initially putting to zero the values of the stochastic constants of methylation and
demethylation reactions for levels m = 4 and m = 3, respectively. In both cases, we
see that the system is not able to adapt, as the steady state level of CheYp reached
after the addition of the ligand to the multiset M1 is substantially lower than the
steady state when all methylation levels are activated.
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The outcomes of the stochastic simulations reported in this section provide a
preliminary validation of the model described by means of the τ -DPP ΥSV presented
in Sect. 3.3.2, as the dynamics of CheYp under different conditions of the chemo-
tactic pathway are qualitatively analogous to experimental evidences. Additional
ad hoc experiments would be necessary to fully verify the simulation results and the
predictions achieved by our model, as also discussed further on.

3.4.2 The Interplay Between Stochastic Fluctuations
and the Number of Bacterial Flagella in ΥSV

In this section we make use of the simulations based on our single volume model
of chemotaxis to investigate the interplay between stochastic fluctuations of CheYp
and the number of flagella occurring on the cell, in order to outline the influence of
synchronization of flagellar motors on the swimming behavior and on the adaptation
mechanism of the bacterium to the environmental changes. To this aim, we consider
the dynamics of CheYp at steady state, as well as its transient step-decrease that takes
place immediately after the chemotactic stimulus. In both cases, we are interested
in devising the time periods during which the cell performs either a running or a
tumbling motion. In particular we assume that: (1) the time spent in alternating CW
and CCW rotations during the steady state corresponds to the random walk sampling
of the environment—where we expect more time spent in tumbling than in running
motions; (2) the time required to return to the prestimulus level of CheYp (that
is, the transient response immediately after the ligand addition) corresponds to the
chemotactic adaptation time—where we expect a much longer and uninterrupted
time interval of running motion with respect to the steady state condition.

As explained in Sect. 3.3.1, a running motion requires that all flagella are
simultaneously synchronized in a CCW rotation—which occurs when CheYp is
not interacting with the proteins FliM of the flagellar motors, that is, when its intra-
cellular concentration diminishes with respect to a reference value. To distinguish
between the CW and CCW rotations of a single flagellum, we assume that the flagel-
lar motor switch is sensitive to a threshold level of CheYp, that is hereby evaluated
as the mean value of CheYp at steady state (see also [8], where a similar approach
of threshold-crossing mechanism for motor switching was tested, albeit that work
considered only a unique flagellum and did not propose any investigation on the
simultaneous coordination of many flagella). When the amount of CheYp is below
this threshold, each flagellum is rotating CCW, while when the amount of CheYp
is above the threshold, each flagellum is rotating CW. In what follows, we make a
one-to-one correspondence between the behavior of a single flagellum and a tem-
poral evolution of CheYp generated by one run of τ -DPP, that is, we consider a
different and independent stochastic simulation for each and every flagellum (albeit
starting from the same initial conditions for the whole system). In other words, we
assume that flagella are independent of each other—as no molecular interactions
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between them have been evidenced in bacterial cells. Nonetheless, they all overlook
on the same intracellular ambient, that is, they are all subject to the same temporal
evolution of CheYp, apart from the stochastic noise existing among independent
simulations. In order to determine the synchronization of all flagella that will induce
a running motion of the bacterium, we therefore need to identify the time instants
when all flagella are rotating CCW, that is, to select the time intervals when all the
temporal evolutions of CheYp are below the fixed threshold. We remark here that a
similar analysis would be impossible using the outcome of deterministic simulations,
therefore supporting our choice in the definition of stochastic models.

Formally, we proceed as follows. Let n = 1, . . . , 10 be the number of flagella
f1, . . . , fn whose influence we want to test, and let σi , i = 1, . . . , n, be the time
series of CheYp amount (generated by a single simulation of the dynamics of ΥSV )
associated to each fi . For any fixed value of n, the total time of the simulation
considered to generate the dynamics of CheYp is the same for all σi . This simulation
time, hereby denoted byΔtsim , is chosen long enough to have a meaningful evaluation
of the mean intervals of running and tumbling in the analysis performed below (e.g.,
Δtsim = 40,000, 60,000, 120,000 s for n = 1, 5, 10, respectively). The threshold
for CheYp is evaluated in the following way: we choose an initial time instant at
the steady state level—distant enough from the step decrease of CheYp after ligand
addition, i.e., 1,000 s afterward—and then, starting from this instant and till the end
of Δtsim , we calculate the mean value μi =< σi > for each σi . Then, we define
a common threshold μ for all flagella, that is, μ = 1

n

∑
i=1, ..., n μi . This threshold

is considered as the reference value, also for the portion of the CheYp dynamics
corresponding to the transient decrease after ligand addition. In Fig. 3.7, top panel
on the left side, we show a part of Δtsim over a single simulation of CheYp, where
both the initial transient response and the stochastic fluctuations around the threshold
are evidenced. For all the results discussed below, the different values of μ have been
found to be approximately equal to 1,480 molecules.

The next step consists in detecting, for each fi , the time intervals during which the
amount of CheYp remains below μ, each one of these intervals corresponding to a
CCW rotation time interval of that flagellum. Namely, for each σi we identify the time

 μ 

σ
σ

Fig. 3.7 Threshold-crossing intervals in stochastic fluctuations of CheYp (left) and synchronization
of running motion between two flagella (right)
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intervals Δttrue ∧ Δtsim such that Δttrue = {t ∗ Δtsim | σi (t) − μ ∀ 0}. Note that
this simple mechanism of single threshold-crossing could be extended to consider
more complex situations—e.g., a double threshold-crossing mode can be assumed—
whereby one simply asks for analogous conditions to be satisfied. Similarly, for each
σi we can determine the complementary time intervals Δt f alse ∧ Δtsim such that
Δt f alse = {t ∗ Δtsim | σi (t) − μ > 0}; these intervals correspond to the time that
each flagellum fi spends in a CW rotation. Stated in other terms, we can associate
to each σi a function CCWσi : Δtsim ≤ {true, f alse} defined as:

CCWσi (t) =
{

true if σi (t) − μ ∀ 0,
f alse otherwise.

In Fig. 3.7, bottom panel on the left side, we show the values of this function
for the CheYp simulation given in the upper panel. As it can be seen at a glance,
the transient response after ligand addition (when the amount of CheYp is initially
below μ) corresponds to a longer and uninterrupted interval of CCW rotation of that
flagellum.

Once that the set of all Δttrue intervals—or, equivalently, of all functions
CCWσi —have been determined for each flagellum, the synchronization for any
given number n of flagella can be evaluated. To this aim, let us define T n

sync =
{t ∗ Δtsim | CCWσi (t) = true for all i = 1, . . . , n}. T n

sync is the set of all
times during which all time series σi are below the threshold μ, that is, the time
intervals during which all flagella are rotating CCW. More precisely, we identify
these intervals as the running motion of the bacterium, i.e., T n

sync corresponds to
the time of directional swimming—when all flagella are coordinated in a bundle.
As an example, in Fig. 3.7, right side, we represent the functions CCWσi (t) = true
for i = 1, 2, and the corresponding set T n

sync, n = 2. The complementary set,
T n

unsync = Δtsim\T n
sync, corresponds instead to tumbling motion— when at least one

flagellum (over the set of n flagella considered time by time) is rotating CW. Namely,
T n

unsync = {t ∗ Δtsim | there exists i = 1, . . . , n such that CCWσi (t) = f alse}.
We are now interested in understanding if and how the time intervals within the

set T n
sync are influenced by the increase of n. We have performed this analysis over

a set of 10 distinct in silico experiments (each one corresponding to a cell with n
flagella, with n = 1, . . . , 10), and then we have evaluated the mean values of the
following three parameters:

1. the time intervals corresponding to a running motion of the bacterium, ∨Δtrun⇒,
when all flagella are rotating CCW (that is, the time intervals when all time series
σi are below μ);

2. the time intervals corresponding to a tumbling motion of the bacterium, ∨Δttumb⇒,
when at least one flagellum over the n flagella is rotating CW (that is, the time
intervals when at least one time series σi is above μ);

3. the time intervals corresponding to the transient decrease of CheYp after ligand
addition, ∨Δtadapt ⇒, that is, the adaptation time during which the bacterium is
performing a longer running motion.
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Table 3.6 Values of mean time intervals for running, tumbling and adaptation

n ∨Δtrun⇒ (s) ∨Δttumb⇒ (s) ∨Δtrun⇒/∨Δttumb⇒ ∨Δtadapt ⇒ (s)

1 3.102 3.062 1.013 104.0
5 0.606 18.73 0.032 73.48
10 0.310 297.4 0.001 72.22

The results for ∨Δtrun⇒ are reported in Fig. 3.8, top left, where we can see that the
mean time intervals of running motion are very short, and their values decrease in
a (qualitative) exponential way as the number n of flagella increases, as expected.
Similarly, the results for ∨Δttumb⇒ evidence a (qualitative) exponential increase with
respect to n, as reported in Fig. 3.8, top right. As reference, the precise values of the
evaluated mean running and tumbling time intervals are given in Table 3.6, together
with their ratio, for three values of n. The running-to-tumbling ratio, which decreases
as n increases, highlights the relevance of the number of flagella and the necessity
of their synchronization with respect to the chemotactic behavior of the bacterium.
That is, we see that for n = 1 the time spent in running or tumbling motions is
approximatively equivalent for the chosen Δtsim , but if coordination among many
flagella (n = 10) has to take place, then the running motions are highly reduced with
respect to tumbling motions, which is in agreement with biological expectations.

The results for ∨Δtadapt ⇒ are reported in Fig. 3.8, bottom, and in Table 3.6. In
this case, it is not possible to recognize a simple function for the curve progress,
and we see that the variation of the time intervals is within a range of a few tens of
seconds. This result is biologically plausible, as the response of the bacterium to an
environmental change (i.e., the addition or removal of ligands) should not be strictly
dependent on the number of flagella that are present on its surface, otherwise the
chemotactic pathway would not guarantee an appropriate adaptation mechanism to
all bacteria, independently from the variation of the number of flagella that distinct
cells can have.

The mean running and tumbling time intervals that we have evaluated for n = 1
are in line with previous experimental observations [40, 41]. Anyway, to the best of
our knowledge, no measurements of the synchronization time of multiple flagella
have been reported in literature. As a matter of fact, CW and CCW times are typically
measured for single flagellar motor in tethered bacteria, that is, in living and motile
cells immobilized on a surface by attaching a single filament to the substratum and
then letting the whole cell body spin. This experimental setup is unlikely applicable
to simultaneously measure the CW and CCW times of all flagella occurring on a
bacterium surface, therefore our results should be considered as model predictions
that require the design of novel laboratory protocols for their validation.
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Fig. 3.8 Variation of mean time values of running motions (top left), tumbling motions (top right),
and adaptation time (bottom), with respect to the number of flagella

3.4.3 Simulations of ΥMV

In this section we present the results of multivolume stochastic simulations for the
dynamics of CheYp. We discuss, in particular, the effects on the pathway response of
distinct diffusion constants and of different numbers N of virtual volumes in which
the bacterial volume is partitioned (where N = 6, 12, 30, 60).

In Fig. 3.9 we show the results of stochastic simulations of the dynamics of CheYp,
obtained with the single volume model described by ΥSV where no diffusive events
occur (top left), and with the multivolume model ΥMV with N = 6 virtual volumes
obtained by using different diffusive reaction constants (cases A, B, C in the other
three graphics, as described in Sect. 3.3.3). For the sake of readability, for each of the
three cases A, B and C of the multivolume model, we picture only the dynamics of
CheYp occurring inside V1 (the virtual volume containing the receptor complexes)
and V6 (the virtual volume at the distal end of the cell), being the other internal
volumes characterized by intermediate behaviors between these two.

If we compare the results of ΥMV with those of ΥSV , the graphics clearly show
that: (1) in all tested cases, the initial increase in CheYp amount of the single volume
model is no more observable in the multivolume model, because of the effect of
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Fig. 3.9 Comparison between the dynamics of CheYp before and after ligand addition (at time t =
3,000 s), in the single volume model ΥSV (top left) and in the N = 6 virtual volumes model ΥMV ,
for the cases A (top right), B (bottom left), C (bottom right)

diffusion that does not allow CheYp to accumulate but, on the contrary, immediately
intervenes to distribute the molecules throughout the cell; (2) in all tested cases,
the system is always able to reach a steady state value, and also to return to the
pre-stimulus level of CheYp after the sensing of external ligand (simulated by the
addition of ligand molecules to multiset M1 at time t = 3,000 s); (3) the negative
peak in CheYp amount due to ligand addition is much more pronounced in the single
volume model with respect to each of the three cases of the multivolume model.
Once more, this response is due to the diffusion process, which induces the presence
of fewer molecules of CheYp inside each virtual volume with respect to the amount
occurring in the single volume model, and therefore causes a slighter decrease of
CheYp. Indeed, we can see that the most evident response after ligand addition occurs
in case C, where the reduced diffusion constants allow to have, inside volume V1,
an amount of CheYp that is higher than the corresponding amounts of cases A and
B inside the same volume. On the other side, inside volume V6 of cases A and B
we can still see a small decrease of CheYp after ligand addition, which cannot be
individuated in case C, as the slow diffusion flattens the dynamics.

In Fig. 3.10, left side, we show the gradients of CheYp obtained in the three cases
of diffusion. Stochastic simulations have evidenced that, as long as the value of N
increases, the molecular amounts of CheYp inside each virtual volume decrease,
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Fig. 3.11 Average times of running (left) and tumbling motions (right), in cases A and B, consid-
ering a uniform distribution of seven flagella over the cellular surface

therefore inducing wider stochastic fluctuations of CheYp and reducing its negative
peak after ligand addition (data not shown). As an example, we show in Fig. 3.10,
right side, the gradients of CheYp obtained in case C for N = 6, 12, 30, 60 (vertical
bars representing the width of stochastic fluctuations have not been reported in this
graphic for the sake of readability). Moreover, we can see that for each N the gradients
of CheYp present qualitatively similar behaviors.

The simulation outcomes of the multivolume model are in line with previous
experimental measurements and in silico investigations. Spatial gradients in the con-
centration of CheYp were observed using FRET imaging methods in single E. coli
cells, showing that the highest concentration is located close to the receptor cluster
[42]. Simulated concentration gradients of CheYp were previously shown in [10, 35]
under different conditions of diffusion and localization of protein CheZ.

Finally, in Fig. 3.11, we show a comparison of running (left side) and tumbling
(right side) average time in cases A and B, under the assumption that 7 flagella are
uniformly distributed over the cellular surface. Running and tumbling intervals have
been evaluated over a time interval of 500 s at steady state, using the procedure
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given in Sect. 3.4.2; for each N , the threshold has been fixed as the mean (over
all subvolumes) of the mean value of CheYp inside each subvolume. The results
of Fig. 3.11 highlight how the values of stochastic constants associated to diffusive
reactions affect the running and tumbling average time; in particular, by reducing the
values of diffusion constants, the different gradient of CheYp occurring within the
bacterium leads to higher running times. This effect is due to the fact that volumes
placed at the distal end of the cell usually contain an amount of CheYp that is always
below the threshold considered in the synchronization procedure.

3.5 Conclusion

In this work we have presented an application of membrane systems to the modeling,
simulation and analysis of a signal transduction pathway. In particular, the modeling
features of P systems have been exploited to develop an accurate mechanistic model of
bacterial chemotaxis; τ -DPP, a class of membrane systems, has been used to perform
stochastic simulations of the dynamics of this model and to analyze its properties.
The SBML file of the single volume model, together with simulation results, are
available at BioSimWare website [43]. The descriptive power of τ -DPP has been
employed to develop a multivolume version of the model of bacterial chemotaxis in
order to investigate the diffusion processes occurring within the cell.

Concerning the analysis of the single volume model of bacterial chemotaxis, we
have investigated the possible influence of stochastic fluctuations of the chemotactic
protein CheYp on the running motion of bacterial cells, with respect to an increas-
ing number of flagella in the individual bacterium. To this aim, we have defined a
procedure to identify the synchronization of CCW rotations of all flagella, and then
we have compared the mean time intervals of running and tumbling motions of the
cell, as well as of adaptation times to ligand addition, according to the different num-
bers of flagella. On the one hand, we have shown that the running-to-tumbling ratio
highlights the relevance of the number of flagella, and the necessity of their syn-
chronization with respect to the chemotactic behavior of the bacterium. On the other
hand, the adaptation time does not seem to be strongly influenced by the varying
number of flagella in distinct individual cells. These results have been obtained by
performing stochastic simulations of a very detailed mechanistic model of the bac-
terial chemotaxis pathway, that takes into account all proteins, and their respective
interactions, involved in both signaling and response. All post-translational modifi-
cations of proteins, such as methylation and phosphorylation, have been explicitly
taken into account because of their relevant roles in the feedback control mechanisms
governing this pathway. In particular, by exploiting τ -DPP, we have investigated the
dynamics of the pivotal protein involved in chemotaxis, CheYp, under different con-
ditions, such as the deletion of other chemotactic proteins, the addition of distinct
amounts of external ligand, the effect of different methylation states of the receptors.

Furthermore, we have extended the single volume model of bacterial chemotaxis
starting from the consideration that computational investigations aimed at capturing
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the features of spatial heterogeneity at the molecular level, due to the diffusion of
chemicals through the cellular space, necessarily require an approach able to deal
with distinct spatial domains, as well as to track the time evolution of interacting
molecules within different locations. Following this approach and exploiting the
modeling and simulation features of τ -DPP, we have split the bacterial volume into
adjacent and non overlapping “slices”, modeled by communicating virtual volumes,
which allow to analyze the diffusion of proteins CheYp, CheY and CheZ through-
out the whole volume. Simulations of the multivolume model have shown that the
diffusion of molecules can induce larger stochastic fluctuations, thus altering the
global response of this transduction pathway. In particular, diffusion events give rise
to the formation of a cytoplasmic gradient of protein CheYp. However, we defer to a
future work the investigation of quantitative aspects related to diffusion events, which
is required to measure how the different diffusion regimes induce smaller or larger
stochastic fluctuations and hence are possibly able to interfere with the response
and the functional activity of bacterial flagella. In fact, the flagellar motors that are
distributed into distinct virtual volumes are exposed to a local amount of CheYp that
is generally different from the amount occurring in the neighboring virtual volumes.

In conclusion, we believe that the definition of detailed mechanistic models, like
those proposed in this chapter for chemotaxis, coupled with the use of efficient pro-
cedures for the analysis of stochastic processes in individual cells, can be a good
benchmark to investigate the combined roles of many biological factors interplaying
within a common system. With this perspective, the development of formal methods
specifically devised for the analysis of properties (e.g., synchronization) of stochas-
tic systems represents indeed a hot research topic in biological modeling. In this
context, the results that we have achieved with the single and multivolume models of
chemotaxis represent novel hypotheses on the functioning of flagella coordination
mechanisms in bacterial cells, which take place under the effect of diffusive events
in the cytoplasm, stochastic fluctuations of CheYp and the distribution of flagel-
lar motors over the cell surface. Now, it would be surely interesting to verify the
occurrence and the influence of all these molecular phenomena in living and motile
cells, by designing the necessary experimental protocols and hence feeding back to
Biology our model predictions.
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1. G. Ciobanu, G. Păun, M.J. Pérez-Jiménez (eds.), Applications of Membrane Computing
(Springer, Berlin, 2005)
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Chapter 4
Membrane System-Based Models for Specifying
Dynamical Population Systems

M. A. Colomer-Cugat, M. García-Quismondo, L. F. Macías-Ramos,
M. A. Martínez-del-Amor, I. Pérez-Hurtado, M. J. Pérez–Jiménez,
A. Riscos-Núñez and L. Valencia-Cabrera

Abstract Population Dynamics P systems (PDP systems, in short) provide a new
formal bio-inspired modelling framework, which has been successfully used for
modelling population dynamics on real ecosystems. The semantics of these systems
is captured by the Direct distribution based on Consistent Blocks Algorithm (DCBA),
which has been engineered into software simulation tools. In particular, MeCoSim
(Membrane Computing Simulator) is a GUI developed in the framework of P-Lingua
that can be used as a simulation environment for running virtual experiments. The
parameters of each scenario to be simulated can be easily adjusted in a visual way,
as well as the settings for the desired output format, thus facilitating the validation
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of the designed models against real data. The simulation of PDP systems is data
intensive for large models. Therefore, the development of efficient simulators for
this field is needed. In fact, the computational power of GPUs is currently being used
to accelerate simulations of PDP systems. We illustrate the modelling framework
presented with a case study concerning pandemics.

4.1 Introduction

Mathematical models are abstract representations of real–world complex systems
onto a mathematical/computational domain. They use symbolic notations and for-
malisms rather than physical devices to represent and analyse the relationships which
describe the system under study. Moreover, never do they contain all features of
their real–world counterpart, as they would be the real–world complex system itself.
Models highlight the relevant features while ignoring the irrelevant ones. Therefore,
a mathematical model should be regarded as a description of our current knowledge
about a phenomenon of interest, rather than an exact representation of the truth.

The use of models is inherent to any scientific activity. When examining a phe-
nomenon, scientists regularly use abstractions of reality such as diagrams, graphs,
laws, etc. with the aim of describing and understanding it. Designing a model for a
biological system is intrinsically a complicated task, since there is usually a large
number of important factors that need to be considered. Therefore, it is advisable
to make efforts to minimize the number of parameters, as well as the interactions
between them.

Nowadays, ordinary differential equations (ODEs) constitute the most widely
used approach for the study of complex systems, and in particular for population
dynamics. However, this approach has some drawbacks, since it has been reported
that the deterministic and continuous approach followed by ODEs is questionable
in some complex systems. Consequently, in recent years new models based on
the latest computational paradigms and technological advances have been adopted.
Some examples are Petri nets [1], process algebra (π -calculus [2], bioambients [3],
brane calculus [4], κ-calculus [5], etc.), state charts [6], agent based systems [7], and
viability models [8, 9]. Although each of these computational frameworks captures
some aspects regarding complex systems and their components, none of them fully
integrates their dynamics and structural details.

Membrane Computing is an emergent branch of Natural Computing introduced by
Păun in [10], inspired by the structure and functioning of living cells. This research
field was introduced with the purpose of defining unconventional distributed and
parallel computing devices, called P systems. The key differential feature of such
systems is the so–called membrane structure, which represents the compartmen-
talization in the structural organization of cells. One of the main advantages of P
systems, regarding their potential use as a modelling framework, is that their ele-
ments are more similar to those used in population dynamics than the abstractions
of other formalisms. In this work we show how to capture, in a natural way, some
features relevant to populations by using membrane structures.
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We present P systems as a high level computational modelling framework which
integrates the structural and dynamical aspects of complex systems in a compre-
hensive and relevant way while providing the required formalisation to perform
mathematical and computational analysis. Rather than an alternative to more clas-
sical modelling frameworks, such as ODEs, P systems constitute a complementary
approach to be used in those cases where the previous approaches fail. Among the
most important properties of these models one can include their capacity to work in
parallel, as well as capture randomness. P systems explicitly represent the discrete
character of the quantity of components of a system by using rewriting rules on multi-
sets. Objects on these multisets represent relevant parameters, as well as individuals.
Although each complex system has its own important peculiarities, the vast majority
of them share some common aspects. Some of these aspects are: (a) large number of
individuals; (b) life cycle consisting of some basic processes; (c) periodic repetitions;
(d) the evolution often depends on the environment; and (e) the natural dynamics
suffers modifications due to human activities. These common features impose some
computational requirements on the models. Among them, one can shortlist the fol-
lowing: many processes take place simultaneously, there exists cooperation between
different individuals and elements, there exists partial synchronization among the
dynamic evolution sub-problems, and some stages are cyclically repeated.

These considerations led to the definition of a special-purpose type of P systems.
In particular, Population Dynamics P system models have been designed to study the
evolution of the habitats corresponding to three real case studies: the bearded vul-
ture (Gypaetus barbatus) in the Catalan Pyrenees (Spain) [11, 12], the zebra mussel
(Dreissena polymorpha) at the reservoir of Ribarroja (Spain) [13] and, recently, the
Pyrenean brook newt (Calotriton asper) in the river Segre (Serra del Cadí, Pyre-
nees) [14]. In the first case, the purpose of the obtained model is to study the evolu-
tion of the considered ecosystem under different scenarios in order to make the most
appropriate management decisions for the conservation of an endangered species.
The second case study corresponds to a completely different situation: Dreissena
polymorpha is an exotic invasive species that has displayed an excellent adaptation
following its introduction in the reservoir. Its uncontrolled reproduction causes sig-
nificant economic and ecological losses. Hence, the goal in this case is to learn how
to minimize the mussel population at the reservoir. In the latter case, the experts have
documented repeatedly dramatic population losses of the studied species caused by
severe floods. The goal is to evaluate whether there exists actual risk for the species
to become extinct in this area as a consequence of extreme rainfall. In all three cases
we have designed a simulator to validate the models. Actually, three different tools
have been released, enabling the corresponding users to perform virtual experiments
under different conditions.

This chapter is structured as follows: Sect. 4.2 is devoted to define concepts and
notations that we will use throughout the text. A P systems based probabilistic mod-
elling framework is considered in Sect. 4.3, and an inference engine capturing the
semantics of the model is presented in Sect. 4.4. Section 4.5 is devoted to the software
tools implementing the theoretical framework. Section 4.6 describes the modelling
of a case study about an outbreak of a pandemic disease, in order to illustrate the
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theoretical and practical framework presented. To conclude the chapter, in Sect. 4.7
we present some final considerations and outline some future work on the topic.

4.2 Preliminaries

In this section we introduce some concepts and notations which we will use through-
out this chapter.

An alphabet, Γ , is a finite non–empty set whose elements are called symbols. A
multiset, w, over an alphabet, Γ , is a pair (Γ, f ) where f : Γ ≥ N is a mapping. If
w = (Γ, f ) is a multiset then its support is defined as supp(w) = {x ≤ Γ | f (x) >

0}. We denote x ≤ w when x ≤ supp(m) and xn ≤ w when x ≤ w and f (x) = n.
A multiset is finite if its support is a finite set. If w = (Γ, f ) is a finite multiset over
Γ , and supp(w) = {a1, . . . , ak} then it will be denoted as w = a f (a1)

1 . . . a f (ak )
k

(here the order is irrelevant), and we say that f (a1) + · · · + f (ak) is the cardinality
of w, denoted by |w|. The empty multiset is denoted by ∈. We also denote by M f (Γ )

the set of all finite multisets over Γ .
If w1 = (Γ, f1), w2 = (Γ, f2) are multisets over Γ , then we define the union of

w1 and w2 as w1 + w2 = (Γ, g), where g = f1 + f2.
In what follows, we assume the reader is already familiar with the basic notions

and the terminology of P systems. For details, see [15].

4.3 A P Systems-Based Probabilistic Modelling Framework

Population Dynamics P systems are a variant of multienvironment P systems with
active membranes [16], a model with a network of environments, each of them con-
taining a P system with features such as electrical charges associated with membranes
to describe specific properties in a better way. All P systems share the same skeleton,
in the sense that they have the same working alphabet, the same membrane structure
and the same set of rules. Nevertheless, the probability functions associated with the
rules can vary among environments, and also the initial multisets are independent.

In what follows, the formal definition of PDP systems is introduced. To continue,
some additional definitions are given regarding to the rules of the systems. These
definitions will be specially useful within the scope of the Direct distribution based
on Consistent Blocks Algorithm (DCBA), an inference engine for PDP systems that
will be covered in Sect. 4.4. Finally, some desirable properties of the PDP systems
model are reviewed at the end of this section.
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4.3.1 PDP Systems

Definition 1 A Population Dynamics P system (PDP) of degree (q, m), q, m ∗ 1,
taking T ∗ 1 time units, is a tuple

Π =(G, Γ,Σ, T,RE , μ,R, { fr, j | r ≤ R, 1 → j → m},
{Mi j | 1 → i → q, 1 → j → m})

where:

• G = (V, S) is a directed graph with V = {e1, . . . , em}.
• Γ and Σ are alphabets such that Σ ∼ Γ .
• T is a natural number.
• RE is a finite set of communication rules of the form (x)e j

pr−−−≥(y1)e j1
· · ·

(yh)e jh
, where x, y1, . . . , yh ≤ Σ , (e j , e jl ) ≤ S f orall 1 → l → h, and

pr : {1, . . . , T } −≥ [0, 1] is a computable function such that for each e j ≤
V and x ≤ Σ , the sum of functions associated with the rules of the type
(x)e j

pr−−−≥(y1)e j1
· · · (yh)e jh

is the constant function 1.
• μ is a rooted tree injectively labelled by 1 → i → q, and by symbols from the set

{0, +, −}.
• R is a finite set of of evolution rules of the form u[v]αi ≥ u′[v′]α′

i , where
u, v, u′, v′ ≤ M f (Γ ), u + v ∀= ∈, 1 → i → q and α, α′ ≤ {0, +, −}, such

that there is no rules (x)e j

pr−−−≥(y1)e j1
· · · (yh)e jh

and u[v]αi ≥ u′[v′]α′
i having

x ≤ u.
• For each r ≤ R and 1 → j → m, fr, j : {1, . . . , T } −≥ [0, 1] is a computable

function such that for each u, v ≤ M f (Γ ), 1 → i → q, α, α′ ≤ {0,+,−} and
1 → j → m, the sum of functions fr, j with r ∧ u[v]αi ≥ u′[v′]α′

i , is the constant
function 1.

• For each i, j (1 → i → q, 1 → j → m), Mi j ≤ M f (Γ ).

A Population Dynamics P system defined as above can be viewed as a set of
m environments e1, . . . , em interlinked by the edges from the directed graph G.
Each environment e j can only contain symbols from alphabet Σ and all of them
also contain a P system skeleton, Π j = (Γ, μ,M1, j , . . . ,Mq, j ,R), of degree q,
where:

(a) Γ is the working alphabet whose symbols are also called objects.
(b) μ is a rooted tree which describes a membrane structure consisting of q mem-

branes (nodes of the tree) injectively labelled by 1, . . . , q. The skin membrane
(the root of the tree) is labelled by 1 and its parent is the environment e j . We
also associate one with each membrane.

(c) M1, j , . . . ,Mq, j are finite multisets over Γ , describing the objects initially
associated to the q membranes of μ, within the environment e j .

(d) R is the set of evolution rules of each P system. Every rule r ≤ R in Π j has a
computable function fr, j associated with it. For each environment e j , we denote
by RΠ j the set of rules with probabilities obtained by coupling each r ≤ R with
the corresponding function fr, j .
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Furthermore, there is a set RE of communication rules between environments,
and the natural number T represents the simulation time of the system. The set of
rules of the whole system is

⋃m
j=1 RΠ j ∪ RE .

The semantics of Population Dynamics P systems is defined through a non deter-
ministic and synchronous model, in the sense that a global clock is assumed. Next,
we describe some semantic aspects of these systems.

A communication rule r ≤ RE , of the form (x)e j

pr−−−≥(y1)e j1
. . . (yh)e jh

is
applicable to environment e j if it contains object x . When such a rule is applied,
object x passes from e j to e j1 , . . . , e jh possibly transformed into objects y1, . . . , yh

respectively. At any moment t (1 → t → T ) for each object x in environment e j , if

there exist communication rules of type (x)e j

pr−−−≥(y1)e j1
. . . (yh)e jh

, then one of
these rules will be applied. If more than one such a rule can be applied to an object
at a given instant, the system selects one randomly, according to their associated
functions.

In each Π j , an evolution rule r ≤ R, of the form u[ v ]αi ≥ u′[ v′ ]α′
i , is applicable

to membrane i , whose electrical charge is α, and that contains multiset v, and whose
parent contains multiset u. When such a rule is applied, the objects of the multisets
v and u are removed from membrane i and from its parent membrane, respectively.
Simultaneously, objects in multiset u′ are introduced into the parent of membrane i ,
and objects of multiset v′ are introduced into membrane i . The application also
replaces the charge of membrane i with α′. In each environment e j , the rule r has
associated a probability function fr, j that provides an index of the applicability when
several rules compete for objects.

For each j (1 → j → m) there is just one further restriction, concerning the con-
sistency of charges: in order to apply several rules ofRΠ j simultaneously to the same
membrane, all the rules must have the same electrical charge on their right–hand side.

An instantaneous description or configuration of the system at any instant t is a
tuple of multisets specifying the objects associated to each environment and mem-
brane, with its polarization, of every Π j . We assume that all environments are ini-
tially empty and that all membranes have initially a neutral polarization. We assume
a global clock, synchronizing all membranes and the application of all the rules (from
RE and from RΠ j in all environments).

In each time unit a given configuration can be transformed into another by using
rules from the whole system as follows: the rules to be applied are selected in a non–
deterministic way according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way. In this way, we get transitions
from one configuration of the system to the next one.

A computation is a sequence of configurations such that the first term of the
sequence is the initial configuration of the system, and each non-initial configuration
is obtained from the previous one by applying rules of the system in a maximally
parallel manner with the restrictions previously mentioned.
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4.3.2 Additional Definitions

Next, we define some concepts associated with the rules from the system that will
be used in the Sect. 4.3.3.

Definition 2 Given a rule r ≤ R of the form u[v]αi ≥ u′[v′]α′
i where 1 → i → q,

α, α′ ≤ {0, +, −} and u, v, u′, v′ ≤ M f (Γ ):

• The left-hand side of r is L H S(r) = (i, α, u, v). The charge of L H S(r) is
charge(L H S(r)) = α.

• The right-hand side of r is RH S(r) = (i, α′, u′, v′). The charge of RH S(r) is
charge(RH S(r)) = α′.

Definition 3 Given a rule r ≤ RE of the form (x)e j

pr−−−≥ (y1)e j1
· · · (yh)e jh

, the
left-hand side of r is L H S(r) = (e j , x), and the right-hand side of r is RH S(r) =
(e j1 , y1) · · · (e jh , yh).

Definition 4 A block of rules is a set of rules with the same left–hand side. We
say that a block of rules is consistent if any pair of its rules can be applied in a
simultaneous manner provided that there are enough objects.

Rules from RE can be classified into blocks in a natural way.

Definition 5 Given (e j , x), 1 → j → m, and x ≤ Σ , the block associated with
(e j , x) is the set:

Be j ,x = {r ≤ RE | L H S(r) = (e j , x)}

Extending left-hand side definition, L H S(Be j ,x ) = (e j , x).

Bearing in mind that the restriction concerning the consistency of charges only
applies to membranes, but not to environments, any block of rules from RE is
obviously a consistent block.

Let us then focus on the case of evolution rules fromR. Such rules can be classified
into consistent blocks according to the following definition.

Definition 6 Given (i, α, α′, u, v), 1 → i → q, α, α′ ≤ {0, +, −}, and u, v ≤
M f (Γ ), the consistent block associated with (i, α, α′, u, v) is the set:

Bi,α,α′,u,v = {r ≤ R | L H S(r) = (i, α, u, v) ∨ charge(RH S(r)) = α′}

Extending left-hand side definition, L H S(Bi,α,α′,u,v) = (i, α, u, v) and the charge
is α.
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That is, the consistent block associated with (i, α, α′, u, v) is the set of rules
r ≤ R whose left-hand side is (i, α, u, v) and such that the electrical charge of the
membrane after their execution is the same: α′. Therefore, any pair of rules from
Bi,α,α′,u,v can be simultaneously applied provided that there are enough objects. In
that case, membrane i will modify its polarization from α to α′.

We recall that, according to the semantics of our model, the sum of probabilities of
all the rules belonging to the same block is always equal to 1; in particular, rules whose
probability is equal to 1 form individual blocks. Note that rules with overlapping (but
different) left–hand sides are classified into different blocks. The latter leads to object
competition, what is a critical aspect to manage with the simulation algorithms. This
suggests introducing the concept of mutual consistency among blocks.

Definition 7 Two blocks Bi1,α1,α
′
1,u1,v1

and Bi2,α2,α
′
2,u2,v2

are mutually consistent
with each other, if and only if (i1 = i2 ∨ α1 = α2) ⇒ (α′

1 = α′
2).

That is, for two blocks mutually consistent with each other and with the same
charge any rule of the first block can be simultaneously applied together with any
rule of the second block, provided that there are enough objects.

Since rules in RE (communication between environments) do not affect the elec-
trical charge of any membrane and they do not interfere at all with the applicability
of the rest of the rules, a block Be j1,x1 is always mutually consistent with any other
Be j2,x2 , as well as with any block Bi,α,α′,u,v of evolution rules.

Definition 8 Given x ≤ Γ , l ≤ H , and r ≤ R such that L H S(r) = (i, α, u, v), we
say that (x, l) appears in L H S(r) with multiplicity k in any of the following cases:

• l = i , and x appears in multiset v with multiplicity k
• l is the label of the parent of membrane i , and x appears in multiset u with

multiplicity k

4.3.3 Some Properties of PDP Systems Models

The following four properties [2] are desirable for any computational model:

• Relevance: A computational model must capture some essential features of the
system investigated.
It should present a unifying specification of its physical structure and the different
components that constitute the system, the interaction between them and their
dynamical behaviour.
PDP systems are able to successfully capture the relevance of the underlying
system by associating objects to individuals or other significant elements, and the
interaction between them by means of evolution rules.
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• Computability: It should be possible to implement or simulate a model in a com-
puter, so that one can run simulations to study the dynamics of the system by
manipulating experimental conditions in the model. In this manner, the model can
be experimentally validated, and moreover the behaviour of the system under dif-
ferent scenarios of interest can be studied. The computability of the model also
allows us to perform model checking and similar techniques to infer and to study
qualitative and quantitative properties of the system in an automatic way. In this
respect, the model should be mathematically tractable. That is, it should be possible
to perform mathematical analysis on it.
Since P systems are computing devices, the computability of PDP systems is an
inherent property. Moreover, the inference engine (as detailed in Sect. 4.4) captures
the semantics of the studied dynamics models.

• Understandability: The abstract formalism used should correspond well to the
informal concepts and ideas which are used by the experts in the population under
study.
As PDP systems objects and rules capture in a simple manner the behaviour and
dynamical interaction of the relevant elements in the modelled system, they are
easy to be understood by experts in the problem domain.

• Extensibility: It should be easy to identify the different components and charac-
teristics of the systems that are essential in the context of the management or
scientific problem to be solved or comprehended [17], so they can be rearranged,
duplicated, composed, etc. in an easy way to produce other models. Models of
complex systems should also be extensible to higher levels of organizations.
PDP system rule design is module-oriented, favouring low coupling between them.
This approach allows a mostly independent modules development while enabling
the addition, removal and/or reuse of them to the system. As modules are designed
in a separate way, different levels of complexity can be achieved in each one.

4.4 An Inference Engine: The DCBA Algorithm

Within the framework of Membrane Computing the goal of a simulation algorithm
is to select and execute, for each time unit, an applicable multiset of rules. The Direct
distribution based on Consistent Blocks Algorithm (DCBA) follows this approach,
paying special attention to the proportional distribution of objects among competing
blocks (with overlapping LHS), thus determining the number of times that each rule
in

⋃m
j=1 RΠ j ∪RE is applied. See [18] for a more detailed explanation and examples

of how this algorithm works.
Algorithm 1 describes the main loop of the DCBA. It follows the same general

scheme as its predecessors, DNDP and BBB [19] where the simulation of a transition
step is structured in two stages: selection and execution. The firststage (selection)
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selects which rules are to be applied (and how many times) on each environment. The
second stage (execution) implements the effects of applying the previously selected
rules, yielding the next configuration of the PDP system. Note that, although every
Π j shares the same set of rules R, the probability functions may differ for each
environment.

As shown in Algorithm 1, the selection stage consists of three phases: Phase 1
distributes objects to the blocks in a proportional way, as it will be explained later on;
Phase 2 assures the maximality by assigning to some of the blocks the objects still
unassigned after Phase 1; and finally, Phase 3 translates block applications into rule
applications by computing random numbers following the multinomial distribution
with the corresponding probabilities.

Algorithm 1 DCBA MAIN PROCEDURE
Require: A Population Dynamics P system of degree (q, m), T ∗ 1, and A ∗ 1
1: C0 ∼ Initial configuration
2: INITIALIZATION ∃ (Algorithm 2)
3: for t ∼ 1 to T do
4: Calculate probability functions fr, j (t) and pr (t)
5: C ′

t ∼ Ct−1
6: SELECTION of rules:

– PHASE 1: Distribution ∃ (Algorithm 3)
– PHASE 2: Maximality ∃ (Algorithm 4)
– PHASE 3: Probabilities ∃ (Algorithm 5)

7: EXECUTION of rules. ∃ (Algorithm 6)
8: Ct ∼ C ′

t
9: end for

The INITIALIZATION procedure (Algorithm 2) constructs a static distribution
table T j for each environment. Two variables, B j

sel and R j
sel , are also initialized, in

order to store the selected multisets of blocks and rules, respectively.

Observation 1 Each column label of the tables T j contains the information of the
corresponding block left–hand side.

