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Abstract We performed Direct Numerical Simulations (DNS) and Large Eddy
Simulation (LES) of turbulent mixed convection in the minimal flow unit. DNS
of turbulent isothermal channel flow have been conducted to demonstrate the pre-
dictive capability of the second order accurate finite volume method we used. For
the mixed convection case we obtained that the turbulence intensity increases due
to bouyancy. Consequently, we reduced the spanwise width of the domain to show
that turbulence can be sustained for mixed convection. Additionally, we launched a
LES of mixed convection with the dynamic Smagorinsky model. The obtained LES
results agree well with the corresponding DNS data.

1 Introduction

Research on wall-bounded turbulent flows is of considerable interest for many
technological applications. It is also well known that the improved understanding
of the transport phenomena closed to walls are of major importance for development
of more sophisticated turbulence models. Various researchers summarized the exper-
imental and numerical results of the last years on this subject in annual reviews.Most
cited and with the largest impact on research on this subject were [1] and [2]. For
the latest review on this topic the reader is referred to [3]. One major issue of these
reviews are the development of coherent structures in the turbulent boundary layer.
They are found in the viscous sublayer and buffer regions, where the bulk of the
near-wall turbulence-production takes place [4]. In channel flows, these structures
are alternating narrow streaks of fluid, which move at different speeds in streamwise
direction [2]. Fluid from low-speed streaks is transported into the outer region while
high-speed streaks receive fluid from the wall-distant zone.
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In order to understand the complex interactions between coherent structures,
Jiménez and Moin [5] (hereafter, JM) made several Direct Numerical Simulations
(DNS) of turbulent channel flows in different narrow boxes. The idea was to isolate a
single low-speed streak in a minimal channel. They have shown that there is minimal
set of span- and streamwise widths, in which a turbulent boundary layer can be sus-
tained. An interesting result was that the low-order statistics are in good agreement
to those of DNS in the “full” channel in the regions close to the walls, although the
minimal box seemed to be too small to adequately represent the turbulent flow in
the region away from the wall. Furthermore, it turned out that there are active and
passive periods, in which the turbulent boundary layer relaminarizes at one wall of
the minimal channel. Indeed, this characteristic was not seen during experimental
investigations so far. As they decreased the size of the spanwise width further, they
observed the decay of the whole turbulent channel flow to a laminar state.
JMvalidated this simulations based on a study of the empirical correlation between

the wall shear stress and the bulk velocity in channel flows by Dean [6]. The latter
predicts that the size of the coherent structures decreases with increasing wall shear
stress, while the turbulence production is considerbly enhanced. In this regard several
reports (e. g. [7, 8]) point out that buoyancy severelymodifies the shear stress inmixed
convection. Thus, the primary objective of this work is to obtain and analyse results
of turbulent mixed convection in the minimal flow unit and to show if a turbulent
flow in a domain smaller than that of JM can be sustained. Finally, results of LES
are compared with those of DNS of turbulent mixed convection.

2 Governing Equations and Numerical Method

2.1 Direct Numerical Simulations

The finite volume method solves the time-dependent, incompressible governing
equations based on the Boussinesq approximation. They read:
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For space discretization, second-order central differencing is used for all terms.
The second-order implicit Crank-Nicolson scheme is used for time discretization.
The discretized pressure and velocity fields are coupled with a PISO algorithm [9].
A sketch of the minimal flow unit and the coordinate system is illustrated in Fig. 1.
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Fig. 1 Geometry of the
computational domain with
periodic boundary conditions
in x- and z-direction
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The boundary conditions in both the stream- and spanwise directions are periodic,
while top and bottom boundaries are physical walls with no-slip and impermeability
conditions. Additionally, the walls temperature is prescribed values TH = 274.9K
and TC = 271.4K, respectively. Throughout this chapter we will use the ther-
modynamic properties of air for all fluid simulations, i. e. the kinematic viscosity
ν = 1.35e − 5m2/s, the thermal diffusivity κ = 1.898e − 5m2/s, the density
ρ = 1.276 kg/m3 and the thermal expansion coefficient α = 3.674e − 3K−1. The
buoyancy force acts in wall-normal direction, as well as the gravitational accel-
eration g. In order to maintain a constant volume flux in the channel flow, we
use a forcing function F in the x-direction in the momentum equations. It repre-
sents a streamwise mean pressure gradient that needs to be updated at each time
step to maintain a prescribed volume flux. The Reynolds number characterising the
flow is Re = umδ/ν = 2000 according to JM, where δ = 0.18m is the chan-
nel half width and um the volume averaged velocity. Thus, for the Grashof number
Gr = αgδ3�T/ν2 = 4e6, we get an Archimedes number of Ar = Gr/Re2 = 1. As
a result of the additionally acting buoyancy force, the wall shear stress is different
on both walls. Thus, the friction velocity uτ = √

