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Abstract Surrogate-based optimization and efficient global optimization in
particular, is considered for aerodynamic design and analysis to deal with some of
the drawbacks of classical direct optimization methods. Design of Experiment meth-
ods, optimization algorithms, various surrogate modeling methodologies, adaptive
sample refinement strategies, multiple criteria for terminating the refinement pro-
cedure and several other techniques, are developed and integrated into a practical
optimization framework. To search the design space globally and efficiently, sev-
eral adaptive sample refinement strategies are studied and compared. Two test cases,
minimizing the drag of a NLF0416 airfoil with ten design variables and optimizing
the performance of a laminar profile with 26 design variables at two design points,
are performed. The results indicate that the developed optimization methodology in
combination with the adaptive sample refinement strategies features a good balance
between global exploration and local exploitation. Additionally, the effect of differ-
ent design points on the objective function can be automatically considered in the
refinement procedure.

1 Introduction

Aerodynamic optimization usually deals with problems with multiple design vari-
ables and/or multiple objectives. Thus, the objective function may show highly non-
linear behavior and/or have multiple optima. It is a challenge to find the global
optimum for such problems efficiently. Classical direct optimization methods, such
as gradient-based methods, are efficient in searching the design space but search
locally, while evolutionary algorithms are capable of finding the global optimum at
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the expense of a considerable amount of expensive CFD computations. Surrogate-
Based Optimization (SBO) [1], on the other hand, and the Efficient Global Optimiza-
tion (EGO) [2] method in particular, provides an alternative to overcome some of the
drawbacks of the other optimization methods, but relies on additional techniques.

At DLR, a surrogate-based optimization framework has been developed in Python
based on an existing framework for classical optimization, called Pyranha [3]. Dif-
ferent enabling techniques, such as DoE methods, sample refinement strategies and
criteria for terminating the refinement have been developed and integrated into the
framework together with several other modules, including the DLR toolbox for sur-
rogate modeling [4], the in-house tools GenGeo and MegaCADs [5] for geometry
parameterization, and the DLR TAU code [6] for flow simulation.

Two test cases, minimizing the drag of aNLF0416 airfoil with ten design variables
at constant lift and optimizing the performance of a laminar profile at two design
points, were carried out to evaluate and compare different refinement strategies with
respect to efficiency and accuracy.

2 Surrogate-based Optimization

Aswas stated above, surrogate-based optimization depends on several enabling tech-
niques, which are briefly introduced in the following.

2.1 Design of Experiment Methods

Modern Design of Experiment (DoE) methods use certain mathematical algorithms
to generate samples within the design space in an optimal way to gain as much
information of the objective function as possible from a given number of samples. A
certain number of samples are required for constructing an initial surrogate model.
The choice of the samples has an obvious effect on the efficiency and accuracy of the
surrogate-based optimization chain, because sparsely or badly distributed samples
may lead to a surrogate model that is not globally accurate or depicts a fake landscape
of the design space, which could result in premature convergence to the region with
a local optimum or a huge amount of expensive high-fidelity computations in the
sample refinement procedure. The Random Latin Hypercube Sampling [7] (RLHS),
theOptimized Latin Hypercube Sampling [8] (OLHS) and the Transport Propagation
LatinHypercube Sampling [9] (TPLHS)were integrated into the framework, because
the number of samples is independent of the number of variables, and the random
samples can be taken one each time.
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2.2 Optimization Algorithms

The optimization methods in the framework consist of gradient-free methods (Sim-
plex/Subplex), three gradient-based optimizers (Conjugate Gradient method (CG),
Steepest Descent method (SD), the Newton method), and the Differential Evolution
algorithm (DE). Out of those methods, only the DE is a global optimizer.

For classical direct optimization, i.e. by directly evaluating the objective function
using a high-fidelity flow solver, gradient-based optimizers are usually the best choice
because of their high efficiency, but they search locally. In comparison, the DE is
favored for its global search characteristics at the expense of a considerable amount
of CFD computations. SBO is a good alternative to overcome some drawbacks of the
other optimization methods, because it is much cheaper to approximate the objec-
tive(s) on the constructed surrogate model, provided that the surrogate model is accu-
rate enough. The classical optimization methods are also used to select infill samples
in order to improve the accuracy of the surrogate model both locally and globally.

2.3 Surrogate Modeling

Surrogate modeling is a mathematical approach to approximate the objective at an
unobserved location using observations nearby, or to analyze the trendof the objective
function, or to evaluate the correlation between the objective function and the design
variables. In SBO, it is used to predict the objective function instead of the high-
fidelity solver. Here, the DLR surrogate modeling toolbox was integrated into the
framework for SBO, including different Kriging models: Simple Kriging, Ordinary
Kriging, Universal Kriging, Regression Kriging and Gradient-Enhanced Kriging. A
detailed description of Kriging can be found in the reference [10].