Observation 2 Each row of the tables T j contains the information related to the
object competitions: for a given object, its row indicates which blocks are competing
for it (those columns having non–null values).
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Algorithm 2 INITIALIZATION
1: Construction of the static distribution table T :

• Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
• Row labels: pairs (o, i) and (x, 0), for all objects o ≤ Γ , x ≤ Σ and membrane label i ,

being 0 the identifier of the environment.
• For each cell of the table: place 1

k if its row label (o, i) appears with multiplicity k > 0 in
the LHS of its column label Bi,α,α′,u,v.

2: for j = 1 to m do ∃ (Construct the static expanded tables T j )
3: T j ∼ T . ∃ (Initialize the table with the original T )
4: For each rule block Be j ,x from RE , add a column labelled by Be j ,x to the table

T j ; place the value 1 at row (x, 0) for that column

5: Initialize the multisets B j
sel ∼ ∈ and R j

sel ∼ ∈
6: end for

The distribution of objects among the blocks with overlapping LHS (compet-
ing blocks) is performed in selection Phase 1 (Algorithm 3). The expanded static
tables T j are used for this purpose in each environment, together with three differ-
ent filter procedures. Filter 1 discards the columns of the table corresponding to
non-applicable blocks due to mismatch charges in the LHS and in the configuration
C ′

t . Then, Filter 2 discards the columns with objects in the LHS not appearing in
C ′

t . Finally, in order to save space in the table, Filter 3 discards empty rows. These
three filters are applied at the beginning of Phase 1, and the result is a dynamic table
T t

j (for the environment j and time step t).
The semantics of the modelling framework requires a set of mutually consis-

tent blocks before distributing objects to the blocks. For this reason, after applying
Filters 1 and 2, the mutual consistency is checked. Note that this checking can be
easily implemented by a loop over the blocks. If it fails, meaning that an inconsistency
was encountered, the simulation process is halted, providing a warning message to
the user. Nevertheless, it could be interesting to find a way to continue the execution
by non-deterministically constructing a subset of mutually consistent blocks. Since
this method can be exponentially expensive in time, it is optional for the user whether
to activate it or not.

Once the columns of the dynamic table T t
j represent a set of mutually consistent

blocks, the distribution process starts. This is carried out by creating a temporal copy
of T t

j , called T V t
j , which stores the following products:

• The normalized value with respect to the row: this is a way to proportionally
distribute the corresponding object along the blocks. Since it depends on the mul-
tiplicities in the LHS of the blocks, the distribution, in fact, penalizes the blocks
requiring more copies of the same object. This is inspired in the amount of energy
required to gather individuals from the same species.

• The value in the dynamic table (i.e. 1
k ): this indicates the number of possible

applications of the block with the corresponding object.
• The multiplicity of the object in the configuration C ′

t : this performs the distribution
of the number of copies of the object along the blocks.
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Algorithm 3 SELECTION PHASE 1: DISTRIBUTION
1: for j = 1 to m do ∃ (For each environment e j )
2: Apply filters to table T j using C ′

t , obtaining T t
j , as follows:

a. T t
j ∼ T j

b. Filter 1 (T t
j , C ′

t )

c. Filter 2 (T t
j , C ′

t )

d. Check mutual consistency for the blocks remaining in T t
j . If there is at least one

inconsistency then report the information about the error, and optionally halt the
execution (in case of not activating step 3)

e. Filter 3 (T t
j , C ′

t )

3: (OPTIONAL) Generate a set St
j of sub-tables from T t

j , formed by sets of

mutually consistent blocks, in a maximal way in T t
j (by the inclusion

relationship). Replace T t
j with a randomly selected table from St

j .
4: a ∼ 1
5: repeat
6: for all rows X in T t

j do
7: RowSum X,t, j ∼ total sum of the non-null values in the row X
8: end for
9: T V t

j ∼ T t
j ∃ (A temporal copy of the dynamic table)

10: for all non-null positions (X, Y ) in T t
j do

11: multX,t, j ∼ multiplicity in C ′
t at e j of the object at row X

12: T V t
j (X, Y ) ∼ �multX,t, j · (T t

j (X,Y ))2

RowSum X,t, j
�

13: end for
14: for all not filtered column, labelled by block B, in T t

j do
15: NB ∼ minX≤rows(T t

j )(T V t
j (X, B)) ∃ (The minimum of the column)

16: B j
sel ∼ B j

sel + {B NB } ∃ (Accumulate the value to the total)
17: C ′

t ∼ C ′
t − L H S(B) · NB ∃ (Delete the LHS of the block)

18: end for
19: Filter 2 (T t

j , C ′
t )

20: Filter 3 (T t
j , C ′

t )
21: a ∼ a + 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

Algorithm 4 SELECTION PHASE 2: MAXIMALITY
1: for j = 1 to m do ∃ (For each environment e j )
2: Set a random order to the blocks remaining in the last updated table T t

j
3: for all block B, following the previous random order do
4: NB ∼ number of possible applications of B in C ′

t

5: B j
sel ∼ B j

sel + {B NB } ∃ (Accumulate the value to the total)
6: C ′

t ∼ C ′
t − L H S(B) · NB ∃ (Delete the LHS of block B, NB times)

7: end for
8: end for
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After the object distribution process, the number of applications for each block is
calculated by selecting the minimum value in each column. This number is then used
for consuming the LHS from the configuration. However, this application could be
non–maximal. The distribution process can eventually deliver objects to blocks that
are restricted by other objects. As this situation may occur frequently, the distribu-
tion and the configuration update process is performed A times, where A is an input
parameter referring to accuracy. The more the process is repeated, the more accu-
rate the distribution becomes at the expense of simulation performance. We have
experimentally checked that A = 2 gives the best accuracy/performance ratio. In
order to efficiently repeat the loop for A, and also before going to the next phase
(maximality), it is interesting to apply Filters 2 and 3 again.

After Phase 1, it may be the case that some blocks are still applicable to the
remaining objects. This may be caused by a low A value or by rounding artefacts in the
distribution process. Due to the requirements of P systems semantics, a maximality
phase is now applied (Algorithm 4). Following a random order, a maximal number
of applications is calculated for each block which is still applicable.

After the application of Phases 1 and 2, a maximal multiset of selected (mutually
consistent) blocks has been computed. The output of the selection stage has to be,
however, a maximal multiset of selected rules. Hence, Phase 3 (Algorithm 5) passes
from blocks to rules, by applying the corresponding probabilities (at the local level
of blocks). The rules belonging to a block are selected according to a multinomial
distribution M(N , g1, . . . , gl), where N is the number of applications of the block,
and g1, . . . , gl are the probabilities associated with the rules r1, . . . , rl within the
block, respectively.

Algorithm 5 SELECTION PHASE 3: PROBABILITY
1: for j = 1 to m do ∃ (For each environment e j )

2: for all block B NB ≤ B j
sel do

3: Calculate {n1, . . . , nl }, a random multinomial M(NB , g1, . . . , gl ) with
respect to the probabilities of the rules r1, . . . , rl within the block.

4: for k = 1 to l do
5: R j

sel ∼ R j
sel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks B j

sel ∼ ∈. ∃ (Useful for the next step)
9: end for

Finally, the execution stage (Algorithm 6) is applied. This stage consists on adding
the RHS of the previously selected multiset of rules, as the objects present on the
LHS of these rules have already been consumed. Moreover, the indicated membrane
charge is set.
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Algorithm 6 EXECUTION
1: for j = 1 to m do ∃ (For each environment e j )

2: for all rule rn ≤ R j
sel do ∃ (Apply the RHS of selected rules)

3: C ′
t ∼ C ′

t + n · R H S(r)

4: Update the electrical charges of C ′
t from R H S(r).

5: end for
6: Delete the multiset of selected rules R j

sel ∼ ∈. ∃ (Useful for the next step)
7: end for

4.5 Simulation of PDP Systems

As already mentioned in Sect. 4.1, computational models (and, in particular, P
system–based models) are assumed to rely on software simulators that carry out
virtual experiments in order to evaluate the usefulness of the formal model defined.
At the current stage, multiple software tools have been developed in the Membrane
Computing field (see e.g. [20]), most of them specifically tailored for a single type
of P systems.

This section describes a set of software tools providing the needed infrastructure
to define, simulate and virtually experiment with PDP systems.

4.5.1 P-Lingua, and the pLinguaCore Library

Each P system model features characteristic semantic constraints that determine not
only the type of rules allowed, but also the way in which rules are applied. This
general information is embedded in the simulator engine, but in order to perform
simulations, we need additional information regarding the P system to be simulated.
The term simulator input will be used to refer to this initial data which provides the
formal specification of the P system.

One possible approach to implement the simulator input could be to require a
specific input file for each simulator, or directly insert the data into the source code.
This approach imposes a specific format for the input, given by the data structures
used in the design of each software simulator. Moreover, if we wanted to run many
different experiments, a great redundant effort would be required. An alternative
approach could be to standardize the simulator input by establishing a common
format. These two approaches raise a trade–off. On the one hand, specific simulator
inputs could be defined in a more straightforward way, as the used format is closer
to the P system features to simulate. On the other hand, although the latter approach
involves analysing different P system models to develop a standard format, there is
no need to develop completely a new simulator every time a new P system should
be simulated, as it is possible to use a common software library in order to parse
the standard input format. Moreover, users would no longer be obliged to learn a
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new input format every time they use a different simulator, and they would not need
to rewrite the specification of P systems which are going to be simulated every
time they move on to another model. This second approach is the one considered in
P-Lingua [21, 22], a specification language to define P systems within several P
system models.

The P–Lingua project also provides free software tools under GNU GPL license
[23] for compilation, simulation and debugging tasks. The main tools are inte-
grated in a Java library called pLinguaCore. These tools include a parser to handle
P-Lingua input files and check possible programming errors (both lexical/syntax and
semantics). They also include several built-in sequential simulators to generate P sys-
tem computations for the supported models. Furthermore, these tools can export the
P–Lingua definition file into other file formats in order to get interoperability between
different software environments. The approach to define the simulator input by using
the P-Lingua framework is illustrated in Fig. 4.1 where we can see how P system
definitions in P-Lingua format can be translated into other file formats by using
pLinguaCore, eventually becoming the input for different simulator environments
and gaining interoperability. Moreover, such input is free of programming errors,
since the parser inside pLinguaCore has already checked them.

Since the initial release version, each new update of P-Lingua and pLinguaCore
includes new supported models and implements new simulation algorithms, while
in parallel fixing some bugs found. The current release (pLinguaCore 3.0, available
for download at the P-Lingua website [22]), covers the following P system models:

• (Cell-like) Transition P systems.
• (Cell-like) Symport/antiport P systems.
• (Cell-like) Active membranes with division rules.
• (Cell-like) Active membranes with creation rules.
• (Cell-like) Probabilistic P systems.
• Tissue-like P systems with division rules.
• Population Dynamics P systems (PDP systems)

P-Lingua
File

XML
file

Binary
file

Another
format

Simulator

Compiler Simulator

Simulator

The input

Fig. 4.1 The P-Lingua approach to define simulators input
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As mentioned above, pLinguaCore includes at least one built–in simulator for
each supported model. In particular, a sequential implementation of the algorithm
discussed in this chapter for PDP systems (DCBA) is included, along with some
alternatives (e.g. DNDP).

P-Lingua and pLinguaCore 3.0 can be used to assist in the design of PDP systems.
It can also be used as simulation core for other software tools such as MeCoSim, as
it will be explained below.

4.5.2 The Visual Environment MeCoSim

The availability of a general language, P-Lingua, to define P systems, along with
a set of tools to parse, simulate and debug models based on this kind of systems,
enables the designer to work with P systems in a high level of abstraction. In this
context, an abstract problem is defined in P-Lingua format, but a number of scenarios
(instances of the problem) can be analysed and simulated for that abstract problem.
As the variety and size of the problems to model and simulate with this framework
increase, the need for visual tools for modelling and simulation arises—in such a
way that a P-Lingua model for a family of problems can be specified by a designer
user, while the information about each specific scenario can be included by an end
user in a visual way.

This need leads to software developments for providing Graphical User Interfaces
(GUI) to introduce the input data for a specific scenario, both for the description of the
initial configuration and for some variable parameters for the model. Moreover, such
GUIs also take care of rendering some outputs showing the required information,
possibly including tables and charts. Some examples of these applications were
successfully used to model and simulate ecosystems [11, 13, 24].

While P-Lingua framework provided a general mechanism to define, simulate
and debug P systems, each family of problems implied the design, development and
maintenance of different ad-hoc GUIs. MeCoSim [25, 26], Membrane Computing
Simulator, arises to solve the need of developing ad-hoc applications, by providing
a general solution for defining custom GUIs adapted for each problem. The user can
define a custom structure of tabs, input and output tables, charts, graphs, etc. for
each given family of problems, so MeCoSim can be viewed as a new layer above
P-Lingua framework, complementing its functionality.

The initial goal has been extended to provide a general integrated environment
to work with P systems, including functionalities for modelling, simulation, debug-
ging, analysis, properties extraction and verification of models based on P systems.
MeCoSim platform provides a plugins architecture to extend the initial functionality
with external programs.
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4.5.3 Accelerating PDP Systems Simulations

Previous sections have introduced a simulation algorithm, DCBA, along with a
sequential implementation inside pLinguaCore. However, the simulations were rel-
atively slow, since pLinguaCore library is not performance-oriented.

In order to overcome this limitation, a more efficient implementation based on
C++ and OpenMP was presented in [27], taking advantage of modern multicore
architectures (e.g. 4-core Intel I5 and I7 microprocessors). These simulators save on
memory by avoiding the creation of the static distribution table required in Phase 1.
This feature (called virtual table solution) is carried out by translating the operations
over the table to operations directly to rule blocks information. Only the row sums
and the column minimums are stored in auxiliary data structure together with flags
denoting that a column has been filtered. Concerning the parallelism implementation,
simulations and environments were distributed along the cores. Runtime gains of up
to 2.5× were achieved, so these preliminary results indicate that the simulation of
PDP systems are memory bound.

Furthermore, since GPU computing [28] has been successfully used to implement
other P systems simulators [29–31], the simulation of PDP systems on this technol-
ogy was a natural step. NVIDIA’s CUDA (Compute Unified Device Architecture)
[32, 33] provides developers with a high-level programming model that allows them
to take advantage of the NVIDIA’s GPU parallel architecture. Most recent NVIDIA’s
GPUs (with Kepler architecture) provide thousands of cores, and a fast memory
access. However, programs must fit data parallelism to achieve best performance.

The CUDA-based simulator for PDP systems [34] distributes simulations and
environments along the multiprocessors of the GPU, and the rule blocks are paral-
lelized within each multiprocessor. It has been benchmarked against a set of randomly
generated PDP systems (without biological meaning), achieving speedups of 7x for
large sizes (PDP systems with 50,000 rule blocks, 20 environments and running 50
simulations) on a NVIDIA Tesla C1060 GPU (240 cores and 4 GBytes of memory)
in comparison to the multi–core CPU version. The source code is available under
GPLv3 license, within the PMCGPU project [35], codenamed as ABCD-GPU.

4.6 A Case Study: Pandemics

A pandemic is an outbreak of a disease that occurs over a wide geographic area and
affects an exceptionally high proportion of the population.

In this section, we present a SIR computational model based on Population
Dynamics P systems. SIR is an acronyms: S stands for the susceptible population,
those who are not yet infected, but may become infected; I stands for the infected
population, those who are ill and can transmit the disease, and R stands for the dead
or recovered individuals that are removed from the infected population and cannot
transmit the disease. The SIR mathematical model for pandemics is an ODEs based
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model that has been used to understand the spatial-temporal transmission dynamics
of influenza. This model refers to systems where no human interaction is considered
(e.g. vaccination campaigns, declarations of quarantine, prophylactic actions, etc.).

Our case study will be restricted to three physically separated communities (e.g.
in different cities). Each community is formed by four neighbourhoods, where basic
facilities for daily life are available: schools, work places, shops, etc. Individuals in
a neighbourhood are organized in families (families may have different structure or
number of members). In addition, seven groups will be considered, according to their
age: Daycares/Playgroups, Elementary schools, Middle schools, High schools, and
two groups for Adults (19–53 years old, and over 53 years old). A susceptible person
can be infected either in the bosom of the family, at work, or in leisure time (at the
neighbourhood or when travelling). Figure 4.2 displays the network corresponding
to breeding grounds for each age group.

4.6.1 Design of a PDP Modelling Pandemics

In this section, the model for the exposed case study by using PDP systems is pre-
sented. The model is composed by seven modules of rules. The first one of them
(initial infection) will only be executed when the model is initialized choosing ran-
domly infected people within the population. The execution of the remaining six

Fig. 4.2 A network of the infection flow
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modules will be interpreted as the evolution of the pandemic scenario during one
day.

The model consists of a PDP system of degree (2, 3) taking T ∗ 1 time units,

Π = (G, Γ,Σ, T,RE , μ,R, { fr, j | r ≤ R, 1 → j → 3}, {M1, j ,M2, j , 1 → j → 3})

where:

• G = (V, S) is a complete directed graph, with V = {e1, e2, e3} and S =
{(ei , e j ) | 1 → i, j → 3} (Fig. 4.3 shows the graph, including the P system
inside each environment).

Fig. 4.3 Modules correspponding to the SIR model
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• The working alphabet, Γ is the set
{an | 1 → n → 4} ∪ {Ci | 0 → i → 18}∪
{X f,g, X f,g, Y f,g, Z f,g, V f,g, A f,g, S f,g,

R f,g | 1 → f → 4F, 1 → g → 7}∪
{A f,g,i , S f,g,i |

1 → f → 4F, 1 → g → 7, 2 → i → 5}∪
{A′

f,g, j , X
′
f,g, j , X ′

f,g, j V ′
f,g, j , W f,g, j , W ′

f,g, j |
1 → f → 4F, 1 → g → 7, 1 → j → 3}∪

{ Â, X̃ , Ỹ , Z̃ , Ṽ , W̃ } ∪ {M̃ ′
j | 1 → j → 3}

Symbols an (1 → n → 4) are used to represent in the initial configuration the
individuals initially infected in each neighbourhood. The uninfected individu-
als are represented by symbols X f,g , X ′

f,g, j , Y f,g , Z f,g , V f,g , V ′
f,g, j , W f,g, j ,

W ′
f,g, j (index f is associated with the families, index g is associated with the

age groups, and index j is associated with the environments representing com-
munities); the infected individuals are represented by symbols X f,g and X

′
f,g, j ;

symbols S f,g,i and A f,g,i represent symptomatic and asymptomatic individuals,
respectively (index i is associated with the stage of illness, indicating days since
infection); symbols X̃ , Ỹ , Z̃ , Ṽ , W̃ are used to model the interactions of indi-
viduals infected by others represented by symbols S f,g and A f,g (symptomatic
and asymptomatic, respectively); Ṽ ′

j , A′
f,g, j and Â are auxiliary symbols used

for travelling among communities; R f,g represent individuals who were infected
but have been able to recover. A global clock, Ci , controls the evolution of the P
system and the charge changes of membrane 2 along a cycle (that is, a day).

• Σ = {A′
f,g, j , V ′

f,g, j | 1 → f → 4F, 1 → g → 7, 1 → j → 3}∪
{Ṽ ′

j | 1 → j → 3}∪
{X ′

f,g,i, j | 1 → f → 4F, 1 → g → 7, 0 → i → 1, 1 → j → 3}
• T = 18 · Days, where Days is the number of days to simulate. Each day in the

real scenario is simulated by 18 computational steps.

• RE = {re1, f,g, j,i , re2, f,g, j,i | 1 → f → 4F, 1 → g → 7, 1 → i, j → 3}∪
{re3, j,i | 1 → i, j → 3}∪
{re4, f,g,i, j,p | 1 → f → 4F, 1 → g → 7, 0 → i → 1, 1 → j, p → 3, j ∀= p}∪
{re5, f,g,i, j | 1 → f → 4F, 1 → g → 7, 0 → i → 1, 1 → j → 3}

• μ = [ [ ]2 ]1 is the membrane structure, and the corresponding initial multisets in
the environment j are:

– M1, j = ∈
– M2, j = { X

q f,g, j
f,g | 1 → f → 4F, 1 → g → 7, 1 → j → 3}∪

{aln, j
n | 1 → n → 4, 1 → j → 3} ∪ {C0}

Objects X f,g represent individuals in step 0, for families f from 1 to 4F , with
F the number of families per neighbourhood; they are divided by index g
in 7 age groups as explained before. Objects an , as mentioned before, repre-
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sent individuals initially infected at the beginning of the simulated period. The
amount of objects depends, for each environment, on parameters q f,g, j and ln, j ,
that should be specified by the user.

• In what follows we enumerate the rules in R ∪ RE along with some comments
on their functioning:

Initial infection

These rules take care of generating the initial scenario, randomly distributing symp-
tomatic and asymptomatic individuals along the system, according to the parameters
ln, j . These parameters are provided by the user before starting the simulation, and
they indicate the initial amount of infected individuals on each environment e j (rep-
resented by the multiplicity of objects an).

These rules are only applied in the first step of the computation, they are not part
of the loop that represents a day (see Fig. 4.4).

Each infected individual is estimated to interact with 20 other individuals dur-
ing one day, and thus 20 copies of S f,g (A f,g , respectively) are generated for each
symptomatic (asymptomatic, respectively) individual.

Generate symptomatic individuals

r1, f,g,i,n ∧ [an X f,g
ps/4−−−≥ S f,g,i S20

f,g]2

{
(n − 1)F < f → nF,

1 → g → 7,

2 → i → 5,

1 → n → 4

Generate asymptomatic individuals

Fig. 4.4 Structure of the
environment graph of the PDP
system defined
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r2, f,g,i,n ∧ [an X f,g
(1−ps)/4−−−≥ A f,g,i X̃ A20

f,g]2

{
(n − 1)F < f → nF,

1 → g → 7,

2 → i → 5,

1 → n → 4

Clock advance

r3 ∧ [C0 −−−≥ C1]2

Infection inside the family (first step)

As we said before, any infected individual can spread the disease by interacting with
other individuals. However, we distinguish two types of behaviour: symptomatic
individuals are supposed to stay at home, hence only interacting with their relatives,
while asymptomatic individuals are supposed to be unaware of their infection. In this
module, rules r4, f,g,g′ and r5, f,g,g′ deal with the possible infection within the family.
The rest of modules will cover different reasons for interaction between susceptible
individuals and asymptomatic infected individuals.

The model also has special rules (see r6, f,g and r7, f,g) to deal with the fact that
two infected people, when interacting, cannot get infected again. Please note that
these rules compete for objects A f,g and S f,g against rules r4, f,g,g′ and r5, f,g,g′ .

Infection of susceptible individuals

r4, f,g,g′ ∧ [S f,g X f,g′ ]2 −−−≥[S f,g X f,g′ X̃ ]−2
{

1 → f → 4F,

1 → g, g′ → 7

r5, f,g,g′ ∧ [A f,g X f,g′ ]2 −−−≥[A f,g X f,g′ X̃ ]−2
{

1 → f → 4F,

1 → g, g′ → 7

Interaction between infected individuals

r6, f,g ∧ [S f,g X̃ ]2 −−−≥[S f,g X̃ ]−2
{

1 → f → 4F,

1 → g → 7

r7, f,g ∧ [A f,g X̃ ]2 −−−≥[A f,g X̃ ]−2
{

1 → f → 4F,

1 → g → 7

Clock advance with charge change

r8 ∧ [C1]2 −−−≥[C2]−2

Infection inside the family (last step)

We need to avoid that rules for infection inside the family are applicable in more
steps. Note that by changing the charge we guarantee that all symbols are renamed
by means of the following rules:

Renaming of susceptible (X ) and infected (X̃ ) individuals

r9, f,g ∧ [X f,g]−2 −−−≥[Y f,g]2

{
1 → f → 4F,

1 → g → 7

r10 ∧ [X̃ ]−2 −−−≥[Ỹ ]2
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Removal of the possibility of infection by symptomatic individuals

r11, f,g ∧ [S f,g]−2 −−−≥[#]2

{
1 → f → 4F,

1 → g → 7

Clock advance with charge change

r12 ∧ [C2]−2 −−−≥[C3]2

Infection inside the neighborhood (first step)

The following four blocks of rules represent the probability of infection by
interacting with a “neighbour”. The set of 4F families living in each community
is divided into four intervals, representing four neighbourhoods. Thus, two individu-
als A f,g and Y f ′,g′ live in the same neighbourhood if their family indexes ( f and f ′)
belong to the same interval.

This module includes, like discussed above, rules to deal with the interaction
between two infected people (see r17, f,g).

Asymptomatic individuals affecting susceptible ones

r13, f, f ′,g,g′ ∧ [A f,g Y f ′,g′ ]2 −−−≥[A f,g X f ′,g′ Ỹ ]−2
{

1 → f, f ′ → F,

1 → g, g′ → 7

r14, f, f ′,g,g′ ∧ [A f,g Y f ′,g′ ]2 −−−≥[A f,g X f ′,g′ Ỹ ]−2
{

F < f, f ′ → 2F,

1 → g, g′ → 7

r15, f, f ′,g,g′ ∧ [A f,g Y f ′,g′ ]2 −−−≥[A f,g X f ′,g′ Ỹ ]−2
{

2F < f, f ′ → 3F,

1 → g, g′ → 7

r16, f, f ′,g,g′ ∧ [A f,g Y f ′,g′ ]2 −−−≥[A f,g X f ′,g′ Ỹ ]−2
{

3F < f, f ′ → 4F,

1 → g, g′ → 7

Interaction between infected individuals

r17, f,g ∧ [A f,g Ỹ ]2 −−−≥[A f,g Ỹ ]−2
{

3F < f, f ′ → 4F,

1 → g, g′ → 7

Clock advance with charge change

r18 ∧ [C3]2 −−−≥[C4]−2
Infection inside the neighborhood (last step)

Following the same strategy as in the previous module (infection inside the
family), we include now the corresponding renaming rules.

Renaming of susceptible (Y ) and infected (Ỹ ) individuals

r19, f,g ∧ [Y f,g]−2 −−−≥[Z f,g]2

{
1 → f → 4F,

1 → g → 7

r20 ∧ [Ỹ ]−2 −−−≥[Z̃ ]2

Clock advance with charge change
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r21 ∧ [C4]−2 −−−≥[C5]2

Infection inside the community (first step)

This module of rules represents the probability of infection by interacting with an
individual living in the same community. No conditions are imposed on the indexes
of the symbols, if they are in the same membrane (within the same environment)
then they can interact.

Rules to deal with the interaction between two infected people are included here
as well (see r23, f,g).

Evolution of susceptible (Z ) and previously affected (Z̃ ) individuals

r22, f, f ′,g,g′ ∧ [A f,g Z f ′,g′ ]2 −−−≥[A f,g X f ′,g′ Z̃ ]−2
{

1 → f, f ′ → 4F,

1 → g, g′ → 7

r23, f,g ∧ [A f,g Z̃ ]2 −−−≥[A f,g Z̃ ]−2
{

1 → f → 4F,

1 → g → 7

Clock advance with charge change

r24 ∧ [C5]2 −−−≥[C6]−2
Infection inside the community (last step)

Following the same strategy as in the previous modules, we include now the corre-
sponding renaming rules.

Renaming of susceptible (Z ) and infected (Z̃ ) individuals

r25, f,g ∧ [Z f,g]−2 −−−≥[V f,g]2

{
1 → f → 4F,

1 → g → 7

r26 ∧ [Z̃ ]−2 −−−≥[Ṽ ]2

Clock advance with charge change

r27 ∧ [C6]−2 −−−≥[C7]2

Infection in workplace/daycare/school...

In this part of the day cycle, we consider the interactions which take place at work.
More precisely, the individuals can now be infected by interacting with other indi-
viduals of the same age group (since they will both be studying at school, or both
working, etc.).

The renaming step is not needed in this module. By giving a positive charge
to membrane 2 (in the previous modules only 0 and − are used), the module for
travelling among communities is initiated in the next step.

An asymptomatic individual may meet susceptible ones (Vk,g), or another infected
individual (Ṽ )
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r28, f, f ′,g ∧ [A f,g V f ′,g]2 −−−≥[A f,g X f ′,g Ṽ ]+2
{

1 → f, f ′ → 4F,

1 → g → 7

r29, f,g ∧ [A f,g Ṽ ]2 −−−≥[A f,g Ṽ ]+2
{

1 → f → 4F,

1 → g → 7

Clock advance with charge change

r30 ∧ [C7]2 −−−≥[C8]+2

Infection among communities

This is the last possibility included in our model for spreading the disease. It considers
the case of asymptomatic individuals traveling outside their communities.

In order to represent such “travels”, objects are sent out of membrane 2, and then
out of membrane 1 into their environment. Then, communication rules are applied,
possibly moving to a different environment, and after that the objects representing
the travellers move into membrane 1 and into membrane 2, and then they are ready
for the infection rules (see r52, f,g, j ). Rule r53 has a double role: on one hand they
are equivalent to rules for interaction between two infected people used in previous
modules, but on the other hand, together with rules r55 and r56 they also take care of
eliminating objects involved in infection rules, so that they will not interfere in the
development of the next cycle.

Movement to skin membrane

r31, f,g ∧ [V f,g]+2 −−−≥ V f,g[ ]2

{
1 → f → 4F,

1 → g → 7

r32 ∧ [Ṽ ]+2 −−−≥ Ṽ [ ]2

r33, f,g ∧ [A f,g]+2 −−−≥ A f,g[ ]2

{
1 → f → 4F,

1 → g → 7

r34, f,g ∧ [X f,g]+2 −−−≥ X f,g[ ]2

{
1 → f → 4F,

1 → g → 7

r35, f,g,i ∧ [A f,g,i ]+2 −−−≥ A f,g,i [ ]2

{
1 → f → 4F,

1 → g → 7,

2 → i → 5

r36, f,g,i ∧ [S f,g,i ]+2 −−−≥ S f,g,i [ ]2

{
1 → f → 4F,

1 → g → 7,

2 → i → 5

r37, f,g ∧ [R f,g]+2 −−−≥ R f,g[ ]2

{
1 → f → 4F,

1 → g → 7

Clock advance with charge change

r38 ∧ [C8]+2 −−−≥[C9]2
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Movement to the environment

r39, f,g, j ∧ [A f,g]1
1/3−−−≥ A′

f,g, j [ ]1

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r40, f,g, j ∧ [V f,g]1
1/3−−−≥ V ′

f,g, j [ ]1

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r41, j ∧ [Ṽ ]1
1/3−−−≥ Ṽ ′

j [ ]1 1 → j → 3

Clock advance

r42 ∧ [C9 −−−≥ C10]2

Communication rules among environments

re1, f,g, j,i ∧ (A′
f,g,i )e j −−−≥( Â)ei

{
1 → f → 4F,

1 → g → 7,

1 → i, j → 3

re2, f,g, j,i ∧ (V ′
f,g,i )e j −−−≥(W f,g, j )ei

{
1 → f → 4F,

1 → g → 7,

1 → i, j → 3

re3, j,i ∧ (Ṽ ′
i )e j −−−≥(W̃ )ei 1 → i, j → 3

Clock advance

r43 ∧ [C10 −−−≥ C11]2

Input into membrane 1

r44 ∧ Â[ ]1 −−−≥[ Â]1

r45, f,g, j ∧ W f,g, j [ ]1 −−−≥[W f,g, j ]1

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r46 ∧ W̃ [ ]1 −−−≥[W̃ ]1

Clock advance

r47 ∧ [C11 −−−≥ C12]2

Input into membrane 2

r48 ∧ Â[ ]2 −−−≥[ Â]2

r49, f,g, j ∧ W f,g, j [ ]2 −−−≥[W f,g, j ]2

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r50 ∧ W̃ [ ]2 −−−≥[W̃ ]2
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Clock advance

r51 ∧ [C12 −−−≥ C13]2

An asymptomatic traveller may meet a susceptible individual (W f,g, j ), or another
infected individual (W̃ )

r52, f,g, j ∧ [ Â W f,g, j ]2 −−−≥[X
′
f,g, j ]−2

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r53 ∧ [ Â W̃ ]2 −−−≥[#]−2
Clock advance with charge change

r54 ∧ [C13]2 −−−≥[C14]−2
Start the reverse trip to return home (movement to skin membrane)

r55 ∧ [ Â]−2 −−−≥[#]2

r56 ∧ [W̃ ]−2 −−−≥[#]2

r57, f,g, j ∧ [W f,g, j ]−2 −−−≥ W ′
f,g, j [ ]2

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r58, f,g, j ∧ [X
′
f,g, j ]−2 −−−≥ X

′
f,g, j [ ]2

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

Clock advance with charge change

r59 ∧ [C14]−2 −−−≥[C15]2

Next step of the trip back (movement to the environment)

r60, f,g, j ∧ [W ′
f,g, j ]1 −−−≥ X ′

f,g, j [ ]1

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

r61, f,g, j ∧ [X
′
f,g, j ]1 −−−≥ X

′
f,g, j [ ]1

{
1 → f → 4F,

1 → g → 7,

1 → j → 3

Clock advance

r62 ∧ [C15 −−−≥ C16]2

Next step of the trip back (communication rules among environments)

re4, f,g, j,i ∧ (X ′
f,g, j )ei −−−≥(X f,g)e j

{
1 → f → 4F,

1 → g → 7,

1 → j, i → 3

re5, f,g, j,i ∧ (X
′
f,g, j )ei −−−≥(X f,g)e j

{
1 → f → 4F,

1 → g → 7,

1 → j, i → 3
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Clock advance

r63 ∧ [C16 −−−≥ C17]2

Next step of the trip back (going into membrane 1)

r64, f,g ∧ X f,g[ ]1 −−−≥[X f,g]1

{
1 → f → 4F,

1 → g → 7

r65, f,g ∧ X f,g[ ]1 −−−≥[X f,g]1

{
1 → f → 4F,

1 → g → 7

Clock advance with charge change

r66 ∧ [C17]2 −−−≥[C18]+2

Restore configuration

The last step of the “trip back” is slightly modified to be used as a restoring mecha-
nism, so that a new day cycle can start (if the maximum number of steps T has not
yet been reached).

There are three possibilities for individuals who have been marked as infected
during this cycle: either they are considered not actually infected, eventhough they
have been exposed (see r70, f,g); or they become infected and symptomatic (see
r68, f,g); or they become infected and asymptomatic (see r69, f,g).

A third index is considered for symbols representing previously infected individ-
uals. It represents the days since they became infected. We assume that after 5 days,
asymptomatic individuals will change status to recovered. For symptomatic individ-
uals, on the other hand, we have to take into account the probability of recovery,
which is a parameter that may get different values for each age group.

Last step to complete the “one-day” cycle, renaming the symbols to start over
again

r67, f,g ∧ X f,g[ ]+2 −−−≥[X f,g]2

{
1 → f → 4F,

1 → g → 7

r68, f,g ∧ X f,g[ ]+2
ps·pg−−−≥[S f,g,2 S20

f,g]2

{
1 → f → 4F,

1 → g → 7

r69, f,g ∧ X f,g[ ]+2
pg ·(1−ps)−−−≥[A f,g,2 A20

f,g X̃ ]2

{
1 → f → 4F,

1 → g → 7

r70, f,g ∧ X f,g[ ]+2
1−pg−−−≥[X f,g]2

{
1 → f → 4F,

1 → g → 7

r71, f,g,i ∧ S f,g,i [ ]+2 −−−≥[S f,g,i+1 S20
f,g]2

{
1 → f → 4F,

1 → g → 7,

2 → i → 4

r72, f,g,i ∧ A f,g,i [ ]+2 −−−≥[A f,g,i+1 A20
f,g X̃ ]2

{
1 → f → 4F,

1 → g → 7,

2 → i → 4
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r73, f,g ∧ A f,g,5[ ]+2 −−−≥[R f,g X̃ ]2

{
1 → f → 4F,

1 → g → 7

r74, f,g ∧ S f,g,5[ ]+2
prg−−−≥[R f,g X̃ ]2

{
1 → f → 4F,

1 → g → 7

r75, f,g ∧ S f,g,5[ ]+2
1−prg−−−≥[#]2

{
1 → f → 4F,

1 → g → 7

r76, f,g ∧ R f,g[ ]+2 −−−≥[R f,g X̃ ]2

{
1 → f → 4F,

1 → g → 7

Clock reset with charge change

r77 ∧ [C18]+2 −−−≥[C1]2

The constants associated with the rules have the following meaning:

• q f,g, j : Number of individuals in family f , in age group g inside community j .
• ln, j : Infected individuals in neighbourhood n of community j .
• pg: Probability for a person in age group g in contact with the virus to become

infected.
• prg: Probability for an infected person in age group g to recover.
• ps: Probability for an infected person to be symptomatic.

The proposed model consists of seven modules of rules. The first module (infection
of people) will only be executed when the model is initialized. The six remaining
modules will be executed in a loop. Each cycle of the loop is interpreted as one day
in the scenario.

In this chapter, a SIR model has been presented. In this model, the population is
structured in age groups. Moreover, different contact spaces have been defined. The
basic SIR model groups all individuals who are in a common location in a single age
group. The features of PDP models permits the introduction of features for a more
accurate reflection of reality in a straightforward manner.

4.6.2 Results

In the previous section, a SIR computational model based on Population Dynamics
P systems has been presented. In order to evaluate the accuracy of the model with
respect to the phenomenon under study, a validation process has been performed.
The inherent randomness in complex systems like the one presented makes it infea-
sible the formal validation of models that attempt to reproduce their behaviour. It is
therefore necessary an experimental validation by comparison of results generated
by simulation tools with experimental data obtained directly from the real system.
For this purpose, several software simulations have been performed, making use of
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Fig. 4.5 MeCoSim Pandemic custom app—Input parameters tabs

the tools presented in Sect. 4.5; that is, P-Lingua and the pLinguaCore library [21],
providing a standard language to define P systems and a Java library to manage
P-Lingua files and simulate P system computations, and MeCoSim [25], providing
a visual environment to perform the simulations.



4 Membrane System-Based Models 127

An application for SIR (called Pandemic) has been supplied with MeCoSim by
customization. Thus, by simply defining a configuration file, a visual GUI has been
provided, adapted to the parameters required for the presented model. The interested
reader can find in [36] the MeCoSim application files which define the model and
instructions to reproduce the experiments.

A number of virtual experiments has been performed by providing the general
model for SIR in P-Lingua format, and then introducing the appropriate values for
the data corresponding to different scenarios in the input tables of the MeCoSim
window (see Fig. 4.5). The process for each given scenario is as follows: the input
data are introduced, the corresponding parameters q f,g, j , ln, j , pg , prg and ps are
generated, and then the computation is performed with Simulate! option, which calls
DCBA-based simulation engine in pLinguaCore library. The simulation results have
been obtained in the form of output tables and charts, as shown in Fig. 4.6.

A first scenario was simulated for the presented model. The detailed description of
the scenario is what follows. The number of communities and families has been given
as input parameters. These parameters have been obtained from [37]. The example
depicted in Fig. 4.2 consists of 3 communities and 20 families for each community. At
the initial stage, there are six infected people both in communities 1 and 3. In contrast,
there are no infected people in community 2. The probability for a susceptible person

Fig. 4.6 Pandemic—Output table and chart. Number of healthy, asymptomatic, symptomatic and
recovered individuals by zone
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Fig. 4.7 Evolution of individuals—Original scenario

in contact with an infected one to become infected is 5 %. There is a 30 % probability
for an infected person to manifest symptoms, whereas in the rest of the cases the
symptoms are not manifested. Those who manifest symptoms are solely breeding
grounds inside their family. On the other hand, those who do not manifest symptoms
might infect people in other families and communities. There is a 5 % probability for
a symptomatic person to recover. In contrast, asymptomatic people always recover.
There exist no observable differences in the pandemic dynamics among the three
communities due to the quick spreading of the disease. The designed simulator
supports tuning of the parameters in the model. This feature provides a friendly way
to study the behaviour of the disease under different scenarios. The presented model

Fig. 4.8 Evolution of individuals—First alternative case
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Fig. 4.9 Evolution of individuals—Second alternative case

does not take into account human interventions, such as vaccination campaigns,
prophylactic actions, etc. These kind of measures are usually undertaken in the event
of a pandemic outbreak. The results for this first scenario are shown in Fig. 4.7.

A number of other virtual experiments have been performed. Two of them
are shown below. Both of them have similar input parameters; in particular, the
probability for an individual to become infected is 10 %, and the probability of
recovery is 30 % (the same for each age group). The only difference is the probabil-
ity for an infected individual to be symptomatic. This probability is 30 % in the first
case (see Fig. 4.8), whereas it is 10 % in the second case (see Fig. 4.9). As it can be
seen, the second scenario presents a bigger number of recovered individuals, given
the fact that asymptomatic individuals always recover.

Although the experiments carried out in this chapter refer to a virtual population,
the results obtained by our simulations match the tendencies reported in the literature
using classical SIR models [37–39].

4.7 Conclusions and Perspectives

Population Dynamics P systems (PDP systems) provide a new formal bio–inspired
modelling framework. This is a novel and expressive approach that overcomes some
limitations of classical mathematical models while keeping the most important fea-
tures of the studied phenomena.

