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Preface

A measure assigns values to sets and generalizes the concept of length, area and
volume. Probability measures are a well known example of measures. Lebesgue
measures are another example. Most typically, measures are additive, as length,
areas and volumes are. That is, the measure of the union of two disjoint sets is
the sum of these two measures

μ(A ∪B) = μ(A) + μ(B)

for A ∩B = ∅. Again, probabilities are an example of additive measures.
Although not so much known, non-additive measures have also been studied in

the literature both for their mathematical properties as well as for their applica-
tion to real problems. Non-additive measures replace additivity my monotonicity.
That is,

μ(A) ≤ μ(C) if A ⊆ C.

As all additive measures are monotonic, non-additive measures generalize addi-
tive ones.

Non-additive measures are also known by the term capacities, and fuzzy mea-
sures.

Non-additive measures permit us to represent interaction between the ele-
ments. For example, we might have μ(A ∪ B) < μ(A) + μ(B) (negative inter-
action between A and B), and μ(A ∪ B) > μ(A) + μ(B) (positive interaction
between A and B).

Then, in the same way that there are fundamental concepts in measure the-
ory based on additive measures, there are some based on non-additive measures.
Some of these concepts are generalizations of corresponding concepts for addi-
tive measures. For example, the Choquet integral [1] is a generalization of the
Lebesgue integral in the sense that the Choquet integral of a function f with
respect to an additive measure corresponds to the Lebesgue integral. Other con-
cepts were introduced as new in this non-additive setting. This is the case of the
integral introduced by Sugeno in 1972 [4,5] which is now known as the Sugeno
integral.



VI Preface

This book has its origin in the 9th International Conference on Modeling
Decisions for Artificial Intelligence (MDAI 2012) that took place in Girona1

and, more specifically, in the panel session Fuzzy measures, fuzzy integrals and
aggregation operators hold in the conference. The panel gathered key researchers
with the aim of discussing new and challenging lines for future research in the
area of non-additive measures and integrals. The chapters of this book, written
by most of the panelists and two additional invited authors, are state-of-the-art
descriptions of the field that cover the lines of research discussed in the panel.

The first chapter is a review of uses and applications of non-additive measures
and integrals. The chapter presents most relevant definitions and also points out
to the other chapters in the book for further details and references. Links between
non-additive integrals and aggregation operators [6] are also highlighted.

In the second chapter, Narukawa presents an overview of integration with re-
spect to a non-additive measure. The chapter gives special emphasis to integrals
over continuous domains. The Sugeno, Choquet and generalized integrals are
presented and their properties reviewed. The case of multidimensional integrals
are discussed and a Fubini-like theorem is presented. The chapter concludes with
the Möbius transform and generalizations of the Möbius transform.

In the third chapter, Mesiar and Stupňanová focuses on different integrals
with respect to a non-additive measure. The authors discuss the approach to
integration introduced by Even and Lehrer [2] (decomposition integrals), the
Choquet and Sugeno integrals and also Shilkret and universal integrals.

Chapter four, by Honda, focuses on the definition of entropy for non-additive
measures (or capacities). First, Honda reviews the definition of entropy for prob-
abilities and then introduces different generalizations that exist for non-additive
measures. The author not only considers the case of measures defined on 2X but
also on measures defined on set systems (based on a subset of 2X). The problem
of the axiomatization of entropies is also discussed.

Non-additive measures and integrals have been used in applications. The fifth
chapter by Ozaki focuses on their application to economics. More especifically,
the author considers decision theory under risk, and decision theory under uncer-
tainty. The chapter describes some of the problems and paradoxes that cannot
be solved using additive models (as e.g. Ellsberg’s paradox).

Fujimoto in Chapter six surveys cooperative game theory, an important ap-
plication area for non-additive measures. Non-additive measures permit to rep-
resent coalitions in game theory. The chapter discusses with detail the case in
which not all coalitions can be formed, and how we can deal with this situa-
tion. The chapter also discusses indices that have been defined for games (as the
Shapley index [3]).

Flaminio, Godo, and Kroupa focus in Chapter seven on belief functions on
MV-algebras of fuzzy sets. Belief functions are totally monotone non-additive
measures. The authors discuss two ways of extending belief functions on Boolean
algebras of events to MV-algebras of events.

1 http://www.mdai.cat/mdai2012



Preface VII

We hope that this book will provide a reference to students, researchers and
practitioners in the field.

The editors of this book would like to thank Prof. Kacprzyk for his encour-
agement to edit it and publish it in this series. Partial support by the Spanish
MINECO (TIN2011-15580-E) is acknowledged.

August 2013 Vicenç Torra
L’Alcalatén Yasuo Narukawa

Michio Sugeno
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Use and Applications of Non-Additive Measures

and Integrals

Vicenç Torra

IIIA, Institut d’Investigació en Intel·ligència artificial,
CSIC, Consejo Superior de Investigaciones Cient́ıficas,

Campus Universitat Autònoma de Barcelona s/n,
08193 Bellaterra, Catalonia

vtorra@iiia.csic.es, vtorra@ieee.org

Abstract. Non-additive measures (also known as fuzzy measures and
capacities) and integrals have been used in several types of applications.
In this chapter we review the main definitions related to these measures,
motivate their use from the point of view of the applications, and describe
their use in different contexts.

1 Introduction

Non-additive measures and integrals have been used in different areas. They are
used to overcome the shortcommings of other (simpler) models. In particular,
they are used when models based on additive measures are not appropriate. In
this chapter we review the basic definitions of this topic and describe some of
the problems that can be solved using non-additive measures.

For the sake of completeness, Section 2 reviews definitions and results that are
needed in the rest of the chapter. Then, Section 3 focuses on decision making.
We describe some paradoxes that can be solved using non-additive measures and
integrals and that cannot be solved with some of the alternative models. Section 4
focuses on the use of these integrals on subjective evaluation. Section 5 reviews
some other applications in e.g. the field of computer vision. The chapter finishes
with some conclusions.

In this chapter we also establish some links between the topics described here
and the other chapters of this book.

2 Preliminaries

This section reviews a few definitions on probability, measures, aggregation op-
erators and integrals. We start reviewing the definition of σ-algebra. The notion
of σ-algebra is introduced because for some sets X it is, in general, not possi-
ble to consider all subsets of X and define the probability for these subsets. In
particular, generally it is not possible when X is not finite. A σ-algebra is a set
of sets with appropriate properties to define the measure on them. See [26] for
details.

V. Torra, Y. Narukawa, and M. Sugeno (eds.), Non-Additive Measures, 1
Studies in Fuzziness and Soft Computing 310,
DOI: 10.1007/978-3-319-03155-2_1, c© Springer International Publishing Switzerland 2014



2 V. Torra

Definition 1. Let X be a reference set, and let A be a subset of ℘(X). Let us
consider the following properties:

Property 1: ∅ ∈ A and X ∈ A
Property 2: if A ∈ A then X \A ∈ A
Property 3: A is closed under finite unions and finite intersections:

if A1, . . . , An ∈ A, then ∪n
i=1 Ai ∈ A and ∩n

i=1 Ai ∈ A,

Property 4: A is closed under countable unions and intersections:

if A1, A2, · · · ∈ A, then ∪∞
i=1 Ai ∈ A and ∩∞

i=1 Ai ∈ A,

Then, we define algebra and σ-algebra as follows.

1. A is an algebra (over a set) (or a field) if it satisfies Properties 1, 2, and 3;
2. A is a σ-algebra (or a σ-field) if it satisfies Properties 1, 2, and 4.

Note that Properties 1 and 4 imply Property 3. Therefore, any σ-algebra is
an algebra. Nevertheless, Properties 1 and 3 do not imply Property 4.

When A is an algebra on the reference set X , A is called a measurable space,
the elements of A are called measurable sets, and a pair (X,A) is called a
measurable space.

In probability, X is called the outcome space (and sample space in statistics),
elements in X are the possible outcomes, sets A ∈ A are called events, and a
pair (X,A) is also called a measurable space.

When X is finite, ℘(X) is a σ-algebra and, therefore, (X,℘(X)) is a measur-
able space.

When X is the set of real numbers, it is usual to consider the Borel σ-algebra.
We define it below. We begin defining the σ-algebra generated by a class of
subsets S of X . This σ-algebra is denoted by σ(S).

Definition 2. Let S be a class of subsets of X; then, the σ-algebra generated by
S is the set of subsets of X that

1. contains S
2. is a σ-algebra
3. is as small as possible (in the sense that any other set of subsets that contains

S also contains σ(S)).

Let O be the set of all finite open subsets of R; then, B = σ(O) is the Borel
σ-algebra of R.

2.1 Measures and Probability Measures

Let us start defining measures. See [26,66] for details.

Definition 3. Let (X,A) be a measurable space; then, a set function μ is an
additive measure if it satisfies the following conditions:
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(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) μ(∪∞

i=1Ai) =
∑∞

i=1 μ(Ai) for every countable sequence Ai (i ≥ 1) of A that
is pairwise disjoint (i.e,. Ai ∩ Aj = ∅ when i 
= j).

The triple (X,A, μ) is known as a measure space.
Probability is an additive measure such that μ(X) = 1. We usually denote it

with P . The triple (X,A, P ) is known as a probability space.

Example 1. There is a unique measurem on (R,B) that satisfies m([a, b]) = b−a
for every finite [a, b] with −∞ < a ≤ b < ∞. It is the Lebesgue measure.

Definition 4. Let (X,A) and (Y,B) be two measurable spaces and f a function
from X to Y . Then, it is said that the function f is a measurable function
from (X,A) to (Y,B) if and only if f−1(B) ∈ A. Here, f−1(B) is defined by
{x ∈ X |f(x) ∈ B}.

A random variable is a function that assigns values in R to the outcomes in
the reference set.

Definition 5. Let (X,A) and (R,B) be two measurable spaces, then a measur-
able function f from X to R is a random variable.

Given a probability space (X,A, P ) and a random variable f : X → S ⊆ R,
we can define a new probability measure on the space S from P . This is shown
below. Note that in this definition we need a σ-algebra S on the space S, as the
new probability should be defined over subsets of S.

Definition 6. Let (X,A, P ) be a probability space and let f : X → S be a
random variable. Then, the expectation of f is defined by

E[f ] :=

∫
X

fdP

provided the integral exists.

2.2 Non-Additive Measures

In this section we review the definition of non-additive measures, also known as
fuzzy measures and capacities, and some families of these measures.

Definition 7. Let (X,A) be a measurable space, a non-additive (fuzzy) measure
μ on (X,A) is a set function μ : A → [0, 1] satisfying the following axioms:

(i) μ(∅) = 0, μ(X) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

Note that a probability is a fuzzy measure, as the condition of additivity
implies monotonicity. Nevertheless, it is not true on the other way round. That
is, monotonicity does not imply additivity.

Let us now consider some definitions related to these measures.
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Definition 8. Let μ be a non-additive measure on the measurable space (X,A).
Then,

– μ is additive if μ(A ∪B) = μ(A) + μ(B) when A ∩B = ∅;
– μ is null-additive if A,B ∈ A with A∩B = ∅, μ(B) = 0 implies μ(A∪B) =

μ(A);
– μ is submodular if μ(A) + μ(B) ≥ μ(A ∪B) + μ(A ∩B);
– μ is supermodular if μ(A) + μ(B) ≤ μ(A ∪B) + μ(A ∩B).
– μ is symmetric if for finite X, when |A| = |B|, then μ(A) = μ(B). In general

if X ⊆ R, on μ is said to be symmetric if m(A) = m(B) implies μ(A) = μ(B)
(where m represents the Lebesgue measure).

Non-additive measures can be represented through the Möbius transform. The
Möbius transform of a non-additive measure μ on a finite set X is the function
m : ℘(X) → R defined below. The case of the Möbius transform of a fuzzy
measure on infinite sets is described in [49] (See Section 5 of Chapter 2 in this
book).

Definition 9. Let μ be a non-additive measure on a finite set X; then, its
Möbius transform m is defined as

mμ(A) :=
∑
B⊆A

(−1)|A|−|B|μ(B) (1)

for all A ⊂ X.

The set of subsets A of X such that mμ(A) is not zero defines the focal set. That
is, Fμ = {A|mμ(A) 
= 0}. If A is in Fμ we say that A is a focal element.

Note that the functionm is not restricted to the [0, 1] interval, but thatm(∅) =
0, that

∑
A⊆X m(A) = 1, and, if A ⊂ B, then

∑
C⊆A m(C) ≤

∑
C⊆B m(C).

Given a function m that is a Möbius transform (i.e., that satisfies the three
conditions in the last paragraph), we can reconstruct the original measure as
follows:

μ(A) =
∑
B⊆A

m(B)

for all A ⊆ X .
There are several families of measures. We review some of them below. There

are several motivations for studying these families. One of them is because it is
more complex to define a non-additive measure than an additive one because we
need to assign a number to each set in the σ-algebra. In the case of a finite set
X , this implies that we need to assign values to all A ∈ ℘(X) which are 2|X|

values. On the contrary, for additive measures only |X | values are needed.

Decomposable Measures. Some families are defined in a way that the mea-
sure of a set can be computed from the values in the singletons and a parameter
that describes how the values of the singletons have to be combined. One way
to combine the values in the singletons is using a t-conorm.
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Definition 10. Let μ be a non-additive measure on a finite set X; then, μ is a
⊥-decomposable measure if there exists a t-conorm ⊥ such that,

μ(A ∪B) = μ(A)⊥μ(B) (2)

for all A ∩B = ∅

When
∑

x∈X μ({x}) = 1 and ⊥ is the Lukasiewicz t-conorm (⊥(x, y) =
min(x + y, 1)), the previous definition corresponds to a probability measure.
Sugeno λ-measures are an example of the previous family with Sugeno’s t-conorm
⊥(x, y) = min(1, x+ y − λxy).

Definition 11. Let μ be a non-additive measure on a finite set X; then, μ is a
Sugeno λ-measure if for some fixed λ > −1 it holds that

μ(A ∪B) = μ(A) + μ(B) + λμ(A)μ(B) (3)

for all A ∩B = ∅

Naturally, when λ = 0, we have that the Sugeno λ-measure is a probability dis-
tribution if μ(X) = 1, and when λ = −1, we have that μ(A∪B) = S(μ(A), μ(B))
for the t-conorm S(a, b) = a+ b− ab (the algebraic sum).

When we require that μ(X) = 1, the measures on the singletons determine
the parameter λ. Note that for finite X we have

μ(X) = (1/λ)(Πxi∈X [1 + λv(xi)]− 1) = 1.

The following proposition establishes this result.

Proposition 1. [41] Let μ be a Sugeno λ-measure on a finite reference set X =
{x1, . . . , xN}; then, for a fixed set of 0 < μ({xi}) < 1, there exists a unique
λ ∈ (−1,+∞) and λ 
= 0 that satisfies μ(X) = 1, that is, satisfies

λ+ 1 = ΠN
i=1(1 + λμ({xi})).

We consider now the family of distorted probabilities.

Definition 12. Let f be a real-valued function on [0, 1] and let P be a probability
measure on (X,℘(X)) with finite X. We say that f and P represent a fuzzy
measure μ on (X,℘(X)) if and only if μ(A) = f(P (A)) for all A ∈ ℘(X).

Definition 13. Let f be a real-valued function on [0, 1]. We say that f is strictly
increasing with respect to a probability measure P if and only if P (A) < P (B)
implies f(P (A)) < f(P (B)). We say that f is nondecreasing with respect to a
probability measure P if and only if P (A) < P (B) implies f(P (A)) ≤ f(P (B)).

Using the two definitions, we define distorted probabilities as follows.

Definition 14. Let μ be a non-additive measure on (X,℘(X)) with a finite
X. We say that μ is a distorted probability if it is represented by a probability
distribution P on (X,℘(X)) and a function f that is nondecreasing with respect
to a probability P .
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Proposition 2. (see e.g. [86] for a proof) Any Sugeno λ-measure is a distorted
probability.

The family of Hierarchically ⊥-Decomposable Fuzzy Measures (HDFM) is
another family of non-additive measures. They are a generalization of Sugeno
λ-measures. The difference is that in the Sugeno λ-measure the measure of any
aggregation of sets is always computed using the same expression (i.e., Equation
3 with a given λ) and this is independent of the sets under consideration. In
contrast, in a HDFM the combination depends on the sets. In other words, in a
HDFM given disjoints A and B, μ(A∪B) is a function of μ(A) and μ(B) which
depend on A and B. For example, we can have something like:

μ(A ∪B) = μ(A) + μ(B) + λ(A,B)μ(A)μ(B).

In the general expression, a t-conorm is used to combine μ(A) and μ(B).
In order to know which t-conorm is used for a particular pair of sets, we start

with a dendrogram of the reference set. The leaves of the dendrogram are labeled
with the measures of the singletons and the remaining nodes are labeled with
t-conorms. Then, given a particular set A, A is decomposed in a hierarchical way
according to the dendrogram. This dendogram will typically have less nodes, and
only the leaves in the set A. The values of the leaves are then combined using
the t-conorms in the nodes.

The formalization of HDFM is based first on the hierarchy of elements. Its
definition follows. The original definition of these measures can be found in [77],
and a more detailed explanation with examples can be found in [86].

Definition 15. H is a hierarchy of a finite set of elements X if and only if the
following conditions are fulfilled:

(i) All the elements in X belong to the hierarchy, and they define the leaves of
the hierarchy:
For all x in X, {x} ∈ H.

(ii) There is only one root in the hierarchy, and it is denoted by root. A node is
the root if it is not included in any other node:
if root ∈ H, then there is no other node m ∈ H such that root ∈ m.

(iii) All nodes belong to one and only one node, except for the root:
if n ∈ H and n 
= root, then there exists a single m ∈ H such that n ∈ m.

(iv) All nodes that contain only one element are singletons:
if |n| = 1, then there exists x ∈ X such that n = {x} for all n ∈ H.

(v) All non-singletons are defined in terms of nodes that are in the tree:
if |n| 
= 1, then, for all ni ∈ n, ni ∈ H.

As stated before, given a dendrogram, we label the leaves with values and the
other nodes with t-conorms. This is shown in the next definition.

Definition 16. Let H be a hierarchy according to Definition 15; then, a labeled
hierarchy L for H is a tuple L =< H,⊥,m >, where ⊥ is a function that maps
each node n ∈ H that is not a leaf into a t-conorm, and m is a function that
maps each singleton into a value of the unit interval.

For simplicity, we will express ⊥(h) by ⊥h.
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To complete the definition of HDFM we need to define extension of a node.
It is the set of elements of X which are leaves of the node.

Definition 17. Let H be a hierarchy according to Definition 15 and let h be a
node in H; then, the extension of h in H is defined as:

EXT (h) :=

{
h if |h| = 1
∪hi∈hEXT (hi) if |h| 
= 1.

Now, we review this family of measures.

Definition 18. Let L =< H,⊥,m > be a labeled hierarchy according Defini-
tion 16; then, the corresponding Hierarchically ⊥-Decomposable Fuzzy Measure
(HDFM for short) of a set B is defined as μ(B) = μroot(B), where μA for a node
A = {a1, ..., an} is defined recursively as

μA(B) =

⎧⎨⎩
0 if |B| = 0
m(B) if |B| = 1
⊥A(μa1(B1), ..., μan(Bn)) if |B| > 1.

Here, Bi = B ∩ EXT (ai) for all ai in A.

The families of measures seen in this section have been mainly defined and
studied for finite X .

Level-Dependent Fuzzy Measures. Greco, Matarazzo and Giove [25] in-
troduced a generalization of the Choquet integral considering a set of fuzzy
measures. In this set, measures are indexed by a parameter t that corresponds
to the level in the integration process. We review these measures below. The
level-dependent Choquet integral is introduced in Definition 35.

Definition 19. [25] Let (X,A) be a measurable space. A level-dependent fuzzy
measure is a function μ : A× (α, β) → [0, 1], (α, β) ⊆ R, such that

1. for all t ∈ (α, β) and A ⊆ B with A,B ∈ A, μ(A, t) ≤ μ(B, t),
2. for all t ∈ (α, β), μ(∅, t) = 0 and μ(X, t) = 1,
3. for all A ∈ A, μ(A, t) considered as a function with respect to t is Lebesgue

mesurable.

Note that for a given t, μt(x, t) is a fuzzy measure.

Other Extensions. Non-additive measures correspond to cooperative games in
game theory. Then, a non-additive measure represents the value of a coalitions.
Formally, we have that μ(A) is the value of a given coalition A. For example,
we can represent the case that X is the set of parties in a parliament and
μ(A) ∈ {0, 1} represents whether the coalition A ⊆ X is able to approve a law.
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In the setting of games it is of relevance to study the case where some coalitions
are not possible because they cannot be formed. E.g., parties x1 and x2 cannot
collaborate in approving the law.

This situation is described in detail in [18] (Chapter 6 in this book). See also
the book by Bilbao [6].

Another type of extension is when the measure is not defined on a set but
on a multiset. That is, we allow multiple appearances of the same object when
computing the fuzzy measure. This situation has been studied in e.g. [53,90].

2.3 Aggregation Operators

In this section we focus on the approaches to aggregate data supplied by a finite
set X = {x1, . . . , xN} of objects. We consider the aggregation of data proceeding
from the elements of this set. Typically, X represents the data sources that
supply some information to be aggregated. For example, X can be a set of
experts giving opinions, a set of criteria used to evaluate some alternatives, and
a set of sensors. Then, we will consider that we have a function that relates each
data source with the value its supplies. Let f be such function that assigns a
value in a certaine range D to each x in X . That is, f : X → D. We will use ai to
denote f(xi). Then, aggregation operators take N values a1, . . . , aN and combine
them in a single datum. That is, C : DN → D. C is usually required to satisfy
idempotency (unanimity) and monotonicity. See [86,5] for details on aggregation
operators. [86] gives examples of their application and discusses their differences.
In the remaining part of this section we review the most rellevant functions.

Definition 20. Given a domain D with a total order ≤D, an aggregation oper-
ator is a function C : DN → D satisfying idempotency and monotonicity.

In this section we review some of these operators, mainly focusing to the case
where D is a subset of R.

Definition 21. A vector v = (v1...vN ) is a weighting vector of dimension N if
and only if vi ∈ [0, 1] and

∑
i vi = 1.

Definition 22. A mapping AM: RN → R is an arithmetic mean of dimension
N if AM(a1, ..., aN ) = (1/N)

∑N
i=1 ai.

Definition 23. Let p be a weighting vector of dimension N ; then, a mapping
WM: RN → R is a weighted mean of dimension N if WMp(a1, ..., aN ) =∑N

i=1 piai.

Note that the expectation as defined in Definition 6 is the continuous coun-
terpart of the expression given here for the weighted mean. The weighting vector
p corresponds to the probability on X .
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Definition 24. Let w be a weighting vector of dimension N ; then, a mapping
OWA: RN → R is an Ordered Weighting Averaging (OWA) operator of dimen-
sion N if

OWAw(a1, ..., aN ) =

N∑
i=1

wiaσ(i),

where {σ(1), ..., σ(N)} is a permutation of {1, ..., N} such that aσ(i−1) ≥ aσ(i) for
all i = {2, ..., N} (i.e., aσ(i) is the ith largest element in the collection a1, ..., aN).

Both OWA and weighted mean generalize the arithmetic mean.

The WOWA Operator. The WOWA operator was introduced in order to
aggregate data taking into account the weights of both the weighted mean and
the OWA. That is, to model situations in which both importance of information
sources (as in the weighted mean) and importance of values (as in the OWA)
had to be taken into account. The definition of the operator is as follows. See [82]
for a review of results related to the WOWA operator.

Definition 25. [74,75] Let p and w be two weighting vectors of dimension N ;
then, a mapping WOWA: RN → R is a Weighted Ordered Weighted Averaging
(WOWA) operator of dimension N if

WOWAp,w(a1, ..., aN ) =

N∑
i=1

ωiaσ(i),

where σ is defined as in the case of OWA (i.e., aσ(i) is the ith largest element in
the collection a1, ..., aN ), and the weight ωi is defined as

ωi = w∗(
∑
j≤i

pσ(j))− w∗(
∑
j<i

pσ(j)),

with w∗ being a nondecreasing function that interpolates the points

{(i/N,
∑
j≤i

wj)}i=1,...,N ∪ {(0, 0)}.

The function w∗ is required to be a straight line when the points can be interpo-
lated in this way.

The previous definition starts with the weights w and p, and from w we build
the function W ∗. An alternative approach is to start directly with the function
W ∗. This is defined below with the help of the set of functions that can be used
as W ∗.

Definition 26. A function Q : [0, 1] → [0, 1] is a regular nondecreasing fuzzy
quantifier (nondecreasing fuzzy quantifier for short) if (i) Q(0) = 0; (ii) Q(1) =
1; and (iii) x > y implies Q(x) ≥ Q(y).
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Definition 27. Let Q be a regular nondecreasing fuzzy quantifier, and let p be
a weighting vector of dimension N ; then, a mapping WOWA: RN → R is a
Weighted Ordered Weighted Averaging (WOWA) operator of dimension N if

WOWAp,Q(a1, ..., aN ) =

N∑
i=1

ωiaσ(i),

where σ is defined as in the case of the OWA, and the weight ωi is defined as

ωi = Q

⎛⎝∑
j≤i

pσ(i)

⎞⎠−Q

⎛⎝∑
j<i

pσ(i)

⎞⎠ .

There have been implementations of the WOWA operator based on different
interpolation methods. In order to make clear the difference between the WOWA
operator and the interpolation method, we give a definition in which the interpo-
lation function is a parameter of the operator. We review this definition below.

Definition 28. [84] Let w be a weighting vector of dimension N with weights
w = (w1 . . . wN ), let I denote a particular interpolation method, and let I(w)
be the function that interpolates the points {(i/N,

∑
j≤i wj)}i=1,...,N ∪ {(0, 0)}.

Then, we say that I is an interpolation method WOWA-consistent if I(w) is a
monotonic function, and I(w)(x) = x when x = i/N for i = 0, . . . , N .

Naturally, from this definition it follows I(w)(i/N) =
∑

j≤i wi and I(w)(0) =
0. The non-linear interpolation described in [78,8,79] and the linear interpolation
(see e.g. [10]) lead to WOWA-consistent interpolation methods. A comparison
of the sensitivity of the different interpolation methods is given in [84,81].

Note that taking into account Definition 28, we can define the WOWA oper-
ator as follows.

Definition 29. [84] Let p and w be two weighting vectors of dimension N ,
let I be a WOWA-consistent interpolation method; then, the mapping WOWA:
RN → R is a Weighted Ordered Weighted Averaging (WOWA) operator of
dimension N if

WOWAp,w,I(a1, ..., aN) = WOWAp,I(w)(a1, ..., aN),

Here we have reviewed the definition of the OWA and the WOWA in a discrete
domain. For continuous domains see [83,50,51] and Definition 32.

The WOWA operator generalizes the weighted mean and the OWA and, as
we will see in the next section, the aggregation operators reviewed in this section
can be seen as particular cases of some integrals.

2.4 Choquet and Sugeno Integrals

Let us review the definition of the two main integrals for non-additive measures.
We begin with the Choquet integral, that reduces to the Lebesgue integral when
the measure is additive. [47] (Chapter 3 in this book) presents an overview of
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these integrals and other integrals for non-additive measures. [49] (Chapter 2
in this book) also considers these integrals and discuss the case of integration
of functions that take negative values. The asymmetric and symmetric (Šipoš)
integrals are defined.

Definition 30. [9] Let X be a reference set, let (X,A) be a measurable space,
let μ be a non-additive measure on (X,A), and let f be a measurable function
f : X → [0, 1]; then, the Choquet integral of f with respect to μ is defined by

Cμ(f) :=

∫ ∞

0

μf (r)dr,

where μf (r) := μ({x|f(x) > r}).
In the case of a discrete domain X , we have the following equivalent definition

for the Choquet integral.

Definition 31. Let μ be a non-additive measure on X; then, the Choquet inte-
gral of a function f : X → R+ with respect to the fuzzy measure μ is defined by

(C)

∫
fdμ =

N∑
i=1

[f(xs(i))− f(xs(i−1))]μ(As(i)), (4)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤ f(xs(1)) ≤
· · · ≤ f(xs(N)) ≤ 1, and where f(xs(0)) = 0 and As(i) = {xs(i), . . . , xs(N)}.

We can use this integral as an aggregation operator when we consider that f
is the function that associates each information source with its value. That is, as
above, f(xi) = ai. In this case, we can use CIμ(a1, . . . , aN ) to denote (C)

∫
fdμ.

The WOWA operator is a particular case of the discrete Choquet integral.
This relationship was proven in [76]. In particular, for a finite set X the WOWA
operator with vectors p, w, and a WOWA-consistent interpolation method I cor-
responds to a Choquet integral with respect to the distorted probability defined
by p and I(w). Equivalently, it corresponds to the Choquet integral with respect
to the measure μ(A) = I(w)(

∑
x∈A p(x)).

This fact permits us to define the continuous WOWA (CWOWA) using a
probability measure P with density function p and a regular nondecreasing fuzzy
quantifier Q as follows:

Definition 32. Let P be a probability measure on (R,B) with a density function
p, that is,

P ([a, b]) =

∫
[a,b]

p(x)dλ

where λ is the Lebesgue measure, let Q be a monotone increasing function on
[0, 1], and f : R → R a random variable. Then. Then, the continuous WOWA
operator of f is defined by

CWOWAμ(f) = (C)

∫
fdμ

where μ = Q ◦ P .
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Then, the continuous OWA (COWA) is defined in terms of a symmetric
fuzzy measure. That is, COWAμ(f) = (C)

∫
fdμ when μ is a symmetric fuzzy

measure.
As a consequence of all this, the weighted mean is a particular case of the dis-

crete Choquet integral. In fact, for a finite X , the weighted mean with weights
wi is the Choquet integral with measure μ(A) =

∑
xi∈A wi. In general, as stated

above, the Choquet integral reduces to the Lebesgue integral for additive mea-
sures, which corresponds to the expectation of the function being integrated.
Similar results are obtained on non finite sets.

Let us now consider the Sugeno integral.

Definition 33. [68,69] Let X be a reference set, let (X,A) be a measurable
space, let μ be a non-additive measure on (X,A), and let f be a measurable
function f : X → [0, 1]; then, the Sugeno integral of f with respect to μ is
defined by

Sμ(f) := sup
r∈[0,1]

[r ∧ μf (r)],

where μf (r) := μ({x|f(x) > r}).

The definition for the discrete case follows.

Definition 34. Let μ be a non-additive measure on X; then, the Sugeno integral
of a function f : X → [0, 1] with respect to μ is defined by

(S)

∫
fdμ = max

i=1,N
min(f(xs(i)), μ(As(i))), (5)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤ f(xs(1)) ≤
... ≤ f(xs(N)) ≤ 1 and As(i) = {xs(i), ..., xs(N)}.

Sugeno integrals, due to the combination of weights and values through the
minimum, needs the function and the measure to be defined in the same domain.
It is usual to consider functions into [0, 1] and normalized fuzzy measures.

The Sugeno integral generalizes the weighted minimum and the weighted max-
imum. See [86] for the definition of these other operators, the relationship be-
tween all of them, and some examples of their application.

When the Sugeno integral is used as an aggregation operator, we usually use
SIμ(a1, . . . , aN) to denote (S)

∫
fdμ. Here, ai = f(xi) as before.

Some Generalizations. We review in this section two level-dependent non-
additive integrals, and the twofold integral. The former is defined with respect
to a level-dependent fuzzy measure (see Definition 19). In the definitions ∨ is
the maximum (or supremum) and ∧ the minimum.

Definition 35. [25] Let X = (x1, . . . , xN ) be the reference set, f : X →
(α, β) ⊆ [0, 1], and let μ be a level dependent capacity. Then, the level dependent
Choquet integral of f with respect to μ is defined by:

CIμ(f) =

∫ ∞

0

μ(Af (t), t)dt, (6)
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where
Af (t) = {x ∈ X : f(x) ≥ t}.

Definition 36. [46] Let X = (x1, . . . , xN ) be the reference set, f : X →
(α, β) ⊆ [0, 1], and let μ be a level dependent capacity. Then, the level dependent
Sugeno integral of f with respect to μ is defined by:

SIμ(f) =
∨

t∈(0,1]

μ({x ∈ X : f(x) ≥ t}, t)

Let us consider now the twofold integral.

Definition 37. [54,80] Let X be a reference set, let (X,A) be a measurable
space, and let μC and μS be non-additive measures on (X,A). Then, for a mea-
surable function f : X → [0, 1], let us define φf : [0, 1] → [0, 1] by

φf (x) :=
∨

0≤r≤x

(r ∧ μS({f > r})).

Note that φf (1) = SμS (f) and φf is nondecreasing, so the cardinality of noncon-
tinuous points of φf is at most countable. φf permits us to define a Lebesgue-
Stjeltjes measure νφf

on the real line by

νφf
([a, b]) := φf (b+ 0)− φf (a− 0).

Then, the twofold integral of a measurable function f : X → [0, 1] with respect
to fuzzy measures μS and μC is defined by

TIμS,μC (f) =

∫ 1

0

μC(f > a)dνφf
(a).

For other integrals and generalizations of the integrals here see [49] and [47]
(Chapters 2 and 3 of this book).

2.5 Inequalities and Bounds

The literature on non-additive measures and integrals has also studied the con-
ditions that are required so that some well known equations and inequalities for
additive measures hold for non-additive ones. See e.g. [61,62] for some results in
the area and [56] for an overview of the topic.

2.6 Uncertainty Measures

The literature presents a considerable number of approaches with the generic
objective of capturing the uncertainty of a probability or, in general, of a non-
additive measure. They are the uncertainty measures. A well known example is
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entropy. We will review a few of them in this section. See [32] (Chapter 4 in this
book) for a detailed discussion of the entropy for non-additive measures.

Following [36,37]1, the measures of uncertainty can be classified in three
classes.

On the one hand we have the measures that focus on the ambiguity we have in
a piece of information. Ambiguity can be due to imprecision (or nonspecificity)
or due to discord (or conflict or strife). We have imprecision when there are
different possible alternatives. In this case, nonspecificity is to measure the size
of the set of possible alternatives. In contrast, other measures as entropy and
strife evaluate the degree of conflict, inconsistency or disagreement between these
alternatives. According to [27], “the more even the strength of the disagreeing
pieces of evidence is, the larger the conflict”. The term randomness is also used
for this latter set of measures (see e.g. Yager [93]). As we see below, nonspecificity
is zero for probabilities, and only entropy and other measures of conflict are able
to capture the uncertainty due to randomness.

On the other hand we have uncertainty due to fuzziness or vagueness because
of imprecise boundaries of sets (“lack of sharpness of relevant distinctions” as [37]
puts it (p. 268)). One approach to define measures of fuzziness is to take into
account that the larger the distinction between a fuzzy set and its complement,
the smaller its fuzziness. See [36,37] for details on measures of fuzziness and [34]
for references.

In this section we review the measures for imprecision (nonspecificity) and
conflict (entropy and strife). Measures of fuzziness are not discussed here. The
literature presents other measures that aggregate nonspecificity and conflict.
They are known as aggregate uncertainty measures (see for details [27,36]).

Nonspecificity and Imprecision. One of the first measures of information
was the one defined by Hartley in 1928 [29]. This measure, based on (crisp) set
theory, is about the selection of an element from a set of candidates.

Let us consider a set A (subset of X) and a selection of m elements from
this set. Then, there are |A|m sequences of m elements. Then, the basic idea of
Hartley’s definition is that the uncertainty ofm selections should be proportional
to m. That is,

H(|A|m) = m ·K(|A|), (7)

where K(|A|) is a constant that depends on |A| (the cardinality of the set A).
Let us now consider two sets A1 and A2, and two values m1 and m2 such that

|A1|m1 = |A2|m2 . From this last equation, Hartley derives:

m1 log |A1| = m2 log |A2|. (8)

In addition, using Equation 7 we have that H(|A1|m1) = H(|A2|m2) corresponds
to

m1 ·K(|A1|) = m2 ·K(|A2|). (9)

1 In [36], information is “conceived in terms of uncertainty reduction”.



Use and Applications of Non-Additive Measures and Integrals 15

Equations 8 and 9 imply that K(|A|) = K0 log |A|. Since K0 is arbitrary, Hartley
removes it making the logarithmic base arbitrary. That is,

K(|A|) = logb |A|, (10)

and H(|A|m) = m logb |A|.
When b = 2, the uncertainty is measured in bits.
In 1970, Rényi [60] characterized Hartley’s measure in terms of three axioms:

additivity (H(n · m) = H(n) · H(m)), monotonicity (H(n) ≤ H(n + 1)), and
normalization (H(2) = 1). That is, the only measure that satisfies additivity,
monotonicity, and normalization is Equation 10.

In Equation 10, A is the set of alternatives, and the uncertainty is related
to the imprecision of the set. Klir and Wierman [36], Dubois and Prade [12]
and others use the term nonspecificity for this type of measure. Naturally, full
specificity (minimum imprecision) is achieved when we have only one alternative
(|A| = 1). Maximum nonspecificity (maximum imprecision) is achieved when
A = X .

In the area of evidence theory, the following definition was introduced by
Dubois and Prade [12] to compute the nonspecificity of an arbitrary non-additive
measure. A characterization of this measure was given by Ramer in [59].

Definition 38. Let μ be a non-additive measure and let m be the Möbius trans-
form of μ (see Definition 9), then we define the nonspecificity of μ by:

N(m) =
∑

A∈Fµ

m(A) log2 |A| (11)

where Fμ is the set of focal elements of μ.

When μ is a probability, the nonspecificity of μ is zero. The maximum of
this function is achieved for a measure μ with Möbius transform m(X) = 1 and
m(A) = 0 for all other A 
= X .

Abellán and Moral [1] generalize Definition 38 to the case of convex sets
of probability distributions2. Given a convex set of probability distributions C
they define the function f(A) = infp∈C P (A) (this corresponds to the lower
non-additive measure of C) and then define the nonspecificity of C as the non-
specificity of the Möbius transform of f .

The measures discussed in this section are only applicable to finite sets X .
The case of nonspecificity when the sets are on the real line or, in general, in the
n-dimensional Euclidean space was explored by Klir and Yuan [38].

Their definition is based on a Hartley-like function HL that can be applied to
any convex subset A of a set X ⊆ Rn. That is, let C be the family of all convex
subsets of X , then a Hartley-like function has the following form:

HL : C → R+.
2 Recall that given a belief function Bel on X, the closed convex set of probability
distributions CBel is defined by all probabilities {(px)|x ∈ X} satisfying (i) px ∈ [0, 1]
for x ∈ X and

∑
px = 1; and (ii) Bel(A) ≤ ∑

x∈A px ≤ 1 − Bel(Ā) for all A ⊆ X
and where Ā is the complement of A.
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An example of such function is the following one:

HL(A) = min
t∈T

ln

[
n∏

i=1

[1 + λ(Ait)] + λ(A) −
n∏

i=1

[λ(Ait )]

]

where λ denotes the Lebesgue measure, T denotes the set of all transformations
from one orthogonal coordinate system to another, and Ait denotes the ith
projection of A within the coordinate system t. This function satisfies the set
of properties that Hartley-like functions are required to satisfy in [38,36] (see
these references for details). One of the properties is that the function HL has
to be coordinate invariant. That is, the function does not change under isometric
transformations of the coordinate space. That is why in the definition the set T
is considered.

UsingHL, nonspecificity for non-additive measures on Rn is defined as follows,
when the set of focal elements of the fuzzy measure μ, i.e., Fμ, is finite.

NL(m) =
∑

A⊆Fµ

m(A)HL(A) (12)

Conflict. The most well-known measure of uncertainty is the Shannon entropy,
introduced by Shannon in 1948 [65]. Its definition follows.

Definition 39. Let μ be a probability measure on a finite reference set X, and
m be its probability density function (its Möbius transform) then the Shannon
entropy is defined by

H(μ) = −
∑
x∈X

m({x}) log2 m({x}).

with 0 log 0 defined as 0 (to allow for probabilities equal to zero).

There are different characterizations of this function using different sets of
properties. See e.g. [3,13] for details.

This measure can be seen as a measure of conflict. This is illustrated in [36]
with the following expression that is equivalent to the one above for the entropy:

H(μ) =
∑
x∈X

m({x})C(x) (13)

where C(x) = − log2 [1− Con(x)] and Con(x) =
∑

y �=xm({y}).
In this expression, Con(x) corresponds to the probability that conflicts with

x (i.e., the one assigned to elements y ∈ X such that x 
= y), and C(x) is a
function that is monotonic increasing with respect to Con(x). So, H(μ) is the
average of Con(x) for all x in X , or the expectation of conflict.

In the case of non-additive measures, there are several alternative definitions
for measures on finite sets. We review two of them below. They are the lower and
upper entropies. [32] (Chapter 4 in this book) reviews these and other measures.
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Definition 40. [43,44] Let μ be a non-additive measure on a finite set X =
{x1, . . . , xN}; then, the lower entropy Hl of μ is defined by

Hl(μ) :=
N∑
i=1

∑
T⊆X\{xi}

γ|T |(N)h[μ(T ∪ {xi})− μ(T )], (14)

where h is defined as follows

h(x) :=

{
−x lnx if x > 0
0 if x = 0,

(15)

and

γt(n) :=
(n− t− 1)!t!

n!
. (16)

Definition 41. [94] Let μ be a non-additive measure on a finite set X =
{x1, . . . , xN}; then, the upper entropy Hu of μ is defined by

Hu(μ) :=

N∑
i=1

h

⎛⎝ ∑
T⊆X\{xi}

γ|T |(N)[μ(T ∪ {xi})− μ(T )]

⎞⎠ , (17)

with γt(n) defined as above.

In this second definition, the entropy of a fuzzy measure μ corresponds to the
entropy of the Shapley value of the measure μ (see Definition 7 in [18], Chapter
6 in this book). The two definitions above satisfy

1. Hl(μ) ≤ Hu(μ) for all μ;
2. Hl(μ) = Hu(μ) if and only if μ is additive.

The comparison of the two entropies is given in [45]. For some other properties
of these entropies see [32] (Chapter 4 in this book) and also [86].

Marichal and Roubens introduced in [45] a definition of entropy for non-
additive measures μ : 2X → L when X is finite and L is an ordinal scale. Let
L = {l0, . . . , lr}, with l0 <L l1 <L · · · <L lr; then, the ordinal entropy HL of μ
is defined by

EL(μ) = l|R| − 2,

where R = {μ(A)|A ⊂ X}.
Equation 13 suggested other generalizations of entropy. We review the one

introduced by Klir and Parviz in [35]. First, note that Con(x) in Equation 13
can be written as

Con(x) =
∑

A∩{x}=∅
m(A).

Recall that in this expressionm is the Möbius transform of μ (i.e., the probability
density function of μ). Then, the strife ST of a non-additive measure μ is defined
by:
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ST (μ) = −
∑

A∈Fµ

m(A) log2

⎛⎝1−
∑

B∈Fµ

m(B)
|A−B|
|A|

⎞⎠ .

Definition 39 is on finite sets, the analogous definition not restricted to finite
sets is the Boltzmann entropy. Its definition is

B(μ) = −
∫ b

a

m(x) log2 m(x),

where m is a probability density function of μ on [a, b]. Nevertheless this defi-
nition is not an extension of the Shannon entropy. This is so because when we
consider a sequence of discrete distributions on [a, b] with an increasing number
of terms, the Shannon entropy does not converge to the Boltzmann entropy.

To solve this problem, the Shannon cross-entropy was defined. The definitions
follow. They are defined in terms of two probability density functions p and q.
First, we give the one for continuous functions and later the one for discrete
ones:

B(p, q) =

∫ b

a

p(x) log2
p(x)

q(x)
dx

and

H(p, q) =
∑
x∈X

p(x) log2
p(x)

q(x)
.

Up to our knowledge, entropies for non-additive measures not restricted to
finite sets have not been studied in the literature.

3 Decision Making

In this section we review first some models for decision making, and then focus on
problems that cannot be solved with the classical models but that can be solved
with the models based on non-additive measures. In [55] (Chapter 5 in this book)
some representation theorems are given for the models discussed briefly here.

3.1 Classical Expected Utility

In classical expected utility theory we consider a (finite) state space, which we
denote by S, and a set X that corresponds to a (finite) set of outcomes. Then,
let A denote an algebra on X . Then (X,A) is a measurable space. Let P be a
probability measure on this space, and, thus, (X,A, P ) is a probabilistic space.
Let u : X → R+ be a utility function.

We define an act as a function from S to X . Let f be one act, then f is a
random variable. F corresponds to the set of acts. That is,

F = {f |f : S → X}.
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Then, we also have preferences on F , which are denoted by ≺. ≺ is a weak order
on F and some properties are expected on ≺. See [55] (Chapter 5 in this book)
for details.

Then, in classical expected utility theory, the preferences ≺ are represented
by a probability on S. In other words, given the tuple (S,X,F ,≺) we expect to
have a probability P on S such that E(u(f)) < E(u(g)) when f ≺ g. Here E is
the expectation. Because of that, to represent preferences by expected utility we
need to find a (subjective) probability P such that E(u(f)) < E(u(g)) for all f
and g in F such that f ≺ g. Here, naturally,

E(u(f)) =
∑
s∈S

u(f(s))P ({s}) =
∑
x∈X

u(s)P (f−1(x)).

Alternatively, if there is a probability P and a utility function u such that

E(u(f)) < E(u(g)) if and only if f ≺ g

we say that P and u represent ≺.

3.2 Choquet Expected Utility Model

Schmeidler defined in [64] the Choquet expected utility model for decision under
uncertainty. This model uses a Choquet integral and a non-additive measure.
This model is as follows.

Definition 42. A decision maker ranks acts in F according to the Choquet
expected utility model if there is a utility function u : R+ → R+, and a non-
additive measure μ such that f ≺ g for f, g ∈ F if and only if

CIu,μ(f) < CIu,μ(g)

where

Cu,μ(f) = (C)

∫
u(f)dμ

is the Choquet integral of u(f) with respect to μ.

3.3 Rank-Dependent Expected Utility Model

Quiggin defined in [58] an alternative model based on distorted probabilities.
This model also uses a Choquet integral with a non-additive measure. However,
in this case, the measure belongs to the family of distorted probabilities (see
Definition 14).

Definition 43. A decision maker ranks acts inF according to the rank-dependent
expected utility model if there is a utility function u : R+ → R+, a probability
distorting function w (i.e., a nondecreasing function w : [0, 1] → [0, 1]), and a
non-additive probability P such that f ≺ g for f, g ∈ F if and only if

Ju,w,P (f) < Ju,w,P (g)

where

Ju,w,P (f) = (C)

∫
u(f)d(w ◦ P ).
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3.4 Ellsberg Paradox

In this section we define Ellsberg paradox and we show how non-additive mea-
sures can be used to solve this problem. This problem was defined in [14], a
solution using the Choquet integral can be found also in [52].

Example 2. Let us consider an urn with balls of three colours: red, black, and
yellow. The number of red balls is 30. The exact number of black and yellow
balls is not known, but their total is 60. Therefore, S = {R,B, Y }.

