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Abstract. This chapter surveys cooperative game theory as an important appli-
cation based on non-additive measures. In ordinary cooperative game theory, it is
implicitly assumed that all coalitions of N can be formed; however, this is in gen-
eral not the case. Let us elaborate on this, and distinguish several cases: 1) Some
coalitions may not be meaningful. 2) Coalitions may not be “black and white”. In
order to deal with such situations, various generalizations/extensions of the the-
ory have been proposed, e.g., bi-cooperative games, games on networks, games
on combinatorial structures. We give a survey on values and interaction indices
for these extended cooperative game theory.
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1 Introduction

Measure is one of the most important concepts in mathematics and so is the integral
with respect to a measure. They have many applications in economics, engineering,
and many other fields, and one of their main characteristics is additivity. This is very
effective and convenient, but often too inflexible or too rigid. As a solution to the rigid-
ness problem, several approaches based on non-additive measures have been proposed
in various fields. The non-additivity can represent interaction phenomena among ele-
ments to be measured.

Let N be a finite set and v a set function (non-additive measure) on 2N . Given a
subset S ⊆ N, the precise meaning of the quantity v(S ) depends on the kind of intended
application or domain [22]:

N is the set of states of nature. Then S ⊆ N is an event in decision under
uncertainty or under risk, and v(S ) represents the degree of certainty, be-
lief, etc.

N is a the set of criteria, or attributes. Then S ⊆ N is a group of criteria
(or attributes) in multi-criteria (or multi-attributes) decision making, and
v(S ) represents the degree of importance of S for making decision.

N is the set of voters, political parties. Then S ⊆ N is called a coalition
in voting situations, and v(S ) = 1 iff bill passes when coalition S votes in
favor of the bill, and v(S ) = 0 else.

N is the set of players, agents, companies, etc. Then S ⊆ N is also called
a coalition in cooperative game theory, and v(S ) is the worth (or payoff,
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or income, etc.) won by S if all members in S agree to cooperate, and the
other ones do not.

In the current chapter, we discuss and focus on cooperative games as an application
based on non-additive measures.

2 Ordinary Cooperative Game

2.1 Definitions and Several Representations of Cooperative Games

Definition 1 (cooperative game). The function v that assigns to every coalition S ⊆ N
its value or worth v(S ) is commonly referred to as the characteristic function. It is
always assumed that v(∅) = 0. A pair (N, v) consisting of a player set N and a charac-
teristic function v constitutes a cooperative game or coalitional game. These games are
also referred to as TU games, where TU stands for transferable utility (We often iden-
tify (N, v) with v). Sometimes, we want to focus on only a few of the players involved
in a cooperative game (N, v). For a coalition S ⊆ N, v|S denotes the restriction of the
characteristic function v to the player set S , i.e., v|S (T ) = v(T ) for each coalition T ⊆ S .
Then, (S , v|S ) is called a subgame of the game (N, v).

In order to avoid a heavy notation, we will often omit braces for singletons, e.g., by
writing v(i), N \ i instead of v({i}), N \ {i}. Similarly, for pairs, we will write i j instead
of {i, j}. Furthermore, cardinalities of coalitions S , T, . . . , will often be denoted by the
corresponding lower case letters s, t, . . . , otherwise by the standard notation |S |, |T |, etc.

The set of all cooperative game with player set N will be denoted by GN . The set GN

is a (2n − 1)-dimensional linear space.

Definition 2 (unanimity game). For each T ∈ 2N , the unanimity game uT ∈ GN is
defined by

uT (S ) :=

⎧
⎪⎪⎨
⎪⎪⎩

1 if S ⊇ T ,

0 otherwise.

The set {uT | T ∈ 2N \ {∅}} is a basis of the linear space GN . For any game v ∈ GN , we
have

v(S ) =
∑

∅�T⊆N

cT (v) uT (S ) ∀S ∈ 2N \ {∅},

where
cT (v) =

∑

R⊆T

(−1)|T\R|v(R) ∀T ∈ 2N \ {∅}.

Then, {cT }T∈2N\{∅} is called unanimity coefficients or Harsanyi dividends [33] of v.

Definition 3 (the Möbius transforms [56]). Let (P,≤) be a poset. For a function f :
P→ R, the Möbius transform Δ f of f is the unique solution of the equation:

f (x) =
∑

y≤x

Δ f (y) ∀x ∈ P,
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given by
Δ f (x) =

∑

y≤x

μ(y, x) f (y), x ∈ P,

where μ is the so-called Möbius function on P and given by

μ(y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if x = y,

−
∑

y≤z<x

μ(y, z) if y < x,

0 otherwise.

Now, considering a pair (2N ,⊆) as a poset and a characteristic function v : 2N → R of
cooperative game (N, v), then the Möbius transform of the game v on the poset (2N ,⊆),
is obtained as

Δv(T ) :=
∑

R⊆T

(−1)|T\R|v(R) ∀T ∈ 2N .

That is, the concept of Möbius transform fits with of Harsanyi dividends in cooperative
game theory. i.e., cT (v) = Δv(T ) for any T ∈ 2N \ {∅}. Inversely,

v(S ) =
∑

T⊆S

Δv(T ) ∀S ∈ 2N .

Here, the Möbius transform or Harsanyi dividends of cooperative games can be inter-
preted as follows:

The Möbius transform is vanishing at the empty set, its worth v(i) for every
singleton i ∈ N, while recursively, the Möbius transform of every coalition of at
least two players is equal to its worth minus the sum of the Möbius transforms
of all its proper subcoalitions. In this sense, the Möbius transform of a coalition
S can be interpreted as an extra contribution of cooperation among the players
in S that they did not already achieve by smaller coalitions.

Definition 4 (multilinear extension). Let IN be the n-dimensional unit hyper cube,
i.e.,

IN := {(x1, · · · , xn) ∈ Rn | 0 ≤ xi ≤ 1, ∀i ∈ N = {1, · · · , n}}.

The extreme points of IN are the vectors χS , S ⊆ N, where

(χS )i =

⎧
⎪⎪⎨
⎪⎪⎩

1 if i ∈ S ,

0 otherwise.

So, we notice that v ∈ GN determines a real function v̄ on the corners of Iv by

v̄(χS ) = v(S ) ∀S ⊆ N.

Hence, v̄ may be extended to IN by

v̄(x) =
∑

T⊆N

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈T
xi

∏

i∈N\S
(1 − xi)

⎞
⎟⎟⎟⎟⎟⎟⎠

v(T ) ∀x ∈ IN .
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Then, this function v̄ : IN → R is called the multilinear extension (MLE) of v. The
multilinear extension of v can also be represented via the Harsanyi dividends (Möbius
transform) as follows [53]:

v̄(x) =
∑

T⊆N

Δv(T )
∏

i∈T
xi ∀x ∈ IN .

2.2 Intuitive Representations of Importance and Interaction

In order to intuitively approach the concept of importance of each player and of inter-
action among players, consider two players i and j ∈ N. Clearly, v(i) is one of represen-
tations of importance of i ∈ N. An inequality

v(i j) > v(i) + v( j) (resp., < )

seems to model a positive (resp., negative) interaction or complementary (resp., substi-
tutive) effect between players i and j. However, as discussed in Grabisch and Roubens
[27], the intuitive concept of interaction requires a more elaborate definition. We should
not only compare v(i), v( j), and v(i j) but also see what happens when i, j, and i j join
the other coalitions. That is, we should take into account all coalitions of the form T ∪ i,
T ∪ j, and T ∪ i j. For a player i and a coalition T � i,

Δiv(T ) := v(T ∪ i) − v(T ) (1)

seems to represent an index of importance of i in T ∪ i. The equation (1) is called the
marginal contribution of a player i to a coalition T . Then it seems natural to consider
that if for T not containing i and j

Δiv(T ∪ j) > Δiv(T ) (resp., < ),

then i and j interact positively (resp., negatively) each other in the presence of T since
the presence of j increases (resp., decreases) the marginal contribution of i to T . Then

Δi jv(T ) := Δiv(T ∪ j) − Δiv(T )

is called the marginal interaction [28] between i and j in the presence of T . Note that

Δiv(T ∪ j) − Δiv(T ) = v(T ∪ i j) − v(T ∪ i) − v(T ∪ j) + v(T )

= Δ jv(T ∪ i) − Δ jv(T ).

For three players i, j, k ∈ N and a coalition T not containing i, j and k, Δ{i, j,k}v(T ) can be
naturally defined as

Δ{i, j,k}v(T ) := Δi jv(T ∪ k) − Δi jv(T ).

Then we have Δi jv(T ∪ k) − Δi jv(T ) = Δikv(T ∪ j) − Δikv(T ) = Δ jkv(T ∪ i) − Δ jkv(T ).
Moreover, for two distinct coalitions S and T ⊆ N \ S ,

ΔS v(T ) := ΔS \iv(T ∪ i) − ΔS \iv(T )
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for i ∈ S . Then ΔS \iv(T ∪ i) − ΔS \iv(T ) = ΔS \ jv(T ∪ j) − ΔS \ jv(T ) for any i, j ∈ S .
Similarly, when, for example, ΔS v(T ) > 0 (resp., <), we shall consider that players
among S interact positively (resp., negatively) each other in the presence of T.

These marginal contributions and interactions can be represented through the follow-
ing notion, discrete derivative.

Definition 5 (discrete derivative [28]). Given a game v ∈ GN and finite coalitions
S , T ⊆ N, we denote by ΔS v(T ) the S -derivative of v at T , which is recursively defined
by

Δiv(T ) := v(T ∪ i) − v(T \ i) ∀i ∈ N,

and
ΔS v(T ) := Δi

(
ΔS \iv(T )

)
∀i ∈ S ,

with convention Δ∅v(T ) := v(T ).

Proposition 1 ([18,20,28]). For any S ⊆ N, T ⊆ N \ S and v ∈ GN , the S -derivative of
v at T can be represented as follows:

ΔS v(T ) =
∑

L⊆S

(−1)|S \L|v(T ∪ L) =
∑

L⊆T

Δv(S ∪ L),

i.e.,
ΔS v(T ) =

∑

T⊆L⊆S∪T

(−1)|(S∪T )\L| v(L) =
∑

S⊆L⊆S∪T

Δv(L).

In particular, Δv(S ) = ΔS v(∅) for any S ⊆ N. Moreover, if σ is a permutation on N such
that S = {σ(1), · · · , σ(|S |)},

ΔS v(T ) =
∂|S |

∂xσ(1) · · ·∂xσ(|S |)
v̄(x)

∣
∣
∣
∣
∣
∣x=χS∪T.

where v̄ is the MLE of v.

Definition 6 (k-monotonic game [10]). Given an integer k ≥ 2, a game v ∈ GN is
said to be k-order monotone (for short, k-monotone) if and only if, for any (at most) k
coalitions S 1, · · · , S k, we have

v

⎛
⎜⎜⎜⎜⎜⎜⎝

k⋃

i=1

S i

⎞
⎟⎟⎟⎟⎟⎟⎠
≥
∑

J⊆{1,··· ,k}
J�∅

(−1)|J|+1v

⎛
⎜⎜⎜⎜⎜⎝

⋂

i∈J

S i

⎞
⎟⎟⎟⎟⎟⎠ . (2)

It is easy to verify that k-monotonicity (k ≥ 2) implies l-monotonicity for all integer
2 ≤ l ≤ k. By extension, 1-monotonicity (which does not correspond to k = 1 in Eq.
(2)) is defined as standard monotonicity, i.e.,

v(S ) ≤ v(T ) whenever S ⊆ T ⊆ N.

A game v ∈ GN is called totally monotone if Eq.(2) holds for any positive integer k.
2-Monotonic games v, i.e.,

v(S ∪ T ) ≥ v(S ) + v(T ) − v(S ∩ T ) ∀S , T ⊆ N,

are also referred to as convex games.
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The notion of k-monotonicity can be characterized through the use of discrete deriva-
tives as follows.