2.4 Sample Refinement Strategies

Adaptive sample refinement is the key technique in SBO due to its decisive effect on
the efficiency of SBO and the local and global accuracy of the surrogate model. The
EGO algorithm adaptively refines the design space by maximizing the (constrained)
Expected Improvement Function (EIF). It evaluates the potential improvement of
the objective function on the surrogate model by balancing the probability that the
objective at any location in the design space will fall below the current minimum
and the model error there. However, in the developed optimization framework, the
objective function on the surrogate model, as well as the Kriging error, were also
optimized to select infill samples to improve the accuracy of the surrogate model.
These are standard sample refinement strategies, calledEI-based,Cost-based andKE-
based refinement respectively. Besides, different combinations of the three standard
refinement strategies were developed to enhance the accuracy of the surrogate model
both locally and globally. In addition, multiple infill samples can be selected in each



56 C. Li et al.

Fig. 1 Flowchart of SBO
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refinement cycle, e.g. by running a local optimizer in turn with different starting
points when maximizing the EIF. The computation of multiple infill samples per
refinement cycle with the flow solver can be performed in parallel to improve the
efficiency of the optimization chain.

In case the geometry of an infill sample is infeasible or the CFD computation fails
due to convergence, the objective of the infill sample is approximated by interpolating
the objective on surrogate model plus considering model error. Thus, the refinement
becomes robust, because the surrogate model can always be updated.

To deal with problems with multiple design variables or with multiple optima,
for which the convergence of the refinement procedure to the optimum may slow
down and the local accuracy of the surrogate model is difficult to be guaranteed,
the range of the design space can be decreased after a given number of refinement
cycles. This tends to enhance the surrogate model locally in a region where the global
optimummay exist and saves computational time by reducing the number of samples
used to construct surrogate models. The refinement procedure can be controlled and
terminated based on different criteria, e.g. by specifying the maximum number of
refinement cycles or a tolerance for the maximum expected improvement on the
surrogate model. Properly tuned criteria can guarantee an effective refinement of
the design space and a better optimum as well. The flowchart of the efficient global
optimization method is shown in Fig. 1.
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Table 1 Settings of the refinement strategies

Cases DoE Settings of the refinements (The Optimizers for refinement
(RLHS) number stands for refinement

cycles) EI KE Cost

Pure EI 20 (EI) (0 ∼ 100) DE
Hybrid 20 (EI+KE) (0 ∼ 50)+ (EI+Cost)

(51 ∼ 100)
DE+CG DE CG

Enhanced 20 (EI+KE) (0 ∼ 20)+ (EI+Cost)
(21 ∼ 30)+Start shrinking
design space+
(EI+Cost)(31 ∼ 35)+ (Cost)
(36 ∼ 50)

DE+CG (2
start. pts.)

DE CG (2 start.
pts.)

3 Test Cases

3.1 Optimization of a NLF0416 Airfoil with 10 Design Variables

The first test case was performed to evaluate the behavior of different sample refine-
ment strategies. The geometry to be optimized is the NLF0416 airfoil. The flow
conditions were a Mach number of 0.1 and a Reynolds number of 2.0e6. The DLR
TAU RANS solver combined with the Spalart-Allmaras turbulence model was used
and the transition points were predicted using the eN -method (N = 8). The geometry
was parameterized with 10 Hicks-Henne bump functions using the in-house para-
meterization tool GenGeo. During optimization, and hybrid unstructured grid with
40,466 mesh points was deformed using Radial Basis Functions (RBFs). Regression
Ordinary Kriging was used to construct surrogate models for its robustness. The
objective function is described by

min cd s.t. cl,target = 0.72 (1)

The settings of the refinement strategies are shown in Table 1. Different opti-
mization results in Table 2 indicate that SBO is a global optimization method and is
more efficient than the Subplex. In addition, the hybrid refinement strategy is able
to enhance the local region of the surrogate model more efficiently than the standard
EI-based refinement. Although the optimum obtained with the hybrid refinement
strategy is slightly better than that using the enhanced hybrid refinement strategy, the
latter is more efficient if the infill samples are computed in parallel in each refinement
cycle. Figure 2 compares pressure distributions of the optimized geometries with that
of the baseline. The Subplex is seen to have extended the laminar extensions on the
upper surface, while the SBOs resulted in longer laminar extensions on the upper
surfaces.
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Fig. 2 Comparison of pres-
sure distributions
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3.2 Optimization of a Korn Airfoil at Two Design Points