Let fR mean that you will get $ 100 only if you take a red ball and fB mean
that you will get $ 100 only if you take a black ball. Under these alternatives,
most people prefer fR. Therefore, we have fB ≺ fR. Now, let fRY mean that
you will get $ 100 if you take either a red or a yellow ball, and let fBY mean that
you will get $ 100 if you take a black or a yellow ball. Under these alternatives,
most people select fBY . Therefore, fRY ≺ fBY .

To complete the formalization, we have X = {0, 100}. Table 1 represents the
acts fB, fR, fRY , fBY .

Table 1. Balls and acts in Ellsberg’s paradox

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0
fB $ 0 $ 100 0
fRY $ 100 0 $ 100
fBY $ 0 $ 100 $ 100

This problem cannot be formalized by means of expected utility theory. Note
that in order to get a representation of ≺ in terms of a utility function and a
probability distribution, we need that

E(u(f)) ≤ E(u(g)) for all f ≺ g.

Therefore, from fRY ≺ fBY we have that

E(u(fRY )) = u(0)P (B) + u(100)P (Y ) + u(100)P (R)

< u(100)P (B) + u(100)P (Y ) + u(0)P (R) = E(u(fBY ))

or, equivalently,

u(0)P (B) + u(100)P (R) < u(100)P (B) + u(0)P (R) (18)

On the other hand, from fB ≺ fR we have that

E(u(fB)) = u(100)P (B) + u(0)P (Y ) + u(0)P (R)

< u(0)P (B) + u(0)P (Y ) + u(100)P (R) = E(u(fR))
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or, equivalently,

u(100)P (B) + u(0)P (R) < u(0)P (B) + u(100)P (R). (19)

So, as inequality 19 is in contradiction with inequality 18, it is not possible to
find functions u and P according to ≺.

In contrast, the Choquet integral utility model can be used to solve this para-
dox. In particular, we can use the Choquet integral with the following measure
to represent the preferences.

– μ(∅) = 0
– μ({R}) = 1/3, μ({B}) = μ({Y }) = 2/9

– μ({R, Y }) = 5/9, μ({B, Y }) = μ({R,B}) = 2/3
– μ({R,B, Y }) = 1

The following computations illustrate that the paradox is solved because it is
now possible to find u such that for all f ≺ g holds

CIμ(u(f)) < CIμ(u(g))

This is the case, for example, for u(x) = x. In particular, from fRY ≺ fBY we
have

CIμ(u(fRY )) = u(0)μ({B}) + u(100)μ({Y,R})
< u(100)μ({B, Y }) + u(0)μ({R}) = CIμ(u(fBY ))

or, equivalently,

0 · 2/9 + 100 · 5/9 < 100 · 2/3 + 0 · 1/3.

On the other hand, from fB ≺ fR we have that

CIμ(u(fB)) = u(100)μ({B}) + u(0)μ({Y,R})
< CIμ(u(fR)) = u(0)μ({B, Y }) + u(100)μ({R})

or, equivalently,

100 · 2/9 + 0 · 5/9 < 0 · 2/3 + 100 · 1/3.

In [55] (Chapter 5 in this book), it is discussed, following [15], that a submodu-
lar non-additive measure is not necessary nor sufficient for explaining Ellsberg’s
paradox. Examples are given to illustrate these facts. Ellsberg paradox is an
example of ambiguity aversion3.

3 Ambiguity aversion or uncertainty aversion describes an attitude of preference for
known risks over unknown risks.
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4 Subjective Evaluations

Another area where integrals have been applied is the area of subjective evalua-
tion. This topic already appears as one of the motivations in Sugeno’s work [69]
(p. 2).

“The purposes of this dissertation are to propose the concept of fuzzy
measures and integrals [11,12] as a way for expressing human subjectivity
and to discuss their applications.”

Dubois and Prade [11] define subjective evaluation as follows.

“Formally speaking, the subjective evaluation problem can be viewed as
the synthesis, the identification of a function which maps the attribute
values describing the situation to evaluate into a discrete domain (clas-
sification), or a continuous one (absolute evaluation). More generally, we
may look for the degree of membership of the situation to a category,
or have a function yielding a fuzzy evaluation. This function is in gen-
eral not available as such, but is implicitly, and partially, described in
terms of criteria, or by means of expert rules, or through some fuzzy
algorithm. It may also happen that the function is only partially known
by exemplification through prototypical examples of situations for which
the evaluation is available.”

One of the approaches to subjective evaluation is to consider multiple criteria,
and aggregate them by means of an aggregation function. Using the notation of
Section 2.3, we have a set of finite criteria X = {x1, . . . , xN}, a set of functions,
one for each object to be evaluated fi, and then the aggregation function C to
combine the values fi(x1), . . . , fi(xN ).

As described in Section 2.3, several functions exist for combining these values.
The weighted mean is one of them. In this case, the weights correspond to the
importance of the criteria (i.e., pi corresponds to the importance of criteria xi).
Then, an object with evaluation fi is prefered to another object fj with respect to
weights p1, . . . , pN whenWMp(fi(x1), . . . , fi(xN )) ≥ WMw(fj(x1), . . . , fj(xN )).
As stated in Section 2.3, the weighted mean corresponds to the Lebesgue inte-
gral. That is, an integral with an additive measure.

Several examples have been presented in the literature to show the limitations
of models based on additive measures to represent preferences. We review some
of them below. We describe an example introduced by Grabisch [21] and another
by Greco et al. [25]. The first one can be solved with the Choquet integral, but
not with a weighted mean. In the second case, the Choquet integral is not suitable
but, in contrast, the level-dependent Choquet integral can be used.

4.1 Grabisch’s Example

The example consists on the evaluation of three students in a school, according
to the marks on three subjects. The goal is to represent a subjective evaluation
of the director of the school.
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Table 2. Marks of the students in mathematics (M), physics (P), and literature (L)
according to Grabisch [21]

Student M P L

Ada fA 18 16 10
Byron fB 10 12 18

Countess fC 14 15 15

Example 3. Let us consider three students A, B, and C (for Ada, Byron, and
the Countess) and their marks in three subjects Mathematics, Physics, and Lit-
erature according to Table 2 (marks in a scale of [0, 20]). The preferences of the
director of the school are as follows:

– The director wants to assign the same weight to mathematics and physics,
and more weight to this subjects than to literature. This is so because the
school is scientifically oriented.

– The director wants to represent the following preference on the students:

B ≺ A ≺ C. (20)

This preference is based on the fact stated above that the school is more
scientifically than literary oriented, and, thus, more importance is attributed
to mathematics and physics than to literature. So, in short, the director
prefers A and C to B. Nevertheless, as for the director C and A are equally
good at scientific subjects, C is prefered to A because C is also good in
literature.

If we try to model the ranking of the director in terms of a weighted mean of
the marks of the students, we have

E(s) = wM ·mM (s) + wP ·mP (s) + wL ·mL(s)

where mM (s) is the mark of the student s in mathematics, mP (s) is the mark of
the student s in physics, and mL(s) is the mark of the student s in literature, and
where wM , wP , and wL are the weights of the subjects (mathematics, physics,
and literature). In this case, it is impossible to find weights so that E(B) <
E(A) < E(C) and at the same time wM = wP > wL

4.
In contrast to the weighted mean, the Choquet integral permits the represen-

tation of directors preferences. For this purpose we can use the fuzzy measure
defined as follows:

– μ(∅) = 0, μ({M,P,L}) = 1
– μ({M}) = μ({P}) = 0.45, μ({L}) = 0.3

4 Note that there are weights that satisfy Equation 20 but then the other conditions
are not satisfied. This is the case e.g. of the weights wM = 1/4, wP = 1.5/4 and
wL = 1.5/4 which imply E(B) = 13.75 < E(A) = 14.25 < E(C) = 14.75 but then
wM < wL.
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– μ({M,P}) = 0.5 < μ({M}) + μ({P})
– μ({M,L}) = μ({P,L}) = 0.9 > 0.45 + 0.3

Then, we define the evaluation of a student using the Choquet integral of the
corresponding function with respect to this fuzzy measure. That is, E(s) =
(C)

∫
fsdμ. In our example, this leads to

– E(Ada) = (C)
∫
fAdμ = 13.9

– E(Byron) = (C)
∫
fBdμ = 13.6

– E(Countess) = (C)
∫
fCdμ = 14.9

which satisfies the preferences expressed in Equation 20.

4.2 Greco, Matarazzo and Giove’s Example

A kind of extension of the example presented by Grabisch [21] (Example 3 above)
was introduced by Greco et al. in [25]. In this case, the director has a set of
preferences on 8 students.

Example 4. Let S = {s1, s2, s3, s4, s5, s6, s7, s8} be a set of students with marks
on the subjects mathematics, physics, and literature according to Table 3.

Table 3. Marks of the students in mathematics (M), physics (P), and literature (L)
according to Greco, Matarazzo, and Giove [25]

Student M P L

S1 28 28 27
S2 27 28 28
S3 26 26 25
S4 25 26 26
S5 23 23 22
S6 22 23 23
S7 19 19 18
S8 18 19 19

For these marks, the subjective evaluation of the director of the school is as
follows:

S7 ≺ S8 ≺ S6 ≺ S5 ≺ S3 ≺ S4 ≺ S2 ≺ S1

For this problem, there is no set of weights that permits to represent director’s
preference in terms of an average (weighted mean) of the marks with respect
to the weights. Note that E(S2) ≺ E(S1) implies wM > wL, but E(S3) ≺
E(S4) implies wM < wL. In fact, the Choquet integral is neither appropriate to
represent this problem. No fuzzy measure exists to express this preference using
a Choquet integral. This is so because CI(s1) > CI(s2) implies

CI(s1) = 27 · μ({M,P,L}) + 1 · μ({M,P})
> 27 · μ({M,P,L}) + 1 · μ({P,L}) = CI(S2)
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This means μ({M,P}) > ·μ({P,L}), and, in contrast, CI(s3) < CI(s4) implies

CI(s3) = 25 · μ({M,P,L}) + 1 · μ({M,H})
< 25 · μ({M,P,L}) + 1 · μ({P,L}) = CI(s4)

This means μ({M,P}) < μ({P,L}), which is in contradiction with the previ-
ous equality.

Greco et al. prove in [25] that the level-dependent Choquet integral can be
used to express the preferences, but that two other alternative models are not ad-
equate. In particular, they prove that neither the bipolar Choquet integral [22,23]
nor the Cumulative Prospect Theory functional [91] are valid approaches.

5 Other Applications

There has been a large number of other applications of fuzzy integrals. The
fields of computer vision and information fusion have used these integrals for
different purposes. We review some of these applications below. Other applica-
tions not discussed here include computer vision and fuzzy inference (control).
[33] reviews applications in computer vision and [83,63,85] are on applications
to different aspects of fuzzy inference and control. In particular, [83] focuses on
defuzzification, and [63,85] on the computation of the output fuzzy set.

5.1 Integrals and Data Fusion

[19] considers the problem of land mine detection. The authors describe a system
that collects data from multiple sensors and then fuse the information using
two soft computing approaches. The output of the system is a mine confidence
value. That is, a confidence that a mine is present at a particular location.
One approach uses fuzzy logic rules (a Mamdani system [42]), and the other a
fuzzy integral. In the former approach two fuzzy rule systems are implemented
and running in parallel. The authors state that one is for linked or spatially
correlated targets and the other for unlinked targets. In the other approach, both
Choquet and Sugeno integral were considered in the fusion process. Measures
were determined heuristically. The authors use Sugeno λ-measures and they
interpret the measure of a singelton as the “(possibly subjective) importance of a
single information source in determining the evaluation of land mine confidence”.
Although the fuzzy measures used in this work are determined heuristically, the
authors describe that in [20] they compared the use of training algorithms based
on quadratic programming versus an heuristic assignment.

The problem of gray level and color image segmentation has been considered
by different authors considering non-additive integrals. See e.g. [33]. Most of the
papers use Sugeno λ-measures determined from the measures on the singletons.
The problem of color image segmentation is also considered in [67]. In this case,
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the author also considers the use of a Choquet integral with a Sugeno λ-measure.
One of the interests of this paper is that they determine the measure by means of
an unsupervised approach based on a self-organizing feature map (SOFM) [39].
[40] is another example of unsupervised approach.

Recently, the Choquet integral has been used for regression. See [72,73] for
details. This problem can be seen both as an application or as a way to determine
the corresponding non-additive measure.

5.2 Identification of Measures

The problem of measure determination (model fitting) briefly mentioned in Sec-
tion 5.1 is reviewed in more detail in [86]. Basically, we have heuristic methods,
and methods that extract the measure from examples. Among the former, we
might have an expert that just assigns the values of the measure for all subsets,
or an expert that assigns a few relevant parameters from which to extract these
values. An example of the later is when the measure is determined as the one
that maximises the entropy for a given orness. That is, the expert settles the
orness, and the measure is found from this value. Among the later, we have
supervised approaches and unsupervised ones. In the supervised case, we have
some examples with known input-output pairs, which are used to learn the val-
ues of the measure. The case described above using a self-organizing feature map
to determine the measure is an example of unsupervised approach.

5.3 Integrals and Distances

Pham and Yan in [57]5 use the Choquet integral to compute the distance be-
tween pairs of objects in a clustering algorithm (the mountain clustering algo-
rithm [95]). Their application, on the segmentation of color image data, defines
a distance between a point x and a cluster center p by d(x, p) = 1 − σ∗(x, p),
where the similarity σ∗ is computed using the Choquet integral. The authors
report that both Choquet and Sugeno integrals were considered and the solu-
tions obtained from the Choquet integral were found better than the ones of the
Sugeno integral. Apparently, σ(x, p) is computed as the Choquet integral of the
three RGB colours of a pixel. That is,

σ(x, p) = CIμ((Rx −Rp)
2, (Gx −Gp)

2, (Bx −Bp)
2). (21)

The integration is done with respect to a Sugeno λ-measure.
The use of Choquet integral as a fundamental brick to build a distance funcion

has been used in other contexts. In [2] the Choquet integral is used to compare

5 The authors also discuss in their paper three interpretations for the fuzzy integral: (i)
fuzzy expectation (according to [70]), (ii) the maximal degree of agreement between
two opposite tendencies (according to [92]), (iii) the maximal grade of agreement
between the objective evidence and the expectation (following [71]). Nevertheless,
they state that in their paper a fuzzy integral is considered as a maximum degree of
belief for an object to belong to a certain class.
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a set of numerical records against a given one in order to find the nearest one.
Formally, given two records a = (a1, . . . , aN ) and b = (b1, . . . , bN) where ai and
bi are values for variable Vi in R (and thus, a and b are in RN ), the distance
between a and b is defined by

dμ(a, b)
2 = CIμ = ((a1 − b1)

2, . . . , (aN − bN)2) (22)

where μ is a fuzzy measure defined on the set of variables V1, . . . , VN . Note that
this is the same expression given in Equation 21 above.

This function does not satisfy the triangle inequality but only non-negativity,
reflexivity, and symmetry. Note also that Equation 22 corresponds to the square
of the distance (i.e., d(a, b)2 = d(a, b) · d(a, b)).

Abril et al.[2] explains how to determine (i.e., learn according to machine
learning jargon) the measure for the distance in Equation 22 from a set of ex-
amples. More specifically, the authors solve a record linkage problem [16]. In
short, there are two files A and B both containing the same data from the same
individuals in terms of the same variables V1, . . . , VN . Records in A and B are
not exactly the same due to errors in the data. The problem consists of assigning
each record in A to the correct record in B. For a given record ai, the distance
d(ai, b) is computed for all b ∈ B and the record with a minimal distance is as-
signed to ai. As stated above dμ(a, b) is the distance of Equation 22. Given A, B
and an assignment of records from A to B, the optimal measure μ is found that
corresponds to the assignment that minimizes the number of incorrect links.

Narukawa in [48] also discusses distances defined by a Choquet integral. Let
μ be a non-additive measure on (X,A), and let Cp(μ) be the following subset of
measurable functions

Cp(μ) :=

{
f ∈ M|(C)

∫
|f |pdμ < ∞

}
,

where M is the class of measurable functions. Then, [48] introduces the pth
power norm of a function f for p ≥ 1 for submodular μ as

||f ||μ,p =

(
(C)

∫
|f |pdμ

)1/p

.

and prove that if μ is submodular and continuous from below, then the space
(Cp(μ), ||f ||μ,p) is complete. This result is later used to define distances on fuzzy
sets.

The properties of the distance based on the Choquet integral are also discussed
in [7], where the authors characterize the class of measures that induce a metric
with the Choquet integral.

A different topic is the definition of distances for non-additive measures. In
the case of additive measures we have distances as the Hellinger distance [31],
the Kullback and Leibler divergence and the f -divergence. In [89] a definition of
the Hellinger distance for non-additive measures was proposed.
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5.4 Integrals and Distributions

Expression 22 has been used in [88] in another context to define a probability
distribution based on the Choquet integral. More specifically, the exponential
family of Choquet integral based class-conditional probability-density functions
is defined by:

P (x) =
1

K
e−

1
2CIµ((x−m)⊗(x−m))

where K is a constant so that the function is a probability, and where v⊗w de-
notes the elementwise product of vectors v and w (i.e., (v⊗w) = (v1w1 . . . vnwn)).

This distribution has similarities with the multinomial normal distribution in
the sense that both are multivariate and permit us to represent interactions (and
non-independence) between the variables. Nevertheless, the type of interactions
they represent are different. Because of that a more general distribution was
also introduced, the exponential family of Choquet-Mahalanobis integral based
class-conditional probability-density functions is defined by:

P (x) =
1

K
e−

1
2CIµ,Q(v⊗w)

where K is a constant that is defined so that the function is a probability, where
LLT = Q is the Cholesky decomposition of the matrix Q, v = (x − m)TL,
w = LT (x−m), and where v ⊗w denotes the elementwise product of vectors v
and w.

6 Conclusions

In this chapter we have reviewed several definitions related to non-additive mea-
sures and some of their results. We have briefly discussed some applications. We
have shown that non-additive measures and integrals solve some of the short-
commings of alternative models.

As a summary, we have seen that non-additive measures when combined with
Choquet integrals have more expressive capabilities than additive measures with
the Lebesgue integral, or in the discrete setting that the Choquet integral has
better modeling capabilities than the weighted mean.

Although no discussed here, it is important to point out that in practical
problems, it is not always the best option to select the model with better mod-
eling capabilities because it can cause overfitting (see e.g. [30]). In practice, it is
important to find a good trade-off between the simplicity of the model and the
complexity of the data or the situation to be represented.
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Abstract. This chapter surveys the fundamental aspect of non-additive
measures and integral with respect to a non additive measure.

Several basic definitions of non additive measure, Sugeno integral and
Choquet integral are presented. The basic properties of the generalized
fuzzy integral which is a generalization of both Sugeno and Choquet inte-
gral are shown. The generalized Möbius transform and the representation
of Choquet integral are also shown.
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1 Introduction

A measure is a generalization of the concept of length, area and volume. Suppose
μ(A) denotes the ”length” of a set A.

The properties of the notion of ”length” are non-negativity and additivity:
μ(A∪B) = μ(A) +μ(B) for A∩B = ∅ A,B ∈ S, where S is a universal set and
S is a class of subsets of S.

In the Lebesgue’s measure theory[21], the assumption of additivity is re-
placed by a countable additivity or σ−additivity; μ(∪i∈IAi) =

∑
i∈I μ(Ai),

where Ai ∈ S, Ai ∩ Aj = ∅, i, j ∈ I,I :countable. Lebesgue integral has a lot
of useful properties for both theory and application. Especially it is applied for
a fundamental background for probability theory [17,19].

However some observation says that probability theory based on Lebesgue
measure and integral is too restrictive for Human Centered System. The prob-
lem is caused by the additivity of measure and integral. We need another measure
theory, that is, non-additive measure theory or fuzzy measure theory. In fact,
non-additive measure has been used with various names in various fields: J.
von Neumann and O. Morgenstern [52] called cooperative games in economics,
which is without integral. Auman and Shapley [1] organized the theory of non
atomic games systematically. Choquet[6] studied a non additive set function
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called capacity on the class of compact sets in potential theory. He also consid-
ered a functional extending capacity, which was called Choquet integral later.
Sugeno[65] called a non additive set function a fuzzy measure and proposed the
integral with respect to a fuzzy measure in systems science. He named his inte-
gral the fuzzy integral, which is known as Sugeno integral today. Schmeidler [61]
used a non additive set function, named a non additive subjective probability
in Economics and he considered the Choquet integral with respect to a non ad-
ditive subjective probability. The researchers of Discrete convex analysis study
a non additive set function called matroid or submodular function [40,41,14].
Their Loväsz extension is the same as the Choquet integral. Denneberg [10] ’s
monograph titled non additive measure and integral show a lot of mathematical
results.

In this paper, we present several basic definitions and results of non additive
measures and integral. The paper is organized as follows: In section 2, we show
some basic definition of a non additive measure. Comonotonicity is the impor-
tant concept, considering the integral. Continuity of a non additive measure is
useful for some convergence theorems of functions or integrals. We show some
basic definitions of integral with respect to a non additive measure in Section 3.
The most fundamental integrals are Sugeno integral and Choquet integral. We
show their definition and basic properties. Some results about the extension of
Choquet integral are presented in Section 3.

The generalization of both Sugeno and Choquet integral is called a general-
ized fuzzy integral in Section 4. We present a multidimensional integral which
correspond to Fubini’s theorem in classical theory.

In section 5, we study Möbius transform of a non additive measure and a
representation of integral using the Möbius transform. We show that the gener-
alized representation theorems of Choquet integral and show that they coincide
if the universal set is finite.

We conclude with Concluding remarks.

2 Non-Additive Meeasure or Fuzzy Measure

Let S be a universal set and S be a sigma algebra of S. We say that (S,S) is
a measurable space. In this section, we will present several properties of non-
additive measures.

2.1 Basic Definitions

Definition 1. Let (S,S) be a measurable space andR+ be a set of non-negative
real numbers.

We say that a set function μ : S −→ R+ is a non-additive measure or fuzzy
measure if μ satisfies the next conditions:

1. μ(∅) = 0,
2. A ⊂ B, A,B ∈ S ⇒ μ(A) ≤ μ(B) .
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Remark. If a set function μ on S satisfies μ(∅) = 0, we say that μ is a non mono-
tonic non-additive measure or a non monotonic fuzz measure. A non monotonic
fuzzy measure is studied in [36,75]

Example 1. (Old rare books) Suppose there are rare books consisting of two
volumes: x1, x2. Let X := {x1, x2}. Suppose that there is a secondhand bookseller
who buys them at the prices: v({x1}) dollars per first volume, v({x2}) dollars
per second volume, v(X) dollars per set of two volumes. If he sets a high value
on a complete set, then

v(X) > v({x1}) + v({x2}).

Example 2. (The workers in a workshop)
Let X be the set of the workers in a workshop, and suppose that they produce

the same products. For each A ∈ 2X , the members of A work in the workshop. A
group A may have various ways to work: Let μ(A) be the number of the products
made by a group A in one hour. Then μ is a measure of the productivity of a
group: the attribute of 2X in question is the productivity. By the definition, the
following statements are natural:

– A and B work separately, then μ(A ∪B) = μ(A) + μ(B).
– A and B work with effective cooperation, μ(A ∪B) > μ(A) + μ(B).
– A and B work with incompatibility between A’s operations and B’s,

μ(A ∪B) < μ(A) + μ(B)

As shown in the previous examples, a non additive measure represents a fact
that can not be represent with an additive set function. The biggest problem is
how to define each μ(A) for A ∈ 2X . To avoid combinatorial explosion, a lot of
special non-additive measures are proposed as follows.

Definition 2. Let μ be a non-additive measure on (S,S).

1. Sugeno λ measure: [65] for some fixed λ > −1 it holds

μ(A ∪B) = μ(A) + μ(B) + λμ(A)μ(B)

for all A ∩B = ∅
2. Possibility measure:Zadeh [77] in the context of fuzzy sets.

Pos(A ∪B) = max(Pos(A), Pos(B))

3. Necessity measure:[77]

Nec(A ∩B) = min(Nec(A), Nec(B))

4. the 0-1 possibility measure PosA focused on A:

PosA(B) = 1 if A ∩B 
= ∅,= 0 if A ∩B = ∅
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5. the 0-1 necessity measure NecA focused on A (Unaminity game):

NecA(B) = 1 if A ⊆ B,= 0 if A 
⊂ B

6. [73,53] μ is called null-additive if μ(A ∪ B) = μ(A) whenever A,B ∈ S,
A ∩B = ∅ and μ(B) = 0.

7. [74] μ is called weakly null-additive if μ(A ∪B) = μ(A) whenever A,B ∈ S,
A ∩B = ∅, μ(A) = 0 and μ(B) = 0.

8. Decomposable measure: [76,34]
if there exists a t-conorm ⊥ such that for all A,B ⊆ X with A ∩ B = ∅ it
holds:

μ(A ∪B) = μ(A)⊥μ(B),

where ⊥ is t-conorm [18,30] ⊥ : [0, 1]× [0, 1] → [0, 1] :
(i) ⊥(x, y) = ⊥(y, x) (commutativity)
(ii) ⊥(⊥(x, y), z) = ⊥(x,⊥(y, z)) (associativity)
(iii) ⊥(x, y) ≤ ⊥(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)
(iv) ⊥(x, 0) = x for all x (neutral element 0)

9. Distorted probability: [54,4]
μ(A) := f(P (A)), where P is probability and f is monotone function with
f(0) = 0, f(1) = 1.

10. Belief function:[9,63]

Bel(A1 ∪ ... ∪ An) ≥
∑
j

Bel(Aj)−
∑
j<k

Bel(Aj ∩ Ak) + ...

+(−1)n+1Bel(A1 ∩ ... ∩ An)

11. Plausibility function: [9,63]

Pl(A1 ∩ ... ∩ An) ≤
∑
j

Pl(Aj)−
∑
j<k

Pl(Aj ∪ Ak) + ...

+(−1)n+1Pl(A1 ∪ ... ∪ An)

12. k order monotonicity: [6,5]
(a) k-order monotone (or k-monotone) for k ≥ 2, if for all family of k

subsets A1, . . . Ak in X,

μ(

k⋃
i=1

Ai) ≥
∑

∅�=I⊂1,...k

(−1)|I|+1μ(
⋂
i∈Ai

)

1-monotonicity is defined as monotonicity.
(b) totally monotone if it is k-monotone for any k ≥ 1.
(c) k-order alternative (or k-alternative) for k ≥ 2, if k-order monotone (or

k-monotone) if for all family of k subsets A1, . . . Ak in X,

μ(

k⋂
i=1

Ai) ≤
∑

∅�=I⊂1,...k

(−1)|I|+1μ(
⋃
i∈Ai

)
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2-monotonicity is sometimes known by super modularity or convexity, 2-
alternating fuzzy measures are sometimes called submodular measure.

13. Inter-additive fuzzy measure: [35]
Let P = {X1, . . . , Xs} be a partition of X then P is a μ-inter-additive par-
tition of X if

μ(A) =
∑
Xi∈P

μ(A ∩Xi)

for every A ∈ 2X .

2.2 Measurable Function and Comonotonicity

Let (S,S) be a measurable space. We say that a function f : S → R is mea-
surable, if {x|f(x) ≥ a} ∈ S for all real number a. F(S) denotes the class of
measurable functions on S. and F+(S) denotes the class of non negative mea-
surable functions on S.

The concepts related to convergence of measurable functions are the same as
the classical ones.

Definition 3. Let f, fn ∈ F(S) (n = 1, 2, . . . ).

1. We say that {f} converges almost everywhere to f on S, and denote it by
fn → (μ − a.e.)f , if there exists a subset E ⊂ S such that μ(E) = 0 and
fn → f on S \ E.

2. We say that {f} converges almost uniformly to f on S, and denote it by
fn → (μ − a.u.)f , if for any ε > 0 there exists a subset Eε ∈ S such that
μ(S \ Eε) < ε and fn → f uniformly on Eε.

The comonotonicity of measurable functions are one of the most important
properties when we consider the additivity of integral.

Definition 4. f, g ∈ F(S) f and g are comonotonic, if x, x′ ∈ S

f(x) < f(x′) ⇒ g(x) ≤ g(x′)

The next proposition gives a necessary and sufficient condition for comono-
tonicity.

Proposition 5. [10] Let f, g ∈ F(S). The following conditions are equivalent.

1. f and g are comonotonic.
2. (f(x1)− f(x2))(g(x1)− g(x2)) ≤ 0 for all x1, x2 ∈ S.
3. {x|f(x) ≥ a} ⊂ {x|g(x) ≥ b} or {x|f(x) ≥ a} ⊃ {x|g(x) ≥ b} for all

a, b ∈ R.
4. There exists a function F : S → R and increasing functions u, v on R such

that f = u(F ), g = v(F ).
5. There exist continuous increasing functions u, v on R such that u(z)+v(z) =

z, z ∈ R and f = u(f + g), g = v(f + g).
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2.3 Continuity

The continuity is a basic assumption for the convergence theorem of the se-
quence of measurable functions. Sugeno’s original definition of fuzzy measure
[65] assumes continuity as shown in Definition 6. However it is pointed out that
Sugeno’s continuity is too restrictive. That is, Possibility measure and Necessity
measure are not included in Fuzzy measure [55]. Due to this problem, several
alternative definitions of continuity have been proposed. Definition 7 reviews
some of them.

Definition 6. Let μ be a non additive measure on (S,S) and A,An ∈ S (n =
1, 2, . . . ).

1. μ is said to be continuous from below if for every increasing sequence {An}
of measurable sets, it holds that

μ( lim
n→∞An) = lim

n→∞μ(An),

that is, An ↑ A ⇒ μ(An) ↑ μ(A).
2. μ is said to be continuous from above if for every decreasing sequence {An}

of measurable sets, it holds that

μ( lim
n→∞An) = lim

n→∞μ(An),

that is, An ↓ A ⇒ μ(An) ↓ μ(A).
3. We say that a non additive measure which is continuous from both above and

below is continuous.

Definition 7. Let μ be a non additive measure on (S,S).

1. [73] μ is said to be autocontinuous from above if for A ∈ B limn→∞ μ(A ∪
Bn) = μ(A) whenever limn→∞ μ(Bn) = 0 .

2. [22] μ is said to be strongly order continuous if Nn ↓ N and μ(N) = 0 imply
μ(Nn) ↓ 0.

3. [39] μ is said to be strongly order totally continuous if, for every decreas-
ing net B of measurable sets such that ∩B is measurable and μ(∩B) = 0,
infB∈B μ(B) = 0.

4. [71] μ is said to be null-continuous if Nn ↑ N and μ(Nn) = 0 for every
n = 1, 2, . . . imply μ(N) = 0.

5. [67] μ said to have property (S) if μ(Nn) → 0 implies that there exists a
subsequence {Nni} of {Nn} such that μ(∩∞

k=1 ∪∞
i=k Nni) = 0.

6. [39] μ is said to satisfy the Egoroff condition (for short Ec) if, for every
doubly-indexed sequence Nm,n such that Nm,n ⊃ Nm′,n′ for m ≥ m′ and
n ≤ n′ and μ(∪∞

m=1 ∩∞
n=1 Nm,n) = 0, and for every ε > 0, there exists a

sequence {nm} such that μ(∪∞
m=1Nm,nm) < ε.

7. [12]We say that μ has a pseudo metric generating property (for short ”p.g.p.”),
if both limn→∞ μ(An) = 0 and limn→∞ μ(Bn) = 0 implies limn→∞ μ(An ∪
Bn) = 0 for {An} , {Bn} ⊂ B.
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8. [13] μ is said to be exhaustive if limn→∞ μ(An) = 0 for any infinite disjoint
sequence {An} ⊂ B.

9. [23] μ is said to satisfy condition (E) if Nm
n ↓ Nm as n → ∞ for every

m and μ(∪∞
m=1N

m) = 0 imply that there exist strictly increasing sequences
{ni} and {mi} such that μ(∪∞

i=kN
mi
ni

) → 0 as k →∞.
10. [68] μ is said to satisfy condition (M) if μ(∪∞

n=1∩∞
i=nNi) = 0 implies that for

every ε there exists a strictly increasing sequence {mn} such that μ(∪∞
n=1∩mn

i=n

Ni) < ε.

Theorem 8. (Egoroff’s theorem) [23,39] Let μ be a monotone non-additive
measure on S. The next conditions are equivalent.

1. μ satisfies condition (Ec).
2. μ satisfies condition (E).
3. fn →(μ−a.e.) f implies fn →(μ−a.u.) f .

The interrelations among each definition are summarized as follows.

Theorem 9. Let μ be a monotone non-additive measure on S.
1. [24] Continuity implies condition (E).
2. [23,39] Strong order continuity and property (S) implies condition (E).
3. [39] Strong order total continuity implies condition (E).
4. [68] Continuity implies condition (M) and null-continuity.
5. [68] Strong order continuity and property (S) implies condition (M) and

null-continuity.
6. [23,39] Condition (E) implies strong order continuity.
7. [68] Condition (M) and null-continuity implies condition (E).
8. [25] Strongly order continuity and property (S) implies property (E).
9. [25] If μ is order continuous and has p.g.p., then it is strongly order contin-

uous and has property (S).

3 Integral with Respect to a Non Additive Measure

In this section, we will present the integral with respect to a non-additive mea-
sure, that is, Sugeno integral and Choquet integral.

3.1 Sugeno Integral

Sugeno [65] proposed the integral with respect to a non additive measure. The
integral was called a fuzzy integral. However it is called Sugeno integral now.

Definition 10. Let μ be a non-additive measure on (S,S) with μ(S) = 1
Let f : S → [0, 1] be a measurable. The Sugeno integral of f with respect to

μ is defined as follows;

(S)

∫
fdμ := ∨r∈[0,1](r ∧ μf (r))

where μf (r) := μ({x|f(x) > r}).
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The Sugeno integral is shown as the coordinate of intersecting point of the
graph below

0 1s

μf (r)

The integrand f for Sugeno integral is restricted to f : S → [0, 1]. The def-
inition of Sugeno integral can be extend so that its integrand is a member of
F+(S).

Definition 11. Let μ be a non-additive measure on (S,S) with μ(S) = ∞.
Let f ∈ F+(S). The Sugeno integral of f with respect to μ is defined as

(S)

∫
fdμ := ∨r∈[0,∞)(r ∧ μf (r))

where μf (r) := μ({x|f(x) > r}).

The basic properties of Sugeno integral is following:

Theorem 12. Let μ be a non-additive measure on (S,S) with μ(S) = ∞(resp.1).

1. (S)

∫
a ∧ fdμ = a ∧ (S)

∫
fdμ for f, g ∈ F+(S)(resp.with0 ≤ f, g ≤ 1)

2. f ≤ g implies (S)

∫
fdμ ≤ (S)

∫
gdμ

3. (S)

∫
f ∨ gdμ = (S)

∫
f ∨ gdμ for comonotonic f, g ∈ F+(S).

Suppose that a non additive measure μ is continuous. Then the following
monotone convergence theorem for Sugeno integral can be shown [65].
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Theorem 13. [65] Let μ be a continuous non-additive measure on (S,S) with
μ(S) = ∞. Let {fn} be a monotone sequence of measurable functions.

Then we have

lim
n→∞(S)

∫
fndμ = (S)

∫
lim
n→∞ fndμ.

Sugeno integral uses only the order of each value of the function, and does not
require addition or multiplication. Sugeno integral is useful for problem with an
ordinal scale, but it is weak for transformation of scale. Even if μ is σ−additive,
Sugeno integral des not coincide with Lebesgue integral. That is, Sugeno integral
is not an extension of classical integral.

3.2 Choquet Integral

Choquet [6] proposed his functional in potential theory, which is an extension of
capacity on a class of compact sets to a sets of functions. Later the functional
was regarded as the integral with respect to a non additive measure [32,61].
Vitali [72] introduced a similar idea on 1925, although he did not consider a non
additive measure. König [20] proposed horizontal integral, which is also similar
to the Choquet idea.

Definition 14. Let μ be a non additive measure on (S,S) and f : S → [0,∞).
The Choquet integral of f with respect to μ is defined by

(C)

∫
fdμ :=

∫ ∞

0

μf (r)dr,

where μf (r) := μ({x|f(x) > r}).

Example 3. ( Old rare books ) Suppose that there is a secondhand bookseller
who buys them at the prices: v({x1}) dollars per first volume, v({x2}) dollars
per second volume, v(X) dollars per set of two volumes.

Since he sets a high value on a complete set,

v(X) > v({x1}) + v({x2}).

A certain person sells f(x1) first volumes and f(x2) second volumes to the
secondhand bookseller. We may assume that f(x1) > f(x2).

He gets
f(x2)μ(X) + (f(x1)− f(x2))μ(x1).

This is a Choquet integral.

Example 4. (The workers in a workshop)
Let X be the set of the workers in a workshop, and suppose that they produce

the same products. For each A ∈ 2X , the members of A work in the workshop.
Let μ(A) be the number of the products made by A in one hour. Suppose a person
xi works f(xi) hour and f(x1) ≤ f(x2) ≤ · · · ≤ f(xn).
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The group (all member) X works f(x1) hours. the group ( member excludes
x1) X \ {x1} works f(x2)− f(x1) hours. the groups X \ {x1, x2} works f(x3)−
f(x2) hours. and so on.

Last xn works f(xn)− f(xn−1) hours.
Then the total numbers of the products is

f(x1)μ(X) + (f(x2)− f(x1))μ(X \ {x1}) + (f(x3)− f(x2))μ(X \ {x1, x2})
+ · · ·+ (f(xn)− f(xn−1)μ({xn})

This is the Choquet integral of f with respect to μ.

The basic properties of Choquet integral are presented as follows.

Theorem 15. Let μ be a non-additive measure on (S,S).

1. (C)

∫
1Adμ = aμ(A) where 1A is a characteristic of A ∈ S.

2. (C)

∫
afdμ = a(C)

∫
fdμ for f ∈ F+(S).

3. f ≤ g, f, g ∈ F+(S). implies (C)

∫
fdμ ≤ (C)

∫
gdμ.

Suppose that a non additive measure μ is continuous. Then we have the
monotone convergence theorem for the Choquet integral. The theorem follows
and its proof is in [10].

Theorem 16. Let μ be a non-additive measure on (S,S), which is continuous
from below. Let {fn} be a monotone increasing sequence of measurable functions.

Then we have

lim
n→∞(C)

∫
fndμ = (C)

∫
lim
n→∞ fndμ.

Generally the Choquet integral is not additive. We can the consider the con-
dition under which the Choquet integral is additive. Dellacherie [8] shows that
the Choquet integral is additive if f and g are comonotonic.

Theorem 17. [8,10] If f, g ∈ F+(S) are comonotonic, then

(C)

∫
f + gdμ = (C)

∫
fdμ+ (C)

∫
gdμ.

Taking a notice of a measure, we have the next theorem from the definition.

Theorem 18. Let (S,S) be a measurable space, f be a bounded nonnegative
measurable function on S and A ∈ S.

1. (C)

∫
fdPosA = max

x∈A
f(x) where PosA is the 0-1 possibility measure focused

on A.



Integral with Respect to a Non Additive Measure: An Overview 45

2. (C)

∫
fdNecA = min

x∈A
f(x) where NecA is the 0-1 necessity measure focused

on A.

If we consider the Sugeno integral, we have a similar max-min theorem as the
one for the Choquet integral.

Theorem 19. Let (S,S) be a measurable space, f be a bounded nonnegative
measurable function on S with 0 ≤ f ≤ 1 and A ∈ S.

1. (S)

∫
fdPosA = max

x∈A
f(x) where PosA is the 0-1 possibility measure focused

on A.

2. (S)

∫
fdNecA = min

x∈A
f(x) where NecA is the 0-1 necessity measure focused

on A.

3.3 Extension of Choquet Integral

We have defined a Choquet integral of a non-negative function with respect to
a non additive measure. In this subsection, we will show some extensions of the
Choquet integral for a real valued function f that may take a negative value.

If μ(S) < ∞, we can define the Choquet integral of f .

Definition 20. Suppose that (S,S) be a measurable space and μ be a non
additive measure on S with μ(S) < ∞.

Let f ∈ F(S).

(C)

∫
fμ := (C)

∫
(f ∨ 0)μ− (C)

∫
((−f) ∨ 0)dμ̄

where μ̄(A) := μ(S)− μ(A) for A ∈ S.
We say that μ̄ is a conjugate of μ. Let f ∈ F(S), Cμ(f) denotes a Choquet

integral of f with respect to μ, that is,

Cμ(f) = (C)

∫
fdμ.

This integral is known as the asymmetric integral.

The extended Choquet integral has both monotonicity and comonotonic addi-
tivity. Conversely, a functional on F(S) with both monotonicity and comonotonic
additivity can be represented as a Choquet integral.

Theorem 21. [10,61]

1. f, g ∈ F(S) are comonotonic,

Cμ(f + g) = Cμ(f) + Cμ(g).
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2. Let I : F(S) → R with I(f) ≤ I(g) for f ≤ g f, g ∈ F(S) and I(f + g) =
I(f) + I(g) for comonotonic f, g ∈ F(S). Then there exists a non-additive
measure such that

I(f) = Cμ(f)

for f ∈ F(S).

Another extension is known as Šipoš integral.

Definition 22. [64]. Suppose that (S,S) be a measurable space and μ be a
non additive measure on S.

A Šipoš integral or symmetric integral is defined by

Cμ(f) := Cμ(f ∨ 0)− Cμ((−f) ∨ 0).

for f ∈ F(S).

The Cumulative Prospect Theory (CPT) by Tversky and Kahnemann [70]
is a generalization of both the asymmetric integral and the Šipoš integral. We
review CPT below.

Definition 23. Suppose that (S,S) be a measurable space and μ+ and μ− be
a non additive measure on S. A CPT functional CPT : F(S) → R is defined by

CPTμ+,μ−(f) := Cμ+(f ∨ 0)− Cμ−((−f) ∨ 0).

The next theorem presents a necessary and sufficient condition for a CPT
functional on some topological setting.

Theorem 24. [43] Let S be a Locally compact Hausdorff space and C(S) be
a class of continuous functions with compact support and I : C(S) → R a
comonotonically additive and monotone functional.

Then there exist non additive measures μ+, μ− on (S,S) such that

I(f) = CPTμ+,μ−(f)

for f ∈ C(S).
If S is compact, we have μ− = μ+.

Example 5. Let S be a countable set, that is, S := {a1, a2, . . . }. Then S is
a locally compact Hausdorff space with the discrete topology and S = 2S. Let
C(S) be the class of continuous functions with compact support and f ∈ C(S).
Then |f(S)| < ∞, that is, the support of f is a finite set. Let I : C(S) → R a
comonotonically additive and monotone functional.

Then there exist non additive measures μ+, μ− on (S,S) such that

I(f) = CPTμ+,μ−(f)

for f ∈ C(S).
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If S is a finite set, that is, S := {a1, a2, . . . , an}. C(S) is a class of all real
valued function on S. Since μ− = μ+, we have

CPTμ+,μ−(f) = (C)

∫
fdμ+

for f ∈ C(S).

Remark. Let L be a lattice. A lattice valued Sugeno integral is proposed and
studied in [16], where a CPT type extension of Sugeno integral is also proposed
and studied. The representation of L valued functional as Sugeno integral is also
studied in [58,7,29].

Next we will show two other extensions of Choquet integral, that is, the Cho-
quet integral with constant and the multistep Choquet integral.

Definition 25. Let (S,S) be a measurable space, μ a non additive measure on
S and b is a real number. The Choquet integral with constant b of f : S → R+

with respect to μ is defined by
Cμ,b(f) = Cμ(f) + b.

The multistep Choquet integral is proposed and studied in [31,37,38,44]

Definition 26. Let S be a finite set and S = 2S.
Let μ1, μ2, . . . , μn be non additive measures on S and b1, b2, . . . , bn be real

numbers. Then we define the 1st step Choquet integrals as a set of Choquet
integrals with constant: {Cμ1,b1(f), . . . , Cμn,bn(f)} for f : S → R+.

Let μ be a non additive measure on 21,...,n and b a real number. Two step
Choquet integral I of f with constant is defined by I(f) := Cμ,b(Cμi,bi).

We can define the n−step integral with constant inductively.

Theorem 27. [44]
Sugeno integral can be represented as a two-step Choquet integral with con-

stant.

4 Generalized Fuzzy Integral

We define a generalized non additive integral in terms of a pseudo-addition ⊕
and a pseudo-multiplication �. The generalized non additive integral is one of
the generalizations of both Choquet integral and Sugeno integral. Formally, ⊕
and � are binary operators that generalize addition and multiplication, and
also max and min. We want to recall that generalized fuzzy integrals have been
investigated by Benvenuti et al. in [2].

4.1 Generalized Fuzzy Integral

Note that we will use k ∈ (0,∞) in the rest of this paper.
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Definition 28. A pseudo-addition ⊕ is a binary operation on [0, k] or [0,∞)
fulfilling the following conditions:

(A1) x⊕ 0 = 0⊕ x = x.
(A2) x⊕ y ≤ u⊕ v whenever x ≤ u and y ≤ v.
(A3) x⊕ y = y ⊕ x.
(A4) (x⊕ y)⊕ z = x⊕ (y ⊕ z).
(A5) xn → x, yn → y implies xn ⊕ yn → x⊕ y.

A pseudo-addition ⊕ is said to be strict if and only if x⊕ y < x⊕ z whenever
x > 0 and y < z, for x, y, z ∈ (0, k); and it is said to be Archimedean if and only
if x⊕ x > x for all x ∈ (0, k).

Definition 29. A pseudo-multiplication � is a binary operation on [0, k] or
[0,∞) fulfilling the conditions:

(M1) There exists a unit element e ∈ (0, k] such that x� e = e� x = x.
(M2) x� y ≤ u� v whenever x ≤ u and y ≤ v.
(M3) x� y = y � x.
(M4) (x� y)� z = x� (y � z).
(M5) xn → x, yn → y implies xn � yn → x� y.

Example 6.

1. The maximum operator x∨y is a non Archimedean pseudo-addition on [0, k].
2. The sum x+ y is an Archimedean pseudo-addition on [0,∞).
3. The Sugeno operator x +λ y := 1 ∧ (x + y + λxy) (−1 < λ < ∞) is an

Archimedean pseudo-addition on [0, 1].

Proposition 30. (Ling, 1965, [27])
If a pseudo-addition ⊕ is Archimedean, then there exists a continuous and

strictly increasing function g : [0, k] → [0,∞] such that x⊕y = g(−1)(g(x)+g(y)),
where g(−1) is the pseudo-inverse of g defined by

g(−1)(u) :=

{
g(−1)(u) if u ≤ g(k)
k if u > g(k).

The function g is called an additive generator of ⊕.

Definition 31. Let μ be a non additive measure on a fuzzy measurable space
(S,S); then, we say that μ is a ⊕-measure or a ⊕-decomposable non additive
measure if μ(A ∪B) = μ(A)⊕ μ(B) whenever A ∩B = ∅ for A,B ∈ S.