Proposition 2 ([10,18,20]). Let v be a game on N (i.e., v ∈ GN) and k a positive integer.
Then v is k order monotone if and only if

ΔS v(T ) ≥ 0

for any S ⊆ N and T ⊆ N \ S such as 1 ≤ |S | ≤ k.

Note: In evidence theory [58], belief functions Bel : 2N → [0, 1] have been introduced
as totally monotonic games, i.e., whose Möbius transformsΔBel, which are called “basic
probability assignments”, are non-negative for all events (coalitions).

2.3 The Shapley Value as an Acceptable Allocation in Cooperative Games

The players in a cooperative game are eventually interested in what they individually
will get out of cooperating with the other players. How will individual players benefit
from cooperation? So far, various solutions concepts and allocation rules of benefits
have been proposed (see, e.g., [54]). Some of them (e.g., the core, bargaining set, prek-
ernel, kernel, prenucleolus, nucleolus) are based on domination, and some of them (e.g.,
the Shapley value) are based on expectation. This subsection discusses only the Shapley
value and relatives from the standpoint of Shapley’s statement [59]:

“At the foundation of the theory of games is the assumption that the players of
a game can evaluate, in their utility scale, every “prospect” that might arise a
result of a play. In attempting to apply the theory to any field, one would nor-
mally expect to be permitted to include, in the class of “prospects”, the prospect
of having to play a game. The possibility of evaluating games is therefore of
critical importance.”

A payoff vector or allocation is a vector x = (x1, · · · , xn) ∈ RN that specifies for each
player i ∈ N the profit xi that this player can expect when he cooperates with the other
players. Thus, a payoff vector x = (x1, · · · , xn) such as

∑

i∈N xi > v(N) is not feasible.
That is, payoffs x = (x1, · · · , xn) with

∑

i∈N xi = v(N) are the most efficient allocations of
v(N). However, not all these efficient allocations will be acceptable to the players. Here,
we introduce the Shapley value, which provide a priori evaluations of every cooperative
game as an acceptable allocation to each player.

Definition 7 (the Shapley value [59]). The Shapley value φ : GN → RN is given by

φi(v) =
∑

S⊆N\i

s! · (n − s − 1)!
n!

[v(S ∪ i) − v(S )]

for any v ∈ GN and any i ∈ N, where φi(v) is the i-th component of φ(v) ∈ RN .
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The Shapley value is one of the most well-known allocation rule defined as a certain
type of expectation of marginal contributions for each player and characterized as the
unique allocation rule satisfying the following four properties (axioms): symmetry, effi-
ciency, null zero, and additivity (low of aggregation) [59].

Definition 8 (symmetry). Let Π(N) denote the set of all permutations on N. If σ ∈
Π(N), then writing σ(S ) for the image of S ⊆ N under σ, i.e., σ(S ) := {σ(i) | i ∈ S },
we may define the game σv by σv(σ(S )) = v(S ) for all S ⊆ N. An allocation rule
F : GN → RN is said to be symmetry if

Fσ(i)(σv) = Fi(v)

for any σ ∈ Π(N) and v ∈ GN , where Fi(v) is the i-th component of F(v) ∈ RN .

Under symmetry allocation rules, the names of players play no role in determining
the allocation to each player.

Definition 9 (efficiency). An allocation rule F : GN → RN is said to be efficient if
∑

i∈N
Fi(v) = v(N)

for any v ∈ GN , where Fi(v) is the i-th component of F(v) ∈ RN .

Under efficient allocation rules, the total worth v(N) is allocated to all the players.

Definition 10 (null-zero). An allocation rule F : GN → RN is said to be null-zero if

Fi(v) = 0

for any v ∈ GN and i ∈ N such that v(S ∪ i) = v(S ) ∀S ⊆ N, where Fi(v) is the i-th
component of F(v) ∈ RN .

Under null-zero allocation rules, a player who adds nothing to the worth of any
coalition is allocated nothing.

Definition 11 (additivity). An allocation rule F : GN → RN is said to be additive if

F(v + w) = F(v) + F(w)

for any v,w ∈ GN .

Under additive allocation rules, if two allocation problems are combined into one
by adding the characteristic functions, then for each player the allocation under the
combined problem is the sum of the allocations under the two individual problems.

The Shapley value also can be treated as a power and/or importance index in various
fields, e.g., decision making problems [55], voting power in the council [60], etc., and
represented via the Möbius transform and the multilinear extension of v as follows [54]:

φi(v) =
∑

i∈S⊆N

1
s
Δv(S ).

φi(v) =
∫ 1

0

∂

∂xi
v̄(t, t, · · · , t) dPφ(t),

where ∂
∂xi

v̄(t, t, · · · , t) := ∂
∂xi

v̄(x) |x=(t,t,··· ,t), Pφ(t) = t for any t ∈ [0, 1] and the integral is
to be understood in the sense of Riemann-Stieljes.
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Note (the Banzhaf power index): The Banzhaf power index β : GN → RN , defined
by

βi(v) :=
∑

S⊆N\i

1
2n−1

[v(S ∪ i) − v(S )] =
∑

i∈T⊆N

1
2t−1
Δv(T ) ∀v ∈ GN ,

is also a well-known voting power index [2], which is not efficient. The Banzhaf power
index also has an integral-representation as follows [13,18]:

βi(v) =
∫ 1

0

∂

∂xi
v̄(t, t, · · · , t) dPβ(t) =

∂

∂xi
v̄(

1
2
,

1
2
, · · · , 1

2
),

where ∂
∂xi

v̄(t, t, · · · , t) := ∂
∂xi

v̄(x) |x=(t,t,··· ,t) , Pβ(t) = 1[0.5,1] for any t ∈ [0, 1].

2.4 Interaction Index in Cooperative Games

The study of the notion of interaction among players is relatively recent in the frame-
work of cooperative game theory. The first attempt is probably due to Owen [53] for su-
peradditive games. More developments are due to Murofushi and Soneda [50], Roubens
[57], Grabisch and Roubens [27], Marichal and Roubens [49], and Fujimoto et al. [18].
The concept of interaction index, which can be seen as an extension of the notion of
value, is fundamental for making it possible to measure the interaction phenomena
modeled by a game on a set of players. The expression “interaction phenomena” refers
to either complementarity or redundancy effects among players of coalitions resulting
from the non additivity of the underlying game. Thus far, the notion of interaction in-
dex has been primarily applied to multi-criteria decision making in the framework of
aggregation by the Choquet integral. In this context, it is used to appraise the overall
interaction among criteria (see, e.g., [27,29,40]), thereby giving more insight into the
decision problem. Other natural applications concern statistics and data analysis (see,
e.g., [21,39]).

An allocation rule φ : GN → RN , e.g., the Shapley value, can be regarded as a
function F : GN × N → R such that

F(v, i) = φi(v)

for any v ∈ GN and any i ∈ N. Then, setting N := 2N \ {∅}, we define an interaction
index as a function I : GN × N → R to measure the (simultaneous) interaction among
players in a cooperative game, i.e., I(v, S ) represents the (simultaneous) interaction
among players S in playing a game v.

Definition 12 (interaction indices). The (Shapley-type) interaction index with respect
to S ∈ N of v is defined by

I(v, S ) :=
∑

T⊆N\S

(n − t − s)! t!
(n − s + 1)!

ΔS v(T ).

This index is an extension of the Shapley value in the sense that I(v, i) coincides with
the Shapley value φi(v) of any player i.
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The Shapley-type interaction index is a type of expectation of marginal interactions
among the players in each coalition and characterized as the unique interaction in-
dex satisfying the following six properties (axioms): symmetry, k-monotone positivity,
dummy partnership, reduced partnership consistency, additivity, efficiency [18].

Definition 13 (additivity). An interaction index I : GN ×N → R is said to be additive
if

I(v + w, S ) = I(v, S ) + I(w, S )

for any v,w ∈ GN and any S ∈ N .

Definition 14 (symmetry). Let Π(N) denote the set of all permutations on N. If σ ∈
Π(N), then writing σ(S ) for the image of S ⊆ N under σ, i.e., σ(S ) := {σ(i) | i ∈ S },
we may define the game σv by σv(σ(S )) = v(S ) for all S ⊆ N. An interaction index
I : GN × N → R is said to be symmetry if

I(σv, σ(S )) = I(v, S )

for any σ ∈ Π(N), any S ∈ N , and any v ∈ GN .

Definition 15 (efficiency). An interaction index I : GN × N → R is said to be efficient
if ∑

i∈N
I(v, i) = v(N)

for any v ∈ GN .

Under efficient interaction indices, the interaction among itself is represented as its
allocation for each player.

A coalition P ∈ N is said to be a partnership [38] in a game (N, v) if

v(S ∪ T ) = v(T )

for any S � P and any T ⊆ N \ P. In other words, as long as all the members of a part-
nership P are not all in coalition, the presence of some of them only leaves unchanged
the worth of any coalition not containing elements of P. In particular v(S ) = 0 for all
S � P. Thus, a partnership behaves like a single hypothetical player [P], that is, the
game v ∈ GN and its reduced version v[P] ∈ G(N\P)∪[P], which is defined by

v[P](S ) =

⎧
⎪⎪⎨
⎪⎪⎩

v(S ) if S ⊆ N \ P

v(S ∪ P) if S  [P]
,

can be considered as equivalent.

Definition 16 (reduced partnership consistency). An interaction index I : GN ×N →
R is said to satisfy reduced partnership consistency property/axiom if

I(v, P) = I(v[P], [P])

for any v ∈ GN and any partnership P in (N, v).
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Recall that a partnership can be considered as behaving as a single hypothetical player.
Furthermore, it is easy to verify that the marginal interaction among the players of a
partnership P ∈ N in a game (N, v) in the presence of a coalition T ⊆ N \ P is equal to
the marginal contribution of P to coalition T , i.e.,

ΔPv(T ) = v(T ∪ P) − v(T ).

In other words, when we measure the interaction among the players of a partnership, it
is as if we were measuring the value of a hypothetical player. The reduced partnership
consistency property then simply states that the interaction among players of a partner-
ship P in a game (N, v) should be regarded as the value of the reduced partnership [P]
in the corresponding reduced game v[P].

A player d ∈ N is said to be dummy in a game v ∈ GN if

v(S ∪ d) = v(S ) + v(d)

for all S ⊆ N \ d. In other words, the marginal contribution of a dummy player d ∈ N
to any coalition S ⊆ N \ d is simply its worth v(d), i.e., there are no interaction between
d and any S ⊆ N \ d. Similarly, a coalition D ∈ N is said to be dummy if v(T ∪ D) =
v(T ) + v(D) for any T ⊆ N \ D.

Definition 17 (dummy partnership). An interaction index I : GN × N → R is said to
satisfy dummy partnership property/axiom if the following two conditions hold:

(i) I(v,D) = v(D)
(ii) I(v, S ∪ D) = 0 ∀S (� ∅) ⊆ N \ D

for any v ∈ GN and any dummy partnership D ∈ N in (N, v).

The first part of dummy partnership property states that the interaction index of a
dummy partnership D in a game (N, v) should be its worth since the marginal interac-
tion among the players in D in the presence of any coalition T not containing elements
of D is its worth, that is, ΔD(T ) = v(D) for any T ⊆ N \ D. The second part of the
property says that there should be no simultaneous interaction among players of coali-
tions containing dummy partnerships since dummy partnerships behaves like a single
hypothetical dummy player and he does not interact with any outsider coalition (see,
[49]).

Definition 18 (k-monotone positivity). An interaction index I : GN × N → R is said
to be k-monotone positive if, for any positive integer k and k-order monotonic game
v ∈ GN ,

I(v, S ) ≥ 0 ∀S ∈ N whenever |S | ≤ k.