We illustrate the modelling/simulating workflow by means of a SIR computa-
tional model. First of all comes the design of the model, capturing complex social
networks and interactions between individuals by means of the hierarchical structure
of membranes (and the graph of connections between environments) along with their
associated rules.
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The model is then described in P–Lingua and given as input to the pLinguaCore
library, which parses the model description and checks for errors. It is worth noting
that such a description does not include data related to specific scenarios, only the
initial structure and the rules. In order to input scenario–specific data related to a
virtual experiment, MeCoSim generates a custom GUI. This GUI defines data fields
specifically related to the problem at hand for the user to input the data.

In order to simulate the scenario, an algorithm capturing the semantics of PDP
systems is required (e.g. MeCoSim calls pLinguaCore to perform this task relying on
its built-in simulators). In this chapter we have explained the Direct distribution based
on Consistent Blocks Algorithm (DCBA), which performs a proportional distribution
of objects among rules in accordance to their associated probabilities. The algorithm
grants a fair distribution in the case of competition among rules (i.e. rules having
overlapping left-hand sides). Finally, simulation results are displayed by means of
data tables and charts.

One of the drawbacks of sequential simulators is the time they spend to simulate
considerably large instances. Nevertheless, the parallel structure of DCBA algorithm
(and of PDP systems) appoints it suitable for its implementation on parallel hard-
ware architectures, such as computer grids and graphic cards. In this sense, we have
introduced an existing CUDA-based simulator which takes advantage of the com-
putational parallel power of GPU computing in order to accelerate PDP systems
simulations.

As regards to perspectives, the ultimate goal of these models is to serve as auto-
matic assistants on management decision taking. That is, to give information about
the effects of plausible measures by simulating presumed scenarios derived from
undertaking these measures. In this sense, it is essential that future versions of the
model consider and assess the effects of human measures. They will also need to
analyse and foresee future trends on the studied populations. This goal calls for tight
collaboration between experts and model designers, so as to define virtual experi-
ments leading to feasible hypothesis to be verified by means of field work and live
experiments.

When it comes to software development, the main work lines have to do with
the improvement of the existing simulators, to reach higher performance and match
even better the experimental results. As a short-term perspective, it is required to
defined and implement efficient communication protocols to connect the mentioned
parallel simulators from PMCGPU with the framework pLinguaCore. The addition
of new functionalities to the interfaces is another important task which concerns
software development. As a result, future versions of MeCoSim should permit a
more exhaustive analysis on the results and augment the degree of automation of the
design and simulation workflow from an end-user perspective.
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Chapter 5
Membrane Systems and Tools Combining
Dynamical Structures with Reaction Kinetics
for Applications in Chronobiology

Thomas Hinze, Jörn Behre, Christian Bodenstein, Gabi Escuela,
Gerd Grünert, Petra Hofstedt, Peter Sauer, Sikander Hayat and Peter Dittrich

Abstract This chapter addresses three coordinated chronobiological studies
demonstrating the convergence of experimental observations, fine-grained spatio-
temporal modelling, and predictive simulation. Due to the discrete manner of mole-
cular assembly in cell signalling and gene regulation, we define a framework of
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membrane systems equipped with discretised forms of reaction kinetics in concert
with variable intramolecular structures. Our first study is dedicated to circadian clocks
inducing daily biological rhythms. As an inspiring example, the KaiABC core oscil-
lator reaches its functionality by cyclically varying protein structures. Within our
second study, we present a meta-model of an entire circadian clockwork able to adapt
its oscillation to an external stimulus in terms of a frequency control system acting
in a phase-locked loop. Substrate concentration courses resulting from gene expres-
sion reflect its oscillatory behaviour utilised in a periodical trigger for subsequent
processes. In this context, our third study cytometrically quantifies the dynamical
behaviour of a bistable toggle switch resulting from mutual gene regulation.

5.1 Introduction

In recent years, chronobiology emerged as a promising research area with vari-
ous exploitable applications in medicine, agriculture, and biotechnology [36]. It is
focused on endogenous biological and chemical rhythms acting as trigger signals
and for control of manifold subsequent processes. A prominent example is given by
circadian clocks which comprise chemical oscillatory systems with a free-running
periodicity close to 24 h. Their capability of entrainment to dedicated external stimuli
like daily variations of sunlight and darkness makes circadian clocks a precise and
robust nanoscaled frequency control system affecting numerous metabolic and gene
regulatory activities. In the human body for instance, the intensity of alertness and
tiredness has been influenced in this way mainly dependent on the temporal course of
specific hormone and protein concentrations. Insufficiencies within such oscillatory
systems can cause serious diseases. A detailed modelling of underlying processes at
a molecular scale in conjunction with capturing its complex interplay at a systems
level is an essential prerequisite to cope with the challenge of achieving a thorough,
holistic understanding of biological rhythms.

The framework of membrane systems provides an ideal modelling approach in
chronobiology since it can combine a rule-based description of dynamical spatial
structures with time-dependent kinetic issues. In this context, each single molecule
within a reaction system including its submolecular structures, attached ligands, and
complex formations can be considered and traced over time with its structural modi-
fications according to configurable reaction kinetics. We introduce the resulting class
of string-based P systems which includes definition of cell signalling P modules, spa-
tially delimited functional reaction units for (bio)chemical information processing.
This introduction comes along with a presentation of the corresponding simulation
software package SRSim which incorporates spatial rules and a strong visualisa-
tion engine. Moreover, three examples illustrate diverse application scenarios of our
framework in chronobiology together with descriptive simulation studies.

Starting with the KaiABC core oscillator [64] found in the procaryotic cyanobac-
terium Synechococcus elongatus, one of the oldest life forms on earth, we explore
a cell signalling network representing a post-translational prototype for generation
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of circadian rhythms. It turns out that this oscillator includes an inherent frequency
divider which allows release of trigger signals every 12 h instead of 24 h. In the
second scenario, we extend a generalised core oscillator by additional modules in
order to identify functional components useful for adaptation to an external oscilla-
tory signal. We show that phase-locked loops provide an efficient way of chemical
frequency control just by combining a controllable core oscillator with a chemical
signal multiplier and a reaction cascade acting as a low-pass filter. The output of a
circadian clock, the temporal course of specific molecular species concentrations,
typically serves as a trigger for subsequent processes. This functionality often implies
a chemical counterpart of logic switches and gates responsible for signal merge and
evaluation. Our third application scenario is dedicated to an in-vivo implementation
of a binarily operating NAND gate and a bistable toggle switch (flip-flop). Both units
consist of gene regulatory networks present in the lac operon that exists in many life
forms. Here, transcription factors as signalling molecules control the functionality
of information processing.

5.2 The KaiABC Core Oscillator: A Circadian Clock
Component with Dynamical Molecular Structures

5.2.1 Biological Background

Circadian rhythms enclose an interesting biological phenomenon that can be seen
as a widespread property of life [58]. The coordination of biological activities into
daily cycles provides an important advantage for the fitness of diverse organisms
[5, 60]. Based on self-sustained biochemical oscillations, circadian clocks are char-
acterised by a natural period close to but slightly different from 24 h that persists
under constant conditions (like constant darkness or constant light). Their ability for
compensation of temperature in the physiological range enables them to maintain
the period in case of environmental changes. Furthermore, circadian clocks can be
entrained [48]. This property allows a gradual reset of the underlying oscillatory
system for adjustment by exposure to external stimuli like light/dark or temperature
cycles. A variety of metabolic, cell signalling, and gene regulatory processes is syn-
chronised or controlled by circadian clocks. Chemically, they utilise an individual
cyclic reaction scheme including one or more feedback loops. Most of the circadian
clocks comprise gene transcription and translation feedback loops [2].

Surprisingly, the procaryotic cyanobacterium Synechococcus elongatus was dis-
covered to carry a post-translational circadian clock even functioning in vitro [64].
Three key clock proteins KaiA, KaiB, and KaiC could be identified together with
their atomic structure [47]. KaiC as the focal protein rhythmically oscillates between
hypophosphorylated and hyperphosphorylated forms [50]. The spatial structure of
KaiC represents a homohexamer shaped as a “double doughnut” with 6 phosphoryla-
tion twin sites at the interfaces between monomeric subunits. Presence of the supple-
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mentary protein KaiA specifically enhances KaiC phosphorylation while complex
formation of KaiBC activates KaiC dephosphorylation [46]. The KaiABC circadian
oscillator appears as a reaction cycle consisting of four consecutive phases [21], see
Fig. 5.1: KaiAC complex formation releasing KaiB, successive KaiAC phosphory-
lation, KaiABC complex formation, and successive KaiABC dephosphorylation in
conjunction with KaiA dissociation. Each of these phases takes approximately 6 h.
There is some evidence for further interactions between the aforementioned protein
complexes and intermediate products in terms of negative feedback loops stabilising
the oscillation. However, the detailed mechanism is still unclear and gives room for
hypotheses translated into a couple of candidate models [5]. In this section, we reflect
and extend our results initially discussed in Ref. [32].

5.2.2 Membrane Systems ΠCSM for Cell Signalling Modules

Biological signalling networks have been identified to exhibit a universal capability
to process information [31, 42]. They can be viewed as complex computational
devices of the cell, triggering and directing responses to external stimuli. It turns out
that successive formation or decomposition of protein complexes in conjunction with
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Fig. 5.1 Reaction cycle of the KaiABC oscillator characterised by four phases and incomplete
information about interphase feedback loops, arranged from descriptions of the oscillatory mech-
anism given in Refs. [21, 46]. A corresponding minimal model of the four-phase cycle has been
proposed in Ref. [5]
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domain-specific protein binding (e.g. phosphorylation by kinases) plays a central role
in biological signal transduction based on submolecular assembly [3]. In this context,
resulting biomolecules act as information carriers of astonishing storage capacity and
structural plasticity. For example, the tumor suppressor protein p53 is equipped with
27 phosphorylation sites [4]. It could theoretically carry up to 227 =134,217,728
different activation states. Having in mind that each of these states is able to form an
individual constituent of a reaction network incorporating all distinguishable states
of up to several hundred interacting proteins, the potential dimension of those protein
signalling networks is obvious.

While the steady-state behaviour might be sufficient to characterise a metabolic
network (cf. [28]), the function of a protein signalling network depends heavily
on its temporal evolution. Oscillators based on phosphorylation/dephosphorylation
cycles represent significant examples [46, 50, 64]. Thus, the aspect of dynamical
behaviour should be reflected in the choice of the preferred modelling approach.
For that purpose, ordinary differential equations (ODEs) derived from appropriate
kinetics are commonly applied. Since this method usually assumes each individual
protein activation state to act as a separate species, it easily leads to an exponential
growth of the number of distinct ODEs (addressed amongst others in Ref. [12]). An
opportunity to temporarily unify several activation states by one dedicated species
could be a keystone to overcome this insufficiency.

Inspired by this initial idea, we propose a P systems framework able to specify
proteins together with relevant properties by string-objects. In contrast to species
names in ODEs, phenotypic information about a protein is represented by a char-
acter string. Each individual protein property is allowed to be marked as present,
absent, or arbitrary. In the latter case, placeholders known from regular expres-
sions denote unassigned protein properties. Consequently, reaction rules may also
contain placeholders processed by a matching relation for association of available
particles to reactants given within rules. Furthermore, our P systems framework com-
bines the ability to manage specific string-objects with discretised reaction kinetics.
Incomplete information about protein activation states can be handled by setting
placeholders if required. While they enable a unification of several activation states
when specifying a protein on the one hand, placeholders, on the other hand, con-
tribute to trace the variety of potential effects by embedding wild-cards into reaction
rules. Thus, a bottom-up strategy for the modelling of signalling networks by suc-
cessive knowledge integration can benefit from the proposed framework. Along with
intermediate results coming from simulation of a partially wild-carded system, syner-
gies between wetlab experimental setup and model refinement considering structural
dynamics might emerge. Inclusion of reaction kinetics into the formalism of P sys-
tems was explained in Ref. [43], exemplified by metabolic networks, supplemented
by signalling and gene regulatory networks [29]. A previous formulation of peri-
odic and quasi-periodic processes based on symbol objects without inner structure is
given in Ref. [9]. The BioNetGen framework [11] allows handling of string pattern
to constitute species. However, its expressive capability of reaction kinetics excludes
stoichiometry.
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The mathematical specification of membrane systems is mainly based on multisets
whose objects commonly symbolise single molecules able to interact within a dedi-
cated reaction system [17, 51, 52]. Rewriting rules formally operating on multisets
emulate the effect of chemical reactions on the underlying multiset of molecular
objects. Let A be an arbitrary set,N the set of natural numbers including zero, andR+
the set of non-negative real numbers. P(A) denotes the power set of A. A fractional
multiset over A is a mapping F : A −≥ R+ ≤ {+∈}. ∗F(a)→, also denoted as [a]F ,
specifies the multiplicity of a ∈ A in F . Particularly, ordinary multisets F : A −≥
N ≤ {+∈} exclusively utilise whole-number cardinalities. Multisets in general can
be written as an elementwise enumeration of the form {(a1, F(a1)), (a2, F(a2)), . . .}
since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F) ∧ A of F is defined
by supp(F) = {a ∈ A | F(a) > 0}. A multiset F over A is said to be empty
iff ∀a ∈ A : F(a) = 0. The cardinality |F | of F over A is |F | = ∑

a∈A F(a).
Let F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ∧ F2, iff
∀a ∈ A : (F1(a) ∪ F2(a)). Multisets F1 and F2 are equal iff F1 ∧ F2 ∨ F2 ∧ F1.
The intersection F1 ⇒ F2 = {(a, F(a)) | a ∈ A ∨ F(a) = min(F1(a), F2(a))}, the
multiset sum F1 ∼ F2 = {(a, F(a)) | a ∈ A ∨ F(a) = F1(a)+ F2(a)}, and the mul-
tiset difference F1 ∃ F2 = {(a, F(a)) | a ∈ A ∨ F(a) = max(F1(a) − F2(a), 0)}
form multiset operations. Multiplication of a multiset F = {(a, F(a)) | a ∈ A}
with a scalar c, denoted c · F , is defined by {(a, c · F(a)) | a ∈ A}. The term
〈A〉 = {F : A −≥ R+ ≤ {+∈}} describes the set of all fractional multisets over A.

5.2.2.1 Definition of System Components

A membrane system for a cell signalling module (CSM) is a construct

τCSM = (V, V ′, R1, . . . , Rr , f1, . . . , fr , A, C,πα) (5.1)

where V and V ′ are two alphabets (not necessarily disjoint); without loss of generality
#,¬, ϕ /∈ V ≤ V ′. The regular set

S = V + · ({#} · ((V ′)+ ≤ {¬} · (V ′)+ ≤ {ϕ}))ϕ

describes the syntax for string objects. The leftmost substring from V + holds the
protein identifier, followed by a finite number of protein property substrings from
(V ′)+ which are separated by #. For example, consider the string object C: D#p#ϕ#¬q
identifying protein (complex) C : D with specified property p, a second arbitrary
property (ϕ), and without property q. Each protein property substring expresses a
specific additional information about the protein, for instance whether it is activated
by carrying a ligand at a certain binding site. Two kinds of meta symbols are allowed.
The symbol ¬ excludes the subsequent property but permits all other properties at
this substring position. The placeholder ϕ stands for an arbitrary (also unknown or
unspecified) protein property substring. This way, uncertainty about the properties
of proteins can be explicitly expressed. String objects can be dynamically processed
by reaction rules:
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Ri ∈ 〈S〉 × 〈S〉 is a reaction rule composed of two finite multisets
fi : 〈S〉 −≥ R+ is a function corresponding to kinetics of reaction Ri

A ∈ 〈S〉 is a multiset of axioms representing the initial molecular configuration
C ∈ R+ \ {0} spatial capacity of the module (vessel or compartment)
πα ∈ R+ \ {0} time discretisation interval

We explain the system evolution of τCSM within four consecutive subsections.
Based on the specification of the system configuration, we define an iteration scheme
that updates this configuration from time t to time t +1. The update includes process-
ing of reactions given by the rules Ri (i = 1, . . . , r ). For this purpose, an appropriate
matching between wild-carded strings representing reactants and those stated in the
current configuration is required. Then, a reaction is executed by removing the mul-
tiset of matching reactants from the current configuration followed by adding the
corresponding products. In order to consider kinetic issues, each reaction can be
multiply processed. Therefore, the number of turns is provided by the function fi .
Please note that τCSM evolves deterministically in contrast to stochastic approaches
like Gillespie [19] or Master Equation [20].

5.2.2.2 Dynamical System Behaviour

A membrane system of the form τCSM evolves by successive progression of its con-
figuration Lt ∈ 〈S〉 at discrete points in time t ∈ N for what we assume a global
clock. Two consecutive dates t and t +1 specify a time span πα (discretisation inter-
val). A system step at time t consists of two modification stages per reaction 1, . . . , r .
First, the multiset of reactants is determined and removed from Lt . Afterwards, the
corresponding multiset of products is added. To cope with conflicts that can occur if
the available amount of reactants cannot satisfy all matching reactions, we prioritise
the reaction rules by their index: R1 > R2 > · · · > Rr . Thus, we keep determinism
of the system evolution and have mass conservation.

L0 = L0,0 = A

Lt,1 =
{

Lt,0 ∃ Reactantst,1 ∼ Productst,1 if Reactantst,1 ∧ Lt,0
Lt,0 otherwise

Lt,2 =
{

Lt,1 ∃ Reactantst,2 ∼ Productst,2 if Reactantst,2 ∧ Lt,1
Lt,1 otherwise

...

Lt+1 = Lt,r =
{

Lt,r−1 ∃ Reactantst,r ∼ Productst,r if Reactantst,r ∧ Lt,r−1
Lt,r−1 otherwise

Let R j = (A j , B j ) ∈ 〈S〉 × 〈S〉 be a reaction rule with supp(A j ) = {a1, . . . , ap}
and supp(B j ) = {b1, . . . , bq}. In terms of a chemical denotation, it can be written as
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A j (a1) a1 + · · · + A j (ap) ap −≥ B j (b1) b1 + · · · + B j (bq) bq

where A j (a1), . . . , A j (ap) represent stoichiometric factors of reactants a1, . . . , ap,
and B j (b1), . . . , B j (bq) stoichiometric factors of products b1, . . . , bq , respectively.
All reactant strings that match to the pattern ak are provided by a dedicated relation
Match(ak) (see Sect. 5.2.2.3 for definition). A combination of reactant strings from
Lt matching the left hand side of R j forms a multiset of string objects used to
apply the reaction once. Since the kinetic law, described by the corresponding scalar
function f j , returns the number of applications of reaction rule R j within one step,
the multiset of string objects extracted from Lt to act as reactants for R j can be
written as Reactantst, j :

Reactantst, j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

f j
({(e1,∈), . . . , (ep,∈)} ⇒ Lt, j−1

) ·
{
(e1, A j (a1)), . . . , (ep, A j (ap))

}

Accordingly, the multiset of products resulting from reaction rule R j is determined
by the multiset Products j (t):

Productst, j =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

f j
({(e1,∈), . . . , (ep,∈)} ⇒ Lt, j−1

) ·
{
(b1, B j (b1)), . . . , (bq , B j (bq))

}

5.2.2.3 Matching

Let the regular set S be a syntax description for string objects. In the symmetric
relation Match, two string objects match iff there is at least one common representa-
tion without wild-cards. This loose strategy requires a minimum degree of similarity
between objects with incomplete information. Uncertainty is interpreted as arbitrary
replacements within the search space given by S.

Match ∧ S × S

Match =
⋃

m∈N
{(p# p1# p2 . . . # pm, s#s1#s2 . . . #sm) | (p = s)∨

∀ j ∈ {1, . . . , m} : [(p j = s j ) ∨ (p j = ϕ) ∨ (sj = ϕ)∨
((p j = ¬q) ∨ (s j �= q)) ∨ ((s j = ¬q) ∨ (p j �= q))]}

Matching of a single string object w ∈ S to the entire set S is defined by

Match(w) = {s ∈ S | (w, s) ∈ Match}
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Consequently, we define the matching of a language L ∧ S by the function
Match : P(S) −≥ P(S) with

Match(L) =
⋃

w∈L

Match(w).

5.2.2.4 Mass-action Kinetics

For description of the temporal behaviour of chemical reaction networks we con-
sider substrate concentrations over time presuming homogeneity in reaction space.
General mass-action kinetics [14] formulates reaction system’s dynamics subject to
production and consumption rates vp and vc of each substrate S in order to contin-
uously change its concentration by d [S]

d t = vp − vc. A reaction system with a total
number of n substrates and r reactions

a1,1S1 + a2,1S2 + · · · + an,1Sn
k1−≥ b1,1S1 + b2,1S2 + · · · + bn,1Sn

a1,2S1 + a2,2S2 + · · · + an,2Sn
k2−≥ b1,2S1 + b2,2S2 + · · · + bn,2Sn

...

a1,r S1 + a2,r S2 + · · · + an,r Sn
kr−≥ b1,r S1 + b2,r S2 + · · · + bn,r Sn

employs stoichiometric factors ai, j ∈N (reactants), bi, j ∈N (products) and kinetic
constants k j ∈ R>0 assigned to each reaction quantifying its velocity (N: natural
numbers, R>0: positive real numbers). The corresponding ODEs read [15]:

˙[Si ] = d [Si ]
d t

=
r∑

h=1

(
kh · (bi,h − ai,h) ·

n∏

l=1

[Sl ]al,h

)
with i = 1, . . . , n

In order to obtain a concrete trajectory, all initial concentrations [Si ](0) ∈ R≥0,
i = 1, . . . , n are allowed to be set according to the relevance for the reaction system.

5.2.2.5 Time-discrete Reaction Kinetics

Within the P systems framework τCSM, we formulate reaction kinetics by specifi-
cation of scalar functions f j attached to corresponding reactions R j ( j = 1, . . . , r ).
Each scalar function converts the current configuration Lt , a multiset of string
objects, into the corresponding amount for update of reactant and product abundance
with respect to rewriting rule R j :

f j (Lt ) = k j

∏

∀φ∈Match(A j )⇒Match(Lt ) : (R j =(A j ,B j ))

f̂(Lt (φ))|Match(A j )⇒{(φ,∈)}| (5.2)
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whereas the auxiliary term φ passes through all string objects present in Lt which also
form reactants in R j . The multiplicity Lt (φ) of occurrences of φ acts as argument
for a kinetic law f̂(Lt (φ)). Examples adopted from mass-action, Michaelis–Menten,
and Hill kinetics are shown in Fig. 5.2.

5.2.2.6 Relations to ODE-based Reaction Kinetics

For a reaction system with a total number of n species (i = 1, . . . , n) and r reactions
( j = 1, . . . , r )

a1, j Z1 + a2, j Z2 + · · · + an, j Zn
k̂ j−≥ b1, j Z1 + b2, j Z2 + · · · + bn, j Zn

the corresponding ODEs

d [Zi ]
d t

=
r∑

j=1

(
k̂ j · (bi, j − ai, j ) ·

n∏

l=1

f̂ j ([Zl ])al, j

)
with i = 1, . . . , n. (5.3)

describe the temporal systems behaviour by consideration of stoichiometric coef-
ficients ai, j ∈ N (reactants) and bi, j ∈ N (products) as well as a kinetic law
f̂ j ([Zi ]) : R+ ≥ R+ that maps a species concentration [Zi ] into an effective reac-
tion rate [14]. All initial concentrations [Zi ](0) ∈ R+, i = 1, . . . , n are allowed to
be set according to the needs of the reaction system.

A species concentration [Zi ] := zi
C is defined as fraction of its molecular amount

zi = card({(Zi , zi )}) = |Zi | with respect to the spatial system capacity C ∈ R+.
A correspondence between the reaction rate k j (employed in τCSM by function

f j attached to reaction R j ) and the kinetic constant k̂ j utilised in ODE (5.3) can be
obtained by the Euler method of integrating differential equations. Discretisation of
(5.3) with respect to time results in:

Fig. 5.2 Overview of several widely used kinetic laws f̂([Z ]) dependent on reactant concentration
[Z ]. Parameters: threshold ψ ∈ R+ \ {0}, Hill coefficient n ∈ N \ {0}
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zi,t+1−zi,t
C

πα
=

r∑

j=1

(
k̂ j · (bi, j − ai, j ) ·

n∏

l=1

f̂ j ([Zl ])al, j

)

zi,t+1 − zi,t = C · πα ·
r∑

j=1

(
k̂ j · (bi, j − ai, j ) ·

n∏

l=1

f̂ j ([Zl ])al, j

)

By setting k j = k̂ j · C · πα , we obtain:

zi,t+1 − zi,t = k1(bi,1 − ai,1)

n∏

l=1

f̂1([Zl ])al,1 + · · · + kr (bi,r − ai,r )

n∏

l=1

f̂r ([Zl ])al,r

Replacing k j · f̂ j ([Zl ])al, j by the scalar function f j (Lt ) from Eq. (5.2) leads to:

zi,t+1 − zi,t = (bi,1 − ai,1) · f1(Lt ) + · · · + (bi,r − ai,r ) · fr (Lt )

Since the stoichiometric coefficients ai, j and bi, j of each reaction R j = (A j , B j ) in
τCSM are expressed by multisets A j (reactants) and B j (products), we write:

zi,t+1 − zi,t = (B1(bi ) − A1(ai )) · f1(Lt ) + · · · + (Br (bi ) − Ar (ai )) · fr (Lt )

From that, we achieve the update scheme for species Zi present in Lt with zi,t copies
at time t by processing reaction R j :

zi,t+1 = zi,t − A j (Zi ) · f j (Lt ) + B j (Zi ) · f j (Lt )

By extension from a single species to the entire configuration along with inclusion
of matching, we finally obtain

Lt+1, j = Lt, j ∃ Reactantst, j ∼ Productst, j

in accordance to the iteration scheme for τCSM evolution.

5.2.3 Applying ΠCSM to a KaiABC Core Oscillator Model

We identify a cell signalling module for the cyclic reaction scheme sketched in
Fig. 5.1. Key proteins KaiA, KaiB, and KaiC resulting from expression of corre-
sponding genes are assumed to be present in the module ab initio. Considering the
core oscillator, 17 reaction rules along with loose matching correspond to the four-
phase reaction cycle. Successive KaiC phosphorylation in the presence of KaiA is
expressed by rules R1–R6 followed by successive dephosphorylation in the presence
of KaiB within rules R7–R12. Finally, R13 and R14 formulate inhibiting KaiA/KaiB
exchange acting as negative feedback loops, and R15–R17 reflect protein degradation.
A kinetic function f is attached to each reaction rule that follows from time-discrete
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Michaelis–Menten kinetic laws in concert with linear mass-action kinetics for protein
degradation.

τKaiABC = (V, V ′, R1, . . . , R17, f1, . . . , f17, A, C,πα)

V = {C} ≤ ..............................identifier of the focal protein KaiC

{A, B}.............................identifiers of proteins KaiA and KaiB

V ′ = {A, B} ≤ .........................KaiA, KaiB within a complex associated to KaiC

{Δ, P, P2, P3, P4, P5, P6}.....number of attached phosphates

R1 = C#¬A#B#Δ + A −≥ C#A#¬B#P1 + B

Ri = C#A# ∗ #Pi−1 + A −≥ C#A# ∗ #Pi + A, i = 2, . . . , 5

R6 = C#A#¬B#P5 + B −≥ C#¬A#B#P6 + A

Ri+7 = C# ∗ #B#Pi+1 + B −≥ C# ∗ #B#Pi + B, i = 0, . . . , 5

R13 = C#¬A#B#∗ + A −≥ C#A#¬B#∗ + B

R14 = C#A#¬B#∗ + B −≥ C#¬A#B#∗ + A

R15 = A −≥ ∅
R16 = B −≥ ∅
R17 = C# ∗ # ∗ #∗ −≥ ∅

f1(Lt ) = k1 · Lt (C#¬A#B#Δ)

ψ1,1 + Lt (C#¬A#B#Δ)
· Lt (A)

ψ1,2 + Lt (A)

fi (Lt ) = ki · Lt (C#A# ∗ #Pi−1)

ψi,1 + Lt (C#A# ∗ #Pi)
· Lt (A)

ψi,2 + Lt (A)
, i = 2, . . . , 5

f6(Lt ) = k6 · Lt (C#A#¬B#P5)

ψ6,1 + Lt (C#A#¬B#P5)
· Lt (B)

ψ6,2 + Lt (B)

fi+7(Lt ) = ki+7 · Lt (C# ∗ #B#Pi+1)

ψi+7,1 + Lt (C# ∗ #B#Pi)
· Lt (B)

ψi+7,2 + Lt (B)
, i = 0, . . . , 5

f13(Lt ) = k13 ·
(

1 − Lt (C#¬A#B#∗)

ψ13,1 + Lt (C#¬A#B#∗)

)
·
(

1 − Lt (A)

ψ13,2 + Lt (A)

)

f14(Lt ) = k14 ·
(

1 − Lt (C#A#¬B#∗)

ψ14,1 + Lt (C#A#¬B#∗)

)
·
(

1 − Lt (B)

ψ14,2 + Lt (B)

)

f15(Lt ) = k15 · Lt (A)

f16(Lt ) = k16 · Lt (B)

f17(Lt ) = k17 · Lt (C# ∗ # ∗ #∗)

A ∈ 〈{C# ∗ # ∗ #∗}〉
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5.2.4 Simulation Case Study

Using the KaiABC circadian oscillator we conducted a simulation case study to
demonstrate the practicability of the modelling approach addressed before. The
reaction scheme formulated by the P system τKaiABC exhibits a high degree of sym-
metry among its constituents. The main reaction cycle is composed of 12 consecutive
feed-forward reactions flanked by widespread negative feedback loops. They affect
each intermediate product within the reaction cycle following the intention of an
inhibiting KaiA/KaiB exchange independent of the phosphorylation state.

For simulation of the dynamical behaviour of τKaiABC , we empirically parame-
terise and initialise the system in a symmetric way to obtain phase-shifted protein
abundance courses which stably oscillate with a period of approximately 24 h. To
avoid a transient oscillation phase, the initial amounts of protein constituents were
set directly at the discrete limit cycle. This constraint is reflected in the following
multiset of axioms:

A = {(C#¬A#B#Δ, 470), (C#A#¬B#P1, 351), (C#A#¬B#P2, 198),

(C#A#¬B#P3, 135), (C#A#¬B#P4, 148), (C#A#¬B#P5, 210),

(C#¬A#B#P6, 282), (C#¬A#B#P5, 364), (C#¬A#B#P4, 463),

(C#¬A#B#P3, 541), (C#¬A#B#P2, 586), (C#¬A#B#P1, 571),

(A, 2,520), (B, 2,520)}

Each KaiC protein within the pattern C# ∗ # ∗ #∗ keeps an average amount of 360
copies (arbitrarily chosen).

Figure 5.3 shows the corresponding individual protein abundance courses resulting
from following parameter setting for the discrete iteration scheme: ψi,1 = 79.2,
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Fig. 5.3 Temporal courses of 12 specific KaiABC subproducts representing the process status of
the reaction cycle. Kinetic parameters and initial amounts adjusted in a way to obtain a period of
≈24 h and symmetry among individual oscillations



146 T. Hinze et al.

ψi,2 =554.4, k̂i =360.0 for i ∈ {1, . . . , 12}; ψi,1 =64.8, ψi,2 = 453.6, k̂i =412.8
for i ∈ {13, 14}, and k̂15 = k̂16 = 508.1, k̂17 = 254.6; C = 1.2, πα = 0.05.

Based on the individual protein abundance courses depicted in Figs. 5.3, 5.4 illus-
trates the effect of subsuming KaiABC subproducts according to their number of
attached phosphates ranging from 0 to 6. Association of KaiA and KaiB is neglected
here resulting in consideration of regular expressions C# ∗ # ∗ #Pi for i = 0, . . . , 6.
The simulation shows that medium phosphorylation levels possess smaller ampli-
tudes than minor or major phosphorylation levels. Due to symmetry reasons, KaiABC
subproducts carrying three phosphates double the frequency of oscillation. Hence,
the reaction system is able to act as a frequency scaler. This feature could be useful
to control downstream processes at a subcircadian granularity. The protein abun-
dance courses obtained by our simulation approximately reproduce experimental
results [49].

The simulation case study demonstrates the practicability of membrane systems
for cell signalling modules. Our framework τCSM intends to combine advantages
of processing regular expressions that represent molecular entities with the corre-
sponding dynamical behaviour of an entire reaction network resulting from superpo-
sitioning of individual molecular abundance courses. To this end, we have integrated
string objects into a deterministic framework able to emulate time-discrete forms
of reaction kinetics in concert with dedicated matching strategies in order to iden-
tify reactants from the current system configuration. From an algebraic point of
view, oscillations that occur in structural or configural dynamics of P systems can be
detected using a backtracking mechanism along with the temporal system evolution:
By monitoring the overall configurations over time, a derivation tree is obtained. Sta-
ble oscillations appear as recurring, but non-adjacent overall configurations along a
path through the derivation tree.
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5.3 Circadian Clocks as Generalised Frequency Control Systems

There are numerous biochemical core oscillators found in living organisms’ circadian
clocks. From a systems biology point of view, this is no surprise since a simple
cyclic reaction scheme containing at least one feedback loop can suffice to exhibit
a sustained oscillatory behaviour. Furthermore, each core oscillator must be able to
vary its frequency according to a dedicated tuning signal produced by an upstream
reaction system in order to adapt its signal course to an external stimulus. Probably
a plethora of evolutionary origins led to a variety of circadian core oscillators. From
today’s perspective, the majority of them reveals sinusoidal or almost sinusoidal
signal courses as exemplified by the KaiABC core oscillator in the previous Section.
These core oscillators have mainly in common a multi-phased reaction cycle whose
enzymatically catalysed stages induce a mixture of activating and inhibiting effects.
Interestingly, the absolute number of individual stages forming the entire cycle just
slightly influences the oscillatory waveform which is typically close to a sinusoidal
behaviour. This enables a gradual and smooth alteration such that the transfer between
minimal and maximal signal levels consumes a notable amount of time. In most cases,
the oscillation passes a stable limit cycle which acts as an attractor. This feature
makes the oscillator quite robust against perturbations affecting the signal course.
In this context, the so-called Goodwin-type core oscillator emerged to represent a
generalised meta-model for consideration of circadian clocks based on sinusoidal or
almost sinusoidal waveforms.

Circadian clock systems appear to be special forms of frequency control systems.
Following this line, it should be possible to identify appropriate interacting mod-
ules representing elements of a dedicated control-loop model. Indeed, coupling of
a controllable core oscillator with a low-pass filter and a multiplicator succeeds to
reproduce the desired entrainment behaviour of a circadian clock. This Section aims
at consistent formulation of a generalised circadian clock model derived from an
underlying chemical frequency control system introduced in Ref. [33].

5.3.1 A Controllable Goodwin-Type Core Oscillator

Let us first consider a controllable Goodwin-type core oscillator on its own. A
Goodwin-type oscillator comprises an abstract model of a cyclic gene regulatory
network, which is able to exhibit a sustained oscillatory behaviour in its substrate
concentrations [22]. Goodwin-type oscillators have in common three distinct sub-
strates typically called X , Y , and Z . All components degrade in the presence of
specific proteases acting as catalysts. It turns out that the velocity of degradation is
the most effective way to control the oscillation frequency [61].

Here, we apply a version of the Goodwin-type core oscillator model, which utilises
Michaelis–Menten kinetics [14] instead of mass-action kinetics for degradation due
to its saturational nature. Additionally, we take into account the transportation of
a substrate into the nucleus of the cell. This transportation can be commonly seen
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as a prerequisite for downstream process control. Interestingly, the resulting model
reaches sustained oscillations with low Hill coefficients h in Hill terms of the form

φ
δ+σ [S]h (values ≥ 1 suffice here, we choose 2). Overall, we obtain the membrane

system:

τGoodwin = (V, V ′, R1, . . . , R6, f1, . . . , f6, A, C,πα)

V = {X, Y, Z}
V ′ = ∅
R1 = Z −≥ X

R2 = X −≥ ∅
R3 = X −≥ Y

R4 = Y −≥ ∅
R5 = Y −≥ Z

R6 = Z −≥ ∅
f1(Lt ) = a

A + K1 · Lt (Z)2

f2(Lt ) = k2 · Lt (X)

K2 + Lt (X)

f3(Lt ) = k3 · Lt (X)

f4(Lt ) = k4 · Lt (Y)

K4 + Lt (Y)

f5(Lt ) = k5 · Lt (Y)

f6(Lt ) = k6 · Lt (Z)

K6 + Lt (Z)

Figure 5.5 reveals the behaviour of our Goodwin-type core oscillator with respect
to its incorporation into a frequency-control loop. The upper-right diagram gives a
notion of the waveforms generated by the oscillator, which become visible after a
short transient phase of approx. 1.5 days. It turns out that X and Y demonstrate
a widely sinusoidal course emerging from a ground plateau. Moreover, the course
of Z resembles a nearly perfect sinusoidal shape. This advantageous feature makes
the oscillatory signal of Z easier than the others to compare with an oscillatory
external stimulus. Hence, the temporal concentration course of Z exhibits the best
fit to act as output signal. Supplementary diagrams within Fig. 5.5 show the almost
linear dependency of the oscillator’s period length on the velocity parameters k2, k4,
and k6 of the corresponding degradation reactions. Therefore, regulated degradation
by proteases affecting one or more of these velocity parameters can control the
oscillatory frequency, which is the reciprocal of the period length.
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Fig. 5.5 Topology and behaviour of a Goodwin-type core oscillator. Its oscillation frequency can
be most effectively controlled by the velocity parameters k2, k4, and k6 of the degradation reactions
of substrates X , Y , and Z . The upper-right diagram illustrates the oscillatory waveforms of X ,
Y , and Z substrate concentrations; parameter setting: a = 6, A = 0.6, K1 = 1, K2 = 0.2,
k2 = 3.4, k3 = 0.3, K4 = 0.2, k4 = 2.2, k5 = 0.1, K6 = 1.44, k6 = 1.3, L0(X) = 1, L0(Y) =
L0(Z) = 0, C = 20,πα = 0.05. The initial concentrations of Y and Z were intentionally set to 0 to
demonstrate that the oscillator reaches its limit cycle after a short transient phase, which emphasises
the stability of the oscillatory system. After the transient phase, we obtain limit cycle oscillations
whose free-running period can vary between approx. 22 and 26 h

5.3.2 Chemical Frequency Control by Phase-Locked Loops

Originally, control loops had been introduced in engineering to achieve a desired
dynamical behaviour of a system like adjusting temperature or local time of a clock
[8]. We can distinguish between two different meanings of “adjustment”. On the
one hand, it comprises the elimination of external perturbations. In this application
scenario, a predefined reference specifies the desired dynamical behaviour while the
influence of external stimuli has to be compensated. Here, variations of external
stimuli are usually interpreted to be perturbations, for instance if temperature should
be kept constant. On the other hand, a control loop can be constructed in order to
adapt its dynamical behaviour to the course of an external stimulus. In this case,
the deviance between the control loop’s output and the external stimulus has to
be minimised. Imagine a radio controlled clock as an example. Throughout this
contribution, we will consistently focus on the latter of both scenarios.

Numerous technical attempts succeeded in construction of an abundance of
control loops operating mechanically, hydraulically, pneumatically, electrically,
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electronically, or even chemically [8]. Their simplest scheme has a general closed
feedback loop in common composed of four basic elements for real-valued signal
processing: plant, sensor, controller, and actuator.
Plant: The plant (sometimes also called system) is constituted by one or more phys-
ical quantities whose temporal behaviour has been controlled. Its temporal input is
given by a tuning signal v(t) which passes through the system leading to its output
x(t) = P(v(t)). The transfer function P might include signal weakening, delay, or
perturbation.
Sensor: The sensor transforms x(t) into the measured output y(t) = F(x(t)) where
F acts as transfer function. In some cases, the sensor is dispensable if the plant output
can be processed directly holding y(x) = x(t).
Controller: The controller compares y(t) to the external stimulus (reference signal)
w(t) and calculates the error signal e(t) = D(w(t), y(t)). Subsequently, it provides
the control signal u(t) = C(e(t)). The underlying transfer function C might include
integration or differentiation with respect to t .
Actuator: The actuator affects the plant by transforming u(t) into the tuning signal
v(t) = A(u(t)), which feeds back to the plant.

Signal processing is commonly represented by block diagrams containing char-
acteristic curves or transfer functions like P , F , D, C , and A that map input or
memorised signals into output signals (cf. Fig. 5.6).

Later, control loops came into the scope of life sciences as part of a cybernetic
approach to understand biological systems, now preferably called control systems
[26]. They benefit from a strict modularisation that allows a clear decomposition of
a complex system into interconnected signal-processing units [41, 65].

From a systems point of view,circadian clocks constitute biochemical regulatory
circuits whose functionality resembles technical counterparts utilising phase-locked
loops (PLLs) [10]. Corresponding circuits comprise three modules:

1. a core oscillator (plant) whose frequency has been controlled to adapt to an
external stimulus. The intensity and periodicity of environmental light converted
into a specific protein abundance by a photo cascade represents a typical external
stimulus.