A ⊕-measure μ is called normal when either ⊕ = ∨, or ⊕ is Archimedean and
g ◦ μ is an additive measure. Here, g corresponds to an additive generator of ⊕.

When ⊕ is a t-conorm ⊥, the ⊕-measure μ is the decomposable measure in
Definition 2 (8).
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Definition 32. Let k ∈ (0,∞), let ⊕ be a pseudo-addition on [0, k] or [0,∞)
and let � be a pseudo-multiplication on [0, k] or [0,∞); then, we say that � is
⊕-fitting if

(F1) a� x = 0 implies a = 0 or x = 0, and a ↓ 0 implies a� x ↓ 0.
(F2) a� (x⊕ y) = (a� x)⊕ (a� y).
(F3) (a⊕ b)� x = (a� x)⊕ (b � x).

Under these conditions, we say that (⊕,�) is a pseudo-fitting system.

Let ⊕ be a pseudo-addition; then, we define its pseudo-inverse −⊕ as

a−⊕ b := inf{c|b⊕ c ≥ a}

for all (a, b) ∈ [0, k]2.

Definition 33. [2] For any r > 0 and A ∈ S, the basic simple function b(r, A)
is defined by b(r, A)(x) = r if x ∈ A and b(r, A)(x) = 0 if x 
∈ A.

Then, we say that a function f is a simple function if it can be expressed as

f :=

n∑
i=1

b(ai, Ai) for ai > 0 (1)

where A1 � A2 � · · · � An, Ai ∈ S.
Expression 1 is called a comonotonic additive representation of f . f can also

be expressed as f := ∨n
i=1b(a

′
i, Ai) for a

′
1 > · · · > a′n > 0, where A1 � A2 � · · · �

An, Ai ∈ S. This expression is called a comonotonic maxitive representation of
f .

Definition 34. [66] Let μ be a non additive measure on a measurable space
(X,X ), and let (⊕,�) be a pseudo-fitting system. Then, when μ is a normal
⊕-measure, we define the pseudo-decomposable integral of a measurable simple
function f on X such that f = ⊕1

n
i=1b(ri, Di) where Di ∩Dj 
= ∅ for i 
= j, as

follows:

(D)

∫
fdμ := ⊕n

i=1ri � μ(Di).

Since μ is an ⊕-measure, it is obvious that the integral is well defined.

Definition 35. Let μ be a non additive measure on a measurable space (S,S),
and let (⊕,�) be a pseudo-fitting system. Then, the generalized fuzzy integral
(GF-integral) of a measurable simple function f := ⊕n

i=1b(ai, Ai), with ai > 0
and A1 � A2 � . . . An, Ai ∈ X , is defined as follows:

(GF )

∫
fdμ := ⊕n

i=1ai � μ(Ai).
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The GF-integral of a simple function is well defined [2].
The next proposition follows from the definition of the pseudo-inverse −⊕, the

generalized t-conorm integral (Definition 35), and the t-conorm integral (Defini-
tion 34).

Proposition 36. Let μ be a non additive measure on a measurable space (S,S),
and let (⊕,�) be a pseudo-fitting system. Then, if μ is a normal ⊕-measure, the
generalized fuzzy integral coincides with the pseudo-decomposable integral.

Example 7

1. When ⊕ = + and � = ·, the generalized fuzzy integral is a Choquet integral.
2. When ⊕ = ∨ and � = ∧, the generalized fuzzy integral is a Sugeno integral.

Theorem 37. [49] Let (S,S, μ) be a fuzzy measure space and let (⊕,�) be a
pseudo-fitting system. Then, for comonotonic measurable functions f , and g, we
have

(GF )

∫
(f ⊕ g)dμ = (GF )

∫
fdμ⊕ (GF )

∫
gdμ.

We call this property the comonotonic ⊕-additivity of a generalized fuzzy
integral.

4.2 Multidimensional Integral

We consider first the case of the product of two fuzzy measurable spaces. Let X
and Y be two universal sets and X × Y be the direct product of X and Y , let
(X,X ) and (Y,Y) be two fuzzy measurable spaces; then, we define the following
class of sets:

X × Y := {A×B|A ∈ X , B ∈ Y}

Now, let us consider the measurable space (X × Y,X × Y). Suppose that
X := 2X and Y := 2Y . Note that X × Y 
= 2X×Y if |X | > 1 and |Y | > 1.

Therefore, the class of X × Y-measurable functions is smaller than the class
of 2X×Y -measurable functions.

Example 8. Let X := {x1, x2} and Y := {y1, y2}; then, we have

2X × 2Y := { ∅, {(x1, y1)}, {(x1, y2)}, {(x2, y1)},
{(x2, y2)}, {(x1, y1), (x2, y1)}, {(x1, y2), (x2, y2)},
{(x1, y1), (x1, y2)}, {(x2, y1), (x2, y2)},
{(x1, y1), (x1, y2), (x2, y2), (x2, y2)} }

Hence, {(x1, y1), (x2, y2)} 
∈ 2X × 2Y .

The next proposition follows from the definition of a X × Y-measurable
function.
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Proposition 38. Let f : X × Y → [0, k] be a X ×Y-measurable function; then,

1. for fixed y ∈ Y , f(·, y) is X -measurable, and
2. for fixed x ∈ X, f(x, ·) is Y-measurable.

Example 9. Let X := {x1, x2} and Y := {y1, y2}. Let (X,X ) and (Y,Y) be the
two measurable spaces defined with X = 2X and Y = 2Y . Under these conditions,
we consider the two functions below and study whether they are X×Y-measurable
functions.

1. Let us define f : X × Y → [0, 1] by

f(x1, y1) = f(x1, y2) = 0.2,
f(x2, y1) = 0.6,
f(x2, y2) = 1.

Then, we have,
{(x, y)|f(x, y) ≥ 1} = {(x2, y2)}

= {x2} × {y2},
{(x, y)|f(x, y) ≥ 0.6} = {(x2, y1), (x2, y2)}

= {x2} × {x1, y2},
{(x, y)|f(x, y) ≥ 0.2} = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}

= {x1, x2} × {y1, y2}.
Therefore, f is X × Y-measurable.

2. Let us define g : X × Y → [0, 1] by

g(x1, y1) = 0.2,
g(x1, y2) = 0.4,
g(x2, y1) = 0.6,
g(x2, y2) = 1.

Then, we have
{(x, y)|g(x, y) ≥ 0.4} = {(x1, x2), (x2, y1), (x2, y2)} 
∈ X × Y.
Therefore, g is not a X × Y-measurable function.

In fact, if A ∈ X × Y, we have |A| = 0, 1, 2, or 4.

Theorem 39. (Fubini-like theorem) [49] Let (X,X , μ) and (Y,Y, ν) be two fuzzy
measure spaces, (⊕,�) be a pseudo-fitting system and let f : X × Y → [0, k] be
a X × Y-measurable function. Then, there exists a fuzzy measure m on X × Y
such that

(GF )

∫
((GF )

∫
fdμ)dν = (GF )

∫
fdm

= (GF )

∫
((GF )

∫
fdν)dμ.

4.3 Extension of the Domain

We assume that X and Y are algebras. Even if |X |, |Y | are finite and such that
X := 2X and Y := 2Y , the class of X ×Y is smaller than the class of 2X×Y , as we
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have shown in Example 21. In general, the class of X ×Y-measurable functions
is too small as shown in Example 23.

We consider an extension of the domain of the measure. In general, unless
there are additional constraints or conditions on the fuzzy measures, it is impos-
sible to extend the domain. However, in our case, we assume that μ on (X,X )
and ν on (Y,Y) are normal ⊕-measures. In this case, an extension is possible.
We define the extension below.

Definition 40. Let us define the class X × Y of sets A ∈ 2X×Y by

X × Y := {A ∈ 2X×Y |A = ∪i∈IAi, Ai ∈ X × Y, I : finite}.

We say that (X × Y,X × Y) is an extended fuzzy measurable space.

Proposition 41. Let (X,X ) and (Y,Y) be two fuzzy measurable spaces. Let
(X × Y,X × Y) be an extended fuzzy measurable space.

1. X × Y is an algebra.
2. Let f on X × Y be X × Y-measurable

(a) f(x, ·) is X -measurable.
(b) f(·, y) is Y-measurable.

Corollary 42. Let (X × Y,X × Y) be an extended fuzzy measurable space. Let
us suppose that |X |, |Y | are finite. If X = 2X and Y = 2Y , then X × Y = 2X×Y .

It follows from Corollary 42 that every function f : X × Y → [0, k] is X × Y-
measurable, if |X |, |Y | are finite.

Definition 43. Let (X,X , μ) and (Y,Y, ν) be two fuzzy measure spaces, and
(X × Y,X × Y) be an extended fuzzy measurable space. We define the fuzzy
measures m and m on X × Y induced by μ and ν by

m(C) := sup{ ⊕i∈I μ(Ai)� ν(Bi)|C = ∪i∈I(Ai ×Bi),

Ai ×Bi ∈ X × Y, I : finite}

and

m(C) := inf{ ⊕i∈I μ(Ai)� ν(Bi)|C = ∪i∈I(Ai ×Bi),

Ai ×Bi ∈ X × Y, I : finite}

where each Ai × Bi and Aj × Bj are disjoint. We call m(C) the upper ⊕-fuzzy
measure induced by μ and ν, and m(C) the lower ⊕-fuzzy measure induced by μ
and ν.

5 Möbius Transform of a Non Additive Measure

In this section we will present the Möbius transform of a non additive measure
and a representation of integral with respect to a non additive measure.
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5.1 Basic Definition and Properties

We will present the basic definition and properties of the Möbius transform of a
non additive measure on a finite set, that is, we assume that a universal set S is
a finite set, then we have S = 2S.

Definition 44. [60,5] Let μ be a non additive measure on (S,S), then its Möbius
transform m is defined as:

mμ(A) :=
∑
B⊆A

(−1)|A|−|B|μ(B) (2)

for all A ⊂ X.

Note that the function m is not restricted to the [0, 1] interval.
Given a functionm that is a Möbius transform, we can reconstruct the original

measure as follows:
μ(A) =

∑
B⊆A

m(B)

for all A ⊆ X .

Example 10. Let S := {x1, x2, x3} and μ be a non additive measure on (S,S).
Then we have the Möbius transform mμ of μ is computed as follows;
mμ(X) = μ(X)−μ({x1, x2})−μ({x2, x3})−μ({x3, x1})+μ({x1})+μ({x2})+

μ({x3})
mμ({x1, x2}) = μ({x1, x2})− μ({x1})− μ({x2})
mμ({x2, x3}) = μ({x2, x3})− μ({x2})− μ({x3})
mμ({x3, x1}) = μ({x1, x3})− μ({x1})− μ({x3})

Concerning the integral with respect to a non-additive measure, we have the
next representation theorem using the Möbius transform.

Theorem 45. Let m be Möbius transform of μ, we have

(C)

∫
fdμ =

∑
K⊂X

( inf
x∈K

f(x))m(K)

It is important for applications that a non additive measure can be identified
by means of a linear regression model using the Möbius transform.

5.2 Generalization of Möbius Transform

Three approaches of generalization of Möbius transform on infinite sets and the
representation of Choquet integral are known. They are an algebraic way [15,11]
, a measure theoretic way[33] and a topological way [42].

First wewill introduce the interpreter representation byMurofushi and Sugeno.
The interpreter representation theorem is proved in the measure theoretic ap-
proach. All proofs are shown in [32,33].
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Let (X,X ) and (Y,Y) be measurable spaces. A mapping H : X −→ Y is
called an interpreter from X to Y if H satisfies (1) H(∅) = ∅ (2) H(A) ⊂ H(B)
whenever A ⊂ B. A triplet (Y,Y,H) is called a frame of (X,X ) if H is an
interpreter from X to Y.

Let μ be a non additive measure on (X,X ). A quadruplet (Y,Y,m,H) is
called an interpreter representation of μ if H is an interpreter from X to Y, m
is a classical measure on (Y,Y) and μ = m ◦H .

For a non negative measurable function f on X we define a function if on Y
by if (y) := sup{r|y ∈ H({f ≥ r})}. We call if an interpreter for a measurable
function f induced by H.

A semifilter θ in a measurable space (X,X ) is a non empty subclass of X
with the properties (a) ∅ 
∈ θ (b) If A ∈ θ and A ⊂ B ∈ X then B ∈ θ. SX

denote the set of all semifilters in (X,X ), and define a mapping HX : X −→
2SX by HX(A) := {θ ∈ SX |A ∈ θ}. SX denotes the algebra generated by
{HX(A)|A ∈ X}. The triplet (SX ,SX , HX) is called the universal frame of
(X,X ) for representation.

Theorem 46. (Interpreter representation theorem [32,33]) Let μ be a non ad-
ditive measure on (X,X ).

There exists a classical measure m on SX such that (SX ,SX ,m,HX) is an
interpreter representation of μ,and

(C)

∫
fdμ =

∫
ifdm

for f ∈ L∞+.

Remark. Let μ be a non additive measure on (X,X ). We say that (X,X , μ)
is a fuzzy measure space. Let (Y,Y,m,H) be an interpreter representation of a
fuzzy measure space (X,X , μ). The semantics of the interpreter representation
are as follows. The element of Y is a feature in respect of the attribute. If
a ∈ H(A) for A ∈ X , we say that a is a feature of A or A has the feature
a. The measure of A equals the sum of all measures of the feature of A. The
interpreter representation is not unique, but all representations are equivalent
to the interpreter representation with semifilter (See Appendix in [32]).

Next we present the representation with the Möbius transform by Denneberg.
The essences of the proofs are shown in [11].

Let uA be defined by a 0 − 1 necessity measure, or a unanimity game for
coalition A. FM1

0u denotes the set of all unanimity games. Next define the tilde
operator τf : FM1

0u → R+ which assigns η ∈ FM1
0u to a measurable function

f ∈ L∞+ by

τf (η) := (C)

∫
fdη.

If A ∈ X , Ã is defined by Ã := {η ∈ FM1
0u|η(A) = 1}. We use the notation

T̃ := {Ã|A ∈ T } for a class T ⊂ 2X . The algebra generated by X̃ in 2FM1
0u

denoted by Du ⊂ 2FM1
0u . Define the function κη : FM1

0u × X → [0, b] by
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κη(A) := η(A) for η ∈ FM1
0u and A ∈ X . κη is called the zeta function for X .

Let ν be a classical measure on Du. We define the zeta transform μ on X of ν
by

μ(A) :=

∫
κη(A)dν(η), A ∈ X .

Theorem 47. ( Representation theorem with Möbius transform [11]) For any
non-additive measure μ on X there exists a unique additive set function ν on
Du so that

(C)

∫
fdμ =

∫
τfdν

for f ∈ L∞+.

The unique additive set function ν is called the Möbius transform of μ on Du

and denote it νμ. The Möbius transform is not always monotone. It is a signed
additive set function on Du.

5.3 Interpreter and Tilde Operator

In this section, we define a mediator for representations and show the identi-
cal points and the differences between the interpreter representation and the
representation with a Möbius transform.

A 0-1 fuzzy measure on X is a {0, 1}−valued fuzzy measure. FM1
0 denotes

the set of all 0-1 fuzzy measures. It is obvious that FM1
0u ⊂ FM1

0.

Lemma 48. Let SX be the class of semifilters of X. There exists a bijection
ϕ : FM1

0 → SX .

We call the bijection ϕ in the previous lemma a mediator for representation.

Theorem 49. Let (SX ,SX , HX) be the universal frame of (X,X ) for represen-
tation, and ϕ : FM1

0 → SX be a mediator for representation.

1. HX(A) = ϕ(Ã) for A ∈ X .
2. Let f ∈ L∞+, i be an interpreter from X to SX and τf be a tilde operator

from X to X̃ . Then we have if ◦ ϕ = τf .

Let D be the algebra generated by X̃ in 2FM1
0 . It is not proved in [11] that

there exists an additive set function on D so that it represents a non additive
measure and the Choquet integral. Using the interpreter representation theorem,
we can show the existence.

Theorem 50. For any non-additive measure μ on X there exists a measure on
D so that

(C)

∫
fdμ =

∫
f̃dν

for every f ∈ L∞+.
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5.4 Representation on Finite Spaces

In this section, we assume that the universal set X is a finite set. Then the
algebra SX generated by {HX(A)|A ∈ X} is 2SX , and the algebra Du generated

by X̃ is equal to the set 2FM1
0u .

First we define another representation, called chain representation.

Definition 51. Let μ be a non additive measure on (X, 2X). Since 2X is finite,
the set {μ(A)|A ∈ 2X} is a finite subset of real numbers. Therefore we may write

{μ(A)|A ∈ 2X} := {ti|0 = t1 < · · · < tl = 1}

where l is a positive integer such that l ≤ |2X |. Let θi := {A ∈ 2X |μ(A) ≥ ti}
for 1 ≤ i ≤ l. It is obvious from the definition that θi is a semifilter. Then using
a mediator ϕ, a non additive measure μ is represented as

μ =

l∑
i=1

ciϕ
−1(θi),

where ci is a positive real number. We say that the representation above is a
chain representation of a non additive measure μ.

Proposition 52. [46] A chain representation is one of the special case of the
interpreter representation.

Next we study a belief function of theory of evidence [63]. We say a non
additive measure Bel on (X, 2X) is a belief function if there exists a probability

measure m on (2X , 22
X

) such that Bel(A) =
∑

B⊂A m({B}) for A ∈ 2X . The
probability measure m is called a basic probability assignment (for short b.p.a.).

Proposition 53. [46] The interpreter representation is a generalization of a
representation of b.p.a.

As an application of the mediator we can show the next well known fact.

Corollary 54. Let μ be a non additive measure on (X,X ). The Möbius trans-
form νμ of μ is monotone, that is νμ is a probability, if and only if μ is a belief
function.

Example 11. Let X := {a, b, c} and X := 2X .

1. The semifilter SX := {θi}, (i = 1, 2, . . . , 15) is defined as the Table 1 below.
In the Table 1 a number 1 means that a set is an element of the semifilter θi
and the number 0 means that it is not the element of the semifilter θi. Then
we have the mapping HX(A) := {θ ∈ SX |A ∈ θ} for A ⊂ X is a vertical
line, for example, HX({a}) = {θ1, θ3, θ4, θ6, θ9}.
Regarding the Table 1 as a matrix A and using a probability m on SX . A
non additive measure μ is represented as :

(μ({a}), μ({b}), . . . , μ({a, c, }), μ({a, b, c}))
= (m({θ1},m({θ2}, . . . ,m({θ18}))A.
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Table 1. Semifilter

{a} {b} {c} {a, b} {b, c} {c, a} {a, b, c}
θ1 1 1 1 1 1 1 1

θ2 0 1 1 1 1 1 1

θ3 1 0 1 1 1 1 1

θ4 1 1 0 1 1 1 1

θ5 0 0 1 1 1 1 1

θ6 1 0 0 1 1 1 1

θ7 0 1 0 1 1 1 1

θ8 0 0 1 0 1 1 1

θ9 1 0 0 1 0 1 1

θ10 0 1 0 1 1 0 1

θ11 0 0 0 1 1 1 1

θ12 0 0 0 0 1 1 1

θ13 0 0 0 1 0 1 1

θ14 0 0 0 1 1 0 1

θ15 0 0 0 1 0 0 1

θ16 0 0 0 0 1 0 1

θ17 0 0 0 0 0 1 1

θ18 0 0 0 0 0 0 1

Table 2. 0− 1 necessity measures

{a} {b} {c} {a, b} {b, c} {c, a} {a, b, c}
u{a} 1 0 0 1 0 1 1

u{b} 0 1 0 1 1 0 1

u{c} 0 0 1 0 1 1 1

u{a,b} 0 0 0 1 0 0 1

u{b,c} 0 0 0 0 1 0 1

u{a,c} 0 0 0 0 0 1 1

u{a,b,c} 0 0 0 0 0 0 1
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2. In the case of X := {a, b, c}, Let μ be a 0−1 necessity measure uA for A ⊂ X
as represented as in the Table 2:
Regarding the Table 2 as a matrix B, the relation between a non additive
measure μ and its Möbius transform ν is represented as follows:

(μ({a}), μ({b}), . . . , μ({a, c, }), μ({a, b, c}))
= (ν({a}), ν({b}), . . . , ν({a, c, }), ν({a, b, c}))B.

Since rankB = 7, the Möbius transform is uniquely determined though μ is
not always monotone.

3. Let μ be a non additive measure as the Table 3 below.

Table 3. Fuzzy measure

{a} {b} {c} {a, b} {b, c} {c, a} {a, b, c}
μ 0.2 0.3 0.4 0.7 0.7 0.9 1

Define a semifilter θ(a) by θ(a) := {A|μ(A) ≥ a}. The Table 4 shows the
semifilters which are used in the chain representation.

Table 4. Semifilter

{a} {b} {c} {a, b} {b, c} {c, a} {a, b, c}
θ(0.2) 1 1 1 1 1 1 1

θ(0.3) 0 1 1 1 1 1 1

θ(0.4) 0 0 1 1 1 1 1

θ(0.7) 0 0 0 1 1 1 1

θ(0.9) 0 0 0 0 0 1 1

θ(1) 0 0 0 0 0 0 1

Regarding the Table 4 as the matrix C, the coefficients ci, (1 ≤ i ≤ 6) are
determined by the next equation:

(μ({a}), μ({b}), . . . , μ({a, c, }), μ({a, b, c})) = (c1, c2, . . . , c6)C.

As shown in the example above, the interpreter representation cannot deter-
mined the probability uniquely, but in [33] Murofushi and Sugeno show that
some equivalent relation holds among the representing probability.

Considering the Choquet integral representation with Möbius transform, we
have

(C)

∫
fdμ =

∑
K⊂X

( inf
x∈K

f(x))νμ(uK) · · · · · · (L)
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where f ∈ L∞+ and νμ is the Möbius transform of μ. To identify the non
additive measure μ, the equation (L) is a simple linear form although νμ is not
monotone. So it is rather easy to identify the Möbius transform of μ. But it is
difficult to interpret the results since νμ is signed. Using a mediator ϕ, we have
θ = ϕ(u) for θ ∈ SX and u ∈ FM1

0u, and m ◦HX(A) = νμ(ϕ(Ã)), where m is
representing classical measure. As shown in [32], the interpreter representation
has its own meaning. So it is not difficult to illustrate the meaning of the result.
Therefore one can identify the non additive measure easily by the representation
with Möbius transform. Using the mediator one can interpret the result easily
by the interpreter representation.

6 Concluding Remarks

We have presented a basic definition of a non additive measure and introduced
several definitions of continuity of non additive measure and presented the rela-
tion among them.

We have introduced the definitions of Sugeno integral, Choquet integral and
a generalized fuzzy integral with respect to a non additive measure and we have
shown several fundamental properties of them.

We have shown the generalized Möbius transform of a non additive measure
and a representation of Choquet integral using the Möbius transform.

The results presented in this Chapter are important for the applications, which
will be shown in the rest of this book.
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Abstract. We discuss a new approach to integration introduced re-
cently by Even and Lehrer and its relationship to several integrals known
from the literature. Decomposition integrals are based on integral sums
related to some (possibly constraint) systems of set systems, such as fi-
nite chains or finite partitions. A special stress is put on the integrals
which are simultaneously decomposition integrals and universal integrals
in the sense of Klement et al. Several examples illustrate the presented
integrals.

Keywords: Choquet integral, decomposition integral, Sugeno integral,
universal integral.

1 Introduction

Integral sums based approach to integration has its roots in ancient Greece. It can
be traced already in Eudoxus’ (around 370 B.C.) exhaustion principle, which was
later successfully applied by several great scientists, including Archimedes and
Kepler, among others. Considering the basics of modern mathematics, the most
applied integral is surely the one proposed by Riemann in 1854 [23]. Riemann
integral is defined on special subsets of Rn. In the case n = 1, considered special
subsets of R are (closed) subintervals. Recall that for a non-negative function

f : [a, b] → [0,∞[, Riemann integral
b∫
a

f(x) dx exists if and only if

sup

{
n∑

i=1

ci l(Ii)| n ∈ N, (Ii)
n
i=1 is an interval partition of [a, b],

n∑
i=1

ci 1Ii ≤ f

}
=

= inf

{
n∑

i=1

ci l(Ii)| n ∈ N, (Ii)
n
i=1 is an interval partition of [a, b],

n∑
i=1

ci 1Ii ≥ f

}
=

= u ∈ [0,∞[, (1)

and then
b∫
a

f(x) dx = u. Observe that for an interval I, l(I) denotes its

length. Lebesgue [10] has generalized Riemann’s approach, considering an arbi-
trary measurable space (X,A), where X 
= ∅ is a given universe and A ⊆ 2X is
a σ-algebra of subsets of X . For a σ - additive measure m : A → [0,∞], and an

V. Torra, Y. Narukawa, and M. Sugeno (eds.), Non-Additive Measures, 63
Studies in Fuzziness and Soft Computing 310,
DOI: 10.1007/978-3-319-03155-2_3, c© Springer International Publishing Switzerland 2014
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A - measurable function f : X → [0,∞], the corresponding Lebesgue integral is
given by∫
X

fdm = sup

{
n∑

i=1

cim(Ai)| n ∈ N, (Ai)
n
i=1 is a measurable partition of X,

n∑
i=1

ci 1Ai ≤ f

}
. (2)

Observe that considering X = [a, b], A = B([a, b]), and m = λ : A → [0,∞]

being the classical Lebesgue measure, if the Riemann integral
b∫
a

f(x) dx exists

then the equality
b∫
a

f(x) dx =
∫
X

f dm holds.

As a special instance of Lebesgue integral recall the case when X is finite,
X = {x1, . . . , xn}. Then, in general, A = 2X is considered, and each additive
measure m : A → [0,∞] is given by n-tuple of weights wi = m({xi}). Then∫

X

f dm =
n∑

i=1

wif(xi), (3)

i.e., Lebesgue integral is just a weighted sum.
Later, several other types of integrals based on special integral sums were

introduced. In this chapter, we will discuss these integrals, generalizing the
Lebesgue approach. We will deal with an arbitrarily given measurable space
(X,A), monotone measures and measurable functions on (X,A).

In the next section, we introduce a framework for discussed integrals, and
we recall Choquet integral [3], Sugeno integral [30] and Shilkret integral [28].
In Section 3, we recall recently introduced decomposition integrals of Even and
Lehrer [6] and their special instances, including some illustrative examples and
a generalization of decomposition integral. Section 4 is devoted to the concept
of universal integrals [9] and discussion of integrals which are both universal
and (generalized) decomposition integrals. Finally, some concluding remarks are
added.

2 Integral Sums Based Integrals

Denote by S the class of all measurable spaces (X,A). For a fixed measur-
able space (X,A), we denote by M(X,A) the set of all monotone measures
m : A → [0,∞], m(∅) = 0 and m(A) ≤ m(B) whenever A ⊆ B. The set of all
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A - measurable functions f : X → [0,∞] will be denoted as F(X,A). Moreover,
we will consider notation

M(1)
(X,A) = {m ∈M(X,A)| m(X) = 1} and

F (1)
(X,A) = {f ∈ F(X,A)| range f ⊆ [0, 1]}.

All integrals considered in this chapter can be seen as mappings

J :
⋃

(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞] (4)

⎛⎝ or J :
⋃

(X,A)∈S

(
M(1)

(X,A) ×F (1)
(X,A)

)
→ [0,∞]

⎞⎠
which are either characterized by some axioms, or determined by means of some
construction. Mappings given by (4) will be called general functionals.

A binary operation ⊗ : [0,∞]2 → [0,∞] (⊗ : [0, 1]2 → [0, 1]) will be called
a pseudo-multiplication whenever it is increasing in both components, 0 is its
annihilator (i.e., 0 ⊗ c = c ⊗ 0 = 0 for each c), and ∞ ⊗∞ > 0 (1 ⊗ 1 > 0).
A pseudo-multiplication ⊗ : [0, 1]2 → [0, 1] possessing a neutral element e = 1
(i.e., 1⊗ c = c⊗ 1 = c for each c ∈ [0, 1]) is called a semicopula [1,5].

Further, a binary operation ⊕ : [0,∞]2 → [0,∞] is called a pseudo-addition
whenever it is increasing in each coordinate, it is associative, continuous and 0 is
its neutral element [31,9]. Note that due to [18], each pseudo-addition ⊕ is also
commutative. Due to its associativity, we can extend ⊕ to be an n-ary operation
on [0,∞], with notation

⊕n
i=1 ci.

Basic notions of this chapter are integral summands and integral sums.

Definition 1. Let (X,A) ∈ S, m ∈ M(X,A), a pseudo-addition ⊕ : [0,∞]2 →
[0,∞] and a pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] be fixed. For a constant
c ∈ [0,∞], A ∈ A, the function b(c, A) : X → [0,∞ ]

b(c, A)(x) =

{
c if x ∈ A

0 elsewhere
,

is called a basic function, and its m- integral ⊗-summand is given by

b(c, A)m,⊗ = c⊗m(A).

For a finite system B = (b(ci, Ai))
n
i=1 of basic functions, the corresponding m-

integral (⊕,⊗)-sum is given by

S(B,⊕,⊗,m) =

n⊕
i=1

b(ci, Ai)m,⊗ =

n⊕
i=1

(ci ⊗m(Ai)).
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Observe that the Lebesgue integral (2) can be now written as∫
X

fdm = sup

{
S(B,+, ·,m)| B = ( b(ci, Ai) )

n
i=1 ,

(Ai)
n
i=1 is a partition of X,

n∑
i=1

b(ci, Ai) ≤ f

}
. (5)

The formula (5) can be applied also when m is not σ-additive, and thus
it results into a general functional in the sense (4). Note that this functional
was introduced and discussed by Yang [35] under the name PAN-integral. For
deeper discussion of PAN-integral we recommend [34]. General PAN-integral as
introduced in [35] is related to a distributive pair (⊕,⊗) of pseudo-addition and
pseudo-multiplication, with ⊗ possessing a neutral element e ∈]0,∞], associative
and continuous on ]0,∞[2 (for deeper discussion of pairs (⊕,⊗) linked to PAN-
integrals seen [15]), and then

PAN(⊕,⊗)(m, f) = sup

{
S(B,⊕,⊗,m)| B = ( b(ci, Ai) )

n
i=1 ,

(Ai)
n
i=1 is a partition of X,

n⊕
i=1

b(ci, Ai) ≤ f

}
. (6)

Note that when considering integral sums based on measurable partitions as
in (6), one can obtain the same integral for different monotone measures.
Take, for example, X = {x1, x2}, m1({x1}) = m2({x1}) = 2, m1({x2}) =
m2({x2}) = 3, m1(X) = 4, m2(X) = 5. Then for any f ∈ F(X,2X),

PAN(+, ·)(m1, f) = PAN(+, ·)(m2, f) = 2f(x1) + 3f(x2),

though m1 
= m2.
Alternative approaches to integration are related to integral sums based on

measurable chains. Paraphrasing (5), considering (Ai)
n
i=1 to be a chain, the fa-

mous Choquet integral [3] is recovered. Note that this integral is given by

Ch(m, f) =

∞∫
0

m(f ≥ t)dt, (7)

but also

Ch(m, f) = sup

{
S(B,+, ·,m)| B = ( b(ci, Ai) )

n
i=1 ,

(Ai)
n
i=1 is a chain ,

n∑
i=1

b(ci, Ai) ≤ f

}
. (8)
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Similarly, we can restrict to singleton systems B only, and then Shilkret inte-
gral [28] is recovered,

Sh(m, f) = sup

{
c ·m(A)| b(c, A) ≤ f

}
. (9)

Formulae (5), (8), (9) deals with ⊕ = + and ⊗ = · (i.e., with the standard
arithmetical operations), while the formula (6) with PAN-operations (⊕,⊗).
Considering the pair (∨,∧) (i.e., lattice operations of join (maximum) and meet
(minimum) on [0,∞]), one obtain in all cases the Sugeno integral [30],

Su(m, f) = sup

{
c ∧m(A)| b(c,A) ≤ f

}
= sup

{
t ∧m(f ≥ t)| t ∈ [0,∞]

}
. (10)

In the next example we exemplify some of the above introduced integrals.

Example 1. Let X = [0, 1], A = B([0, 1]) and λ : A → [0,∞] be the standard
Lebesgue measure. Then, for f : [0, 1] → [0,∞] given by f(x) = x,

1∫
0

f(x) dx =

∫
X

f dλ = PAN(+, ·)(λ, f) = Ch(λ, f) = Su(λ, f) =
1

2

and Sh(λ, f) =
1

4
.

Considering m = λ2 ∈ M(X,A), observe that m is not σ-additive and thus the
Lebesgue integral cannot be applied. For the applicable integrals we obtain:

PAN(+, ·)(λ2, f) =
2
√
3− 3

3
= 0.155,

Ch(λ2, f) =

1∫
0

(1− t)2 dt =
1

3
= 0.333,

Sh(λ2, f) = sup

{
t(1− t)2| t ∈ [0, 1]

}
=

4

27
= 0.148,

Su(λ2, f) = sup

{
t ∧ (1− t)2| t ∈ [0, 1]

}
=

3−
√
5

2
= 0.386.

3 Decomposition Integrals

The idea of decomposition integrals connecting several types of integrals is due to
Even and Lehrer [6], and it is related to the standard arithmetical operations +
and ·. This is, for example, the case of Choquet, Shilkret and PAN(+, ·) integrals.
Before the formal introduction of decomposition integrals, consider first the next
optimization example.
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Example 2. Consider a group of workers X = {x1, x2, x3} with daily perfor-
mance m(X) = 8. For smaller groups of workers, the next daily performances are
known: m({x1}) = 2,m({x2}) = 3,m({x3}) = m({x1, x3}) = 4, m({x1, x2}) =
7 and m({x2, x3}) = 5.

The availability of single workers in working days is f(x1) = 5, f(x2) = 4
and f(x3) = 3 (i.e., worker x1 can work maximally 5 days altogether, though
possibly in different groups of workers). How to organize the working plan to
attain the maximal global performance, being constraint by one of the following
“working laws”?

Working Laws

(i) only one group of workers can work for a fixed time period;

(ii) several disjoint groups of workers can work, each for its fixed time period;

(iii) one group of workers starts to work, a worker after stopping his work cannot
start again;

(iv) there are no constraints.

Optimal Performances

(i) we have to compute max{c·m(A)| b(c, A) ≤ f}, i.e., the optimal performance
is just the Shilkret integral

Sh(m, f) = f(x2) ·m({x1, x2}) = 4 · 7 = 28;

(ii) we have to compute

max

{
n∑

i=1

cim(Ai)
∣∣ n∑
i=1

b(ci, Ai) ≤ f, (Ai)
n
i=1 is a partition of X

}
, i.e.,

the optimal performance is the PAN-integral

PAN(+, ·)(m, f) = f(x2) ·m({x1, x2}) + f(x3) ·m({x3}) = 4 · 7 + 3 · 4 = 40;

(iii) we have to compute

max

{
n∑

i=1

cim(Ai)
∣∣ n∑
i=1

b(ci, Ai) ≤ f, (Ai)
n
i=1 is a chain in 2X

}
, i.e.,

the optimal performance is the Choquet integral

Ch(m, f) = f(x3) ·m(X) + (f(x2)− f(x3)) ·m({x1, x2})+
+ (f(x1)− f(x2)) ·m({x1}) = 3 · 8 + 1 · 7 + 1 · 2 = 33;

(iv) the optimal performance is

f(x2) ·m({x1, x2}) + f(x3) ·m({x3}) + (f(x1)− f(x2)) ·m({x1}) =
=4 · 7 + 3 · 4 + 1 · 2 = 42.

Note that the case (iv) is the above example corresponds to the concave
integral recently introduced by Lehrer [11,12],
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L(m, f) = sup

{
n∑

i=1

ci m(Ai)
∣∣ n ∈ N,

n∑
i=1

b(ci, Ai) ≤ f

}
. (11)

It is not difficult to see that Sh ≤ Ch ≤ L and Sh ≤ PAN(+, ·) ≤ L, inde-
pendently of a fixed measurable space (X,A), monotone measure m ∈ M(X,A)

and function f ∈ F(X,A). In Example 2, it holds

Sh(m, f) = 28 < Ch(m, f) = 33 < PAN(+, ·)(m, f) = 40 < L(m, f) = 42.

As we can see from formulae (8), (9), (11) and (6) for (⊕,�) = (+, ·), all
these introduced integrals are based on (sub -)decomposition of the considered

function f ∈ F(X,A), into acceptable basic functions,
n∑

i=1

b(ci, Ai) ≤ f , where the

system (Ai)
n
i=1 satisfies some constraints (it is a chain in (8), a singleton in (9),

there is no constraint in (11), and it is partition in (6)). This observation was
a motivation for Even and Lehrer [6] to introduce decomposition systems and
decomposition integrals.

Definition 2. For a fixed (X,A) ∈ S, a non-empty system H of collections
from A (i.e., finite non-empty subsets of A) is called a decomposition system.
Moreover, the mapping IH : M(X,A) ×F(X,A) → [0,∞] given by

IH(m, f) = sup

{
n∑

i=1

cim(Ai)
∣∣ (Ai)

n
i=1 ∈ H,

n∑
i=1

b(ci, Ai) ≤ f

}
(12)

is called a decomposition integral.

Considering a setting of constraints (e.g., only finite chains are considered)
such that for each measurable space (X,A) ∈ S it determines a unique decom-
position systemH, we can define by means of (12) a general functional JH which
will be called a general decomposition integral (we have slightly abused the no-
tation, as H in JH means the considered setting of constraints, while H in IH
means the considered decomposition system on (X,A).)

Recall that from the integrals we have discussed so far, general decomposition
integrals include:

Shilkret integral (9) constraint to singletons, i.e., for any (X,A) ∈ S,

HSh = {{A}|A ∈ A� {∅}};

Choquet integral (8) constraint to finite chains, i.e., for any (X,A) ∈ S,

HCh = {C| C is a finite chain in A};

PAN(+, ·) integral (6) constraint to finite partitions, i.e., for any (X,A) ∈ S,

HPAN = {P|P is a finite partition of (X,A)};
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concave integral of Lehrer (11) no constraint, i.e., for any (X,A) ∈ S,

HL = {D|D is a finite non-empty subset of A� {∅}}.

The next example brings a decomposition integral which is not general, i.e.,
it is defined only on a fixed measurable space (X,A) ∈ S.

Example 3. Continuing in Example 2, suppose the next “working law”:

(v) the workers x1 and x2 cannot work together.

Then the corresponding decomposition system H is given by
H = {E| ∅ 
= E ⊂ 2X � {∅}, there is no A ∈ E such that {x1, x2} ⊆ A}, and the
best performance is attained on singletons, i.e., when each worker works alone,

IH(m, f) =f(x1) ·m({x1}) + f(x2) ·m({x2}) + f(x3) ·m({x3}) =
= 5 · 2 + 4 · 3 + 3 · 4 = 34.

It is obvious that more restrictive constraints when introducing general de-
composition integrals yield to smaller integral output, as already exemplified on
the relationships between Shilkret, PAN(+, ·), Choquet and concave integrals.

On the other hand, two different decomposition systems H1 andH2 can result
into a unique decomposition integral IH1 = IH2 (general decomposition integral
JH1 = JH2). As a typical example consider (supposing cardX > 1)

H1 = {C| C is a chain in A of length 2} and

H2 = {C| C is a chain in A of length at most 2}.

Then

JH1(m, f) = JH2(m, f) = sup{c ·m(f ≥ c) + d ·m(f ≥ c+ d)| c, d ∈ [0,∞]}.

For a deeper discussion of properties of decomposition integrals we recommend
[6,16,32].

We introduce two graded families of decomposition systems:

H(n) ={C| C is a chain in A with length at most n};
H(n) ={P|P is a partition of (X,A) with at most n members}.

Evidently H(1) = H(1) = HSh is related to the Shilkret integral. Moreover, it
holds

H(1) ⊆ H(2) ⊆ · · · ⊆ H(n) ⊆ · · · ⊆ HCh,

HCh =
∞⋃

n=1
H(n), is related to the Choquet integral, and

H(1) ⊆ H(2) ⊆ · · · ⊆ H(n) ⊆ · · · ⊆ HPAN ,
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HPAN =
∞⋃
n=1

H(n), is related to the PAN(+, ·) integral. Moreover, in [32] we have

introduced a new general decomposition system

H∗ =

{
D

∣∣ ∅ 
= D ⊆ A� {∅},D is finite, for each A,B ∈ D, either A ∩B = ∅

or (A,B) is a chain

}
.

Then, on any (X,A) ∈ S, HPAN ⊆ H∗ ⊆ HL and HCh ⊆ H∗ ⊆ HL. For the
corresponding general decomposition integrals, their relationships is visualized
on the Hasse diagram depicted in Figure 1.

Fig. 1. Hasse diagram relating introduced general decomposition integrals

Remark 1

(1) Decomposition integrals can be seen as an approach to integration based
on the lower integral sums (sub-decomposition), expressed in the constraint
n∑

i=1

b(ci, Ai) ≤ f . It is possible to consider a dual approach based on the upper

integral sums (super-decomposition), requiring
n∑

i=1

b(ci, Ai) ≥ f . Then the

corresponding decomposition integral IH : M(X,A) × F(X,A) → [0,∞] can
be defined as

IH(m, f) = inf

{
n∑

i=1

ci m(Ai)
∣∣ (Ai)

n
i=1 ∈ H,

n∑
i=1

b(ci, Ai) ≥ f

}
. (13)

(2) Decomposition integrals deal with the classical arithmetics, i.e., with the
operations pair (+, ·). It is immediate that this approach can be extended to
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any pair (⊕,⊗) of a pseudo-addition and pseudo-multiplication introducing,
for example, (⊕,⊗)-decomposition integral

I
(⊕,⊗)
H : M(X,A) ×F(X,A) → [0,∞] defined as

I
(⊕,⊗)
H (m, f) = sup

{
n⊕

i=1

(ci ⊗m(Ai))
∣∣ (Ai)

n
i=1 ∈ H,

n⊕
i=1

b(ci, Ai) ≤ f

}
.

(14)

Observe that I
(∨,∧)
H = Su is the Sugeno integral on M(X,A) ×F(X,A) when-

ever for each non-empty A ∈ A there is a collection D ∈ H such that A ∈ D.
For more details and discussion about pseudo-decomposition integrals see,
for example, [14].

Note that, in general, there are only few properties valid for each
(⊕,⊗)-decomposition integral. Obviously, considering a general decomposition

system H, I
(⊕,⊗)
H is a general functional which is increasing in each coordinate.

If the pseudo-multiplication ⊗ is associative and the pseudo-addition ⊕ is left-
distributive over ⊗, i.e.,

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c),

then I
(⊕,⊗)
H is ⊗-homogeneous functional,

I
(⊕,⊗)
H (m, c⊗ f) = c⊗ I

(⊕,⊗)
H (m, f)

for each c ∈]0,∞[, m ∈ M(X,A) and f ∈ F(X,A).
Therefore, decomposition integrals are (positively) homogeneous.

4 Universal Integrals

Decomposition integrals can be seen as a constructive approach to integrals,
though in several cases we do not know an effective algorithm how to evaluate
them exactly. Moreover, they can have some undesirable properties. For exam-
ple, it might happen that IH(m, 1A) > m(A). Indeed, considering Example 1,
PAN(+, ·)(m, 1{x2,x3}) = L(m, 1{x2,x3}) = 7 while m({x2, x3}) = 5. In 2010, we
have proposed in [9] an axiomatic approach to integration, giving a framework
to functionals deserving to be called integrals.

Definition 3. A general functional J :
⋃

(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞] is

called a universal integral whenever the next axioms are satisfied:

(U1) J is increasing in both components;
(U2) J(m, b(c, A)) depends on c and m(A) only, independently of the measur-

able space (X,A) ∈ S, m ∈ M(X,A) and c ∈ [0,∞], and there is a constant
e ∈ ]0,∞] such that for all (X,A) ∈ S,

J(m, b(e, A)) = m(A)
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for all m ∈ M(X,A), A ∈ A and

J(m, b(c,X)) = c

for all c ∈ [0,∞] and all m ∈ M(X,A) such that m(X) = e.
(U3) J(m1, f1) = J(m2, f2) for all pairs (m1, f1) ∈ M(X1,A1) × F(X1,A1),

(m2, f2) ∈ M(X2,A2) × F(X2,A2) with the same survival function
hm1,f1 = hm2,f2 , where hm,f :]0,∞] → [0,∞] is given by

hm,f(t) = m(f ≥ t).

Note that pairs (mi, fi) with a common survival function were called integral
equivalent in [9]. In the probability theory, such pairs (probability measure and
a non-negative random variable) are characterized by a common distribution
function on ]0,∞], and the corresponding survival function is its complement
to 1.

The axiom (U2) ensures the existence of a pseudo-multiplication ⊗ : [0,∞] →
[0,∞] with a neutral element e ∈ ]0,∞], such that J(m, b(c, A)) = c ⊗ m(A).
The axiom (U1) allows to introduce, for any pseudo-multiplication ⊗ on [0,∞]
with a neutral element e ∈ ]0,∞], the smallest universal integral J⊗ satisfying
(U2) with ⊗,

J⊗(m, f) = sup
{
t⊗m(f ≥ t)| t ∈ ]0,∞]

}
. (15)

Evidently J· = Sh is the Shilkret integral and J∧ = Su is the Sugeno integral.

Similarly, one can introduce the greatest universal integral J⊗ satisfying (U2)
with ⊗,

J⊗(m, f) = inf
{
c⊗m(A)| b(c, A) ≥ f

}
=

= essupm(f)⊗ sup
{
m(f ≥ t)| t ∈ ]0,∞]

}
, (16)

where essupm(f) = sup
{
t ∈ [0,∞] |m(f ≥ t) > 0

}
and

sup
{
m(f ≥ t)| t ∈ ]0,∞]

}
= lim

t→0+
m(f ≥ t).

For more details and some construction methods for universal integrals we rec-
ommend [9].

The increase of interest in new, in general non-additive integrals can be traced
back to the introduction of fuzzy sets [36] and attempts to introduce expectations
for fuzzy sets [37,30]. Nowadays these integrals are substantially exploited in
several multicriteria decision problems dealing with graded scales for considered
criteria. The most applied scale is the unit interval [0, 1], and for this purpose we
have introduced the concept of universal integrals on [0, 1], too. For more details
see [9].

Definition 4. A mapping J :
⋃

(X,A)∈S

(
M(1)

(X,A) ×F (1)
(X,A)

)
→ [0, 1] is called a

universal integral on [0, 1] whenever the next axioms are satisfied:



74 R. Mesiar and A. Stupňanová

(U1) (i.e., J is increasing in both components);
(U2’) there is a semicopula T : [0, 1]2 → [0, 1] so that for any (X,A) ∈ S,

J(m, b(c, A)) = T (c,m(A)) for each m ∈M(1)
(X,A), A ∈ A and c ∈ [0, 1];

(U3) (i.e., J(m1, f1) = J(m2, f2) whenever hm1,f1 = hm2,f2).