As discussed in Subsection 2.2, in a k-monotone game, it seems sensible to consider that
there are necessarily complementarity effects among players in coalitions containing (at
most) k players. This axiom then simply states that these effects should be represented
as positive interactions.
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The (Shapley-type) interaction index, as similar to the Shapley value, can be represented
via the Möbius transform Δv and the multilinear extension v̄ of v ∈ GN as follows [18]:

I(v, S ) =
∑

T⊇S

1
t − s + 1

Δv(T ).

I(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dP(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and P(t) = t for any
t ∈ [0, 1].

Note (other interaction indices): Another Shapley-type interaction index Ich called
chaining interaction index and the Banzhaf-type interaction index IB have been pro-
posed and characterized axiomatically (see, e.g., [18,27,49]).

The chaining interaction index Ich : GN × N → R is defined by

Ich(v, S ) :=
∑

T⊆N\S

s(n − s − t)!(s + t − 1)!
n!

ΔS v(T )

for any v ∈ GN and any S ∈ N , and also has the following representations:

Ich(v, S ) =
∑

T⊇S

s
t
Δv(T ).

Ich(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dPch(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and Pch(t) = ts1]0,1] for
any t ∈ [0, 1].

The Banzhaf-type interaction index IB : GN × N → R is defined by

IB(v, S ) :=
∑

T⊆N\S

1
2n−s

ΔS v(T )

for any v ∈ GN and any S ∈ N , and also has the following representations:

IB(v, S ) =
∑

T⊇S

1
2t−s
Δv(T ).

IB(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dPB(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and PB(t) = 1[0.5,1] for
any t ∈ [0, 1].
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3 Bi-cooperative Game

To date, there have been some attempts to define more general concept in coopera-
tive game theory. Aubin [1] has proposed the concept of generalized coalition as a
function c : N → [−1, 1] which associates each player i with his/her level of partici-
pation c(i) ∈ [−1, 1]. A positive level is interpreted as attraction of the player i for the
coalition, and a negative level as repulsion. Later, the concept of bi-cooperative game
has been introduced by Bilbao et al. [5] as a generalization of classical cooperative
games, where each player can participate positively to the game (defender), negatively
(defeater), or do not participate (abstentionist). In a voting situation (simple games),
they coincide with ternary voting games, on the set of all signed coalitions given by
{c : N → {−1, 0, 1}}, of Felsenthal and Machover [15], where each voter can vote in
favor (1), against (-1) or abstain (0). Labreuche and Grabisch [43] give the following
example:

Example 1. A set N of farmers raise three kinds of plants called A, B and C (for instance
colza, grass and reed) in a given area. Plant A (defeater) needs a lot of pesticide and
chemical fertilizers so that it pollutes a lot the local river. Plant B (abstentionist) needs
no special treatment and thus no pollution is caused by this plant. Plant C (defender)
helps in reducing the pollution since it absorbs some chemicals. The Governor of this
area wants to determine the tax for each farmer on the basis of the impact of the farming
on the river pollution rate. The bi-cooperative game v(S , T ) measures the pollution rate
in the river compared to the time when there were only meadows in the area, when
farmers S raise plant C, farmers T raise plant A and farmers N \ (S ∪ T ) raise plant B.

3.1 Definitions and Several Representations of Bi-cooperative Games

We will denoteP(N) := 2N and Q(N) := {(A1, A2) ∈ P(N)×P(N) | A1∩A2 = ∅}.When
equipped with the following order: for (A1, A2), (B1, B2) ∈ Q(N)

(A1, A2) � (B1, B2) iff A1 ⊆ B1 and A2 ⊇ B2,

(Q(N),�) becomes a lattice, which will be defined in Definition 42. The binary opera-
tors � (sup) and � (inf) are given by

(A1, A2) � (B1, B2) = (A1 ∪ B1, A2 ∩ B2),

(A1, A2) � (B1, B2) = (A1 ∩ B1, A2 ∪ B2).

Then the top and bottom are respectively (N, ∅) and (∅,N).

Definition 19 (irreducible elements [14]). Let (L,≤,∨,∧, �,⊥) be a lattice, where
∨,∧,�,⊥ denotes sup, inf, the top and bottom element, respectively. An element x ∈ L
is said to be ∨-irreducible if x � ⊥ and x = a ∨ b implies x = a or x = b, ∀a, b ∈ L.

Proposition 3 ([24]). The �-irreducible elements of Q(N) are (∅,N \ i) and (i,N \ i),
for all i ∈ N. Moreover, for any (A1, A2) ∈ Q(N),

(A1, A2) =
⊔

i∈A1

(i,N \ i) �
⊔

j∈N\(A1∪A2)

(∅,N \ j). (3)
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Eq. (3) is called the minimal decomposition of (A1, A2) [23].

Here, �-irreducible elements permit to define layer in Q(N) as follows [23]:
(∅,N) is the bottom layer (layer 0) (the black square in Fig. 1), the set of all
�-irreducible elements forms layer 1 (black circles in Fig. 1), and layer k, for
k = 2, . . .n, consists of all elements whose minimal decomposition contains ex-
actly k �-irreducible elements. In other words, layer k consists of all elements
(A1, A2) ∈ Q(N) such that |A2

c| = k, for k = 2, . . . , n. On the other hand, let
us consider the Boolean lattice (P(N),⊆, ∪,∩,N, ∅). Then, the empty set is the
bottom layer; all singletons are ∪-irreducible elements, (i.e., in layer 1); the
set of all A ∈ P(N) whose cardinality is k, for k = 2, . . . , n, forms layer k.

123 φ

φ,123

φ,23

,23

φ,13

3,1

φ,12

3,2

2,13

3,12

Fig. 1. The lattice Q(123): the element in layer 0 is indicated by a black square and elements in
layer 1 black circles

Definition 20 (bi-cooperative game [3,24]). The function v that assigns to every bi-
coalition (S 1, S 2) ∈ Q(N) its value or worth v(S 1, S 2) is commonly referred to as the
bi-characteristic function. It is always assumed that v(∅, ∅) = 0. A triplet (N, v,Q(N))
consisting of a player set N, a bi-characteristic function v, and a lattice Q(N) constitutes
a bi-cooperative game or bi-coalitional game. (We often identify (N, v,Q(N)) with v).

Definition 21 (the Möbius transform of bi-cooperative game). To any bi-cooperative
game v : Q(N)→ R, another function m : Q(N)→ R can be associated by

Δv(A1, A2) :=
∑

B1⊆A1
A2⊆B2⊆N\A1

(−1)|A1\B1|+|B2\A2 | v(B1, B2)

for (A1, A2) ∈ Q(N). This correspondence proves to be one-to-one, since conversely

v(A1, A2) =
∑

(B1,B2)�(A1,A2)

Δv(B1, B2) (4)

for all (A1, A2) ∈ Q(N). The validity of Eq. (4) is proved by Grabisch and Labreuche [23]
who call Δv : Q(N)→ R the Möbius transform of v.
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Fujimoto and Murofushi [20] have introduced another equivalent representation, the
bipolar Möbius transform, of a bi-cooperative game as follows:

Definition 22 (the bipolar Möbius transform). To any bi-cooperative game v : Q(N)
→ R, another function b : Q(N)→ R can be associated by

bv(A1, A2) :=
∑

B1⊆A1
B2⊆A2

(−1)|A1\B1|+|A2\B2| v(B1, B2) (5)

=
∑

(∅,A2)�(B1,B2)�(A1 ,∅)
(−1)|A1\B1|+|A2\B2| v(B1, B2)

for (A1, A2) ∈ Q(N). Then, the function defined by Eq. (5) is called the bipolar Möbius
transform of v.

Proposition 4 ([20]). Let v : Q(N)→ R be a bi-cooperative game, and bv : Q(N)→ R
the bipolar Möbius transform of v. Then,

v(A1, A2) =
∑

B1⊆A1
B2⊆A2

bv(B1, B2)

for any (A1, A2) ∈ Q(N).

Definition 23 (piecewise multi linear extension). The set of all bi-cooperative games
{v : Q(N) → R} is isomorphic to the set of all ternary pseudo-Boolean functions
{ f : {−1, 0, 1}N → R}. Indeed, there exists the isomorphism ϕ : Q(N) → {−1, 0, 1}N
such that ϕ(A1, A2) = χ(A1 ,A2) for any (A1, A2) ∈ Q(N), where χ(A1,A2) denotes the char-
acteristic vector of (A1, A2), which is the vector of {−1, 0, 1}N whose i-th element is 1 if
i ∈ A1, −1 if i ∈ A2, and 0 otherwise. Then, for any bi-cooperative game v : Q(N) → R
there exists a ternary pseudo-Boolean function fv (i.e., fv : {−1, 0, 1}N → R) cor-
responding to v. Now, we introduce an equivalent representation, by using a ternary
pseudo-Boolean function, of v as follows:

fv(x) =
∑

(S 1,S 2)∈Q(N)

bv(S 1, S 2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈S 1

x+i ·
∏

j∈S 2

x−j

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

for x ∈ {−1, 0, 1}N, where x+ = max{x, 0} and x− = 0 −min{x, 0}. This correspondence
is represented as

fv(χ(A1,A2)) =
∑

B1⊆A1
B2⊆A2

bv(B1, B2) = v(A1, A2) ∀(A1, A2) ∈ Q(N).

Here, Eq. (6) leads to the piecewise multilinear extension gv : [−1, 1]N → R, of
the ternary pseudo-Boolean function fv : {−1, 0, 1}N → R corresponding to the bi-
cooperative game v : Q(N)→ R, defined by

gv(x) :=
∑

(S 1,S 2)∈Q(N)

bv(S 1, S 2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈S 1

x+i ·
∏

j∈S 2

x−j

⎞
⎟⎟⎟⎟⎟⎟⎠

for x ∈ [−1, 1]N.
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3.2 Monotonicity and Derivatives

As seen in Section 2.2 and 2.4, the definition of the derivative is the key concept for the
interaction index. Grabisch and Labreuche [23] extended the notion of discrete deriva-
tive of ordinary cooperative games to that of bi-cooperative games.

Definition 24 ((T1, T2)-derivative of bi-cooperative game). Let (N, v,Q(N)) be a bi-
cooperative game. For (T1, T2) ∈ Q(N), the (T1, T2)-derivative at a point (S 1, S 2∪T2) ∈
Q(N), where (S 1, S 2) ∈ Q(N \ (T1∪T2)), is denoted as Δ(T1,T2)v(S 1, S 2∪T2) and defined
by

Δ(T1,T2)v(S 1, S 2 ∪ T2) :=
∑

L1⊆T1
L2⊆T2

(−1)|T1\L1 |+|L2 | v(S 1 ∪ L1, S 2 ∪ L2) (7)

=
∑

(S 1,S 2∪T2)�(A1 ,A2)�(S 1∪T1,S 2)

(−1)|A1\S 1|+|A2\S 2 | v(A1, A2).

The formula (7) is led by the following recursive relations [24]:

Δ(i,∅)v(S 1, S 2) := v(S 1 ∪ i, S 2) − v(S 1, S 2),

Δ(∅, j)v(S 1, S 2 ∪ j) := v(S 1, S 2) − v(S 1, S 2 ∪ j),

Δ(T1,T2)v(S 1, S 2 ∪ T2) := Δ(i,∅)
(
Δ(T1\i,T2)v(S 1, S 2 ∪ T2)

)

= Δ(∅, j)
(

Δ(T1,T2\ j)v(S 1, (S 2 ∪ j) ∪ (T2 \ j))
)

,

where i ∈ T1, j ∈ T2.

Example 2. Let us consider the (12, 3)-derivative at (∅, 3). Then, Δ(12,3)v(∅, 3) is repre-
sented by

Δ(12,3)v(∅, 3) = Δ(1,3)v(2, 3) − Δ(1,3)v(∅, 3).