Fig. 5.6 General scheme of a
control loop

u(t) = C(D(w(t),y(t)))

controller

actuator

plant

sensor

x(t) = P(v(t))

y(t) = F(x(t))v(t) = A(u(t))

stimulus
external

system output

v(t)

u(t)
y(t)

w(t)

x(t)
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2. a signal comparator (controller), for instance a phase detector, responsible for
determining the deviation between the signal produced by the core oscillator on
the one hand and the external stimulus on the other. The signal comparator carries
out an arithmetic task. Interestingly, a single complex formation (dimerisation)
conducting a multiplication in a mathematical manner succeeds here whereas also
more sophisticated mechanisms could be involved.

3. a biochemical low-pass filter (actuator) completes the control system by provid-
ing a global feedback loop.

We construct a PLL-based chemical model of a frequency control system by compo-
sition of a Goodwin-type core oscillator (plant) with an arithmetic signal comparator
(controller) and a low-pass filter (actuator). For the resulting entire system topology,
see Fig. 5.10.

5.3.2.1 A Chemical Signal Comparator

The signal comparator is responsible for estimation of the phase shift between the
oscillatory signal Lt (Z) released by the core oscillator and the external stimulus
Lt (E) as reference signal. Interestingly, a simple arithmetic signal multiplica-
tion is sufficient if both oscillatory signals exhibit a sinusoidal or almost sinu-
soidal course, let us assume sin(ω1t) and cos(ω2t + ψ). Multiplication leads to
sin(ω1t) · cos(ω2t + ψ) = 1

2 (sin((ω1 − ω2)t − ψ) + sin((ω1 + ω2)t + ψ)) due to
elementary trigonometric laws. While the term sin((ω1 + ω2)t + ψ) exclusively
comprises the frequency sum ω1 + ω2, it becomes eliminated by passing the low-
pass filter and hence it can be neglected. The remaining term sin((ω1 − ω2)t − ψ)

indicates the estimated phase shift to be minimised. To do so, the external stimulus’
phase becomes locked while the core oscillator has been forced to “catch it up” by
temporarily enhancing its frequency until the phase shift is compensated. Our signal
comparator utilises a simple chemical signal multiplicator of the form:

τmultiplicator = (V, V ′, R1, R2, f1, f2, A, C,πα)

V = {X1, X2, Y}
V ′ = ∅
R1 = X1 + X2 −≥ X1 + X2 + Y

R2 = Y −≥ ∅
f1(Lt ) = k1 · Lt (X1) · Lt (X2)

f2(Lt ) = k2 · Lt (Y)

Let k1 = k2 > 0. A dimerisation suffices to emulate an arithmetic multiplication
using mass-action kinetics. We assume the regeneration of consumed input substrates
by an autocatalytic loop. Auxiliary side reactions can be added in order to assure
mass conservation if needed. Figure 5.7 illustrates the module topology along with
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an example. The system reaches its steady state comprising
lim

t≥∈ Lt (Y) = L0(X1) · L0(X2).

5.3.2.2 Low-pass Filter

Acting as a moving average element, a simple variant of a chemical low-pass filter
can be found by a linear reaction cascade. The sequence of consecutively running
reactions causes a successive delay along with smoothing of the passing signals.
Each cascade stage buffers and accumulates the arriving molecules for a varying
time span before transduction to the next stage. This time-limited accumulation is
mainly responsible for the filtering effect on oscillatory input signals. While low fre-
quency signals pass the filter, higher frequency oscillations become more and more
diminished and hence eliminated. In addition, oscillatory waveforms undergo a con-
version into a sinusoidal shape since higher-order harmonics get lost. The behaviour
of a low-pass filter can be specified by a so-called Bode plot, which depicts the inten-
sity of signal weakening subject to different frequencies. Interestingly, biochemical
low- and band-pass filters had already been identified in signalling cascades of intra-
cellular processes [44, 62]. Assuming a low-pass filter composed of n stages, an
according P system reads:

τlpf = (V, V ′, R1, R2, . . . , Rn, Rn+1, f1, f2, . . . , fn, fn+1, A, C,πα)

V = {X, X1, . . . , Xn−1, Y}
V ′ = ∅

R1 = X −≥ X1

R2 = X1 −≥ X2

.

.

.
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Rn−1 = Xn−2 −≥ Xn−1

Rn = Xn−1 −≥ Y

Rn+1 = Y −≥ ∅
f1(Lt ) = k1 · Lt (X)

f2(Lt ) = k2 · Lt (X1)

.

.

.

fn−1(Lt ) = kn−1 · Lt (Xn−2)

fn(Lt ) = kn · Lt (Xn−1)

fn+1(Lt ) = kn+1 · Lt (Y)

The transfer function for non-oscillatory input signals is described by a smoothing
delay. For oscillatory input signals apart from an analytical evaluation, the transfer
function becomes replaced by a characteristic curve, which arises from simulation
studies or measure. In some cases, preferably for sinusoidal signals and those entirely
captured by a finite Fourier series, the temporal behaviour can be analytically mapped
into a frequency domain using Laplace transform. A Bode plot describes the charac-
teristic curve of a low-pass filter by pointing out two essential parameters, the cutoff
frequency and the slope, see Fig. 5.9. The cutoff frequency marks the transition
from the passband to the stopband whereas the signal amplitude becomes more and
more weakened. Usually, the relative intensity of weakening is given logarithmically

in magnitudes dB = 10 · log
(

amplitude of output signal
amplitude of input signal

)
. The slope characterises the

increase of damping within the stopband. Once estimated, both parameters—cutoff
frequency and slope—are sufficient from a systemic point of view to determine the
behaviour of a low-pass filter instead of managing numerous kinetic constants and
initial concentrations.

Figure 5.8 exemplarily depicts the effect of a five-stage low-pass filter to a poly-
frequential input concentration course Lt (X) while Fig. 5.9 shows the corresponding
Bode plot. The number of stages n defines the degree of asymptotic smoothing into
a sinusoidal output concentration course after transient phase.

The chosen parameter setting of the low-pass filter within a PLL-based circadian
clock model entails a cutoff frequency of approx. 1.9 · 10−5s−1, which corresponds
to a period length of approx. 0.61 days in accordance with the need for a circadian
clock system.

5.3.3 Exploring Circadian Clock’s Entrainment Behaviour
by Simulation Studies

Having now the entire system as shown in Fig. 5.10 at hand, we conducted a couple
of simulation studies to explore whether the overall behaviour of our control-system
model coincides with expectations for circadian clocks.
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In a first scenario, the external stimulus persists at a constant value Lt (E) accord-
ing to permanent darkness or permanent light. We expect a so-called free-running
sustained oscillation of Lt (Z) whose period might be influenced by the constant
external stimulus. Figure 5.11a confirms this dependency by an almost linear rela-
tion. The period length becomes shortened by ascending values of the external stim-
ulus while permanent darkness (Lt (E) = 0) indicates the maximum period length
(approx. 25 h30′ using the above-mentioned parameter setting).

A second simulation study is inspired by gaining insight into the time to entrain-
ment if Lt (E) and Lt (Z) start to oscillate with no phase shift but comprising distinct
initial frequencies instead. We choose a sinusoidal course of the external stimulus
Lt (E). The core oscillator is configured to exhibit a natural period of 24 h12′ while
the period of the external stimulus Lt (E) might differ. Figure 5.11b plots the dura-
tion needed until the core oscillator’s output Lt (Z) adapted to the period of Lt (E)

(time to entrainment). We define that entrainment is reached if the period length of
Lt (Z) converges to those of Lt (E) up to 1′. Entrainment which demands shortening
of Z ’s period is more efficient than enhancing. This is plausible in the context of
how PLL-based control operates: In case of a phase shift between Lt (E) and Lt (Z),
the resulting error signal Lt (F) leads to a temporary acceleration of Z degradation,
which in turn increases the oscillation frequency causing a shortened period. In con-
trast, entrainment to slower clock signals incorporates a form of inherent graduality:
First, Lt (Z) temporarily increases its frequency until it converges to Lt (E) for a
moment before it drifts again what causes a new adjustment of Lt (Z). The process
of successive adjustment repeats consistently in a time-consuming manner.
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Fig. 5.8 Simulation of a five-stage chemical low-pass filter affecting a poly-frequential input
signal given by substrate concentration course Lt (X). This input course was obtained by multi-
plication of two arbitrarily chosen sinusoidal signals f(t) and g(t) with periods of 1 and 2 days:
f(t) = 7 + 6.9 sin

( 2π
1 · t

)
, g(t) = 7 + 6.9 sin

( 2π
2 · t

)
resulting in Lt (X) = f(t) · g(t) =

49 + 48.3 sin
( 2π

1 · t
) + 48.3 sin

( 2π
2 · t

) + 23.805 cos
( 2π

1 · t
) + 23.805 cos

( 2π
2 · t

)
. The output

course Lt (Y) reveals the filtering effect by providing a monofrequential signal of almost sinusoidal
shape with period length of 2 days after transient phase. The higher frequency signal with period
length of 1 day became eliminated; parameter setting: k1 = k2 = k3 = k4 = 0.036, k5 = 3,600,
k6 = 180, L0(Xi ) = 0 for i = 1, . . . , 4, L0(Y) = 0, C = 20,πα = 0.05
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controllable core oscillator, a signal comparator, and a low-pass filter specified by underlying reac-
tion kinetics or alternatively by corresponding transfer functions or characteristic curves. Modules
are interconnected via shared molecular species

Finally, we are going to find out the ability of our control-system model to cope
with both, different frequency and different initial phase between external stimulus
Lt (E) and core oscillator output Lt (Z). Figure 5.11c picks two constant frequencies
for Lt (E), one with a period length of 24 h26′ and a second course with a period
length of exactly 24 h. For both courses, the time to entrainment had been observed
subject to initial phase shifts between 0 and 360◦, which corresponds to a full period
of the core oscillator’s output Lt (Z). It turns out that both courses reach specific
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Fig. 5.11 Simulation scenarios exploring the behaviour of our PLL-based control-system model.
a Period lengths of sustained oscillations subject to constant external stimulus, b Time to entrainment
to external stimulus whose frequency initially differs from those of core oscillator, c Ability of our
control system to cope with both, different frequency and different initial phase between external
stimulus and core oscillator, d Comparison of best case and worst case from entrainment run to 24 h
subsumed in C
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minima and maxima. Its global maximum (at approx. 245◦) and its global minimum
(at approx. 325◦) come along with a detailed consideration of period length’s variation
over time towards entrainment in Fig. 5.11d.

5.4 Cell Signalling and Gene Regulatory Networks: Logic
Circuits in Chronobiological Information Processing

Each biological cell is equipped with sophisticated mechanisms, which enable an
appropriate response to manifold external and internal stimuli. Able to affect a cell
at arbitrary points in time, these stimuli mainly comprise complex molecules with
specific surface structures. In the same way a key fits into a lock in order to open the
chamber behind, a stimulus binds at its receptor located within the outer membrane
of the cell. Afterwards, the receptor initiates a sequence of intracellular reactions
which in turn finally assemble a so-called transcription factor, another complex mole-
cule composed from proteins and ligands. Production of transcription factors might
include connection, weighting, and evaluation of molecular signals induced by dif-
ferent receptors. The term cell signalling subsumes the entirety of reactions available
in this context. Having few copies of a transcription factor at hand, it can enter the
cell nucleus controlling the expression of a specific gene. In most cases, several hun-
dred up to some thousand individual copies of a transcription factor are enough to
this end. Due to their spatial surface structure, transcription factors precisely bind
at specific locations of the genomic DNA. This marks the starting point for gene
expression. In concert with auxiliary substances, the adjacent coding DNA region
(exon) is identified. Afterwards, the exon is transcribed into precursor-messenger
RNA, which subsequently undergoes splicing or alternative splicing. Finally, the
mature messenger RNA acts as template for translation into the resulting protein
which represents the cellular response to the stimulus. Transcription factors in gen-
eral can activate gene expression, but they are also able to inhibit gene expressions
in the presence or absence of further messengers. Thus, the term gene regulation
organised by gene regulatory networks came into use. A human cell for instance
contains approx. 23,000 genes whose information enables the production of about
500,000 chemically distinct proteins, each of them combined from one or more cod-
ing regions [55]. While processes involved in cell signalling usually run within a
minute-scale, the expression of a gene might consume several hours in total.

Understanding the time-dependent manner of cell signalling and gene regulation
is a crucial aspect in chronobiological research towards achievement of fine-grained
predictive models. Particularly, oscillatory signals revealed by a circadian clock act
as triggers for manifold downstream processes. In human bodies, the release of
serotonin in the morning as well as the segregation of melatonin in the evening for
balanced daily variation of alertness and tiredness gives a typical example for period-
ical activities in cell signalling subject to the time of the day. Moreover, maintenance
and optimisation of further much more complex processes of life require a more or
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less concerted interplay in evaluation and compilation of numerous distinct signals.
In this Section, we adopt a reliable cell signalling mechanism for construction and
exploration of logic circuits by gene regulatory networks within an in-vivo application
study. It results in providing a bistable molecular toggle switch. Membrane systems
τCSM for cell signalling modules turn out to be appropriate formal representations
of the underlying reaction systems due to their ability to cope with assembly of sub-
molecular units towards complex structures. Interestingly, the consecutive change of
molecular structures while passing a signalling cascade [7] exhibits a close similarity
to a passage of distinct states known from finite automata in computer science.

5.4.1 The General Principle of Cell Signalling in vivo

Opposed to engineered networks (e.g. electronic circuits) whose topologies can be
easily traced, biochemical network connections on their own are invisible. The cir-
cuitry of these natural networks is exclusively identified through interactions between
their substrates. Biochemical reaction networks, found in pro- and eukaryotic cells,
permit processes from which higher-level properties of life like behavioural pat-
terns might emerge. Despite their high degree of complexity and interdependency,
intracellular reaction networks are hierarchically arranged in modular structures of
astonishing order. Related work in the context of P systems includes Refs. [6, 13,
30, 56].

A strong division of tasks, predefined transduction pathways as well as an efficient
share of resources characterise biochemical networks. Mainly based on proteins as
information carrier with high variability in molecular structure, the entirety of inter-
connected reaction processes constitutes the function of a cell and its subunits. Three
essential types of biochemical networks in vivo can be distinguished: metabolic, cell
signalling (CSN), and gene regulatory (GRN) networks [1]. Metabolism consists of
coupled enzymatically catalysed reactions close to a minimum level of free energy.
Corresponding networks mainly provide conserving and sustentative functions for
the organism commonly operating to reach a steady state. In contrast, CSNs per-
form information processing by response to external or internal signals in concert
with GRNs that control protein synthesis based on genetically conserved patterns.
Slight malfunctions or perturbations within these fine-grained and sensitive network
structures can have life-threatening consequences.

Proteins form central functional elements of the cell. They incorporate enzymes,
factors, receptors, messengers, and subsidiary substances of which the cell is com-
posed. Therefore, CSNs and GRNs, as central control systems for protein synthesis
are of crucial impetus for both, maintenance and regeneration of organisms in con-
cert with a certain ability to reply to environmental changes. In cell signalling, here
exemplified by eukaryotic cells [38], three main steps can be identified (Fig. 5.12):

1. Signal reception: External signals arrive from other cells, from the environment, or
from the cell’s own feedback loops. These stimuli are encoded either by proteins or
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hormones, auxiliary substances (like ions and ligands), or by physical conditions
(e.g., light). They reach specific receptors embedded in the outer cell membrane.
Ion channels transmit the signal by transporting substances into the inner cell;
whereas enzyme-linked and G-protein-linked receptors transmit the signal simply
by changing their conformation.

2. Signal transduction: Messenger proteins, originally bound to these receptors at
the inner membrane face, are then emitted into the cytosol. Here, they initiate
activation cascades for further signal transduction, evaluation, combination, and
amplification. Activation of enzyme messengers mainly occurs by stepwise addi-
tion of phosphates from adenosinetriphosphate (ATP) to specific binding sites
of messenger proteins. Alternatively, G-proteins bind to guanosinediphosphate
(GDP) and guanosinetriphosphate (GTP). These processes can be accompanied
by forming specific protein complexes.

3. Cell response: The resulting biomolecules then enter the nucleus where they can
effect a specific gene expression controlled by a GRN, thus producing the cell
response to the primary signal. The intensity of gene expression is determined by
transcription factors. They act as promoters or repressors controlling the amount of
messenger RNA transcribed from genomic DNA. Subsequent translations lead to
the final protein. Typical biochemical networks can contain interactions between
several hundred proteins including intermediate states and complexes.

genomic dna

gene expression

cell membrane
phospholipid bilayer

cytosol

transformation, amplification via pathways
signal transduction,

cell response

ADP

ATP phosphorylation
activation by protein kinases

activation cascade
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nucleus

Fig. 5.12 Biological principle of signalling in eukaryotic cells: from arriving stimuli to specific
cell response
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5.4.2 Modelling a Bistable Toggle Switch by a Gene Regulatory
Network with Two Feedback Loops

A gene regulatory network can induce a bistable switching behaviour in a way to
act as a simple RS flip-flop (bit storage unit with Set and Reset input) for informa-
tion processing. Here, we consider two distinct input signals responsible for setting
as well as resetting the flip-flop. The concentrations of two dedicated transcription
factors over time are responsible for this task. For instance, they might be supplied
by an upstream circadian clock output. In this scenario, the almost sinusoidal tem-
poral course of the clock output becomes converted into a more plated signal course
reflecting a more or less bistable oscillatory behaviour. Here, the waveform resem-
bles an almost rectangular shape similar to a binary clock signal. Plated oscillations
combine the advantage of fast toggling with the ability for a balanced or weightable
ratio between high-level and low-level signal values. The fast raise and fall of the
signal value is easy to detect for subsequent processing units. In addition, the func-
tionality of a flip-flop downstream to a circadian clock can also help an organism to
compare and to evaluate different signals, each of which contributing partially to a
complex behavioural pattern. For example, the release of serotonin in human bodies
to support alertness is also influenced by the adrenaline level in conjunction with
the circadian clock signal (and even by further factors). A profound mechanism for
evaluation among the variety of individual signals also takes into account temporarily
memorised information about relevant signal values in the past. A reliable chemical
flip-flop is an essential tool for this purpose. There is evidence for naturally evolved
chemical flip-flops emerged in several forms. In this Section we introduce a simple
example getting by with three genes illustrated in Fig. 5.13 adopted from Ref. [30].

The chemical flip-flop depicted in Fig. 5.13 operates by a mutual inhibition of gene
expression, which either reproduces the set state or the reset state. Assuming the set
state gene is active, its gene product b represses the synthesis of the reset state gene. In
parallel, b activates the effector gene whose product Q represents the flip-flop output.
The set state scenario remains stable until input S constitutes a high concentration
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low active RS flip−flop
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Fig. 5.13 Scheme of an RS flip-flop composed by a gene regulatory network with mutually
inhibiting feedbacks. High concentration of transcription factor S sets the flip-flop to an output
Q of logical zero while a high concentration of transcription factor R leads to a high-level output
Q. Low concentrations at both inputs S and R store the previously set output. Simultaneous set-
ting and resetting is forbidden producing a medium concentration level of Q away from a clear
assignment to logical 1 or 0
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level and R a low one. Now, a toggling process occurs. Transcription factor b is
no longer transduced within the circuit. In consequence, the reset state gene starts
expressing its product a, which in turn additionally suppresses production of b. Q
cannot regenerate anymore, its concentration diminishes towards a low concentration
close to zero.

The chemical RS flip-flop from Fig. 5.13 can be described by a P system of type
τCSM. For specification of the dynamical behaviour of gene expression we apply
Hill kinetics in its standard form [14] in combination with mass-action degradation
of involved transcription factors:

τrsff = (V, V ′, R1, . . . , R6, f1, . . . , f6, A, C,πα)

V = {R, S, Q, a, b}
V ′ = ∅
R1 = S + b −≥ a

R2 = R + a −≥ b

R3 = b −≥ Q

R4 = a −≥ ∅
R5 = b −≥ ∅
R6 = Q −≥ ∅

f1(Lt ) = 1 − Lt (b)m

Lt (b)m + ψb
·
(

1 − Lt (S)m

Lt (S)m + ψS

)

f2(Lt ) = 1 − Lt (a)m

Lt (a)m + ψa
·
(

1 − Lt (R)m

Lt (R)m + ψR

)

f3(Lt ) = Lt (b)m

Lt (b)m + ψb
·
(

1 − Lt (S)m

Lt (S)m + ψS

)

f4(Lt ) = ka · Lt (a)

f5(Lt ) = kb · Lt (b)

f6(Lt ) = kQ · Lt (Q)

Figure 5.14 shows a simulation study demonstrating the dynamical behaviour of
the flip-flop τrsff by using a time scale of hours. After 10h, R’s concentration is set
to zero while S constitutes a high concentration level of 1 between 20 and 30 h at
time scale. We observe the expected behaviour of a flip-flop able to store its set or
reset state. Each toggling causes a certain latency up to release of valid output signal
levels.
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5.4.3 In Vivo Implementation of a Bistable Toggle Switch

We demonstrate the practicability of the RS flip-flop by an experimental study in vivo.
Following the pioneering implementation of a bistable toggle switch [18], we could
confirm its function in a previous study [27]. Two extensions were made: Firstly,
the effects of isopropyl-δD-thiogalactopyranoside (IPTG) and N-acyl homoserine
lactone (AHL) as appropriate intercellular inducers S and R for flip-flop setting and
resetting were shown. Secondly, flow cytometry was used to quantitatively measure
protein concentrations within the flip-flop implementation. We give a brief overview
of experimental setup and results.

5.4.3.1 Biological Principles and Prerequisites

Quorum Sensing and Autoinduction via AHL
In quorum sensing, bacterial species regulate gene expression based on cell-popula-
tion density [37, 45]. An alteration in gene expression occurs when an intercellular
signalling molecule termed autoinducer, produced and released by the bacterial cells
reaches a critical concentration. Termed as quorum sensing or autoinduction, this
fluctuation in autoinducer concentration is a function of bacterial cell-population
density. Vibrio fischeri, a well studied bacterium, colonises the light organs of a vari-
ety of marine fishes and squids, where it occurs at very high densities (1010 cells

ml ) and
produces light [57]. The two genes essential for cell density regulation of lumines-
cence are luxI, which codes for an autoinducer synthase and luxR, which codes for
an autoinducer-dependent activator of the luminescence genes. The luxR and luxI
genes are adjacent and divergently transcribed, and luxI is the first of seven genes
in the luminescence or lux operon. LuxI-type proteins direct AHL synthesis while
LuxR-type proteins function as transcriptional regulators that are capable of binding
AHL signal molecules. Once formed, LuxR-AHL complexes bind to target promot-
ers of quorum-regulated genes. Quorum sensing is by now known to be widespread
among both Gram-positive and Gram-negative bacteria.
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Bioluminescence in Vibrio fischeri
Bioluminescence in general is defined as an enzyme catalysed chemical reaction
in which the energy released is used to produce an intermediate or product in an
electronically excited state, which then emits a photon. It differs from fluorescence
or phosphorescence as it is not depended on light absorbed. The mechanism for
gene expression and the structure of the polycistronic message of the lux structural
genes in Vibrio fischeri have been thoroughly characterised [25]. Briefly, there are two
substrates, luciferin, which is a reduced flavin mononucleotide (FMNH2), and a long
chain (7–16 carbons) fatty aldehyde (RCHO). An external reductant acts via flavin
mono-oxygenase oxidoreductase to catalyse the reduction of FMN to FMNH2, which
binds to the enzyme and reacts with O2 to form a 4a-peroxy-flavin intermediate. This
complex oxidises the aldehyde to form the corresponding acid (RCOOH) and a highly
stable luciferase-hydroxyflavin intermediate in its excited state, which decays slowly
to its ground state emitting blue-green light hν with a maximum intensity at about
490 nm:
FMNH2 + RCHO + O2

lucif.−≥ FMN + H2O + RCOOH + hv

Transcription Control by LacR and λCI Repressor Proteins
Escherichia coli cells repress the expression of the lac operon when glucose is abun-
dant in the growth medium. Only when the glucose level is low and the lactose
level is high, the operon is fully expressed. The Lac repressor LacR is a 360 residue
long protein that merges to a homotetramer. It contains a helix-turn-helix (HTH)
motif through which it interacts with DNA. This interaction represses transcription
by impeding association with RNA polymerase and represents an example of com-
binatorial control widely seen in prokaryotes and eukaryotes. The CI repressor of
bacteriophage lambda is the key regulator in lambda’s bistable genetic switch that
underlies the phage’s ability to efficiently use its two modes of development.

Flow Cytometry
Flow cytometry refers to the technique where microscopic particles are counted
and examined as they pass in a hydrodynamically focused fluid stream through a
measuring point surrounded by an array of detectors. Previously, we performed flow
cytometry analyses by using a BD LSRII flow cytometer equipped with 405, 488 and
633 nm lasers. 488 nm laser was used for gfp and yellow fluorescent protein (yfp)
quantification.

5.4.3.2 Experimental Setup and Implementation

We have shown that an in vivo system [27] can potentially be used to mimic an RS
flip-flop and have quantified its performance using flow cytometry. The presence or
absence of the inducers IPTG or AHL in combination with temperature shift acts as
an input signal, see Fig. 5.15. The toggle switch comprising of structural genes for
reporter/output proteins connected to promoter regions that are regulated by input
signals is visualised as an RS flip-flop. This design endows cells with two distinct
phenotypic states where the λCI activity is high and the expression of lacI is low
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(referred to as high or 1 state), or the activity of LacR is high and the expression
of λCI is low (referred to as low or 0 state). The green fluorescent protein gfp is
expressed only in the high λCI/low LacR state.

5.4.3.3 Results and Discussion

For co-relational purposes, all experiments were conducted with both BL21 and
Top10 strains of Escherichia coli. The concentration of IPTG used in all the experi-
ments was 2 mM and that of AHL was 1 μM. Experiments conducted without the use
of inducers lead to an unreliable shift of the states, indicating the use of inducers in a
tightly, mutually regulated circuit. Further experiments conducted to understand the
switching dynamics of the circuit revealed that in the current scenario it was easier
to switch from a high to a low state than vice versa. This discrepancy in switching
behaviour is attributed to the different modes of elimination of LacR and λCI repres-
sor proteins. While switching from low to high state, the repression due to IPTG-
bound Lac repressor needs to be overcome by cell growth. Switching from high to
low state is effected by immediate thermal degradation of the temperature-sensitive
λCI. Experiments were also conducted to test the sustainability of states. The plug
and play property of the circuit was examined by employing yfp as the reporter gene
instead of gfp. As shown in Fig. 5.16, the circuit could mimic an RS flip-flop. A
massive parallelism by the use of large quantities of cells can compensate for the
slow speed of switching. Further tests are to be performed to confirm this hypothesis.

5.5 Spatial Rule-Based Simulator Software SRSim at a Glance

Molecular dynamics opens a promising framework towards modelling and simula-
tion of reaction systems whose substrates can spatially compose or decompose from
submolecular units following the intention of membrane systems τCSM for cell sig-
nalling modules. In this line, the aim of the resulting SRSim software package is
coping with reaction networks that are combinatorially complex as well as spatially

Fig. 5.15 A schematic diagram of an AHL biosensor module interfaced with the genetic toggle
switch adapted from Ref. [27]. The transgenic artificial GRN consists of a bistable genetic toggle
switch [18] which is linked to genes from the lux operon of the quorum sensing signalling pathway
of Vibrio fischeri
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Fig. 5.16 Inducer-dependent switching. Repeated activation and deactivation of the toggle switch
based on inducers and temperature. Temperature was switched every 24 h. Cells were incubated
with inducers for 12 h, followed by growth for 12 h without inducers, initially kept at 30 (a) and
42 ◦C (b). The cells successfully switched states three times. Figure taken from Ref. [30]

inhomogeneous. It is constructed from the molecular dynamics simulator LAMMPS
[54] and a set of extensions for modeling rule-based reaction systems. On the one
hand, there is a potentially combinatorial explosion of necessary species and reactions
that occurs when complex biomolecules are allowed to interact, e.g. by polymerisa-
tion or phosphorylation processes. On the other hand, diffusion over longer distances
in the cell as well as the geometric structures of sophisticated macromolecules can
further influence the dynamical behaviour of a system. Addressing these demands,
the SRSim simulation system features a stochastic, particle based, spatial simulation
of Brownian Dynamics in three dimensions of a rule-based reaction system. This
Section gives a brief overview of SRSim based on [23, 24].

In our approach, elementary molecules consist of a set of components or domains
which can be modified or bound to the components of other molecules. Compo-
nents, sites, binding sites and domains are used synonymously in this context. The
resulting complex species, formed by a connection of elementary molecules, are
called molecule graphs. Instead of using reactions between explicit species now, the
reactions are replaced by implicit reaction rules, which are applicable to a certain
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subset of all possible complex molecular species. This subset is defined through an
equivalence class given by a molecule graph pattern. Any complex molecule graph
that contains the graph pattern as an isomorphic sub-pattern is included in the equiva-
lence class. A pattern might, for example, describe a molecule of type A that has one
free binding site and another binding site bound to another molecule of type A. Any
other molecular species that incorporates this A–A dimer without blocking the nec-
essary free binding site specified in the pattern is now part of this equivalence class.
Any of these molecules can be addressed by a single reaction rule, as demonstrated
in Fig. 5.17.

We are using individual agents for each elementary molecule in the simulation.
Synonymously with the agents, we are using the terms particles and elementary
molecules here. The spatial simulation is carried out as an extension to the molecular
dynamics simulator LAMMPS [54]. Each particle is represented by its position, its
velocity, its species and the state of its components. The particles diffuse through
the reactor and can push away other molecules if they come too close. When two
molecules approach one another, a bimolecular reaction can happen between them,
if they are fitting to a reaction pattern specified in the reaction rules and if the
geometric constraints are met. If a reaction binds two elementary molecules together,
bond forces are applied and their diffusion through the reactor is coupled, forming
a complex molecule graph. Monomolecular reactions can be used to spontaneously
break bonds in molecule graphs or to modify the component states of a molecule.
More conventional reactions can also be used to completely exchange one molecule
for another. The inclusion of spatial aspects in the rule-based reaction systems results
in an expressive simulation system for moderately sized systems. Up to a magnitude
of 100,000 particles the simulation can still be run on a desktop system for about
106 timesteps in some hours of computing time. The rule-based reaction system is
specified in the BioNetGen Language [34] (BNGL).1

SRSim can be interpreted as a P system with membranes composed from
assembled individual molecules. Reactions are constrained by spatial configurations
and geometries which may include molecules forming parts of membranes. So far,
membranes can be defined as static force fields or can emerge (e.g. like lipid layers
formations [63]). Although this way of implicit membrane definition by molecular
assembly is computationally demanding, it provides a high level of granularity in
dealing with issues of reception of molecular passage through membrane structures.
To do so, geometric properties like a form (e.g. sphere), a location, a size and a
velocity are added to a membrane, so that it can have an effect on and can be affected
by spatial heterogenities. For example, a reaction to make a molecule of species A
leaving a membrane x

[[. . . , Ai ]x . . .]y −≥ [[. . .]x Ai . . .]y

1 See the BioNetGen Documentation. A BioNetGen tutorial can be found online at: http://bionetgen.
org/index.php/BioNetGen_Tutorial

http://bionetgen.org/index.php/BioNetGen_Tutorial
http://bionetgen.org/index.php/BioNetGen_Tutorial
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(a)
(b)

(c)

(d)

Fig. 5.17 Exemplary rule-based system, taken from [23]. Two elementary molecule types (A, B)
with their subdomains (or components) are displayed (a). Each component can be bound to another
component or be modified, e.g. denoting a phosphorylation or a conformational change. Site names
need not be unique and hence a wide spectrum of possibilities for the system’s specification is
offered. Multiple elementary molecules can be connected at their components to form complex
molecule graphs (b). Reaction rules, as the binding reaction (c), are specified by using patterns
graphs (or reactant patterns) A reactant pattern fits to a molecule graph, if it is contained as a
subgraph in the molecule graph. Note that some components are missing in the reactant pattern’s
definition, which are then ignored in the matching process. Panel (d) shows two different instances
of the reaction rule. In the upper realization, two independent molecule graphs are connected. For
the lower example on the other hand, both of the rules’ reactant patterns are found in a single
connected molecule graph
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might require an appropriate particle Ai to be situated close to the membrane, before
it can exit. This notation closely follows the scheme of symport/antiport rules or
active membranes in P systems. Other constraints follow easily, e.g. mean transition
times from one membrane into another compartment that is situated some distance
away.

SRSim as well as LAMMPS are released under the GNU Public License, so the
sources can freely be downloaded2 and modified. Especially the rule system that
handles the rule-based reaction system is independent from the molecular dynamics
simulator and could be plugged into a different spatial or non-spatial realisation of a
rule-based simulation system.

5.6 Envisioning an Analysis of Membrane System’s Static and
Dynamical Behaviour by a Constrained-Based Approach

Within the domain of strictly continuous signals quantified by real numbers, mod-
elling and analysis of oscillating behaviour has been well-studied [53]. Chemical
reaction networks assumed to reside in a homogeneous environment give a typi-
cal example: Each species is represented by its concentration which is allowed to
vary continuously over time. From the static network topology together with the sto-
ichiometry of the reactions, a corresponding ordinary differential equation system
(ODE) can be derived that specifies the reaction rates for each species [14]. Inclusion
of parameterised kinetic laws accomplishes a mapping between species concentration
and effective reaction rate. The resulting ODE can easily be tested for its capability
of undamped oscillating species concentrations. To this end, the eigenvalues of the
Jacobian matrix obtained from the ODE right hand side are sufficient [26]. Limit
cycles indicate the oscillatory behaviour in detail. In case of sinusoidal or almost
sinusoidal oscillatory waveforms, even properties of the entrainment behaviour can
be obtained analytically, for instance by the Kuramoto method [39] which estimates
the expected time to synchronisation subject to the range of relevant parameters.

The main advantage of analytical ODE-based methods unequivocally exploits
the fact that essential characteristics and properties of a system under study can
be directly derived from the underlying mathematical model without any need for
a numerical simulation of its dynamical behaviour. This makes the evaluation and
automated testing of candidate systems resulting from experimental data rather effi-
cient. In contrast, there is currently a lack of corresponding methods within the
field of membrane systems modelled in a discrete manner. Here, system properties
mainly emerge from exhaustive simulation studies. Conduction of those studies still
requires an extensive amount of human resources. Particularly in case of involved
active membranes, compartmental plasticity, and dynamical structures, a toolbox for
automated analysis would be helpful. In an ongoing project, we intend to generate
sustained oscillatory systems by artificial evolution in silico [40]. In this context, the

2 www.biosystemsanalysis.de

www.biosystemsanalysis.de
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fitness evaluation should answer the question whether the system candidates are able
to oscillate endogenously or not and how the periodicity can be controlled. This task
is expected to be done by a piece of software [23].

There are different oscillatory scenarios in biological systems even beyond circa-
dian clocks. On the one hand, periodicity might also be reflected in temporal changes
of the compartmental structure. On the other hand, signalling molecules are often
available in low concentrations ranging from single molecules to several thousand
copies. Both aforementioned scenarios have in common to prevent pure ODE-based
modelling techniques due to the discrete manner of involved key entities. Motivated
by the need for an appropriate toolbox covering description, simulation, and analysis
of discontinuously considered biological reaction processes, we plan to extend the
concept of spatiotemporal membrane systems with kinetic laws [16, 29] towards an
underlying evaluation strategy able to explore the nature of undamped oscillations
beyond variations of species concentration. A simple approach combines numerical
simulation with a backtracking mechanism. Here, the trace of configurations passed
by a membrane system becomes recorded in a suitable way. By monitoring the overall
configurations over time, a derivation tree is obtained that provides a comprehensive
data pool for further analysis by automated backtracking. Sustained oscillations are
expected to appear as recurring, but non-adjacent overall configurations along a path
through the derivation tree. The practicability of simple backtracking for detection
of oscillatory behaviour is limited to small or medium sized membrane systems due
to the need of a fine-grained numerical simulation, which is time-consuming. Par-
ticularly for fitness evaluation in artificial evolution, numerous network candidates
within a network population have to be analysed.

Exploitation of a purely constrained-based approach [35, 59] could be a promising
clue in order to decide about dedicated properties of membrane systems without any
need for numerical simulation of system’s behaviour. In this context, a constraint
defines a valid range of system’s parameterisation which implies a corresponding
qualitative behaviour to be obtained by reasoning from the formal system’s descrip-
tion. An example reflecting the static behaviour is given by the decision whether
or not a reaction system on its own is mass-conserving. This property exclusively
follows from the reaction equations. In each equation, the set of products must be
completely composed from the reactants without any loss or overrun. In case of the
single reaction A + B −≥ C , mass conservation implies that product C is com-
posed from one molecule A and one molecule B. Different compositions of C prevent
mass conservation. Let us assume, we have in addition a second reaction C −≥ A.
Now, the entire reaction system is not mass-conserving since there is no consistent
representation of C’s composition assuring mass balance in total.

The topology of a reaction network can disclose some information about dynam-
ical properties. A sustained oscillatory behaviour for instance requires at least one
reaction cycle as a mandatory prerequisite. A second analysis stage figures out
whether or not there is a reaction cycle organised in a feedback expressed by a
side reaction which ends up in the cycle (inflow) or leaves the cycle (outflow). The
third analysis stage takes into account stoichiometry in conjunction with kinetic
laws of reactions assigned to a feedback loop. Here, the type of kinetics together
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with stoichiometric factors indicate the oscillatory capability of the feedback loop
under study. Finally, all feedback loops identified within the entire system undergo a
check on possible interdependencies able to influence the overall oscillatory behav-
iour. Certainly, the sketch based on passing four stages gives just a raw impression
on how a constrained-based approach could act in general. Future work intends to
be directed on refinement and adaptation of constrained-based methods for analysis
of membrane systems envisioning preparation of a beneficial toolbox.

5.7 Conclusions

Chronobiological research can benefit from a consistent membrane system-based
framework τCSM able to combine dynamical molecular structures with appropri-
ate reaction kinetics. Particularly in cell signalling and gene regulation, both char-
acterised by a low number of complex molecules involved, τCSM’s descriptional
flexibility and expressivity makes it an advantageous tool for modelling issues in
systems biology. We have demonstrated the underlying framework by three applica-
tion studies: The KaiABC core oscillator exemplifies a post-translational component
of a circadian clock in cyanobacteria while circadian clocks in general can emulate
frequency control by phase-locked loops. Finally, the third study sheds light on an
in-vivo implementation of a bistable toggle switch whose mutually feedbacked gene
regulatory loops mimic an RS flip-flop variant. The application studies came along
with the simulation system SRSim which is freely available at [66]. Further infor-
mation on the network models can be obtained from the download area at Ref. [67].
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vol. 7184 (LNCS, 2012), pp. 182–202

34. W.S. Hlavacek, J.R. Faeder, M.L. Blinov, R.G. Posner, M. Hucka, W. Fontana, Rules for
modeling signal-transduction systems. Sci. STKE 344, re6 (2006)

35. P. Hofstedt, Multiparadigm Constraint Programming Languages. Series Cognitive Technolo-
gies (Springer, New York, 2011)

36. W.L. Koukkari, R.B. Sothern, Introducing Biological Rhythms (Springer Verlag, Berlin, 2006)
37. N. Krasnogor, M. Gheorghe, G. Terrazas, S. Diggle, P. Williams, M. Camara, An appealing

computational mechanism drawn from bacterial quorum sensing. Bull. EATCS 85, 135–148
(2005)

38. G. Krauss, Biochemistry of Signal Transduction and Regulation (Wiley-VCH, Weinheim, 2003)
39. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulences (Springer Verlag, Berlin, 1984)
40. T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich, Towards evolutionary network reconstruction tools

for systems biology, in 5th European Conference on Evolutionary Computation, Machine
Learning and Data Mining in Bioinformatics EvoBIO2007, ed. by E. Marchiori, J.H. Moore,
J.C. Rajapakse, vol. 4447 (LNCS, 2007), pp. 132–142

41. R.D. Lewis, Control systems models for the circadian clock of the New Zealand Weta
Hemideina thoracia. J. Biol. Rhythms 14, 480–485 (1999)

42. M.O. Magnasco, Chemical kinetics is turing universal. Phys. Rev. Lett. 78(6), 1190–1193
(1997)

43. V. Manca, L. Bianco, F. Fontana, Evolution and oscillation in P systems: applications to bio-
logical phenomena, in 5th International Workshop on Membrane Computing WMC 2004, vol.
3365 (LNCS, 2005), pp. 63–84

44. M. Marhl, M. Perc, S. Schuster, Selective regulation of cellular processes via protein cascades
acting as band-pass filters for time-limited oscillations. FEBS Lett. 579(25), 5461–5465 (2005)

45. M.B. Miller, B.L. Bassler, Quorum sensing in bacteria. Ann. Rev. Microbiol. 55, 165–199
(2001)

46. T. Mori, D.R. Williams, M.O. Byrne, X. Qin, M. Egli, H.S. Mchaourab, P.L. Stewart, C.H.
Johnson, Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol. 5(4), 841–853
(2007)

47. M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, Reconstitution of circadian oscil-
lation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)

48. J. O’Neill, G. Ooijen, L.E. Dixon, C. Troein, F. Corellou, F.Y. Bouget, A.B. Reddy, A.J. Millar,
Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011)

49. T. Nishiwaki, Y. Satomi, Y. Kitayama, K. Terauchi, R. Kiyohara, T. Takao, T. Kondo, A sequen-
tial program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria.
EMBO J. 26, 4029–4037 (2007)

50. D.A. Paranjpe, V.K. Sharma, Evolution of temporal order in living organisms. J. Circadian
Rhythms 3, 7 (2007)
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Chapter 6
Biochemical Networks Discrete Modeling
Inspired by Membrane Systems

John Jack, Andrei Păun and Mihaela Păun

Abstract The ideas expressed in this work pertain to biochemical modeling. We
explore our technique, the Nondeterministic Waiting Time algorithm, for modeling
molecular signaling cascades. The algorithm is presented with pseudocode along with
an explanation of its implementation. We discuss several important extensions includ-
ing: (i) a heap with special maintenance functions for sorting reaction waiting times,
(ii) a nondeterminstic component for handling reaction competition, and (iii) a mem-
ory enhancement allowing slower reactions to compete with faster reactions. Several
example systems are provided for comparisons between modeling with systems of
ordinary differential equations, the Gillespie Algorithm, and our Nondeterministic
Waiting Time Algorithm. Our algorithm has a unique ability to exhibit behavior sim-
ilar to the solutions to systems of ordinary differential equations for certain models
and parameter choices, but it also has the nondeterministic component which yields
results similar stochastic methods (e.g., the Gillespie Algorithm). There are several
extensions for the current work discussed at the end of the chapter.
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6.1 Introduction

The focus of this chapter is the simulation of molecular signaling cascades, specifically
the Fas-mediated apoptotic pathway. The discussion centers around living systems—
e.g., biological cells—and the changes in their biochemical compositions, which is
brought about through the various interactions of the intracellular proteins. Indeed,
signal transduction (and molecular signaling cascades) describes the systematic inter-
actions of different cellular proteins, starting with some sort of signal (e.g., an exter-
nal ligand binding to a cell surface receptor) and reaching some sort of endpoint
(e.g., the upregulation of a protein eliciting physical changes to the cell). We explore
the molecular mechanisms behind biochemical evolution with implied physiological
responses through computational modeling.