Also in this case the smallest universal integral JT and the greatest univer-
sal integral JT satisfying (U2’) with a given semicopula T can be introduced,
applying the formulas (15) and (16), respectively. In a special case, consider-
ing a supermodular semicopula C : [0, 1]2 → [0, 1], i.e., a copula [21], observe
first that there is a one-to-one correspondence between copulas and probabil-
ities on Borel subsets of [0, 1]2 with uniformly distributed margins, namely
PC([0, u] × [0, v]) = C(u, v), (u, v) ∈ [0, 1]2. This fact allows to introduce a
new class of universal integrals on [0, 1], see [8,9].

Proposition 1. Let C : [0, 1]
2 → [0, 1] be a fixed copula. Then the mapping

J(C) :
⋃

(X,A)∈S

(
M(1)

(X,A) ×F (1)
(X,A)

)
→ [0, 1] given by

J(C)(m, f) = PC

({
(x, y) ∈ ]0, 1]2| y ≤ hm,f (x)

})
(17)

is a universal integral on [0, 1].

It is not difficult to check that for the strongest copulaM ,M(u, v) = min{u, v},

J(M) = Su

is the Sugeno integral in its original form acting on [0, 1], as introduced in [30].
Considering the product copula Π , Π(u, v) = uv, one gets

J(Π) = Ch,

i.e., the Choquet integral is recovered (restricted to
⋃

(X,A)∈S

(
M(1)

(X,A) ×F (1)
(X,A)

)
).

Observe that for two copulas C1, C2, also their convex combination
C = αC1 + (1 − α)C2, α ∈ [0, 1], is a copula, and then

J(C) = αJ(C1) + (1− α)J(C2)

is the corresponding convex combination of copula - based universal integrals
on [0, 1]. This observation allows to apply convex combinations of M and Π to
generate a parametric class of integrals (λSu+ (1− λ)Ch|λ ∈ [0, 1]) which can
be of interest for fitting purposes when modeling the real world problems.

In [16], we have studied general integrals which are simultaneously decompo-
sition integrals and universal integrals.

Proposition 2. A general decomposition integral
JH :

⋃
(X,A)∈S

(
M(X,A) ×F(X,A)

)
→ [0,∞] is a universal integral if and only if

H ∈
{
H(n)|n ∈ N

}
∪

{
HCh

}
.
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Obviously, all integrals characterized by Proposition 2 are linked to the clas-
sical multiplication.

Example 4. Continuing in Example 1, for integrals characterized in Proposi-
tion 2, it holds:

JH(1)
(λ, f) =Sh(λ, f) =

1

4
( attained for b

(
1

2
, 1[ 12 ,1]

)
),

JH(2)
(λ, f) =

1

3
( attained for b

(
1

3
, 1[ 13 ,1]

)
and b

(
1

3
, 1[ 23 ,1]

)
),

...

JH(n)
(λ, f) =

n

2(n+ 1)
( attained for b

(
1

n+ 1
, 1[ 1

n+1 ,1]

)
,

b

(
1

n+ 1
, 1[ 2

n+1 ,1]

)
, . . . , b

(
1

n+ 1
, 1[ n

n+1 ,1]

)
),

with limit member

Ch(λ, f) = lim
n→∞ JH(n)

(λ, f) =
1

2
.

In this example we can explicitely see the interpolative character of the class(
JH(n)

)∞
n=1

of the integrals introduced in Proposition 2, varying from the Shilkret
integral Sh = JH(1)

to the Choquet integral Ch = lim
n→∞JH(n)

. For visualization

see Figure 2.

Fig. 2. Shaded areas correspond to integrals JH(1)
, JH(2)

and Ch

Proposition 2 can be rewritten for universal integrals on [0, 1] with no sub-
stantial changes. Moreover, following the results of Proposition 2, we can define
new classes of universal integrals on [0, 1] based on copulas and decomposition
systems, generalizing the equality

JH(n)
(m, f) = sup

{
n∑

i=1

cim(f ≥ c1 + · · ·+ ci)
∣∣ c1, . . . , cn ∈ [0,∞]

}
. (18)

Note that if (18) aims to describe the universal integral on [0, 1], the constraint
n∑

i=1

ci ≤ 1 should be considered.
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Definition 5. Let C : [0, 1]2 → [0, 1] be a fixed copula. Then, for any n ∈ N,

the mapping J(C,n) :
⋃

(X,A)∈S

(
M(1)

(X,A) ×F (1)
(X,A)

)
→ [0, 1] given by

JH(C,n)
(m, f) = sup

{
n∑

i=1

(
C

(
c1 + · · ·+ ci,m(f ≥ c1 + · · ·+ ci)

)
−C

(
c1 + · · ·+ ci−1,m(f ≥ c1 + · · ·+ ci)

))∣∣∣∣ c1, . . . , cn ∈ [0, 1],

n∑
i=1

ci ≤ 1

}

(with convention c1 + c0 = 0 ) is a universal integral on [0, 1].

It is not difficult to check that each integral J(C,n) is related by (U2’) to the
copula C, and that

J(C,1) = JC ≤ J(C,2) ≤ · · · ≤ J(C,n) ≤ · · · ≤ J(C,∞),

where J(C,∞) = sup{J(C,n)}. In general, J(C,∞) ≤ J(C), see (17).

For the basic copulas M and Π it holds:

J(M,n) = Su

is the Sugeno integral, independently of n ∈ N, and thus also J(M,∞) = Su;

J(Π,1) = Sh < J(Π,2) < · · · < J(Π,n) < · · · < J(Π,∞) = Ch,

i.e., the limit member J(Π,∞) is just the Choquet integral.

However, for the third basic copula W : [0, 1]2 → [0, 1] given by
W (u, v) = max{u+ v − 1, 0},

J(W,1) < J(W,2) < · · · < J(W,n) < · · · < J(W,∞) < J(W ).

To see this fact, it is enough to consider the framework of Example 1, where
J(W,1)(λ, f) = · · · = J(W,∞)(λ, f) = 0 but J(W ) = 1.

5 Concluding Remarks

We have discussed several integrals considering monotone measures. We have
focused only on two major classes of integrals, namely on decomposition in-
tegrals (and their generalizations) and on universal integrals. In all discussed
approaches, the role of integral sums was stressed.

We have omited several particular approaches to integration in the frame-
work

⋃
(X,A)∈S

(
M(X,A) ×F(X,A)

)
. For an extensive overview we recommend the

handbook [22], the monographs [33,34] and the overview papers [24,25,26].
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For particular integrals, we can recall their axiomatic characterization, such as
charaterization of the Lebesgue integral through linear functionals [4].
The Choquet integral is characterized by the comonotone additivity [27], or,
equivalently, by the positive homogeneity and horizontal additivity,

Ch(m, f) = Ch(m,min{c, f}) +Ch(m,max{0, f − c})

for any fixed constant c ∈] 0,∞ [, see [29,2].
Similarly, the Sugeno integral can be characterized by means of the min - homo-
geneity and comonotone maxitivity [13]. For more details on axiomatic approach
to integration we recommend [7].

Several approaches to decision procedures are based on combination of inte-
grals. These methods are either multistep integrals of the same type, such as
multistep Choquet integral [17,19], or they combine different types of integrals,
such as the Choquet and the Sugeno integrals [20].

Acknowledgment. The work on this chapter was supported by grant APVV-
0073-10 and VEGA1/0171/12.
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Entropy of Capacity

Aoi Honda
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Abstract. Capacity is a monotone set function and an important class
of non-additive measure. In this chapter entropies of capacities are dis-
cussed. First, entropies for classical capacities are introduced, then they
are generalized for capacities on set systems. Moreover axiomatizations
of the entropies are given to characterize them.

1 Introduction

The classical definition of the Shannon entropy [13] for a probability measure
is at the core of information theory. Therefore, many attempts for defining an
entropy for a set function more general than the classical probability measure
have been done, in particular for a capacity, which is a special class of non-
additive measures and is called a fuzzy measure [15] or a monotone set function.

This chapter is organized as follows. In Section 2, we introduce three defini-
tions of entropy for a capacity, Yager’s [16], Marichal and Roubens’s [12], and
Dukhovny’s [3] and compare their properties. In Section 3, we generalize these
three entropies for the sake of making them applicable to more general capaci-
ties, which are defined on subsets of the power set, not on the whole power set.
In Section 4 we show that multi-choice game and bi-capacity can be regarded as
capacities on set systems. Then they can be treated in our framework and that
enables us to apply the entropies to them. In Section 5 we show the axiomatiza-
tions of generalized Marichal and Roubens’s entropy and Dukhovny’s minimum
entropy.

Throughout this chapter, we assume that the whole set is N = {1, 2, . . . , n}.

2 Entropies of Classical Capacity

We start this section devoted to several definitions of entropy for capacities
reviewing a few basic definitions needed later on.

Definition 1 (classical capacity). A set function v : 2N → [0, 1] is a capacity
on N if it satisfies v(∅) = 0, v(N) = 1 and v(A) ≤ v(B) whenever A ⊆ B for
any A,B ∈ 2N .

Probability measure on (N, 2N) is a set function which satisfies p(∅) = 0,
p(N) = 1 and for any A,B ∈ 2N p(A ∪B) = p(A) + p(B) whenever A ∩B = ∅.

The Shannon entropy of a probability measure p is defined as follows.

V. Torra, Y. Narukawa, and M. Sugeno (eds.), Non-Additive Measures, 79
Studies in Fuzziness and Soft Computing 310,
DOI: 10.1007/978-3-319-03155-2_4, c© Springer International Publishing Switzerland 2014



80 A. Honda

Definition 2 (Shannon entropy [12]). Let p be a probability measure on
(N, 2N ). Then the Shannon entropy of p is defined by

HS(p) :=
n∑

i=1

h(p({i})), (1)

where
h(x) := −x log x. (2)

Yager [16] and Marichal-Roubens [12] proposed definitions for a capacity hav-
ing desirable properties, and which can be considered as generalizations of the
Shannon entropy.

Definition 3 (Yager’s entropy [16]). Let v be a capacity on (N, 2N ). Then
the Yager’s entropy of v is defined by

HY(v) :=

n∑
i=1

h

⎛⎝ ∑
A⊆N\{i}

γn
|A|(v(A ∪ {i})− v(A))

⎞⎠ , (3)

where

γn
k :=

(n− k − 1)!k!

n!
. (4)

Definition 4 (Marichal-Roubens’s entropy [12]). Let v be a capacity on
(N, 2N ). Then the Marichal-Roubens’s entropy of v is defined by

HMR(v) :=

n∑
i=1

∑
A⊆N\{i}

γn
|A|h(v(A ∪ {i})− v(A)). (5)

A difference between Yager’s and Marichal-Roubens’s entropy is only the place
of the function h.

Another attempt was also done by Dukhovny [3], which is called a minimum
entropy. To describe the definition we introduce a concept of the maximum chain
needed in a definition of the minimum entropy. For a, b ∈ 2N , we say a is covered
by b, and write a ≺ b or b � a, if a ⊂ b and a ⊂ x � b implies x = a. In other
words, a ≺ b means that there are no elements between a and b.

Definition 5 (maximal chain of 2N). C = (c0, c2, . . . , cn), ci ∈ 2N , i = 1, . . . n
is called a maximal chain of 2N if C satisfies that ∅ = c0 ≺ c1 ≺ · · · ≺ cn = N .

We denote the set of all maximal chains of 2N by M(2N ). Let C be a maximal

chain of 2N . We define pv,C = (pv,C1 , pv,C2 , . . . , pv,Cn ) by

pv,C = (pv,C1 , pv,C2 , . . . , pv,Cn )

:= (v(c1)− v(c0), v(c2)− v(c1), . . . , v(cn)− v(cn−1)), (6)

Note that pv,C satisfies pv,Ci ≥ 0, i = 1, . . . , n and
∑n

i=1 p
v,C
i = 1 like a probability

measure.
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Definition 6 (minimum entropy [3]). Let v be a capacity on (N, 2N ). The
minimum entropy of v is defined by

Hmin(v) := min
C∈M(2N )

n∑
i=1

h(pv,Ci )

= min
C∈M(2N )

HS(p
v,C). (7)

Example 1. Define vA, vB and vc on (N = {1, 2, 3}, 2N) as Table 1. Then each
entropy of vA, vB and vC is as Table 2. Remark that 1.5850 = log2 3.

Table 1. capacities

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vA 0.0 1/3 1/3 1/3 2/3 2/3 2/3 1.0
vB 0.0 0.8 0.8 0.8 0.9 0.9 0.9 1.0
vC 0.0 0.2 0.3 0.4 0.8 0.7 0.6 1.0

Table 2. Entropies

HY( · ; vT ) HMR( · ; vT ) Hmin( · ; vT )
vA 1.5850 1.5850 1.5850
vB 1.5850 0.9219 0.9219
vC 1.5850 1.5010 1.3710

Marichal-Roubens’s entropy can be represented using maximal chain.

Proposition 1 (representation of Marichal-Roubens’s entropy). Let v
be a capacity on (N, 2N ). Then we have

HMR(v) =
1

|n!|
∑

C∈M(2N )

HS(p
v,C). (8)

Remark that |M(2N)| = n! Proposition 14 shows that HMR is obtained by
replacing the minimum operation of Hmin with the average operator.

On the other hand, Yager’s entropy can be represented using the Shapley
value which is the most important concept in game theory.

Definition 7 (Shapley value). Let v be a capacity on (N, 2N ). The Shapley
value of v, Φ(v) := (φ1(v), . . . , φn(v)) ∈ [0, 1]n is defined by

φi(v) :=
∑

A⊆N\{i}
γn
|A|[v(A ∪ {i})− v(A)]. (9)

Remark that
∑n

i=1 φi(v) = 1 holds.
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Proposition 2 (representation of Yager’s entropy). Let v be a capacity on
(N, 2N ). Then we have

HY(v) =

n∑
i=1

h(φi(v))

= HS(Φ(v)). (10)

Next we study properties of these entropies.

Proposition 3. Let v be a capacity on (N, 2N ).
(i) If v is an additive function, then HY(v) = HMR(v) = Hmin(v) = HS(v).
(ii) All HY(v), HMR(v) and Hmin(v) are continuous functions.
(iii) Hmin(v) is not a differentiable function.
(iv) All HY(v), HMR(v) and Hmin(v) lead to a value between [0, logn].
(v) If v is a {0, 1}-valued capacity, then all HY(v), HMR(v) and Hmin(v) lead to
a value 0. The converse does not holds except for HMR(v).
(vi) All HY, HMR, Hmin take log2 n as the max value.
(vii) If v = v∗(A) := |A|/n,A ∈ 2N . Then HY(v), HMR(v) and Hmin(v) is log2 n.
The converse holds except for HY(v).

Proposition 4. Define vλ := (1 − λ)v + λv∗, 0 < λ < 1. For any v(
≡ v∗),
0 < λ1 < λ2 < 1 implies HY(vλ1 ) ≤ HY(vλ2 ), HMR(vλ1) < HMR(vλ2 ) and
Hmin(vλ1) < Hmin(vλ2).

In other words, HMR(vλ) and Hmin(vλ), 0 < λ < 1 are strictly increasing func-
tions of λ. Concerning to HY, it is an increasing function of λ, but not strictly
increasing (Cf. Prop 3 (vi)).

We show the graphs of these three entropies in the case of n = 2, that is, N is
a two point set N = {1, 2}. On the left side, we display the 3D graphs and on the
right side, we display their contour graphs (Fig 1-3). All sections of these graphs
have been created by a plane cutting to v({1})+v({2}) = 1 which coincide with
the graph of Shannon entropy (Cf. Prop 3 (i)).

We can also generalized the relative entropy, called also the Kullback-Leibler
divergence, in the above three ways.

Definition 8 (relative entropy). Let p and q be probability measures on N .
The relative entropy of p to q is defined by

HKL(p; q) :=

n∑
i=1

h[p({i}), q({i})], (11)

where h(x; y) := x log(x/y).

Definition 9 (relative entropy HY). Let v and u be capacities on (N, 2N ).
HY(v;u) is defined by

HY(v;u) := HKL(Φ(v);Ψ(u)). (12)
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Fig. 1. The graph of HY(v) in the case of N = {1, 2}
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Fig. 2. The graph of HMR(v) in the case of N = {1, 2}

Definition 10 (relative entropy HMR). Let v and u be capacities on (N, 2N ).
HMR(v;u) is defined by

HMR(v;u) :=
1

|M(2N )|
∑

C∈M(S)

HKL(p
v,C ; pu,C). (13)

Definition 11 (relative entropy Hmin). Let v and u be capacities on (N, 2N ).
Hmin(v;u) is defined by

Hmin(v;u) := min
C∈M(2N )

HKL(p
v,C ; pu,C). (14)

Weshowthegraphs of these three relative entropies ofvdefinedon ({1, 2}, 2{1,2})
to u({1}) = 0.2, u({2}) = 0.3 in the case ofN = {1, 2}. On the left side, we display
the 3D graphs and on the right side we display their contour graphs. (Fig 4-6).
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Fig. 3. The graph of Hmin(v) in the case of N = {1, 2}
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Fig. 4. The graph of HY(v;u) in the case of N = {1, 2}

Example 2. Define vT , vA, vB and vc on (N = {1, 2, 3}, 2N) as Table 3. Then the
mean squared error of vT and other capacities has the same value, 0.04. However
relative entropies of vA, vB and vC to vT are as Table 4.

3 Entropy of Capacity on Set System

In this section, we consider more general capacities, in the sense that the under-
lying system of sets may be not 2N . Let S be a subset of 2N . We call (N,S), or
simply S, a set system if ∅, N ∈ S. Then the capacity is naturally generalized
on S.
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Fig. 5. The graph of HMR(v;u) in the case of N = {1, 2}
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Fig. 6. The graph of Hmin(v;u) in the case of N = {1, 2}

Definition 12 (capacity on set system). Let (N,S) be a set system. A set
function v : S → [0, 1] is a capacity on (N,S) if it satisfies v(∅) = 0, v(N) = 1
and v(A) ≤ v(B) whenever A ⊆ B for any A,B ∈ S.

The maximal chain of S is defined in the same manner as for the case of 2N . We
introduce a kind of the regularity on a set system.

Definition 13 (regular set system). Let (N,S) be a set system. We say that
(N,S) is a regular set system if for any C ∈ M(S), the length of C is n, i.e.
|C| = n+ 1.

In other words, for any A that belongs to a regular set system (N,S), there is
i ∈ N satisfying A ∪ {i} ∈ S and i 
∈ A.
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Table 3. capacities

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vT 0.0 0.3 0.3 0.3 0.7 0.7 0.7 1.0
vA 0.0 0.3 0.4 0.4 0.8 0.8 0.7 1.0
vB 0.0 0.3 0.4 0.4 0.7 0.6 0.6 1.0
vC 0.0 0.2 0.3 0.4 0.8 0.7 0.6 1.0

Table 4. Relative entropies

HY( · ; vT ) HMR( · ; vT ) Hmin( · ; vT )
vA 0.0000 0.0448 0.0415
vB 0.0036 0.0798 0.0000
vC 0.0000 0.0700 0.0415

All of the three entropies introduced in Section 2 can be generalized for a
capacity on a regular set system. Dukhovny’s entropy is generalized in a natural
way.

Definition 14 (Generalized minimum entropy [9]). Let v be a capacity on
a regular set system (N,S). Then Hmin(v) is defined by

Hmin(v) := min
C∈M(S)

HS(p
v,C). (15)

Marichal-Roubens’s entropy is generalized using its representation in Proposition
14.

Definition 15 (Generalized Marichal-Roubens’s entropy [8]). Let v be a
capacity on a regular set system (N,S). Then HMR(v) is defined by

HMR(v) :=
1

|M(S)|
∑

C∈M(S)

HS(p
v,C). (16)

To generalize Yager’s entropy for a capacity on a regular set system, we first
generalize the Shapley value.

Definition 16 (Shapley value [14,1,5])
Let v be a capacity on a regular set system (N,S). The Shapley value of v,

Φ(v) := (φ1(v), . . . , φn(v)) ∈ [0, 1]n is defined by

φi(v) :=
1

|M(S)|
∑

C∈M(S)
A,A{i}∈C

[v(A ∪ {i})− v(A)]. (17)

Yager’s entropy is generalized using its representation in Proposition 2 and the
generalized Shapley value.
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Definition 17 (Generalized Yager’s entropy). Let v be a capacity on a
regular set system (N,S). HMR(v) is defined by

HY(v) := HS(Φ(v)). (18)

We can also generalize the relative entropy for a capacity on a regular set system.

Definition 18 (Generalized relative entropy HY). Let v and u be capacities
on a regular set system (N,S). HY(v;u) is defined by

HY(v;u) := HKL(Φ(v);Ψ(u)). (19)

Definition 19 (Generalized relative entropy HMR). Let v and u be capac-
ities on a regular set system (N,S). HMR(v;u) is defined by

HMR(v;u) :=
1

|M(S)|
∑

C∈M(S)

HKL(p
v,C ; pu,C). (20)

Definition 20 (Generalized relative entropy Hmin). Let v and u be capac-
ities on a regular set system (N,S). Hmin(v;u) is defined by

Hmin(v;u) := min
C∈M(S)

HKL(p
v,C ; pu,C). (21)

4 Representation as Set System

The genralized entropies presented in Section 3 have applicability to capacities
defined on regular set systems. In this section, we show that almost all capac-
ities which appear in applications can be regarded as capacities on regular set
systems(cf. [8]).

Let (L,≤) be a lattice, that is, (L,≤) is a partially ordered set such that
for any pair x, y ∈ L there exist the least upper bound x ∨ y (supremum) and
the greatest lower bound x ∧ y (infimum) in L. Consequently, for finite lattices,
there always exist the greatest element (supremum of all elements) and the least
element (infimum of all elements), denoted by �,⊥ (see [2]).

Definition 21 (capacity on lattice). Let (L,≤) be a finite lattice with the
greatest and the least elements denoted by � and ⊥ respectively. A capacity on
L is a function v : L → [0, 1] satisfying v(⊥) = 0, v(�) = 1, and being monotone,
i.e., x ≤ y implies v(x) ≤ v(y).

Evidently a set system is not necessarily a lattice. Moreover, a regular set
system is not necessarily a lattice. Indeed, take N = {1, 2, 3, 4} and S :=
{∅, {1}, {3}, {1, 2}, {2, 3}, {14}, {3, 4}, {1, 2, 3}, {1, 3, 4}, N}. Then, {1} and {3}
have no supremum.

Definition 22 (join-irreducible element). An element x ∈ (L,≤) is join-
irreducible if for all a, b ∈ L, x 
= ⊥ and x = a ∨ b implies x = a or x = b.
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We denote J (L) the set of all join-irreducible elements of L.
The mapping η for any a ∈ L, defined by

η(a) := {x ∈ J (L) | x ≤ a}

is a lattice-isomorphism of L onto η(L) := {η(a) | a ∈ L}, that is, (L,≤) ∼=
(η(L),⊆) (Figure 7). Clearly (J (L), η(L)) is a set system.

a

d e f

b c

g

L1

{d, e, f}

{d} {e} {f}

{d, e} {e, f}

∅
η(L1)

Fig. 7. Translation of lattice

Translating a lattice, which is an underlying space of a capacity v, to a set
systems we can apply the entropies introduced in Section 3 to a capacity if the
underlying set system is regular.

Remark 1. If we regard S := {∅, {1}, {1, 2, 3}} as a lattice, not as a set system,
the situation is a little different. In this case, the name of the elements are just
the label. We have J (S) = {{1}, {1, 2, 3}} and |J (S)| = 2, so that considering
S as a lattice, we can translate it to a regular set system.

Lemma 1. If (L,≤) satisfies the following property:

(∨-minimal regular) for any C ∈ C(L), the length of C is |J (L)|, i.e. |C| =
|J (L)|+ 1,

then (J (L), η(L)) is a regular set system.

The maximal chain C = (c0, c1, . . . , cm) of a lattice is also defined by ⊥ =
c0 ≺ c1 ≺ · · · ≺ cm = �, ci ∈ S, i = 0, . . . ,m. in the same way of a set system,
where A ≺ B denotes that A ≤ B and A ≤ C < B implies C = A.

Most lattices which underlie capacities appearing in practice, such as bi-
capacities, and multi-choice games are ∨-minimal regular; therefore the entropies
are applicable to these cases. We show several practical examples of capacities.

• Regular lattice and its translation to a set system
L1 in Figure 7 is a ∨-minimal regular lattice, and η(L1) in Figure 7 is the trans-
lation of a lattice L1 to a set system.
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In fact, J (L1) = {d, e, f}, and L1 is also represented by η(L1). C(η(L1)) =
{(∅, {d}, {d, e}, {d, e, f}), (∅, {e}, {d, e}, {d, e, f}), (∅, {e}, {e, f}, {d, e, f}), (∅, {f},
{e, f}, {d, e, f})}. Let v be a capacity on L1. Then the entropy of v on L1 is

H(v) =
1

4
h[v(d)− v(g)] +

1

2
h[v(e)− v(g)] +

1

4
h[v(f)− v(g)]

+
1

4
h[v(b)− v(d)] +

1

4
h[v(b)− v(e)] +

1

4
h[v(c)− v(e)]

+
1

4
h[v(c)− v(f)] +

1

2
h[v(a)− v(b)] +

1

2
h[v(a)− v(c)].

• Bi-capacity [6][7]
A bi-capacity is a monotone function on Q(N) := {(A,B) ∈ 2N × 2N | A ∩
B = ∅} which satisfies v(∅, N) = −1, v(∅, ∅) = 0 and v(N, ∅) = 1. For any
(A1, A2), (B1, B2) ∈ Q(N), (A1, A2) � (B1, B2) iff A1 ⊆ B1 and A2 ⊇ B2.
Q(N) ∼= 3N . It can be shown that (Q(N),�) is a finite distributive lattice. Sup
and inf are given by (A1, A2) ∨ (B1, B2) = (A1 ∪ B1, A2 ∩ B2) and (A1, A2) ∧
(B1, B2) = (A1 ∩B1, A2 ∪B2), and we have

J (Q(N)) = {(∅, N \ {i}), i ∈ N} ∪ {({i}, N \ {i}), i ∈ N},

where i ∈ N . Normalizing v by v′ : Q(N) → [0, 1] such that

v′ :=
1

2
v +

1

2
,

H(v′) =
n∑

i=1

∑
A⊂N\xi

B⊂N\(A∪{i})

γn
|A|,|B| (h [v

′(A ∪ {i}, B)− v′(A,B)]

+h [v′(B,A) − v′(B,A ∪ {i})]) .

where

γn
k,� :=

(n− k + �− 1)! (n+ k − �)! 2n−k−�

(2n)!
.

• Multi-choice game
Let N := {0, 1, . . . .n} be a set of players, and let L := L1 × · · · × Ln, where
(Li,≤i) is a totally ordered set Li = {0, 1, . . . , �i} such that 0 ≤i 1 ≤i · · · ≤i �i.
Each Li is the set of choices of player i. (L,≤) is a regular lattice. For any
(a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ L, (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) iff ai ≤i bi
for all i = 1, . . . , n. We have

J (L) = {(0, . . . , 0, ai, 0, . . . , 0) | ai ∈ J (Li) = Li \ {0}}

and |J (L)| =
∑n

i=1 �i. The lattice in Fig. 8 is an example of a product lat-
tice, which represents a 2-player game. Players 1 and 2 can choose among 3
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(0, 0)

(1, 0) (0, 1)

(1, 1)(2, 0) (0, 2)

(2, 1) (1, 2)

(2, 2)

(0, 3)

(1, 3)

(2, 3)

Fig. 8. 2-players game

and 4 choices, respectively. Let v be a capacity on L, that is, v(0, . . . , 0) = 0,
v(�1, . . . , �n) = 1 and , for any a, b ∈ L, v(a) � v(b) whenever a ≤ b. In this case,
we have

H(v) =
∑
i∈N
j∈Li

∑
a∈L/Li

ξ
(a,j)
i h [v(a, j)− v(a, j − 1)]

where L/Li := L1×· · ·×Li−1×Li+1×· · ·×Ln, (a, ai) := (a1, . . . , ai−1, ai, ai+1,
. . . , an) ∈ L such that a ∈ L/Li and ai ∈ Li,

ξ
(a,ai)
i :=

(
n∏

k=1

(
�k
ak

))
·
( ∑n

k=1 �k∑n
k=1 ak

)−1

· ai∑n
k=1 ak

.

5 Axiomatization of Entropy of Capacity

In this section, we discuss the characterizations of entropies of capacities focusing
with axiomatizations.

Before introducing the axioms for an entropy of a capacity, we discuss about
the domains of an entropy. Let p := (p1, . . . , pn) be a probability measure on
N := {1, 2, . . . , n}. Then (N, 2N , p) is called a probability space. Let Δn be the
set of all probability measure on N . HS is a function defined on Δ :=

⋃∞
n=1 Δn

to [0,∞). We should denote HS(p) with the underlying space by HS(N, 2N , p),
and as far as no confusion occurs we denote HS(N, 2N , p) simply HS(p).

Similarly, let v be a capacity on (N,S). Then we call (N,S, v) a capacity
space. Let Σn be the set of all regular set systems of N := {1, 2, . . . , n} and let
Δ′

S be the set of all capacity spaces defined on the regular set system (N,S).
The domain of the entropy of the capacity is Δ′ :=

⋃∞
n=1

⋃
S∈Σn

Δ′
S and the

entropy is a function defined on Δ′ to [0,∞). We denote simply H(v) instead
of H(N,S, v) as far as no ambiguity occurs. More properly, the dual capacity of
v is the dual capacity space of the capacity space (N,S, v) which is defined by
(N,S, v)d := (N,Sd, vd) with Sd := {Ac ∈ 2N | A ∈ S}, the permutation of v is
the permutation of the capacity space (N,S, v) which is defined by (N,S, v)π :=
(N, π(S), π ◦v), and the embedding of v2 is the embedding of the capacity space
(N,2, v2) which is defined by (N,S, v)ck := (N ck ,Sck , vck).
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First, we show Faddeev’s axiomatization for the Shannon entropy, which
will serve as a basis for our axiomatization. A probability measure p({1}) =
x, p({2}) = 1− x on N = {1, 2} is denoted by pair (x, 1− x) and the entropy of
it is denoted by H(x, 1 − x) instead of H((x, 1 − x)).

(F1) f(x) := H(x, 1−x) is continuous on 0 ≤ x ≤ 1, and there exists x0 ∈ [0, 1]
such that f(x0) > 0.

(F2) For any permutation π on {1, . . . , n},

H(pπ(1), . . . , pπ(n)) = H(p1, . . . , pn).

(F3) If pn = q + r, q > 0, r > 0, then

H(p1, . . . , pn−1, q, r) = H(p1, . . . , pn) + pnH(q/pn, r/pn).

Theorem 1 ([4]). Under the condition H(1/2, 1/2) = 1, there exists a unique
function H : Δ → [0, 1] satisfying (F1), (F2) and (F3), and it is given by HS.

We introduce further concepts about capacities, which will be useful for stat-
ing the axioms of an entropy.

Definition 23 (dual capacity). Let v be the capacity on (N,S). Then the dual
capacity of v is defined on Sd := {A ∈ 2N | Ac ∈ S} by vd(A) := 1 − v(Ac) for
any A ∈ Sd, where Ac := N \A.

Definition 24 (permutation of v). Let π be a permutation on N . Then the
permutation of v by π is defined on π(S) := {π(A) ∈ 2N | A ∈ S} by π ◦v(A) :=
v(π−1(A)).

Let us consider a chain of length 2 as a set system, denoted by 2 (e.g.,
{∅, {1}, {1, 2}}), and a capacity v2 on it. We denote by the triplet (0, u, 1) the
values of v2 along the chain and we suppose 2 := {∅, {1}, {1, 2}} unless otherwise
noted.

Definition 25 (embedding of v2). Let v be a capacity on a totally ordered
regular set system (N,S), where S := {C0, . . . , Cn} such that Ci−1 ≺ Ci, i =
1, . . . , n, and let v2 := (0, u, 1) be a capacity on 2. Then for Ck ∈ S, vCk is called
the embedding of v2 into v at Ck and defined on the totally ordered regular set
system (NCk ,SCk) by

vCk(A) :=

⎧⎨⎩
v(A), ifA = Cj , j < k,
v(Ck−1) + u ·

(
v(Ck)− v(Ck−1)

)
, ifA = C′

k

v(Cj−1), ifA = C′
j , j > k,

(22)

where {ik} := Ck \ Ck−1, i
′
k 
= i′′k, (N \ {ik}) ∩ {i′k, i′′k} = ∅, NCk := (N \ {ik}) ∪

{i′k, i′′k}, C′
k := (Ck \ {ik}) ∪ {i′k}, C′

j := (Cj−1 \ {ik}) ∪ {i′k, i′′k} for j > k, and

SCk := {C0, . . . , Ck−1, C
′
k, C

′
k+1, . . . , C

′
n+1}.
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Remark that more precisely, the dual capacity of v is the dual capacity space
of the capacity space (N,S, v) which is defined by (N,S, v)d := (N,Sd, vd)
with Sd := {Ac ∈ 2N | A ∈ S}, the permutation of v is the permutation
of the capacity space (N,S, v) which is defined by (N,S, v)π := (N, π(S), π ◦
v), and the embedding of (0, u, 1) into v is the embedding of the capacity
space ({1, 2},2, (0, u, 1)) into the capacity space (N,S, v), and it is defined by
(N,S, v)Ck := (NCk ,SCk , vCk).

Now we introduce five axioms for Marichal-Roubens’s entropy of a capacity.

(A1) (continuity) The function f(u) := H({1, 2},2, (0, u, 1)) = H(0, u, 1) is
continuous on 0 ≤ u ≤ 1, and there exists u0 ∈ [0, 1] such that f(u0) > 0.

(A2) (dual invariance) For any capacity (0, u, 1) on 2,

H(0, u, 1) = H(0, 1− u, 1).

(A3) (increase by embedding) Let v be a capacity on a totally ordered set system
(N,S). For any ck ∈ S, for any v2 := (0, u, 1), the entropy of vck is

H(N,S, v)ck) = H(N,S, v) + (v(ck)− v(ck−1)) ·H({1, 2},2, v2)
= H(v) + (v(ck)− v(ck−1)) ·H(v2).

(A4) (convexity) Let (N,S), (N,S1), (N,S2) and (N,Sm) be regular set sys-
tems satisfying M(S) = M(S1)∪ · · · ∪M(Sm), and M(Si)∩M(Sj) = ∅, i 
= j.
Then there exists an α1, α2, . . . , αm ∈]0, 1[, α1 + · · ·+ αm = 1 such that for any
capacity v on (N,S),

H(N,S, v) = α1H(N,S1, v|S1) + · · ·+ (αm)H(N,Sm, v|Sm)

= α1H(v|S1) + · · ·+ (αm)H(v|Sm).

(A5) (permutation invariance) Let v be a capacity on (N, 2N ). Then for any
permutation π on N , it holds that

H(N, 2N , v) = H(N, 2N , v ◦ π).

The following can be shown.

Theorem 2 ([9]). Under the condition H({1, 2},2, (0, 12 , 1)) = H(0, 12 , 1) = 1,
there exists a unique function H : Δ′ → [0, 1] satisfying (A1), (A2), (A3), (A4)
and (A5), and it is given by HMR.

We discuss in detail our axioms, in the light of Faddeev’s axioms.

• continuity
By f(u) = HHG(0, u, 1) = HS(p

(0,u,1),C2

) = HS(u, 1 − u), where C2 :=
(∅, {1}, {1, 2}), (A1) corresponds to (F1).
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• dual invariance
HMR(v) is dual invariant, when v is not only a capacity on 2 but also on

general regular set systems, that is, for any capacity v on a regular set system
we have HMR(v) = HMR(v

d). On the other hand, the Shannon entropy of the
probability measure is also dual invariance, as a matter of fact, the probability
measure and its dual measure are identical.

• increase by embedding
Let v be a capacity on a totally ordered set system S = {∅ = c0, c1, . . . , cn =

N}, where ci ⊂ cj for i < j, and consider the embedding into v with v2 :=
(0, u, 1) at ck. Then

HMR(v
ck) = HS(p

vck ,C′
),

where C′ := (c0, . . . , ck−1, ck′ , ck′′ , ck+1, . . . , cn), and by (F3), we have

HS(p
vck ,C′

) = HS(p
v,C) + (v(ck)− v(ck−1)) ·HS(u, 1− u)

which can be rewritten as

HMR(v
ck) = HMR(v) + (v(ck)− v(ck−1)) ·HMR(v

2).

This is exactly (A3).

• permutation invariance
Let N := (1, 2, 3) and S := {∅, {1}, {3}, {1, 2}, {1, 3}, {2, 3}, N} and let π =(
1 2 3
2 3 1

)
. Then, for instance

v ◦ π({2, 3}) = v(π−1({2, 3})) = v({1, 2})

(cf. Fig. 9).

N

{1} {3}

{1, 2} {1, 3} {2, 3}

∅
S

π(N)

{2} {1}

{2, 3} {2, 1} {3, 1}

∅
π(S)

Fig. 9. Permutation of set system

When S = 2N , all permutations satisfy π(A) ∈ S for any A ∈ S. In other
words, (A5) can be regarded as a generalization of (F2).

To finish this section, we consider a modification of our axiomatization so as
to recover the minimum entropy Hmin. We modify (A4) as follows:
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(A4′) Let (N,S), (N,S1) and (N,S2) be regular set systems satisfying
M(S) = M(S1) ∪M(S2). Then for any capacity v on S,

H(v) = min {H(v|S1), H(v|S2)} .

Theorem 3 ([9]). Under the condition Hmin(N,2, (0, 1
2 , 1)) = Hmin(0,

1
2 , 1) =

1, there exists a unique function H : Δ′ → [0, 1] satisfying (A1), (A2), (A3) and
(A4′), and it is given by Hmin.

6 Conclusions

In this chapter, we discussed entropies of capacities, especially defined by Yager,
Marichal-Roubens and Dukhovny.

These entropies, defined for classical capacities, can be generalized for capac-
ities defined on regular set systems and each of them has reasonable properties.
And we showed that almost all capacities which appear in applications can be
regarded as capacities on regular set systems. In the last section, we showed ax-
iomatizations for Marichal-Roubens’s entropy and Dukhobny’s entropy, which
give validity to them. In this connection, Kojadinovic et al. showed another
axiomatization for Marichal-Roubens’s entropy [11].

To study the meaning of Yager’s entropy more, characterizations by axioma-
tizations of it are desired.
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Abstract. This chapter surveys the use of non-additive measures in
economics, focusing on their use in preference theory. In economics, the
risky situation where the probability measure is known and the uncertain
situation where even the probability measure is unknown had tended not
to be distinguished. This is mainly because of Savage’s theorem which
states that if an agent complies with some set of behavioral axioms, she
may be regarded as trying to maximize the expected utility with re-
spect to some probability measure. This is called subjective expected
utility (SEU) theory. However, the plausible and robust preference pat-
terns which cannot be explained by SEU is known. The most famous one
among them is Ellsberg’s paradox. The attempts to resolve these anoma-
lies by using non-additive measures were initiated by D. Schmeidler and
I. Gilboa in 1980’s. The main purpose of this chapter is to explain their
theories, emphasizing representation theorems by means of non-additive
measures. We will see that their models nicely resolve Ellsberg’s paradox.

1 Introduction

In economics, it is common to distinguish an uncertain situation from a risky
situation at least conceptually. While both seem to be similar in the sense that
they represent a situation which is not certain, there is a clear difference between
them. The term “risk” used in economics does not necessarily imply the negative
aspects such as disaster or danger suggested by that term. For example, the risk
in “risk management” in financial technology does not mean only a loss (not to
speak of only a gain) but means that both of a loss and a gain may arise. In this
example, a risk means the situation where the probability that a loss arises (for
instance, a half) and the probability that a gain arises (for instance, a half) are
known. That is, economics defines a risky situation as the one where, while which
event will happen is not exactly known, the probability of the occurrence of each
event is known. On the other hand, an uncertain situation is defined as the one
where even the probability of each event is not known. The uncertainty in this
sense is sometimes referred to as Knightian uncertainty after an economist who
emphasized the difference between these two concepts.

� The author is very grateful to the editors of the book and three anonymous referees
for very useful comments. All remaining errors are of course mine.
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Despite of such a clear difference between them, it has been widely customary
not to distinguish these two concepts in economic analyses. It is so-called Sav-
age’s Theorem proven by a statistician named Leonard J. Savage in 1954 that
justifies this custom. According to this theorem, under some conditions, even if
there does not exist an objective probability (such as a half and a half of a coin
flip), we may think that people behave as if they know the probability (which is
called a subjective probability). That is, an uncertain situation is reduced to a
risky situation.

Although situations where the conditions of Savage’s Theorem do not hold
are known for a long time (for example, Ellsberg’s Paradox in 1961), it had been
quite often regarded as exceptional. However, in recent years (about for the
last two decades), some approaches have been developed in which uncertainty is
directly analyzed without reducing it to a risk. By this, economic phenomena,
which cannot be explained within the traditional framework by Savage, has been
made clearer.

The objective of this chapter is to elucidate utility-theoretic approaches to-
ward uncertainty developed by Schmeidler, Gilboa, and so on which utilize non-
additive measures, in particular focusing on their axiomatic foundations. First,
in order to clarify the approaches by Schmeidler and Gilboa, we explain sub-
jective expected utility theories by Savage, Anscombe and Aumann, and so on
(and objective expected utility theories by von-Neumann and Morgenstern, and
so on as their bases) including their proofs. Next, we introduce Ellsberg’s Para-
dox. This example directly shows the limitation of representation of preferences
by probability measures which is a common characteristic of above theories. We
then explain representation theorems by non-additive measures which “resolve”
this paradox. In particular, we aim to clarify the relationship between the axioms
and representation, and we emphasize the mathematical structure of the repre-
sentation and the proofs of representation theorems. (The proofs are adopted
from Fishburn (1970), Kreps (1988) and the original papers and are suitably
arranged.) We also briefly mention an economic application of the theory. The
chapter is concluded with an appendix that summarizes some results on non-
additive measures. The readers are referred to the book by Gilboa (2009) to see
more on related topics to the ones covered in this chapter.

2 Some Definitions on Probability Measures

We call a family of subsets A of a set X an algebra if it satisfies the three
conditions: (1) φ ∈ A, (2)1 A ∈ A ⇒ Ac ∈ A and (3) A,B ∈ A ⇒ A ∪ B ∈ A,
and call a pair of a set and an algebra defined on that set, (X,A), a measurable
space. The family of subsets of a given set X consisting of all its subsets is called
a power set and denoted by 2X . Clearly, (X, 2X) is a measurable space. In this
chapter, we do not consider a σ-algebra.2 Given a measurable space (X,A), a set

1 Here, Ac denotes the complement of A in X.
2 An algebra which is closed with respect to a union of countably many sets is called
an σ-algebra.
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function p : A → [0,+∞] which satisfies the following two conditions is called a
finitely-additive measure or a charge:

p(φ) = 0 (1)

(∀A,B ∈ A) A ∩B = φ ⇒ p(A ∪B) = p(A) + p(B) . (2)

Condition (2) is called a finite additivity. It immediately follows that a finitely-
additive measure p is monotonic in the sense that3:

A ⊆ B ⇒ p(A) ≤ p(B) .

A finitely-additive measure p which satisfies p(X) = 1 is called a finitely-additive
probability measure. In what follows, we call a finitely-additive probability mea-
sure simply a probability measure. Note that a probability measure does not
necessarily satisfy the σ-additivity.4

A probability measure p is said to be simple if the set of x ∈ X such that
p(x) 
= 0 is a finite set and if

∑
x∈X p(x) = 1 holds. In particular, we write the

simple probability measure such that p(x) = 1 for some x ∈ X as δx. Also, a
probability measure p on a measurable space (X,A) is said to be convex-ranged
or strongly nonatomic if it satisfies the next condition:5

(∀A ∈ A)(∀r ∈ [0, p(A)])(∃B ∈ A) B ⊆ A and p(B) = r

3 Expected Utility Theory à la von-Neumann-
Morgenstern

3.1 Preference Order

We consider a set X to be a set of rewards, prizes or consequences and call it
the set of outcomes . Let A be an algebra on X . We denote by P (X) the set
of all probability measures on the measurable space (X,A) and write generic
elements of P (X) (i.e., probability measures) as p, q, r, . . .. We call any subset
� of P (X)× P (X) a binary relation and write as p � q when (p, q) ∈�.

3 Proof: For any A and B such that A ⊆ B, it holds that B = A ∪ (B\A) and
A∩ (B\A) = φ. This implies that p(B) = p(A)+ p(B\A) ≥ p(A). Here, the equality
follows from the finite additivity and the inequality follows from the fact that p takes
on nonnegative values.

4 A finitely-additive measure p is said to satisfy σ-additivity if the similar condition
to (2) holds for countably many sets.

5 A probability measure p on a measurable space (X,A) is said to be nonatomic if

(∀A ∈ A) p(A) > 0 ⇒ (∃B ∈ A) B ⊆ A and p(B) ∈ (0, p(A)) .

While if a probability measure p is convex-ranged, it is nonatomic, the converse does
not necessarily hold. If an algebra A happens to be a σ-algebra and if p happens to
be σ-additive, both are equivalent.
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A binary relation � is said to be asymmetric if

(∀p, q ∈ P (X)) p � q ⇒ q � p ,

where q � p means that (q, p) /∈�, and it is said to be negatively transitive if

(∀p, q, r ∈ P (X)) p � q and q � r ⇒ p � r .

A binary relation � is called a preference order or a preference relation when it
is asymmetric and negatively transitive. Given a preference order �, the binary
relation " is defined by

(∀p, q ∈ P (X)) p " q ⇔ q � p

and the binary relation ∼ is defined by

(∀p, q ∈ P (X)) p ∼ q ⇔ p � q and q � p .

Then, " turns out to be transitive and complete, where " is transitive by defi-
nition if

(∀p, q, r ∈ P (X)) p " q and q " r ⇒ p " r

and it is complete by definition if

(∀p, q ∈ P (X)) p " q or q " p or both.

A binary relation is called a weak order if it is transitive and complete. We may
define a weak order first and then derive a binary relation so that the latter
should be a preference order. Also, a binary relation ∼ is called an indifference
relation.

Let u : P (X) → R be a real-valued function defined on P (X). A function u
is said to represent a preference order � if it holds that

(∀p, q ∈ P (X)) p � q ⇔ u(p) > u(q)

and it is said to be an affine function if it holds that

(∀p, q ∈ P (X))(λ ∈ [0, 1]) u(λp+ (1− λ)q) = λu(p) + (1− λ)u(q) .

In the above, similar definitions apply when P (X) is replaced by its arbitrary
convex subset.