τw/ρ and the friction Reynolds
number Reτ = uτ δ/ν are the averaged values of the hot and cold wall. In order to
define the computational grid, we used the empirical approximation of Pope [10] to
predict the friction Reynolds number Reτ = 0.09 (2Re)0.88. The calculated value
of Reτ = 133 applies to an isothermal simulation. For the simulations of mixed
convection the resulting friction Reynolds number is expected to be higher. There-
fore, for these simulations we used a even finer grid with a spatial resolution of
�x+ = 4 and �z+ = 2 in streamwise and spanwise directions, respectively. The
grid is refined in the wall-normal direction, such that the first node at the wall is
located at y+

w = 0.1 and the central spacing is�y+
c = 2.5. Here, the “+” superscript

denotes wall units �x+
i = uτ�xi/ν. The physical domain size (Lx × L y × Lz) was

set to π δ × 2 δ × δ with a 108 × 136 × 68 grid. As initial condition, we used
an instantaneous flow field produced in a DNS of a fully developed turbulent flow
of a “full” channel. Before statistical averaging was started, all simulations were
processed until no remarkable change in general flow behaviour and the low-order
statistical moments was observed. Additionally, we simulated a isothermal turbulent
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channel flow in the minimal box of JM to analyse the predictive capabilities of the
used finite volume method. For the latter simulation, the momentum Eq. (2) were
decoupled from the energy Eq. (3) by setting the buoyancy term to zero.

2.2 Large Eddy Simulations

The following governing equations for the LES are formally obtained by
tophat-filtering Eqs. (1)–(3) using a filter widthwhich corresponds to the grid spacing
of the coarser LES grid.
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= 0 (4)
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where τi j = ũi u j − ũi ũ j and h j = ˜u j T − ũ j ˜T are the subgrid-scale (SGS) stress
tensor and the subgrid-scale heat flux (HF) vector, respectively. These two terms
take into account the effect of SGS turbulence and need to be modelled to close the
system of governing equations.
We used the dynamic process introduced by Germano [11] and Lilly [12], together

with Smagorinsky model [13]. The dynamic Smagorinsky model is known for its
features of self-calibration, is free from empirical constants and artificial near-wall
damping functions and allows for some backscattering of turbulent kinetic energy
from the subgrid-scales to the grid scales. It models the trace-free SGS stress tensor
with a function of the resolved strain rate tensor˜Si j : τi j −τkk/3 δi j = −2CS˜�2|˜S|˜Si j

where ˜Si j = (∂ ũi/∂x j + ∂ ũ j/∂xi )/2, |˜S| = (2˜Si j˜Si j )
0.5 and ˜� is the filter width.

Following the procedure of [12]weminimize the residual of theGermano identity and
obtain CS = −(Mi j Li j )/(Mi j Mi j ). This equation introduces the resolved Leonard
type stress Li j = 〈̃ui ũ j 〉 − 〈̃ui 〉〈̃u j 〉 and a differential tensor Mi j = αi j − ˜βi j

with αi j = 2〈˜�〉2|〈˜S〉|〈˜S〉i j and βi j = 2˜�2|˜S|˜Si j . The dynamic model relies on
two different filtering operations based on which the model coefficient CS can be
determined. The finer filter is the implicit grid filter (∼) and the coarser filter is
the so called test-grid filter (<>). In order to avoid negative values for CS , we
applied spatial plane and time averaging of the model coefficient CS . The dynamic
HF model is based on the eddy thermal diffusivity concept in analogy to Fourier’s
law and was introduced by [14]. It reads: h j = −κt ∂˜T /∂x j = −νt/Prt ∂˜T /∂x j =
−Pr−1

t CS˜�2|˜S|∂˜T /∂x j . Here, the SGS eddy thermal diffusivity is κt , the SGS eddy
viscosity is νt and the SGS Prandtl number is the fixed value Prt = 0.5 as proposed
by [14]. The LES was performed on a coarser grid, with 21 × 88 × 13 points in
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Fig. 2 a Mean velocity profile in wall coordinates: DNS (blue line) and JM (red circles). b Root-
mean-square (rms) velocity fluctuations in wall coordinates: DNS (blue line) and JM (red circles).
Isosurfaces of instantaneous streamwise velocity component c (ux = 0.1m/s) and streamwise
velocity fluctuations d (u′

x = 0.025m/s and u′
x = −0.025m/s)

the x-, y- and z-directions, respectively. Since the domain size was maintained the
realized spatial resolution is �x+ = 30, �z+ = 15, y+

w = 0.5 and �y+
c = 15,

respectively.