The derivatives Δ(1,3)v(2, 3) and Δ(1,3)v(∅, 3) are represented by

Δ(1,3)v(2, 3) = Δ(∅,3)v(12, 3)− Δ(∅,3)v(2, 3) and Δ(1,3)v(∅, 3) = Δ(∅,3)v(1, 3) − Δ(∅,3)v(∅, 3),

respectively. The derivatives Δ(∅,3)v(12, 3), Δ(∅,3)v(2, 3), Δ(∅,3)v(1, 3) and Δ(∅,3)v(∅, 3) are
represented by

Δ(∅,3)v(12, 3) = v(12, ∅)− v(12, 3), Δ(∅,3)v(2, 3) = v(2, ∅) − v(2, 3),

Δ(∅,3)v(1, 3) = v(1, ∅) − v(1, 3), and Δ(∅,3)v(∅, 3) = v(∅, ∅) − v(∅, 3),

respectively. Inversely, first, consider the first order derivatives Δ(∅,3) at (∅, 3), (1, 3),
(2, 3), and (12, 3). These derivatives correspond to thin arrow lines in Fig. 2, respec-
tively. Second, the second order derivatives Δ(1,3) at (∅, 3) and (2, 3) correspond to thick
black arrow lines in Fig. 2, which represent the differences between the first order
derivatives represented by thin arrow lines. Finally, the (12, 3)-derivative at (∅, 3) corre-
sponds to the thick gray arrow line in Fig. 2.
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��� 2,3
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��� 1,3 Δ
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��� φ,3Δ

1,3
��� φ,3

Δ
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��� 2,3 Δ
1,3
��� φ,3Δ

12,3
��� φ,3

Fig. 2. The (12, 3)-derivative at (∅, 3)

Proposition 5 ([20,23]). For (T1, T2) ∈ Q(N),

Δ(T1,T2)v(S 1, S 2 ∪ T2) =
∑

(T1,N\(T1∪T2))�(A1 ,A2)�(S 1∪T1,S 2)

Δv(A1, A2)

= (−1)|T2|
∑

L1⊆S 1
L2⊆S 2

bv(L1 ∪ T1, L2 ∪ T2)

for any (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)). Thus,

Δv(T1, T2) = Δ(T1,T2)v(∅,N \ T1) ∀(T1, T2) ∈ Q(N).

Proposition 6 ([20]). Let v : Q(N)→ R be a bi-cooperative game and gv : [−1, 1]N →
R the piecewise multilinear extension of the ternary pseudo-Boolean function cor-
responding to v, and (T1, T2) := ({t1(1), . . . , t1(p)}, {t2(1), . . . , t2(q)}) ∈ Q(N), where
|T1| = p and |T2| = q. Then,

Δ(T1,T2)v(S 1, S 2 ∪ T2) =
∂(p+q)

∂xt1(1) · · · ∂xt1(p)∂xt2(1) · · · ∂xt2(q)
gv(x)

∣
∣
∣
∣
∣
∣ x=χ(S 1∪T1 ,S 2∪T2)

for all (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)), where χ(S 1∪T1,S 2∪T2) ∈ [−1, 1]N is the characteristic

vector of (S 1 ∪ T1, S 2 ∪ T2) ∈ Q(N). It should be noticed that
∂

∂xi
gv cannot be defined

on {x ∈ [−1, 1]N | xi = 0}.

Labreuche and Grabisch [42] have proposed the notion of k-monotonicity in
bi-cooperative games as a bipolar extension of that in ordinary cooperative games.

Definition 25 (k-monotonic bi-cooperative game [24,42]). Given an integer k ≥ 2,
a bi-cooperative game v : Q(N) → R is said to be k-order monotone (for short, k-
monotone) if and only if, for any (at most) k bi-coalitions S 1, · · · , S k, we have

v

⎛
⎜⎜⎜⎜⎜⎜⎝

k⊔

i=1

S i

⎞
⎟⎟⎟⎟⎟⎟⎠
≥
∑

J⊆{1,··· ,k}
J�∅

(−1)|J|+1 v

⎛
⎜⎜⎜⎜⎜⎜⎝

�

j∈J

S j

⎞
⎟⎟⎟⎟⎟⎟⎠
. (8)
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It is easy to verify that k-monotonicity (k > 2) implies l-monotonicity for all integer
2 ≤ l ≤ k. By extension, 1-monotonicity (which does not correspond to k = 1 in Eq.
(8)) is defined as standard monotonicity, i.e.,

v(S ) ≤ v(T ) whenever (∅,N) � S � T � (N, ∅).

The notion of k-monotonicity of bi-cooperative games can be characterized via discrete
derivatives in a similar way to ordinary cases.

Proposition 7 ([18]). Let v : Q(N) → R be a bi-cooperative game and k a positive
integer. Then v is k order monotone if and only if

Δ(T1,T2)v(S 1, S 2 ∪ T2) ≥ 0

for any (T1, T2) ∈ Q(N) such as 1 ≤ |T1 ∪ T2| ≤ k and any (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)).

3.3 Value and Interaction Index in Bi-cooperative Games

In this subsection, we introduce the notion of value and power index for bi-cooperative
games and ternary simple games, following Labreuche and Grabisch [43], in the spirit of
what was done by Shapley [59] for cooperative games, and by Shapley and Shubik [60]
for simple games. In ordinary cooperative games, an allocation rule (pre-imputation)
is a vector x ∈ RN which represents the share of the total worth of the game v(N)
among the players, assuming that all players have decided to join the grand coalition
N. For bi-cooperative games, the situation differs since apart from not participating
to the game, each player has two possible actions, namely to play in the defender or
the defeater part, while he/she has only one in classical (ordinary cooperative game)
case. In order to generalize the notion of imputation, the concept of reference action
or level has been introduced. The reference action is the action such that if all players
do this action, then the outcome of the game is 0. For ordinary games, the reference
action is to “not participate” since v(∅) = 0. For bi-cooperative games, it is also the non
participation since v(∅, ∅) = 0. An imputation is defined for each possible action (except
the reference one) of a player with respect to the reference action, that is, it represents a
kind of average contribution of the player for a given action, compared to the reference
action. For bi-cooperative games, the possible actions are: to play in the defender part,
or to play in the defeater part. For preserving the meaning of “contribution” (which has
a positive sense) and for compatibility with previous works, it requires to consider two
values φ+ (defender part) and φ− (defeater part): φ+ is the contribution of “playing in the
defender part” instead of “doing nothing”, and φ− is the contribution of “doing nothing”
instead of “playing in the defeater part”. Then, an overall contribution φ can be defined
as φ = φ+ + φ−.

Labreuche and Grabisch [43] have proposed the following value for bi-cooperative
games, axiomatically.
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Definition 26 (value of bi-cooperative game [43]). The (Shapley-type) value φB of a
bi-cooperative game v : Q(N)→ R is given by

φB
i (v) :=

∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ∪ i,N \ (S ∪ i)) − v(S ,N \ S )]

=
∑

(S ,T )�(∅,N\i)

1
n − t

Δv(S , T )

for every i ∈ N, where φB
i (v) is the i-th component of φB(v) ∈ RN . The value φB is

decomposable into two values φ+ (defender part) and φ− (defeater part), i.e., φB =

φ+ + φ−, as follows:

φ+i (v) =
∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ∪ i,N \ (S ∪ i)) − v(S ,N \ (S ∪ i))] ,

φ−i (v) =
∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ,N \ (S ∪ i)) − v(S ,N \ S )] .

The (Shapley-type) value φB for bi-cooperative game is a kind of generalization of the
Shapley value of ordinary cooperative games in the following sense:

If a bi-cooperative game vB : Q(N) → R is given via some ordinary coopera-
tive game v : 2N → R as

vB(S , T ) =

⎧
⎪⎪⎨
⎪⎪⎩

v(S ) if T = ∅,
0 otherwise,

for any (S , T ) ∈ Q(N), then

φB(vB) = φ+(vB) = φ(v), φ−(vB) = 0,

where φ(v) is the Shapley value of ordinary game v.

The (Shapley-type) interaction index for bi-cooperative games has been introduced by
Grabisch and Labreuche [24,26] and characterized axiomatically by Lange and Gra-
bisch [45], by analogy with that for ordinary cooperative games.

Definition 27 (interaction index for bi-cooperative game). The (Shapley-type) in-
teraction index IB(v, (S , T )) with respect to (S , T ) ∈ Q(N) of a bi-cooperative game
v : Q(N)→ R is defined by

IB(v, (S , T )) :=
∑

U⊆N\(S∪T )

(n − s − t − u)! u!
(n − s − t + 1)!

Δ(S ,T )(U,N \ (S ∪ U))

=
∑

(A,B)�(S ,N\(S∪T ))
(A,B)�(N\T,∅)

1
n − s − t − b + 1

Δv(A, B).
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Kojadinovic [41] has proposed another interaction index for bi-cooperative games in
the context of aggregation by the bipolar Choquet integral [25], however his solution is
not completely axiomatized.

Definition 28 (Kojadinovic’s interaction index). The (Kojadinovic-type) interaction
index IK(v, (S 1, S 2)) with respect to (S 1, S 2) ∈ Q(N) of a bi-cooperative game v :
Q(N)→ R is defined by

IK(v, (S 1, S 2)) :=
∑

(T1,T2)∈Q(N\S )

1
2t

(n − s − t + 1)! t!
(n − s + 1)!

Δ(S 1,S 2)(T1, T2 ∪ S 2),

where T := T1 ∪ T2 and S := S 1 ∪ S 2.

Note (Ternary voting games and its values) : Bi-cooperative games are a gener-
alization of the notion of ternary voting game which has been proposed by Felsenthal
and Machover [15]. In a play of a ternary voting game, each player can choose between
voting in favor (yes), against (no), or abstaining. Formally, a ternary voting game is a
function v : Q(N)→ {−1, 1}, where v(F, A) represents the result of the vote (1 if the bill
is passed, -1 if it is defeated) when voters in F vote in favor, voters in A vote against,
and the remaining voters abstain. Then, obviously, it should be satisfied that

v(∅,N) = −1, v(N, ∅) = 1, and (F1, A1) � (F2, A2) =⇒ v(F1, A1) ≤ v(F2, A2).

Definition 29 (ternary roll-call and pivot). A ternary roll-call R is a triplet R =
(σR, FR, AR) consisting of a permutation σR on N, a coalition FR which contains all
voters that are in favor of the bill, and a coalition AR which contains all voters that are
against the bill. Ternary roll-calls are interpreted as follows. The voters are called in
order given by σR : σR(1), . . . , σR(n). When a voter i is called, he/she tells his/her opin-
ion, that is to say in favor if i ∈ FR, against if i ∈ AR, or abstention otherwise. The set
of all ternary roll-calls on N is denoted by TN , whose cardinality is 3n · n!.

A pivot Piv(v,R) for a ternary voting game (N, v,Q(N)) and a ternary roll-call R =
(σR, FR, AR) is the player i, represented by i = σR(m) for some m ∈ {1, . . . , n}, satisfying
the following two conditions:

1. v(Fm−1
R , Am−1

R ) � v(Fm
R , A

m
R ) if m � 1.

2. v(Fm
R , A

m
R ) = v(Fk

R, A
k
R) for any k > m,

where Fk
R :=
⋃

j≤k

{σR( j)}∩FR and Ak
R :=
⋃

j≤k

{σR( j)}∩AR. That is, Piv(v,R) is decisive

in the result of the vote.

Felsenthal and Machover [15] have proposed a voting power index φter(v) for a ternary
voting game (N, v,Q(N)), which is a generalization of the Shapley-Shubik power index,
as follows:

φter
i (v) :=

|{R ∈ TN | i = Piv(v,R)}|
|TN |

.