3.2 vNM Axioms and Representation Theorem

Consider the following three axioms with respect to a binary relation � defined
on a convex subset of P (X). Here, p, q, r are arbitrary elements of that set and
λ is an arbitrary real number such that λ ∈ (0, 1).
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A1 (Ordering) � is a preference order

A2 (Independence) p � q ⇒ λp+ (1− λ)r � λq + (1 − λ)r

A3 (Continuity) p � q and q � r

⇒ (∃α, β ∈ (0, 1)) αp+ (1− α)r � q and

q � βp+ (1− β)r

Then, the following theorem holds.

Theorem 1 (von-Neumann-Morgenstern, 1944). Let � be a binary rela-
tion defined on an arbitrary convex subset P of P (X). Then, � satisfies Axioms
A1, A2 and A3 if and only if there exists an affine function u which represents
�. Furthermore, if a function u′ also represents �, then there exist real numbers
a > 0 and b such that u′ = au+ b.

To prove the theorem we first prove the next lemma.

Lemma 1. If a binary relation � on P satisfies Axioms A1, A2 and A3, then
the following holds:
(a) If p � q and 0 ≤ a < b ≤ 1, then bp+ (1− b)q � ap+ (1− a)q.
(b) If p " q " r and p � r, then there exists a unique a∗ ∈ [0, 1] such that
q ∼ a∗p+ (1− a∗)r.
(c) If p ∼ q and a ∈ [0, 1], then for any r ∈ P, it holds that ap + (1 − a)r ∼
aq + (1 − a)r.

Proof of (a). If a = 0, then the claim follows immediately from A2. Hence,
assume that a > 0. Define r by r := bp+ (1 − b)q. Then, A2 implies r � q, and
hence, it follows that

r = (1− (a/b))r + (a/b)r � (1− (a/b))q + (a/b)r

= (1− (a/b))q + (a/b)(bp+ (1− b)q) = ap+ (1 − a)q ,

which completes the proof. Proof of (b). If a∗ exists, it must be unique by (a).
Therefore, it suffices to show the existence of a∗. Assume that p � q � r.
Otherwise, the existence of a∗ is trivial. Define a real number a∗ by

a∗ = sup{ a ∈ [0, 1] | q " ap+ (1− a)r } .

First, assume that a∗p + (1 − a∗)r � q � r. Then, A3 implies that there exists
b ∈ (0, 1) such that b(a∗p + (1 − a∗)r) + (1 − b)r = ba∗p + (1 − ba∗)r � q.
Furthermore, ba∗ < a∗ holds since a∗ 
= 0. This and the definition of a∗ imply
the existence a′ such that ba∗ < a′ < a∗ and q " a′p + (1 − a′)r. Then, (a)
implies q � ba∗p + (1 − ba∗)r, which is a contradiction. Similarly, assuming
p � q � a∗p+(1− a∗)r leads to a contradiction. Therefore, (b) holds. The proof
of (c) is omitted. �
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Proof (Sketch). We now prove the theorem. When all probability measures are
indifferent to each other, we may take any constant function as u. Hence, we
assume that there exists a pair of probability measures p and q such that p � q
and fix them. For any r such that p " r " q, we define u(r) by a real number
which satisfies

u(r)p+ (1− u(r))q ∼ r .

By (b) of Lemma 1, such a u(r) is uniquely determined. Then, for any r and r′

such that p " r " q and p " r′ " q, it holds that

r � r′ ⇔ u(r)p+ (1− u(r))q � u(r′)p+ (1− u(r′))q ⇔ u(r) > u(r′)

where the second equivalence follows from (a) of Lemma 1. Furthermore, for any
such r and r′ and for any λ ∈ [0, 1], it holds that

λr + (1− λ)r′ ∼ λ(u(r)p + (1− u(r))q) + (1 − λ)(u(r′)p+ (1− u(r′))q)
= (λu(r) + (1 − λ)u(r′))p+ (1− (λu(r) + (1 − λ)u(r′)))q .

Here, the equivalence follows from (c) of Lemma 1. This and the definition of u
imply

u(λr + (1− λ)r′) = λu(r) + (1 − λ)u(r′) .

The function u thus defined preserves its properties through a positive affine
transformation. Therefore, we may assume without loss of generality that u(p) =
1 and u(q) = 0. Further, for any r such that r � p, find an a which satisfies
ar + (1 − a)q ∼ p (such an a can be found uniquely) and define u(r) := 1/a.
Also, for any r such that q � r, find an a which satisfies ap+ (1− a)r ∼ q (such
an a can be found uniquely) and define u(r) := −a/(1− a). The function u thus
defined can be easily verified to be an affine function which represents � on P

and the proof is complete. �

We say that u is unique up to a positive affine transformation when it is
unique in the sense stated in Theorem 1. A function u in the theorem is called
von-Neumann-Morgenstern’s utility index . When a utility index u exists, define
u : X → R by (∀x ∈ X) u(x) = u(δx). Then the affinity of u implies that for
any simple probability measure p, it holds that

u(p) =

∫
X

u(x) dp(x) =
∑
x∈X

u(x)p(x) .

4 Representation Theorem on Mixture Space à la
Herstein-Milnor

A set Φ is called a mixture space if there exists a function h : [0, 1]×Φ×Φ → Φ
which satisfies the following three conditions:6

6 In this section, φ denotes an arbitrary element of Φ, not an empty set.
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M1 h1(φ, ρ) = φ

M2 ha(φ, ρ) = h1−a(ρ, φ)

M3 ha(hb(φ, ρ), ρ) = hab(φ, ρ)

Here, the first argument is denoted by a subscript and ha(φ, ρ) may be sugges-
tively written as aφ+ (1 − a)ρ. However, a mixture space is purely an abstract
space and “+” need not be an addition (although in many examples, “+” resolves
into addition of real numbers). For instance, the set of probability measures con-
sidered in the previous section is an example of a mixture space. Consider the
following three axioms with respect to a binary relation � defined on a mixture
space:

B1 (Ordering) � is a preference order

B2 (Independence) φ � ρ ⇒ (∀a ∈ (0, 1])(∀μ) ha(φ, μ) � ha(ρ, μ)

B3 (Continuity) φ � ρ and ρ � μ

⇒ (∃a, b ∈ (0, 1)) ha(φ, μ) � ρ and

ρ � hb(φ, μ)

Then, the following theorem holds.

Theorem 2 (Herstein-Milnor, 1953). A binary relation � defined on a mix-
ture space Φ satisfies Axioms B1, B2 and B3 if and only if there exists a function
F : Φ → R which satisfies

Representation φ � ρ ⇒ F (φ) > F (ρ) and

Affinity (∀a, φ, ρ) F (ha(φ, ρ)) = aF (φ) + (1− a)F (ρ) .

Furthermore, F is unique up to a positive affine transformation.

The proof of this theorem can be done exactly similarly to the case of von-
Neumann-Morgenstern’s Theorem (Theorem 1). This is because the proof of that
theorem uses only the properties of a mixture space. (Of course, an arbitrary
convex subset of P (X) is a mixture space.)

5 Subjective Expected Utility Theory à la Savage

5.1 Subjective Probability Theorem

Let S be a set of states which may happen and we call S a state space or a
set of states of the world . Also, let E be an algebra consisting of subsets of S.
An element of E is called an event . In what follows, we set E = 2S . A binary
relation �� on the algebra E is said to be a qualitative probability if it satisfies
the following four conditions:



104 H. Ozaki

QP1 �� is (formally) a preference order

QP2 (∀E ∈ E) E "� φ

QP3 S �� φ

QP4 (∀E,F,G ∈ E)

E ∩G = F ∩G = φ ⇒ [E �� F ⇔ E ∪G �� F ∪G]

If a binary relation �� is a qualitative probability, it follows that

(∀A,B) A ⊆ B ⇔ B "� A .

Also, it is immediate that �� must be a qualitative probability if it is repre-
sentable by a probability measure. To show its converse, the next condition is
necessary.

QP5 F �� G ⇒ (∃〈Ei〉ni=1 ⊆ E)(∀k = 1, . . . , n) F �� G ∪ Ek

Savage (1954) proved the next theorem.

Theorem 3 (Subjective Probability Theorem). A binary relation �� is a
qualitative probability which satisfies Condition QP5 if and only if there exists a
unique convex-ranged probability measure on the measurable space (S,E) which
represents ��.

5.2 Act

Let X be a set of outcomes. A function from S into X is called a Savage act ,
or more simply, an act . An act f is said to be simple if the image of S by f ,
f(S) := { x ∈ X | (∃s ∈ S) f(s) = x }, is a finite set and the set of all simple
act is denoted by F0. In what follows, when we say an act, it means a simple
act if otherwise stated. Also, denote by P0(X) the set of all simple probability
measures on X . Assume that an agent’s preference is given by a binary relation
� on F0 and binary relations " and ∼ are derived from � in the way already
mentioned. An event E ∈ E is said to be null with respect to � if any pair of acts
which differ only on E is indifferent to each other. We induce a binary relation
on X from a binary relation � on F0 and denote it by the same symbol � as
follows (using the same symbol will not make any confusion):

(∀x, y ∈ X) x � y ⇔ f � g where (∀s) f(s) = x and g(s) = y .

In what follows, we use a notation such as

f =
[
x on A
g on Ac

]
to denote an act f such that f always takes on an outcome x ∈ X on an event A
(i.e., f coincides with a constant act x on A) and coincides with an act g ∈ L0

on Ac, the complement of A in S.
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5.3 Savage’s Axioms and Representation Theorem by Subjective
Expected Utility

Consider the following axioms:

P1. Ordering � is a preference order

P2. Sure-Thing Principle For any act f, f ′, g, g′ and for any event A,[
f on A
g on Ac

]
�

[
f ′ on A
g on Ac

]
⇔

[
f on A
g′ on Ac

]
�

[
f ′ on A
g′ on Ac

]
P3. Eventwise Monotonicity For any outcome x and y, for any non-null event

E and for any act f , [
x on E
f on Ec

]
�

[
y on E
f on Ec

]
⇔ x � y

P4. Weak Comparative Probability For any event A and B and for any out-
come x, x′, y, y′ such that x � x′ and y � y′,[

x on A
x′ on Ac

]
�

[
x on B
x′ on Bc

]
⇔

[
y on A
y′ on Ac

]
�

[
y on B
y′ on Bc

]
P5. Nondegeneracy There exists a pair of outcomes (x, x′) such that x � x′

P6. Small Event Continuity For any outcome x and for any act f and g such
that f � g, there exists a finite partition, 〈Ei〉ni=1, of S such that

(∀i, j ∈ {1, 2, . . . , n}) f �
[
x on Ei

g on (Ei)
c

]
and

[
x on Ej

f on (Ej)
c

]
� g

Then, the next theorem holds:

Theorem 4 (Savage, 1954). A binary relation � on F0 satisfies P1, P2, P3,
P4, P5 and P6 if and only if there exist a unique convex-ranged probability
measure μ on (S,E) and a real-valued function u on X which is unique up to a
positive affine transformation such that

f � g ⇔
∫
S

u(f(s)) dμ(s) >

∫
S

u(g(s)) dμ(s) .

Proof (Sketch) For any pair of events A and B, define A �� B when it holds
that for some outcomes x and x′ such that x � x′,[

x on A
x′ on Ac

]
�

[
x on B
x′ on Bc

]
.

P4 implies that �� is a preference order: i.e., �� does not depend on the choice
of x. Also, it follows from P1, P2, P3, P4 and P5 that �� turns out to be a
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qualitative probability. Furthermore, it can be verified that �� satisfies QP5
by P6. By Subjective Probability Theorem (Theorem 3), there exists a unique
convex-ranged probability measure μ which represents ��.

From a simple act f ∈ F0 and the probability measure μ derived in the
previous paragraph, define a simple probability measure pf on X by

(∀x ∈ X) pf (x) = μ(f−1({x})) .

Denote the set of all simple probability measures on X by P0(X). For any p ∈
P0(X), there exists some f ∈ F0 such that p = pf . Then, it can be shown that

(∀f, g ∈ F0) pf = pg ⇒ f ∼ g .

From this and the remark just mentioned, we can define a preference relation
�P on P0(X) by

(∀p, q ∈ P0(X)) p �P q ⇔ p = pf , q = pg and f � g

Then, since it can be shown that �P satisfies Axioms A1, A2 and A3 of Theorem
1 (or Axioms B1, B2 and B3 of Theorem 2), Theorem 1 (or Theorem 2) implies
that there exists a function u : X → R which is unique up to a positive affine
transformation such that

f � g ⇔ pf �P pg

⇔
∫
X

u(x) dpf (x) >

∫
X

u(x) dpg(x)

⇔
∫
S

u(f(s)) dμ(s) >

∫
S

u(g(s)) dμ(s) .

The proof of the necessity of the axioms is omitted. �

6 Probabilistic Sophistication à la Machina-Schmeidler

Given a simple act f and a probability measure μ on (S,E), we denote by pf,μ
or simply by pf when no confusion arise with respect to μ the element of P0(X)
defined by (∀x ∈ X) μ(f−1({x})). Also, for any outcome x ∈ X , let δx be
the element of P0(X) such that δx(x) = 1. Suppose that a binary relation �
is defined on the set of acts, F0. For p, q ∈ P0(X), we say that p stochastically
dominates q if

(∀x ∈ X)
∑

{ i | xi�x }
pi ≤

∑
{ j | yj�x }

qj .

Here, we write as p = (x1, p1; . . . ;xm, pm) and q = (y1, q1; . . . ; yn, qn) and mean
that an outcome x1 occurs with a probability p1 under p, for example. If a
strict inequality holds for some outcome x, we say that p strictly stochastically
dominates q.
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Suppose that a binary relation �P is defined on P0(X). If for any p, q, r ∈
P0(X), {λ ∈ [0, 1] |λp + (1 − λ)q "P r } and {λ ∈ [0, 1] |λp+ (1 − λ)q &P r }
are closed sets, then a binary relation �P is said to be mixture-continuous . If a
binary relation is mixture-continuous, it turns out to be continuous in the sense
of Axiom A3. (The converse does not hold.) Also, a binary relation �P is said
to be monotonic if p "P (�P ) q whenever p (strictly) stochastically dominates
q. Similarly, if for any p, q, r ∈ P0(X), {λ ∈ [0, 1] |V (λp + (1 − λ)q) ≥ V (r) }
and {λ ∈ [0, 1] |V (λp + (1 − λ)q) ≤ V (r) } are closed sets, then a function
V : P0(X) → R is said to bemixture-continuous . Also, a function V : P0(X) → R

is said to be monotonic if V (p) ≥ (>)V (q) whenever p (strictly) stochastically
dominates q.

Consider the following axioms on a binary relation � defined on F0:

P4∗Strong Comparative Probability For any mutually disjoint event A and
B, for any outcomes x, x′, y, y′ such that x � x′ and y � y′, and for any act g
and h, [

x on A
x′ on B
g on (A ∪B)c

]
�

[
x′ on A
x on B
g on (A ∪B)c

]

⇔
[
y on A
y′ on B
h on (A ∪B)c

]
�

[
y′ on A
y on B
h on (A ∪B)c

]

Axiom P4∗ implies Axiom P4. Axiom P4∗ and Axiom P2 are mutually inde-
pendent but all Savage’s axioms imply P4∗. For any mutually disjoint event A
and B, we write as A �� B if there exist a pair of outcomes (x, x′) such that
x � x′ and an act g such that[

x on A
x′ on B
g on (A ∪B)c

]
�

[
x′ on A
x on B
g on (A ∪B)c

]
.

Because of Axiom P4∗, �� does not depend on the choice of x, x′, g. Furthermore,
if we define A �� B ⇔ A\B �� B\A for not necessarily disjoint events A and
B, it follows from P4∗ that �� is a preference relation on (S,E). Then, the next
theorem holds.

Theorem 5 (Machina and Schmeidler, 1992). A binary relation � on F0

satisfies P1, P3, P4∗, P5 and P6 if and only if there exist a convex-ranged
probability measure μ on (S,E) which represents �� and a monotonic mixture-
continuous function V : P0(X) → R such that f � g ⇔ V (pf ) > V (pg).

Proof (Sketch) There exists a pair of outcomes (x, x′) such that x � x′ by Axiom
P5. Then, let X∗ := {x, x′}. Also, let F ∗

0 be the subset of F0 consisting of all
X∗-valued acts and write the restriction of � on F ∗

0 as �∗. Then, it follows
that Axioms P1, P3, P4, P5 and P6 hold with respect to (S,E, X∗, F ∗

0 ,�∗).
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Furthermore, it turns out that P4∗ and P2 are equivalent under this setting,
and hence, Savage’s Theorem (Theorem 4) implies that there exists a convex-
ranged probability measure μ on (S,E) such that for any act f, g ∈ F ∗

0 , f � g ⇔
μ(f−1({x})) ≥ μ(g−1({x})) holds. On the other hand, it holds that

A �� B ⇔ A\B �� B\A

⇔
[
x on A\B
x′ on B\A
x′ on (A'B)c

]
�

[
x′ on A\B
x on B\A
x′ on (A'B)c

]

⇔ μ(A\B) > μ(B\A)
⇔ μ(A) > μ(B)

and it has been shown that μ represents ��.
Suppose that μ(A) = μ(B) holds for mutually disjoint events A and B. For

any outcome y, y′ and for any act h, defined two act f and g by

f =

[
y on A
y′ on B
h on (A ∪B)c

]
and g =

[
y′ on A
y on B
h on (A ∪B)c

]
.

Then, since both A "� B and B "� A hold, it follows that f ∼ g. This means
that two acts which are constructed by exchanging outcomes they assume over
mutually disjoint events having the same probability are indifferent. By this fact
and by applying an appropriately constructed sequence of acts, it can be proved
that two acts f and g are indifferent if pf,μ = pg,μ. From this, it turns out that
we may define a binary relation �P on P0(X) by pf �P pg ⇔ f � g as in the
proof of Savage’s theorem (Theorem 4).

It can be proved that the binary relation�P defined in the previous paragraph
satisfies the monotonicity and the mixture-continuity. For x∗, x∗ ∈ X such that
x∗ � x∗, define the subset of P0(X) by

{ p ∈ P0(X) | δx∗ "P p "P δx∗ } . (3)

Then, it turns out that for any element p of this subset, there exists λp which
satisfies

p ∼P λpδx∗ + (1− λp)δx∗

by the mixture-continuity (and hence by the continuity) of �P . (See also the
proof of von-Neumann-Morgenstern’s theorem.) Furthermore, by the monotonic-
ity of �P , λp is determined uniquely. Define V (p) := λp. Then, for any element
p, q of the set (3) such that p "P (�P ) q, it holds that

V (p)δx∗ + (1− V (p))δx∗ ∼P p "P (�P ) q ∼P V (q)δx∗ + (1− V (q))δx∗ .

From this and the monotonicity, it follows that V (p) ≥ (>)V (q). That is, the
function V represents �P on the set (3). Furthermore, it can be shown that V
can be extended so that it should represent �P on P0(X). The sufficiency of
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the axioms follows from this fact and the result in the previous paragraph. The
proofs of other claims are omitted. �

The property that pf = pg ⇒ f ∼ g, which is shown in the theorem, is called
probabilistic sophistication.

7 Subjective Expected Utility Theory à la
Anscombe-Aumann

7.1 Lottery Act

In this section, we assume that the state space is given by a measurable space
(S,Σ) and that an outcome space is given by a mixture space Y . For example, let
X be a space of prizes and let Y be the space of all simple probability measures
on X . Then, Y is a mixture space. A function from S into Y is called Anscombe-
Aumann (A-A) act or lottery act . A lottery act which isΣ-measurable and whose
range is a finite set is called simple lottery act. The set of all simple lottery acts
is denoted by L0. Furthermore, the set of simple lottery acts whose ranges are
singletons is denoted by Lc. Suppose that a binary relation � is defined on the
set L0. We induce the binary relation on Y from a binary relation � on L0 as
follows and denote it by the same symbol �; i.e.,

(∀y, y′ ∈ Y ) y � y′ ⇔ f � g where (∀s) f(s) = y and g(s) = y′ .

Differently from the framework of Savage, in the one of Anscombe and Au-
mann, we can construct a mixture of two lottery acts. Let f and g be two simple
lottery acts. Also, let h be a mixture function defined on the mixture space Y .
Then, use h to define the mixture of f and g by s (→ ha(f(s), g(s)). Then, it can
be easily seen that the set L0 becomes a mixture space by the operation thus
defined. We write the mixture of f and g by af + (1− a)g.

7.2 Anscombe-Aumann’s Axioms and Representation Theorem

We consider some axioms on a binary relation � defined on L0. Here, f, g, h are
any element of L0 and λ is any real number such that λ ∈ (0, 1].

AA1 (Ordering) � is a preference order on L0

AA2 (Independence) f � g ⇒ λf + (1 − λ)h � λg + (1 − λ)h

AA3 (Continuity) f � g and g � h

⇒ (∃α, β ∈ (0, 1)) αf + (1− α)h � g and

g � βf + (1 − β)h

AA4 (Monotonicity) (∀f, g ∈ L0) [(∀s ∈ S) f(s) " g(s)] ⇒ f " g

AA5 (Nondegeneracy) (∃f, g ∈ L0) f � g
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The next theorem holds.

Theorem 6 (Anscombe-Aumann, 1963). A binary relation � defined on
the set L0 satisfies AA1, AA2, AA3, AA4 and AA5 if and only if there exist a
unique probability measure μ on (S,Σ) and an affine function u on Y which is
unique up to a positive affine transformation such that

f � g ⇔
∫
S

u(f(s)) dμ(s) >

∫
S

u(g(s)) dμ(s) .

Proof Since the set L0 is a mixture space and a binary relation � satisfies
Ordering, Independence and Continuity by the assumption, there exists an affine
function on L0 which represents � by Theorem 2. We denote this function by
J . Further, define the affine function u on Y by (∀y ∈ Y ) u(y) = J(y), where y
in the right-hand side is understood to be a constant act which always takes on
y. Monotonicity and Nondegeneracy imply the existence of y∗, y∗ ∈ Y such that
y∗ � y∗. Hence, by applying an appropriate affine transformation to J , we can
normalize u so that u(y∗) = 1 and u(y∗) = 0.

Let K := u(Y ) and let B0(K) be the set of Σ-measurable functions defined
on S whose range is a finite subset of K. Define a function U : L0 → B0(K) by

(∀f)(∀s) U(f)(s) = u(f(s)) .

Then, U is surjective and Monotonicity implies that U(f) = U(g) ⇒ f ∼ g.
Furthermore, the affinity of u implies (∀α ∈ [0, 1]) U(αf + (1−α)g) = αU(f) +
(1− α)U(g). Now, define a functional I on B0(K) by

(∀a ∈ B0(K)) I(a) = J(U−1({a})) (4)

Note that I is well-defined. Clearly, it holds that (∀f ∈ L0) I(U(f)) = J(f).
This paragraph proves that it holds that

(∀a, b ∈ B0(K))(∀α ∈ [0, 1]) I(αa+ (1− α)b) = αI(a) + (1− α)I(b) . (5)

To this end, let f, g ∈ L0 be such that U(f) = a and U(g) = b. Then, by the
previous paragraph,

I(αa+ (1− α)b) = J(U−1({αa+ (1− α)b}))
= J(U−1({αU(f) + (1− α)U(g)}))
= J(αf + (1− α)g)

= αJ(f) + (1− α)J(g)

= αI(a) + (1 − α)I(b)

where the fourth equality holds because J is an affine function.
This paragraph proves that the functional I satisfies all the conditions of

the corollary of the Riesz representation theorem (Corollary 1 in Mathematical
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Appendix). (i) I(χS) = 1. It suffices to take a such that (∀s) a(s) = u(y∗) = 1
in Equation (4). (ii) Additivity. In Equation (5), letting b : s (→ u(y∗) shows

(∀a ∈ B0(K))(∀α ∈ [0, 1]) I(αa) = αI(a) . (6)

Additivity follows from this and setting α = 1/2 in Equation (5). (iii) Mono-
tonicity. Let a, b ∈ B0(K) and let f, g ∈ L0 be such that U(f) = a and U(g) = b.
Then, it follows that

a ≥ b ⇒ U(f) ≥ U(g) ⇒ (∀s) u(f(s)) ≥ u(g(s))

⇒ (∀s) f(s) " g(s) ⇒ f " g ⇒ J(f) ≥ J(g) ⇒ I(a) ≥ I(b) .

By the previous paragraph, we may apply the corollary of the Riesz repre-
sentation theorem (Corollary 1 in Mathematical Appendix). Hence, if we let
p(A) = I(χA), it holds that

(∀a) I(a) =

∫
S

a(s) dp(s) ,

from which it follows that

f � g ⇔ J(f) > J(g) ⇔ I(U(f)) > I(U(g))

⇔
∫
S

U(f)(s) dp(s) >

∫
S

U(g)(s) dp(s)

⇔
∫
S

u(f(s)) dp(s) >

∫
S

u(g(s)) dp(s) .

�

8 Ellsberg’s Paradox

An essential critique to the subjective expected utility by Savage is given by
Ellsberg’s Paradox .

Example 1 (Ellsberg, 1961). There are 90 colored balls in an urn. While 30 balls
out of them are known to be red (R), the remaining 60 balls are either black (B)
or white (W) and their ratio is not known. Now consider betting such that a
ball is drawn from this urn and a reward is given depending on the color of that
ball. In particular, suppose that there are four betting described by the table
below. For example, f1 means betting such that a reward of $1, 000 is given if a
red ball is drawn but nothing is given otherwise.

R B W
f1 $1,000 $0 $0
f2 $0 $1,000 $0
f3 $1,000 $0 $1,000
f4 $0 $1,000 $1,000
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Consider a preference order with respect to these betting (acts) such that f1 � f2
and f4 � f3. In fact, this seems to be a plausible preference order. However, for
any utility index u such that u($1, 000) > u($0) and any (additive) probability
measure p (i.e., a probability of R, B and W in a usual sense with p(W ) = 1/3),
this preference order cannot be represented by the expected utility Model. Fur-
thermore, the situation cannot be improved even if we consider the probabilistic
sophistication. (Recall that the representation by the probabilistic sophistication
satisfies the monotonicity.)

A thought experiment shows that the pattern of preferences exhibited in Ells-
berg’s paradox is reasonable. Actually, many real experiments observe the pref-
erence pattern in the paradox. These facts suggest that the representation of
human behaviors by means of additive probability measures has a limitation,
which motivates the use of non-additive probability measures.

9 Non-additive Measure and Choquet Integral

9.1 Non-additive Measure

Consider a measurable space (S,Σ) consisting of a set S and an algebra defined
on it, Σ. A set S may be regarded as a state space and an algebra Σ may be
regarded as a set of events. A set function v : Σ → R is called a non-additive
finite measure or finite capacity7 if it satisfies the following two conditions:

v(φ) = 0 (7)

(∀A,B ∈ Σ) A ⊆ B ⇒ v(A) ≤ v(B) (8)

From these two conditions, it follows that (∀A ∈ Σ) 0 ≤ v(A) ≤ v(S) < +∞. In
what follows, we always consider a non-additive finite measure which is normal-
ized so that

v(S) = 1 (9)

holds. A set function v which satisfies Equations (7), (8) and (9) is called non-
additive probability measure or probability capacity . In many cases, these are
abbreviated to “non-additive measure” or “capacity.”

A non-additive measure is said to be convex if it holds that

(∀A,B ∈ Σ) v(A ∪B) + v(A ∩B) ≥ v(A) + v(B) . (10)

If the converse inequality holds in (10), v is said to be concave. When the in-
equalities always holds with equalities, v is a probability measure. Also, v is said
to be convex-ranged if the next condition holds:

(∀A ∈ Σ)(∀r ∈ [0, v(A)])(∃B ∈ Σ) B ⊆ A and v(B) = r .

7 A non-additive finite measure is sometimes called a game.
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Let P (S,Σ) be the set of all probability measures on a measurable space
(S,Σ). We denote by core(v) the core of a non-additive measure v and define it
by

core(v) = { p ∈ P (S,Σ) | (∀A ∈ Σ) p(A) ≥ v(A) } .
If a non-additive measure v is a probability measure, core(v) consists only of v
itself. When v is convex, core(v) turns out to be nonempty.

9.2 Choquet Integral

We denote by B(S,Σ), or more simply B, the set of all Σ-measurable and
bounded real-valued functions defined on a measurable space (S,Σ). Here, a
function a : S → R is Σ-measurable if for any Borel set E on R, a−1(E) ∈ Σ.
We denote by B0(S,Σ) or B0 the subset of B(S,Σ) consisting of functions, called
simple functions , whose ranges are finite sets. Given a non-additive measure v,
we define a (nonlinear) functional I : B → R by: (∀a ∈ B)

I(a) =

∫
a dv =

∫
S

a(s) dv(s) (11)

=

∫ 0

−∞
(v(a ≥ y)− v(S)) dy +

∫ +∞

0

v(a ≥ y) dy

=

∫ 0

−∞
(v({ s | a(s) ≥ y })− v(S)) dy +

∫ +∞

0

v({ s | a(s) ≥ y }) dy .

Here, two integrals in the third line are Riemann integrals in a wide sense, which
are well-defined as a finite value since a ∈ B. The functional I defined by (11)
is called a Choquet integral .

We list some properties of Choquet integrals which follow immediately from
the definitions. For a function a, if we let a := infs a(s), then a − a ≥ 0 and it
holds that ∫

(a− a) dv =

∫ +∞

0

v(a− a ≥ y) dy =

∫
a dv − a . (12)

Given a ∈ B0, we denote it by a =
∑k

i=1 αiχEi . Here, we let α1 ≥ α2 ≥ . . . ≥ αk

and 〈Ei〉ki=1 is a Σ-measurable partition of S such that (∀i) Ei = a−1({αi}).
Then, the definition of a Choquet integral and (12) imply∫

a dv =

k∑
i=1

(αi − αi+1)v

⎛⎝ i⋃
j=1

Ej

⎞⎠ ,

where αk+1 := 0. The next result is essential in the following analysis:

Fact 1. If a non-additive measure v is convex, it holds that

(∀a ∈ B)

∫
a dv = min

{ ∫
a dp

∣∣∣∣ p ∈ core(v)

}
. (13)
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10 Choquet Expected Utility Theory à la Schmeidler

10.1 Representation Theorem by Choquet Expected Utility

We consider a setting of Anscombe-Aumann type. Given two lottery acts f and
g, f and g are said to be co-monotonic if there does not exist any pair of states
(s, t) such that f(s) � f(t) and g(t) � g(s). Here, � is the binary relation on Y
induced from the binary relation on L0. We consider the following axioms about
a binary relation � on L0.

S1 (Ordering) � is a preference order on L0

S2 (Co-monotonic For any triplet (f, g, h) any two of which

Additivity) are co-monotonic, it follows that:

f � g ⇒ (∀λ ∈ (0, 1)) λf + (1− λ)h �
λg + (1− λ)h

S3 (Continuity) f � g and g � h

⇒ (∃α, β ∈ (0, 1)) αf + (1− α)h � g and

g � βf + (1− β)h

S4 (Monotonicity) (∀f, g ∈ L0) [(∀s ∈ S) f(s) " g(s)] ⇒ f " g

S5 (Non-degeneracy) (∃f, g ∈ L0) f � g

Schmeidler (1989) proved the representation theorem by Choquet expected utility
(CEU) under these axioms.

Theorem 7 (Representation by CEU). A binary relation � defined on L0

satisfies S1, S2, S3, S4 and S5 if and only if there exist a unique non-additive
measure v on (S,Σ) and an affine function u on Y which is unique up to a
positive affine transformation such that

f � g ⇔
∫
S

u(f(s)) dv(s) >

∫
S

u(g(s)) dv(s) .

Proof The existence of a function on L0 which represents � and whose restric-
tion on Lc is an affine function. Note that a set Lc is a mixture space and that
any two elements of this set are clearly co-monotonic. Since a binary relation
� restricted on Lc satisfies Ordering, Independence and Continuity by the as-
sumption, Theorem 2 implies that there exists an affine function on Lc which
represents �. We call this function u. We now define a function J : L0 → R as
follows: First, if there exists y ∈ Y such that f = y, define J(f) := u(y). Second,
for any f ∈ L0, we know that there exist y∗, y∗ ∈ Y such that y∗ " f " y∗ by S4
and that there exists α such that f ∼ αy∗+(1−α)y∗ from S2 and S3 (see Lemma
1(b)). Then, define J by J(f) := J(αy∗ + (1− α)y∗) = u(αy∗ + (1− α)y∗). The
function J thus defined turns out to be a desired function. (However, it is not
guaranteed that J is an affine function on L0.)
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[Construction of a function I] Let B0(K) be the set of Σ-measurable real-
valued functions defined on S whose range is a finite subset of K := u(Y ) and
define a function U : L0 → B0(K) by

(∀f)(∀s) U(f)(s) = u(f(s)) .

Then, U is an onto mapping and it follows from the monotonicity that U(f) =
U(g) ⇒ f ∼ g. Furthermore, it turns out that, if a, b ∈ B0(K) are co-monotonic,
f, g ∈ L0 such that U(f) = a and U(g) = b are also co-monotonic, and that
(∀α ∈ [0, 1]) U(αf +(1−α)g) = αU(f)+ (1−α)U(g) by the affinity of u. Then,
define the functional I on B0(K) by

(∀a ∈ B0(K)) I(a) = J(U−1({a})) .

By the remark just mentioned, I is well-defined.
The proof that I satisfies all the conditions of the representation theorem of

Choquet integrals (Theorem 16 in Mathematical Appendix)] (i) Let λ ∈ K and
let y be such that u(y) = λ. Then, that I(λχS) = J(y) = u(y) = λ follows
because U(y) = u(y)χS = λχS . (ii) Let a, b, c ∈ B0(K) be such that any two of
them are co-monotonic and let f, g, h ∈ L0 be such that U(f) = a, U(g) = b and
U(h) = c. Then, by the previous paragraph, it holds that for any α ∈ (0, 1),

I(a) > I(b) ⇒ J(f) > J(g)

⇒ f � g

⇒ αf + (1 − α)h � αg + (1 − α)h

⇒ J(αf + (1− α)h) > J(αg + (1 − α)h)

⇒ I(αU(f) + (1− α)U(h)) > I(αU(g) + (1− α)U(h))

⇒ I(αa+ (1− α)c) > I(αb + (1− α)c) .

(iii) Given functions a, b ∈ B0(K), let f, g ∈ L0 be such that U(f) = a and
U(g) = b. Then, it holds that

a ≥ b ⇒ U(f) ≥ U(g) ⇒ (∀s) u(f(s)) ≥ u(g(s))

⇒ (∀s) f(s) " g(s) ⇒ f " g ⇒ J(f) ≥ J(g) ⇒ I(a) ≥ I(b) .

Proof of the sufficiency of the axioms If we let v(A) = I(χA), the represen-
tation theorem of Choquet integrals (Theorem 16 in Mathematical Appendix)
implies that

(∀a) I(a) =

∫
S

a(s) dv(s) .

From this, it follows that

f � g ⇔ J(f) > J(g) ⇔ I(U(f)) > I(U(g))

⇔
∫
S

U(f)(s) dv(s) >

∫
S

U(g)(s) dv(s)
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⇔
∫
S

u(f(s)) dv(s) >

∫
S

u(g(s)) dv(s) .

�

10.2 Rank-Dependent Expected Utility

A binary relation � on F0 is said to be represented by a rank-dependent expected
utility if there exist a convex-ranged probability measure p on (S,Σ), a real-
valued function u on X which is unique up to a positive affine transformation
and a strictly increasing function φ : [0, 1] → [0, 1] such that

f � g ⇔
∫
S

u(f(s)) d(φ ◦ p)(s) >
∫
S

u(g(s)) d(φ ◦ p)(s) ,

where the integrals are Choquet integrals. The next theorem follows immedi-
ately from the representation theorem by Scott. (For the weak additivity, see
Mathematical Appendix.)

Theorem 8. Suppose that a binary relation � on L0 satisfies Axioms S1-S5.
Then, if the non-additive measure v whose existence is guaranteed by the previ-
ous theorem is weakly additive, � is represented by the rank-dependent expected
utility.

10.3 Uncertainty Aversion

A binary relation � on L0 is said to be uncertainty averse if it satisfies

(∀f, g ∈ L0)(∀α ∈ [0, 1]) f " g ⇒ αf + (1 − α)g " g .

When � is a preference relation, this condition is equivalent to

(∀f, g, h ∈ L0)(∀α ∈ [0, 1]) [f " h and g " h] ⇒ αf + (1− α)g " h .

Uncertainty aversion takes the form of quasi-concavity and intuitively means
that smoothing utility distributions makes the decision maker better off.

Theorem 9. Suppose that a binary relation � satisfies Axioms S1, S2, S3, S4
and S5, and let v be the non-additive measure derived from Theorem 7. Then, v
is convex if and only if � is uncertainty averse.

Proof This paragraph proves that the uncertainty aversion and the next condi-
tion are equivalent:

(∀a, b ∈ B0(K))(∀α ∈ [0, 1]) I(αa+ (1− α)b) ≥ min{I(a), I(b)} . (14)

Assume the uncertainty aversion and that I(a) ≥ I(b) without loss of generality.
Let f and g be such that U(f) = a and U(g) = b. Then, f " g since J(f) =
I(a) ≥ I(b) = J(g), and this and the uncertainty aversion imply that for any α,
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it holds that αf + (1 − α)g " g. This in turn implies that I(αa + (1 − α)b) =
I(αU(f) + (1 − α)U(g)) = J(αf + (1 − α)g) ≥ J(g) = I(b) and then (14)
follows. Conversely, assume that (14) holds and assume that f " g. Then, since
I(U(f)) = J(f) ≥ J(g) = I(U(g)), it holds that J(αf + (1− α)g) = I(αU(f) +
(1− α)U(g)) ≥ I(U(g)) = J(g), and hence, the uncertainty aversion follows.

(Necessity of the convexity) Assume the uncertainty aversion. By the previous
paragraph, it follows that

(∀a, b ∈ B0(K))(∀α ∈ [0, 1]) I(a) = I(b) ⇒ I(αa+ (1− α)b) ≥ I(a) . (15)

This and the positive homogeneity of I imply that

(∀a, b ∈ B0(K)) I(a) = I(b) ⇒ I(a+ b) ≥ I(a) + I(b) . (16)

In the following, we show that this implies the convexity of v. Assume that
v(E) ≥ v(F ) without loss of generality, and let γ ≥ 1 be such that v(E) = γv(F ).
Then, since I(χE) = v(E) = γv(F ) = I(γχF ), (16) implies that

I(χE + γχF ) ≥ v(E) + γv(F ) . (17)

On the other hand, since χE+γχF = χE∩F+(γ−1)χF+χE∪F , the co-monotonic
additivity of I implies that I(χE + γχF ) = v(E ∩ F ) + (γ − 1)v(F ) + v(E ∪ F ).
The convexity of v follows from this and (17).

(Sufficiency of the convexity) If a non-additive measure v is convex, Fact 10
in Mathematical Appendix implies that

(∀a, b ∈ B0(K)) I(a+ b) ≥ I(a) + I(b) . (18)

By this and the positive homogeneity of I, it holds that

(∀a, b ∈ B0(K))(∀α ∈ [0, 1]) I(αa+ (1 − α)b) ≥ αI(a) + (1 − α)I(b) . (19)

Then, it immediately follows that (14) holds. �

10.4 Ellsberg’s Paradox: Reconsidered

Recall Ellsberg’s paradox. Define a set function v as follows:

v(φ) = 0 , v({R}) = 1
3 , v({B}) = v({W}) = 1

9 ,

v({R,B}) = v({R,W}) = 4
9 , v({B,W}) = 2

3 and v({R,B,W}) = 1 .

The set function thus defined is clearly non-additive. For example,

v({B,W}) 
= v({B}) + v({W})

In fact, it can be easily verified that v is a convex non-additive measure. Then,
for any u such that u($1, 000) > u($0) (i.e., if the act which certainly guarantees
$1, 000 is strictly preferred to the one which always gives nothing), a preference
in Ellsberg’s paradox can be represented by CEU with v defined above.
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11 Maximin Expected Utility Theory à la
Gilboa-Schmeidler

11.1 Representation Theorem of Multiple Priors

Consider the following axioms with respect to a binary relation � on L0 under
a setting of Anscombe-Aumann type:

GS1 (Ordering) � is a preference order on L0

GS2 (C-Independence) (∀f, g ∈ L0)(∀h ∈ Lc)(∀λ ∈ (0, 1))

f � g ⇔ λf + (1 − λ)h � λg + (1 − λ)h

GS3 (Continuity) f � g and g � h

⇒ (∃α, β ∈ (0, 1)) αf + (1− α)h � g and

g � βf + (1 − β)h

GS4 (Monotonicity) (∀f, g ∈ L0) [(∀s ∈ S) f(s) " g(s)]

⇒ f " g

GS5 (Non-degeneracy) (∃f, g ∈ L0) f � g

GS6 (Uncertainty (∀f, g ∈ L0)(∀α ∈ [0, 1])

Aversion) f ∼ g ⇒ αf + (1 − α)g " f

Gilboa and Schmeidler (1989) proved a representation theorem by maximin ex-
pected utility (MMEU) under these axioms. In the theorem, the set C is closed
with respect to the weak∗ topology on the set of probability measures defined
on (S,Σ). And hence, the minimum always exists.

Theorem 10 (Representation by MMEU). A binary relation � on L0 sat-
isfies GS1, GS2, GS3, GS4, GS5 and GS6 if and only if there exist a unique
nonempty convex subset C of probability measures on (S,Σ) and an affine func-
tion u on Y which is unique up to a positive affine transformation such that

f � g ⇔

min

{ ∫
S

u(f(s)) dp(s)

∣∣∣∣ p ∈ C

}
> min

{ ∫
S

u(f(s)) dp(s)

∣∣∣∣ p ∈ C

}
.

Proof (Sketch) Similarly to the proof of Schmeidler’s theorem (Theorem 7), it can
be shown that there exists a function which represents � on L0 whose restriction
on Lc is an affine function. Furthermore, if we define a function U : L0 → B0(K)
by (∀f)(∀s) U(f)(s) := u(f(s)) and if we define a functional I on a functional
space B0(K) by (∀a ∈ B0(K)) I(a) := J(U−1({a})), it can be shown similarly
that I is well-defined and that I(χS) = 1 by an appropriate normalization of u.

It can be proved that the functional I thus defined satisfies for any a, b ∈ B0,
for any α ≥ 0 and for any γ ∈ R,
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Monotonicity a ≥ b ⇒ I(a) ≥ I(b)

Positive Homogeneity I(αa) = αI(a)

Super Additivity I(a+ b) ≥ I(a) + I(b)

C-Additivity I(a+ γχS) = I(a) + I(γχS)

and that I can be extended to B so that it should satisfy these conditions.
Any functional I which satisfies Monotonicity, Positive Homogeneity, Super

Additivity, C-independence and I(χS) = 1 can be shown to be represented by

(∀a ∈ B) I(a) = min

{ ∫
S

a(s) dp(s)

∣∣∣∣ p ∈ C

}
for some closed convex set C of probability measures, from which the sufficiency
of the axioms follows. �

11.2 Ellsberg’s Paradox: Re-reconsidered

Recall Ellsberg’s paradox again. Consider the probabilities with respect to Red
(R), Black (B) and White (W), p =

(
1
3 ,

1
9 ,

5
9

)
and q =

(
1
3 ,

5
9 ,

1
9

)
, and denote

corresponding (additive) probability measures by p and q. Then, for any u such
that u($1, 000) > u($0) (i.e., if the act which certainly guarantees $1, 000 is
strictly preferred to the one which always gives nothing), a preference order in
Ellsberg’s paradox can be represented by MMEU with C defined as the convex
hull of {p, q}.

12 Some Remarks

12.1 A Relation between CEU and MMEU

If a non-additive measure v is convex, it follows from Fact 1 that∫
u(f(s)) dv(s) = min

{ ∫
u(f(s))dp(s)

∣∣∣∣ p ∈ core(v)

}
.

Therefore, if v is convex (i.e., if the preference order is uncertainty-averse), CEU
is a special case of MMEU with C = core(v).

However, the converse is not necessarily correct. Given an arbitrary closed
convex set C of probability measures, if there exists a non-additive measure v
such that

(∀a ∈ B)

∫
a(s) dv(s) = min

{ ∫
a(s) dp(s)

∣∣∣∣ p ∈ C

}
,

it must hold that

(∀A ∈ Σ) v(A) = min{ p(A) | p ∈ C } . (20)
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(This is clear if we take χA as a.) But, as the following two examples by Huber
and Strassen (1973) show, it is not guaranteed that v generated from C by this
equation is convex nor that even if so, it holds that core(v) = C. That is, for an
arbitrarily given C, it is not guaranteed that there exists a convex non-additive
measure which generates C as its core.89

Example 2. Let a state space S be S = {1, 2, 3, 4} and let Σ = 2S . Let the
(additive) probability measures p and q on a measurable space (S,Σ) be corre-
sponding to the probabilities on S, p =

(
5
10 ,

2
10 ,

2
10 ,

1
10

)
and q =

(
6
10 ,

1
10 ,

1
10 ,

2
10

)
,

and let C be the convex hull of a set {p, q}. Define sets A and B by A = {1, 2}
and B = {1, 3}. If we calculate v from Equation (20), we obtain v such that

v(A) = v(B) = 7
10 , v(A ∩B) = 5

10 , v(A ∪B) = 8
10 .

However, v is not convex since v(A ∪B) + v(A ∩B) = 13
10 < 14

10 = v(A) + v(B).

Example 3. Let a state space S be S = {1, 2, 3} and let Σ = 2S . Let the (addi-
tive) probability measures p and q on a measurable space (S,Σ) be corresponding
to the probabilities on S, p =

(
1
2 ,

1
2 , 0

)
and q =

(
2
3 ,

1
6 ,

1
6

)
, and let C be the con-

vex hull of a set {p, q}. If we calculate v from Equation (20), we obtain v such
that

v(φ) = 0 , v({1}) = 1
2 , v({2}) = 1

6 , v({3}) = 0 ,

v({1, 2}) = 5
6 , v({1, 3}) = 1

2 , v({2, 3}) = 1
3 , and v(S) = 1 .

It can be easily verified that v is certainly a convex non-additive measure. Also,
it can be seen that the core of v is given by the set of probability measures
corresponding to the set of probabilities given by{(

3 + t

6
,
3− t− s

6
,
s

6

) ∣∣∣∣ s, t ∈ [0, 1]

}
.

From this, it immediately follows that C is a proper subset of core(v). (For ex-
ample, consider a probability measure corresponding to a probability

(
1
2 ,

1
3 ,

1
6

)
.)

And hence, core(v) 
= C.

8 To see this, let C be an arbitrary convex set and let v be a convex non-additive
measure such that core(v) = C. Such C and v must satisfy (20). However, v′ which
is generated by the right-hand side of (20) need not be equal to v since core(v′)
need not be equal to C = core(v) as the example shows. This is a contradiction and
verifies the claim.