There has been significant interest recently for using computer science tools to
address and understand the relevance of the genomic biological data. Besides the
modeling of molecular signaling cascades discussed herein, there is a large thrust
into protein-folding prediction. Computer algorithms have been designed to decipher
the three-dimensional folding of a protein based on its amino acid sequence. Under-
standing this structure will give insight into the function, since these two elements—
structure and function—are intrinsically linked. With the sequencing of the entire
human genome, scientists are looking to computer models in order to understand all
that the Human Genome Project and similar efforts have uncovered for us.

Although the number of genes encoded in a cell is alarmingly small, given the
vast physical differences in the life of this planet, we look for another aspect to
explain the diversity of living things. To understand ourselves, we need to quantify
the interactions of the things encoded by the genes. The complexity of the machinery
we call life stems from relatively basic components (proteins) interacting through
intricate reaction networks. Simplicity breeds complexity.

For the design of the NWT algorithm, we have chosen a biologically inspired
underlying framework: Membrane Systems (or P Systems). The essential design
goal was to create a new simulation technique capable of exhibiting qualities com-
parable to the stochastic methods—e.g., the Gillespie algorithm [22, 23]—but also
systems of ordinary differential equations, depending on the particular configura-
tions of the systems being modeled. Moreover, the NWT algorithm is designed to be
less computationally intensive than the Gillespie algorith; however, NWT maintains
a level of nondeterminism that allows divergent solutions compared with systems of
ordinary differential equations.

Other approaches have been considered in this area of simulating cells using
membrane systems, notable is the work of V. Manca from [49].

For the rest of this Sect. 6.1 we will introduce some of the existing techniques for
modeling the dynamics of intracellular proteins in a reaction network. Differential
equations have been the predominate form of modeling for a very long time. However,
a competing algorithm was developed in the late 1970s using stochastic fluctuations
(and discrete mathematics rather than continuous mathematics) to more accurately
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predict protein dynamics in [22]. Since then, both methods have been improved,
developed, modified, adapted and even combined to give us fast, accurate simulations
of molecular signaling cascades.

6.1.1 Modeling with Differential Equations

Systems of ordinary differential equations are employed to model a wide range of
phenomena, including but not limited to modeling the dynamics of molecules in a
biochemical reaction network. In fact, due to their heavy mathematical background
and the speed at which they can be solved, systems of ordinary differential equa-
tions are quite popular in the modeling of molecular signaling cascades. However, a
recurrent theme in this work will be the fact that molecular modeling with ordinary
differential equations does not always yield desirable results. Moreover, the solu-
tions to systems of ordinary differential equations can often yield misleading results,
failing to accurately represent the minority behavior of a few cells in favor of results
illustrating the average behavior of the majority of cells. In later sections we will
continue to comment on this shortcoming of the differential equations. For now, we
will briefly discuss how we can model biochemical systems with systems of ordinary
differential equations.

We set up an ordinary differential equation for each type of molecule in the system.
For each species Xi , we have

d Xi

dt
= fi (Xi , . . . , Xn), (6.1)

where fi ’s are functions (possibly nonlinear and nonhomogeneous). For example,
the Hill function, which was initially developed to describe the binding of oxygen
to hemoglobin [31], is a classic nonlinear function now having widespread use in
describing cooperative binding (such as ligands binding to receptors). In fact, many
biological phenomena are being modeled with nonlinear functions.

Essentially, to model the dynamics of protein interactions, we will need a dif-
ferential equation for each protein with the functions defined according to how the
proteins react to each-other in the system. For example, we consider an early inves-
tigation into chemical equilibrium, which was made by L. Wilhelmy [51, 87]. His
studies were focused on the following sucrose reaction:

H20 + C12 H22 O11 ≥ C6 H12 O6 + C6 H12 O6. (6.2)

If we let S(t) represent the concentration of sucrose, then Wilhelmy was able to
show that

− d S

dt
= kS, (6.3)
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where k is a kinetic rate constant. He designed this equation to match the empirical
evidence that the rate of decrease of sucrose concentration was proportional to the
concentration remaining unconverted (the law of mass action discussed further in
Sect. 6.2.1).

If we let S0, represent the initial concentration of sucrose, then we have

S(t) = S0e−kt . (6.4)

Since the time of Wilhelmy, chemical kinetics have received a great deal of attention.
To address interesting problems in the biochemistry of life, we need much more
complex systems. These systems will involve many reactions with a large degree
of interdependence. Indeed, we will see increasingly complex systems of ordinary
differential equations in the coming sections of this work. This complexity will be
driven by the number of interacting elements and reactions, but not necessarily from
complicated nonlinearity such as the Hill Function. With more complex systems,
we will need to approximate the solutions to the systems of ordinary differential
equations. Once the system of differential equations is written out, mathematically
describing the molecular mechanisms, it is time to apply approximation methods.

The most common method for approximating a system of ordinary differential
equations is the fourth order Runga-Kutta method. This is the method employed by
a large majority of computational biology labs. Often, MATLAB is used, and the
ode23 and ode45 solvers are built-in functions utilizing Runga-Kutta to provide an
approximate solution to the system of ordinary differential equations. For an example
of the MATLAB code we have used to determine solutions to systems of ordinary
differential equations, we refer the interested reader to [37] (describes the circadian
rhythm model from Sect. 6.3).

We have hinted that differential equations are not the only way to model biochem-
istry. We will now briefly discuss the stochastic techniques for modeling biochemical
reaction networks.

6.1.2 Stochastic Methods and the Gillespie Algorithm

There are situations where ordinary differential equations fail to adequately represent
cellular populations. The biochemical reason for this usually stems from situations
of low molecular multiplicity. In one of the most important works on stochastic
approaches to chemical kinetics, McQuarrie [51] provided a rich description of
the historical background to stochastic techniques as well as some exactly solvable
systems.

Kramers was the first to use stochastic ideas for modeling the kinetics of chem-
ical equations [45, 53]. The idea of stochastic approaches for modeling chemical
systems revolves around the chemical master equation. This equation describes the
probability of every possible state of the cell (with respect to biochemical composi-
tion). Instead of a differential equation for each protein, one would essentially have
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a differential equation for every possible state of the cell. For very small systems, the
chemical master equation can be solved directly (see [51] for some systems). How-
ever, it becomes difficult or impossible to directly find the chemical master equation
for systems of nontrivial size. It is this reason which led D.T. Gillespie to formulate
his now ubiquitous algorithm for exactly solving the chemical master equation.

Gillespie published two landmark papers in 1976 and 1977. In [22], he presents
the framework for an exact stochastic method, which accurately predicts the chem-
ical master equation. Then, in [23], Gillespie describes the Stochastic Simulation
Algorithm (SSA); the algorithm is now aptly named the Gillespie Algorithm, and it
is the most commonly applied/adapted technique for stochastic simulation of bio-
chemical networks. The Gillespie Algorithm is at the heart of most discussions on
stochastic modeling.

In [23], Gillespie discusses two important points on the failure of classical mod-
eling (differential equations); the approach assumes that the time evolution of a
chemically reactive system is both continuous and deterministic. However, in nature,
chemically reacting systems evolve in a discrete manner, since molecular multiplic-
ities can obviously change only by integer amounts.

We will forgo an explanation of the algorithm, since it has been reported in the
literature. However, we would like to mention the main limitation of the algorithm.
As stated in the original paper [23], the Gillespie Algorithm places a high premium
on the speed of the computer’s CPU. The limitations are dependent on the number
of reactions in the system. Also, the algorithm requires multiple runs to correctly
quantify the system. This works in conjunction with the speed limitations, making
stochastic simulations an enduring process.

6.1.3 Improving the Gillespie Algorithm

Since its creation in 1977, the Gillespie Algorithm has been the focus for improve-
ments in efficiency. The most notable improvement for the Gillespie Algorithm comes
from the work of Gibson and Bruck [21]. They were able to reduce the computa-
tional complexity of the algorithm considerably, through the addition of a method
for sorting the reactions and reducing the dependence on random number genera-
tion. However, the limitation associated with reaction network growth—number of
molecules and reactions—is still an issue.

A number of methods have now been proposed to combine differential equations
with the Gillespie Algorithm. These hybrid methods attempt to divide the reactions
into fast and slow. We will not provide an exhaustive discussion on each method, but
we wish to mention two notable works below.

The work of Haseltine and Rawlings [29] has been well-cited. They provide the
theoretical background for dividing reactions into fast and slow subsets, allowing
for the fast reactions to be approximated either deterministically or as Langevin
equations. Essentially, they are able to integrate the system over much larger time
steps than the original Gillespie Algorithm. For the original Gillespie Algorithm,
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increasing the number of molecules for a fast-reacting protein will significantly
increase the computational load; however, by using deterministic processes for fast
reactions, the computational load of their algorithm will not increase in this case.

Rao and Arkin [71] applied the quasi-steady state assumption to modify the
Gillespie Algorithm. Using the quasi-steady state assumption, they were able to
reduce model complexity by reducing the number of molecular species and reac-
tions. Essentially, the assumption is that the net rate of formation is approximately
zero for highly reactive and transitory species—e.g., enzyme-substrate complexes.
In their paper, the authors provide some mathematical rigor behind the algorithm as
well as some results for example systems.

6.1.4 Our Work

In Sect. 6.2, we have provided an introduction to the concept of modeling biochemical
reaction networks and a brief discussion on some of the most popular techniques.
For the rest of this work, we will focus on biochemical modeling with our algorithm,
NWT algorithm that was inspired by the membrane systems area.

In Sect. 6.2.1, we will introduce the NWT algorithm. We provide an in-depth
look at the pseudocode; a discussion on the implementation; and some results from
example systems illustrating the concepts of the algorithmic improvements are pro-
vided in the chapter. Section 6.3 illustrates the results of two popular models: the
Lotka-Volterra predator-prey model and a circadian rhythm model. The two models
are used to emphasize the difference between our algorithm and the solutions to
systems of ordinary differential equations and the Gillespie Algorithm.

6.2 Membrane Systems as Cell Simulators

The NWT algorithm is using the discrete nature of the P systems for simulating the
intra-cellular processes. We simulate the biochemistry of a cell as the evolution of the
Membrane System. There are a variety of intracellular biochemical reaction types;
we provide a few examples in Table 6.1, in order to facilitate the understanding of
associating time with Membrane System evolution.

In order to plausibly model the biochemistry of life, individual biochemical
interactions need to occur asynchronously over different lengths of time. Our Mem-

Table 6.1 Typical examples
of biochemical reactions R1: Monomolecular decay: A

kd−≥ ≤
R2: Monomolecular reaction: A

kx−≥ B

R3: Bimolecular reaction: A + B
ky−≥ C

R4: Trimolecular reaction: A + B + C
kz−≥ D



6 Biochemical Networks Discrete Modeling Inspired by Membrane Systems 181

brane System employs the law of mass action. The law states that reaction rate is
directly proportional to the number of reactants available in the system. In other
words, the time required to execute a rule in the Membrane System is dependent on
the number of its reacting species.

The law of mass action gives us the power to temporally describe the evolving
configurations of our Membrane System. To understand the asynchrony of rule exe-
cution, we need to discuss the kinetic rates pertaining to the law of mass action. The
kinetics of a chemically reactive system are often described as concentration-based
values. This is common for the types of experiments used to derive the rates, typi-
cally involving enormous populations (millions) of cells. The cells are often lysed as
a large population, molecules are measured in terms of light intensity—e.g., radio-
logical or photonic markers—and data are given as concentrations of species across
cell population. These values can be averaged across the cell population, yielding
concentrations per cell. We rely on these values to fit our models, but the values are
derived from entire cell populations instead of individual cells. Hence, the interesting
phenotypic, biochemical and physiological characteristics of individual cells can be
sometimes overgeneralized (or lost) in lieu of the behavior of the majority of the
cells in the population.

Some labs employ techniques to measure single-cell dynamics. For example,
interesting results/models on p53 have been reported [46]. In [46], the authors showed
individual cells undergo not dampened oscillations, as reported in [3], but each indi-
vidual cell instead exhibits a different numbers of oscillations. The average behavior
for the cell population appeared to be dampened, but individual cells did not behave
this way.

The concentration-based kinetic rates, kR for each rule R, will have units nMs,
µMs, etc. Assuming we have accurate kinetic information for all rules in our Mem-
brane System, we set up multiplicity-based kinetics—a discrete kinetic constant,
constR for each reaction R. When we initialize our Membrane System, we calcu-
late the discrete kinetic constants from the concentration-based kinetic rates in the
following way:

constR = kR

V i−1 × N i−1
A

, (6.5)

where R is the reaction, V is the volume of the system, NA is Avogadro’s constant
(6.0221415 × 1023) and i is the number of reactant species involved.

Using the law of mass action and discrete kinetic constants we can define the
Waiting Time (WT ) of a reaction in the Membrane System. The WT is a value
assigned to each reaction, signifying the next timepoint for a single execution of
the reaction. As molecular multiplicities will change throughout a simulation, from
one configuration to the next, so will the WTs of reactions utilizing those molecules.
The equations for calculating the WT of a first order, second order, and third order
reaction are provided in Eqs. 6.6, 6.7, and 6.8. The rules are those described in
Table 6.1.
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W TR1 = 1

kd ∈ |A| , (6.6)

W TR3 = 1

ky ∈ |A| ∈ |B| , (6.7)

W TR4 = 1

kz ∈ |A| ∈ |B| ∈ |C | , (6.8)

where A, B, and C are the reactants required for reactions R1, R3 and R4, |A|, |B|,
and |C | represent the number of molecules present in the system at the moment of
WT calculation, and kd , ky , and kz are the discrete kinetic constants.1

Using Eqs. 6.6, 6.7 and 6.8 we can calculate the WT for each reaction in the
Membrane System. Reactions with more than three reactants can be reduced into
multiple sub-reactions of lower order. We used a min-heap for sorting reactions,
where the top of the heap is the reaction with the smallest WT—i.e., the next reaction
to be executed. However, we need to use nonstandard methods for maintaining the
heap, due to the asynchrony of the rules and the sharing of reactants. These non-
standard methods are similar to those proposed by Gibson and Bruck [21] in their
modification to the Gillespie Algorithm.

To clarify, when a rule is applied, multiple nodes can have changes to their Waiting
Time, since the multiplicities of particular species of the system have changed. These
species can be shared over multiple reactions. Hence, multiple Waiting Times poten-
tially can fail the min-heap property throughout the tree simultaneously at each new
configuration. In order to handle this, we use heap maintenance methods similar
to those proposed by Gibson and Bruck [21] in their modification of the Gillespie
Algorithm.

6.2.1 Description of the NWT Algorithm

The Membrane System is a mathematical description of the entire biochemical model,
defining the reactions, cellular compartments, molecular species and multiplicities,
etc. We will now provide the steps for the NWT algorithm.

I Build Membrane System: Import information for Membrane System—alphabet,
membrane hierarchy, etc. Convert protein concentrations to molecular multi-
plicities. Convert kinetic rates to discrete kinetic constants. For each reaction
Ri , where 1 ∗ i ∗ m, we calculate the initial Waiting Time, W TRi . Choose the

1 R1 and R2 from Table 6.1 are calculated in the same way (replacing kd with kx ) because they both
have reaction order one and use the same reactant species, albeit the products are different. If one
of the reactants for a reaction has no molecules present in the system, then we set the WT equal to
infinity. We have implemented the algorithm in ANSI C, so we automatically have 1.0

0.0 = →.
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desired amount of time for the simulation, τ f in . Set current simulation time to
zero (τ = 0).

II Build Heap: Using the reaction Waiting Times, we build a min-heap of all
reactions in the system.

III Select Rule: Choose the reaction with the lowest Waiting Time—the top of the
min-heap. Upon selecting the root node of the heap, recursively check to see
if there are any children nodes sharing the minimum Waiting Time. If such a
tie for minimum Waiting Time exists, then proceed to Step IV. If no tie exists,
then continue to Step V.

IV Handle Tie: Check the multiplicities of the reactant species for all tied reactions.
If there are enough reactants to satisfy all of the reactions with the minimum
Waiting Time, implement all tied reactions. If there are not enough reactants
to accommodate all the reactions, we make a nondeterministic choice on the
rules to apply until no more rules can be applied.

V Apply Rule: Update the multiplicities of the reactant(s) and product(s) for the
reaction(s) from Step III. Aggregate the simulation time (τ = τ + W Tapplied ).

VI Update Rules: Recalculate the Waiting Time for all reactions whose reactant(s)
include the product(s) or reactant(s) of the applied reaction(s). That is, we
need to see how the multiplicity changes from the applied reaction(s) have
affected the Waiting Times for each rule dependent on those proteins with a
new multiplicity. For each such reaction compare the new Waiting Time with
the existing Waiting Time and keep the smallest of the two2 (unless the new
time is infinity, indicating insufficient reactants for a reaction to occur).

VII Memory Enhancement: If the recalculation of a reaction’s Waiting Time results
in a value of infinity, then we must store the amount of time waited as a per-
centage (Mem perc). If the recalculation of a reaction’s Waiting Time results
in a real value and the previous value was infinite, then the Waiting Time will
need to be adjusted according to the stored memory percentage.

VIII Heap Maintenance: Adjust the min-heap, bubbling reaction nodes up or down
in order to satisfy the min-heap property, once reaction Waiting Times have
been recalculated according to the multiplicity changes.3

IX Termination: If τ = τ f in , then terminate the simulation. Output the multiplicity
information for entire simulation. Otherwise, go back to Step III.

Our simulation technique is modular; we initialize the NWT with models encoded
in the Systems Biology Markup Language (SBML). SBML is one of the most popular
methods to encode biochemical models. It is developed through a broad international
collaborative effort with many cooperating institutions [33]. To set up the SBML
files, we use the CellDesigner software [19, 20], which is maintained through Keio
University.

2 If at this moment the waiting time is increasing-reactants of this rule have been used—we keep
the old waiting time considering that the proteins have already started binding, and none of them
was used in the other reaction.
3 To accommodate the multiple changes in Waiting Times, we employ nonstandard heap
maintenance methods.
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With the SBML code, and the kinetic constants/WT calculations described earlier,
we have the information for the initialization of the system. This sufficiently describes
Step I of the NWT algorithm. In ANSI C, we can store all of the information describ-
ing the Membrane System in two arrays of structs: an alphabet array and a rules
array. For Step II, we build a min-heap in the standard bottom-up way. For any two
reactions, R1 and R2, in the heap, if R2 is a child of R1, we have

W TR1 ∗ W TR2 . (6.9)

Step III of the NWT algorithm, selecting a rule, requires O(1) time to complete,
since the WTs were sorted in Step II. However, we must check to see if any other
rules have the same WT. If two or more rules are attempting to execute at the same
instant of time, we must ensure there are enough reactants to execute all competing
rules. If insufficient numbers of molecules exist for all the potentially executable
rules, then we must nondeterministically apply reactions until all available reactants
have been exhausted. We create an array pointing to all rules slotted to occur at the
next moment in time. If there is only one element in the ties array—no competition
for resources—we can move on to Step V, skipping Step IV, and execute one rule.
Otherwise, we proceed with Step IV.

To nondeterministically apply rules, we randomly generate numbers between 0
and the end of the ties array. Using this randomly chosen index, we check if sufficient
reactants exist to implement the reaction. If there are sufficient reactants, we apply
the reaction—i.e., we increase the multiplicity of the product(s) by one and decrease
the multiplicity of the reactant(s) by one. If there are insufficient reactants, we
skip the reaction, and no multiplicity changes occur for the reaction. In either case,
the reaction is removed from the ties array, and the process continues until the ties
array is empty. This completes the discussion for Steps IV and V of the algorithm.
Remember, in the case of only one reaction, we skip Step IV and apply just the one
reaction in Step V. Either way, we are ready to move on to Step VI: Update Rules.

For each reaction applied in Step V, we must recalculate the WT of the applied
reaction and the WT of every reaction affected by the multiplicity changes. We must
discuss Step VI within the context of the heap maintenance. Hence, we will continue
the discussion of Step VI in Sect. 6.2.2, which will continue with the discussion of
Step VIII, Heap Maintenance. As we will see in the next two sections, Steps VI, VII,
and VIII are intertwined. The discussion of Step VII is found in Sect. 6.2.3.

6.2.2 Maintaining the Min-heap

As previously discussed, heap maintenance is completed in a nonstandard way. In
a typical min-heap implementation, the top node is selected and removed from the
heap. Meanwhile, new nodes are added to the bottom, bubbling the nodes up in
order to satisfy the min-heap property. There are two reasons why we do not wish to
remove the applied rules from the top of the heap and add them to the bottom.
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First, the number of reactions will not grow or shrink during a simulation run.
Therefore, it is unnecessary to remove/add reactions to the heap after initialization.
Second, a reaction, once applied, typically has a new WT very similar to the previous
value. The new WT will often need to be located near the top of the heap, once the
heap is adjusted to satisfy the min-heap property. Removing the top node, adding it
to the bottom, and bubbling it back to near the top would be a waste of clock cycles,
especially for a significantly large numbers of reactions.

After recalculating the WT for each affected rule—a reaction requiring reactants
with changed multiplicity due to the execution of a rule—we reposition the node in
the heap. The algorithm handles repositions nodes one at a time until all necessary
nodes have new WTs and correct positions in the min-heap.

With the heap implementation, we were able to effectively reduce the compu-
tational complexity of our previous technique [9] with respect to the asymptotic
complexity from O(n2) to O(n ∈ log(n)). There are several assumptions we can
make, to define our computational complexity, which are typical for many signaling
cascades:

1. Each reaction involves a maximum of five proteins;
2. The number of reactions having the same reactant is bounded (usually 3, at

most 5);
3. Due to the nature of chemical kinetics, the number of tied reactions is very small.

With 1, 2 and 3 we can state our complexity as O(n log n) (with respect to the
number of reactions simulated).

Technically, Steps VI, VII and VIII occur at the same time. In this section, we
have described Steps VI and VIII. Step VII merely factors into the calculations of
the WTs for affected rules. In order to understand the memory enhancement of the
NWT algorithm, we will consider a small example system.

6.2.3 Memory Enhancement

There are often situations in biochemical networks, where one (or more) protein(s) is
a reactant for two or more reactions of different kinetic rates (fast vs. slow). In order
to explain our memory enhancement, we will consider an example system involving
only three reactions (R1, R2 and R3) acting on four proteins (A, B, C , and D). The
model is described in Table 6.2.

Table 6.2 An example
system to illustrate memory
enhancement

Reaction Rate Constant Initial Molecules

R1: A ≥ C k1 (slow) A = 1
R2: A ≥ B k2 (fast) B = 0
R3: D ≥ D + A k3 C = 0

D = 1
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When described as a system of ordinary differential equations, the biochemical
network is given in Eq. 6.10.

d[A]
dt

= −k1[A] − k2[A] + k3[D]
d[B]

dt
= k2 ∈ [A]

d[C]
dt

= k1 ∈ [A] (6.10)

d[D]
dt

= 0

We specifically designed the system above to highlight the effects of the memory
enhancement, and we will compare our refined algorithm with solutions to the system
of ordinary differential equations described in Eq. 6.10. A model similar to this
one could be used to investigate the dynamics of human immunodeficiencey type 1
(HIV-1) Tat protein, since it is initially transcribed at very low numbers [40]. Once
Tat is assembled in the cytosol, it can be exocytised or translocated to the nucleus
[76]. When Tat is translocated to the nucleus it can begin upregulating HIV-1 proteins
(including itself). Since the downstream effects of Tat translocation to the nucleus
has profound impacts on the cell (causing upregulation of the HIV-1 proteins), a
discrete and nondeterministic approach is necessary to follow the dynamics of the
low levels of Tat proteins [86].

In the system, molecules of A are formed from molecules of D. This reaction can
basically be viewed as a combined transcription and translation rule with D being the
gene and A being the protein encoded by the gene. Once a molecule of A is formed,
it has the option doing one of two things: (i) turning into a molecule of B at rate k2
or (ii) turning into a molecule of C at a rate k1. If we consider the species A as being
analogous to HIV-1 Tat protein, then A ≥ B could be translocation to the nucleus
and A ≥ C could be translocation to the extracellular environment.

Next, we will look at two cases for the model described in Table 6.2 and discuss the
memory enhancement. The cases vary by choices of the kinetic rates. The first case
shows that the memory enhancement can produce the same results as the deterministic
differential equations approach. For the second case, we will show how the technique
can produce different results, illustrating that the ability of the NWT algorithm to
explore nondeterminism of molecular signaling cascades. There are no modifications
to the NWT algorithm between the two cases. The only difference is the kinetic
constants for initialization of the model.

6.2.4 Case 1: Deterministic Memory Enhancement

For the first case, we let k1 = 10, k2 = 4, and k3 = 5. The results of a simulation
using the NWT algorithm plotted against the solution of the system of ordinary
differential equations is shown in Fig. 6.1. The graph shows the accumulation of C
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Fig. 6.1 The number of C
molecules for a simulation of
t = 10. The NWT algorithm
results are represented with
bars while the solution to the
system of ordinary differential
equations is the solid line
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molecules throughout a 10 s run. The bars of the graph are the discrete simulation
results using the NWT algorithm, and the black line is the solution to the system of
ordinary differential equations. With the choices of the kinetic values, there are no
nondeterministic decisions for the entire length of the NWT simulation. So, there is
no surprise that the NWT algorithm shows the same increase in C molecules as the
solution to the system of ordinary differential equations.

At initialization (t = 0), there is exactly one molecule of D and one molecule
of A. Therefore, from Eq. 6.6, we see that all three reactions have real (finite) waiting
times when the simulation begins. Furthermore, we have W TR1 = 0.25, W TR2 = 0.1
and W TR3 = 0.2. Using these WTs, we are able to build a min-heap where the top
node is R2, since it has the smallest Waiting Time.

The first reaction to occur is R2, which immediately exhausts the system’s supply
of A molecules, yields one molecule of B and a simulation time of t = 0.1. The
rules affected by the applied rule must be recalculated; the Waiting Times are now
W TR1 = W TR2 = →. Since R3 does not require a molecule of A, W TR3 is left
unchanged after the first reaction is executed. Also, upon readjusting the min-heap,
R3 is now at the top since it has the smallest value for WT.

The next reaction to be applied is R3, which gives us a new molecule of A and
a simulation time of t = 0.2. This is where the memory enhancement plays a role.
In the first step, reaction R2 used up all of the molecules of A. However, when this
happened, R1 had already waited for 0.1 s—the amount of time a molecule of A
was in the system. The memory enhancement allows the simulator to keep track of
the percentage of time waited. In other words, R1 waited for 0.1 s out of its required
0.25 s, which means it has waited 40 % of its Waiting Time. If we allow the algorithm
to keep track of this percentage, then, when a new molecule of A is formed, we can
recalculate the W T for reaction R1, using the percentage to adjust its Waiting Time
accordingly. That is, after R3 is applied in step two and we have a new molecule of A,
we recalculate W TR1 using Eq. 6.6, but we take 60 % of this number—the percentage
of time left to wait.
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To recap, the first reaction applied is R2. The Waiting Times for reaction R2 and
R1 are both recalculated as infinity, since R2 used all the molecules of A present in
the system. The memory enhancement allows R1 to store the percentage of time it
has left to wait (60 %) when A is exhausted. Next, R3 is the second reaction to be
applied. When this occurs, there is a new molecule of A in the system, which means
R2 and R1 need to be recalculated. The Waiting Time of R2 is calculated as 0.1, but
the Waiting Time of R1 is recalculated as 0.15. This number stems from the equation

W TR3 = Mem
1

k3 ∈ |A| (6.11)

where Mem is the percentage of time left to wait (60 % in the example above). We
will reiterate the memory enhancement calculations in the second case study with
different kinetics.

In this case, the solutions to the system of ordinary differential equations and the
results from the NWT algorithm agree. In the next case, we will explain how the
nondeterminism of the NWT algorithm can lead to results different than continuous,
deterministic solutions to system of ordinary differential equations.

6.2.5 Case 2: Nondeterministic Memory Enhancement

We will now modify the kinetic constants to highlight the effects of the nondetermin-
istic component of the NWT algorithm in conjunction with the memory enhance-
ment. Although the kinetics of our sample system have been deliberately chosen
to highlight the nondeterministic effects, we will later show, in Sect. 6.3, how our
nondeterministic logic can have similar implications in a known model, compara-
ble to the Gillespie Algorithm—deviating from deterministic simulations—but at a
considerably reduced computational cost.

We need to note that the NWT algorithm will run faster than the Gillespie
Algorithm, but will lose from the sensitivity of the simulation with respect to Gille-
spie since it will deviate from the chemical master equation. Its usefulness will be in
being able to simulate larger pathways and even several pathways at the same time
integrating much more reactions in the system. In such a case Gillespie’s algorithm
would be unable to finalize simulations in acceptable time, while the NWT algo-
rithm will be able to provide useful solutions based on discrete mathematics (not
continuous mathematics).

For our next simulations, we assume k1 = 0.1, k2 = 1.0, and k3 = 0.5. The ini-
tial Waiting Times are initialized as W TR1 = 10, W TR2 = 1, and W TR3 = 2.
In Fig. 6.2, we see the accumulation of B and C molecules. The results of the
ODE-based simulation are visibly different than the results of the NWT algorithm.
The reasons for the differences are the nondeterministic decisions on reaction com-
petition for A molecules.
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Fig. 6.2 Results of the memory enhancement simulation for the ordinary differential equations and
the NWT algorithm. a Number of molecules of species B and b number of molecules of species C

In both graphs we see the results of the solution to the system of ordinary differen-
tial equations (straight black line) shown with many runs with the NWT algorithm.
In the two graphs, we have (a) the number of molecules of B and (b) the number of
molecules of C are shown. Molecules of B and C both come from A molecules. How-
ever, the reaction for B is faster than the reaction for C . In the solution to the system
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of ordinary differential equations, a molecule of A can be used to partially satisfy
B and C . Since our NWT algorithm is discrete, the molecules are nondeterministi-
cally chosen to satisfy one or the other—similar to cellular processes. The reaction
changing A into C ‘remembers’ how long it has waited, and uses this information
the next time a molecule of A is ready.

Based on the initialized Waiting Times, the first reaction to be applied is R2.
After R2 is applied, the simulation time is aggregated (t = 1) and there are no
more molecules of A present in the system. Similar to the previous case study, the
Waiting Times for R2 and R1 are both set to infinity (no reactant molecules available).
However, we store the percentage of time waited (Mem) for the slow reaction R1—
in this case, Mem R1 = 90 %. Since R3 is unaffected by the execution of the first
reaction, it now has the minimum waiting time. The next rule to be applied is R3.
The simulation time is adjusted (t = 2), and we now have a new molecule of A.
With our new A molecule available, we must recalculate the Waiting Times for R1
and R2.

Using the Mem R1 , we can recalculate the Waiting Time for reaction R1 and use
the fact that it has already waited 10 % of its Waiting Time. Therefore, when a new
molecule of A is formed 2 s into the run, we recalculate the W TR1 using Eq. 6.11.
In our case, we have W TR1 = 9 and W TR2 = 1.

In a deterministic sense, our algorithm is capable of generating equivalent results
to an ordinary differential equations model (see case 1 above). But, with the nonde-
terminism of our algorithm, the memory enhancement can lead to different results.
Continuing the calculations for the simulation, we skip ahead to a future event
(t = 18). Up until this point, we have been creating molecules of A, and every
single one of them has been deterministically chosen to change into molecule B via
reaction R2. But, at t = 18, a molecule of A has been created, and the Waiting Times
of reaction R1 and R2 are equal W TR1 = W TR2 = 1. The reason for this is that we
have Mem R1 = 10 %. In other words, R1 and R2 are competing to use the same
single molecule of A to form a C and B molecule, resp. The solution to the system
of ordinary differential equations has no issue at this timepoint, because, whereas
our simulator represents molecules of A discretely and has only allowed reaction R2
to occur so far, the differential equations simulation is sending a fraction of each A
to form a fraction of B and C . This is merely a consequence to the way solutions to
systems ordinary systems of differential equations behave.

Our algorithm faces the question: at t = 18 should the A molecule be allowed to
satisfy R1 or R2? The algorithm answers the question by making a nondeterministic
choice between R1 and R2 (step 3 of the NWT algorithm). If R1 is chosen, then it
is applied, and our results stay with the ordinary differential equations results (up
to t = 19). Remember, the ordinary differential equations have been slowly and
continuously aggregating the C molecules throughout to reach one full molecule of
C at time t = 19. However, if R2 is chosen, then our solution diverges from the
previous solution. When the effects of the nondeterministic decisions are aggregated
over 1,000 s (15 runs are shown in the figure), we see the different results obtained
from the NWT algorithm (Fig. 6.2).
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With this example system, we show how reaction memory can affect results.
The memory enhancement is designed to give the NWT algorithm results more like
solutions to ordinary differential equations in a strictly deterministic sense. However,
as a consequence to the reaction memory, we have possible divergence in situations
of very low molecular multiplicity, due to the nondeterministic component of the
NWT algorithm.

6.3 Comparing the NWT Algorithm with the ODE
and Gillespie’s Algorithm

To emphasize the differences between the NWT, the Gillespie Algorithm, and
systems of ordinary differential equations, we will consider two distinct models.
First, we consider the classic Lotka-Volterra (predator-prey) model. Described as a
system of ordinary differential equations, we have

d P1

dt
= P1 ∈ (a − b ∈ P2)

d P2

dt
= −P2 ∈ (c − d ∈ P1) (6.12)

There are two interacting species—a predator population, P2, and a prey popula-
tion P1. Prey species are born at a rate, a, and consumed at a rate, b, while predator
species are born at a rate, d, and die at a rate c. We provide the results for the three
simulation approaches in Fig. 6.3. There are two graphs, predator and prey, for the

Fig. 6.3 Results from Lotka-Volterra model depicting dynamics of a predator species and b prey
species
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results of the NWT, the Gillespie Algorithm, and the system of ordinary differential
equations.

Due to stochasticity, the Gillespie Algorithm will eventually reach zero over a
sufficiently long timeline. For instance, runs 1, 2 and 3 show predator reaching zero
at t = ∼195, t = ∼250, and t = ∼690 (see Fig. 6.3a). The NWT, on the other hand,
generates results comparable to the system of ordinary differential equations—i.e.,
indefinite oscillations between predator and prey. Although the oscillations for the
NWT algorithm appear to be dampened, they eventually settle on a steady oscillat-
ing pattern. The difference between the differential equations and the NWT stems
from molecular integrity. The NWT algorithm only allows predator or prey species
to increase/decrease by integers. Differential equations are continuous, relying on
concentrations instead of multiplicities, which is the reason for the differences in the
amplitude of stable oscillations.

With this first example system, the NWT algorithm mimics the behavior of the
system of ordinary differential equations. We will next illustrate the nondetermin-
ism of the NWT algorithm, deviating from ordinary differential equations. For this
system, we chose a popular circadian rhythm model described in [83]. The system
of ODEs is provided in Eq. 6.13, and results from all three techniques are shown
in Fig. 6.4.
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Fig. 6.4 Results from circadian rhythm model comparing the two nondeterministic approaches
a The NWT algorithm and b the Gillespie Algorithm—with the system of ordinary differential
equations
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d DA

dt
= θA ∈ D∀

A − γA ∈ DA ∈ A

d DR

dt
= θR ∈ D∀

R − γR ∈ DR ∈ A

d D∀
A

dt
= γA ∈ D∀

R ∈ A − θA ∈ D∀
A

d D∀
R

dt
= γR ∈ DR ∈ A − θR ∈ D∀

R

d DMA

dt
= α∀

A ∈ D∀
A + αA ∈ DA − δMa ∈ MA (6.13)

d A

dt
= βA ∈ MA + θA ∈ D∀

A + θR ∈ D∀
R − A ∈ (γA ∈ DA + γR ∈ DR + γC ∈ R + δA)

d MR

dt
= α∀

R ∈ D∀
R + αR ∈ DR − δMR ∈ MR

d R

dt
= βR ∈ MR − γC ∈ A ∈ R + δA ∈ C − δR ∈ R

dC

dt
= γC ∈ A ∈ R − δA ∈ C

where A and R represent the number of activator and repressor proteins, D∀
A and DA

represent the number of activator genes with or without binding to A, D∀
R and DR

represent the number of repressor genes with or without binding to R, MA and
MR represent mRNA molecules of A and R, and C represents the corresponding
inactivated complex formed by A and R.

In Fig. 6.4, we see the similarities between the Gillespie Algorithm and the NWT
technique, exhibiting sustained oscillations for the simulation time. The differential
equations, since they are strictly deterministic, result in one peak followed by a steady
state. With considerably less nondeterministic decisions, the NWT algorithm is able
to produce oscillations. To illustrate this fact, we ran three simulations for a longer
time span (t = 2,000).4 The number of nondeterministic steps required are given in
Table 6.3.

The Gillespie Algorithm requires stochastic decisions at each time step. In con-
trast, the NWT Algorithm makes nondeterministic decisions only when reactions
compete over limited reactants. That is, two or more reactions have the same (min-
imum) WT, but there are not enough molecules in the system to satisfy all of
the potential rules. Less than 0.15 % of the total number of applied rules were

Table 6.3 Total number of
nondeterministic decisions
for time = 2,000

Run Gillespie NWT

1 3071774 5093
2 3029754 5185
3 3103434 5435

4 The reason that only three simulations are provided is the excessive time needed for each Gillespie
run which limited the number of experiments we could perform.
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nondeterministically chosen across all three runs of the NWT algorithm. However,
100 % of the applied rules for Gillespie Algorithm are nondeterministic (for any
number of runs). Interestingly, in spite of the relatively small number of nondeter-
ministic decisions, the NWT algorithm is able to exhibit sufficient biochemical noise
to induce oscillations similar to the Gillespie Algorithm.

6.4 Modeling FAS-Induced Apoptosis

The term apoptosis was coined in the classic work of Kerr, Wyllie and Currie [41].
Within that paper, the authors described apoptosis as a form of cell death distinct
from necrosis, citing a lack of inflammation of the tissue among other differences.
Apoptosis is often used synonomously with programmed cell death, emphasiz-
ing a cell’s inherent genetic predisposition for death. In other words, the cell’s
genome contains the instructions for the cell’s self-destruction. However, we note that
there are other accepted forms of programmed cell death described in the literature
[14, 18, 79]. These types of cell death—for example, aponecrosis—are character-
ized as sharing some of the characteristics of necrosis and/or apoptosis. Essentially,
apoptosis is a clean and effective method for the elimination of unwanted or damaged
cells within the organism. It is sometimes called cellular suicide; the cell receives
a message to die and, based on its biochemical composition at the time the death
message is received, the cell ‘decides’ whether to live or die. Furthermore, there are
additional situations where apoptosis is not a programmed cell death, such as the
case with some cancers and other disorders [27, 50, 56, 58].