The goal of the second test case is to validate if the SBO framework can efficiently
handle multiple design variables and multiple design points. The baseline geometry
is the Korn airfoil with the thickness of 15% of the chord. The freestream conditions
at the two design points are aMach number of 0.66 and a Reynolds number of 1.45e7,
and a Mach number of 0.4 and a Reynolds number of 1.2e7, respectively. The DLR
TAU RANS solver combined with the Spalart-Allmaras turbulence was used and the
transition points were predicted using the eN -method (N = 11.5). The geometry
was parameterized with 26 Bezier bumps using the in-house parameterization tool
GenGeo. The structured baseline grid with 46,800 mesh points was generated by
an in-house structured mesh generator. Regression Ordinary Kriging was chosen
to construct surrogate models. To obtain better performance at the maximum cruise
velocity as well as at the maximum climb velocity, the objective function was defined
as

thickness ≥ 0.150115

min
(
cd,design point 1 + cd,design point 2

)
s.t. cl,target,design point 1 = 0.24 (2)

cl,target,design point 2 = 0.44

As there was no previous knowledge of the optimum, the optimization was carried
out in two steps: in the first step, SBO was performed based on the baseline Korn
airfoil; in the second step, SBO with the same settings was performed, using the
optimized geometry from the first step as the baseline.
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Table 3 Settings of the refinement strategies

Cases DoE Settings of the refinements (The Optimizers for refinement
(RLHS) number stands for refinement

cycles) EI KE Cost

Enhanced 39 (EI+KE+Cost) (0 ∼ 100)
Start shrinking design space
after 70 cycles

DE+CG
(3 start. pts)

DE CG (3 start. pts)

Table 4 Results for optimizing the Korn airfoil at two design points

Design point 1: M= 0.66, cl,target= 0.24, Re= 1.45 × 107.

Profile cl cd (d. c.) cdp(d. c.) cDv(d. c.) cm xtrU xtrL

Korn 0.24 63.18 21.72 41.45 0.13736 0.250 0.248
SBO 0.24 34.35 9.97c 24.39 0.10071 0.635 0.612
LC2 0.24 34.49 10.02 24.88 0.08984 0.584 0.658

Design point 2: M= 0.40, cl,target= 0.44, Re= 1.20 × 107

Korn 0.44 70.44 21.60 48.82 0.11390 0.130 0.352
SBO 0.44 34.93 9.96 24.97 0.08702 0.659 ∼ 0.647 0.633 ∼ 0.623
LC2 0.44 37.17 10.65 26.52 0.07790 0.599 0.670

Fig. 3 Comparison of the
geometries
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The settings for the refinement strategy are shown in Table 3. The results from
SBO are compared with those of the baseline geometry from the inverse design
(coined LC2 [11]) in Table 4. Figure 4 shows that the thickness distributions of
LC2 and the optimized geometry are similar, while the camber distributions are
somewhat different. Figure 5 indicates that the optimized geometry features a little
longer laminar extension on the upper surface, but a little shorter laminar extension
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Fig. 4 Comparison of the thicknesses and cambers
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Fig. 5 Comparison of pressure distributions at two design points

on the lower surface in comparison with LC2. Small pressure peaks are seen to arise
around the leading edge of the optimized geometry due to the parameterization and
the baseline geometry. Figure 6 compares the polars of the baseline, the optimized
geometry and the LC2. The optimized geometry has lower drag between the two
design points than LC2, while the low drag buckets of LC2 are wider. In the opinion
of the author, this is due to the described pressure peaks, which grow fast as the angle
of attack increases outside the design range, for it can cause the transition point to
quickly move to the leading edge, which results in a sharp increase of the drag.
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Fig. 6 Comparison of polars
of the baseline, the optimized
geometry from SBO and the
LC2
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4 Conclusions

Surrogate-based optimization (SBO) is an efficient global optimization method. Out
of different sample refinement strategies, the hybrid refinement strategy can be more
efficient in enhancing the accuracy of the surrogatemodel than the standard individual
refinement strategies. The enhanced hybrid sample refinement outperforms others
due to its good balance in the local exploitation and the global exploration of the
design space. The developed optimization methodology can evaluate the effect of
different design points automatically during the refinement.

Despite this, the optimization method shows limitations of setting the design
boundaries of the design space in case that no previous knowledge of the optimum is
available. Further studies are needed to determine when and how to shrink the design
space more effectively.
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