9 In general, a non-additive measure v is said to be exact if core(v) is nonempty and
it holds that

(∀A ∈ Σ) v(A) = min{ p(A) | p ∈ core(v) } .
Clearly, the convexity implies the exactness.
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12.2 Nonlinear Expected Utility Theory of Savage Type

We briefly mention representation theorems which use acts of Savage type. The
CEU theorem with Savage acts was first proved by Gilboa (1987) and then a
simplification of axioms was made by Sarin and Wakker (1992).

In Savage’s theorem, a state space S must be an uncountable set. This follows
from Axiom P6 and it is also clear since the probability measure derived in the
process of the proof is convex-ranged. A representation theorem by SEU when
a state space S is a finite set was proved by Gul (1992) and the one by CEU in
this case was proved by Nakamura (1990).

On the other hand, a representation theorem by MMEU with Savage acts was
proved by Casadesus-Masanell, Klibanoff and Ozdenoren (2000). This theorem
holds whether a state space is a finite set or an infinite set.

12.3 Epstein’s Critique

Epstein (1999) showed that assuming a preference relation represented by CEU
with a convex non-additive measure is not necessary nor sufficient for explaining
Ellsberg’s paradox. First, define a non-additive measure v by

v(φ) = 0 , v({R}) = 8
24 , v({B}) = v({W}) = 7

24 ,

v({R,B}) = v({R,W}) = 1
2 , v({B,W}) = 13

24 , and v({R,B,W}) = 1 .

Then, CEU with v thus defined can explain the paradox, but v is not convex.
That is, the convexity of a non-additive measure is not a necessary condition for
explaining the paradox. Next, consider a non-additive measure v defined by

v(φ) = 0 , v({R}) = 1
12 , v({B}) = v({W}) = 1

6 ,

v({R,B}) = v({R,W}) = 1
2 , v({B,W}) = 1

3 , and v({R,B,W}) = 1 .

The non-additive measure v thus defined is convex, but CEU with this v can-
not explain the paradox. Epstein concludes that if Ellsberg’s paradox embodies
“uncertainty” itself, it is hard to understand that CEU (and MMEU) explains
behavior under uncertainty.

13 An Economic Application

13.1 Non-differentiability of Choquet Integrals

We now consider (non-)differentiability of Choquet integrals in the following
sense. Suppose that a function f : S × R → R satisfies the following two condi-
tions:

(∀z ∈ R) f(·, z) is measurable and

(∀s ∈ S) f(s, ·) is a differentiable concave function.
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Since the function z (→
∫
f(s, z)v(ds) is a concave function when v is convex by

Fact 10, there exist the left and right derivatives with respect to z. However, it
is not guaranteed that both coincide unless v is additive as the next example
shows.

Example 4. Let S := {1, 2} and let Σ := 2S. Define a non-additive measure v
on a measurable space (S,Σ) by:

v(φ) = 0 , v({1}) = v({2}) = 1

4
, and v(S) = 1 .

Then, v is convex. Also, define a function x : S × R+ → R by:

x(s, z) = z
s
2 .

Then, for each s, x is concave and differentiable with respect to z. Furthermore,
it follows that

d

dz

∫
x(s, z)v(ds) =

d

dz

∫
z

s
2 v(ds)

=
d

dz

{
(z

1
2 − z)14 + z if z < 1

(z − z
1
2 )14 + z

1
2 if z > 1

=

{
1
8z

− 1
2 + 3

4 if z < 1
3
8z

− 1
4 if z > 1 ,

and hence, it holds that

d

dz−

∫
x(s, z)v(ds)

∣∣∣∣
z=1

=
7

8
>

5

8
=

d

dz+

∫
x(s, z)v(ds)

∣∣∣∣
z=1

.

Given a convex non-additive measure v and a bounded measurable real-valued
function x, let P(v, x) be the set of probability measures defined by

P(v, x) := argmin

{∫
x dP

∣∣∣∣P ∈ core(v)

}
. (21)

By Fact 1, P(v, x) can be seen as the set of probability measures which are
“equivalent” to v with respect to a calculation of the Choquet integral of x.
Fact 1 also shows that P(v, x) is nonempty but it is not necessarily a singleton.
With respect to the left and right derivatives, Aubin (1979, p.118, Proposition
6) shows that the next result holds:

Fact 2. Assume that a non-additive measure v is convex and that a function
x : S × R → R satisfies the conditions described above. Then, the following
holds:

(∀z) d

dz−

∫
x(s, z)v(ds) = max

{∫
v2(s, z)P (ds)

∣∣∣∣P ∈ P(v, x(·, z))
}
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(∀z) d

dz+

∫
x(s, z)v(ds) = min

{∫
v2(s, z)P (ds)

∣∣∣∣P ∈ P(v, x(·, z))
}

,

where P is defined by (21) and v2 denotes the partial derivative of v with respect
to z.

Example 5 (Continued). We apply Fact 2 to Example 4. In this example, since
P(v, x(·, 1)) = core(v),

d

dz−

∫
x(s, z)v(ds)

∣∣∣∣
z=1

= max

{∫
v2(s, 1)P (ds)

∣∣∣∣P ∈ P(v, x(·, 1))
}

= max

{∫ (s

2

)
P (ds)

∣∣∣∣P ∈ core(v)

}
=

(
1

2

) (
1

4

)
+

(
2

2

) (
3

4

)
=

7

8

and

d

dz+

∫
x(s, z)v(ds)

∣∣∣∣
z=1

= min

{∫
v2(s, 1)P (ds)

∣∣∣∣P ∈ P(v, x(·, 1))
}

= min

{∫ (s

2

)
P (ds)

∣∣∣∣P ∈ core(v)

}
=

(
1

2

) (
3

4

)
+

(
2

2

) (
1

4

)
=

5

8
,

which verify the result obtained in Example 4.

13.2 Portfolio Selection Model à la Dow-Werlang

Consider an optimal investment problem of an investor who is uncertainty averse.
Let W > 0 be her initial wealth, let X be the stochastic present value of a
dividend of an asset, let z be the volume of a purchase (or a sale) of the asset
and let q be the price of the asset. Assume that the preference relation of the
investor is represented by CEU with a non-additive measure v which is convex
and that her utility index u satisfies u′ > 0 and u′′ ≤ 0. That is, the investor
is assumed to be averse with respect to uncertainty and averse or neutral with
respect to risk. Define the conjugate v′ of a non-additive measure v by (∀A ∈
Σ) v′(A) := 1− v(Ac). Note that v′ is concave if v is convex. Dow and Werlang
proved the next theorem.

Theorem 11 (Dow and Werlang, 1992). Suppose it holds that∫
Xdv < q <

∫
Xdv′ .
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Then, the investor does not change the current position: i.e., she does not pur-
chase nor sell the asset. Furthermore, if it holds that

q <

∫
Xdv

(
resp. q >

∫
Xdv′

)
,

she purchases (resp. sells) the asset.

Proof We prove only the first half. The objective function of the investor is∫
u (W − qz + zX)dv .

By Fact 10 and the assumption that u′′ ≤ 0, it turns out that this objective
function is concave in z. Hence, it is the best for the investor to keep the current
position if the following holds:

d

dz+

∫
u (W − qz + zX)dv

∣∣∣∣
z=0

< 0 <
d

dz−

∫
u (W − qz + zX)dv

∣∣∣∣
z=0

.

By applying Fact 2 to the right and left derivatives, it turns out that these strict
inequalities are equivalent to the following series of strict inequalities:

min

{∫
u′(W )(−q +X)dP

∣∣∣∣P ∈ P(v, u(W ))

}
< 0 < max

{∫
u′(W )(−q +X)dP

∣∣∣∣P ∈ P(v, u(W ))

}
⇔ min

{∫
u′(W )(−q +X)dP

∣∣∣∣P ∈ core(v)

}
< 0 < max

{∫
u′(W )(−q +X)dP

∣∣∣∣P ∈ core(v)

}
⇔ min

{∫
XdP

∣∣∣∣P ∈ core(v)

}
< q < max

{∫
XdP

∣∣∣∣P ∈ core(v)

}
⇔

∫
Xdv < q <

∫
Xdv′

where the first equivalence holds since P(v, u(W )) = core(v) because W is con-
stant, the second equivalence holds since u′ > 0 by the assumption and the third
equivalence holds by Fact 10.10 �

In this theorem, when v is additive, the bid-ask spread given by
∫
Xdv ≤∫

Xdv′ disappears and the model is reduced to the classical one by Arrow (1965).

10 It can be shown that if v is convex, it holds that

(∀a ∈ B)

∫
a dv′ = max

{ ∫
a dp

∣∣∣∣ p ∈ core(v)

}
.
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This theorem is quite interesting in showing the existence of portfolio inertia
where no trade takes place when the investor is uncertainty-averse. Since the
inertia is widely observed in the real world, their model using a non-additive
measure succeeds in explaining an actual phenomenon.

Mathematical Appendix

In this appendix, we summarize some mathematical results on non-additive mea-
sures and Choquet integrals, mainly the ones which are necessary for reading
the main text.

In what follows, we fix a measurable space (S,Σ) consisting of a set S and
an algebra Σ defined on it and fix a non-additive measure v defined on (S,Σ).
We denote by B(S,Σ) or more simply by B the set of all Σ-measurable and
bounded real-valued functions defined on the measurable space (S,Σ). Also, we
denote the subset of B(S,Σ) consisting of all the simple functions by B0(S,Σ)
or B0. The Choquet integrals with respect to v will be defined on B or B0 in
the manner defined in the main text.

A.1. Representation Theorems by Scott and Gilboa

Given a probability measure p on the measurable space (S,Σ) and a nondecreas-
ing function φ on [0, 1] which satisfies that φ(0) = 0 and φ(1) = 1, if we define
a set function v = φ ◦ p by

(∀A ∈ Σ) v(A) = φ ◦ p(A) = φ(p(A)) , (22)

then v is clearly a non-additive measure on (S,Σ). However, it is not the case
that any non-additive measure can be decomposed like this as the next example
by Chateauneuf (1991, Example 4, p.364) shows:

Example 6. Let S := {1, 2, 3, 4} and let a set function m : 2S → [0, 1] be defined
by:

m({1}) = m({3}) = 1
5 ; m({2}) = m({4}) = m({2, 4}) = 1

6 ;

m(S) = 1
10 and for any other A ⊆ S, m(A) = 0 .

Furthermore, if we define a set function v : 2S → [0, 1] by:

(∀A) v(A) =
∑
B⊆A

m(B) ,

then it can be easily verified that v is a convex non-additive measure. Now sup-
pose that (22) holds for some probability measure p and for some nondecreasing
function φ. Then, it holds that v({1}) = v({3}) = 1

5 > 1
6 = v({2}) = v({4}) and

that p({1}) > p({2}) and p({3}) > p({4}) since φ is nondecreasing, and hence, it
follows that p({1, 3}) > p({2, 4}). However, since v({1, 3}) = 2

5 < 1
2 = v({2, 4}),

this is a contradiction.
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We consider conditions under which such a decomposition is possible. In what
follows, we assume that Σ = 2S . A non-additive measure v is said to be weakly
additive if it satisfies the next condition:

(∀A,B,E, F ⊆ S)

E ⊆ A ∩B, F ⊆ (A ∪B)c, v((A\E) ∪ F ) > v((B\E) ∪ F )

⇒ v(A) > v(B)

Also, v is said to be almost weakly additive if it satisfies the condition that there
exists a countable set M ⊆ [0, 1] such that

(∀A,B,E, F ⊆ S)

E ⊆ A ∩B, F ⊆ (A ∪B)c, v((A\E) ∪ F ) > v((B\E) ∪ F )

⇒ v(A) > v(B) or v(A) = v(B) ∈ M .

Furthermore, v is said to be infinitely decomposable if it satisfies the condition
(which is omitted here) of Gilboa (1985, p.10). Then the next theorem holds.

Theorem 12 (Scott). For any convex-ranged non-additive measure v, it is
weakly additive if and only if there exists a unique strictly increasing function
φ : [0, 1] → [0, 1] and a unique convex-ranged probability measure p such that
v = φ ◦ p.

Proof (Sketch) The necessity of weak additivity follows immediately. To prove
sufficiency, assume that a convex-ranged non-additive measure is weakly additive
and define a binary relation �� on Σ by (∀A,B) A �� B ⇔ v(A) > v(B). Then,
it can be easily seen that �� is a qualitative probability. (QP4 follows from the
weak additivity.) Furthermore, it can be proved that �� satisfies QP5 (omitted).
Therefore, Savage’s Subjective Probability Theorem implies that there exists a
unique convex-ranged probability measure p on (S,Σ) such that

(∀A,B) p(A) > p(B) ⇔ A �� B ⇔ v(A) > v(B) . (23)

Since a probability measure p is convex-ranged, for any r ∈ [0, 1], there exists
A ∈ Σ such that p(A) = r. Denote this set by p−1(r) and define a function φ :
[0, 1] → [0, 1] by φ(r) = v(p−1(r)). Then, (23) implies that φ is well-defined and
satisfies that φ(0) = 0 and φ(1) = 1. From this, (22) follows and the uniqueness
of φ follows from that of p. Finally, it follows that the function φ is strictly
increasing from (23) and since p is convex-ranged. �

Theorem 13 (Gilboa, 1985). For any convex-ranged non-additive measure v,
it is almost weakly additive and infinitely decomposable if and only if there exists
a unique nondecreasing function φ : [0, 1] → [0, 1] and a unique convex-ranged
probability measure p such that v = φ ◦ p.
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A.2. Some Results on Choquet Integrals

In what follows, v denotes a non-additive measure defined on (S,Σ) and I
denotes a Choquet integral on B(S,Σ) or B0(S,Σ) defined with respect to v.
The next result follows immediately from the monotonicity of v.

Fact 3 (Monotonicity). (∀a, b ∈ B) a ≥ b ⇒ I(a) ≥ I(b)

For any pair of functions a, b ∈ B, they are said to be co-monotonic if it holds
that

(∀s, t ∈ S) (a(s)− a(t))(b(s)− b(t)) ≥ 0 .

The next result also follows immediately from the definition.

Fact 4 (Co-monotonicity of simple functions). For any pair of functions
b, c ∈ B0, they are co-monotonic if and only if the next condition holds: There ex-
ist a natural number k, a Σ-measurable partition 〈Ei〉ki=1 and two k-dimensional
vectors (β1, β2, . . . , βk) and (γ1, γ2, . . . , γk) such that β1 ≥ β2 ≥ · · · ≥ βk and
γ1 ≥ γ2 ≥ · · · ≥ γk and such that

b =

k∑
i=1

βiχEi and c =

k∑
i=1

γiχEi .

Fact 5 (Continuity). For any function a ∈ B, there exists a sequence of pairs
of co-monotonic simple functions, (an, bn), which satisfies that

(∀n) an ≤ an+1 ≤ · · · ≤ a ≤ · · · ≤ bn+1 ≤ bn and

lim
n→∞ I(an) = I(a) = lim

n→∞ I(bn) .

Fact 6 (Co-monotonic Additivity). For any pair of functions a, b ∈ B, if a
and b are co-monotonic, it holds that I(a+ b) = I(a) + I(b) .

Fact 7 (Positive Homogeneity). (∀a ∈ B)(∀λ ≥ 0) I(λa) = λI(a) .

A.3. Representation by Choquet Integrals

For a functional I : B → R on a measurable space B(S,Σ), it is said to satisfy
the co-monotonic additivity if it holds that

(∀a, b ∈ B) a and b are co-monotonic ⇒ I(a+ b) = I(a) + I(b)

and it is said to satisfy the additivity if it holds that

(∀a, b ∈ B) I(a+ b) = I(a) + I(b) .

Also, I is said to satisfy the monotonicity if it holds that

(∀f, g ∈ B) a ≥ b ⇒ I(a) ≥ I(b) .

If a functional I satisfies the co-monotonic additivity, it holds that (∀a ∈ B)(∀r ∈
Q+) I(ra) = rI(a). For any r = m/n (m,n ∈ N), the co-monotonic additivity
implies that nI((m/n)a) = I(n(m/n)a) = I(ma) = mI(a). In particular, I(0) =
0 holds. Furthermore, the following lemmas follow.
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Lemma 2. If a functional I : B → R satisfies the co-monotonic additivity and
monotonicity, I is continuous with respect to the norm topology on B.

Lemma 3. If a functional I : B → R satisfies the co-monotonic additivity and
monotonicity, I satisfies the positive homogeneity:

(∀a ∈ B)(∀λ ≥ 0) I(λa) = λI(a)

In addition, if I satisfies the additivity, I satisfies the homogeneity:

(∀a ∈ B)(∀λ ∈ R) I(λa) = λI(a) .

Proof The positive homogeneity follows from the homogeneity with respect to
the rational numbers and the norm continuity. Also, if I is additive, it holds that
I(a) = −I(−a) by 0 = I(a − a) = I(a) + I(−a). The conclusion follows from
this and the positive homogeneity. �

Theorem 14 (Riesz Representation Theorem). For a linear functional I :
B → R which is norm continuous and satisfies that I(χS) = 1, it holds that

(∀a ∈ B) I(a) =

∫
S

a(s) dp(s) . (24)

Here, p is a probability measure on (S,Σ) defined by (∀A ∈ Σ) p(A) = I(χA).
11

Let K be a convex set which satisfies that [−1, 1] ⊆ K ⊆ R and denote the
subset of B (or B0) consisting of K-valued functions by B(K) (or B0(K)). Then,
the next corollary holds.

Corollary 1. For a functional I : B(K) → R which is additive and monotonic
and satisfies that I(χS) = 1, (24) holds.

Proof By the additivity and monotonicity, I is continuous with respect to the
norm topology (Lemma 2) and satisfies the homogeneity (Lemma 3). By the
homogeneity, I can be extended to B. Since I thus extended is a continuous
linear functional on B, the result follows from Riesz Representation Theorem.

�

Theorem 15 (Schmeidler’s (1986) Representation Theorem). Suppose
that I : B → R is a functional which satisfies that I(χS) = 1. Then, if I
satisfies the co-monotonic additivity and monotonicity, I can be represented by
the Choquet integral with respect to the non-additive measure v defined by (∀E ∈
Σ) v(E) = I(χE).

11 For integrals with respect to probability measures and a proof of Riesz Represen-
tation Theorem, see, for example, Dunford and Schwartz (1988) and Rao and Rao
(1983).
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We already pointed out that Choquet integrals satisfy the co-monotonic ad-
ditivity and monotonicity. This theorem is its “converse.” The theorems where
B is replaced by B0 in the above and the next theorem where B(K) is replaced
by B0(K) also hold.

Theorem 16 (Schmeidler, 1986). Suppose that a function I : B(K) → R

satisfy the following three conditions: (i) (∀λ ∈ K) I(λχS) = λ; (ii) For any
triplet of functions, (a, b, c), any two of which are co-monotonic, if I(a) > I(b),
then it holds that (∀α ∈ (0, 1)) I(αa+(1−α)c) > I(αb+(1−α)c); and (iii) a ≥
b ⇒ I(a) ≥ I(b). Then, the function I can be represented by the Choquet integral
with respect to the non-additive measure v defined by (∀E ∈ Σ) v(E) = I(χE).

A.4. Some Results on Convexity of Non-additive Measures

Fact 8. Given a probability measure p on a measurable space (S,Σ) and a non-
decreasing convex function φ on [0, 1] which satisfies φ(0) = 0 and φ(1) = 1,
then the set function v defined by v = φ ◦ p is a convex non-additive measure.

Fact 9 (Shapley, 1971). If a non-additive measure v is convex, then core(v)
is nonempty.

Fact 10 (Schmeidler, 1986). For a Choquet integral with respect to a non-
additive measure v, the following three conditions are equivalent:

(i) v is convex

(ii) (∀a ∈ B)

∫
a dv = min

{ ∫
a dp

∣∣∣∣ p ∈ core(v)

}
(iii) (∀b, c ∈ B)

∫
(b+ c) dv ≥

∫
b dv +

∫
c dv

The three conditions where the convexity is replaced by the concavity, “min”
is replaced by “max” and the direction of the inequality is reversed in each of
(i)-(iii) are also equivalent.
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Abstract. This chapter surveys cooperative game theory as an important appli-
cation based on non-additive measures. In ordinary cooperative game theory, it is
implicitly assumed that all coalitions of N can be formed; however, this is in gen-
eral not the case. Let us elaborate on this, and distinguish several cases: 1) Some
coalitions may not be meaningful. 2) Coalitions may not be “black and white”. In
order to deal with such situations, various generalizations/extensions of the the-
ory have been proposed, e.g., bi-cooperative games, games on networks, games
on combinatorial structures. We give a survey on values and interaction indices
for these extended cooperative game theory.

Keywords: cooperative game, bi-cooperative game, network, combinatorial
structure, value, interaction index.

1 Introduction

Measure is one of the most important concepts in mathematics and so is the integral
with respect to a measure. They have many applications in economics, engineering,
and many other fields, and one of their main characteristics is additivity. This is very
effective and convenient, but often too inflexible or too rigid. As a solution to the rigid-
ness problem, several approaches based on non-additive measures have been proposed
in various fields. The non-additivity can represent interaction phenomena among ele-
ments to be measured.

Let N be a finite set and v a set function (non-additive measure) on 2N . Given a
subset S ⊆ N, the precise meaning of the quantity v(S ) depends on the kind of intended
application or domain [22]:

N is the set of states of nature. Then S ⊆ N is an event in decision under
uncertainty or under risk, and v(S ) represents the degree of certainty, be-
lief, etc.

N is a the set of criteria, or attributes. Then S ⊆ N is a group of criteria
(or attributes) in multi-criteria (or multi-attributes) decision making, and
v(S ) represents the degree of importance of S for making decision.

N is the set of voters, political parties. Then S ⊆ N is called a coalition
in voting situations, and v(S ) = 1 iff bill passes when coalition S votes in
favor of the bill, and v(S ) = 0 else.

N is the set of players, agents, companies, etc. Then S ⊆ N is also called
a coalition in cooperative game theory, and v(S ) is the worth (or payoff,

V. Torra, Y. Narukawa, and M. Sugeno (eds.), Non-Additive Measures, 131
Studies in Fuzziness and Soft Computing 310,
DOI: 10.1007/978-3-319-03155-2_6, c© Springer International Publishing Switzerland 2014
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or income, etc.) won by S if all members in S agree to cooperate, and the
other ones do not.

In the current chapter, we discuss and focus on cooperative games as an application
based on non-additive measures.

2 Ordinary Cooperative Game

2.1 Definitions and Several Representations of Cooperative Games

Definition 1 (cooperative game). The function v that assigns to every coalition S ⊆ N
its value or worth v(S ) is commonly referred to as the characteristic function. It is
always assumed that v(∅) = 0. A pair (N, v) consisting of a player set N and a charac-
teristic function v constitutes a cooperative game or coalitional game. These games are
also referred to as TU games, where TU stands for transferable utility (We often iden-
tify (N, v) with v). Sometimes, we want to focus on only a few of the players involved
in a cooperative game (N, v). For a coalition S ⊆ N, v|S denotes the restriction of the
characteristic function v to the player set S , i.e., v|S (T ) = v(T ) for each coalition T ⊆ S .
Then, (S , v|S ) is called a subgame of the game (N, v).

In order to avoid a heavy notation, we will often omit braces for singletons, e.g., by
writing v(i), N \ i instead of v({i}), N \ {i}. Similarly, for pairs, we will write i j instead
of {i, j}. Furthermore, cardinalities of coalitions S , T, . . . , will often be denoted by the
corresponding lower case letters s, t, . . . , otherwise by the standard notation |S |, |T |, etc.

The set of all cooperative game with player set N will be denoted by GN . The set GN

is a (2n − 1)-dimensional linear space.

Definition 2 (unanimity game). For each T ∈ 2N , the unanimity game uT ∈ GN is
defined by

uT (S ) :=

⎧
⎪⎪⎨
⎪⎪⎩

1 if S ⊇ T ,

0 otherwise.

The set {uT | T ∈ 2N \ {∅}} is a basis of the linear space GN . For any game v ∈ GN , we
have

v(S ) =
∑

∅�T⊆N

cT (v) uT (S ) ∀S ∈ 2N \ {∅},

where
cT (v) =

∑

R⊆T

(−1)|T\R|v(R) ∀T ∈ 2N \ {∅}.

Then, {cT }T∈2N\{∅} is called unanimity coefficients or Harsanyi dividends [33] of v.

Definition 3 (the Möbius transforms [56]). Let (P,≤) be a poset. For a function f :
P→ R, the Möbius transform Δ f of f is the unique solution of the equation:

f (x) =
∑

y≤x

Δ f (y) ∀x ∈ P,
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given by
Δ f (x) =

∑

y≤x

μ(y, x) f (y), x ∈ P,

where μ is the so-called Möbius function on P and given by

μ(y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if x = y,

−
∑

y≤z<x

μ(y, z) if y < x,

0 otherwise.

Now, considering a pair (2N ,⊆) as a poset and a characteristic function v : 2N → R of
cooperative game (N, v), then the Möbius transform of the game v on the poset (2N ,⊆),
is obtained as

Δv(T ) :=
∑

R⊆T

(−1)|T\R|v(R) ∀T ∈ 2N .

That is, the concept of Möbius transform fits with of Harsanyi dividends in cooperative
game theory. i.e., cT (v) = Δv(T ) for any T ∈ 2N \ {∅}. Inversely,

v(S ) =
∑

T⊆S

Δv(T ) ∀S ∈ 2N .

Here, the Möbius transform or Harsanyi dividends of cooperative games can be inter-
preted as follows:

The Möbius transform is vanishing at the empty set, its worth v(i) for every
singleton i ∈ N, while recursively, the Möbius transform of every coalition of at
least two players is equal to its worth minus the sum of the Möbius transforms
of all its proper subcoalitions. In this sense, the Möbius transform of a coalition
S can be interpreted as an extra contribution of cooperation among the players
in S that they did not already achieve by smaller coalitions.

Definition 4 (multilinear extension). Let IN be the n-dimensional unit hyper cube,
i.e.,

IN := {(x1, · · · , xn) ∈ Rn | 0 ≤ xi ≤ 1, ∀i ∈ N = {1, · · · , n}}.

The extreme points of IN are the vectors χS , S ⊆ N, where

(χS )i =

⎧
⎪⎪⎨
⎪⎪⎩

1 if i ∈ S ,

0 otherwise.

So, we notice that v ∈ GN determines a real function v̄ on the corners of Iv by

v̄(χS ) = v(S ) ∀S ⊆ N.

Hence, v̄ may be extended to IN by

v̄(x) =
∑

T⊆N

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈T
xi

∏

i∈N\S
(1 − xi)

⎞
⎟⎟⎟⎟⎟⎟⎠

v(T ) ∀x ∈ IN .
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Then, this function v̄ : IN → R is called the multilinear extension (MLE) of v. The
multilinear extension of v can also be represented via the Harsanyi dividends (Möbius
transform) as follows [53]:

v̄(x) =
∑

T⊆N

Δv(T )
∏

i∈T
xi ∀x ∈ IN .

2.2 Intuitive Representations of Importance and Interaction

In order to intuitively approach the concept of importance of each player and of inter-
action among players, consider two players i and j ∈ N. Clearly, v(i) is one of represen-
tations of importance of i ∈ N. An inequality

v(i j) > v(i) + v( j) (resp., < )

seems to model a positive (resp., negative) interaction or complementary (resp., substi-
tutive) effect between players i and j. However, as discussed in Grabisch and Roubens
[27], the intuitive concept of interaction requires a more elaborate definition. We should
not only compare v(i), v( j), and v(i j) but also see what happens when i, j, and i j join
the other coalitions. That is, we should take into account all coalitions of the form T ∪ i,
T ∪ j, and T ∪ i j. For a player i and a coalition T � i,

Δiv(T ) := v(T ∪ i) − v(T ) (1)

seems to represent an index of importance of i in T ∪ i. The equation (1) is called the
marginal contribution of a player i to a coalition T . Then it seems natural to consider
that if for T not containing i and j

Δiv(T ∪ j) > Δiv(T ) (resp., < ),

then i and j interact positively (resp., negatively) each other in the presence of T since
the presence of j increases (resp., decreases) the marginal contribution of i to T . Then

Δi jv(T ) := Δiv(T ∪ j) − Δiv(T )

is called the marginal interaction [28] between i and j in the presence of T . Note that

Δiv(T ∪ j) − Δiv(T ) = v(T ∪ i j) − v(T ∪ i) − v(T ∪ j) + v(T )

= Δ jv(T ∪ i) − Δ jv(T ).

For three players i, j, k ∈ N and a coalition T not containing i, j and k, Δ{i, j,k}v(T ) can be
naturally defined as

Δ{i, j,k}v(T ) := Δi jv(T ∪ k) − Δi jv(T ).

Then we have Δi jv(T ∪ k) − Δi jv(T ) = Δikv(T ∪ j) − Δikv(T ) = Δ jkv(T ∪ i) − Δ jkv(T ).
Moreover, for two distinct coalitions S and T ⊆ N \ S ,

ΔS v(T ) := ΔS \iv(T ∪ i) − ΔS \iv(T )
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for i ∈ S . Then ΔS \iv(T ∪ i) − ΔS \iv(T ) = ΔS \ jv(T ∪ j) − ΔS \ jv(T ) for any i, j ∈ S .
Similarly, when, for example, ΔS v(T ) > 0 (resp., <), we shall consider that players
among S interact positively (resp., negatively) each other in the presence of T.

These marginal contributions and interactions can be represented through the follow-
ing notion, discrete derivative.

Definition 5 (discrete derivative [28]). Given a game v ∈ GN and finite coalitions
S , T ⊆ N, we denote by ΔS v(T ) the S -derivative of v at T , which is recursively defined
by

Δiv(T ) := v(T ∪ i) − v(T \ i) ∀i ∈ N,

and
ΔS v(T ) := Δi

(
ΔS \iv(T )

)
∀i ∈ S ,

with convention Δ∅v(T ) := v(T ).

Proposition 1 ([18,20,28]). For any S ⊆ N, T ⊆ N \ S and v ∈ GN , the S -derivative of
v at T can be represented as follows:

ΔS v(T ) =
∑

L⊆S

(−1)|S \L|v(T ∪ L) =
∑

L⊆T

Δv(S ∪ L),

i.e.,
ΔS v(T ) =

∑

T⊆L⊆S∪T

(−1)|(S∪T )\L| v(L) =
∑

S⊆L⊆S∪T

Δv(L).

In particular, Δv(S ) = ΔS v(∅) for any S ⊆ N. Moreover, if σ is a permutation on N such
that S = {σ(1), · · · , σ(|S |)},

ΔS v(T ) =
∂|S |

∂xσ(1) · · ·∂xσ(|S |)
v̄(x)

∣
∣
∣
∣
∣
∣x=χS∪T.

where v̄ is the MLE of v.

Definition 6 (k-monotonic game [10]). Given an integer k ≥ 2, a game v ∈ GN is
said to be k-order monotone (for short, k-monotone) if and only if, for any (at most) k
coalitions S 1, · · · , S k, we have

v

⎛
⎜⎜⎜⎜⎜⎜⎝

k⋃

i=1

S i

⎞
⎟⎟⎟⎟⎟⎟⎠
≥
∑

J⊆{1,··· ,k}
J�∅

(−1)|J|+1v

⎛
⎜⎜⎜⎜⎜⎝

⋂

i∈J

S i

⎞
⎟⎟⎟⎟⎟⎠ . (2)

It is easy to verify that k-monotonicity (k ≥ 2) implies l-monotonicity for all integer
2 ≤ l ≤ k. By extension, 1-monotonicity (which does not correspond to k = 1 in Eq.
(2)) is defined as standard monotonicity, i.e.,

v(S ) ≤ v(T ) whenever S ⊆ T ⊆ N.

A game v ∈ GN is called totally monotone if Eq.(2) holds for any positive integer k.
2-Monotonic games v, i.e.,

v(S ∪ T ) ≥ v(S ) + v(T ) − v(S ∩ T ) ∀S , T ⊆ N,

are also referred to as convex games.
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The notion of k-monotonicity can be characterized through the use of discrete deriva-
tives as follows.

Proposition 2 ([10,18,20]). Let v be a game on N (i.e., v ∈ GN) and k a positive integer.
Then v is k order monotone if and only if

ΔS v(T ) ≥ 0

for any S ⊆ N and T ⊆ N \ S such as 1 ≤ |S | ≤ k.

Note: In evidence theory [58], belief functions Bel : 2N → [0, 1] have been introduced
as totally monotonic games, i.e., whose Möbius transformsΔBel, which are called “basic
probability assignments”, are non-negative for all events (coalitions).

2.3 The Shapley Value as an Acceptable Allocation in Cooperative Games

The players in a cooperative game are eventually interested in what they individually
will get out of cooperating with the other players. How will individual players benefit
from cooperation? So far, various solutions concepts and allocation rules of benefits
have been proposed (see, e.g., [54]). Some of them (e.g., the core, bargaining set, prek-
ernel, kernel, prenucleolus, nucleolus) are based on domination, and some of them (e.g.,
the Shapley value) are based on expectation. This subsection discusses only the Shapley
value and relatives from the standpoint of Shapley’s statement [59]:

“At the foundation of the theory of games is the assumption that the players of
a game can evaluate, in their utility scale, every “prospect” that might arise a
result of a play. In attempting to apply the theory to any field, one would nor-
mally expect to be permitted to include, in the class of “prospects”, the prospect
of having to play a game. The possibility of evaluating games is therefore of
critical importance.”

A payoff vector or allocation is a vector x = (x1, · · · , xn) ∈ RN that specifies for each
player i ∈ N the profit xi that this player can expect when he cooperates with the other
players. Thus, a payoff vector x = (x1, · · · , xn) such as

∑

i∈N xi > v(N) is not feasible.
That is, payoffs x = (x1, · · · , xn) with

∑

i∈N xi = v(N) are the most efficient allocations of
v(N). However, not all these efficient allocations will be acceptable to the players. Here,
we introduce the Shapley value, which provide a priori evaluations of every cooperative
game as an acceptable allocation to each player.

Definition 7 (the Shapley value [59]). The Shapley value φ : GN → RN is given by

φi(v) =
∑

S⊆N\i

s! · (n − s − 1)!
n!

[v(S ∪ i) − v(S )]

for any v ∈ GN and any i ∈ N, where φi(v) is the i-th component of φ(v) ∈ RN .
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The Shapley value is one of the most well-known allocation rule defined as a certain
type of expectation of marginal contributions for each player and characterized as the
unique allocation rule satisfying the following four properties (axioms): symmetry, effi-
ciency, null zero, and additivity (low of aggregation) [59].

Definition 8 (symmetry). Let Π(N) denote the set of all permutations on N. If σ ∈
Π(N), then writing σ(S ) for the image of S ⊆ N under σ, i.e., σ(S ) := {σ(i) | i ∈ S },
we may define the game σv by σv(σ(S )) = v(S ) for all S ⊆ N. An allocation rule
F : GN → RN is said to be symmetry if

Fσ(i)(σv) = Fi(v)

for any σ ∈ Π(N) and v ∈ GN , where Fi(v) is the i-th component of F(v) ∈ RN .

Under symmetry allocation rules, the names of players play no role in determining
the allocation to each player.

Definition 9 (efficiency). An allocation rule F : GN → RN is said to be efficient if
∑

i∈N
Fi(v) = v(N)

for any v ∈ GN , where Fi(v) is the i-th component of F(v) ∈ RN .

Under efficient allocation rules, the total worth v(N) is allocated to all the players.

Definition 10 (null-zero). An allocation rule F : GN → RN is said to be null-zero if

Fi(v) = 0

for any v ∈ GN and i ∈ N such that v(S ∪ i) = v(S ) ∀S ⊆ N, where Fi(v) is the i-th
component of F(v) ∈ RN .

Under null-zero allocation rules, a player who adds nothing to the worth of any
coalition is allocated nothing.

Definition 11 (additivity). An allocation rule F : GN → RN is said to be additive if

F(v + w) = F(v) + F(w)

for any v,w ∈ GN .

Under additive allocation rules, if two allocation problems are combined into one
by adding the characteristic functions, then for each player the allocation under the
combined problem is the sum of the allocations under the two individual problems.

The Shapley value also can be treated as a power and/or importance index in various
fields, e.g., decision making problems [55], voting power in the council [60], etc., and
represented via the Möbius transform and the multilinear extension of v as follows [54]:

φi(v) =
∑

i∈S⊆N

1
s
Δv(S ).

φi(v) =
∫ 1

0

∂

∂xi
v̄(t, t, · · · , t) dPφ(t),

where ∂
∂xi

v̄(t, t, · · · , t) := ∂
∂xi

v̄(x) |x=(t,t,··· ,t), Pφ(t) = t for any t ∈ [0, 1] and the integral is
to be understood in the sense of Riemann-Stieljes.
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Note (the Banzhaf power index): The Banzhaf power index β : GN → RN , defined
by

βi(v) :=
∑

S⊆N\i

1
2n−1

[v(S ∪ i) − v(S )] =
∑

i∈T⊆N

1
2t−1
Δv(T ) ∀v ∈ GN ,

is also a well-known voting power index [2], which is not efficient. The Banzhaf power
index also has an integral-representation as follows [13,18]:

βi(v) =
∫ 1

0

∂

∂xi
v̄(t, t, · · · , t) dPβ(t) =

∂

∂xi
v̄(

1
2
,

1
2
, · · · , 1

2
),

where ∂
∂xi

v̄(t, t, · · · , t) := ∂
∂xi

v̄(x) |x=(t,t,··· ,t) , Pβ(t) = 1[0.5,1] for any t ∈ [0, 1].

2.4 Interaction Index in Cooperative Games

The study of the notion of interaction among players is relatively recent in the frame-
work of cooperative game theory. The first attempt is probably due to Owen [53] for su-
peradditive games. More developments are due to Murofushi and Soneda [50], Roubens
[57], Grabisch and Roubens [27], Marichal and Roubens [49], and Fujimoto et al. [18].
The concept of interaction index, which can be seen as an extension of the notion of
value, is fundamental for making it possible to measure the interaction phenomena
modeled by a game on a set of players. The expression “interaction phenomena” refers
to either complementarity or redundancy effects among players of coalitions resulting
from the non additivity of the underlying game. Thus far, the notion of interaction in-
dex has been primarily applied to multi-criteria decision making in the framework of
aggregation by the Choquet integral. In this context, it is used to appraise the overall
interaction among criteria (see, e.g., [27,29,40]), thereby giving more insight into the
decision problem. Other natural applications concern statistics and data analysis (see,
e.g., [21,39]).

An allocation rule φ : GN → RN , e.g., the Shapley value, can be regarded as a
function F : GN × N → R such that

F(v, i) = φi(v)

for any v ∈ GN and any i ∈ N. Then, setting N := 2N \ {∅}, we define an interaction
index as a function I : GN × N → R to measure the (simultaneous) interaction among
players in a cooperative game, i.e., I(v, S ) represents the (simultaneous) interaction
among players S in playing a game v.

Definition 12 (interaction indices). The (Shapley-type) interaction index with respect
to S ∈ N of v is defined by

I(v, S ) :=
∑

T⊆N\S

(n − t − s)! t!
(n − s + 1)!

ΔS v(T ).

This index is an extension of the Shapley value in the sense that I(v, i) coincides with
the Shapley value φi(v) of any player i.
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The Shapley-type interaction index is a type of expectation of marginal interactions
among the players in each coalition and characterized as the unique interaction in-
dex satisfying the following six properties (axioms): symmetry, k-monotone positivity,
dummy partnership, reduced partnership consistency, additivity, efficiency [18].

Definition 13 (additivity). An interaction index I : GN ×N → R is said to be additive
if

I(v + w, S ) = I(v, S ) + I(w, S )

for any v,w ∈ GN and any S ∈ N .

Definition 14 (symmetry). Let Π(N) denote the set of all permutations on N. If σ ∈
Π(N), then writing σ(S ) for the image of S ⊆ N under σ, i.e., σ(S ) := {σ(i) | i ∈ S },
we may define the game σv by σv(σ(S )) = v(S ) for all S ⊆ N. An interaction index
I : GN × N → R is said to be symmetry if

I(σv, σ(S )) = I(v, S )

for any σ ∈ Π(N), any S ∈ N , and any v ∈ GN .

Definition 15 (efficiency). An interaction index I : GN × N → R is said to be efficient
if ∑

i∈N
I(v, i) = v(N)

for any v ∈ GN .

Under efficient interaction indices, the interaction among itself is represented as its
allocation for each player.

A coalition P ∈ N is said to be a partnership [38] in a game (N, v) if

v(S ∪ T ) = v(T )

for any S � P and any T ⊆ N \ P. In other words, as long as all the members of a part-
nership P are not all in coalition, the presence of some of them only leaves unchanged
the worth of any coalition not containing elements of P. In particular v(S ) = 0 for all
S � P. Thus, a partnership behaves like a single hypothetical player [P], that is, the
game v ∈ GN and its reduced version v[P] ∈ G(N\P)∪[P], which is defined by

v[P](S ) =

⎧
⎪⎪⎨
⎪⎪⎩

v(S ) if S ⊆ N \ P

v(S ∪ P) if S  [P]
,

can be considered as equivalent.

Definition 16 (reduced partnership consistency). An interaction index I : GN ×N →
R is said to satisfy reduced partnership consistency property/axiom if

I(v, P) = I(v[P], [P])

for any v ∈ GN and any partnership P in (N, v).
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Recall that a partnership can be considered as behaving as a single hypothetical player.
Furthermore, it is easy to verify that the marginal interaction among the players of a
partnership P ∈ N in a game (N, v) in the presence of a coalition T ⊆ N \ P is equal to
the marginal contribution of P to coalition T , i.e.,

ΔPv(T ) = v(T ∪ P) − v(T ).

In other words, when we measure the interaction among the players of a partnership, it
is as if we were measuring the value of a hypothetical player. The reduced partnership
consistency property then simply states that the interaction among players of a partner-
ship P in a game (N, v) should be regarded as the value of the reduced partnership [P]
in the corresponding reduced game v[P].

A player d ∈ N is said to be dummy in a game v ∈ GN if

v(S ∪ d) = v(S ) + v(d)

for all S ⊆ N \ d. In other words, the marginal contribution of a dummy player d ∈ N
to any coalition S ⊆ N \ d is simply its worth v(d), i.e., there are no interaction between
d and any S ⊆ N \ d. Similarly, a coalition D ∈ N is said to be dummy if v(T ∪ D) =
v(T ) + v(D) for any T ⊆ N \ D.

Definition 17 (dummy partnership). An interaction index I : GN × N → R is said to
satisfy dummy partnership property/axiom if the following two conditions hold:

(i) I(v,D) = v(D)
(ii) I(v, S ∪ D) = 0 ∀S (� ∅) ⊆ N \ D

for any v ∈ GN and any dummy partnership D ∈ N in (N, v).

The first part of dummy partnership property states that the interaction index of a
dummy partnership D in a game (N, v) should be its worth since the marginal interac-
tion among the players in D in the presence of any coalition T not containing elements
of D is its worth, that is, ΔD(T ) = v(D) for any T ⊆ N \ D. The second part of the
property says that there should be no simultaneous interaction among players of coali-
tions containing dummy partnerships since dummy partnerships behaves like a single
hypothetical dummy player and he does not interact with any outsider coalition (see,
[49]).

Definition 18 (k-monotone positivity). An interaction index I : GN × N → R is said
to be k-monotone positive if, for any positive integer k and k-order monotonic game
v ∈ GN ,

I(v, S ) ≥ 0 ∀S ∈ N whenever |S | ≤ k.

As discussed in Subsection 2.2, in a k-monotone game, it seems sensible to consider that
there are necessarily complementarity effects among players in coalitions containing (at
most) k players. This axiom then simply states that these effects should be represented
as positive interactions.
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The (Shapley-type) interaction index, as similar to the Shapley value, can be represented
via the Möbius transform Δv and the multilinear extension v̄ of v ∈ GN as follows [18]:

I(v, S ) =
∑

T⊇S

1
t − s + 1

Δv(T ).

I(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dP(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and P(t) = t for any
t ∈ [0, 1].

Note (other interaction indices): Another Shapley-type interaction index Ich called
chaining interaction index and the Banzhaf-type interaction index IB have been pro-
posed and characterized axiomatically (see, e.g., [18,27,49]).

The chaining interaction index Ich : GN × N → R is defined by

Ich(v, S ) :=
∑

T⊆N\S

s(n − s − t)!(s + t − 1)!
n!

ΔS v(T )

for any v ∈ GN and any S ∈ N , and also has the following representations:

Ich(v, S ) =
∑

T⊇S

s
t
Δv(T ).

Ich(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dPch(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and Pch(t) = ts1]0,1] for
any t ∈ [0, 1].

The Banzhaf-type interaction index IB : GN × N → R is defined by

IB(v, S ) :=
∑

T⊆N\S

1
2n−s

ΔS v(T )

for any v ∈ GN and any S ∈ N , and also has the following representations:

IB(v, S ) =
∑

T⊇S

1
2t−s
Δv(T ).

IB(v, S ) =
∫ 1

0

∂|S |

∂xσ(1) · · · ∂xσ(|S |)
v̄(t, t, · · · , t) dPB(t),

where σ is a permutation on N such that S = {σ(1), · · · , σ(|S |)} and PB(t) = 1[0.5,1] for
any t ∈ [0, 1].
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3 Bi-cooperative Game

To date, there have been some attempts to define more general concept in coopera-
tive game theory. Aubin [1] has proposed the concept of generalized coalition as a
function c : N → [−1, 1] which associates each player i with his/her level of partici-
pation c(i) ∈ [−1, 1]. A positive level is interpreted as attraction of the player i for the
coalition, and a negative level as repulsion. Later, the concept of bi-cooperative game
has been introduced by Bilbao et al. [5] as a generalization of classical cooperative
games, where each player can participate positively to the game (defender), negatively
(defeater), or do not participate (abstentionist). In a voting situation (simple games),
they coincide with ternary voting games, on the set of all signed coalitions given by
{c : N → {−1, 0, 1}}, of Felsenthal and Machover [15], where each voter can vote in
favor (1), against (-1) or abstain (0). Labreuche and Grabisch [43] give the following
example:

Example 1. A set N of farmers raise three kinds of plants called A, B and C (for instance
colza, grass and reed) in a given area. Plant A (defeater) needs a lot of pesticide and
chemical fertilizers so that it pollutes a lot the local river. Plant B (abstentionist) needs
no special treatment and thus no pollution is caused by this plant. Plant C (defender)
helps in reducing the pollution since it absorbs some chemicals. The Governor of this
area wants to determine the tax for each farmer on the basis of the impact of the farming
on the river pollution rate. The bi-cooperative game v(S , T ) measures the pollution rate
in the river compared to the time when there were only meadows in the area, when
farmers S raise plant C, farmers T raise plant A and farmers N \ (S ∪ T ) raise plant B.