Thus, cellular apoptosis is an important process in biological systems. Through-
out the entire lifespan of an organism, death by apoptosis is essential for maintaining
cellular homeostasis. Indeed, in [72], the authors estimate that a typical human being
will produce ten billion cells daily from stem cells to replace the ones dying from
apoptosis. There are some especially vital roles for apoptosis in early embryonic
development. For example, a developing human initially overproduces the cells of
the nervous and immune systems; however, those cells lacking synaptic connec-
tions (neurons) or functional antibodies (B cells and T cells) are subject to death
via apoptosis (reviewed in [58] and [63], respectively). Aside from a critical early
developmental role, apoptosis has also been related to aging effects. For instance,
one theory on aging, involving the oxidative stresses on the mitochondria induced
by harmful free radicals, illustrates age-related apoptotic cell death [28, 65].

The idea that apoptosis is “programmed” into a cell yields the possibility, by
analogy, that we may have the means to reprogram a cell to live or die as needed.
In other words, if a cell has cancer, then we can reprogram it to die. If a cell has a
virus—e.g., the human immunodeficiency virus or the human papillomavirus—then
we can reprogram it to die. In contrast, we may reprogram cells in very close prox-
imity to HIV-infected cells—the so-called bystander cells—to live. These examples
may be over-simplified, but they illustrate the importance of understanding genetic
manipulation on an in silico effort. If we change one gene, we need to be able to pre-
dict the consequences of that change. That is at the heart of computational biology.
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However, we are not ready to begin manipulating genes involved in apoptosis,
because the signaling cascades are too complex. There are too many interacting
elements with multiple responsibilities. The only way to gain a deep understanding
of the molecular interactions involved in apoptotic signaling is through the develop-
ment of extensive computer models.

6.4.1 Apoptotic Signaling Cascades

The study of apoptotic signaling cascades is especially interesting to the fields of
biology and medicine since defects in these pathways have been linked to various
autoimmune disorders [50], neurological disorders [58], and cancers [27, 56]. Indeed,
a recent study [90] implicates Fas-mediated apoptosis in patients with spinal cord
injury. Therefore, understanding the molecular mechanisms underlying the apoptosis
pathways can offer new therapeutic approaches to combating a wide range of diseases
and disorders.

There are two signaling pathways for apoptosis described in the literature: the
extrinsic and the intrinsic (or mitochondrial) pathway. The physiological response
induced by each pathway is the same—DNA fragmentation, degradation of cytoskele-
tal and nuclear proteins, formation of apoptotic bodies, etc. However, albeit the two
pathways have distinct beginnings, the molecular mechanisms in the final steps of the
signaling cascades are the same. The two pathways converge with particular members
of a family of cysteinyl-aspartate-specific proteases, caspases, which are produced
as zymogens—i.e., they require a biochemical change to become active [48].

Depending on the biochemical composition of the cell, these death-inducing stim-
uli can lead to a proteolytic cascade, whereby the inactive proenzyme caspase are
activated and cell death can occur. For instance, Cytotoxic T lymphocytes can send
death-inducing ligands (specifically, the Fas ligand) to cells as a method for fight-
ing disease or viral infection. This is the main method through which the body fits
disease.

For the rest of this section, we concern ourselves with the molecular mechanisms
underlying the Fas-mediated apoptotic signaling cascade—extrinsic and intrinsic
pathways.

6.4.2 Fas-Mediated Apoptosis

In the past decade, there has been a wealth of information discovered on the
Fas-mediated apoptotic pathway. For instance, in [39] they were able to show that
Fas/FasL interactions are required for apoptosis of activated T-cells.

One of the troublesome characteristics of some cancerous cells is the upreg-
ulation of Fas ligand. This so-called counterattack, is a method the tumor cells
can use to delete (by apoptosis) antitumor lymphocytes [59]. There are a variety
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of tumor types—e.g., colon cancer, esophageal cancer, melanoma, astrocytoma—
showing high expression levels of Fas ligand [60].

In order to test the effectiveness of our technique, we decided to simulate the Fas-
mediated signaling cascade, as it was reported in [32]. A graphical representation
of the model can be found in Fig. 6.5. The rules are found in [34]. Next, we will
walk through the Fas-induced apoptotic signaling cascade. The Fas pathway is most
accurately described as two different pathways [75]—type I and type II—sharing
an initial phase and an ending phase but unique in the molecular mechanisms in
between.

Both the type I and type II pathways begin the same way: the Fas ligand (FasL)
binds to a transmembrane receptor, Fas (CD95/APO-1). This receptor is a member
of the tumor necrosis factor-receptor super family—a family consisting of over 30
proteins interacting with 19 different ligands. It is expressed on a variety of cells
including activated T and B cells. The binding of ligand to receptor is known as
receptor cross-linking. When this cross-linking occurs, a conformational change
takes place in the receptor producing the complex Fasc. The crosslinking between
ligand and receptor, along with recruitment of Fas-associated death domain, form the
components of the Death-Inducing Signaling Complex (DISC) [44]. The cytoplasmic
domain of this complex recruits Fas-associated death domain (FADD), with a maxi-
mum of three FADD per binding site (trimer). While FADD is bound to the complex
Fasc, Caspase-8 and FLIP are recruited competitively. Once at least two molecules of
Caspase-8 have been recruited to a binding site, a dimer, Caspas-8P41

2 , is released into

Fig. 6.5 Picture of the Fas-mediated apoptotic signaling cascade. Both the type I and type II
pathways are illustrated
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the cytoplasm, where it can then be phosphorylated into active form (Caspase-8*).
The binding of FLIP to the Fasc complex is considered to be an inhibitor of apoptosis,
because it decreases the number of sites available for Caspase-8 recruitment.

Unless sufficiently inhibited, the signaling cascade can continue in two different
ways—the type I or type II pathway. If the initial concentration of Caspase-8 is large
enough, Caspase-3 will be directly phosphorylated by the Caspase-8* (the type I
pathway). Otherwise, Caspase-8* can truncate molecules of Bid (tBid). Each tBid
molecule binds with two Bax molecules, which leads to the release of Cytochrome
c from the mitochondria (type II pathway). Once released, Cytochrome c binds to
Apaf and ATP, forming a complex that can recruit and phosphorylate Caspase-9
(Caspase-9*). The active Caspase-9* molecules can continue the cascade by direct
phosphorylation of Caspase-3. We consider the activation of Caspase-3 to be the end
of the signaling cascade. Hence, from our perspective, the cell is dead once all of the
Caspase-3 molecules are activated.

Besides FLIP, there are other inhibiting factors at play: Bcl-2 hinders the release
of Cytochrome c from the mitochondria and XIAP blocks Caspase-9* from binding
with Caspase-3. In other words, if sufficient levels of FLIP, Bcl-2, and/or XIAP exist,
the apoptotic pathway can be blocked, and the cell lives.

6.4.3 Results of Discrete Method

We modeled the pathway described above using 101 different rules working on 53
distinct proteins and protein complexes. Fei Hua et al., in [32], provided the results
for the system of ordinary differential equations, as well as some experimental data
(from the Jurkat cell line) which they used to fit their model. We compared our results
with the results from [32], simulating the same 101 rules and same initial conditions
as the system of ordinary differential equations.

Similar to [32], we simulated three different initial concentrations for Bcl-2: the
baseline value (75 nMs), an increase by 10-fold (750 nMs), and an increase by 100-
fold (7,500 nMs). Assuming a cell volume of 10−12 l we converted the concentrations
into molecular multiplicities: baseline value (45,166 molecules), 10-fold (451,660
molecules), and 100-fold (4,516,606 molecules). We expected to see a decline in
Caspase-3 activation as Bcl-2 concentration was increased by 10-fold and 100-fold;
we provide the results of our simulations in (Fig. 6.6). We also provide the results of
simulations with a decrease of 10-fold and 100-fold in comparison to the baseline Bcl-
2 multiplicity (Fig. 6.7). Notice, the graph based on the NWT algorithm is comparable
to the ODE-based results from [32].
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Fig. 6.6 The decline of full length Caspase-3 for different concentrations of Bcl-2: (i) baseline,
(ii) 10-fold increase, and (iii) 100-fold increase. a The results of the solution to the system of
ordinary differential equations and b the results of the NWT algorithm

Fig. 6.7 The decline of full length Caspase-3 for decreased concentrations of Bcl-2: (i) 10-fold
and (iii) 100-fold. a The results of the solution to the system of ordinary differential equations and
b the results of the NWT algorithm

6.4.4 Bcl-2’s Effects on the Type II Pathway

Next, we analyzed the Caspase-3 activation kinetics by considering the different
mechanisms through which it has been suggested that Bcl-2 blocks the type II path-
way. In [8], [62], and [85] the authors suggested that Bcl-2 might bind with (a) Bax,
(b) Bid, (c) tBid, or (d) both Bax and tBid to block the mitochondrial pathway. We
implemented four different sets of rules to test each Bcl-2 binding mechanisms. We
refer the interested reader to [34] for the details of the rules.

The dynamics of Caspase-3 activation were studied by increasing the baseline Bcl-
2 concentration by 10-fold and 100-fold. The conclusion of [32] is that Bcl-2 binding
to both Bax and tBid (d) is the most efficient mechanism for inhibiting apoptosis.
Our Membrane System agrees with the observations from [32]. The results of (d) are
illustrated in Fig. 6.6, and (a)–(c) can be seen in Figs. 6.8, 6.9, 6.10. A comparison
of (a)–(d) at baseline Bcl-2 concentration is shown in Fig. 6.11.



6 Biochemical Networks Discrete Modeling Inspired by Membrane Systems 199

Fig. 6.8 The effects of Bcl-2 binding to Bax only. a The results of the solution to the system of
ordinary differential equations and b the results of the NWT algorithm

Fig. 6.9 The effects of Bcl-2 binding to tBid only. a The results of the solution to the system of
ordinary differential equations and b the results of the NWT algorithm

Fig. 6.10 The effects of Bcl-2 is binding to Bid only. a The results of the solution to the system of
ordinary differential equations and b the results of the NWT algorithm
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Fig. 6.11 The results of baseline Bcl-2 concentration with each of the four mechanisms for Bcl-2
inhibition (binding with Bax only, Bid only, tBid only, or Bax and tBid). a The results of the solution
to the system of ordinary differential equations and b the results of the NWT algorithm

6.4.5 Modeling the Behavior of the Type I Pathway

Some cells are not sensitive to Bcl-2 over expression, as described in [75]. In these
cells, Caspase-3 is activated through the type I pathway, bypassing the role of the
mitochondria and Bcl-2. Scaffidi et al. have suggested in [75] that the type of pathway
is chosen based on the concentration of Caspase-8 generated in active form following
the binding of Fas ligand to its receptor site. High concentration of active Caspase-8
allows for direct activation of Caspase-3 (type I), but if the concentration of Caspase-8
is sufficiently low, amplification of the death signal through the mitochondria is
required to induce cell death (type II). We tested this hypothesis by increasing the
initial concentration of Caspase-8 by 20-fold (from 33.33nMs to 666.6nMs), which
was expected to lead to increased active Caspase-8* throughout the simulation run.

We ran two different versions of the increased Caspase-8 model, using the baseline
concentration of Bcl-2 and an increase of Bcl-2 by 100-fold, in order to gauge the
sensitivity of the type I pathway to Bcl-2 upregulation. Fig. 6.12 shows that Caspase-3
activation was not sensitive to the increase in Bcl-2 concentration, which is the
hallmark for type I pathway dominant behavior.5

Our Membrane System has yielded results comparable to the solutions to the
system of ordinary differential equations. The six distinct simulations show similar
apoptotic behavior to the deterministic results (Fig. 6.6 through Fig. 6.12). However,
albeit the activation of Caspase-3 is similar between the two techniques, the molecular
interactions throughout are different. We have compared the results of our simulator
with the experimental results in [32], the deterministic results from the same paper,
and the stochastic approach described in [9]. The Caspase-3 results are as expected,
but the activation of Caspase-8 raises our interest. See Fig. 6.13 for a comparison
between the techniques.

The experimental data and deterministic results were obtained from Fei Hua et al.
We see that the decrease of full length Caspase-3 is similar in all three simulation

5 For these simulations Bcl-2 was allowed to bind to both Bax and tBid, which was shown above
to be the most efficient mechanism for Bcl-2 inhibition of apoptosis.
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Fig. 6.12 Investigation of the effects of Bcl-2 increase (100-fold) for the type I pathway. a The
results of the solution to the system of ordinary differential equations and b the results of the NWT
algorithm

results. Interestingly, the decline of full length Caspase-8 is less prominent in the two
Membrane System simulations. The contrast could be the result of the discrete nature
of the Membrane Systems. As for both results being different than the experimental
data, we believe that further investigation of kinetic rates of the reactions will allow
for better agreement between simulation and experimentation.

6.4.6 Summary for the FAS Simulation

We have chosen to simulate Fas-induced apoptosis because it has one of the most
detailed descriptions/characterization in the literature (due in large part to its role in
cancer and HIV research). In the interest of comparing our Membrane System with the
solutions to the system of ordinary differential equations, we have implemented 101
different rules working on 53 distinct proteins and protein complexes. The pathway
begins with the stimulation of FASL and ends with the activation of the effector
Caspase-3. Fei Hua et al., in [32], provide the determinstic results, as well as some
experimental data (from the Jurkat cell line), which they used to fit their model.

The consistency between the framework and the experimental results of [32]
validates our model. Our NWT algorithm shows that Membrane Systems are an
alternative to ordinary differential equations methods. We have argued that the dis-
crete nature of our technique might be better for simulating the evolution of systems
involving low numbers of molecules.

In Sect. 6.5, we will build on the rules for Fas-mediated apoptosis discuss in this
section. There are a few proteins encoded in the HIV genome, which seem to have
severe consequences on Fas-induced apoptosis [76]. The so-called ‘latently’ infected
T cells are especially interesting in the potential strategies for the eradication of the
AIDS epidemic [26].
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Fig. 6.13 Results of the three simulation techniques and experimental data provided by [32],
showing decline of a full length Caspase-3 and b full length Caspase-8
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6.5 HIV-1 Effects on the FAS Pathway

In Sect. 6.5 we will explore the qualities of the human immunodeficiency virus (HIV)
which help it remain remarkably difficult to cure. Our goal is to model the effects of
HIV-1 proteins on the Fas-induced apoptotic pathway. This is the first effort of its
kind, and we believe it will provide further insight into HIV research and modeling.

The virus has several remarkable qualities: (1) it predominantly infects the cells of
the immune system; (2) it shows a high genetic variation throughout the infection
in a single individual due to the high error rate in the reverse transcription; (3) it
induces apoptosis in the so-called bystander immune cells; and (4) normal immune
system function can cause some HIV-infected T cells to become latent, entering a
reversibly nonproductive state of infection. Since the latent cells are transcriptionally
silent, they are virtually indistinguishable from the uninfected cells. Also, the number
of latently infected cells is relatively small, which makes the experimental study of
these cells difficult – current technology in biochemistry requires large numbers
of the molecules/cells to be studied. It is widely believed that the latently infected
CD4+ T cells represent the last barrier to an HIV cure. This Sect. 6.5 is based on
our publication in WMC09, presenting a first modeling effort for the Fas-mediated
apoptosis (or programmed cell death) of latently infected T cells [36].

We will focus on the apoptotic modeling (quality 3 for viruses as given above),
since it is the avenue through which the virus destroys the effectiveness of the host’s
immune system. We will base our model on the work described in Sect. 6.4, using the
Nondeterministic Waiting Time algorithm discussed in Sect. 6.2.1. Furthermore, in
order to make the modeling effort easier and due to the high genetic variability (reason
2) of the viral genome, we will combine several similar processes together into single
reactions. The kinetic constants for the new reactions, modeling the biochemical
interactions involving viral proteins with the host cell, will be obtained by fitting
the model to reported experiments on the infected, non-latent cells. Finally, we will
simulate the reactivation of latently infect T cells by making some adjustments to
the appropriate initial conditions of the system.

6.5.1 A Brief History of HIV

HIV, which is responsible for the onset of acquired immune deficiency syndrome
(AIDS), has lead to more deaths than nearly any other virus in human history. Indeed,
AIDS is called a global pandemic by the World Health Organization (WHO), and
is “undoubtedly the definining public-health crisis of our time” [78]. According to
statistics from the WHO, there were 33.2 million people living with HIV in 2007,
2.5 million newly infected individuals, and 2.1 million AIDS deaths [95].

When AIDS was first labeled as a diseases in 1981, there was an initial debate over
what was causing the immune syndrome. It was suggested that a retrovirus could
be the cause. However, retroviruses were a relatively new field of study and only a
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few had yet been identified. Two labs, Gallo’s in the United States and Montagnier’s
in France, are both credited with the discovery of HIV [2, 52]. Although political
tensions surrounded the discovery, the two groups essentially agree that it was a
combined effort to discover the virus behind AIDS.

There are two important qualities of HIV which makes it difficult to find a cure:
(a) a high genetic variability and (b) an ability to go silent (so-called HIV latency).

One of the reasons the cure for HIV remains elusive is the high genetic variability
of the virus. There are two strains of HIV: type 1 and type 2. HIV-1 is the virus whose
discovery was discussed above. HIV-2 was specifically isolated [12] in West Africa
in 1986. Unlike HIV-1, the type 2 strain remains confined to West Africa [74]. Since
HIV-1 is more virulent and transmissive [74], the disussion and modeling efforts of
this section will be concerned with the type 1 variant.

HIV-1 can be broken down into multiple subtypes. Infected individuals are sus-
ceptible to co-infections and superinfections [78]; this can lead to new recombinant
forms of the virus. For instance, in Southeast Asia an estimated twenty percent of
infections come from recombinant forms [78]. Lack of immunization and continuous
evolution of the viral genome makes vaccine development a considerable challenge.
The modeling community must remain aware of the different subtypes, to avoid ill-fit
models based on these genetically distinct subtypes, resulting in poor approximation
of reality.

6.5.2 AIDS Pathogenesis

The pathogenesis of AIDS is attributed to the depletion of the host’s CD4+ T cells,
the loss of which results in a dysfunctional immune system. Finkel and colleagues
in [15] concluded that HIV-1 infection causes death predominantly in the so-called
bystander T cells. These healthy, uninfected cells are marked for destruction by the
neighboring HIV-1-infected cells. The mechanism of the bystander cell death was
shown to be apoptosis. Proteins encoded by the HIV-1 genome exhibit anti- and pro-
apoptotic behavior on infected and bystander cells, enhancing or inhibiting a cell’s
ability to undergo apoptosis.

There are numerous drugs available for limiting the impact of HIV-1 on the
immune system; the most successful approach, highly active anti-retroviral therapy
(HAART), is a combination of several types of drugs, targeting different mechanisms
of HIV-1 infection and proliferation. Although HAART has proven to be effective in
the reduction or elimination of viremia [66], it is ineffective in the complete eradi-
cation of the viral infection. The HIV-1 infection is able to persist in a dormant state
throughout the entire time a patience is on HAART. The way this is accomplished is
one of the most remarkable qualities of HIV—i.e., latency.

Latent reservoirs of HIV-1 have been detected in HIV-1-infected patients [10,
11]. Latently infected cells are relatively rare—about 1 in 106 resting T cells [11].
However, they are considered to be the largest obstacle in combating HIV-1 infection
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[16, 77, 80]. Understanding the mechanisms behind HIV-1 latency is a focal point
for current AIDS-related research (for a recent review on latency see [26]).

There are two types of latency described in the literature. The first, preintegration
latency, refers to resting T cells containing unintegrated HIV-1 DNA. If a T cell is
in a resting state, the HIV-1 DNA is not able to quickly integrate into the host’s viral
genome. Since the unintegrated HIV-1 DNA is labile and reverse transcription of
HIV-1 RNA is slow (on the order of days) [67, 91, 92, 94], it is believed that patients
with reduced viremia after several months of HAART therapy do not have resting T
cells with unintegrated HIV-1 DNA [5]. Hence, we will not concern ourselves with
modeling preintegration latency. We will instead discuss the second form of latency –
postintegration latency. It is this alternative form of latency which will be the focus
of the rest of the section.

Postintegration latency refers to resting T cells with stably integrated HIV-1 DNA.
These cells can provide a reservoir for viral reproduction for years [16]. The cells
exist as a natural consequence to normal healthy immune function. When the body
is invaded by an organism, T cells are activated to destroy the invading pathogen.
Once the pathogen is destroyed, many of the T cells commit apoptosis or else they
would persist in killing other cells at the inevitable detriment of the host organism.
However, a few of these active T cells return to a quiescent state. This return to a
nonactive status is the basis for so-called memory T cells.

When an activated HIV-1-infected T cell turns into a memory T cell, this is very
troublesome for the infected individual. The individual now has a T cell which is
virtually indistinguishable from all of the other resting T cells, and yet it is infected
with the HIV-1 genome. The cell can persist almost indefinitely in this state. Hence,
when the individual goes off HAART and the resting HIV-1-infected T cell is reac-
tivated, viraemia is quickly restored and the individual will succumb to AIDS.

It is because of their long lifespan and ability to restore viraemia that we have
chosen to model the reactivation of a postintegration latently infected CD4+ T cell.
We chose to model the Fas-induced apoptosis of these cells because the effects are
well characterized in the literature and no one has made an attempt to do so before.

As far as we know, this paper reports the first attempt at modeling the Fas-mediated
apoptotic signaling pathway in reactivated latently infected CD4+ T cells. We will
draw upon the system we laid out in Sect. 6.4, which is based on information for the
Jurkat T cell line from [32] (and references therein). We have extended the model
from Sect. 6.4 in order to better understand the reactivation of latently infected T cells.

6.5.3 HIV-1 Infection

There is still some debate about the effects of HIV-1 proteins on cellular signal-
ing networks; however, we have pooled the collective knowledge of the biological
community in order to categorize and model the described functions of various HIV
proteins. For an illustration of the Fas pathway and the involvement of the HIV pro-
teins we refer the reader to Fig. 6.14. We will explain the inspiration for the model
below.
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Fig. 6.14 A picture of the model for HIV-1 protein effects on Fas signaling. The activation of
Caspase 3 is the end of the signaling cascade—irrevocably leads to cell death. The type I pathway
involves direct activation of Caspase 3 by Caspase 8*. The type II pathway requires signal ampli-
fication by way of the mitochondria, resulting in the activation of Caspase 3 by Caspase 9*. The
HIV-1 Tat protein upregulates inactive Caspase 8 and Bcl-2, but it can also downregulate Bcl-2.
Vpr upregulates Bcl-2 and downregulates Bax. HIV Protease can cleave Bcl-2 into an inactive form
and it can also cleave Caspase 8 into active Caspase 8. Finally, Nef protein upregulates Fas ligand
and Fas receptor

The mechanisms behind HIV-1 infection of CD4+ T cells are well understood.
A spike on the virus, the gp120 envelope glycoprotein, binds to the CD4 receptor of
the target cell and, in conjunction with subsequent binding to a coreceptor (CCR5
or CXCR4), a path is opened for the virus to inject its contents into the cell [7, 88].
Reverse transcriptase creates cDNA from the HIV-1 RNA and the genome of the
virus is implanted into the cell’s own DNA for future production. During this time,
the immune system fails to detect and destroy the infected cell.



6 Biochemical Networks Discrete Modeling Inspired by Membrane Systems 207

Upon infection, the contents of the virion (e.g., Vpr, HIV protease (HIVpr ),
reverse transcriptase (RT), and HIV RNA (HIVRN A)) are released into the cyto-
plasm [6]. In the newly infected and active CD4+ T cells, the HIVRN A is converted
to cDNA (HIVcDN A) by the reverse transcriptase about five hours post-infection [42].
The HIVcDN A is then integrated into the host’s genome with the help of the viral
integrase approximately one hour later [17]. We will formalize these rules as we
discuss the inspiration from the literature behind their creation. For our convenience,
we have labeled the integrated HIV genome as H I VLT R in our rules. H I VLT R is
the basis for interactions involving the HIV long terminal repeat; in our model, it is
a necessary component for all reactions pertaining to HIV-1 protein production.

After integration of the viral DNA, gene expression of HIV proteins becomes
possible. The nuclear factor of activated T cells (NFAT) and NF-κB have been shown
to play important roles in HIV gene expression [43, 54]. In a resting CD4+ T
cell, NF-κB is sequestered in the cytoplasm by its inhibitor, IκB. Following cellular
activation, NF-κB is released by its inhibitor, which allows it to relocate to the
nucleus where it can bind to the HIVLT R . Also following T cell activation, NFAT,
located in the cytoplasm of resting CD4+ T cells, undergoes dephosphorylation and
translocation to the nucleus where it can bind to the HIVLT R [43]. Once NF-κB and
NFAT are translocated to the nucleus, they can bind to the HIVLT R , combining their
efforts to synergistically enhance the promoter activity. Moreover, [43] shows that
the combined effects of Tat, NF-κB and NFAT is much stronger than the pairings
of Tat and NF-κB or Tat and NFAT. In our model, we have combined the roles of
NF-κB and NFAT. The translocation and binding rules for NFAT (and NF-κB) are
shown in Table 6.5.

Multiply spliced (MS) HIV-1 mRNAs—responsible for Tat/Rev protein creation—
are detectable in resting CD4+ T cells [47]. However, due to the inefficient export
of the mRNA transcripts to the cytosol, Tat and Rev proteins are undetectable in the
latent cells. Activation of these latent cells leads to production of Tat and Rev, and
subsequent upregulation of all HIV-1 proteins. In order for the infected cells to create
HIV proteins other than Tat and Rev, the transcriptional elongation induced by Tat
and the efficient nuclear export of MS HIV-1 RNAs by Rev are required. Our latent
cell model, beginning with cellular activation, initially allows for inefficient creation
of Tat proteins. We chose not to model Rev, since it has no known Fas apoptotic
function; its exporting functions are incorporated into the kinetic constants govern-
ing mRNA translocation. Once Tat is located in the nucleus, it requires the help of
two other proteins provided by the host cell: CyclinT1 and CDK9.

In an inactivated cell, CyclinT1 and CDK9 are sequestered in the cytoplasm [55].
Upon T cell activation, they are relocated to the nucleus. CyclinT1 and CDK9 com-
bine to make up the positive-acting transcription elongation factor (P-TEFb) com-
plex. The binding of P-TEFb and Tat at the HIVLT R allows the hyperphosphorylation
of RNA polymerase II (RNAPII), resulting in increased transcriptional elongation.
The translocation and binding rules for CyclinT1, CDK9 and Tat are formalized
in Table 6.5. The transcription, translocation, and translation rules involving HIV-1
mRNA molecules are also summarized in Table 6.6.
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6.5.4 HIV-1-Related Effects on the Fas Pathway

Aside from its role in transcriptional elongation, the Tat protein is responsible for
both pro- and anti-apoptotic behavior. In [4], the authors demonstrated that increased
Tat expression causes upregulation of inactive Caspase-8, which is a pro-apoptotic
molecule. Also, Tat has been associated with the downregulation of Bcl-2 [76], which
is an anti-apoptotic molecule. Given the pro- and anti-apoptotic duties of Caspase-
8 and Bcl-2, respectively, it would appear that a cell with high levels of Tat has
increased susceptibility to apoptosis. Conversely, [15] claims that Tat upregulates
Bcl-2, resulting in decreased apoptotic rates of cells. Tat has also been implicated in
the upregulation of Fas ligand on the cell surface [4, 89], which may effect the cell
through autocrine signaling. The anti- and pro-apoptotic rules for Tat are found in
Table 6.7.

The HIV-1 Vpr has been shown to both enhance and inhibit the Fas signaling
cascade. Upon infection, the ∼700 molecules of Vpr in the virion are injected into
the cytoplasm of the cell [6]. At low levels, Vpr has been shown to prohibit apoptosis
by upregulating Bcl-2 and downregulating Bax [13]. However, higher concentrations
of Vpr affect the mitochondrial membrane permeability via interactions with the
permeability transition pore complex (PTPC), resulting in the release of Cytochrome
c into the cytoplasm [38]. In the same paper, the authors also demonstrated that Bcl-2
can inhibit the effects of Vpr on the PTPC. The various apoptotic roles of Vpr we
define in Table 6.8.

Another protein packaged in HIV-1 virions, HIVpr , plays an important role in the
Fas pathway. The HIVpr has been shown to cleave Bcl-2 into a deactivated state [81],
while it also cleaves Caspase-8 [57] into active form. Both rules are pro-apoptotic
and are in Table 6.9.

Finally, we define two pro-apoptotic rules for the Nef protein. Zauli et al. dis-
covered in [93] that Nef can play a role in cell death by upregulating Fas receptor
and Fas ligand on the cell surface. Upregulating the receptor sites of Fas on the cell
surface prepares the cell for ligand binding, and can initiate the Fas-induced apop-
totic signaling cascade. The upregulation of Fas ligand may protect the infected cell
from cytotoxic T cells, or it could be part of autocrinic signaling. The three rules for
upregulation and translocation of Fas and Fas ligand are in Table 6.10.

6.5.5 Modeling Results

We added all of the rules from Tables 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 to the Fas model
described in Sect. 6.4—interested reader should also consult [34] for the complete
list. From this, we are able to simulate two types of cells: nonlatent and latent.
The differences between the two models are the initial protein multiplicities. The
nonlatent cell is an activated T cell which has just been infected with the contents
of the HIV-1 virion. The HIV-1 RNA and other viral proteins are in the cytoplasm.
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Table 6.4 Reactions
involving translocation of the
HIV genome and integration
into the host’s genome

Reaction Reaction rate

1: HIVRN A + RT ≥ HIVcDN A + RT k21

2: HIVcDN A ≥ HIVcDN A (nuclear import) k22

3: HIVcDN A ≥ HIVLT R k22

Table 6.5 Reactions involving HIV long terminal repeat (LTR) and HIV mRNA production

Reaction Reaction Rate

4: NFAT ≥ NFAT (nuclear import) k23

5: CDK9 ≥ CDK9 (nuclear import) k24

6: CyclinT1 + CDK9 ≥ PTEFb k25

7: NFAT + HIVLT R ≥ HIVLT R :NFAT k26

8: HIVLT R :NFAT + Tat ≥ HIVLT R :NFAT:Tat k27

9: HIVLT R :NFAT:Tat + PTEFb ≥ HIVLT R :NFAT:Tat:PTEFb k28

10: HIVLT R ≥ HIVLT R + mRNAT at k29

11: HIVLT R ≥ HIVLT R + mRNAV pr k29

12: HIVLT R ≥ HIVLT R + mRNAH I Vpr k29

13: HIVLT R ≥ HIVLT R + mRNANef k29

14: HIVLT R :NFAT ≥ HIVLT R :NFAT + mRNAT at k30

15: HIVLT R :NFAT ≥ HIVLT R :NFAT + mRNAV pr k30

16: HIVLT R :NFAT ≥ HIVLT R :NFAT + mRNAH I Vpr k30

17: HIVLT R :NFAT ≥ HIVLT R :NFAT + mRNANef k30

18: HIVLT R :NFAT:Tat ≥ HIVLT R :NFAT:Tat + mRNAT at k31

19: HIVLT R :NFAT:Tat ≥ HIVLT R :NFAT:Tat + mRNAV pr k31

20: HIVLT R :NFAT:Tat ≥ HIVLT R :NFAT:Tat + mRNAH I Vpr k31

21: HIVLT R :NFAT:Tat ≥ HIVLT R :NFAT:Tat + mRNANef k31

22: HIVLT R :NFAT:Tat:PTEFb ≥
HIVLT R :NFAT:Tat:PTEFb + mRNAT at k32

23: HIVLT R :NFAT:Tat:PTEFb ≥
HIVLT R :NFAT:Tat:PTEFb + mRNAV pr k32

24: HIVLT R :NFAT:Tat:PTEFb ≥
HIVLT R :NFAT:Tat:PTEFb + mRNAH I Vpr k32

25: HIVLT R :NFAT:Tat:PTEFb ≥
HIVLT R :NFAT:Tat:PTEFb + mRNANef k32

The HIV-1 RNA must be incorporated into the host’s genome before the viral protein
production can begin. The latent model is a newly activated T cell with no HIV-1
proteins present. However, the HIV-1 genome is already integrated into the host’s
DNA.

As we have discussed earlier, the nonlatent cell is used for the model fitting,
since the majority of information about HIV-1 proteins pertains to these types of
cells. The reason for this lies in the fact that latent cells are transciptionally silent
(virtually undetectable) and relatively rare. For instance, in Fig. 6.15a, the results
from the nonlatent simulation show the activity of Tat in that full length (inactive)
Caspase-8 increases by a factor of three. Our simulation agrees with the observations
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Table 6.6 Translation and degradation rules for HIV mRNA

Reaction Reaction Rate

26: mRNAT at ≥ mRNAT at (nuclear export) k33

27: mRNANef ≥ mRNANef (nuclear export) k33

28: mRNAV pr ≥ mRNAV pr (nuclear export) k33

29: mRNAH I Vpr ≥ mRNAH I Vpr (nuclear export) k33

30: mRNAT at ≥ mRNAT at + Tat k34

31: mRNANef ≥ mRNANef + Nef k34

32: mRNAV pr ≥ mRNAV pr + Vpr k34

33: mRNAH I Vpr ≥ mRNAH I Vpr + HIVpr k34

34: mRNAT at ≥ degraded k35

35: mRNANef ≥ degraded k35

36: mRNAV pr ≥ degraded k35

37: mRNAH I Vpr ≥ degraded k35

Table 6.7 Reactions
involving Tat protein

Reaction Reaction Rate

38: Tat � Tat (nuclear import/export) k36 f , k35r

39: Tat ≥ Tat + Casp8 k37

40: Tat ≥ Tat + Bcl2 k38

41: Tat ≥ FasL + Tat k39

42: Tat + Bcl2 ≥ Tat k40

Table 6.8 Reactions
involving Vpr protein

Reaction Reaction
Rate

43: Vpr + Bax ≥ Vpr k42

44: Vpr + Bcl2 ≥ Vpr:Bcl2 k43

45: Vpr:Bcl2 ≥ Vpr + Bcl2 k44

46: Vpr + PTPC ≥ Vpr:PTPC k45

47: Vpr:PTPC + Cyto.c ≥ Cyto.c∈+ Vpr:PTPC k46

Table 6.9 Reactions
involving HIV protein

Reaction Reaction Rate

48: HIVpr + Casp8 ≥ HIVpr + Casp8∈ k47

49: HIVpr + Bcl2 ≥ HIVpr k48

of [4]. Also, in Fig. 6.15b, our model shows Vpr-induced upregulation of Bcl-2 and
downregulation of Bax by 30 and 20 %, resp. Our results agree with the experimental
results on Vpr described in [13].

We will next consider the activation of Caspase-3. In Fig. 6.16, both the nonla-
tent and latent models are shown to exhibit the onset of apoptosis—total activation
of Caspase-3—after approximately two days. Our results indicate that reactivated
latently infected CD4+ T cells activate all of the Caspase-3 molecules earlier than
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Table 6.10 Reactions
involving Nef protein

Reaction Reaction Rate

50: Nef ≥ Nef + Fas k49

51: Nef ≥ Nef + FasL k50

52: FasL ≥ FasL (to cell surface) k51
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Fig. 6.15 a Tat Protein Upregulates Caspase-8 levels by three-fold. b Vpr upregulates Bcl-2 and
downregulates Bax by 30 and 20 %, resp

the nonlatent model. Also, in Fig. 6.16, we show the truncation of Bid, which is a
necessary step in the induction of the type II pathway. Active Caspase-8 is responsi-
ble for the truncation of Bid, so we are seeing the downstream effects of Caspase-8
activation.

Next, let us consider the mechanisms behind Caspase-3 activation in the latent
and nonlatent models. According to the rules in Appendix A, an interaction between
full length Caspase-3 and active Caspase-8 or Caspase-9 can have two outcomes: the
activation of Caspase-3 or not. Both of our models show cooperation between the
two pathways, which is not explicitly stated in the literature. The nonlatent results
(Fig. 6.17) show the first interactions between Caspase-3 and Caspase-8* molecules
occur just after 18 h into the run. It isn’t until ∼10 h later (26 h into the run) that
we begin to see Caspase-3 interactions with Caspase-9*, after signal amplification
through the mitochondria. As discussed in [32, 35], given a sufficiently high initial
concentration of Caspase-8 in the cell, signal amplification is not necessary to induce
apoptosis. For this model, we set the initial level of Caspase-8 to be insufficient for
apoptosis by the type I pathway.

The results of the latent simulation are similar to the nonlatent, where both path-
ways appear to govern Caspase-3 activation. In the latent run (Fig. 6.18), we see
type I interactions first occur about 12 h into the simulation, while type II molecular
binding occurs after 21 h.

Although Figs. 6.17b and 6.18b imply type I interactions occur more frequently
than type II, it must be noted that, due to the kinetics governing these binding
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Fig. 6.16 a Total reduction of full length Caspase-3 is seen after ∼40 h in the latent model, whereas
the nonlatent model takes ∼47 h. b The decline of Bid through interactions with Caspase-8, leading
to a rise in tBid
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Fig. 6.17 Interactions involved in the type I and type II pathways for the latent simulation.
a The results for the three days of simulation and b An excerpt of one minute from the three
day simulation (from 32 to 32 h and 1 min)
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Fig. 6.18 Interactions involved in the type I and type II pathways for the nonlatent simulation.
a The results for the three days of simulation and b An excerpt of one minute from the three day
simulation (from 32 to 32 h and 1 min)

rules, Caspase-8* can remain bound to Caspase-3 for a longer period of time than
Caspase-9*. Therefore, although it seems that Caspase-8* binds to Caspase-3 more
frequently, the reactions are merely slower. In fact, both models exhibit more inter-
actions between Caspase-9* and Caspase-3.

6.5.6 Summary for Simulating HIV Latency

Based on the biological evidence in the literature, we constructed a model for the
effects of HIV-1 proteins on the Fas-mediated apoptosis pathway. This work is the
first of its kind, simulating Fas-induced apoptosis in reactivated latently infected
CD4+ T cells. We have provided some preliminary results in an effort to understand
CD4+ T cell latency. Interestingly, our results show a cooperation between the type
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I and type II pathways. We have not been able to verify an explanation for this in the
available literature.

Finally, we would like to note that the experimental information on the latent HIV-
1-infected CD4+ T cells is scarce, due to the fact that these cells are found in such
small numbers in vivo. Therefore, our model relies heavily on applying the knowledge
of activated HIV-1-infected CD4+ T cells. We look forward to new experimental
results about these enigmatic cells, which we will use to refine the model.

6.6 Conclusions and Final Remarks

Using our NWT algorithm, we have shown results for modeling some popular
networks—e.g., the Lotka-Volterra predator-prey model and a circadian rhythm
model. With these two models, we have shown our algorithm can exhibit Gillespie-
like results with the latter, while NWT simulations of the former model show simi-
larities to the results of the solution to the system of ordinary differential equations.
However, the computational load of the nondeterminstic decisions in our NWT algo-
rithm is far less than the Gillespie Algorithm, as is the case in the noise-induced
oscillations for the circadian rhythm model.

We have used our NWT algorithm to explore Fas-induced apoptosis. We started by
simulating a model developed by the Lauffenberger lab at M.I.T. [32]. Our simulator
is capable of showing comparable results to the solution of the system of ordinary
differential equations from that group. However, when compared with the experi-
mental results, we did notice some differences between our discrete, nondeterminstic
technique, the ordinary differential equations, and experimental results provided by
the M.I.T. lab. Activation of Caspase 3 was very close, but Caspase 8 was a bit differ-
ent. In other words, the end of the signaling cascade occured at the same time, but a
critical earlier component showed different activity. We concluded that this was due
to the discrete nature of our simulation.

After an extensive literature review, we were able to extend the Fas model of
[32] to incorporate HIV-1 activity. This was the first attempt someone has made in
modeling Fas-induced apoptosis in HIV-1-infected cells. We made a special effort to
model the so-called latently infected T cells, which are considered the last barrier in
the eradication of HIV-1-infection. There are some interesting directions to go with
this research.

6.6.1 Extensions on the HIV Model

There are several avenues to explore in extending the HIV model from Sect. 6.5.
For instance, we would like to model the effects of HIV-1 proteins on bystander
cell apoptosis. As mentioned in the introduction, HIV-1 appears to primarily kill
uninfected bystander T cells [15]. Various mechanisms have been reported for the
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Fig. 6.19 The effects of an HIV-1-infected T cell on its neighboring healthy, bystander cells

destruction of the bystander cells. Along with Fas-induced apoptosis, other possible
mechanisms for bystander cell death are reviewed in [76]. Upon being exocytosed
by an infected cell, several of the proteins encoded in HIV-1 can exhibit destructive
qualities when interacting with neighboring bystander cells—either on the surface
or through endocytosis. In Fig. 6.19, we see a proposed model for bystander cell
apoptosis.

There are a few HIV-1 proteins we have ignored in this model, because they
affect T cells in ways not within the scope of our current efforts. For example,
soluble and membrane-bound Env can bind to the CD4 receptor of bystander cells.
It was shown that ligation of the CD4 receptor by Env, is sufficient to increase
apoptosis in bystander cells. The reasons for the increased apoptotic rates following
Env-CD4 binding can be attributed to Bcl-2 down-regulation [30], increased Caspase
8 activation [1], and upregulation of Fas [64], FasL and Bax [76].