However, this solution is not completely axiomatized.
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4 Cooperative Game and Network

In ordinary cooperative game theory, it is implicitly assumed that all coalitions of N can
be formed, this is in general not the case. In order for players to be able to coordinate
their actions, they have to be able to communicate. The bilateral communication chan-
nels between players in N are described by a communication network. Such a network
can be represented by an undirected graph G = (N, E), which has the set of players
as its nodes S ⊆ N and in which those players are connected by the set of edges/links
E ⊆ {i j | i, j ∈ N, i � j}, i.e., players i and j can communicate (directly) with each other
if i j ∈ E. To avoid cumbersome notations, we often omit braces for a graph G = (N, E),
we denote E − i j := E \ i j for any i j ∈ E, E + i j := E ∪ i j for any i j � E, and
G(S ) := (S , E(S )) for any S ⊆ N, where E(S ) := {i j ∈ E | i, j ∈ S }. Then, G(S ) is
called the subgraph induced from the underlying graph G and the subset S of N.

The number of the nodes adjacent to a node i ∈ N is said to be the degree of i in
G = (N, E) and denoted by aG(i). A sequence of different nodes (i1, . . . , im) is called a
path, whose length is m − 1, between j and k in a graph (N, E) if j = i1, k = im, and
{il, il+1} ∈ E for any l ∈ {1, . . . ,m−1}. If there is a path between j and k in an undirected
graph G, then we say that j is reachable to k in G and denote j ∼G k. A set of nodes
S ⊆ N is called connected in an undirected graph G := (N, E) if for any i, j ∈ S , i � j,
there exists a path (i1, . . . , im) between i and j in G satisfying that all nodes of the path
are in S , i.e., ik ∈ S for any k ∈ {1, . . . ,m}. Notice that, by definition, the empty set and
all singletons are connected. An undirected graph G = (N, E) is said to be connected if
N is connected in G. Clearly, the relation ∼G is an equivalence relation on N. Hence,
the notion of reachableness induces a partition N/E := N/ ∼G of N. Then, for any
S ⊆ N, C ∈ S/E(S ) = S/ ∼G(S ) is called a (connected) component of S . A geodesic
(also often called a “shortest” path) between two nodes i, j ∈ N is a path whose length
is the minimum among all paths between i and j. The length of a geodesic between two
nodes i, j ∈ N in G, if i and j are reachable, is called their geodesic distance. If i and
j are unreachable, then the distance between i and j is infinite. A sequence of nodes
(i1, . . . , im) is called a cycle if i1 = im and (i1, . . . , im−1) is a path. A graph is cycle free if
it does not contain any cycle. A connected cycle free graph is called tree.

Definition 30 (communication situation). The triplet (N, v, E), which reflects a situ-
ation consisting of a game v ∈ GN and a communication network (N, E), is called a
communication situation. We denote the set of all communication situations on N by
CS N .

Definition 31 (feasible coalition). A coalition S ⊆ N is said to be feasible in the com-
munication network G = (N, E) if S is connected in G (i.e., S/E = {S }).

Example 3. Consider the communication situation (N1, v, E1) with N1 = {1, 2, · · · , 7}
and E1 = {12, 15, 26, 37, 47, 56} (Fig.3). Then, all the players in {1, 2, 6} can commu-
nicate with one another, i.e., the coalition {1, 2, 6} is feasible. Hence, they can fully
coordinate their actions and obtain the value v({1, 2, 6}). On the other hand, in the coali-
tion {1, 2, 3, 4}, players 1 and 2 are reachable, however, both of players 3 and 4 can-
not communicate with any other players in {1, 2, 3, 4}. Then, feasible subcoalitions of
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{1, 2, 3, 4} are {1, 2}, {3}, and {4} (i.e., {1, 2, 3, 4}/E1 = {12, 3, 4}, thus forming the coali-
tion {1, 2, 3, 4} is unfeasible). Hence, the value attainable by the players in {1, 2, 3, 4}
should be v(1, 2)+ v(3)+ v(4). That is, in general, the value attainable by the players in
S under a communication situation (N, v, E) is represented by

∑

T∈S/E v(T ).

Fig. 3. Communication Network(N1, E1)

Definition 32 (network-restricted game [52]). The network-restricted game (N, vE)
associated with (N, v, E) is defined by

vE(S ) :=
∑

T∈S/E
v(T ) for each S ⊆ N. (9)

Note that if (N, E) is the complete graph (i.e., E = {i j | i, j ∈ N, i � j}), the network-
restricted game vE is equal to the original game v.

The network-restricted game evaluates the possible gains from cooperation in a com-
munication situation from the point of view of the players. Next example focuses on the
importance of communication channels/links in a communication situation.

Example 4. In the communication network E1 represented by Fig.3, the value obtain-
able by the players in the grand coalition N is

vE1 (N) = v({1, 2, 5, 6})+ v({3, 4, 7}),

since N/E1 = {{1, 2, 5, 6}, {3, 4, 7}}. If for some reason the communication link between
players 4 and 7 is lost, the communication network E1 turns to a new communication
network E2 = {12, 15, 26, 37, 56}. Then, N/E2 = {{1, 2, 5, 6}, {3, 7}, {4}} and the value
obtainable by the players in the grand coalition N turns to

vE2 (N) = v({1, 2, 5, 6})+ v({3, 7}) + v({4}).

Then vE1 (N) − vE2 (N) can be interpreted as a kind of marginal contribution of the link
47 ∈ E1 to the communication network E1.

Definition 33 (link game [7]). The link game associated with (N, v, E) consisting of a
zero-normalized game v (i.e., v(i) = 0 for any i ∈ N) is a game on E defined by

γv(H) := vH(N) =
∑

T∈N/H
v(T ) for each H ⊆ E.
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The link game γv(H) represents the worth of communication network H ⊆ E as the worth
of the grand coalition in the communication situation (N, v,H) through the network-
restricted game vH . Note that, for an ordinary game v, the link game γv is generally not
a game on E since γv(∅) =

∑

T∈N/∅ v(T ) =
∑

i∈N v(i) � 0.

Example 5 (wighted majory voting game). Consider the weighted majority voting situ-
ation (N, [q : s1, . . . , sn]) with N = {1, 2, 3, 4}, s1 = 35, s2 = 30, s3 = 25, s4 = 10, and
q = 51. So, there are 100 members of parliament who are divided among four politi-
cal parties labeled 1,2,3, and 4, and decisions are made by majority voting. The parties
1,2,3, and 4 have 35, 30, 25, 10 seats, respectively. This situation can be represented by
the game v such that

v(S ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if
∑

i∈S si ≥ q = 51, i.e., win,

0 if
∑

i∈S si < q = 51, i.e., lose.

Then, the winning coalitions are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
and {1, 2, 3, 4}. In general, every coalition S ⊆ N could not been formed, due to ideo-
logical and policy differences. Suppose that the party 4 cannot form coalitions with any
other parties due to ideological differences; the parties 1 and 3 cannot form the coali-
tion {1, 3} due to some policy differences but can form a coalition {1, 2, 3} through an
intermediary, the party 2. Such a situation can be represented by the graph G := (N, E)
as shown in Fig.4.

1 2 3 4

Fig. 4. Relations among political parties

In the network restricted game vE , the winning coalition are {1, 2}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {2, 3, 4}, and {1, 2, 3, 4}; for instance, vE(13) = v(1) + v(3) = 0 + 0 = 0, i.e.,
lose, while vE(124) = v(12) + v(4) = 1 + 0 = 1, i.e., win. (However, feasible winning
coalitions are only {1, 2}, {2, 3}, and {1, 2, 3}).

4.1 Allocation Rule in Communication Situation

In this subsection, we will briefly introduce major two existing values (allocation rules),
the Myerson value [52] and the position value [7], for communication situations.

Definition 34 (the Myerson value [52]). The Myerson value for a communication sit-
uation (N, v, E) is denoted as Ψ (N, v, E) and defined by

Ψ (N, v, E) := φ(vE),

where φ(N, vE) is the Shapley value of (N, vE). Note that the Ψ (N, v, E) = φ(v) if (N, E)
is the complete graph.
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The Myerson value is one of the most famous allocation rules, which assigns to ev-
ery communication situation (N, v, E) the Shapley value of the network-restricted game
(N, vE) and is characterized as the unique allocation rule satisfying the following two
properties/axioms, component efficiency and fairness (see, Myerson [52]).

Definition 35 (componennt efficiency). For any communication situation (N, v, E) ∈
CS N , it holds that ∑

i∈S
Ψi(N, v, E) = v(S )

for any S ∈ N/E, where Ψi(N, v, E) is the i-th component of Ψ (N, v, E).

Definition 36 (fairness). For any communication situation (N, v, E) ∈ CS N , it holds
that

Ψi(N, v, E) − Ψi(N, v, E − i j) = Ψ j(N, v, E) − Ψ j(N, v, E − i j)

for any i j ∈ E, where Ψi(N, v, E) is the i-th component of Ψ (N, v, E).

Component efficiency means that the sum of the players’ allocations in a component
equal to the worth of the component. Fairness means that the two players connected by
a link obtain the same change of allocation if the link is deleted.

Definition 37 (position value [7]). The position value for a communication situation
(N, v, E) consisting of zero-normalized game v is denoted as π(N, v, E) and defined by

πi(N, v, E) :=
1
2

∑

e∈E
ei

φe(γv) for each i ∈ N.

The Shapley value φe(γv) of a link e ∈ E can be interpreted as a kind of expected
marginal contribution of the link (edge) e ∈ E to all communication networks con-
taining e. Then, the value is divided equally between the two players at the ends of the
considered link e ∈ E. The position value of a given player i ∈ N is obtained as the sum
of all these shares.

Example 6. Consider the communication situation in Example 5. Then, the Shapley
value of the underlying game (i.e., the Shapley-Shubik index [60]) is ( 1

3 ,
1
3 ,

1
3 , 0); the

Myerson value for the communication situation (N, v, E) (i.e., the Shapley value of the
network-restricted game (N, vE)) is ( 1

6 ,
4
6 ,

1
6 , 0); the position value for the communica-

tion situation (N, v, E) is ( 1
4 ,

1
2 ,

1
4 , 0).

4.2 Poset Induced by Communication Network

In this subsection, we consider and introduce a subposet of (2N ,⊆) induced by a com-
munication network G := (N, E).

For a communication network G := (N, E), the set of all feasible coalitions in
G is denoted as F(G), i.e.,

F(G) := {S ⊆ N | S : connected in G := (N, E), i.e., |S/E| = 1}.
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The set F(G) together with set inclusion ⊆ as an order on F(G) is called the
poset induced by a communication network G.

Example 7. Let N = {1, 2, 3}, Ea = {12, 13, 23}, Eb = {13, 23}, and Ec = {12}. Then
the posets induced by communication networks Ga := (N, Ea), Gb := (N, Eb), and
Gc := (N, Ec), as shown in (a) – (c) in Fig. 5, are represented as shown in (a) – (c) in
Fig. 6, respectively.

Fig. 5. Communication networks on N = {1, 2, 3}

Fig. 6. Posets corresponding to networks in Fig. 5

In a communication situation (N, v, E) consisting of a game (N, v) and a communication
network G := (N, E), at least two types of restrictions of v ∈ GN can be considered. One
is the network-restricted game vE defined by Eq. (9). Another is the restriction of v ∈
GN , i.e., v : 2N → R, to the poset F(G) induced by G = (N, E), i.e., v|F(G) : F(G) → R.
Then it is denoted as vF(G) : F(G)→ R and defined by

vF(G)(S ) := v|F(G)(S ), i.e., vF(G)(S ) := v(S ), ∀S ∈ F(G). (10)

Definition 38 (Möbius transform on poset). Let (N, v, E) be a communication situa-
tion consisting of a game (N, v) and a communication network G := (N, E). Then, the
Möbius transform of vF(G) : F(G)→ R on the poset (F(G),⊆) is denoted by Δ(N,v,E) and
defined through the following equation:

vF(G)(S ) =
∑

T∈F(G)
T⊆S

Δ(N,v,E)(T ) ∀S ∈ F(G).
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Conversely, Δ(N,v,E) is explicitly represented by

Δ(N,v,E)(S ) =
∑

T∈F(G)
T⊆S

(−1)|S \T | vF(G)(T ) ∀S ∈ F(G).