3.1 Definitions and Several Representations of Bi-cooperative Games

We will denoteP(N) := 2N and Q(N) := {(A1, A2) ∈ P(N)×P(N) | A1∩A2 = ∅}.When
equipped with the following order: for (A1, A2), (B1, B2) ∈ Q(N)

(A1, A2) � (B1, B2) iff A1 ⊆ B1 and A2 ⊇ B2,

(Q(N),�) becomes a lattice, which will be defined in Definition 42. The binary opera-
tors � (sup) and � (inf) are given by

(A1, A2) � (B1, B2) = (A1 ∪ B1, A2 ∩ B2),

(A1, A2) � (B1, B2) = (A1 ∩ B1, A2 ∪ B2).

Then the top and bottom are respectively (N, ∅) and (∅,N).

Definition 19 (irreducible elements [14]). Let (L,≤,∨,∧, �,⊥) be a lattice, where
∨,∧,�,⊥ denotes sup, inf, the top and bottom element, respectively. An element x ∈ L
is said to be ∨-irreducible if x � ⊥ and x = a ∨ b implies x = a or x = b, ∀a, b ∈ L.

Proposition 3 ([24]). The �-irreducible elements of Q(N) are (∅,N \ i) and (i,N \ i),
for all i ∈ N. Moreover, for any (A1, A2) ∈ Q(N),

(A1, A2) =
⊔

i∈A1

(i,N \ i) �
⊔

j∈N\(A1∪A2)

(∅,N \ j). (3)
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Eq. (3) is called the minimal decomposition of (A1, A2) [23].

Here, �-irreducible elements permit to define layer in Q(N) as follows [23]:
(∅,N) is the bottom layer (layer 0) (the black square in Fig. 1), the set of all
�-irreducible elements forms layer 1 (black circles in Fig. 1), and layer k, for
k = 2, . . .n, consists of all elements whose minimal decomposition contains ex-
actly k �-irreducible elements. In other words, layer k consists of all elements
(A1, A2) ∈ Q(N) such that |A2

c| = k, for k = 2, . . . , n. On the other hand, let
us consider the Boolean lattice (P(N),⊆, ∪,∩,N, ∅). Then, the empty set is the
bottom layer; all singletons are ∪-irreducible elements, (i.e., in layer 1); the
set of all A ∈ P(N) whose cardinality is k, for k = 2, . . . , n, forms layer k.

123 φ

φ,123

φ,23

,23

φ,13

3,1

φ,12

3,2

2,13

3,12

Fig. 1. The lattice Q(123): the element in layer 0 is indicated by a black square and elements in
layer 1 black circles

Definition 20 (bi-cooperative game [3,24]). The function v that assigns to every bi-
coalition (S 1, S 2) ∈ Q(N) its value or worth v(S 1, S 2) is commonly referred to as the
bi-characteristic function. It is always assumed that v(∅, ∅) = 0. A triplet (N, v,Q(N))
consisting of a player set N, a bi-characteristic function v, and a lattice Q(N) constitutes
a bi-cooperative game or bi-coalitional game. (We often identify (N, v,Q(N)) with v).

Definition 21 (the Möbius transform of bi-cooperative game). To any bi-cooperative
game v : Q(N)→ R, another function m : Q(N)→ R can be associated by

Δv(A1, A2) :=
∑

B1⊆A1
A2⊆B2⊆N\A1

(−1)|A1\B1|+|B2\A2 | v(B1, B2)

for (A1, A2) ∈ Q(N). This correspondence proves to be one-to-one, since conversely

v(A1, A2) =
∑

(B1,B2)�(A1,A2)

Δv(B1, B2) (4)

for all (A1, A2) ∈ Q(N). The validity of Eq. (4) is proved by Grabisch and Labreuche [23]
who call Δv : Q(N)→ R the Möbius transform of v.
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Fujimoto and Murofushi [20] have introduced another equivalent representation, the
bipolar Möbius transform, of a bi-cooperative game as follows:

Definition 22 (the bipolar Möbius transform). To any bi-cooperative game v : Q(N)
→ R, another function b : Q(N)→ R can be associated by

bv(A1, A2) :=
∑

B1⊆A1
B2⊆A2

(−1)|A1\B1|+|A2\B2| v(B1, B2) (5)

=
∑

(∅,A2)�(B1,B2)�(A1 ,∅)
(−1)|A1\B1|+|A2\B2| v(B1, B2)

for (A1, A2) ∈ Q(N). Then, the function defined by Eq. (5) is called the bipolar Möbius
transform of v.

Proposition 4 ([20]). Let v : Q(N)→ R be a bi-cooperative game, and bv : Q(N)→ R
the bipolar Möbius transform of v. Then,

v(A1, A2) =
∑

B1⊆A1
B2⊆A2

bv(B1, B2)

for any (A1, A2) ∈ Q(N).

Definition 23 (piecewise multi linear extension). The set of all bi-cooperative games
{v : Q(N) → R} is isomorphic to the set of all ternary pseudo-Boolean functions
{ f : {−1, 0, 1}N → R}. Indeed, there exists the isomorphism ϕ : Q(N) → {−1, 0, 1}N
such that ϕ(A1, A2) = χ(A1 ,A2) for any (A1, A2) ∈ Q(N), where χ(A1,A2) denotes the char-
acteristic vector of (A1, A2), which is the vector of {−1, 0, 1}N whose i-th element is 1 if
i ∈ A1, −1 if i ∈ A2, and 0 otherwise. Then, for any bi-cooperative game v : Q(N) → R
there exists a ternary pseudo-Boolean function fv (i.e., fv : {−1, 0, 1}N → R) cor-
responding to v. Now, we introduce an equivalent representation, by using a ternary
pseudo-Boolean function, of v as follows:

fv(x) =
∑

(S 1,S 2)∈Q(N)

bv(S 1, S 2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈S 1

x+i ·
∏

j∈S 2

x−j

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

for x ∈ {−1, 0, 1}N, where x+ = max{x, 0} and x− = 0 −min{x, 0}. This correspondence
is represented as

fv(χ(A1,A2)) =
∑

B1⊆A1
B2⊆A2

bv(B1, B2) = v(A1, A2) ∀(A1, A2) ∈ Q(N).

Here, Eq. (6) leads to the piecewise multilinear extension gv : [−1, 1]N → R, of
the ternary pseudo-Boolean function fv : {−1, 0, 1}N → R corresponding to the bi-
cooperative game v : Q(N)→ R, defined by

gv(x) :=
∑

(S 1,S 2)∈Q(N)

bv(S 1, S 2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∏

i∈S 1

x+i ·
∏

j∈S 2

x−j

⎞
⎟⎟⎟⎟⎟⎟⎠

for x ∈ [−1, 1]N.
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3.2 Monotonicity and Derivatives

As seen in Section 2.2 and 2.4, the definition of the derivative is the key concept for the
interaction index. Grabisch and Labreuche [23] extended the notion of discrete deriva-
tive of ordinary cooperative games to that of bi-cooperative games.

Definition 24 ((T1, T2)-derivative of bi-cooperative game). Let (N, v,Q(N)) be a bi-
cooperative game. For (T1, T2) ∈ Q(N), the (T1, T2)-derivative at a point (S 1, S 2∪T2) ∈
Q(N), where (S 1, S 2) ∈ Q(N \ (T1∪T2)), is denoted as Δ(T1,T2)v(S 1, S 2∪T2) and defined
by

Δ(T1,T2)v(S 1, S 2 ∪ T2) :=
∑

L1⊆T1
L2⊆T2

(−1)|T1\L1 |+|L2 | v(S 1 ∪ L1, S 2 ∪ L2) (7)

=
∑

(S 1,S 2∪T2)�(A1 ,A2)�(S 1∪T1,S 2)

(−1)|A1\S 1|+|A2\S 2 | v(A1, A2).

The formula (7) is led by the following recursive relations [24]:

Δ(i,∅)v(S 1, S 2) := v(S 1 ∪ i, S 2) − v(S 1, S 2),

Δ(∅, j)v(S 1, S 2 ∪ j) := v(S 1, S 2) − v(S 1, S 2 ∪ j),

Δ(T1,T2)v(S 1, S 2 ∪ T2) := Δ(i,∅)
(
Δ(T1\i,T2)v(S 1, S 2 ∪ T2)

)

= Δ(∅, j)
(

Δ(T1,T2\ j)v(S 1, (S 2 ∪ j) ∪ (T2 \ j))
)

,

where i ∈ T1, j ∈ T2.

Example 2. Let us consider the (12, 3)-derivative at (∅, 3). Then, Δ(12,3)v(∅, 3) is repre-
sented by

Δ(12,3)v(∅, 3) = Δ(1,3)v(2, 3) − Δ(1,3)v(∅, 3).

The derivatives Δ(1,3)v(2, 3) and Δ(1,3)v(∅, 3) are represented by

Δ(1,3)v(2, 3) = Δ(∅,3)v(12, 3)− Δ(∅,3)v(2, 3) and Δ(1,3)v(∅, 3) = Δ(∅,3)v(1, 3) − Δ(∅,3)v(∅, 3),

respectively. The derivatives Δ(∅,3)v(12, 3), Δ(∅,3)v(2, 3), Δ(∅,3)v(1, 3) and Δ(∅,3)v(∅, 3) are
represented by

Δ(∅,3)v(12, 3) = v(12, ∅)− v(12, 3), Δ(∅,3)v(2, 3) = v(2, ∅) − v(2, 3),

Δ(∅,3)v(1, 3) = v(1, ∅) − v(1, 3), and Δ(∅,3)v(∅, 3) = v(∅, ∅) − v(∅, 3),

respectively. Inversely, first, consider the first order derivatives Δ(∅,3) at (∅, 3), (1, 3),
(2, 3), and (12, 3). These derivatives correspond to thin arrow lines in Fig. 2, respec-
tively. Second, the second order derivatives Δ(1,3) at (∅, 3) and (2, 3) correspond to thick
black arrow lines in Fig. 2, which represent the differences between the first order
derivatives represented by thin arrow lines. Finally, the (12, 3)-derivative at (∅, 3) corre-
sponds to the thick gray arrow line in Fig. 2.
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Fig. 2. The (12, 3)-derivative at (∅, 3)

Proposition 5 ([20,23]). For (T1, T2) ∈ Q(N),

Δ(T1,T2)v(S 1, S 2 ∪ T2) =
∑

(T1,N\(T1∪T2))�(A1 ,A2)�(S 1∪T1,S 2)

Δv(A1, A2)

= (−1)|T2|
∑

L1⊆S 1
L2⊆S 2

bv(L1 ∪ T1, L2 ∪ T2)

for any (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)). Thus,

Δv(T1, T2) = Δ(T1,T2)v(∅,N \ T1) ∀(T1, T2) ∈ Q(N).

Proposition 6 ([20]). Let v : Q(N)→ R be a bi-cooperative game and gv : [−1, 1]N →
R the piecewise multilinear extension of the ternary pseudo-Boolean function cor-
responding to v, and (T1, T2) := ({t1(1), . . . , t1(p)}, {t2(1), . . . , t2(q)}) ∈ Q(N), where
|T1| = p and |T2| = q. Then,

Δ(T1,T2)v(S 1, S 2 ∪ T2) =
∂(p+q)

∂xt1(1) · · · ∂xt1(p)∂xt2(1) · · · ∂xt2(q)
gv(x)

∣
∣
∣
∣
∣
∣ x=χ(S 1∪T1 ,S 2∪T2)

for all (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)), where χ(S 1∪T1,S 2∪T2) ∈ [−1, 1]N is the characteristic

vector of (S 1 ∪ T1, S 2 ∪ T2) ∈ Q(N). It should be noticed that
∂

∂xi
gv cannot be defined

on {x ∈ [−1, 1]N | xi = 0}.

Labreuche and Grabisch [42] have proposed the notion of k-monotonicity in
bi-cooperative games as a bipolar extension of that in ordinary cooperative games.

Definition 25 (k-monotonic bi-cooperative game [24,42]). Given an integer k ≥ 2,
a bi-cooperative game v : Q(N) → R is said to be k-order monotone (for short, k-
monotone) if and only if, for any (at most) k bi-coalitions S 1, · · · , S k, we have

v

⎛
⎜⎜⎜⎜⎜⎜⎝

k⊔

i=1

S i

⎞
⎟⎟⎟⎟⎟⎟⎠
≥
∑

J⊆{1,··· ,k}
J�∅

(−1)|J|+1 v

⎛
⎜⎜⎜⎜⎜⎜⎝

�

j∈J

S j

⎞
⎟⎟⎟⎟⎟⎟⎠
. (8)
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It is easy to verify that k-monotonicity (k > 2) implies l-monotonicity for all integer
2 ≤ l ≤ k. By extension, 1-monotonicity (which does not correspond to k = 1 in Eq.
(8)) is defined as standard monotonicity, i.e.,

v(S ) ≤ v(T ) whenever (∅,N) � S � T � (N, ∅).

The notion of k-monotonicity of bi-cooperative games can be characterized via discrete
derivatives in a similar way to ordinary cases.

Proposition 7 ([18]). Let v : Q(N) → R be a bi-cooperative game and k a positive
integer. Then v is k order monotone if and only if

Δ(T1,T2)v(S 1, S 2 ∪ T2) ≥ 0

for any (T1, T2) ∈ Q(N) such as 1 ≤ |T1 ∪ T2| ≤ k and any (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)).

3.3 Value and Interaction Index in Bi-cooperative Games

In this subsection, we introduce the notion of value and power index for bi-cooperative
games and ternary simple games, following Labreuche and Grabisch [43], in the spirit of
what was done by Shapley [59] for cooperative games, and by Shapley and Shubik [60]
for simple games. In ordinary cooperative games, an allocation rule (pre-imputation)
is a vector x ∈ RN which represents the share of the total worth of the game v(N)
among the players, assuming that all players have decided to join the grand coalition
N. For bi-cooperative games, the situation differs since apart from not participating
to the game, each player has two possible actions, namely to play in the defender or
the defeater part, while he/she has only one in classical (ordinary cooperative game)
case. In order to generalize the notion of imputation, the concept of reference action
or level has been introduced. The reference action is the action such that if all players
do this action, then the outcome of the game is 0. For ordinary games, the reference
action is to “not participate” since v(∅) = 0. For bi-cooperative games, it is also the non
participation since v(∅, ∅) = 0. An imputation is defined for each possible action (except
the reference one) of a player with respect to the reference action, that is, it represents a
kind of average contribution of the player for a given action, compared to the reference
action. For bi-cooperative games, the possible actions are: to play in the defender part,
or to play in the defeater part. For preserving the meaning of “contribution” (which has
a positive sense) and for compatibility with previous works, it requires to consider two
values φ+ (defender part) and φ− (defeater part): φ+ is the contribution of “playing in the
defender part” instead of “doing nothing”, and φ− is the contribution of “doing nothing”
instead of “playing in the defeater part”. Then, an overall contribution φ can be defined
as φ = φ+ + φ−.

Labreuche and Grabisch [43] have proposed the following value for bi-cooperative
games, axiomatically.
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Definition 26 (value of bi-cooperative game [43]). The (Shapley-type) value φB of a
bi-cooperative game v : Q(N)→ R is given by

φB
i (v) :=

∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ∪ i,N \ (S ∪ i)) − v(S ,N \ S )]

=
∑

(S ,T )�(∅,N\i)

1
n − t

Δv(S , T )

for every i ∈ N, where φB
i (v) is the i-th component of φB(v) ∈ RN . The value φB is

decomposable into two values φ+ (defender part) and φ− (defeater part), i.e., φB =

φ+ + φ−, as follows:

φ+i (v) =
∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ∪ i,N \ (S ∪ i)) − v(S ,N \ (S ∪ i))] ,

φ−i (v) =
∑

S⊆N\i

s! (n − s − 1)!
n!

[v(S ,N \ (S ∪ i)) − v(S ,N \ S )] .

The (Shapley-type) value φB for bi-cooperative game is a kind of generalization of the
Shapley value of ordinary cooperative games in the following sense:

If a bi-cooperative game vB : Q(N) → R is given via some ordinary coopera-
tive game v : 2N → R as

vB(S , T ) =

⎧
⎪⎪⎨
⎪⎪⎩

v(S ) if T = ∅,
0 otherwise,

for any (S , T ) ∈ Q(N), then

φB(vB) = φ+(vB) = φ(v), φ−(vB) = 0,

where φ(v) is the Shapley value of ordinary game v.

The (Shapley-type) interaction index for bi-cooperative games has been introduced by
Grabisch and Labreuche [24,26] and characterized axiomatically by Lange and Gra-
bisch [45], by analogy with that for ordinary cooperative games.

Definition 27 (interaction index for bi-cooperative game). The (Shapley-type) in-
teraction index IB(v, (S , T )) with respect to (S , T ) ∈ Q(N) of a bi-cooperative game
v : Q(N)→ R is defined by

IB(v, (S , T )) :=
∑

U⊆N\(S∪T )

(n − s − t − u)! u!
(n − s − t + 1)!

Δ(S ,T )(U,N \ (S ∪ U))

=
∑

(A,B)�(S ,N\(S∪T ))
(A,B)�(N\T,∅)

1
n − s − t − b + 1

Δv(A, B).
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Kojadinovic [41] has proposed another interaction index for bi-cooperative games in
the context of aggregation by the bipolar Choquet integral [25], however his solution is
not completely axiomatized.

Definition 28 (Kojadinovic’s interaction index). The (Kojadinovic-type) interaction
index IK(v, (S 1, S 2)) with respect to (S 1, S 2) ∈ Q(N) of a bi-cooperative game v :
Q(N)→ R is defined by

IK(v, (S 1, S 2)) :=
∑

(T1,T2)∈Q(N\S )

1
2t

(n − s − t + 1)! t!
(n − s + 1)!

Δ(S 1,S 2)(T1, T2 ∪ S 2),

where T := T1 ∪ T2 and S := S 1 ∪ S 2.

Note (Ternary voting games and its values) : Bi-cooperative games are a gener-
alization of the notion of ternary voting game which has been proposed by Felsenthal
and Machover [15]. In a play of a ternary voting game, each player can choose between
voting in favor (yes), against (no), or abstaining. Formally, a ternary voting game is a
function v : Q(N)→ {−1, 1}, where v(F, A) represents the result of the vote (1 if the bill
is passed, -1 if it is defeated) when voters in F vote in favor, voters in A vote against,
and the remaining voters abstain. Then, obviously, it should be satisfied that

v(∅,N) = −1, v(N, ∅) = 1, and (F1, A1) � (F2, A2) =⇒ v(F1, A1) ≤ v(F2, A2).

Definition 29 (ternary roll-call and pivot). A ternary roll-call R is a triplet R =
(σR, FR, AR) consisting of a permutation σR on N, a coalition FR which contains all
voters that are in favor of the bill, and a coalition AR which contains all voters that are
against the bill. Ternary roll-calls are interpreted as follows. The voters are called in
order given by σR : σR(1), . . . , σR(n). When a voter i is called, he/she tells his/her opin-
ion, that is to say in favor if i ∈ FR, against if i ∈ AR, or abstention otherwise. The set
of all ternary roll-calls on N is denoted by TN , whose cardinality is 3n · n!.

A pivot Piv(v,R) for a ternary voting game (N, v,Q(N)) and a ternary roll-call R =
(σR, FR, AR) is the player i, represented by i = σR(m) for some m ∈ {1, . . . , n}, satisfying
the following two conditions:

1. v(Fm−1
R , Am−1

R ) � v(Fm
R , A

m
R ) if m � 1.

2. v(Fm
R , A

m
R ) = v(Fk

R, A
k
R) for any k > m,

where Fk
R :=
⋃

j≤k

{σR( j)}∩FR and Ak
R :=
⋃

j≤k

{σR( j)}∩AR. That is, Piv(v,R) is decisive

in the result of the vote.

Felsenthal and Machover [15] have proposed a voting power index φter(v) for a ternary
voting game (N, v,Q(N)), which is a generalization of the Shapley-Shubik power index,
as follows:

φter
i (v) :=

|{R ∈ TN | i = Piv(v,R)}|
|TN |

.

However, this solution is not completely axiomatized.
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4 Cooperative Game and Network

In ordinary cooperative game theory, it is implicitly assumed that all coalitions of N can
be formed, this is in general not the case. In order for players to be able to coordinate
their actions, they have to be able to communicate. The bilateral communication chan-
nels between players in N are described by a communication network. Such a network
can be represented by an undirected graph G = (N, E), which has the set of players
as its nodes S ⊆ N and in which those players are connected by the set of edges/links
E ⊆ {i j | i, j ∈ N, i � j}, i.e., players i and j can communicate (directly) with each other
if i j ∈ E. To avoid cumbersome notations, we often omit braces for a graph G = (N, E),
we denote E − i j := E \ i j for any i j ∈ E, E + i j := E ∪ i j for any i j � E, and
G(S ) := (S , E(S )) for any S ⊆ N, where E(S ) := {i j ∈ E | i, j ∈ S }. Then, G(S ) is
called the subgraph induced from the underlying graph G and the subset S of N.

The number of the nodes adjacent to a node i ∈ N is said to be the degree of i in
G = (N, E) and denoted by aG(i). A sequence of different nodes (i1, . . . , im) is called a
path, whose length is m − 1, between j and k in a graph (N, E) if j = i1, k = im, and
{il, il+1} ∈ E for any l ∈ {1, . . . ,m−1}. If there is a path between j and k in an undirected
graph G, then we say that j is reachable to k in G and denote j ∼G k. A set of nodes
S ⊆ N is called connected in an undirected graph G := (N, E) if for any i, j ∈ S , i � j,
there exists a path (i1, . . . , im) between i and j in G satisfying that all nodes of the path
are in S , i.e., ik ∈ S for any k ∈ {1, . . . ,m}. Notice that, by definition, the empty set and
all singletons are connected. An undirected graph G = (N, E) is said to be connected if
N is connected in G. Clearly, the relation ∼G is an equivalence relation on N. Hence,
the notion of reachableness induces a partition N/E := N/ ∼G of N. Then, for any
S ⊆ N, C ∈ S/E(S ) = S/ ∼G(S ) is called a (connected) component of S . A geodesic
(also often called a “shortest” path) between two nodes i, j ∈ N is a path whose length
is the minimum among all paths between i and j. The length of a geodesic between two
nodes i, j ∈ N in G, if i and j are reachable, is called their geodesic distance. If i and
j are unreachable, then the distance between i and j is infinite. A sequence of nodes
(i1, . . . , im) is called a cycle if i1 = im and (i1, . . . , im−1) is a path. A graph is cycle free if
it does not contain any cycle. A connected cycle free graph is called tree.

Definition 30 (communication situation). The triplet (N, v, E), which reflects a situ-
ation consisting of a game v ∈ GN and a communication network (N, E), is called a
communication situation. We denote the set of all communication situations on N by
CS N .

Definition 31 (feasible coalition). A coalition S ⊆ N is said to be feasible in the com-
munication network G = (N, E) if S is connected in G (i.e., S/E = {S }).

Example 3. Consider the communication situation (N1, v, E1) with N1 = {1, 2, · · · , 7}
and E1 = {12, 15, 26, 37, 47, 56} (Fig.3). Then, all the players in {1, 2, 6} can commu-
nicate with one another, i.e., the coalition {1, 2, 6} is feasible. Hence, they can fully
coordinate their actions and obtain the value v({1, 2, 6}). On the other hand, in the coali-
tion {1, 2, 3, 4}, players 1 and 2 are reachable, however, both of players 3 and 4 can-
not communicate with any other players in {1, 2, 3, 4}. Then, feasible subcoalitions of
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{1, 2, 3, 4} are {1, 2}, {3}, and {4} (i.e., {1, 2, 3, 4}/E1 = {12, 3, 4}, thus forming the coali-
tion {1, 2, 3, 4} is unfeasible). Hence, the value attainable by the players in {1, 2, 3, 4}
should be v(1, 2)+ v(3)+ v(4). That is, in general, the value attainable by the players in
S under a communication situation (N, v, E) is represented by

∑

T∈S/E v(T ).

Fig. 3. Communication Network(N1, E1)

Definition 32 (network-restricted game [52]). The network-restricted game (N, vE)
associated with (N, v, E) is defined by

vE(S ) :=
∑

T∈S/E
v(T ) for each S ⊆ N. (9)

Note that if (N, E) is the complete graph (i.e., E = {i j | i, j ∈ N, i � j}), the network-
restricted game vE is equal to the original game v.

The network-restricted game evaluates the possible gains from cooperation in a com-
munication situation from the point of view of the players. Next example focuses on the
importance of communication channels/links in a communication situation.

Example 4. In the communication network E1 represented by Fig.3, the value obtain-
able by the players in the grand coalition N is

vE1 (N) = v({1, 2, 5, 6})+ v({3, 4, 7}),

since N/E1 = {{1, 2, 5, 6}, {3, 4, 7}}. If for some reason the communication link between
players 4 and 7 is lost, the communication network E1 turns to a new communication
network E2 = {12, 15, 26, 37, 56}. Then, N/E2 = {{1, 2, 5, 6}, {3, 7}, {4}} and the value
obtainable by the players in the grand coalition N turns to

vE2 (N) = v({1, 2, 5, 6})+ v({3, 7}) + v({4}).

Then vE1 (N) − vE2 (N) can be interpreted as a kind of marginal contribution of the link
47 ∈ E1 to the communication network E1.

Definition 33 (link game [7]). The link game associated with (N, v, E) consisting of a
zero-normalized game v (i.e., v(i) = 0 for any i ∈ N) is a game on E defined by

γv(H) := vH(N) =
∑

T∈N/H
v(T ) for each H ⊆ E.
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The link game γv(H) represents the worth of communication network H ⊆ E as the worth
of the grand coalition in the communication situation (N, v,H) through the network-
restricted game vH . Note that, for an ordinary game v, the link game γv is generally not
a game on E since γv(∅) =

∑

T∈N/∅ v(T ) =
∑

i∈N v(i) � 0.

Example 5 (wighted majory voting game). Consider the weighted majority voting situ-
ation (N, [q : s1, . . . , sn]) with N = {1, 2, 3, 4}, s1 = 35, s2 = 30, s3 = 25, s4 = 10, and
q = 51. So, there are 100 members of parliament who are divided among four politi-
cal parties labeled 1,2,3, and 4, and decisions are made by majority voting. The parties
1,2,3, and 4 have 35, 30, 25, 10 seats, respectively. This situation can be represented by
the game v such that

v(S ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if
∑

i∈S si ≥ q = 51, i.e., win,

0 if
∑

i∈S si < q = 51, i.e., lose.

Then, the winning coalitions are {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
and {1, 2, 3, 4}. In general, every coalition S ⊆ N could not been formed, due to ideo-
logical and policy differences. Suppose that the party 4 cannot form coalitions with any
other parties due to ideological differences; the parties 1 and 3 cannot form the coali-
tion {1, 3} due to some policy differences but can form a coalition {1, 2, 3} through an
intermediary, the party 2. Such a situation can be represented by the graph G := (N, E)
as shown in Fig.4.

1 2 3 4

Fig. 4. Relations among political parties

In the network restricted game vE , the winning coalition are {1, 2}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {2, 3, 4}, and {1, 2, 3, 4}; for instance, vE(13) = v(1) + v(3) = 0 + 0 = 0, i.e.,
lose, while vE(124) = v(12) + v(4) = 1 + 0 = 1, i.e., win. (However, feasible winning
coalitions are only {1, 2}, {2, 3}, and {1, 2, 3}).

4.1 Allocation Rule in Communication Situation

In this subsection, we will briefly introduce major two existing values (allocation rules),
the Myerson value [52] and the position value [7], for communication situations.

Definition 34 (the Myerson value [52]). The Myerson value for a communication sit-
uation (N, v, E) is denoted as Ψ (N, v, E) and defined by

Ψ (N, v, E) := φ(vE),

where φ(N, vE) is the Shapley value of (N, vE). Note that the Ψ (N, v, E) = φ(v) if (N, E)
is the complete graph.
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The Myerson value is one of the most famous allocation rules, which assigns to ev-
ery communication situation (N, v, E) the Shapley value of the network-restricted game
(N, vE) and is characterized as the unique allocation rule satisfying the following two
properties/axioms, component efficiency and fairness (see, Myerson [52]).

Definition 35 (componennt efficiency). For any communication situation (N, v, E) ∈
CS N , it holds that ∑

i∈S
Ψi(N, v, E) = v(S )

for any S ∈ N/E, where Ψi(N, v, E) is the i-th component of Ψ (N, v, E).

Definition 36 (fairness). For any communication situation (N, v, E) ∈ CS N , it holds
that

Ψi(N, v, E) − Ψi(N, v, E − i j) = Ψ j(N, v, E) − Ψ j(N, v, E − i j)

for any i j ∈ E, where Ψi(N, v, E) is the i-th component of Ψ (N, v, E).

Component efficiency means that the sum of the players’ allocations in a component
equal to the worth of the component. Fairness means that the two players connected by
a link obtain the same change of allocation if the link is deleted.

Definition 37 (position value [7]). The position value for a communication situation
(N, v, E) consisting of zero-normalized game v is denoted as π(N, v, E) and defined by

πi(N, v, E) :=
1
2

∑

e∈E
ei

φe(γv) for each i ∈ N.

The Shapley value φe(γv) of a link e ∈ E can be interpreted as a kind of expected
marginal contribution of the link (edge) e ∈ E to all communication networks con-
taining e. Then, the value is divided equally between the two players at the ends of the
considered link e ∈ E. The position value of a given player i ∈ N is obtained as the sum
of all these shares.

Example 6. Consider the communication situation in Example 5. Then, the Shapley
value of the underlying game (i.e., the Shapley-Shubik index [60]) is ( 1

3 ,
1
3 ,

1
3 , 0); the

Myerson value for the communication situation (N, v, E) (i.e., the Shapley value of the
network-restricted game (N, vE)) is ( 1

6 ,
4
6 ,

1
6 , 0); the position value for the communica-

tion situation (N, v, E) is ( 1
4 ,

1
2 ,

1
4 , 0).

4.2 Poset Induced by Communication Network

In this subsection, we consider and introduce a subposet of (2N ,⊆) induced by a com-
munication network G := (N, E).

For a communication network G := (N, E), the set of all feasible coalitions in
G is denoted as F(G), i.e.,

F(G) := {S ⊆ N | S : connected in G := (N, E), i.e., |S/E| = 1}.
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The set F(G) together with set inclusion ⊆ as an order on F(G) is called the
poset induced by a communication network G.

Example 7. Let N = {1, 2, 3}, Ea = {12, 13, 23}, Eb = {13, 23}, and Ec = {12}. Then
the posets induced by communication networks Ga := (N, Ea), Gb := (N, Eb), and
Gc := (N, Ec), as shown in (a) – (c) in Fig. 5, are represented as shown in (a) – (c) in
Fig. 6, respectively.

Fig. 5. Communication networks on N = {1, 2, 3}

Fig. 6. Posets corresponding to networks in Fig. 5

In a communication situation (N, v, E) consisting of a game (N, v) and a communication
network G := (N, E), at least two types of restrictions of v ∈ GN can be considered. One
is the network-restricted game vE defined by Eq. (9). Another is the restriction of v ∈
GN , i.e., v : 2N → R, to the poset F(G) induced by G = (N, E), i.e., v|F(G) : F(G) → R.
Then it is denoted as vF(G) : F(G)→ R and defined by

vF(G)(S ) := v|F(G)(S ), i.e., vF(G)(S ) := v(S ), ∀S ∈ F(G). (10)

Definition 38 (Möbius transform on poset). Let (N, v, E) be a communication situa-
tion consisting of a game (N, v) and a communication network G := (N, E). Then, the
Möbius transform of vF(G) : F(G)→ R on the poset (F(G),⊆) is denoted by Δ(N,v,E) and
defined through the following equation:

vF(G)(S ) =
∑

T∈F(G)
T⊆S

Δ(N,v,E)(T ) ∀S ∈ F(G).
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Conversely, Δ(N,v,E) is explicitly represented by

Δ(N,v,E)(S ) =
∑

T∈F(G)
T⊆S

(−1)|S \T | vF(G)(T ) ∀S ∈ F(G).

Proposition 8. Let (N, v, E) be a communication situation consisting of a game (N, v)
and a communication network G := (N, E), (N, vE) denote the network-restricted game
defined by Eq. (9), and vF(G) the restriction of v to F(G) defined by Eq. (10). Then,

Δ(N,v,E)(S ) = ΔvE
(S ) ∀S ∈ F(G),

ΔvE
(S ) = 0 ∀S ∈ 2N \ F(G).

Moreover, the Myerson value Ψ (N, v, E) can be represented as

Ψi(N, v, E) =
∑

i∈S∈F(G)

1
s
Δ(N,v,E)(S ).

4.3 Harsanyi Power Solution for Communication Situation

In this subsection, we introduce a class of allocation rules, Harsanyi power solutions,
to which many existing allocation rules for communication situations belong. Briks
et al. [9] have introduced the concept of Harsanyi power solution for communication
situations, which is based on Harsanyi solutions for TU-games. The concept of Harsanyi
solution is proposed as a class of solutions for TU-games in Vasil’ev [63,64] (see also
Derks et al. [12], where a Harsanyi solution is called a sharing value). The idea behind
a Harsanyi solution is that it distributes the Harsanyi dividends over the players in the
corresponding coalitions according to a chosen sharing system which assigns to every
coalition S a sharing vector specifying for every player in S its share in the dividend
Δv(S ) of S . The payoff to each player i ∈ N is thus equal to the sum of its shares in the
dividends of all coalitions of which he is a member. A famous Harsanyi solution is the
Shapley value.

Now, we consider the case N = {1, 2}, the Shapley value φ1(N, v) of player 1 in a
game (N, v) is obtained as

φ1(N, v) =
1
1
Δv(1) +

1
2
Δv(12).

This expression, as an allocation rule of Harsanyi dividends (i.e., the Möbius trans-
form), has the following (at least two) interpretations:

Interpretation 1 (Egalitarian allocation) : The Shapley value distributes the
dividend of any coalition S equally among the players in S, i.e., 1

s Δ
v(S ), (so

players outside S do not share in the dividend of S).
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Interpretation 2 (Allocation based on coalition forming process) : We con-
sider a process to form the coalition {1, 2}. Then, there are two shortest paths
from ∅ to {1, 2} in Fig. 7 (a). One is the path ∅ → {1} → {1, 2}; another is the
path ∅ → {2} → {1, 2}. The path ∅ → {1} → {1, 2} can be interpreted as follows:
Player 1 makes an offer to player 2 for forming the coalition {1, 2}. Player 2
accepts the offer and adds to the coalition {1} to form the new coalition {1, 2}.
Among these two paths, the only path that passes through {1}, i.e., the player 1
plays a role of initiator in forming {1, 2}, is ∅ → {1} → {1, 2}. That is, the number
of paths from ∅ to {1, 2} is 2, while the number of paths via {1} is 1. Then player 1
obtains 1 path

2 paths of the amount of the Harsanyi dividend Δv(12) (i.e., 1
2 Δ

v(12)). In

the same way, player 1 obtains 1
1 Δ

v(1) and 0
1 Δ

v(2). The Shapley value of player
1 is obtained as the sum of all these shares, i.e., 1

1 Δ
v(1) + 0

1 Δ
v(2) + 1

2 Δ
v(12).

This allocation rule can be extended to the case N = {1, 2, 3}, e.g., there are six
shortest paths from ∅ to {1, 2, 3} (see, Fig. 7 (b)). Among them, two paths, ∅ →
{1} → {1, 2} → {1, 2, 3} and ∅ → {1} → {1, 3} → {1, 2, 3}, pass through {1}. Then,
the following holds:

φ1({1, 2, 3}, v) =
1
1
Δv(1) +

1
2
Δv(12) +

1
2
Δv(13) +

0
2
Δv(23) +

2
6
Δv(123).

Fig. 7. The Boolean lattice B(2) and B(3)

Definition 39 (sharing system [9]). Let (N, v, E) be a communication situation con-
sisting of a game (N, v) and a communication network G := (N, E). A sharing system
on F(G) is a system p := (pS )S∈F(G), where pS is a s-dimensional vector assigning a
non-negative share pS

i ≥ 0 to every player i ∈ S with
∑

j∈S pS
j = 1, for any S ∈ F(G).

Definition 40 (the Harsanyi solution [9]). We denote the collection of all sharing
systems on F(G) by SG. For a communication situation (N, v, E) ∈ CS N and a shar-
ing system p ∈ SG, the corresponding Harsanyi payoff vector is the payoff vector
Hp(N, v, E) ∈ RN given by

Hp
i (N, v, E) =

∑

i∈S∈F(G)

pS
i Δ
F(G)(S ) =

∑

i∈S∈F(G)

pS
i Δ

vE
(S ) ∀i ∈ N.
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A Harsanyi solution, as an allocation rule, assigns for a given sharing system p ∈ SG

the Harsanyi payoff vector Hp(N, v, E) to each communication situation (N, v, E). Due
to the equality v(N) =

∑

S∈F(G) Δ
(N,v,E)(S ), we have
∑

i∈N
Hp

i (N, v, E) = v(N),

and thus each Harsanyi solution is efficient. The Shapley value is the Harsanyi solution
that assigns to any communication situation (N, v, {i j |i, j ∈ N, i � j}) (i.e., to any
ordinary cooperative game (N, v)), the Harsanyi payoff vector Hp(N, v, {i j |i, j ∈ N, i �
j}) with the sharing system p given by pS

i =
1
s for each S ∈ F(G) containing i.

Definition 41 (Harsanyi power solution [9]). A power measure on graph G = (N, E)
is a function q that assigns to any subgraph G(S ) = (S , E(S )), S ⊆ N a non-negative
vector q(S , E(S )) ∈ RS

+, yielding the non-negative power qi(S , E(S )) of each node i ∈ S
in the graph G(S ). Then, given a positive power measure q, we can define the cor-
responding Harsanyi power solution, denoted by Hp(q)(N, v, E), through the sharing
system p(q) = (pS (q))S∈F(G) induced by the power measure q as

pS
i (q) =

qi(S , E(S ))
∑

j∈S
q j(S , E(S ))

for all i ∈ S whenever
∑

j∈S q j(S , E(S )) � 0 and pS
i (q) = 1

s if
∑

j∈S q j(S , E(S )) = 0.

A characteristic of the Harsanyi power solutions for communication situations is that we
associate a sharing system with some power measure, being a function which assigns a
non-negative real number to every node in the graph, for the underlying communication
networks. These numbers represent the strength or power of those nodes in the graph.
Given a power measure we define the corresponding sharing system such that the share
vectors for every coalition are proportional to the power measure of the corresponding
subgraph.

Social network researchers have considered some fundamental properties of the in-
dividuals, that inform us about specific factors such as who is who in the network: who
is leader, who is intermediary, who is nearly isolated, who is central, and who is periph-
eral. Here, we introduce several concepts of degree of centrality and peripherality for a
node (position, actor, individual) in a network (undirected graph) as examples of power
measures on undirected graphs [16,19,17].

Centrality measures [16,19]. Centrality is a sociological concept which is not clearly
defined; it is frequently defined only in an undirected manner. For example, the liter-
ature presents several alternative definitions for centrality. We review some of these
definitions below:

(Dc: degree centrality). It measures the degree to which an actor i can com-
municate directly with other actors:

qDEG
i (S , E(S )) :=

∑

j∈S
aG(S )(i).
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(Cc: closeness centrality). It measures the degree to which an actor i is close
to other actors:

qCLO
i (S , E(S )) :=

∑

j∈S \{i}

1

dG(S )
i j

.

(Bc: betweenness centrality). It measures the degree to which an actor i lies
on the shortest paths between other actors in the network:

qBET
i (S , E(S )) :=

∑

j,k∈S \i

# of geodesics in S from j to k via i
# of geodesics in S from j to k

.

(Oc: originator centrality). It measures the degree to which an actor i is
required as an initiator/originator in network-forming processes:

qORI
i (S , E(S )) :=

||i→ S ||
||∅ → S ||

,

where ||i → S || (resp., ||∅ → S ||) means the number of shortest paths from i
(resp., ∅) to S in the Hasse diagram of the poset induced by a graph (S , E(S )).

Peripherality Measure [17]. With regard to networks such as roads, railways, airways,
the Internet, and others that use nodes or terminals such as airports and railway stations,
etc, terminal cities/nodes benefits far more from direct/indirect access to big cites (im-
portant nodes or central hubs) than do big cities receive from connecting to terminal
cities/nodes. Indeed, peripheral cities bear a heavier burden than central cities in the
construction/extension of highways/railways. Fujimoto [17] has proposed a peripheral-
ity measure on undirected graphs axiomatically as follows.

qPER
i (S , E(S )) :=

||∅ → S \ i||
||∅ → S ||

.

Note (The Myerson and Position Values as Harsanyi Power Solutions): Brinks et
al. [9] pointed out and demonstrated that the Myerson and position values are typical
Harsanyi power solutions with simple power measures for some types of communica-
tion situations.

Let (N, v, E) be a communication situation consisting of a game (N, v) and a com-
munication network G := (N, E). The Myerson value Ψ (N, v, E) is the Harsanyi power
solution with the sharing system p induced by the egalitarian power measure qE , e.g.,

qE
i (S , E(S )) = 1 ∀S ∈ F(G), ∀i ∈ S ,

i.e.,

pS
i =

1
s
∀S ∈ F(G), ∀i ∈ S .

If (N, E) is cycle free, the position value π(N, v, E) is the Harsanyi solution with the
sharing system p induced by the degree centrality measure qDEG(S , E(S )).

All the power measures, qE , qDEG , qCLO, qBET , qORI , and qPER induce the Shapley
value under complete communication situations.
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4.4 Numerical Examples

In this subsection, we make comparisons among the existing five types of Harsanyi
power solutions (the Shapley value φ, the Myerson value Ψ , the position value π, the
Harsanyi power solutions induced by the originate centrality measure ΦORI and the pe-
ripherality measure ΦPER) in some communication situations. The Harsanyi dividend
of any coalition which is not contained within any connected component of the com-
munication network in a communication situation is always zero, i.e., Δ(N,v,E)(S ) = 0 if
S � C for any C ∈ N/E. Therefore, in considering the Harsanyi power solutions for
a communication situation (N, v, E), we can assume that the communication network
(N, E) is connected without loss of generality. Examples 8, 9, and 10 not only show
comparisons of them but also illustrate criticisms against the the Myerson value and/or
the position value. Two criticisms are reproduced below (see, e.g., [37] for additional
details):

On the Myerson value :

Ψi(N, uS , E1) = Ψi(N, uS , E2) =
1
|S |

∀i ∈ N

whenever S is a feasible coalition in both (N, E1) and (N, E2), where
uS is the unanimity game of S . Furthermore, in the communication
situation with E∗ = {i j ⊆ N | j ∈ N \ i} (i.e., E∗ is a star-shape
graph with a central player i), every player receives the same value
(see Ψ (N, v, Ee) in Example 10).

On the position value :
Irrelevant null players often have positive values (see Example 9). Re-
call that a null player i ∈ N of the game (N, v) is a player satisfying
that v(S ∪ i) = v(S ) for any S ⊆ N \ i.

Example 8. Consider the communication situation (N, v, E) with N = {1, 2, 3}, E =
{13, 23} (Fig. 5 (b)), and

v(S ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |S | ≤ 1,

30 if |S | = 2,

36 if S = N.

Then,
φ(N, v) = (12, 12, 12),

Ψ (N, v, E) = (7, 7, 22),

π(N, v, E) = (9, 9, 18),

ΦORI(N, v, E) = (9, 9, 18),

ΦPER(N, v, E) = (3, 3, 30).

Example 9. Consider the communication situation (N, v, E) with N = {1, 2, 3}, E =
{12, 13, 23} (Fig. 5 (a)), and

v(S ) =

⎧
⎪⎪⎨
⎪⎪⎩

12 if S ⊇ {1, 2},
0 otherwise.
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That is, the player 3 is a null player. Then,

φ(N, v) = (6, 6, 0),

Ψ (N, v, E) = (6, 6, 0), π(N, v, E) = (5, 5, 2),

ΦORI(N, v, E) = (6, 6, 0), ΦPER(N, v, E) = (6, 6, 0).

Example 10. Consider communication situations (N, uN , E) with connected graphs in
Fig.8 which shows all connected graphs (up to isomorphism) with 2 ≤ n ≤ 4 nodes.
Then, for any such communication situations,

φi(N, uN , E) = Ψi(N, uN , E) =
1
n
∀i ∈ N.

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�



�
�

Fig. 8. Graphs with at most four nodes

Table 1 displays the remaining values (i.e., the position value π, the Harsanyi power so-
lutions induced by the originate centrality measure ΦORI and the peripherality measure
ΦPER).

5 Cooperative Game and Combinatorial Structure

In section 4, we considered the following case:

Some subsets of N may not be meaningful. When N is the set of political
parties, it means that some coalitions of parties are unlikely to occur, or even
impossible (coalition mixing left and right parties); When N is the set of play-
ers, for players in order to coordinate their actions, they must be able to com-
municate [13,22,61].
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Table 1. Comparison of existing values

π ΦORI ΦPER

Ea ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 ) ( 1

2 ,
1
2 )

Eb ( 1
4 ,

1
2 ,

1
4 ) ( 1

4 ,
1
2 ,

1
4 ) ( 1

2 , 0,
1
2 )

Ec ( 1
6 ,

2
6 ,

2
6 ,

1
6 ) ( 1

8 ,
3
8 ,

3
8 ,

1
8 ) ( 1

2 , 0, 0,
1
2 )

Ed ( 1
3 ,

1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 )

Ee ( 1
6 ,

1
6 ,

1
6 ,

3
6 ) ( 1

6 ,
1
6 ,

1
6 ,

3
6 ) ( 1

3 ,
1
3 ,

1
3 , 0

Ef ( 3
12 ,

2
12 ,

2
12 ,

5
12 ) ( 2

14 ,
3
14 ,

3
14 ,

6
14 ) ( 3

7 ,
2
7 ,

2
7 , 0)

Eg ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Eh ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Ei ( 13
60 ,

17
60 ,

17
60 ,

13
60 ) ( 2

10 ,
3
10 ,

3
10 ,

2
10 ) ( 3

10 ,
2

10 ,
2
10 ,

3
10 )

In this section, we elaborate on more general cases, including the case discussed in
section 3, as follows:

Subsets of N may not be “black and white [22] ”, which means that the
membership of an element to N may not be simply a matter of member or non-
member. This is the case with multi-criteria decision making when underlying
scales are bipolar, i.e., a central value exists on each scale, which is a demar-
cation between values considered as “good”, and as “bad”, the central value
being neutral; In voting situation, it is convenient to consider that players may
also abstain, hence each voter has three possibilities [15]; When N is the set
of players, one may consider that each player can play at different level of
participation [36].

5.1 Generalization of Domains of Cooperative Games

Definition 42 (lattice). Let L be a non empty set and ≤ a partial order on L (i.e., (L,≤)
is a poset). A poset (L,≤) is said to be a lattice if for x, y ∈ L, the supremum x ∨ y
and the infimum x ∧ y always exist. � and ⊥ are the top (greatest) and bottom (least)
elements of L, if they exist. An element j ∈ L is said to be join-irreducible if it is not ⊥
and cannot be express as a supremum of other elements (i.e., there are no i, k < j such
that j = i∨ k). The set of all join-irreducible elements of L is denoted by J(L). A lattice
(L,≤) is distributive if ∨,∧ obey distributivity. We often identify a lattice (L,≤) with L
or with (L,≤,∨,∧,�,⊥).