Modeling a cluster of cells would be a possible extension of this model. Using
MPI, we can have each node of a cluster model a distinct cell. One (or more) of the
nodes can be an HIV-1-infected cell, while many of the nodes can represent bystander
cells. We can simulate the effects of the HIV-infected cell on the healthy, bystander
cells. Besides HIV-1-related effects on the Fas-mediated apoptotic pathway, there
are other directions to go with Fas modeling.
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6.6.2 Calcium’s Role in Apoptosis

In recent years, calcium’s role in apoptosis has received increased attention. For a
recent review, we refer the reader to [70]. It seems that calcium is capable of exhibiting
both pro- and anti-apoptotic characteristics. While a large portion of the literature
illustrates calcium’s role in the intrinsic (sometimes referred to as the mitochondrial)
pathway, there is also evidence showing its role in the extrinsic pathway.

We propose an exploration into the role of calcium as an apoptotic signaling
molecule. The effort will combine experimental and computational techniques to
derive new kinetic rates and extrapolate apoptotic signaling behavior for a variety
of cell types—besides Jurkat T cells, the lab of Dr. DeCoster is also investigating
neurons and astrocytes.

Calcium release from the Endoplasmic Reticulum (ER) can have profound impact
on the mitochondria and, thus, the intrinsic apoptotic pathway. The “cross-talk”
between the ER and the mitochondria is responsible for mediating signaling, ATP
production and apoptosis [84]. The functional significance of the physical and phys-
iological link between the ER and mitochondria is profound [24, 73]. For instance,
in many apoptotic models the release of Ca2+ from the ER is directly responsible for
mitochondrial calcium overload [25, 69]. Although Ca2+ has a low affinity for the
mitochondrial Ca2+ transporters, it is the close proximity between the mitochondria
and the ER which allows for the rapid accumulation of calcium in the mitochon-
drial matrix [68]. The interactions between Ca2+ and the mitochrondria, can lead
to a variety of mitochondrial activity. For instance, Ca2+ overload can result in a
loss of mitochondrial membrane potential, which can lead to increased release of
Cytochrome c into the cytosol.

Finally, as a tertiary research direction, we have the option of investigating calcium
oscillations in relation to HIV latency. There is recent evidence supporting the idea
that calpains may play a critical role in apoptosis. These cysteine proteases are
activated in a Ca2+-dependent manner, and they may be effective in inhibiting the
activation of latent HIV-infected cells [82]. Hence, as we establish our models of
Ca2+-mediated apoptotic signaling, we can also work the new dynamics from the
lab of Dr. DeCoster into the HIV apoptotic model we proposed in Sect. 6.5.

We believe that this research area is extremely relevant for the future when the
new generation sequencing machines as well as the new methods of quantifying the
protein-protein interactions (such as FRET analysis) will provide better data and
bigger systems for the cellular pathways. This explosion of information will lead to
the need of faster simulators based on discrete mathematics.
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Chapter 7
MP Modelling for Systems Biology:
Two Case Studies

Luca Marchetti, Vincenzo Manca, Roberto Pagliarini
and Aliccia Bollig-Fischer

Abstract Metabolic P systems (MP systems), based on Păun’s P systems, were
introduced for modelling metabolic systems by means of suitable multiset rewriting
grammars. The initial modelling framework has been widely extended in last years
and equipped with a new regression algorithm which derives MP models from the
time series of observed dynamics. This has allowed us to dramatically extend the
range of possible MP modelling applications from metabolic dynamics to more
general kinds of dynamical systems. In this work two applications of MP systems
are presented, for discovering the internal regulation logic of two phenomena relevant
to systems biology. The first one is a metabolic dynamics related to glucose/insulin
interactions during the Intravenous Glucose Tolerance Test. The second one deals
with the definition of gene expression networks related to breast cancer under the
inhibition of a growth factor.

7.1 Introduction

An important problem of systems biology is the mathematical definition of dynamical
systems explaining observed biological dynamics by taking into account what is
already known about the underlying phenomenon [3, 12, 17, 24, 27, 30, 31].

L. Marchetti (B) · V. Manca
Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona,
Italy
e-mail: luca.marchetti@univr.it

V. Manca
e-mail: vincenzo.manca@univr.it

R. Pagliarini
Telethon Institute of Genetics and Medicine, Naples, Italy
e-mail: r.pagliarini@tigem.it

A. Bollig-Fischer
Department of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute,
Detroit, MI, USA
e-mail: bollig@karmanos.org

P. Frisco et al. (eds.), Applications of Membrane Computing in Systems and Synthetic 223
Biology, Emergence, Complexity and Computation 7, DOI: 10.1007/978-3-319-03191-0_7,
© Springer International Publishing Switzerland 2014



224 L. Marchetti et al.

The main analysis framework for the most part of biological dynamics remains the
theory of ordinary differential equations (ODEs). Metabolic P systems (MP systems),
based on Păun’s P systems [54], were introduced in [41] for modelling metabolic
systems by means of suitable multiset rewriting grammars. They are essentially a
particular type of finite difference recurrence equations where “fluxes” (see later)
play a role analogous to that of derivatives in ODEs. This change of perspective,
from a continuous to a discrete approach, provides in many cases computational
and modelling advantages. The following discussion and the results of the present
chapter intend to argument important cases showing this kind of advantages.

A Metabolic P system is essentially a multiset grammar where multiset transfor-
mations are regulated by functions [38, 39]. Namely, a rule like a + b ≥ c means
that a number u of molecules of kind a and u of kind b are replaced by u molecules
of type c. The value of u is the flux of the rule application. Let us consider a system
at some time steps i ≤ {0, 1, 2, . . . , t}. Let us also assume that a substance x is
produced by rules r1, r3 and consumed by rule r2. If u1[i], u2[i], u3[i] are the fluxes
of the rules r1, r2, r3 respectively, in the passage from step i to step i + 1, then the
variation τx [i] of substance x at step i is given by:

x[i + 1] − x[i] = u1[i] − u2[i] + u3[i].

In an MP system, in any state, the flux u j of rule r j is provided by a state function
π j , called regulator of the rule. A state is essentially determined by the quantities
of substances defined in the system. However, usually only some substances are
arguments of regulators, therefore if u j = π j (x, y, . . .), the arguments x, y, . . . of
π j will be called tuners of the regulator.

Substances (also metabolites), rules, initial values and regulators define an MP
grammar, which is easily representable by an MP graph [40] . The set of the rules of
an MP grammar can be also represented by a stoichiometric matrix A, which gives
a sort of “matrix–like representation” of the system stoichiometry (see Fig. 7.1).
Namely, an MP grammar G is given by a structure [39]:

G = (X, R, α, X0)

Fig. 7.1 An example of MP grammar (where ∈ denotes an empty multiset and substance symbols
occurring in regulators denote the corresponding substance quantities). The MP graph on the right
is obtained by translating the rules in the source–target–edge notation [40]
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where:

1. X is a finite set of n substances;
2. R is a finite set of m rules and each rule r ≤ R is expressed by ϕr ≥ φr with

ϕr , φr multisets over X (functions from X to N assigning a multiplicity to every
substance);

3. ψ = {πr | r ≤ R} is the set of regulators, or flux functions

πr : R
n ≥ R

for every r ≤ R, where:

• R
n is the set of possible states of X ;

• any regulator πr associates a flux value ur to every state of R
n . A flux ur of a

rule r establishes an updating of the current state of substances, by decreasing
of ur ·ϕr (x) the quantity of any substance x occurring in ϕr and by increasing
of ur · φr (y) the quantity of any substance y occurring in φr (where ϕr (x)

and φr (y) are the multiplicities of x and y in ϕr and in φr , respectively). This
reading of rules leads to the calculation of the following discrete dynamics
(x[i]|i ≤ N) for any substance x , starting from the given initial state X0 (see
the next point), called Equational Metabolic Algorithm (EMA):

x[i + 1] − x[i] =
m∑

j=1

(φ j (x) − ϕ j (x)) · u j [i]. (7.1)

4. X0 is a state of X , called initial state of G.

An MP system is essentially an MP grammar equipped with a temporal interval
Δ , a conventional mole size δ, and substances masses, which specify the time and
population (discrete) granularities respectively [38, 39]. In the following, the MP
dynamics we will present are computed in MATLAB1 by applying the EMA formula
given in (7.1).

The dynamics which can be modelled by MP systems can be very complicated
even by considering simple MP grammars (i.e. with few substances and linear regu-
lators). In [43] MP systems were successfully applied to the field of real periodical
function approximation. In that work, we presented some interesting MP oscillators
which are obtained by approximating the plot of some given periodical functions.2

In Fig. 7.2 the dynamics of two MP oscillators are depicted, which are approximated
by an MP grammar with only six substances and linear regulators. The complexity
of the dynamics compared to the simplicity of the MP grammar which calculates it
by EMA, suggests that MP system theory can be a suitable framework for modelling
biological dynamics.

In the following, two applications of MP systems will be presented for discovering
the internal regulation logic of phenomena relevant to systems biology:

1 See http://www.mathworks.it/index.html for details on the MATLAB software.
2 The approximation order ranges from 10−6 to 10−14, depending on the considered model.

http://www.mathworks.it/index.html
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Fig. 7.2 Examples of complicated oscillators which can be obtained with simple MP grammars
with linear regulators (see [43] for details)

1. the glucose/insulin dynamics in the Intravenous Glucose Tolerance Test (IVGTT);
2. the modelling of gene expression networks.

Despite the differences between the considered phenomena, in both the cases a model
was found that exhibits good approximation of the observed time series and highlights
results which are new or that have been only theorized (see also [47, 48]).

7.1.1 Log–Gain Stoichiometric Stepwise Regression (LGSS)

The results obtained in [43] suggested some possible applications to specific cases
of interest. In particular, the procedure introduced to define the models has been
widely extended in [44–46] for defining LGSS (Log–Gain Stoichiometric Stepwise
Regression), a regression algorithm which derives MP models from the time series
of observed dynamics. All the MP models given in the following have been defined
by means of this algorithm.
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LGSS can be applied independently from any knowledge about reaction rate kinet-
ics and it represents the most recent solution, in terms of MP systems, of the dynam-
ical inverse problem, that is, of the identification of (discrete) mathematical models
exhibiting an observed dynamics and satisfying all the constraints required by the
specific knowledge about the modelled phenomenon. The LGSS algorithm combines
and extends the log–gain principles developed in the MP system theory [36, 37] with
the classical method of Stepwise Regression [25], which is a statistical regression
technique based on Least Squares Approximation and statistical F–tests [16].

LGSS has been implemented in 2010 as a set of MATLAB functions. All the
functions have been ad hoc implemented and do not require additional toolboxes.3

The most computationally demanding code (regression, simulation and tuning of
regression parameters) has been implemented by taking advantage of the parallel
processing facilities offered by the Parallel Computing Toolbox (the software, how-
ever, runs also when this toolbox is not installed). The implementation considers also
some extensions of the algorithm which permit to add constraints. In particular, when
the Optimization Toolbox is installed in the system, LGSS supports also the usage of
the lsqlin function which computes constrained linear least squares problems. This
last feature is very important when it is needed to force complex constraints on the
least squares estimation of the computed regressor coefficients.

LGSS is highly customizable: all the features, all the thresholds used by the
code can be configured initially or at runtime. In order to start, LGSS requires the
stoichiometry of the MP system (i.e. the set of the rules), the time series of substances,
and, finally, the set of basic functions that the user wants to consider in representing
regulators as linear combination of them (we call this set the regressor dictionary).

Even if computational tools are available for evaluating unknown parameters of
ODE models [26, 34, 52, 59], LGSS seems to point out a general methodology
for solving dynamical inverse problems. In fact, LGSS not only discovers unknown
parameters, but suggests also the form of regulators as a combination of basic func-
tions among those specified by the user in the regression dictionary. This possibility
could be very important in the case where the knowledge about the phenomenon
under investigation is so poor that no clear idea is available about the kind of model
underlying the observed behaviour.

The size of the systems of equations solved by LGSS depends on the number of
substances and reactions of the MP system under examination and on its temporal
interval Δ (a smaller temporal interval requires longer time series and so a larger
system of equations). However, the regression usually ends in few minutes (less than
one minute in many cases, using a common laptop with a dual core CPU and 4 Gbyte
of RAM memory), but it can increase to hours when the system is very big (i.e. a
system with several thousands of equations, and a regression dictionary of hundreds
of regressors).

3 Therefore, LGSS can be executed by other “MATLAB–like” free applications (for example, the
GNU Octave project at http://www.octave.org).

http://www.octave.org
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r1 0/: → C ϕ1 = vi • 10− 3

r2 : C → 0 ϕ2 = 0.00001 C + 0.00021 X + 0.000035 CX
r3 : M+ → M ϕ3 = 0.00016 C + 0.00333 CM
r4 : M → M+ ϕ4 = 0.000034 + 0.00186 M
r5 : X+ → X ϕ5 = 0.00015 M+ 0.0028 MX
r6 : X → X+ ϕ6 = 0.0000014 + 0.00153 X

/

Fig. 7.3 Example of MP mitotic oscillator with Δ = 10−3 min

In [42] LGSS has been applied to Goldbeter’s oscillator4 for showing that MP
systems yield a robust method for biological modelling. In this manner, were auto-
matically generated 700 models of this oscillator, which, for the most part, provide
the same order of approximation of Goldbeter’s model for different values of Δ (see
Fig. 7.3 for an example). In that case, LGSS was able to complete the regression of
all the 700 models in few hours.

7.2 The Glucose/Insulin Dynamics in the Intravenous Glucose
Tolerance Test (IVGTT)

Glucose is the primary source of energy for body cells. It is transported from the
intestines or liver to body cells via the bloodstream, and is absorbed by the cells with

Fig. 7.4 Schematic diagram of the glucose–insulin regulatory system

4 The Goldbeter’s mitotic oscillator represents the simplest form of mitotic mechanism found in
early amphibian embryos [22].
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the intervention of the hormone insulin produced by the pancreas (see Fig. 7.4). Blood
glucose concentration is a function of the rate of glucose which enters the blood-
stream, the glucose appearance, balanced by the rate of glucose which is removed
from the circulation, the glucose disappearance. Normally, in mammals this concen-
tration is tightly regulated as a part of metabolic homeostasis.

If the plasma glucose concentration level is constantly out of the usual range,
then we are in presence of blood glucose problems. In particular, when this level is
constantly higher than the range upper bound (which is referred to as hyperglycemia),
we are in presence of Diabetes: a dreadfully severe and pervasive illness which
concerns a good number of organs in the body. Diabetes is classified into two main
categories known as type 1 and type 2, respectively. In both types of diabetes, the
illness can lead to several complications like retinopathy, nephropathy, peripheral
neuropathy and blindness. This motivates researches to study the glucose–insulin
endocrine regulatory system. In particular, the glucose–insulin system has been the
object of repeated, mathematical modelling attempts.

The great majority of the proposed models were devoted to the study of the
glucose–insulin dynamics by considering experimental data obtained by the intra-
venous glucose tolerance test, shortly IVGTT, and the oral glucose tolerance test,
shortly OGTT. In these models, the insulin–glucose system is assumed to be com-
posed of two linked subsystems modelling the insulin action and the glucose kinetics,
respectively. Since the action of insulin is delayed with respect to plasma glucose, the
subsystems of insulin action typically includes a delay. The different strategies which
can be used to model such kind of delay will be widely discussed in the following
sections.

The intravenous glucose tolerance test focuses on the metabolism of glucose in
a period of 3 h starting from the infusion of a bolus of glucose at time t = 0 (see
Fig. 7.5). IVGTT has been recommended as a method to assess the use of insulin

Fig. 7.5 Plots of a IVGTT data–set starting from the time of the glucose injection
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in order to identify subjects which may be diabetic [51]. However, considering the
limits of the existing mathematical models (see the next section), a need exists to have
reliable mathematical models representing the glucose–insulin system. The mere
fact that several models have been proposed [9, 35, 49] shows that mathematical
and physiological considerations have to be carefully integrated when attempting
to represent the glucose–insulin regulatory mechanism. In particular, in order to
model the IVGTT, a reasonably simple model is required. It has to have a few
parameters to be estimated and its dynamics has to be consistent with physiology
and with experimental data. Further, the model formulation, while applicable to
model the IVGTT, should be logically and easily extensible to model other envisaged
experimental procedures.

7.2.1 Mathematical Models of the Intravenous Glucose
Tolerance Test

A variety of mathematical models, statistical methods and algorithms have been
proposed to understand different aspects of diabetes. In this section we briefly recall
the two mathematical models which had the most important impact in diabetology
for modelling the IVGTT by considering only the dynamics of glucose and insulin.5

Although several other models have been proposed [4], the real start of modelling
glucose–insulin dynamics is due to the minimal model developed in [5, 61]. It is
based on the following system of differential equations:

dG(t)

dt
= − (p1 + X (t)) G(t) + p1Gb

d X (t)

dt
= −p2 X (t) + p3 (I (t) − Ib) (7.2)

d I (t)

dt
= p4 (G(t) − p5) t − p6 (I (t) − Ib)

where G(t) [mg/dl] and I (t) [μU I/ml] are plasma glucose and insulin concen-
trations at time t [min], respectively, and (G(t) − p5) is assumed to be 0 when
G(t) < p5. The auxiliary function X (t) [min−1] models the time delay of the
insulin consumption on glucose. Gb and Ib are the subject baseline blood glucose
and insulin concentration, while pi , for i = 1, 2, . . . , 6, are the model parameters
(we refer the reader to [5, 61] for all the details concerning these parameters).

Although (7.2) is very useful in physiology, it is based on some oversimplified
mathematical representations. In fact, the artificial non–observable variable X (t) is
introduced to model the delay in the action of insulin, but it has no precise biological

5 Other models currently available in literature provide a more accurate modelling of the test by
considering other factors also, such as the dynamics of C–peptide, which is secreted by the pancreas
at the same rate of insulin (see [62] for details).
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meaning. Therefore the dynamical model has been proposed in [18]:

dG(t)

dt
= −b1G(t) − b4 I (t)G(t) + b7

G(t) ∗ Gb →t ≤ [−b5, 0) (7.3)
d I (t)

dt
= −b2 I (t) + b6

b5

∫ t

t−b5

G(s)ds.

It is a delay integro–differential equation model which is a more realistic
representation of the glucose–insulin dynamics which follows an IVGTT. The term
b6
b5

∫ t
t−b5

G(s)ds represents the decaying memory kernel [15], which is introduced
to model the time delay. The physiologic meaning of the delay kernel reflects the
pancreas sensitivity to the blood glucose concentration in the past.

An extension of (7.3) is proposed in [50], where a generic weight function σ is
introduced in the delay integral kernel modelling the pancreatic response to glucose
level. In this way, the second equation of (7.3) becomes:

d I (t)

dt
= −b2 I (t) + b6

∫ ∞

0
σ(s)G(t − s)ds (7.4)

where σ(s) is assumed to be a non–negative square integrable function on R
+ =

[0,∞), such that
∫ ∞

0 σ(s)ds = 1 and
∫ ∞

0 s · σ(s)ds is equal to the average time
delay. The idea is that different patient populations show different shapes of the
kernel function σ, and then suitable parametrization of this function could offer the
possibility to classify patients by means of experimental parameter identification.

Despite the models (7.3) and (7.4) solve the drawbacks of the minimal model,
they made some assumptions that may not be realistic. The main restriction regards
the way used to introduce the delay on the basis of subjective assumptions. This
suggests the study of other ways to model the IVGTT process.

7.2.2 MP Modelling of IVGTT

In the previous section we introduced some ODE systems that model the IVGTT
under different assumptions. The main difference between the models is the way
adopted for modelling the time delays which occur during the pancreatic insulin
secretion. From a mathematical point of view, the problem of coping with delays in
ODE systems is difficult because delays are better managed with discrete models. In
fact, the perspective of continuous time makes hard to manage finite time intervals
which are at the basis of the modelling of time delays. For this reason, beside the
theory of Delay differential equations [6], new hybrid approaches are emerging which
try to incorporate discrete time series into classical differential models [63].

In this section we try to solve the problem in a complete discrete way, by applying
MP systems and LGSS for modelling IVGTT (see [47] for initial results). In order
to cope with time delays, we assume that the flux which models the pancreatic
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insulin secretion can depend on the glucose concentration at the current time and
at some time–steps in the past (glucose memories). This suggests more natural and
detailed mechanisms of delays which act in the insulin production. If we indicate by
G(t) = (G[i]|0 ∀ i ∀ t) the vector containing the time–series of glucose in a given
data–set, we define the time–series G(t)

−m related to the memory of glucose shifted m
steps after as the vector

G(t)
−m = (Gb, Gb, . . . , Gb︸ ︷︷ ︸

m times

, G[0], G[1], . . . , G[t − m]) (7.5)

where Gb is the basal value of the blood glucose level.6 Memories are very simple to
be managed in MP systems and increase a lot the approximation power of the models
as showed in [43], where memories have been applied in the context of periodical
function approximation.

In our analysis we considered ten different data–sets obtained by applying the
intravenous glucose tolerance test to ten healthy patients [18, 50, 53]. All subjects
have negative family histories for diabetes and other endocrine diseases. During the
test, the patients did not get medications and had no current illness. Each test has
been performed during the morning after an overnight fast, and for the three days
preceding the test each subject followed a diet composed of 55 % carbohydrates, 30 %
fats, and 15 % proteins. The curves of the considered data–sets are very different from
each other, especially the curve related to the insulin dynamics which exhibits values
and peaks of different height and at different delays. In all the cases, however, we
found MP models which provide good data fitting (the average of the calculated
multiple coefficients of determination [2] for all the models is greater than 0.95 for
both glucose and insulin).

In Fig. 7.6 we provide the MP grammars related to four of the considered data–
sets, and the plotting of the corresponding calculated dynamics for the insulin. The
depicted dynamics exhibit examples of all the different scenarios we observed con-
cerning the insulin release in our data–sets. There can be situations where the insulin
curve exhibits many peaks which model the different release phases, or there can be
dynamics without significant peaks but that are in any case modelled by a delayed
insulin secretion (this is the case of data–set 1). Each MP grammar is given by 2
substances: (i) G, which represents the blood glucose level, and (ii) I , which repre-
sents the level of insulin, and 4 rules. The first two rules are related to glucose and
the others related to insulin: (i) r1: constant release of glucose in the blood, (ii) r2:
glucose disappearance due to a term which represents the normal decay of glucose
(depending on G) and to a term which indicate the action of insulin (depending on
both G and I ), (iii) r3: delayed release of insulin by the pancreas which depends on
the blood glucose level (with memories), and (iv) r4: normal decay of insulin.

The total number of regressors selected for defining the pancreatic insulin
secretion (regulator π3) can be changed by acting on the thresholds used by

6 Since during the IVGTT the glucose level gradually returns to its basal level, here we assume Gb
to be equal to the last value of the considered glucose time–series.
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r1 0/: → G ϕ1 = 0.011
r2 : G → / 0 ϕ2 = 6.6 • 10− 5GI

1 r3 0/: → I ϕ3 = 0.5G2
− 4

r4 : I → / 0 ϕ4 = 0.16I
Initial values: I[0] = 1050.0, G[0] = 12.8
r1 0/: → G ϕ1 = 0.056
r2 : G → / 0 ϕ2 = 5.2 • 10− 4I + 8.1 • 10− 5GI

2 r3 0/: → I ϕ3 = 3.76 • 10− 6G7 + 0.74G2
− 8 + 0.02G3

− 20 + 0.21G2
− 40 + 10− 4G5

− 68
r4 : I → / 0 ϕ4 = 0.49I
Initial values: I[0] = 410.0, G[0] = 12.2
r1 0/: → G ϕ1 = 0.12
r2 : G → / 0 ϕ2 = 0.02G + 1.9 • 10− 4GI

3 r3 0/: → I ϕ3 = 0.04G3
− 2 + 3.3 • 10− 5G6

− 6 + 0.44G2
− 20 + 0.04G3

− 24
r4 : I → / 0 ϕ4 = 0.5I
Initial values: I[0] = 230.0, G[0] = 10.1
r1 0/: → G ϕ1 = 0.11
r2 : G → / 0 ϕ2 = 6.2 • 10− 4GI

4 r3 0/: → I ϕ3 = 0.1G2
− 2 + 0.9G− 6 + 1.07G− 10 + 2.4 • 10− 4G4

− 24
+ 5.4 • 10− 7G6

− 32 + 5.3 • 10− 8G7
− 34

r4 : I → / 0 ϕ4 = 0.4I
Initial values: I[0] = 180.0, G[0] = 16.7

Fig. 7.6 MP grammars and calculated insulin dynamics related to four of the considered data–sets
(Δ = 2 min, see also [47]). In the plots above, continuous lines refer to the observed dynamics,
while dashed lines refer to the dynamics computed by MP grammars. The MP models presented
above can be simulated by means of the MetaPlab software [1]

LGSS during the computing of its statistical tests. The models provided here have
been defined trying to balance their simplicity with their power of approxima-
tion. In fact, LGSS takes advantage of the discrete nature of the MP systems
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Fig. 7.7 Behaviours (leftmost) and mosaic correlation map (rightmost) of the computed π3 time
series for the ten data–sets

framework for automatically calculating the best form for π3 as a linear combination
of monomials of glucose concentration and of its memories. Each model provides
a sort of picture of the metabolism of the subject who has been analysed. This is
reflected in the form of the regulators which is different in each model. The form
of π3 changes according to the different pancreatic response to the increasing of
the blood glucose level which we found to be different for each person. This con-
firms experimentally the idea introduced in the analysis of the dynamical model [50]
regarding the different forms of the kernel function σ in (7.4). In that work, the goal
was the analysis of qualitative properties for a family of kernel functions without a
suitable parametrization of σ. In our work we have a data–driven way to model the
delay action of the pancreatic responses. In Fig. 7.7 we report the behaviours and the
mosaic correlation map (a color representation of the correlation matrix computed
by considering the Pearson’s correlation coefficient [56]) of each calculated π3 time
series. By analysing the correlations between the regulators, we observe that some of
them are uncorrelated while others exhibit common behaviours. This is emphasized
by the dendrogram given in Fig. 7.8 which shows the grouping of the computed MP
models according to the correlation distance between their π3 time series. By con-
sidering a threshold on the maximum correlation distance between the regulators,
we can cluster the models in different families (4 in Fig. 7.8) which collect patients
with common pancreatic response. This is an experimental evidence that patients can
be differentiated by considering the behaviour of π3, as suggested in [50] where the
possibility of differentiating between patient populations is indicated, by considering
the form and the parameters of the kernel function.

Even if we found differences in the regulation governing the release of insulin, it
is possible to recognize a common pattern as represented in Fig. 7.9. Here a common
logic in the usage of memories becomes evident. Moreover we distinguish two peaks
in the first ten minutes which agree with literature. In vivo, insulin secretion is
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biphasic with a first phase burst in insulin secretion occurring within the first ten
minutes and a second phase that is long some hours [19]. The two peaks we observe
perfectly fit with the first phase of insulin secretion and recall the first and the second
pancreatic peaks introduced in the analysis of the minimal model [5, 61]. The strength
of the peaks is emphasized by the chart in the middle of Fig. 7.9 where the memory
usage is weighted with respect to the degree of the corresponding monomials used in
π3. Here we can see that the first peak is twice the second one and that the release of
insulin follows an oscillatory pattern according to experimental results, as reported
in [21].

The models in each cluster of Fig. 7.8 provide a release of insulin governed by a
specific pattern which contributes to the common behaviour represented in Fig. 7.9.
The differences between clusters concern with the delays used during the phases of
insulin secretion. In the first phase (first 10 min), three clusters exhibit both the two
peaks reported in [5, 61]. However, we can distinguish different delays. This is more
evident in the cluster three where also the first peak is delayed (see the chart on the
bottom of Fig. 7.9). The fourth cluster does not exhibit two peaks, but this is balanced
by a longer and intermittent usage of memories in the first hour (second phase of
insulin secretion).

Since the form of π3 changes, also the form of π2 (which models the glucose disap-
pearance) is slightly different among models. This is due to the glucose homeostasis:
different subjects have different pancreatic response which results in different insulin
blood levels. All the non–diabetic subjects, however, need to reach their basal blood
glucose level exhibiting very similar glucose time–series. This means that the form
of π2, which accounts for the glucose disappearance, needs to change its form to
cope with the different metabolism of insulin. Despite this difference, the fluxes of
r2 are the same in all the inferred MP models. In fact, the mosaic correlation map
depicted in Fig. 7.10 shows high similarities.

We stress here that our regression approach allows us to do a quantitative analysis
which makes possible to highlight results which before were only theorized. Further
analysis will permit to characterize the differentiation between subjects explained

Fig. 7.8 Dendrogram showing how the MP models can be grouped by considering the maximum
correlation distance between their π3 time series. The correlation distance is defined as one minus
the Pearson’s correlation coefficient [56] between each computed flux. The colours divide groups
which are distant more than 0.3
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Fig. 7.9 Bar charts which give the fraction of MP models that use a memory with a given delay (on
the x–axis) for each cluster of Fig. 7.8. In the chart on the middle the number of models is weighted
by the degree of the monomials used in the models. The chart on the bottom is a 2–D representation
of the memory usage for each cluster

above, by considering physiological parameters such as the height, the weight, the
work, the sport activity, and so on. These further analysis may be relevant for defining
new reliable mathematical models, that can be used for the development of artificial
pancreas [13].

7.3 MP Modelling of Gene Networks

As it was shown in previous sections, metabolic phenomena are naturally represented
in terms of MP systems. In this section we give an example of how the same modelling
platform can be used to model other kinds of biological networks. In fact, by using
a suitable translation of MP grammars as gene regulatory networks [48], we can
discover, by means of LGSS, their regulatory mechanisms from time series of gene
expression levels. Biological networks at different levels are depicted in Fig. 7.11.
The way of modelling them by MP grammars are different according to the level that
is considered.
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Fig. 7.10 Behaviours (leftmost) and mosaic correlation map (rightmost) of the computed π2 time
series for the ten data–sets

Fig. 7.11 An example of a global biochemical network [10]. Molecular constituents (nodes of
the network) are organized in three levels (spaces): mRNAs, proteins, and metabolites. Solid arcs
indicate interactions (arrows mean activation, bars mean repression). Three different mechanisms
of gene–to–gene interactions are shown: (i) regulation of Gene 2 by the protein product of the
Gene 1; (ii) regulation of the Gene 2 by the Complex 3–4 formed by the products of Gene 3
and Gene 4; and (iii) regulation of Gene 4 by the Metabolite 2, which in turn is produced by Protein
2. Projections of these interactions into the “gene space”, indicated by dashed lines, constitute the
corresponding gene network (represented also in the right part of the figure)

The identification of new gene networks is now an important part of systems
biology [27, 31, 57]. In fact, gene networks might provide valuable clues and new
ideas for treating complex diseases and tailoring drug therapy to the individual
needs [10, 32]. In addition to high–throughput experimental methods, mathematical
and computational approaches are indispensable for the analysis of gene networks.
Mathematical modelling supported by computer tools can contribute to the analysis
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Table 7.1 Examples of MP reactions and their graphical representations as MP graph and gene
network (arrows mean promotion, bars mean inhibition). Please, refer to [48] for details

MP grammar MP graph Gene network

Simple promotion
r : ∈ ≥ Gene 2
π : k1 · Gene 1

Simple inhibition
r : Gene 2 ≥ ∈
π : k1 · Gene 1

Simple promotion/inhibition
r : Gene 2 ≥ Gene 3
π : k1 · Gene 1

of a regulatory network by allowing the biologist to focus on a restricted number
of plausible hypotheses. Many reviews of the modelling and simulation of gene
networks have been published in recent years (e.g. [7, 11, 20, 23, 29, 60]), present-
ing the wide variety of formalisms that have been proposed in the literature, such
as oriented graphs, Bayesian networks, Boolean networks, differential equations,
stochastic master equations and stochastic P systems.

In the following, genes will be modelled as substances whose concentration
is equal to the corresponding gene expression level (usually log2 transformed, as
usual in the context of gene expression analysis). Reactions will model promo-
tion/inhibition between genes which cause the increasing/decreasing in time of the
expression levels of the involved genes. The procedure for the definition of the stoi-
chiometry of the system should combine the knowledge about the phenomenon with
the analysis of the gene expression profiles (this depends on the problem under inves-
tigation). The form of the regulators, instead, is automatically calculated by LGSS
(in the same manner we did in the previous section) by obtaining an MP grammar.
In [48] we found a standard way for translating an MP grammar involving gene
expressions into a corresponding gene network (see Table 7.1 for some examples).

In Fig. 7.12 we provide the MP grammar which is related to the gene network
of Fig. 7.11. The stoichiometry of the system and the form of the regulators give
the details of the regulations which provide the observed dynamics. The form of the
regulator π2, for example, indicates that Gene 2 is promoted by the combined action
of Gene 3 and Gene 4. This fact suggests the formation, at the level of the “protein
space”, of the Complex 3–4 represented in Fig. 7.11. The stoichiometry of the rule
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Fig. 7.12 The MP grammar related to the gene network of Fig. 7.11. The corresponding gene
network is reported also in the right part of the table enriched with regulator coefficients which
provide a measure of the strength of the regulations (G1, G2, G3 and G4 denote Gene 1, Gene 2,
Gene 3 and Gene 4, respectively)

r4, instead, indicates the combined action of Gene 1 which promotes Gene 3 and, at
the same time, inhibits Gene 2. Moreover, since the MP regulator coefficients can
be considered here as a measure of the strength of the corresponding regulations, we
can use these information for enriching the corresponding gene network as displayed
in the right part of Fig. 7.12. In conclusion, MP modelling of gene networks not only
identifies the genes that affect other genes, but also estimates the strength of such
effects by inferring quantitative gene networks [32].

7.3.1 From Raw Data to MP Models

Genomics and gene expression experiments are very often described as “fishing
expeditions” in which the goal is the individuation of new genes involved in a path-
way, potential drug targets or expression markers that can be used in a predictive or
diagnostic fashion [33]. The usual design for such kind of experiments requires the
time series of gene expression profiles for the entire genome of some target cells after
having treated them with some specific inhibitors or some targeted up–regulators.
The time series are obtained by means of microarray or RNA–Seq analysis [33, 64]
providing the same kind of gene expression levels at different time points separated
by a given time interval. The raw data will be then processed and analysed in order
to get a model which explains the gene regulations which act during the experiment.
In our case, the time series are used to run LGSS and obtain the MP model and the
corresponding gene network of the phenomenon.

The number of the raw time series data points typically processed for a whole-
genome experiment using human cells is usually of the order of tens of thousands.
Generally, however, only a small part are really important since many of them refer
to genes whose expression profiles exhibit a pattern which is considered to be not
related to the phenomenon under examination. For this reason, before we start with the
definition of the MP model, raw data need to be preprocessed following a method-
ology which comprises normalization, filtering and clustering. This methodology,
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Fig. 7.13 The action of the HER–2 growth factor on the cell transcriptome

introduced in [48], was successfully applied as a strategy to define the global gene
expression network regulated by the HER–2 oncogene.

HER–2 (Human Epidermal Growth Factor Receptor 2) is a receptor tyrosine
kinase and a dominant oncogene that is known to drive breast cancer growth. In
Fig. 7.13 we remark that the protein–level, biochemical–based network downstream
of HER–2 signalling ultimately acts on DNA transcription (continuous arrows). This
in turn is joined with the effect of transcript products (dashed arrows), that activate
transcription further or feedback on the system. This feedback contributes to non–
linear behaviour in gene regulation networks. This phenomenon was analysed in
terms of MP regulations and by integrating knowledge of the specific roles of genes
highlighted in the analysis.

In order to reliably compare data from multiple microarray chips, data were firstly
log2 transformed and then normalized by means of a widely used algorithm based
on quantile normalization [8]. The log2 transformation of the data is a standard step
in gene expression analysis, since the usage of logarithms makes easier the analysis
of expression ratios between genes [58]. The need for data normalization, instead,
arises naturally when dealing with experiments involving multiple arrays in order to
deal with unwanted variation that is introduced in data during the process of carrying
out the experiment (i.e. due to differences in sample preparation, in the production
of the arrays and in their processing).
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Fig. 7.14 Examples of gene expression profiles found during the analysis. In the first row are
depicted two chaotic expression profiles, that is, time series where expression levels are not time
dependent. The expression profile depicted on the right exhibits a high log2 fold–change, this time
series is usually not filtered out by standard filtering algorithms, even if its evolution is clearly not
related to the experiment under consideration. In the second row, instead, some examples are given
of time series whose expression profiles are time dependent. In particular, starting from the left, we
have an example of a ∧ profile, a ∪ profile, and a ∼ profile [48]

Normalized data have been then processed by a filtering procedure specifically
developed for this work. A standard way for filtering genes consists into calculating
the maximum log2 fold–change for each gene7 and then by considering only those
genes which have a log2 fold–change greater than a suitable threshold value (usually
between 1 and 2). This procedure, however, filters out genes that do not change at all
in time, but very often does not remove time series which evolve in time in a way that
is not time dependent, especially when these time series exhibit a high log2 fold–
change (see Fig. 7.14 for some examples). In order to cope with this problem, we
introduced a filtering procedure based on polynomial fitting techniques and statistical
F–tests [48]. The idea behind this algorithm is based on the following assumption: if
some genes are regulated by the pathway under examination, then their expression
profiles must change in a time dependent way and they need to exhibit a dynamics that
can be approximated by a polynomial model of degree 1 (linear ∧ and ∨ expression
profiles), 2 (parabolic ⇒ and ∪ expression profiles) or 3 (cubic ∼ and � expression
profiles).

The filtering procedure has been applied to more than 24,000 log2 transformed
and quantile normalized time series and returned a subset of 1,175 genes, which
were estimated to be HER–2 oncogene–regulated (see the second row of Fig. 7.14

7 Since our time series have been log2 transformed, the log2 fold–change of one time series is given
by the subtraction of the maximum expression value with the minimum one.
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for some examples of expression profiles considered by our procedure). However,
filtered genes are of the order of thousands, a number which is already too big if we
want to singularly analyse each gene expression profile. For this reason, a clustering
phase is needed in order to divide the genes in a set of classes which collect genes
that have very similar expression profiles. In this way the MP modelling of the
phenomenon will consider only an expression profile for each cluster (called cluster
profile) calculated by averaging the time series of the gene expression profiles which
are in the same group. This approach is called guilt by association [33] and assumes
that genes with similar expression patterns are functionally related to each other.

Within literature many different cluster algorithms have been defined, most of
them especially written to solve the problem of clustering gene expression time
series [14]. In our application we adopted a standard hierarchical clustering tech-
nique [28] using as distance measure the point-wise difference between the time
series of the derivative of gene polynomial models calculated during the filtering [48].
We considered derivatives because we focused our attention on the variation of the
log2 expression level. In fact, this amount should be directly related to the perturbing
factor acting on the system during the micorarray analysis.

With this, the analysis arrived at 8 clusters. Their profiles were then used to cal-
culate, by means of LGSS, the MP model and gene network, which suggests the
regulatory interactions among the clusters. Finally, based on the identity and func-
tional attributes of individual genes mapped to the network, the MP model pointed
toward previously unknown circuits and intermediary factors in HER–2–directed
signalling. A subsequent investigation of the effects on breast cancer cells due to
treatment with specific inhibitors targeting the genes of the discovered new circuits
demonstrated which of them are necessary for transducing HER–2 signals and sup-
port the cancer–specific growth phenotype. This demonstrates a method for uncov-
ering which specific genes have an important role in cancer.

7.4 Conclusion and Ongoing Research

MP systems, based on Păun’s P systems, were introduced for modelling metabolic
systems by means of suitable multiset rewriting grammars. In this work, two appli-
cations of MP systems for discovering the internal regulation logic of phenomena
relevant to systems biology have been presented. From the web page [1], the Meta-
Plab software can be downloaded, where MP grammars of Fig. 7.6 (and possible
variations) can be simulated and the results presented in the paper can be confirmed.

Models of both phenomena are currently under development in order to extend
the MP methodology in cases more complex (e.g. the insulin–glucose dynamics
where C–peptide time series are taken into account) or other kind of gene expression
analysis related to other pathological situations. However, our initial results suggest
that MP systems may be considered as a suitable framework for modelling biolog-
ical dynamics. In fact, the discrete time approach, which is at the basis of the MP
theory, and the regression algorithm LGSS, which automatically solves the dynami-
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cal inverse problem in the MP framework, make MP systems a valuable competitor
of ODE systems. This is particularly true when the considered phenomenon have
some regulations which act with delay or in cases where the knowledge about the
phenomenon is so poor that no clear idea is available about the kind of model underly-
ing the observed behaviour. In this perspective we intend to develop algorithmic and
computational tools for making the MP modelling even more adequate and useful in
biomedical applications.
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Chapter 8
Modelling and Analysis of E. coli Respiratory
Chain

Adrian Ţurcanu, Laurenţiu Mierlă, Florentin Ipate, Alin Stefanescu,
Hao Bai, Mike Holcombe and Simon Coakley

Abstract In this chapter we present some results obtained in the study of the
bacterium E. coli related to its behavior at different level of oxygen in the envi-
ronment. The biological model is expressed in terms of different molecules and
their reactions. First, an agent-based model of E. coli is implemented in the FLAME
framework for multi-agents and some simulation results are given. Each agent is rep-
resented by an X-machine and the model corresponds to communicating X-machines.
Then this model is transformed into a kernel P system. This kernel P system is imple-
mented in the Rodin platform and in Spin and some properties are verified using the
associated model checkers. Formulated using the LTL formalism, the verified prop-
erties refer to the variation of the number of different molecules as a result of the
occurring reactions. Our main contribution is a simplified model of E. coli that pre-
serves the main properties of the initial model, and can be formally verified using a
model checker.
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8.1 Introduction

Membrane computing, a research field introduced in 1998 by Gheorghe Păun, studies
computing devices inspired by the functioning and structure of the living cell, called
P systems [33]. Since the appearance of membrane computing, many variants of P
systems have been defined and investigated, particularly in terms of computational
power and their capability to solve computationally hard problems [34]. Introduced
in [18], kernel P systems (kP systems), and its reduced variant [20] (skP systems)
represent an unifying framework for P systems which integrates many features of
existing P systems into an elegant and yet powerful modelling formalism.