Proposition 8. Let (N, v, E) be a communication situation consisting of a game (N, v)
and a communication network G := (N, E), (N, vE) denote the network-restricted game
defined by Eq. (9), and vF(G) the restriction of v to F(G) defined by Eq. (10). Then,

Δ(N,v,E)(S ) = ΔvE
(S ) ∀S ∈ F(G),

ΔvE
(S ) = 0 ∀S ∈ 2N \ F(G).

Moreover, the Myerson value Ψ (N, v, E) can be represented as

Ψi(N, v, E) =
∑

i∈S∈F(G)

1
s
Δ(N,v,E)(S ).

4.3 Harsanyi Power Solution for Communication Situation

In this subsection, we introduce a class of allocation rules, Harsanyi power solutions,
to which many existing allocation rules for communication situations belong. Briks
et al. [9] have introduced the concept of Harsanyi power solution for communication
situations, which is based on Harsanyi solutions for TU-games. The concept of Harsanyi
solution is proposed as a class of solutions for TU-games in Vasil’ev [63,64] (see also
Derks et al. [12], where a Harsanyi solution is called a sharing value). The idea behind
a Harsanyi solution is that it distributes the Harsanyi dividends over the players in the
corresponding coalitions according to a chosen sharing system which assigns to every
coalition S a sharing vector specifying for every player in S its share in the dividend
Δv(S ) of S . The payoff to each player i ∈ N is thus equal to the sum of its shares in the
dividends of all coalitions of which he is a member. A famous Harsanyi solution is the
Shapley value.

Now, we consider the case N = {1, 2}, the Shapley value φ1(N, v) of player 1 in a
game (N, v) is obtained as

φ1(N, v) =
1
1
Δv(1) +

1
2
Δv(12).

This expression, as an allocation rule of Harsanyi dividends (i.e., the Möbius trans-
form), has the following (at least two) interpretations:

Interpretation 1 (Egalitarian allocation) : The Shapley value distributes the
dividend of any coalition S equally among the players in S, i.e., 1

s Δ
v(S ), (so

players outside S do not share in the dividend of S).
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Interpretation 2 (Allocation based on coalition forming process) : We con-
sider a process to form the coalition {1, 2}. Then, there are two shortest paths
from ∅ to {1, 2} in Fig. 7 (a). One is the path ∅ → {1} → {1, 2}; another is the
path ∅ → {2} → {1, 2}. The path ∅ → {1} → {1, 2} can be interpreted as follows:
Player 1 makes an offer to player 2 for forming the coalition {1, 2}. Player 2
accepts the offer and adds to the coalition {1} to form the new coalition {1, 2}.
Among these two paths, the only path that passes through {1}, i.e., the player 1
plays a role of initiator in forming {1, 2}, is ∅ → {1} → {1, 2}. That is, the number
of paths from ∅ to {1, 2} is 2, while the number of paths via {1} is 1. Then player 1
obtains 1 path

2 paths of the amount of the Harsanyi dividend Δv(12) (i.e., 1
2 Δ

v(12)). In

the same way, player 1 obtains 1
1 Δ

v(1) and 0
1 Δ

v(2). The Shapley value of player
1 is obtained as the sum of all these shares, i.e., 1

1 Δ
v(1) + 0

1 Δ
v(2) + 1

2 Δ
v(12).

This allocation rule can be extended to the case N = {1, 2, 3}, e.g., there are six
shortest paths from ∅ to {1, 2, 3} (see, Fig. 7 (b)). Among them, two paths, ∅ →
{1} → {1, 2} → {1, 2, 3} and ∅ → {1} → {1, 3} → {1, 2, 3}, pass through {1}. Then,
the following holds:

φ1({1, 2, 3}, v) =
1
1
Δv(1) +

1
2
Δv(12) +

1
2
Δv(13) +

0
2
Δv(23) +

2
6
Δv(123).

Fig. 7. The Boolean lattice B(2) and B(3)

Definition 39 (sharing system [9]). Let (N, v, E) be a communication situation con-
sisting of a game (N, v) and a communication network G := (N, E). A sharing system
on F(G) is a system p := (pS )S∈F(G), where pS is a s-dimensional vector assigning a
non-negative share pS

i ≥ 0 to every player i ∈ S with
∑

j∈S pS
j = 1, for any S ∈ F(G).

Definition 40 (the Harsanyi solution [9]). We denote the collection of all sharing
systems on F(G) by SG. For a communication situation (N, v, E) ∈ CS N and a shar-
ing system p ∈ SG, the corresponding Harsanyi payoff vector is the payoff vector
Hp(N, v, E) ∈ RN given by

Hp
i (N, v, E) =

∑

i∈S∈F(G)

pS
i Δ
F(G)(S ) =

∑

i∈S∈F(G)

pS
i Δ

vE
(S ) ∀i ∈ N.
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A Harsanyi solution, as an allocation rule, assigns for a given sharing system p ∈ SG

the Harsanyi payoff vector Hp(N, v, E) to each communication situation (N, v, E). Due
to the equality v(N) =

∑

S∈F(G) Δ
(N,v,E)(S ), we have
∑

i∈N
Hp

i (N, v, E) = v(N),

and thus each Harsanyi solution is efficient. The Shapley value is the Harsanyi solution
that assigns to any communication situation (N, v, {i j |i, j ∈ N, i � j}) (i.e., to any
ordinary cooperative game (N, v)), the Harsanyi payoff vector Hp(N, v, {i j |i, j ∈ N, i �
j}) with the sharing system p given by pS

i =
1
s for each S ∈ F(G) containing i.

Definition 41 (Harsanyi power solution [9]). A power measure on graph G = (N, E)
is a function q that assigns to any subgraph G(S ) = (S , E(S )), S ⊆ N a non-negative
vector q(S , E(S )) ∈ RS

+, yielding the non-negative power qi(S , E(S )) of each node i ∈ S
in the graph G(S ). Then, given a positive power measure q, we can define the cor-
responding Harsanyi power solution, denoted by Hp(q)(N, v, E), through the sharing
system p(q) = (pS (q))S∈F(G) induced by the power measure q as

pS
i (q) =

qi(S , E(S ))
∑

j∈S
q j(S , E(S ))

for all i ∈ S whenever
∑

j∈S q j(S , E(S )) � 0 and pS
i (q) = 1

s if
∑

j∈S q j(S , E(S )) = 0.

A characteristic of the Harsanyi power solutions for communication situations is that we
associate a sharing system with some power measure, being a function which assigns a
non-negative real number to every node in the graph, for the underlying communication
networks. These numbers represent the strength or power of those nodes in the graph.
Given a power measure we define the corresponding sharing system such that the share
vectors for every coalition are proportional to the power measure of the corresponding
subgraph.

Social network researchers have considered some fundamental properties of the in-
dividuals, that inform us about specific factors such as who is who in the network: who
is leader, who is intermediary, who is nearly isolated, who is central, and who is periph-
eral. Here, we introduce several concepts of degree of centrality and peripherality for a
node (position, actor, individual) in a network (undirected graph) as examples of power
measures on undirected graphs [16,19,17].

Centrality measures [16,19]. Centrality is a sociological concept which is not clearly
defined; it is frequently defined only in an undirected manner. For example, the liter-
ature presents several alternative definitions for centrality. We review some of these
definitions below:

(Dc: degree centrality). It measures the degree to which an actor i can com-
municate directly with other actors:

qDEG
i (S , E(S )) :=

∑

j∈S
aG(S )(i).
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(Cc: closeness centrality). It measures the degree to which an actor i is close
to other actors:

qCLO
i (S , E(S )) :=

∑

j∈S \{i}

1

dG(S )
i j

.

(Bc: betweenness centrality). It measures the degree to which an actor i lies
on the shortest paths between other actors in the network:

qBET
i (S , E(S )) :=

∑

j,k∈S \i

# of geodesics in S from j to k via i
# of geodesics in S from j to k

.

(Oc: originator centrality). It measures the degree to which an actor i is
required as an initiator/originator in network-forming processes:

qORI
i (S , E(S )) :=

||i→ S ||
||∅ → S ||

,

where ||i → S || (resp., ||∅ → S ||) means the number of shortest paths from i
(resp., ∅) to S in the Hasse diagram of the poset induced by a graph (S , E(S )).

Peripherality Measure [17]. With regard to networks such as roads, railways, airways,
the Internet, and others that use nodes or terminals such as airports and railway stations,
etc, terminal cities/nodes benefits far more from direct/indirect access to big cites (im-
portant nodes or central hubs) than do big cities receive from connecting to terminal
cities/nodes. Indeed, peripheral cities bear a heavier burden than central cities in the
construction/extension of highways/railways. Fujimoto [17] has proposed a peripheral-
ity measure on undirected graphs axiomatically as follows.

qPER
i (S , E(S )) :=

||∅ → S \ i||
||∅ → S ||

.

Note (The Myerson and Position Values as Harsanyi Power Solutions): Brinks et
al. [9] pointed out and demonstrated that the Myerson and position values are typical
Harsanyi power solutions with simple power measures for some types of communica-
tion situations.

Let (N, v, E) be a communication situation consisting of a game (N, v) and a com-
munication network G := (N, E). The Myerson value Ψ (N, v, E) is the Harsanyi power
solution with the sharing system p induced by the egalitarian power measure qE , e.g.,

qE
i (S , E(S )) = 1 ∀S ∈ F(G), ∀i ∈ S ,

i.e.,

pS
i =

1
s
∀S ∈ F(G), ∀i ∈ S .

If (N, E) is cycle free, the position value π(N, v, E) is the Harsanyi solution with the
sharing system p induced by the degree centrality measure qDEG(S , E(S )).

All the power measures, qE , qDEG , qCLO, qBET , qORI , and qPER induce the Shapley
value under complete communication situations.
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4.4 Numerical Examples

In this subsection, we make comparisons among the existing five types of Harsanyi
power solutions (the Shapley value φ, the Myerson value Ψ , the position value π, the
Harsanyi power solutions induced by the originate centrality measure ΦORI and the pe-
ripherality measure ΦPER) in some communication situations. The Harsanyi dividend
of any coalition which is not contained within any connected component of the com-
munication network in a communication situation is always zero, i.e., Δ(N,v,E)(S ) = 0 if
S � C for any C ∈ N/E. Therefore, in considering the Harsanyi power solutions for
a communication situation (N, v, E), we can assume that the communication network
(N, E) is connected without loss of generality. Examples 8, 9, and 10 not only show
comparisons of them but also illustrate criticisms against the the Myerson value and/or
the position value. Two criticisms are reproduced below (see, e.g., [37] for additional
details):

On the Myerson value :

Ψi(N, uS , E1) = Ψi(N, uS , E2) =
1
|S |

∀i ∈ N

whenever S is a feasible coalition in both (N, E1) and (N, E2), where
uS is the unanimity game of S . Furthermore, in the communication
situation with E∗ = {i j ⊆ N | j ∈ N \ i} (i.e., E∗ is a star-shape
graph with a central player i), every player receives the same value
(see Ψ (N, v, Ee) in Example 10).

On the position value :
Irrelevant null players often have positive values (see Example 9). Re-
call that a null player i ∈ N of the game (N, v) is a player satisfying
that v(S ∪ i) = v(S ) for any S ⊆ N \ i.