3 Results

3.1 DNS of Isothermal Channel Flow

In order to demonstrate the reliability and of the applied second-order accurate finite-
volume method used, we simulated turbulent isothermal channel flow in the minimal
flow unit of JM. The generated mean streamwise velocity and turbulence intensities
profiles in wall coordinates are presented in Fig. 2. Note that the quantities with the
(+) superscript are normalized with the friction velocity uτ . In Fig. 2a, the mean
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velocity profile agrees well with the JM data. Furthermore, the profiles of the rms
velocity fluctuations shown in Fig. 2b are in good agreement with the JM data as
well. There are only small discrepancies in the rms value of the streamwise velocity
component in the buffer layer. To demonstrate that the coherent structure discussed
above is obtained in the considered minimal flow unit, we illustrated such a structure
with isosurfaces of the instantaneous velocity field obtained for some time step in
Fig. 2c. We observe one single low-speed streak in the minimal flow unit, which
organizes the production of turbulence. The field of velocity fluctuations which is
computed by subtracting the mean streamwise velocity component from the instan-
taneous field shown Fig. 2c is visualized in Fig. 2d. It can be seen that the low-speed
streak is surrounded by streaks of high-speed fluid.

3.2 DNS of Mixed Convection

As mentioned above a higher wall shear stress is obtained for turbulent mixed
convection. This leads to a increased friction Reynolds number Reτ = 191. Thus the
realized spatial resolution in wall units of the DNS of mixed convection reduces to
�x+ = 5.7, �z+ = 2.9, y+

w = 0.14 and �y+
c = 3.6, respectively. The predicted

mean streamwise velocity, shown in Fig. 3a, agrees well with the law of the wall in
the viscous sublayer. Though, farther away from the wall the streamwise velocity
values are lower due to the higher turbulence intensity obtained for mixed convec-
tion as shown in Fig. 3b. Contrary to the isothermal case, the wall-normal velocity
fluctuations are much higher far away from the wall. The corresponding mean tem-
perature profile and the rms temperature fluctuations are presented in Fig. 3c and d,
respectively. These graphs show that a turbulent thermal boundary layer develops
close to the wall where the mean temperature values θ = (T − Tm)/�T signifi-
cantly deviate from the center temperature Tm = (TH + TC )/2 as the peaks in the
rms temperature fluctuations reveal. In the middle of the channel the rms tempera-
ture fluctuations decrease to a minimum. In order to demonstrate that the size of the
coherent structures has reduced due to the increased wall shear stress, isosurfaces of
the streamwise velocity are presented in Fig. 4a and b. Note, that the scales of Fig. 4a
and b are the same as the one of Fig. 2c and d, respectively. The comparison reveals
that smaller scales develop for mixed convection which underlines the enhancing
effect of buoyancy. In this respect the streaks became thinner and shorter than the
single streak observed for the isothermal case. We also performed a number of addi-
tional DNS of turbulent mixed convection for which we successively reduced the
size of the spanwise width of the domain. The result was that we obtained a turbulent
channel flow up to a spanwise width λ+

z = 38.2 (i. e. Lz = 0.2δ).
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Fig. 3 a Mean velocity profile in wall coordinates: mixed (green line) and JM (red circles). b
Mean turbulent rms velocity fluctuations in wall coordinates (green line) and JM (red circles). c
The normalized mean temperature profile in global coordinates. d Mean turbulent rms temperature
fluctuations in global coordinates
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Fig. 4 Coherent structures in mixed convection visualized using isosurfaces of the instantaneous
streamwise velocity component in a (ux = 0.1m/s) and the streamwise velocity fluctuations in b
(u′
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Fig. 5 a Mean velocity profile in wall coordinates: DNS (green line) and LES (violet line). b The
normalized mean temperature profile in global coordinates: DNS (green line) and LES (violet line)

3.3 LES of Mixed Convection

The results of the LES are illustrated in Fig. 5a and b. The mean streamwise velocity
profile in Fig. 5a matches the DNS data quite well, but it slightly underpredicts
the velocity in the region far away from the wall. Fig. 5b additionally shows the
normalized temperature profile, which is underpredicted by the LES at the hot wall
and overpredicted at the cold wall. Nevertheless, the LES data obtained are in good
agreement with the DNS data.

4 Summary

In order to show that the finite-volume method, we used, is accurate enough, we
performed a DNS of a turbulent flow in the minimal flow unit for an isothermal case.
The spatial resolution realized in this DNSwas shown to be fine enough to resolve all
relevant turbulent scales. Thiswas confirmed since theDNS results are in good agree-
ment with the reference data by JM. Furthermore, we have also identified similar
coherent structures in the minimal flow unit. Since buoyancy increases the wall shear
stress, we performed a DNS of turbulent mixed convection. Analysing the results we
showed that the streaks became thinner and shorter than in the isothermal case. The
analysis of the mean flow field and rms velocity and temperature fluctuations further
revealed that buoyancy significantly enhances the production of turbulence. Conse-
quently, we performed additional DNS of turbulent mixed convection for which we
successively reduced the size of the spanwise width of the domain and still obtained
a self-sustaining turbulent flow. Finally, we conducted a LES of mixed convection
with the dynamic Smagorinsky model with spatial plane and time averaging of the
model coefficient. The comparison of DNS and LES results revealed that the mean
quantities are in good agreement.
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