In the last years, significant developments have also been made in using P systems
to model, simulate and formally verify various systems [13]. As a consequence, the
idea of automating the evolution of a P system was one of the main concerns of the
membrane computing community and many tools have been developed, as surveyed
in [15]. However, each of these tools came with its own specification language, and
was dedicated to a certain class of P systems. In this context, the Research Group
of Natural Computing, from the University of Seville, developed P-Lingua [16], a
programming language for P systems that became the standard for their representa-
tion. Another useful tool developed by the same research group is MeCoSim [32],
a membrane computing simulator that can be easily adapted to each family of P
systems. Using a P-Lingua definition file of a P system, MeCoSim can be used for
simulations and property extraction.

Formal verification of biological systems has been studied using e.g., rewriting
logic and the Maude tool [9] or PRISM and the associated probabilistic temporal
logic [21] for stochastic systems [11]. More recently, various properties of transition
P systems, P systems with active membranes and kernel P systems have been verified
using different tools like NuSMV [19], Spin [27] and Rodin [28, 36].

Based on the X-machine formalism [22], FLAME (Flexible Large-scale Agent
Modelling Environment) [1, 35] is a generic agent-based modelling system, which
can be used to develop and simulate applications in many areas. In particular, the
FLAME framework has been proven very successful for modelling and simulating
different biological, economic and social systems. In FLAME, each agent has a
memory that holds variables and evolves according to a transition diagram in which
the transitions are labelled by processing functions. These functions can read and
write to variables in the agent’s memory or can read incoming messages and write
outgoing messages. The agents communicate via messages. One of the great strengths
of FLAME is its modularization and platform independence, which allows it to be
run on parallel supercomputers.

One of the success stories of FLAME is the SUMO (Systems Understanding
of Microbial Oxygen Responses) research project [5], funded by the European
research initiative SysMO (System Biology of Microorganisms), centered around
the Escherichia coli (E. coli) bacterium, one of the most studied organism in biology
[23]. In particular, the project investigates the behavior of this bacterium related to its
reaction to the level of oxygen in the environment. Using the mathematical models
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and simulation results provided by FLAME, SUMO deepened the existing knowl-
edge about the metabolic adaptation that occurs in response to changes in oxygen
availability [5].

A number of recent investigations [26, 20] illustrate the expressive power of kP
systems on several case studies, representing known NP-complete problems. This
chapter makes a further step in this direction, by using the kP system as a modelling
tool for biological systems. To this end, we show how the X-machine based models
of the E. coli developed in FLAME can be naturally transformed into kP system
models. Furthermore, these kP systems also provide the basis for the implementa-
tion in two modelling languages (Event-B and Promela) and the associated model
checkers, ProB [3, 30] and Spin [4, 24], are used to simulate and verify some of
their properties. In related chapters, the probabilistic model checking tool PRISM
was used for formal verification in systems biology for quantitative properties [29] or
stochastic trend formulae [8]. Introduced in [12], the Infobiotics Workbench is also
a powerful computational framework incorporating model specification, simulation,
parameter optimisation and model checking for various systems biology problems.
Finally, BMA tool [10] makes formal methods accessible to biologists by means of
an intuitive visual interface.

The chapter is structured as follows. In the next section we overview the theoretical
models of kP systems and X-machines. We continue by describing E. coli and its
respiratory chain in Sect. 8.3 and its FLAME simulation in Sect. 8.4. Section 8.5
shows how to use the kP systems to capture interesting and relevant aspects of
E. coli behaviour. The verification of different properties is implemented using two
different model-checkers in Sect. 8.6. Conclusions are drawn in the last section.

8.2 Background

In this section we provide the formal definitions of a variant of P systems and of
X-machines.

8.2.1 kP Systems

P systems are distributed and parallel computing devices processing multisets of
objects encapsulated into regions delimited by membranes, using various types of
rules (evolution, communication, division and others). Kernel P systems provide an
unifying framework for many features available in various P system variants [18]. In
this chapter we will use a simplified version of kernel P systems called simple kernel
P systems [20].

Definition 1 A simple kernel P system (skP system, for short) of degree n ≥ 1 is a
tuple
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skΠ = (A, L , I O, C1, . . . , Cn, μ, i0)

where:

• A is an alphabet containing objects,
• L is a finite set of labels,
• I O is an alphabet, I O ≤ A, associated with the environment,
• C1, . . . , Cn are the initial compartments of the system; each of them is identified

by a label of L , has initially a multiset over A and a finite set of rules,
• μ = (V, E) is an undirected graph, where V ∈ L are vertices and E the edges,

and
• i0 ∗ L → {0} denotes the output region, i.e., the compartment receiving the result

of a computation.

A skP system (A, L , I O, C1, . . . , Cn, μ, i0) can be viewed as a set of n compart-
ments C1, . . . , Cn , interconnected by edges from E of an undirected graph μ. Every
compartment has an associated set of rules that can be of type division, rewriting
or communication. Rules may have guards (necessary conditions) and are applied
in maximally parallel mode. The only restrictions are that at most one division rule
can be applied per step and, when a cell is divided, the division rule is the only one
which is applied for that cell in that step. We describe the guards and the rules syntax
below.

The guards are constructed using multisets over A, relational and Boolean
operators. Before defining it, we introduce some notations. For a multiset w over
A and an element a ∗ A, we denote by |w|a the number of a’s occurring in w. Let
Rel = {<,≤,=, ∀=,≥,>} be the set of relational operators, γ ∗ Rel a relational
operator, an a multiset and r{g} a rule with guard g.

Definition 2 If g is the abstract relational expression γ an and the current multiset
is w, then the guard is true for the multiset w if |w|aγ n is true.

Abstract relational expressions can be connected by Boolean operators (¬,∧ and
∪) generating abstract Boolean expressions.

Definition 3 If g is the abstract Boolean expression and the current multiset is w,
then the guard denotes the Boolean expression for w, obtained by replacing abstract
relational expressions with relational expressions for w. The guard g is true for the
multiset w when the Boolean expression for w is true.

Definition 4 A guard is defined recursively as:

(i) one of the Boolean constants true or f alse, or
(ii) an abstract relational expression, or

(iii) an abstract boolean expression.

Example. The guard g =≥ a3∧ ≥ b4 ∪ ¬ > c is true for w if w contains at least
3 a’s and 4 b’s or no more than one c.

The rules can have one the following syntax:
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(a) rewriting and communication rule: x ∨ y {g},
where x ∗ A+, y ∗ A⇒. The right hand side y, has the form y = (a1, t1) . . . (ah,

th), where a j ∗ A and t j ∗ L , 1 ≤ j ≤ h, is an object and a target, i.e., the label
of a compartment, respectively, and (ai , ti ) ∀= (a j , t j ), for each 1 ≤ i, j ≤ h,
i ∀= j . The target t j , must be either the label of the current compartment, say
li , (most often ignored) or that of an existing neighbour of it ((li , t j ) ∗ E) or
an unspecified one, ⇒; otherwise, the rule is not applicable. If a target t j refers
to a label that appears more than once, then one of the involved compartments
will be non-deterministically chosen. If t j is ⇒ then the object a j is sent to a
neighbouring compartment arbitrarily chosen.
Example. If the rule is r : a ∨ a(b, 2)(c, 3) {g}, then it is applicable iff
the guard g is true, and, as a result of its application, one object a stays in the
current compartment (we do not use target for it), one object b is sent to the
compartment labelled 2 and one object c is sent to the compartment labelled 3.

(b) membrane division rule: [x]li ∨ [y1]li1 . . . [yh]lih {g}, where x ∗ A+ and
y j = (a j,1, t j,1) . . . (a j,h j , t j,h j ), where a j,k ∗ A, t j,k ∗ L , and 1 ≤ k ≤ h j .
In this case, the compartment li will be replaced by h compartments, with the
labels li1 , . . . , lih ; furthermore, for 1 ≤ j ≤ h, the i j -th compartment will
contain the same objects as li with the exception of x , which will be replaced
by y j . Moreover, all the links of li are inherited by each of the newly created
compartments.
Example. If the rule is r : []2 ∨ []21[]22[]23 {g}, then it is applicable iff the
guard g is true, and, as a result, the compartment with label 2 is replaced with
3 compartments with the same content as compartment 2.

In our models only rewriting and communication rules will be used. Furthermore,
all such rules are non-cooperative, i.e., only one object appears on the left side of
each rule.

Since we are dealing with the model of a biological system, probabilities are added
to the rules. The idea of adding probabilities to P systems was based on the intention
to keep membrane system theory as close as possible to the biological reality [31].

We consider that probabilistic rules are complementary, i.e., these can be grouped
into sets (pairs in our case) with the same left side and the sum of the probabili-

ties associated with the rules of each pair being 100 %. Thus, if r1 : x
p %−−∨ y and

r2 : x
(100−p) %−−−−−−∨ z are two probabilistic rules, then rule r1 is applied with a probability

of p % and rule r2 with a probability of (100− p) %. After being associated with the
objects according to their probabilities, rules are applied in a maximal parallel man-
ner in each compartment. (The difference between the original, non-deterministic,
kP system and the probabilistic one is that, at each moment within a maximally
parallel computation step, whenever more than one rule can be selected, the applied
rule is selected according to its probability rather than non-deterministically.)
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8.2.2 X-Machines

Introduced in 1974 by Samuel Eilenberg [17], X-machines were proposed as a basis
for a possible specification language by Mike Holcombe in 1988 [22]. They provide
the modelling foundation for the FLAME framework. X-machines are computational
models that can describe a system as a finite set of states, each with an internal
store called memory, and a number of transitions between the states. A transition is
triggered by an input value, produces an output value and may alter the memory. An
X-machine may be modelled by a finite automaton in which the arcs are labelled by
function names (the processing functions).

Definition 5 An X-Machine is a tuple

X M = (Σ, Γ, Q, M, Φ, F, I, T, m0),

where:

• Σ and Γ are finite sets called input alphabet and respectively output alphabet,
• Q is the finite set of states,
• M is a (possibly) infinite set called memory,
• Φ is the type of X M , a non-empty finite set of function symbols. A basic processing

function ϕ : M × Σ −∨ Γ × M is associated with each function symbol ϕ.
• F is the (partial) next state function, F : Q × Φ −∨ 2Q ,

As for finite automata, F is usually described by a state-transition diagram.
• I and T are the sets of initial and terminal states respectively, I ∈ Q, T ∈ Q, and
• m0 ∗ M is the initial memory value.

Definition 6 A communicating X-machine system [25] with n components is a tuple
Sn = ((X Mi )1≤i≤n, R), where:

• X Mi = (Σi , Γi , Qi , Mi , Φi , Fi , Ii , Ti , (m0)i ) is an X-machine labelled by i , for
1 ≤ i ≤ n, and

• R is a relation defining the communication among the components,
R ∈ {X M1, X M2, . . . , X Mn}×{X M1, X M2, . . . , X Mn}. A tuple (X Mi , X M j ) ∗
R, denotes that the X-machine X Mi can output a message to a corresponding input
stream of X-machine X M j , for any i, j ∗ {1, . . . , n} with i ∀= j .

The exchange of messages among the components of a communicating X-machine
is achieved by redirecting one component’s function output to be received as input
by a function of another machine.

8.3 General Description of E. coli

E. coli is one of the most studied bacterium and the research related to it provided
many fundamental paradigms in biology. It can be easily handled by biologists and
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its genetic information and metabolic processes are well understood. Interestingly,
unlike many organisms, E. coli can thrive in environments either with abundant
oxygen or no oxygen.

A system-level study of the mechanism of E. coli responding to oxygen is a key
to understand the respiratory pathways of this bacterium. Based on FLAME, an
agent-based model was introduced to better understand the respiratory chain and to
simulate the activities of relative components, such as oxidases Cyo and Cyd, and
their regulators, Fnr and ArcA. In this model, the expression of Cyd and Cyo in E. coli
are repressed or activated by Fnr and ArcA. An integration of COPASI (a software
application for simulation and analysis of biochemical networks and their dynam-
ics) makes it possible to calculate the dynamic variation of Cyo/Cyd numbers using
mathematical methods. Compared with the traditional kinetic models, which con-
sider the system as a macroscopic quantity, the agent-based model represents every
single molecule and enables the activities of agents in an actual spatial region. This
advantage of agent-based model could crucially complement the kinetic model, for
the cases when the latter fails, such as low molecule number or unevenly distributed
molecules.

In this agent-based model, each individual molecule of interest is defined as an
agent with its own parameters, such as position, status etc. According to the biochem-
ical reaction conditions, these agents could exist within the cellular environment and
interact with each other. This cellular space can be defined as a 2-dimensional or
3-dimensional space, in which the molecules may be close to the membrane or
evenly distributed in cytoplasm. All these molecules are capable of moving through
this space and interacting with others according to their interaction radius. The cur-
rent agent model consists of the following types of agents: oxygen (O2 molecules),
E. coli cell, Fnr molecules, ArcB molecules, ArcA molecules, ArcBA molecules, Cyo
and Cyd molecules. This is a preliminary model, but we are currently working with a
team of biologists on an improved version much closer to the real biological system.

The FLAME framework allows to define agents in a precise way and stores their
initial specifications in an XML file. On reading this file, the pre-defined agents are
constructed in a virtual space for further activities. Each agent communicates with the
others via message boards. These messages contain information on the whereabouts
and state of the molecule. Together with a random moving algorithm and pre-defined
interaction rules, this information drives the whole model and leads to a final output.
In the current model, the Fnr molecules are divided into three groups based on their
status, including Fnr dimer, Fnr monomer and Fnr dimer bound to the binding sites
on DNA. The mechanism of interaction between Fnr and oxygen molecule is defined
as follows:

• When an oxygen molecule is within a pre-defined reaction distance to an Fnr
dimer, the Fnr dimer is decomposed into two Fnr monomers. If this dimer is
bound to a binding site, the binding site will become unoccupied.

• When two Fnr monomers are within reaction distance, they can be combined into
an Fnr dimer.
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• When the distance between a Fnr dimer and an unoccupied binding site is less
than their reaction distance, the dimer will bind to the binding site.

The ArcBA molecules are present as ArcA octamers, ArcA tetramers, ArcA dimers,
ArcB and ArcA octamers bound to the binding sites on DNAs. The ArcA octamers
bound to binding sites have a probability of coming off. The ArcB molecules can
be phosphorylated (ArcB P) or dephosphorylated (ArcB), depending on how much it
was exposed to oxygen. The ArcA dimers can also be in these two forms. All the ArcA
octamers and tetramers contain phosphorus. The mechanism of interaction between
ArcBA molecules and oxygen is defined as:

• When an oxygen molecule is within pre-defined reaction distance to an ArcB,
the ArcB will be de-phosphorylated and then become able to capture phosphorus
from active ArcA dimers, ArcA tetramers and ArcA octamers. When an ArcB has
no oxygen molecule to interact with, the capability of this ArcB of capturing
phosphorus will reduce proportionally by revising its reaction radius.

• When an ArcA octamer is moving into the reaction distance to ArcB, the ArcA
octamer will be de-phosphorylated and decomposed into one ArcA tetramer, one
active ArcA dimer and one inactive ArcA dimer.

• When an ArcA tetramer is moving into the reaction distance to ArcB, the ArcA
tetramer will be de-phosphorylated and decomposed into one active ArcA dimer
and one inactive ArcA dimer.

• When an active ArcA dimer is moving into the reaction distance to ArcB, the ArcA
dimer will be de-phosphorylated.

• When an inactive ArcA dimer is moving into the reaction distance to ArcB P, the
ArcA dimer will be phosphorylated.

• When two active ArcA dimers are within their reaction distance, they can be com-
bined into an ArcA tetramer.

• When two ArcA tetramers are within their reaction distance, they can be combined
into an ArcA octamer.

• When one ArcA octamer is within its reaction distance to an available binding site,
the ArcA octamer will bind to the binding site.

8.4 FLAME Simulations of E. coli Respiratory Chain

As we stated before, the E. coli FLAME model is based on agents corresponding
to the molecules. At every step in the simulation, each molecule must change its
location (move) according to predefined rules. The size of the molecules is assumed
to be sufficiently small that collision between them can be neglected in the movement
process.

Each agent is represented by an X-machine whose memory contains an ID, the
type of the agent, the physical location and its state. The behavior of each molecule is
modelled in the rules of the corresponding agent: namely, with what molecules it can
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interact, and what distance is necessary for this interaction to occur. Agents commu-
nicate by sending and receiving messages containing values from their memory or
announcing their availability to interact. Each agent contains a function that calcu-
lates the distance to all the other agents by using its coordinates and the coordinates
received from other agents through messages. Besides the criteria on proximity (i.e.,
the calculated distance is less than the pre-defined interaction radius), two molecules
interact if they are in a state that allows interactions. Each X-machine also contains
functions that compute the total number of molecules of that type, move the mole-
cules, send availability to other agents or destroy the agent if it is consumed in a
reaction. These functions also change the state of the X-machine accordingly. Thus,
the model corresponds to a communicating X-machine.

Since we are interested only in some of the results of the FLAME simulations, in
this section we consider a simplified version of E. coli cell, with only eight molecules
types: dimers, regenerated dimers, monomers, oxygen, dimers bound to binding sites,
Cyo proteins, Cyd proteins, binding sites, but without the ArcBA molecules. Note also
that FLAME provides visualisation and animation capabilities, as seen in Fig. 8.1,
but we do not insist here on these aspects.

Oxygen molecules enter the cell through the membrane where a large amount
of them are consumed by the oxidases (Cyo or Cyd proteins). Those which luckily
get into the cell (about 1 % of them) react with the Fnr dimers and generate Fnr
monomers. Two Fnr monomers getting close enough could react and regenerate a
Fnr dimer. The Fnr dimer which was already bound to binding sites can also be
deactivated by oxygen molecules and leave the binding site. Also, Fnr dimers can
bind to available binding sites when they get close enough.

Initially, the cell is considered to be in an anaerobic respiration state (no oxygen
in the cell), and the values of the molecules are: 150 dimers, 1 monomer, 35 dimers

Fig. 8.1 Visual simulation of E. coli in FLAME: the cell (left side) and a zoomed-in snapshot of
its membrane (right side)
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bound to binding sites, 200 Cyo proteins, 200 Cyd proteins, 35 binding sites. In
these conditions, FLAME can be used to simulate the reaction in the cell at different
levels of oxygen, e.g., 100, 200, or 300 molecules. Figure 8.2 provides the simulation
results for 100 molecules of oxygen over 10,000 iterations.

Besides the relation between the numbers of oxygen, Fnr dimer and Fnr monomer
molecules, more interesting results are obtained for the model that also contains the
ArcBA system. These are related to:

• the number of ArcA octamer, ArcA tetramer, ArcA dimer and ArcB (phosphorylated
and non-phosphorylated);

• the variation of the numbers of Fnr dimer and ArcA octamer which are bound
to the binding sites, as these would determine the gene regulation and protein
production.

So, as this model is currently used for simulation of biological processes, the
number of the molecules (in biology, the concentration of certain gene regulator) is
what the experiments are focusing on. More details on using FLAME for biological
models, including the E. coli respiratory chain, can be found in [23].

Fig. 8.2 Trend of molecule numbers with 100 oxygen molecules over 10,000 iterations
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8.5 A Kernel P System Corresponding to E. coli

In this section, we outline the way in which the previous X-machine based model
is transformed into a kernel P system of degree 2 (kΠ ). The latter model is then
used in the next section to formally verify some properties and simulate its behavior
using the model checkers ProB and Spin. Due to the limitations of the corresponding
modelling languages (e.g., the well-known state explosion problem) we considered
a simplified model described below.

First of all, we split the E. coli cell into sectors (of circles) and we associate to each
molecule a sector, depending on its coordinates. Thus, the objects of our P systems
are pairs (l, s), where l is the label of the object and s is the corresponding sector.
The idea of using topological spaces as control mechanisms for rule applications, in
addition to the membranes themselves (thus offering a higher level of granularity),
was introduced in [14]. As a consequence, the alphabet of kΠ is: V = {(Oxyi , si ) |
i = 1..noOxy} → {(Cydi , si ) | i = 1..noCyd} → {(Cyoi , si ) | i = 1..noCyo} →
{(Dimi , si ) | i = 1..noDim} → {(B Dimi , si ) | i = 1..noB Dim} → {(BSitei , si ) |
i = 1..noBSites} → {(Moni , si ) | i = 1..noMon}, where Oxy corresponds to the
Oxygen molecules, Dim corresponds to the Dimers, BDim corresponds to the dimers
bound to binding sites, BSite corresponds to the binding sites, Mon corresponds to
the monomers and noX is the number of molecules of type X .

We assume that two molecules react only if they are in the same sector.
Then, the rules associated with the first compartment are:

• rewriting and communication rules corresponding to oxidations and oxygen trans-
fer respectively:

(Oxyi , si )(Cyo j , s j )
p = 99 %−−−−−∨ λ {si = s j }

(Oxyi , si )(Cyo j , s j )
p = 1 %−−−−∨ [(Oxyi , si )]2(Cyo j , s j ) {si = s j }

(Oxyi , si )(Cyd j , s j )
p = 99 %−−−−−∨ λ {si = s j }

(Oxyi , si )(Cyd j , s j )
p = 1 %−−−−∨ [(Oxyi , si )]2(Cyd j , s j ) {si = s j }

• movement rules:
(Oxyi , si ) ∨ (Oxyi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(Cyoi , si ) ∨ (Cyoi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(Cydi , si ) ∨ (Cydi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
Probabilities associated with the above rules are required because, as we specified

in the previous section, just about 1 % of the oxygen molecules get into the cell.
Thus, an oxygen molecule Oxyi situated in a sector si in the first compartment is
transferred in the second compartment with a probability of 1 % or react with an
oxidant situated in the same sector with a probability of 99 %. These probabilities
do not appear explicitly in the FLAME model because the oxidations occur more
frequently due to the molecules location (the oxidases Cyo and Cyd act like a barrier
for the oxygen).
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The second compartment has the following rewriting rules:

• reactions between a dimer and an oxygen resulting two monomers
(Oxyi , si )(Dim j , s j ) ∨ (Monk, si )(Monl , si ) {si = s j }

• reactions between a bounded dimer and an oxygen resulting a dimer and a binding
site
(Oxyi , si )(B Dim j , s j ) ∨ (Dimk, si )(BSitel , si ) {si = s j }

• reactions between two monomers resulting a dimer
(Moni , si )(Mon j , s j ) ∨ (Dimk, si ) {si = s j }

• reactions between a dimer and a binding site resulting a bounded dimer
(Dimi , si )(BSite j , s j ) ∨ (B Dimk, si ) {si = s j }

• movement rules:
(Oxyi , si ) ∨ (Oxyi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(Dimi , si ) ∨ (Dimi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(Moni , si ) ∨ (Moni , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(B Dimi , si ) ∨ (B Dimi , s j ) {s j = si − 1 | s j = si | s j = si + 1}
(BSitei , si ) ∨ (BSitei , s j ) {s j = si − 1 | s j = si | s j = si + 1}
For all the above rules, guards are used to impose the constraints that two mole-

cules react iff they are in the same sector (si = s j ) and, when moving, each molecule
can remain in its sector (s j = si ) or can move into one of the neighboring sectors
(s j = si − 1 or s j = si + 1).

Using these ideas and the particularities of each language, we constructed
Event-B and a Promela models of kΠ , and used them for formal verification. The
obtained results are given in the next subsections.

8.6 Modelling, Simulation and Verification

8.6.1 Implementation in Event-B for ProB

Introduced by J.-R. Abrial [6], Event-B is a formal modelling language used for
developing mathematical models of complex systems with a discrete behavior. It is
supported by a platform called Rodin that integrates theorem-proving, model check-
ing (ProB), and animation facilities.

The Event-B model of the kernel P system representation of E. coli described in
the previous section is based on functions, operations with sets and non-deterministic
assignments. Thus, for every set of molecules, we consider a partial function between
a set of labels and the set of sectors. In the initialization event, every molecule initially
in the E. coli cell is associated with its corresponding sector. The model contains an
event for every reaction (rule), with the guards asking to the reactants to be in the same
compartment, and the actions modifying the corresponding functions accordingly.

As an example, the event corresponding to the rule
(Oxyi , si )(Dim j , s j ) ∨ (Monk, si )(Monl , si ) {si = s j } is:
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Event DimerOxygen
any x , y, z1, z2
where
guard1: x ∗ dom(Oxy)

guard2: y ∗ dom(Dim)

guard3: Oxy(x) = Dim(y)

guard4: z1 ∗ N\dom(Mon)

guard5: z2 ∗ N\dom(Mon)

guard6: z1 ∀= z2
then
action1: Mon := Mon → {z1 −> Oxy(x), z2 −> Oxy(x)}
action2: Oxy := Oxy\{x −> Oxy(x)}
action3: Dim := Dim\{y −> Dim(y)}

So, if the oxygen molecule x and the dimer y are in the same compartment
(guard3), then two new monomers (z1 and z2) are produced and added to the
monomers set (action1). Then, the reactants are consumed (action2 and
action3). The events for the other reactions are quite similar.

Probabilities associated with some rules are implemented using a random number
generator, e.g., a random number positive integer N is generated and the rule with
the probability of 1 % is applied if N is divisible by 100 and the complementary rule,
otherwise.

A different type of event is the one in which the molecules are moving. We remind
that any molecule can non-deterministically remain in its sector or can move into
one of the neighbouring sectors.

One of main problems in model checking is the state space explosion. In order to
mitigate this, we considered in our model a variable called state with three possible
values: Reacting, Moving and Crash. The system is usually in one of the states
Reacting or Moving. The state Crash is considered in order to keep the number of
configurations under control. When the system reaches a number of steps (Max), then
its state becomes Crash and the verification stops. We considered in our experiments
different values for Max , depending on the complexity of the property.

The results of verifying different properties based on this Event-B model are
provided in Sect. 8.6.4.

A very important Event-B concept is refinement, which allows a model to be
developed gradually [7]. A refined model contains more details about the system than
the initial model and it is obtained by refining machines or extending contexts. Using
this technique we can add to the previous Event-B model of E. coli the ArcBA system,
i.e., variables corresponding to the ArcBA molecules and events corresponding to the
reactions between them. We describe in the following how the refined model is
obtained.

As in the initial model, we consider a partial function between a set of labels and
the set of sectors for every set of ArcBA molecules. The initialization event has to
be refined, associating to every new molecule the corresponding sector. The refined
model contains seven new events, corresponding to the seven reactions that involve
ArcBA molecules described in Sect. 8.3. Each of these is similar to those in the
initial model. The event dedicated to molecules movement is also refined, the ArcBA
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molecules being also able to remain in the same sector or to move in a neighboring
one. Even if the limitations of ProB, due again to state explosion, do not allow us to
verify significant properties for the refined model, refinement proves to be an useful
technique in building Event-B models of complex systems.

8.6.2 Implementation in Promela for Spin

This subsection describes the Promela implementation of the kP system model for
E. coli. A mature model checking tool, Spin has been also successfully used in
the context of membrane computing for verifying various types of P systems [27],
including kernel P systems [20].

Although computationally equivalent with the investigated kP system model, the
Promela implementation takes advantage of the power and flexibility of its specific
modelling language constructs. For instance, a molecule is defined by using the type
definition where the specific features are the sector where the molecule finds itself
and a flag denoting whether it is still active or consumed.

typedef Molecule {
int sector;
bool isConsumed = true; }

Using this construct, each molecule type is assigned a global array representing
the set of molecules of the same type.

The reactions between specific molecules are modelled using Promela macro-
definitions. For instance, the kP system rule

(Moni , si )(Mon j , s j ) ∨ (Dimk, si ){si = s j }

is computationally equivalent with the following Promela code:

inline MonomerMonomer () {
skip;
d_step {

int x, y, foundX , foundY;
bool found;
found = false;

for(x: 0.. MaxMonCount - 1) {
for(y: 0.. MaxMonCount - 1) {

if
:: !found && Mon[x]. isConsumed == false && Mon[y].

isConsumed == false && Mon[x].
sector == Mon[y].

sector && x
!= y ->

found = true; foundX = x; foundY = y;
:: else -> skip;
fi; } }

if
:: found ->

createNewDim(Mon[foundX ]. sector);
Mon[foundX ]. isConsumed = true;
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Mon[foundY ]. isConsumed = true;
:: else -> skip;
fi;
skip; } }

Another well-suited Promela feature for E. coli modelling is the nondeterministic
control statement. Throughout the model, nondeterministic guarded commands are
used for simulating random molecule assignment to regions, molecule movement
and reaction triggering. For instance, the change in position of Fnr dimer molecules
are modelled using the following macro definition:

inline moveDim () {
int index;
for(index: 0.. MaxDimCount - 1) {

if
:: Dim[index ]. isConsumed == false ->

if
:: true && Dim[index ]. sector > 0 -> Dim[index ].sector --;
:: true -> skip;
:: true && Dim[index ]. sector < MaxSectorCount -> Dim[index

]. sector \,+\,+;
fi;

:: else -> skip;
fi; }

index = 0; }

All the above macros are wrapped up in a scheduler process which is responsible
for evolving the system from an initial configuration to a final one, with respect to a
predefined number of steps. At each step, random molecule movement and reaction
triggering is issued in order to simulate the nondeterministic behavior of E. coli
components.

8.6.3 Simulation Results

In this subsection we provide some simulation results obtained for the Event-B and
Promela models of E. coli, by comparison with the FLAME simulation results.

The number of molecules of type X is denoted as noX . As for the FLAME model,
the initial values of the molecules are: noDim = 150, noMon = 1, noB Dim =
noBSite = 35, noCyd = noCyo = 200. In these conditions, ProB can be used
to simulate the events corresponding to the reactions in the cell at different levels of
oxygen. Figure 8.3 provides an average of simulation results for 100 molecules of
oxygen over 800 iterations. Although the current limitations of ProB do not allow
us to simulate more steps in the evolution of the Event-B model, Fig. 8.3 shows a
similar variation of the molecule numbers for both models. The small differences
between the two graphs are due to the approximations made in the kernel P system
model.

Besides the Event-B simulations, a series of simulations have been conducted
using the Promela model and Spin model checking tool, using the same initial con-
figuration of molecule numbers and different levels of oxygen. The trend of molecule
numbers was similar as for the simulations conducted using the Event-B and FLAME
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Fig. 8.3 Trend of molecule numbers with 100 oxygen molecules over 800 iterations: in Event-B
(left) and in FLAME (right)

models. However, compared to ProB, Spin was able to run more iterations and per-
formed better in terms of execution time and memory requirements.

8.6.4 Verification Results

We present now the different properties that we verified, mainly checking how the
number of different molecules evolves during the cell reactions.

We start again with the Event-B model and ProB model checker. In the Event-
B model, we introduced variables counting the number of molecules of each type,
denoting again with noX the number of molecules of type X . Initially, we considered
noOxy = noCyd = noCyo = 100, noMon = 1, noDim = 75, noBdim =
noBSites = 18.

Properties verified with ProB can be formulated using the LTL (linear temporal
logic) formalism. We give some of these properties and the result given by the model
checker in the following:

• G{noMon < 3 or state = Crash}; the model checker returns a counterexample
so, in some situations, a dimer is divided in two monomers before reaching the
state Crash.

• G{noMon < 7 or state = Crash}; no counterexample found, so the insertion
rate of oxygen in the second compartment is very low.

• G{noBdim > 17}; the model checker returns a counterexample so the bounded
dimers are sometimes involved in reactions.

Unfortunately, the current limitations of ProB do not allow us to verify more
complicated properties or to increase the number of molecules of each type. Our
future work will concentrate on improving these aspects. All the above properties
were also verified with Spin, obtaining the same results. More than that, as we see
below, the results obtained with the Spin model checker compensate for some cases
not tackled by ProB.

In Spin, we have also used LTL to specify the investigated properties. In order
to conduct the verification, we must take into account that the base model is a kP
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system and the properties must be verified in the context of a P system state, after
the maximally parallel application of the rules in each compartment, and not in
every state of the Promela model. In order to accomplish this, a special boolean
variable, called isPSystemStep, is used for identifying P system states. This variable
is included in the LTL formulae in order to instruct Spin to consider only states where
the configuration reaches a relevant point in the system execution.

The following investigations have been conducted using an initial configuration
of noCyo = 200, noCyd = 200, noDim = 150, noMon = 1, noBdim = 35,
noBSites = 35, and the number of oxygen molecules varying between 100, 200
and 300, aiming to verify the relation between the number of different molecules and
the evolution of the system after some key points in the reaction process:

• F (is P SystemStep and nr Oxy = 0) − using an initial configuration of noOxy =
100, after 500 steps, noOxy will eventually decrease to 0.

• G ((is P SystemStep and noMon ≤ 2 ⇒ noDim) or !is P SystemStep) − with
initial noOxy = 300, after 500 steps, the number of Fnr monomers will be at most
half the number of Fnr dimers.

• G (!(noOxy = 0 and prevNoOxy = 0) or noMon ≤ prevNoMon or
!is P SystemStep) − after the point when noOxy = 0, no Fnr monomers will
be produced, with an initial value of nr Oxy = 100 and 200 execution steps.

• G (!(noOxy = 0 and prevNoOxy = 0) or noBSites ≤ prevNoBSites or
!is P SystemStep) − with an initial configuration of nr Oxy = 100 and 200
execution steps, no more binding sites will become available after the point when
noOxy = 0.

• G (!is P SystemStep or !(noOxy = 0 and prevNoOxy = 0 and noBSites = 0 and
prevNoBSites = 0) or noB Dim = prevNoB Dim) − after reaching the state
when noOxy = 0 and noBSites = 0, the number of bounded dimer molecules will
remain unchanged, for an initial noOxy = 200, and 1,000 execution steps.

• G (!is P SystemStep or !(noOxy = 0 and prevNoOxy = 0) or noB Dim ≥
prevNoB Dim) − using initial 100 oxygen molecules, after 200 steps, the num-
ber of bounded dimer molecules will remain the same or at most increase, after
reaching the state when noOxy = 0.

• G (!is P SystemStep or (noOxy = 0 ∨ F (noB Dim = 70 and is P SystemStep)))
− for the given configuration, all the existent binding sites will eventually become
occupied, after the point when all the oxygen will be consumed, for initial noOxy
= 100 and 1,000 execution steps.

For the set of properties for which a counterexample was issued, the verification
time was up to 3 minutes. On the other hand, for the remaining properties, the time
varied between 30 and 40 minutes, depending on the number of iterations and the
complexity of the property.

The previous results were obtained by running the models on an Intel Xeon CPU
with a speed of 2.4 GHz and 8 GB of RAM.
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8.6.5 Event-B Versus Promela

As detailed in the previous subsections, the conducted simulations and verifications
were supported by modelling the E. coli processes into Event-B and Promela formal
specification languages and taking advantage of their mature tool support, Rodin and
Spin, respectively. Despite both providing powerful modelling capabilities, the two
languages are basically very different in their modelling approaches. Event-B models
are abstract state machines in which transitions between states are implemented as
events. An event is a state transition which is specified in terms of guards and actions.
Guards are necessary conditions for an event to be enabled. Actions describe how the
occurrence of an event modify some of the variables of the model. On the other hand,
Promela provides a powerful set of instructions for describing concurrent processes
and inter-process communications.

Each model takes advantage of its corresponding language constructs for imple-
menting the necessary functionality. Having a formalism based on the set theory, the
Event-B model uses functions, sets and set operators as building blocks for specify-
ing the molecule evolution rules. The Promela model implements the corresponding
functionality as a scheduling process for synchronizing and running a maximum
number iterations for evolving the E. coli molecules starting from a given initial
configuration. The non-deterministic conditional and cycling instructions available
in Promela recommends it as a suitable specification language for modelling the
non-deterministic behavior of the different molecules.

Despite the fact that both languages proved suitable modelling capabilities for
in-silico E. coli simulations, the verification and simulation tasks performed better
in case of Spin in terms of complexity of the properties being verified, memory and
time, recommending it once again and increasing the confidence for being a leading
model checking tool in its class.

8.7 Conclusions

A constant concern of biologists, the bacteria E. coli has an interesting behavior
in relation to the level of oxygen in the environment. In this chapter, we built a
(simplified) kernel P system model based on the FLAME model of E. coli and we
complemented simulations with formal verifications that can check various patterns
of behaviour on the model. For instance, such verification can provide “sanity checks”
on the model, which should increase the confidence of modellers and biologists that
the models behaves as expected. Then, the kernel P system was implemented in two
modelling languages, Event-B and Promela, and simulation results show that the kP
system is consistent with the original FLAME model. Using the two implementations
and the associated model checkers, several properties, formulated using the LTL
formalism, were verified. Event-B proved to be more convenient for modelling, while



8 Modelling and Analysis of E. coli Respiratory Chain 265

Spin was more efficient for simulation and verification. The models and results used
in this chapter are uploaded on the web page of the MuVeT project [2].

In order to complement our approach, we are currently investigating invariant
property generation (using a tool called Daikon), which should help biologists to
build a good list of properties to be verified on the model, thus increasing the quality
of the used model. Our future work will also concentrate on finding strategies to
verify more complicated properties using the model checkers, developing the model
by adding the ArcBA molecules, and applying similar methodology to other biological
entities.
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266 A. Ţurcanu et al.

19. M. Gheorghe, F. Ipate, R. Lefticaru, C. Dragomir, in Proceedings of CMC’10, An integrated
approach to P systems formal verification, (ProBusiness Verlag, Heidelberg, 2010), pp. 225–
238

20. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Turcanu, L. Mierla, L. Valencia
Cabrera, F.M. Garcia-Quismondo, 3-Col problem modelling using simple kernel P systems.
Int. J. Comput. Math. 90(4), 816–830 (2013)

21. A. Hinton, M. Z. Kwiatkowska, G. Norman, D. Parker, in Proceedings of TACAS’06. PRISM:
a tool for automatic verification of probabilistic systems, vol. 3920 of LNCS (Springer, Hei-
delberg, 2006), pp. 441–444

22. M. Holcombe, X-machines as a basis for dynamic system specification. Softw. Eng. J. 3(2),
69–76 (1988)

23. M. Holcombe et al., Modelling complex biological systems using an agent-based approach.
Integr. Biol. 4, 53–64 (2012)

24. G. Holzmann, The model checker SPIN. IEEE Trans. Softw. Eng. 5(23), 279–295 (1997)
25. F. Ipate, T. Balanescu, P. Kefalas, M. Holcombe, G. Eleftherakis, A new model of communi-

cating stream X-machine systems. Rom. J. Inf. Sci. Technol. 6(1–2), 165–184 (2003)
26. F. Ipate, R. Lefticaru, L. Mierla, L. Valencia Cabrera, H. Han, G. Zhang, C. Dragomir, M. J.

Pérez-Jiménez, M. Gheorghe, in Proceedings of BIC-TA’13. Kernel P systems: applications
and implementations, vol. 202 of Advances in Intelligent Systems and Computing (Springer,
2013), pp. 1081–1089

27. F. Ipate, R. Lefticaru, C. Tudose, Formal verification of P systems using SPIN. Int. J. Found
Comput. Sci. 22(1), 133–142 (2011)

28. F. Ipate, A. Turcanu, in Proceedings of BWMC9. Modelling, verification and testing of P
systems using Rodin and ProB, (Fénix Editora, Seville, 2011), pp. 209–220

29. M. Kwiatkowska, G. Norman, D. Parker. Symbolic Systems Biology, chapter Probabilistic
Model Checking for Systems Biology. (Jones and Bartlett, 2010), pp. 31–59

30. M. Leuschel, M. Butler, ProB: an automated analysis toolset for the B method. Int. J.
Softw.Tools for Technol. Transf. 10(2), 185–203 (2008)

31. A. Obtulowicz, G. Paun, (In search of) Probabilistic P systems. Biosystems 70(2), 107–121
(2003)

32. I. Pérez-Hurtado, L. V. Cabrera, M. J. Pérez-Jiménez, M. A. Colomer, in Proceedings of BIC-
TA’10. MeCoSim: a general purpose software tool for simulating biological phenomena by
means of P systems, (IEEE Xplore, 2010), pp. 637–643
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