Example 8. Consider the communication situation (N, v, E) with N = {1, 2, 3}, E =
{13, 23} (Fig. 5 (b)), and

v(S ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |S | ≤ 1,

30 if |S | = 2,

36 if S = N.

Then,
φ(N, v) = (12, 12, 12),

Ψ (N, v, E) = (7, 7, 22),

π(N, v, E) = (9, 9, 18),

ΦORI(N, v, E) = (9, 9, 18),

ΦPER(N, v, E) = (3, 3, 30).

Example 9. Consider the communication situation (N, v, E) with N = {1, 2, 3}, E =
{12, 13, 23} (Fig. 5 (a)), and

v(S ) =

⎧
⎪⎪⎨
⎪⎪⎩

12 if S ⊇ {1, 2},
0 otherwise.
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That is, the player 3 is a null player. Then,

φ(N, v) = (6, 6, 0),

Ψ (N, v, E) = (6, 6, 0), π(N, v, E) = (5, 5, 2),

ΦORI(N, v, E) = (6, 6, 0), ΦPER(N, v, E) = (6, 6, 0).

Example 10. Consider communication situations (N, uN , E) with connected graphs in
Fig.8 which shows all connected graphs (up to isomorphism) with 2 ≤ n ≤ 4 nodes.
Then, for any such communication situations,

φi(N, uN , E) = Ψi(N, uN , E) =
1
n
∀i ∈ N.

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�



�
�

Fig. 8. Graphs with at most four nodes

Table 1 displays the remaining values (i.e., the position value π, the Harsanyi power so-
lutions induced by the originate centrality measure ΦORI and the peripherality measure
ΦPER).

5 Cooperative Game and Combinatorial Structure

In section 4, we considered the following case:

Some subsets of N may not be meaningful. When N is the set of political
parties, it means that some coalitions of parties are unlikely to occur, or even
impossible (coalition mixing left and right parties); When N is the set of play-
ers, for players in order to coordinate their actions, they must be able to com-
municate [13,22,61].
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Table 1. Comparison of existing values

π ΦORI ΦPER

Ea ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 ) ( 1

2 ,
1
2 )

Eb ( 1
4 ,

1
2 ,

1
4 ) ( 1

4 ,
1
2 ,

1
4 ) ( 1

2 , 0,
1
2 )

Ec ( 1
6 ,

2
6 ,

2
6 ,

1
6 ) ( 1

8 ,
3
8 ,

3
8 ,

1
8 ) ( 1

2 , 0, 0,
1
2 )

Ed ( 1
3 ,

1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 )

Ee ( 1
6 ,

1
6 ,

1
6 ,

3
6 ) ( 1

6 ,
1
6 ,

1
6 ,

3
6 ) ( 1

3 ,
1
3 ,

1
3 , 0

Ef ( 3
12 ,

2
12 ,

2
12 ,

5
12 ) ( 2

14 ,
3
14 ,

3
14 ,

6
14 ) ( 3

7 ,
2
7 ,

2
7 , 0)

Eg ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Eh ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Ei ( 13
60 ,

17
60 ,

17
60 ,

13
60 ) ( 2

10 ,
3
10 ,

3
10 ,

2
10 ) ( 3

10 ,
2

10 ,
2
10 ,

3
10 )

In this section, we elaborate on more general cases, including the case discussed in
section 3, as follows:

Subsets of N may not be “black and white [22] ”, which means that the
membership of an element to N may not be simply a matter of member or non-
member. This is the case with multi-criteria decision making when underlying
scales are bipolar, i.e., a central value exists on each scale, which is a demar-
cation between values considered as “good”, and as “bad”, the central value
being neutral; In voting situation, it is convenient to consider that players may
also abstain, hence each voter has three possibilities [15]; When N is the set
of players, one may consider that each player can play at different level of
participation [36].

5.1 Generalization of Domains of Cooperative Games

Definition 42 (lattice). Let L be a non empty set and ≤ a partial order on L (i.e., (L,≤)
is a poset). A poset (L,≤) is said to be a lattice if for x, y ∈ L, the supremum x ∨ y
and the infimum x ∧ y always exist. � and ⊥ are the top (greatest) and bottom (least)
elements of L, if they exist. An element j ∈ L is said to be join-irreducible if it is not ⊥
and cannot be express as a supremum of other elements (i.e., there are no i, k < j such
that j = i∨ k). The set of all join-irreducible elements of L is denoted by J(L). A lattice
(L,≤) is distributive if ∨,∧ obey distributivity. We often identify a lattice (L,≤) with L
or with (L,≤,∨,∧,�,⊥).

Definition 43 (cooperative game on lattice). A pair (L, v) consisting of a lattice L and
a (characteristic) function v : L → R such as v(⊥) = 0 constitutes a cooperative game
on a lattice.
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The power set 2N of N can coincide with the Boolean lattice B(n). Therefore, an ordi-
nary cooperative game (N, v) is regarded as a cooperative game on a lattice ((2N ,⊆), v).
Indeed, the infimum (bottom element) in the lattice (2N ,⊆) is the empty set ∅ and
v(∅) = 0. A communication situation (N, v, E) also can be regarded as a cooperative
game on a lattice, if the communication network (N, E) is connected, because the poset
induced by the connected graph (N, E) is obviously a lattice with ∅ as the bottom ele-
ment. However, a bi-cooperative game (N, v,Q(N)) is generally not a cooperative game
on a lattice. Indeed, the family Q(N) with (Q(N),�,�,�, (N, ∅), (∅,N)) is a lattice with
(∅,N) as the bottom element, but v(∅,N) is not always zero.

Proposition 9 ([6]). Let L be a distributive lattice. Any element x ∈ L can be written
as an irredundant supremum of join-irreducible elements in a unique way. That is, for
any x ∈ L there uniquely exists { j1, . . . , jm} ⊆ J(L) such that

x =
m∨

i=1

ji (11)

and that if there exists M ⊆ J(L) such that x =
∨

j∈M j, then M ⊇ { j1, . . . , jm}. The
equation (11) is called the minimal decomposition of x and the { j1, . . . , jm} is denoted
by η∗(x). For any x ∈ L, we denote by η(x) := { j ∈ J(L) | j ≤ x}, then x =

∨

j∈η(x) j.
For example, in Fig. 9 (b), η(23, 1) = {(∅, 13), (2, 13), (∅, 12), (3, 12)} and η∗(23, 1) =
{(2, 13), (3, 12)}.

Theorem 1 (Birkhoff’s theorem [6]). For any poset (P,≤), a subset Q ⊆ P is said to
be a down set of P if x ∈ Q and that y ≤ x implies y ∈ Q. We denote by O(P) the set of
all downsets of P. One can associate to any poset (P,≤) a distributive lattice which is
O(P) endowed with inclusion. Then, for any lattice L, the mapping η is an isomorphism
of L onto O(J(L)).

5.2 Examples of Generalizations of Games [22]

This subsection shows some examples of cooperative games on lattices.

Restricted Domains

Definition 44 (game on convex geometry [3]). Let N be a set of players. A collection
CG of subsets of N is called a convex geometry if (i) it contains the empty set, (ii) it is
closed under intersection, and (iii) S ∈ CG, S � N implies that there exists j ∈ N \ S
such that S ∪ j ∈ CG. A cooperative game on a convex geometry CG is a triplet
(N, v,CG) with a function v : CG → R such that v(∅) = 0. In addition, several other
games on restricted domains (e.g., union stable systems, matroids, and so on), which
are generalization of posets induced by connected graphs, also have been proposed and
studied by Bilbao [3].
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Extended Domains

Definition 45 (multichoice game [36]). Let N be a set of players. Each player i ∈ N
has a finite number of feasible participation levels whose set we denote by Mi =

{0, 1, . . . ,mi} and M =
∏

i∈N Mi. Each element s = (s1, s2, . . . , sn) ∈ M specifies a
participation profile for players and is referred to as a multichoice coalition. So, a mul-
tichoice coalition indicates the participation level of each player. A triplet (N, v,M)
consisting of a (characteristic) function v : M → R such that v(0) = 0, where 0 =
(0, 0, . . . , 0) ∈ M, constitutes a multichoice game.

Definition 46 (game on direct product of distributive lattices [46]). Let N = {1, · · · , n}
be a finite set, {Li}i∈N a set of distributive lattices and L :=

∏

i∈N Li. (Notice that L is also
a distributive lattice with the product order induced by {Li}i∈N ). A triplet (N, v, L) con-
sisting of a product lattice L =

∏

i∈N Li and a (characteristic) function v : L → R such
as v(⊥1, · · · ,⊥n) = 0, where ⊥i is the bottom element of Li for each i ∈ N, constitutes a
cooperative game on a direct product of distributive lattices.

Here, we consider some examples of games on a direct product of distributive lattices
(see, also Fig. 9). If Li is a two-element lattice (i.e., Li := {⊥i,�i} ) for all players i ∈ N,
then we get ordinary games on 2N (Fig. 9 (a)); If Li := {0, 1, . . . ,mi} for all players
i ∈ N, we obtain multichoice games onM =

∏

i∈N Li (Fig. 9 (c)); If Li := {⊥i, xi,�i},
⊥i < xi < �i (e.g., {−1, 0, 1}) for all players i ∈ N, then the product lattice L :=
∏

i∈N Li is isomorphic to (Q(N),�) (Fig. 9 (b)). The bottom element (⊥1, · · · ,⊥n) in L
corresponds to (∅,N) in Q(N). That is, a bi-cooperative game (N, v,Q(N)) is generally
not regarded as a game on a direct product of distributive lattices since bi-cooperative
games need not be vanishing at the bottom element (∅,N).

0,0,0
1,0,0

0,0,13,0,0
2,0,0

0,0,2

0,1,0

0,3,0
0,2,0

0,4,0

3,4,2

3,0,2

φ

123 φ

φ,123

φ,23

,23

φ,13

3,1

φ,12

3,2

2,13

3,12

Fig. 9. Examples of direct products of distributive lattices: elements indicated by black circles are
join-irreducible

Generally, the Möbius transform Δv of a game v on a lattice L can be implicitly defined
through Definition 3. As it will be seen in the next section, derivatives of games on
lattices are a very useful tool, and have been generalized (in particular) for games on
distributive lattices (see, [26]).
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Definition 47 (discrete derivative on distributive lattice). Let L be a distributive lat-
tice. The first order derivative of a game v : L → R with respect to a join-irreducible
element i ∈ J(L) at x ∈ L is given by

Δiv(x) := v(x ∨ i) − v(x).

The derivative of v with respect to y ∈ L at x ∈ L is iteratively defined by

Δyv(x) := Δ j1 [Δ j2[· · ·Δ jm−1 [Δ jm v(x)] · · · ]],

where η∗(y) = { j1, j2, . . . , jm} ⊆ J(L) is the minimal decomposition of y. Note that if
jk ≤ x for some k, the derivative is null. Also, Δyv(x) does not depend on the order of
the jk’s. The explicit formula is:

Δyv(x) =
∑

S⊆{1,...,m}
(−1)m−s v(x ∨

∨

k∈S
jk), (12)

equivalently,
Δyv(x) =

∑

y≤z≤x∨y

Δv(z).

In particular,
Δyv(⊥) = Δv(y) ∀y ∈ L.

Example 11. An ordinary game (N, v) can be regarded as a cooperative game on the
lattice L = (2N ,⊆). The join operator in the lattice is ∪ operator. The set of all join-
irreducible elements J(L) is N, i.e., any i ∈ N is a join-irreducible element. For any
T ⊆ N (i.e., T ∈ L), the minimal decomposition of T is T itself, i.e., η∗(T ) = T =
{σT (1), . . . , σT (t)} for some permutation σT on N. An order {σT (k)} ≤ U coincides
with σT (k) ∈ U. Then, we can easily find that Eq.(12) coincides with the ordinary
discrete derivative:

ΔT v(U) =
∑

S⊆T

(−1)|T |−|S | v(U ∪ S ).

Example 12. Considering the lattice L = (Q(N),�) with the join operator �. The set of
all join-irreducible elements J(L) is represented by

{{(i,N \ i)}i∈N , {(∅,N \ i)}i∈N } .

For any (T1, T2) ∈ Q(N) (i.e., (T1, T2) ∈ L), the minimal decomposition of (T1, T2) is
represented by

η∗(T1, T2) =
{

{(i,N \ i)}i∈T1 , {(∅,N \ j)} j∈N\(T1∪T2)

}

.

However, the discrete derivative in a bi-cooperative game (N, v,Q(N)) (see, Eq. (7)
in Definition 24) does not coincide with that in the cooperative game on the lattice
(Q(N),�). Indeed, for N = {1, 2, 3}, the (123, 0)-derivative at (∅, 3) can be defined in a
cooperative game on the lattice (Q({1, 2, 3}),�), but cannot in the bi-cooperative game
({1, 2, 3}, v,Q({1, 2, 3})). Now, let ΔB

(T1,T2) denote the (T1, T2)-derivative in the sense of
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bi-cooperative games and ΔL
(T1,T2) the (T1, T2)-derivative in the sense of cooperative

games on lattices. For (A1, A2), (B1, B2) ∈ Q(N) such as (A1, A2) � (B1, B2) and A2 ∩
B1 = ∅, we consider the following formula:

Δv([(A1, A2), (B1, B2)]) :=
∑

(A1,A2)�(S 1,S 2)�(B1,B2)

(−1)|S 1\A1|+|S 2\B2| v(S 1, S 2). (13)

Then, for (T1, T2) ∈ Q(N) and (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)),

ΔB
(T1,T2)v(S 1, S 2 ∪ T2) = Δv([(S 1, S 2 ∪ T2), (S 1 ∪ T1, S 2)]).

For (A1, A2), (B1, B2) ∈ Q(N) such as (A1, A2) � (B1, B2) and A2 ∩ B1 = ∅,

Δv([(A1, A2), (B1, B2)]) = ΔB
(B1\A1,A2\B2)v(A1, A2) = ΔL

y v(A1, A2),

where y =
⊔

(S 1,S 2)∈η∗(B1,B2)\η∗(A1,A2)

(S 1, S 2). For example (see, Fig. 2),

Δv([(∅, 3), (1, ∅)]) = v(1, ∅) − v(1, 3) − v(∅, ∅) + v(∅, 3)

= ΔB
(1,3)v(∅, 3)

= ΔL
(1,2)v(∅, 3).

5.3 Value and Interaction Index in Games on Distributive Lattices

In this subsection, we discuss on a specific type of game on lattice, where the lattice is a
direct product of distributive lattices. Let N := {1, . . . , n} and L := L1 × · · · × Ln, where
L1, . . . , Ln are finite distributive lattices. Then, L is also a distributive lattice and all
join-irreducible elements of L are of the form (⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n) for some
i ∈ N and some ji ∈ J(Li). A vertex of L is any element whose components are either
top or bottom. Vertices of L will be denoted by �Y , Y ⊆ N, whose coordinates are �k

if k ∈ Y, ⊥k otherwise, for k ∈ N. Each lattice Li represents the poset of action, choice,
or participation level of player i ∈ N to the game. An ordinary cooperative game (N, v)
can be regarded as the following game vL : L→ R :

Let Li := {0, 1} with the ordinary order ≤ on integers for all i ∈ N, and L =
∏

i∈N Li. Then, J(Li) = {1} for all i ∈ N. So, ⊥i = 0 and �i = 1 for all i ∈ N,
therefore �S = χS . Moreover, for any y ∈ L there uniquely exists Y ⊆ N such
that y = χY = �Y . Thus,

vL(�Y ) := v(Y) Y ⊆ N

is the desired one.

Lange and Grabisch [46] give the following interpretation for games on L:

We assume that each player i ∈ N has at her/his disposal a set of elementary
or pure actions j1, · · · , j ji . These elementary actions are partially ordered (e.g.,
in the sense of benefit caused by the action), forming a partially ordered set
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(Ei,≤i), Ei = { j1, · · · , j ji}. Then by Birkhoff’s theorem (Theorem 9), the set
(O(Ei),⊆) of downsets of Ei is a distributive lattice denoted by Li, whose join-
irreducible elements correspond to the elementary actions. The bottom action
⊥i of Li is the action which amounts to do nothing. Hence, each action in Li is
either a pure action jk or a combined action jk ∨ jk′ ∨ jk′′ ∨ · · · consisting of
doing all pure actions jk, jk′ , jk′′ · · · for player i ∈ N.

For a given elementary action ji ∈ J(Li) ⊆ Li, the importance index (the (Shapley-type)
value) of a game v on a direct product lattice L =

∏

i∈N Li of distributive lattices {Li}i∈N
is written as a weighted average of the marginal contributions of ji, taken at vertices of
L. This important index has been a generalization of the Shapley value in both ordinary
games and multichoice games.

Definition 48 (importance index). Let i ∈ N and ji ∈ J(Li). The importance index
with respect to ji of a game v : L→ R is defined by

φ ji (v) :=
∑

Y⊆N\i

y!(n − y − 1)!
n!

Δ jiv(�Y ).

As an extension of the importance index for every element of L and every game (N, v, L),
the interaction transform on L has been proposed by Lange and Grabisch [44]. For any
x ∈ L, Ix(N, v, L) expresses the interaction in the game among all elementary actions j
of the minimal decomposition x =

∨

j∈η∗(x) j.

Definition 49 (antecessors). The antecessor x of x ∈ L is defined as

x =
∨

{ j ∈ η(x) | j � η∗(x)}

with convention⊥ = ⊥ and
∨
∅ = ⊥. If x is a join-irreducible element (i.e., x ∈ J(L)),

the antecessor of x is obviously its predecessor, in accordance with the notation x. Note
also that the definition x is consistent with the structure of each lattices Li. Indeed,
x = (x1, · · · , xn).

Definition 50 (interaction transform on product lattices [44]). The (Shapley-type)
interaction transform Ix(N, v, L) with respect to x ∈ L of v : L→ R is defined by

Ix(N, v, L) :=
∑

Y⊆N\X

|Y |! (n − |X| − |Y |)!
(n − |X| + 1)!

Δxv(x ∨ �Y ),

where X = {i ∈ N | xi � ⊥i }. Equivalently,

Ix(N, v, L) =
∑

x≤z≤x⊥

1
k(z) − k(x) + 1

Δv(z),

where x⊥ := �i if xi = ⊥i and x⊥ := xi if xi � ⊥i, and k(y) = |{i ∈ N | yi � ⊥i}|. Recall
that any direct product L =

∏

i∈N Li of distributive lattices {Li}i∈N also a distributive
lattice. Thus, the Möbius transform Δv(z) and the marginal interaction Δx(y) in a game
(N, v, L) can be defined via Definition 47.

Each interaction index in ordinary games, and multichoice games is obtained as a
special case of this interaction transform.
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5.4 An Importance Index of Games on Regular Set Systems

In this subsection, we introduce an important index on a more general combinatorial
structure, which is called the regular set system proposed by Honda and Grabisch [35]
(see, also [47]). The concept of regular set system is induced by the following condi-
tion:

A condition “if S � N is feasible, then it is possible to find a player i ∈ N \ S
such that S ∪ i is still feasible” is one of the weakest restrictions on feasible
coalitions in a context where the grand coalition N can form. Because, it says
that from a given coalition, it is possible to augment it gradually to reach the
grand coalition.

Definition 51 (regular set system). Let us consider N a set of coalitions, i.e., N ⊆ 2N .
Then, a pair (N,N) is said to be a set system on N if N contains ∅ and N, i.e. ∅, N ∈ N.
Elements of N are called feasible coalitions. For any two feasible coalitions A � B, we
say that A is covered by B, and write A ≺ B, if there is no C ∈ N such that A � C � B.
A set system (N,N) is said to be regular if |B \ A| = 1 whenever A, B ∈ N and A ≺ B.

Definition 52 (game on regular set system). A triplet (N, v,N) consisting of a regular
set system (N,N) and a (characteristic) function v : N→ R such as v(∅) = 0 constitutes
a game on a regular set system.

Honda and Fujimoto [34] have proposed axiomatically an importance index of a game
on a regular set system as a generalization of importance indices of all ordinary games,
games on convex geometries, and multichoice games.

Definition 53 (maximal chain of regular set system). Let N ⊆ 2N be a regular set
system. If a sequence C = (C0, . . . ,Cn) satisfies that Ci ∈ N for any i ∈ {0, · · · , n} and
∅ = C0 ≺ C1 ≺ · · · ≺ Cn = N, then C is called a maximal chain of N. The set of all
maximal chains of N is denoted by M(N).

For any maximal chain C = (C0, . . . ,Cn), there exists a permutation σC on N such
that

Ci =
⋃

k≤i

{σC(k)} ∀i ∈ {1, . . . , n}. (14)

Definition 54 (importance index on regular set system). A marginal contribution
δv

i (C) of i ∈ N for a maximal chain C ∈ M(N) in a game (N, v,N) is defined by

δv
i (C) := v(

⋃

k≤i

{σC(k)}) − v(
⋃

k<i

{σC(k)})

where σC is a permutation on N satisfying Eq. (14). The importance index φ(N, v,N) ∈
R

N with respect to a player i ∈ N of a game v : N → R on a regular set system N is
defined by

φi(N, v,N) :=
1

|M(N)|

∑

C∈M(N)

δv
i (C)

for every i ∈ N, where φi(N, v,N) is the i-th component of φ(N, v,N) ∈ RN .
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In a case that a regular set system is the power set of N, i.e., N = 2N , any game
(N, v,N) coincides with the ordinary game (N, v). Then, φ(N, v,N) also coincides with
the ordinary Shapley value φ(N, v). Moreover, through lattice-isomorphic mappings and
Birkhoff’s Theorem (Theorem 1), this importance index can be applied to games on dis-
tributive lattices as the following way :

Definition 55 (set systems induced by lattices). Let (L,≤,∨,∧,�,⊥) be a distributive
lattice. Then (L,≤,∨,∧,�,⊥) � (η(L),⊆,∪,∩,J(L), ∅) with the lattice isomorphism η,
where η(x) = {y ∈ J(L) | y ≤ x } for x ∈ L, i.e., η(L) =

⋃

x∈L{η(x)} (see, e.g., [6]). Then
(J(L), η(L)) is called the set system induced by (L,≤).

All games discussed in this chapter, except bi-cooperative games, can be regarded as
games on lattices. All the set systems induced by these lattices become regular [34].
Notice that the set system induced by (Q(N),�) is also regular. Therefore, we have
another representation of importance indices of these games via η as follows:

I ji (N, v, L) := φη( ji)

(

J(L), vη−1, η(L)
)

∀ ji ∈ J(L).

6 Concluding Remarks

This chapter shows cooperative games on various extended or restricted domains. We
discussed only the Shapley-type values and interaction indices. However, there are var-
ious allocation rules and solution concepts in ordinary cooperative game theory, e.g.,
the core, bargaining set, prekernel, kernel, prenucleolus, nucleolus, etc. These various
allocation rules and solution concepts can be seen in the literature [11,54]. The Core
of cooperative games on various domains also have been studied by several researchers
(see, e.g., [4,30]). More information about “cooperative game in combinatorial struc-
tures” and “social and economic networks in cooperative games” can be found in the
literatures (see, e.g., [3,61]). To our knowledge, the topics “interaction indices of games
with networks, and on regular set systems” have not been studied yet.
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