Definition 43 (cooperative game on lattice). A pair (L, v) consisting of a lattice L and
a (characteristic) function v : L → R such as v(⊥) = 0 constitutes a cooperative game
on a lattice.
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The power set 2N of N can coincide with the Boolean lattice B(n). Therefore, an ordi-
nary cooperative game (N, v) is regarded as a cooperative game on a lattice ((2N ,⊆), v).
Indeed, the infimum (bottom element) in the lattice (2N ,⊆) is the empty set ∅ and
v(∅) = 0. A communication situation (N, v, E) also can be regarded as a cooperative
game on a lattice, if the communication network (N, E) is connected, because the poset
induced by the connected graph (N, E) is obviously a lattice with ∅ as the bottom ele-
ment. However, a bi-cooperative game (N, v,Q(N)) is generally not a cooperative game
on a lattice. Indeed, the family Q(N) with (Q(N),�,�,�, (N, ∅), (∅,N)) is a lattice with
(∅,N) as the bottom element, but v(∅,N) is not always zero.

Proposition 9 ([6]). Let L be a distributive lattice. Any element x ∈ L can be written
as an irredundant supremum of join-irreducible elements in a unique way. That is, for
any x ∈ L there uniquely exists { j1, . . . , jm} ⊆ J(L) such that

x =
m∨

i=1

ji (11)

and that if there exists M ⊆ J(L) such that x =
∨

j∈M j, then M ⊇ { j1, . . . , jm}. The
equation (11) is called the minimal decomposition of x and the { j1, . . . , jm} is denoted
by η∗(x). For any x ∈ L, we denote by η(x) := { j ∈ J(L) | j ≤ x}, then x =

∨

j∈η(x) j.
For example, in Fig. 9 (b), η(23, 1) = {(∅, 13), (2, 13), (∅, 12), (3, 12)} and η∗(23, 1) =
{(2, 13), (3, 12)}.

Theorem 1 (Birkhoff’s theorem [6]). For any poset (P,≤), a subset Q ⊆ P is said to
be a down set of P if x ∈ Q and that y ≤ x implies y ∈ Q. We denote by O(P) the set of
all downsets of P. One can associate to any poset (P,≤) a distributive lattice which is
O(P) endowed with inclusion. Then, for any lattice L, the mapping η is an isomorphism
of L onto O(J(L)).

5.2 Examples of Generalizations of Games [22]

This subsection shows some examples of cooperative games on lattices.

Restricted Domains

Definition 44 (game on convex geometry [3]). Let N be a set of players. A collection
CG of subsets of N is called a convex geometry if (i) it contains the empty set, (ii) it is
closed under intersection, and (iii) S ∈ CG, S � N implies that there exists j ∈ N \ S
such that S ∪ j ∈ CG. A cooperative game on a convex geometry CG is a triplet
(N, v,CG) with a function v : CG → R such that v(∅) = 0. In addition, several other
games on restricted domains (e.g., union stable systems, matroids, and so on), which
are generalization of posets induced by connected graphs, also have been proposed and
studied by Bilbao [3].
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Extended Domains

Definition 45 (multichoice game [36]). Let N be a set of players. Each player i ∈ N
has a finite number of feasible participation levels whose set we denote by Mi =

{0, 1, . . . ,mi} and M =
∏

i∈N Mi. Each element s = (s1, s2, . . . , sn) ∈ M specifies a
participation profile for players and is referred to as a multichoice coalition. So, a mul-
tichoice coalition indicates the participation level of each player. A triplet (N, v,M)
consisting of a (characteristic) function v : M → R such that v(0) = 0, where 0 =
(0, 0, . . . , 0) ∈ M, constitutes a multichoice game.

Definition 46 (game on direct product of distributive lattices [46]). Let N = {1, · · · , n}
be a finite set, {Li}i∈N a set of distributive lattices and L :=

∏

i∈N Li. (Notice that L is also
a distributive lattice with the product order induced by {Li}i∈N ). A triplet (N, v, L) con-
sisting of a product lattice L =

∏

i∈N Li and a (characteristic) function v : L → R such
as v(⊥1, · · · ,⊥n) = 0, where ⊥i is the bottom element of Li for each i ∈ N, constitutes a
cooperative game on a direct product of distributive lattices.

Here, we consider some examples of games on a direct product of distributive lattices
(see, also Fig. 9). If Li is a two-element lattice (i.e., Li := {⊥i,�i} ) for all players i ∈ N,
then we get ordinary games on 2N (Fig. 9 (a)); If Li := {0, 1, . . . ,mi} for all players
i ∈ N, we obtain multichoice games onM =

∏

i∈N Li (Fig. 9 (c)); If Li := {⊥i, xi,�i},
⊥i < xi < �i (e.g., {−1, 0, 1}) for all players i ∈ N, then the product lattice L :=
∏

i∈N Li is isomorphic to (Q(N),�) (Fig. 9 (b)). The bottom element (⊥1, · · · ,⊥n) in L
corresponds to (∅,N) in Q(N). That is, a bi-cooperative game (N, v,Q(N)) is generally
not regarded as a game on a direct product of distributive lattices since bi-cooperative
games need not be vanishing at the bottom element (∅,N).

0,0,0
1,0,0

0,0,13,0,0
2,0,0

0,0,2

0,1,0

0,3,0
0,2,0

0,4,0

3,4,2

3,0,2

φ

123 φ

φ,123

φ,23

,23

φ,13

3,1

φ,12

3,2

2,13

3,12

Fig. 9. Examples of direct products of distributive lattices: elements indicated by black circles are
join-irreducible

Generally, the Möbius transform Δv of a game v on a lattice L can be implicitly defined
through Definition 3. As it will be seen in the next section, derivatives of games on
lattices are a very useful tool, and have been generalized (in particular) for games on
distributive lattices (see, [26]).
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Definition 47 (discrete derivative on distributive lattice). Let L be a distributive lat-
tice. The first order derivative of a game v : L → R with respect to a join-irreducible
element i ∈ J(L) at x ∈ L is given by

Δiv(x) := v(x ∨ i) − v(x).

The derivative of v with respect to y ∈ L at x ∈ L is iteratively defined by

Δyv(x) := Δ j1 [Δ j2[· · ·Δ jm−1 [Δ jm v(x)] · · · ]],

where η∗(y) = { j1, j2, . . . , jm} ⊆ J(L) is the minimal decomposition of y. Note that if
jk ≤ x for some k, the derivative is null. Also, Δyv(x) does not depend on the order of
the jk’s. The explicit formula is:

Δyv(x) =
∑

S⊆{1,...,m}
(−1)m−s v(x ∨

∨

k∈S
jk), (12)

equivalently,
Δyv(x) =

∑

y≤z≤x∨y

Δv(z).

In particular,
Δyv(⊥) = Δv(y) ∀y ∈ L.

Example 11. An ordinary game (N, v) can be regarded as a cooperative game on the
lattice L = (2N ,⊆). The join operator in the lattice is ∪ operator. The set of all join-
irreducible elements J(L) is N, i.e., any i ∈ N is a join-irreducible element. For any
T ⊆ N (i.e., T ∈ L), the minimal decomposition of T is T itself, i.e., η∗(T ) = T =
{σT (1), . . . , σT (t)} for some permutation σT on N. An order {σT (k)} ≤ U coincides
with σT (k) ∈ U. Then, we can easily find that Eq.(12) coincides with the ordinary
discrete derivative:

ΔT v(U) =
∑

S⊆T

(−1)|T |−|S | v(U ∪ S ).

Example 12. Considering the lattice L = (Q(N),�) with the join operator �. The set of
all join-irreducible elements J(L) is represented by

{{(i,N \ i)}i∈N , {(∅,N \ i)}i∈N } .

For any (T1, T2) ∈ Q(N) (i.e., (T1, T2) ∈ L), the minimal decomposition of (T1, T2) is
represented by

η∗(T1, T2) =
{

{(i,N \ i)}i∈T1 , {(∅,N \ j)} j∈N\(T1∪T2)

}

.

However, the discrete derivative in a bi-cooperative game (N, v,Q(N)) (see, Eq. (7)
in Definition 24) does not coincide with that in the cooperative game on the lattice
(Q(N),�). Indeed, for N = {1, 2, 3}, the (123, 0)-derivative at (∅, 3) can be defined in a
cooperative game on the lattice (Q({1, 2, 3}),�), but cannot in the bi-cooperative game
({1, 2, 3}, v,Q({1, 2, 3})). Now, let ΔB

(T1,T2) denote the (T1, T2)-derivative in the sense of
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bi-cooperative games and ΔL
(T1,T2) the (T1, T2)-derivative in the sense of cooperative

games on lattices. For (A1, A2), (B1, B2) ∈ Q(N) such as (A1, A2) � (B1, B2) and A2 ∩
B1 = ∅, we consider the following formula:

Δv([(A1, A2), (B1, B2)]) :=
∑

(A1,A2)�(S 1,S 2)�(B1,B2)

(−1)|S 1\A1|+|S 2\B2| v(S 1, S 2). (13)

Then, for (T1, T2) ∈ Q(N) and (S 1, S 2) ∈ Q(N \ (T1 ∪ T2)),

ΔB
(T1,T2)v(S 1, S 2 ∪ T2) = Δv([(S 1, S 2 ∪ T2), (S 1 ∪ T1, S 2)]).

For (A1, A2), (B1, B2) ∈ Q(N) such as (A1, A2) � (B1, B2) and A2 ∩ B1 = ∅,

Δv([(A1, A2), (B1, B2)]) = ΔB
(B1\A1,A2\B2)v(A1, A2) = ΔL

y v(A1, A2),

where y =
⊔

(S 1,S 2)∈η∗(B1,B2)\η∗(A1,A2)

(S 1, S 2). For example (see, Fig. 2),

Δv([(∅, 3), (1, ∅)]) = v(1, ∅) − v(1, 3) − v(∅, ∅) + v(∅, 3)

= ΔB
(1,3)v(∅, 3)

= ΔL
(1,2)v(∅, 3).

5.3 Value and Interaction Index in Games on Distributive Lattices

In this subsection, we discuss on a specific type of game on lattice, where the lattice is a
direct product of distributive lattices. Let N := {1, . . . , n} and L := L1 × · · · × Ln, where
L1, . . . , Ln are finite distributive lattices. Then, L is also a distributive lattice and all
join-irreducible elements of L are of the form (⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n) for some
i ∈ N and some ji ∈ J(Li). A vertex of L is any element whose components are either
top or bottom. Vertices of L will be denoted by �Y , Y ⊆ N, whose coordinates are �k

if k ∈ Y, ⊥k otherwise, for k ∈ N. Each lattice Li represents the poset of action, choice,
or participation level of player i ∈ N to the game. An ordinary cooperative game (N, v)
can be regarded as the following game vL : L→ R :

Let Li := {0, 1} with the ordinary order ≤ on integers for all i ∈ N, and L =
∏

i∈N Li. Then, J(Li) = {1} for all i ∈ N. So, ⊥i = 0 and �i = 1 for all i ∈ N,
therefore �S = χS . Moreover, for any y ∈ L there uniquely exists Y ⊆ N such
that y = χY = �Y . Thus,

vL(�Y ) := v(Y) Y ⊆ N

is the desired one.

Lange and Grabisch [46] give the following interpretation for games on L:

We assume that each player i ∈ N has at her/his disposal a set of elementary
or pure actions j1, · · · , j ji . These elementary actions are partially ordered (e.g.,
in the sense of benefit caused by the action), forming a partially ordered set
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(Ei,≤i), Ei = { j1, · · · , j ji}. Then by Birkhoff’s theorem (Theorem 9), the set
(O(Ei),⊆) of downsets of Ei is a distributive lattice denoted by Li, whose join-
irreducible elements correspond to the elementary actions. The bottom action
⊥i of Li is the action which amounts to do nothing. Hence, each action in Li is
either a pure action jk or a combined action jk ∨ jk′ ∨ jk′′ ∨ · · · consisting of
doing all pure actions jk, jk′ , jk′′ · · · for player i ∈ N.

For a given elementary action ji ∈ J(Li) ⊆ Li, the importance index (the (Shapley-type)
value) of a game v on a direct product lattice L =

∏

i∈N Li of distributive lattices {Li}i∈N
is written as a weighted average of the marginal contributions of ji, taken at vertices of
L. This important index has been a generalization of the Shapley value in both ordinary
games and multichoice games.

Definition 48 (importance index). Let i ∈ N and ji ∈ J(Li). The importance index
with respect to ji of a game v : L→ R is defined by

φ ji (v) :=
∑

Y⊆N\i

y!(n − y − 1)!
n!

Δ jiv(�Y ).

As an extension of the importance index for every element of L and every game (N, v, L),
the interaction transform on L has been proposed by Lange and Grabisch [44]. For any
x ∈ L, Ix(N, v, L) expresses the interaction in the game among all elementary actions j
of the minimal decomposition x =

∨

j∈η∗(x) j.

Definition 49 (antecessors). The antecessor x of x ∈ L is defined as

x =
∨

{ j ∈ η(x) | j � η∗(x)}

with convention⊥ = ⊥ and
∨
∅ = ⊥. If x is a join-irreducible element (i.e., x ∈ J(L)),

the antecessor of x is obviously its predecessor, in accordance with the notation x. Note
also that the definition x is consistent with the structure of each lattices Li. Indeed,
x = (x1, · · · , xn).

Definition 50 (interaction transform on product lattices [44]). The (Shapley-type)
interaction transform Ix(N, v, L) with respect to x ∈ L of v : L→ R is defined by

Ix(N, v, L) :=
∑

Y⊆N\X

|Y |! (n − |X| − |Y |)!
(n − |X| + 1)!

Δxv(x ∨ �Y ),

where X = {i ∈ N | xi � ⊥i }. Equivalently,

Ix(N, v, L) =
∑

x≤z≤x⊥

1
k(z) − k(x) + 1

Δv(z),

where x⊥ := �i if xi = ⊥i and x⊥ := xi if xi � ⊥i, and k(y) = |{i ∈ N | yi � ⊥i}|. Recall
that any direct product L =

∏

i∈N Li of distributive lattices {Li}i∈N also a distributive
lattice. Thus, the Möbius transform Δv(z) and the marginal interaction Δx(y) in a game
(N, v, L) can be defined via Definition 47.

Each interaction index in ordinary games, and multichoice games is obtained as a
special case of this interaction transform.
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5.4 An Importance Index of Games on Regular Set Systems

In this subsection, we introduce an important index on a more general combinatorial
structure, which is called the regular set system proposed by Honda and Grabisch [35]
(see, also [47]). The concept of regular set system is induced by the following condi-
tion:

A condition “if S � N is feasible, then it is possible to find a player i ∈ N \ S
such that S ∪ i is still feasible” is one of the weakest restrictions on feasible
coalitions in a context where the grand coalition N can form. Because, it says
that from a given coalition, it is possible to augment it gradually to reach the
grand coalition.

Definition 51 (regular set system). Let us consider N a set of coalitions, i.e., N ⊆ 2N .
Then, a pair (N,N) is said to be a set system on N if N contains ∅ and N, i.e. ∅, N ∈ N.
Elements of N are called feasible coalitions. For any two feasible coalitions A � B, we
say that A is covered by B, and write A ≺ B, if there is no C ∈ N such that A � C � B.
A set system (N,N) is said to be regular if |B \ A| = 1 whenever A, B ∈ N and A ≺ B.

Definition 52 (game on regular set system). A triplet (N, v,N) consisting of a regular
set system (N,N) and a (characteristic) function v : N→ R such as v(∅) = 0 constitutes
a game on a regular set system.

Honda and Fujimoto [34] have proposed axiomatically an importance index of a game
on a regular set system as a generalization of importance indices of all ordinary games,
games on convex geometries, and multichoice games.

Definition 53 (maximal chain of regular set system). Let N ⊆ 2N be a regular set
system. If a sequence C = (C0, . . . ,Cn) satisfies that Ci ∈ N for any i ∈ {0, · · · , n} and
∅ = C0 ≺ C1 ≺ · · · ≺ Cn = N, then C is called a maximal chain of N. The set of all
maximal chains of N is denoted by M(N).

For any maximal chain C = (C0, . . . ,Cn), there exists a permutation σC on N such
that

Ci =
⋃

k≤i

{σC(k)} ∀i ∈ {1, . . . , n}. (14)

Definition 54 (importance index on regular set system). A marginal contribution
δv

i (C) of i ∈ N for a maximal chain C ∈ M(N) in a game (N, v,N) is defined by

δv
i (C) := v(

⋃

k≤i

{σC(k)}) − v(
⋃

k<i

{σC(k)})

where σC is a permutation on N satisfying Eq. (14). The importance index φ(N, v,N) ∈
R

N with respect to a player i ∈ N of a game v : N → R on a regular set system N is
defined by

φi(N, v,N) :=
1

|M(N)|

∑

C∈M(N)

δv
i (C)

for every i ∈ N, where φi(N, v,N) is the i-th component of φ(N, v,N) ∈ RN .
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In a case that a regular set system is the power set of N, i.e., N = 2N , any game
(N, v,N) coincides with the ordinary game (N, v). Then, φ(N, v,N) also coincides with
the ordinary Shapley value φ(N, v). Moreover, through lattice-isomorphic mappings and
Birkhoff’s Theorem (Theorem 1), this importance index can be applied to games on dis-
tributive lattices as the following way :

Definition 55 (set systems induced by lattices). Let (L,≤,∨,∧,�,⊥) be a distributive
lattice. Then (L,≤,∨,∧,�,⊥) � (η(L),⊆,∪,∩,J(L), ∅) with the lattice isomorphism η,
where η(x) = {y ∈ J(L) | y ≤ x } for x ∈ L, i.e., η(L) =

⋃

x∈L{η(x)} (see, e.g., [6]). Then
(J(L), η(L)) is called the set system induced by (L,≤).

All games discussed in this chapter, except bi-cooperative games, can be regarded as
games on lattices. All the set systems induced by these lattices become regular [34].
Notice that the set system induced by (Q(N),�) is also regular. Therefore, we have
another representation of importance indices of these games via η as follows:

I ji (N, v, L) := φη( ji)

(

J(L), vη−1, η(L)
)

∀ ji ∈ J(L).

6 Concluding Remarks

This chapter shows cooperative games on various extended or restricted domains. We
discussed only the Shapley-type values and interaction indices. However, there are var-
ious allocation rules and solution concepts in ordinary cooperative game theory, e.g.,
the core, bargaining set, prekernel, kernel, prenucleolus, nucleolus, etc. These various
allocation rules and solution concepts can be seen in the literature [11,54]. The Core
of cooperative games on various domains also have been studied by several researchers
(see, e.g., [4,30]). More information about “cooperative game in combinatorial struc-
tures” and “social and economic networks in cooperative games” can be found in the
literatures (see, e.g., [3,61]). To our knowledge, the topics “interaction indices of games
with networks, and on regular set systems” have not been studied yet.
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40. Kojadinovic, I.: Estimation of the weights of interacting criteria from the set of profiles by
means of information-theoretic functionals. Europ. J. Operational Res. 155, 741–751 (2004)

41. Kojadinovic, I.: A weigh-based approach to the measurement of the interaction among cri-
teria in the framework of aggregation by the bipolar Choquet integral. European Journal of
Operational Research 179, 498–517 (2007)

42. Labreuche, C., Grabisch, M.: Modeling positive and negative pieces of evidence in uncer-
tainty. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp.
279–290. Springer, Heidelberg (2003)

43. Labreuche, C., Grabisch, M.: Axiomatisation of the Shapley value and power index for bi-
cooperative games. Cahiers de la Maison des Sciences Économiques (2006.23) (2006)
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Pod Vodárenskou věž́ı 4, 182 08 Prague, Czech Republic

kroupa@utia.cas.cz

Abstract. Belief functions are the measure theoretical objects
Dempster-Shafer evidence theory is based on. They are in fact totally
monotone capacities, and can be regarded as a special class of measures
of uncertainty used to model an agent’s degrees of belief in the occurrence
of a set of events by taking into account different bodies of evidence that
support those beliefs. In this chapter we present two main approaches to
extending belief functions on Boolean algebras of events to MV-algebras
of events, modelled as fuzzy sets, and we discuss several properties of
these generalized measures. In particular we deal with the normalization
and soft-normalization problems, and on a generalization of Dempster’s
rule of combination.

1 Introduction and Motivations

Dempster-Shafer theory of evidence [13,50] is a generalization of Bayesian prob-
ability theory in which degrees of uncertainty are evaluated by belief functions,
rather than by probability measures. Belief functions [50,52] can be regarded as
a special class of measures of uncertainty used to represent an agent’s degrees of
confidence in the occurrence of events of interest by taking into account different
bodies of evidence that support these beliefs [50]. Such evidence plays a pivotal
role in determining the agent’s beliefs. Indeed, as we will recall in a while, al-
though any belief function on the Boolean algebra 2X of subsets of a finite set X
might be seen as a particular probability, its associated distribution (called mass
in Dempster-Shafer theory) maps the whole algebra 2X into [0, 1], and not only
its atoms. Every set Y ⊆ X with a strictly positive mass represents a particular
body of evidence and is called a focal element.

Given the relevance that Dempster-Shafer theory has in real-world situations,
we may argue that usually, when a person is asked to provide an evidence about
a fact she were witness of, her description of the facts would be affected not only
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by uncertainty regarding the statements, but also by a possible imprecision in the
statements themselves. Therefore the classical framework would be insufficient
to model the analysis provided by a witness.

Fuzzy sets were introduced by Zadeh [57] as an extension of classical sets: given
a referential set X , a fuzzy subset of X can be identified with a function f from
X into the real unit interval [0, 1]. Given a fuzzy sets f , the idea is to interpret,
for every x ∈ X , the value f(x) ∈ [0, 1] as the degree of membership of x to f .
Adopting this interpretation, fuzzy set theory has become a basic mathematical
model to represent imprecision and vagueness, but of course many other different
interpretations are also possible. A typical example which explains how fuzzy sets
can be used in order to deal with imprecision is about the height of a person
(we will turn back to this example in the last section of this chapter). Indeed,
when we are asked whether an individual x belongs to the set of tall persons, the
classical truth values 1 (true) and 0 (false) might be insufficient. On the other
hand, values in the real unit interval [0, 1] provide a wider spectrum with which
one can evaluate to what extent an individual can be considered as tall. In this
prospective the fuzzy set of tall persons becomes a function μtall : X → [0, 1]
from the set X of individuals to [0, 1], assigning to each individual x its degree
μtall(x) of being tall. We refer the reader e.g. to [20,32,39] for monographs on
the topic.

In the literature several attempts to extend belief functions on fuzzy events
can be found. The first extensions of Dempster-Shafer theory to the general
framework of fuzzy set theory was proposed by Zadeh in the context of informa-
tion granularity and possibility theory [59] in the form of an expected conditional
necessity, and by Smets who proposed in [51] to extend a classical belief function
Bel on 2X to fuzzy subsets A of X as the lower expectation of the characteristic
function of A with respect to the class of probability measures lower bounded
by Bel. After Zadeh and Smets, several further generalizations were proposed
depending on the way a measure of inclusion among fuzzy sets is used to define
the belief functions of fuzzy events based on fuzzy evidence. Indeed, given a mass
assignment m for the bodies of evidence {A1, A2, . . .}, and a measure I(A ⊆ B)
of inclusion among fuzzy sets, the belief of a fuzzy set B can be defined in
general by the value: Bel(B) =

∑
i I(Ai ⊆ B) ·m(Ai). We refer the reader to

[37,55,56] for exhaustive surveys, and to [2] for another approach through fuzzy
subsethood.

Belief functions on distributive lattices were studied in [33] and [61] where
the authors define, starting from a given mass assignment m : L → [0, 1], the
belief degree Bel(a) of an element a of a distributive lattice L to be Bel(a) =∑

x∈IL,x≤am(x), where IL denotes the set of all join-irreducible elements of L.
Notice that, although the framework of distributive lattices is much more general
than the framework we are going to discuss in this chapter (we invite the reader
to consult Section 3), the inclusion operator used in [33,61] is crisp and hence it
does not take into account a graded notion of inclusion.
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Different definitions were also introduced by Dubois and Prade [19] and by
Denœux [15,16] to deal with belief functions ranging over intervals or fuzzy
numbers.

Of course, moving from classical sets to fuzzy sets conveys non trivial com-
plications in the description of the algebraic model aimed at representing the
available evidence. In particular, although we start with a finite set X , while
the Boolean algebra 2X is finite and hence atomic, the class [0, 1]X of the fuzzy
subsets f : X → [0, 1] of X contains uncountably many elements and hence it is
not always trivial to define a mass m over them. Moreover there are several dif-
ferent ways to generalize Boolean algebras to algebras of fuzzy sets. Usually the
generalization of belief functions to this frame, is done in the algebraic context
of the so called De Morgan triples (or Zadeh-algebras) over classes of fuzzy sets,
and where intersection, union, and complementation, are replaced in [0, 1]X by
the pointwise extensions of the operations in [0, 1] of min, max, and standard
negation ¬ : x (→ 1− x respectively (see for instance [60, §2.1]).

In [25,41,42], to further generalize belief functions on fuzzy sets, the authors
frame their investigation in the algebraic setting of MV-algebras [7,45] (in fact in
every MV-algebra a Zadeh-algebra is obtainable as a reduct) and, since a belief

function can be equivalently represented by a probability measure Pm : 22
X →

[0, 1] such that P ({∅}) = 0, they replace the usual probability measures by
the notion of state on MV-algebras [44]. Indeed MV-algebras are the algebraic
structures for fuzzy sets enabling the most natural treatment of many-valued
probability theory. The reason is in the formula for a probability of a fuzzy
event proposed already by Zadeh [58]. His definition — the expected value of
the membership function of the fuzzy set w.r.t. a probability measure on its
domain — later turned out to be a consequence of the axiomatic treatment of
MV-probability. We will provide a more detailed introduction about these topics
in Subsection 3.1.

In this chapter we will survey recent developments on belief functions on
MV-algebras of fuzzy sets, mainly following the lines of the already above cited
papers [25,28,41,42]. The paper is organized as follows. In Section 2 we recall
how belief functions are defined on Boolean algebras and in particular we will
present a first definition based on mass assignments, and a second (equivalent)
one based on probability measures. Then, in Section 3 we introduce the main
algebraic structures we will need along the paper, namely MV-algebras. In the
same section we also introduce states on MV-algebra (in Subsection 3.1) and
we recall some basic results we are going to use later. Section 4 contains two
main approaches to define belief functions on MV-algebras: we will deal with
a first approach in which belief functions on fuzzy sets are built up over crisp,
Boolean focal elements (Subsection 4.1), and a second, more general approach,
in which belief functions on fuzzy sets are defined in a way to allow for focal
elements to be fuzzy as well (Subsection 4.2). Belief functions on MV-algebras
are not necessarily normalized measures, in the sense of the belief of the empty
set being zero. We will discuss the normalization problem in Section 5 and the
case of a soft-normalization of mass assignments, and hence of belief functions,
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in Subsection 6. Then in Section 7 we present a generalization of Dempster rule
of combination, we discuss some particular cases and we provide an example
aimed at clarifying the use of such a construction in the general frame of fuzzy
sets. We will end this chapter with Section 8 where we present some concluding
remarks and we also suggest alternative readings about the topic.

2 Belief Functions on Boolean Algebras

Consider a finite set X whose elements can be regarded as mutually exclusive
(and exhaustive) propositions of interest, and whose powerset 2X represents all
combinations of such propositions. The set X is usually called the frame of
discernment, and every element x ∈ X represents the lowest level of discernible
information we can deal with.

A map m : 2X → [0, 1] is said to be a basic belief assignment, or a mass
assignment whenever

m(∅) = 0 and
∑

A∈2X

m(A) = 1.

Given such a mass assignment m on 2X , for every A ∈ 2X , the belief of A is
defined as

Belm(A) =
∑
B⊆A

m(B). (1)

Every mass assignment m on 2X is in fact a probability distribution on 2X that

naturally induces a probability measure Pm on 22
X

. Consequently, the belief
function Belm corresponding to m can be equivalently described as follows: for
every A ∈ 2X ,

Belm(A) = Pm({B ∈ 2X : B ⊆ A}). (2)

Therefore, identifying the set {B ∈ 2X : B ⊆ A} with its characteristic function

on 22
X

defined by

βA : B ∈ 2X (→
{
1 if B ⊆ A,
0 otherwise,

(3)

it is easy to see that, for every A ∈ 2X , and for every mass assignment m : 2X →
[0, 1], we have

Belm(A) = Pm(βA). (4)

This easy characterization will be important when we discuss the extensions of
belief functions on MV-algebras. The following is a trivial observation about the
map βA that can be useful to understand our generalization: for every A ∈ 2X ,
βA can be regarded as a map evaluating the (Boolean) inclusion of B into A, for
every subset B of X .

A subset A of X such that m(A) > 0 is said to be a focal element. Every
belief function is characterized by the value that m takes over its focal elements,
and therefore, the focal elements of a belief function Belm contain the pieces
of evidence that characterize Belm itself. For every set X and for every mass
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assignmentm, call Fm the set of focal elements of 2X with respect to m. It is well
known that several subclasses of belief functions can be characterized just by the
structure of their focal elements. In particular, when Fm ⊆ {{x} : x ∈ X}, it is
clear that Belm is indeed a probability measure. Moreover, if the focal elements
are nested subsets of X , i.e. Fm is a chain with respect to the inclusion relation
between sets, then Belm is a necessity measure [19,50]; this means e.g. that in
such a case, it holds that Belm(A1∩A2) = min{Belm(A1), Belm(A2)} for eveary
A1, A2 ∈ 2X .

The whole class of belief functions on Boolean algebras is characterized by the
property of non-decreasing differences of all possible orders. This property can be
formulated for any function v : L → R defined on a distributive lattice L [33,61].
We say that v is totally monotone if, for every n ≥ 2 and every a1, . . . , an ∈ L,
we have

v

(
n∨

i=1

ai

)
≥

∑
∅�=I⊆{1,...,n}

(−1)|I|+1v

(∧
i∈I

ai

)
.

Shafer [50] has shown that the following assertions are equivalent for a function
v : 2X → [0, 1] such that v(∅) = 0 and v(X) = 1:

– v is a belief function,
– v is a totally monotone function on the distributive lattice 2X .

As we will see in the following sections, this property does not characterize, in
general, belief functions on fuzzy sets.

3 MV-Algebras: An Algebraic Frame for Many-Valued
Events

In the same way Boolean algebras are the algebraic structures related to classical
logic, MV-algebras are the algebras naturally associated to infinitely-valued �Lu-
kasiewicz logic.

The language of �Lukasiewicz logic �L (cf. [7,35]), consists of a countable set
of propositional variables {p1, p2, . . .}, the binary connective →, and the truth
constant ⊥. Formulas are defined by the usual inductive clauses. The following
formulas provide an axiomatization for �L:

(�L1) ϕ → (ψ → ϕ)
(�L2) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(�L3) ((ϕ → ⊥) → (ψ → ⊥)) → (ψ → ϕ)
(�L4) ((ϕ → ψ) → ψ) → ((ψ → ϕ) → ϕ)

The rule of inference of �L is modus ponens: from ϕ and ϕ → ψ, deduce ψ.
Further connectives in �L are definable as follows: ¬ϕ = ϕ → ⊥; ϕ⊕ψ = ¬ϕ →

ψ; ϕ� ψ = ¬(ϕ → ¬ψ); ϕ ∨ ψ = (ϕ → ψ) → ψ; ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ); � = ¬⊥.
�Lukasiewicz logic is an algebraizable logic in the sense of Blok and Pigozzi [3],

and its equivalent algebraic semantics is constituted by the class of MV-algebras
[6,7]. In algebraic terms, an MV-algebra is a structure A = (A,⊕,¬, 0) of type
(2, 1, 0) satisfying the following equations, for every a, b, c ∈ A:



178 T. Flaminio, L. Godo, and T. Kroupa

(MV1) a⊕ (b⊕ c) = (a⊕ b)⊕ c,
(MV2) a⊕ b = b⊕ a,
(MV3) a⊕ 0 = a,
(MV4) ¬¬a = a,
(MV5) a⊕ ¬0 = ¬0,
(MV6) ¬(¬a ⊕ b)⊕ b = ¬(¬b ⊕ a)⊕ a.

Further (definable) operations can be defined from ⊕,¬ and 0 in a similar way
as for the logical connectives above. In particular: a → b = ¬a ⊕ b, a � b =
¬(¬a⊕ ¬b); a ∨ b = ¬(¬a⊕ b)⊕ b; a ∧ b = ¬(¬a ∨ ¬b); 1 = ¬0.

For every MV-algebraA = (A,⊕,¬, 0, 1), the structure L(A) = (A,∧,∨, 0, 1),
where ∧ and ∨ are defined as above, is a bounded distributive lattice and more-
over the order relation ≤ defined by the stipulation: for all a, b ∈ A

x ≤ y iff x → y = 1,

coincides with the lattice order of L(A). An MV-algebra whose order ≤ is linear
is called an MV-chain. The class of MV-algebras forms a variety that we denote
by MV.

Let A be an MV-algebra. Then a non empty subset f of A is said to be a filter
of A iff: (i) 1 ∈ f, (ii) if a, b ∈ f, then a� b ∈ f, and (iii) if a ∈ f and b ≥ a, then
b ∈ f. A filter f of an MV-algebra A is said to be proper, if f 
= A. A filter m is
said to be a maximal filter (or an ultrafilter) whenever for any proper filter f such
that f ⊇ m, either f = A, or f = m. The set of all ultrafilters of an MV-algebra A
will be henceforth denoted by M(A), or, when there is no danger of confusion,
simply by M. For every MV-algebra A, the set M(A) is non-empty and it can
be endowed with a compact Hausdorff topology, the so-called spectral topology:
for an arbitrary filter f of A, any set of the form Of = {m ∈ M(A) : m 
⊇ f} is
open in this topology.

Observe that an intersection of a family of filters is a filter. The intersection
of the family of all maximal filters of an MV-algebra A is called the radical of
A and it is usually written Rad(A). An MV-algebra A is semisimple whenever
Rad(A) = {1}. It is well-known (see [7] for instance) that the congruences
lattice and the filters lattice of any MV-algebra A are mutually isomorphic, via
the isomorphism which associates to every congruence1 θ the filter fθ = {a ∈ A |
(a, 1) ∈ θ}.

Example 3.1. The following are four relevant examples of MV-algebras:

(1) Every Boolean algebra is an MV-algebra, and moreover for every MV-algebra
A, the set B(A) = {a ∈ A : a ⊕ a = a} of its idempotent elements is the
domain of the largest Boolean subalgebra of A. The algebra having B(A)
as universe is usually called the Boolean skeleton of A.

1 A congruence θ in a MV-algebra A is an equivalence relation on A respecting the
operations, i.e. if (x, y) ∈ θ then (¬x,¬y) ∈ θ, and if (x, y), (x′, y′) ∈ θ then (x ⊕
x′, y ⊕ y′) ∈ θ.
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(2) Define on the real unit interval [0, 1] the operations ⊕ and ¬ as follows: for
all a, b ∈ [0, 1],

a⊕ b = min{1, a+ b}, and ¬a = 1− a.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-algebra. The MV-
algebra [0, 1]MV is generic for the variety of MV-algebras (i.e. it generates
the whole variety MV) and it is usually called the standard MV-algebra. In
equivalent terms, �Lukasiewicz logic is complete with respect to the semantics
defined by the standard MV-algebra.

(3) Fix k ∈ N, and let F (k) be the set of all the McNaughton functions (cf. [7])
from the hypercube [0, 1]k into [0, 1]. In other words, F (k) is the set of all the
functions f : [0, 1]k → [0, 1] which are continuous, piecewise linear and such
that each linear piece has integer coefficients only. The following pointwise
operations defined on F (k),

(f ⊕ g)(x) = min{1, f(x) + g(x)}, and (¬f)(x) = 1− f(x),

make the structure F(k) = (F (k),⊕,¬, 0) into an MV-algebra, where 0
clearly denotes the function constantly equal to 0. Actually, F(k) is the
free MV-algebra over k generators [7].

(4) Let X be a non-empty set, and let A = [0, 1]X the set of all functions from
X into [0, 1], endowed with operations defined by the pointwise application
of those in [0, 1]MV . The structure [0, 1]X is clearly an MV-algebra, which
we will henceforth call MV-algebra of fuzzy sets in order to point out that
every fuzzy subset of X is indeed included into A. Every MV-subalgebra of
[0, 1]X is called an MV-clan or simply a clan (cf. [4,46]). Notice that, for a
finite non-empty set X , the Boolean skeleton of the MV-algebra of fuzzy sets
[0, 1]X coincides with the power set 2X of X .

Notation 1. As already recalled in the introduction, MV-algebras, and MV-
clans in particular, constitute the algebraic framework on top of which we will
define belief functions. Indeed, elements of an MV-algebra A will be always in-
tended to be the fuzzy sets we will work with. Therefore, although in the previous
sections we used the notation f, g, . . . to indicate fuzzy sets, we will henceforth
denote them by a, b, c, . . . without danger of confusion. At the same time, the
notation f, g, . . . will be reserved to indicate functions in general. Moreover, in
order to distinguish fuzzy sets from crisp sets, the latter will be indicated us-
ing capitals letters. So, for example, for any MV-algebra A we will denote the
elements of B(A) by C,D, . . ., while for generic elements of A we will use the
notation a, b, c, . . ..

It is worth noticing that in [0, 1]MV , the interpretation of the lattice operations
of ∧ and ∨ is, respectively, in terms of the min and max operators. Therefore,
we will henceforth use both the notations ∧ and min, and ∨ and max, without
danger of confusion.

Roughly speaking the class of MV-algebras can be divided into semisimple
and non-semisimple MV-algebras. This is, in particular, a key point of distinc-
tion between MV and Boolean algebras. Remember, in fact, that every Boolean
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algebra is semisimple, and that all MV-algebras of fuzzy sets A = [0, 1]X are
semisimple as well.

A semisimple MV-algebra A ⊆ [0, 1]X is said to be separating provided that
for each x1 
= x2 ∈ X , there is a a ∈ A such that a(x1) 
= a(x2). Hence,
the MV-algebras of fuzzy sets A = [0, 1]X are both separating and semisimple.
The following theorem provides a representation of semisimple MV-algebras by
algebras of continuous functions.

Theorem 3.2 (Chang [6], Belluce [1]). Up to isomorphism, every semisim-
ple MV-algebra A is a separating algebra of continuous [0, 1]-valued functions
over the compact Hausdorff space M(A) of ultrafilters of A.

The following result, which we state for the particular case of MV-algebras of
fuzzy sets, holds in a much more general setting. We invite the interested reader
to consult [7] for a more exhaustive treatment.

Theorem 3.3. For every MV-algebra A = [0, 1]X, there exists a one-to-one
correspondence between the points of X and the class Hom(A, [0, 1]MV ) of ho-
momorphisms of A into the standard MV-algebra [0, 1]MV .

Thanks to the above Theorem 3.3 we will henceforth identify points in X
with homomorphisms of A in the standard MV-algebra [0, 1]MV without loss of
generality. Moreover, the following holds:

Corollary 3.4. Let {τ1, . . . , τs} be a finite subset of an MV-algebra A = [0, 1]X.
Then

{〈h(τ1), . . . , h(τs)〉 ∈ [0, 1]s : h ∈ Hom(A, [0, 1]MV )} =

{〈τ1(x), . . . , τs(x)〉 : x ∈ X}.

In this paper we will mainly concentrate on MV-algebras which are MV-clans
[0, 1]X defined over a finite set X . Such MV-algebras can be identified with finite
direct products of copies of [0, 1]MV .

3.1 States on MV-Algebras

States on MV-algebras have been introduced by Mundici in [44] as averaging
processes for the infinitely-valued �Lukasiewicz calculus.

Definition 3.5. Let A be an MV-algebra. A state on A is a map s : A → [0, 1]
such that:

(s1) s(1) = 1,
(s2) For all a, b ∈ A such that a� b = 0, s(a⊕ b) = s(a) + s(b).

A state s on an MV-algebra A is said to be faithful if s(x) = 0 implies x = 0.

For a given MV-algebra A, the class of all states on A is denoted by S(A).
States play the same role on MV-algebra as probability measures do on Boolean
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algebras: indeed, the two properties (s1) and (s2) characterize each state on A
as a [0, 1]-valued map that is normalized (s1) and additive (s2) with respect to
the MV-algebraic operations. Moreover, it is easy to see that, for every MV-
algebra A and for every s ∈ S(A), the restriction of s to the Boolean skeleton
B(A) of A is a finitely additive probability measure. The following theorem,
independently proved in [40] and [47], shows an integral representation of states
by Borel probability measures defined on the σ-algebra B(X) of Borel subsets
of X , where X is any compact Hausdorff topological space.

Theorem 3.6. Let A ⊆ [0, 1]X be a separating clan of continuous functions
over a compact Hausdorff space X. Then there is a one-to-one correspondence
between the class S(A) of states on A, and the regular Borel probability measures
on B(X). In particular, for every state s on A, there exists a unique regular
Borel probability measure μ on B(X) such that for every a ∈ A,

s(a) =

ˆ
X

a dμ. (5)

In the next example we consider a particular case of states on MV-algebras
of fuzzy sets, focusing on the integral representation presented above.

Example 3.7. Let X be a finite non empty set. Let A = [0, 1](2
X) be the MV-

algebra of fuzzy sets consisting of all functions from 2X to [0, 1] (i.e. A is the
MV-algebra of all fuzzy subsets of the powerset 2X of X). We will henceforth

deal with those states on [0, 1](2
X) satisfying s(χ{∅}) = 0 (where χ{∅} denotes

the characteristic function of ∅ ∈ 2X). The above Theorem 3.6 ensures that for
each such state s, there exists a unique finitely additive probability measure

μ : 2(2
X) → [0, 1] such that, for every a ∈ [0, 1](2

X),

s(a) =
∑
A⊆X

a(A) · μ({A}),

and μ({∅}) = 0.

Obviously the class S(A) is non-empty since Hom(A, [0, 1]MV ) ⊆ S(A).
Moreover S(A) is a convex subset of the compact Hausdorff space [0, 1]A whose
set of extremal points coincides with Hom(A, [0, 1]MV ). For every subset X of a
topological vector space, let us write co(X) to denote the closure of the convex
hull of the set X [21]. Then, Krein-Mil’man Theorem [31] gives the following
result.

Theorem 3.8. For every MV-algebra A, S(A) = co(Hom(A, [0, 1]MV )).

The following example is obtained by applying the above Theorem 3.8 to
the particular case of MV-algebras of fuzzy sets, and it will be needed in the
remaining of part of this chapter.

Example 3.9. As in Example 3.7, let X be finite and let S0 be the subset of

S([0, 1](2X)) of those states s : [0, 1](2
X) → [0, 1] further satisfying s(χ{∅}) = 0.
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The set S0 is a convex subset of the (2|X| − 1)-dimensional Euclidean space.

Since the correspondence between S0 and the set of all probabilities μ on 2(2
X)

satisfying μ({∅}) = 0 is a one-to-one affine mapping, the set S0 is a (2|X| − 2)-
simplex as well. Regarding the extreme points of S0, we can observe that they
are in one-to-one correspondence with the non-empty subsets of X , and hence

every state sA, with A ∈ 2X \ {∅}, such that sA(a) = a(A) for each a ∈ [0, 1](2
X)

is an extreme point of S0.

4 Belief Functions on MV-Algebras of Fuzzy Sets

In this section we are going to discuss two main MV-algebraic generalizations of
belief functions. Our approach is to generalize the definition (4), where Belm is

derived from a probability measure Pm on 22
X

. Therefore, we need to generalize
both the inclusion map βA and the probability measure Pm. In the following
subsections we investigate two directions in which these notions can be general-
ized.

4.1 The Case of Crisp Focal Elements

Let X be a finite nonempty set, and let, for each element a in the MV-algebra
[0, 1]X , the map ρ̂a : 2X → [0, 1] be defined by the following stipulation: for all
B ∈ 2X ,

ρ̂a(B) =

{
minx∈B a(x) if B 
= ∅,
1 if B = ∅. (6)

Remark 4.1. ρ̂a generalizes the map βA we discussed in Section 2 in the follow-
ing sense: whenever A ∈ B(A) = 2X , then ρ̂A = βA. Indeed, for every A ∈ B(A),
ρ̂A(B) = 1 if B ⊆ A, and ρ̂A(B) = 0, otherwise.

Definition 4.2 (Crisp Focal Elements). Let X be a finite nonempty set.

Then a map b̂ : [0, 1]X → [0, 1] is a crisp-focal element belief function, if there

exists a state s : [0, 1](2
X) → [0, 1] such that, for all a ∈ [0, 1]X

b̂(a) = s(ρ̂a).

The state s defining b̂ will be henceforth called the state assignment of b̂.

The integral representation theorem for states (Theorem 3.6) can be general-
ized to crisp-focal belief functions. This requires the introduction of the Choquet
integral (cf. [14]). Let f be any function from a finite nonempty set X to [0, 1],
and let σ be a set function σ : 2X → [0, 1] such that σ(∅) = 0. Then the Choquet
integral of f with respect to σ is defined as

C
ˆ

f dσ =

ˆ 1

0

σ(f−1([t, 1])) dt.
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Since X is finite, the integral Ć f dσ exists and takes the form of a finite sum.
In fact, without loss of generality let X = {x1, . . . , xn}, where the numbers
yi = f(xi) satisfy y1 ≥ · · · ≥ yn. Put yn+1 = 0 and for each i = 1, . . . , n,
Si = {x1, . . . , xi}, then

C
ˆ

f dσ =

n∑
i=1

(yi − yi+1)σ(Si).

Proposition 4.3. For every crisp-focal belief function b̂ : [0, 1]X → [0, 1] there
exists a unique belief function Bel : 2X → [0, 1] such that, for each a ∈ [0, 1]X,

b̂(a) = C
ˆ

a d(Bel).

Proof. Let s be the state assignment on [0, 1](2
X) which defines b̂. According to

Example 3.7 there is a unique finitely additive probability measure μ on 2(2
X)

such that, for each f ∈ [0, 1](2
X), one has s(f) =

∑
A⊆X f(A) · μ({A}) and

μ({∅}) = 0. Therefore, the crisp-focal belief function b̂ is expressed as follows:
for every a ∈ [0, 1]X ,

b̂(a) = s(ρ̂a) =
∑
A⊆X

ρ̂a(A) · μ({A}). (7)

Recalling the definition (3) of the map βA, we have ρ̂a(A) = min{a(x) : x ∈
A} = Ć a dβA, for every a ∈ [0, 1]X and for every A ⊆ X . Equation (7) together
with the linearity of Choquet integral with respect to the integrating set function
βA yields

b̂(a) =
∑

A∈2X\{∅}
μ({A}) · C

ˆ
a dβA = C

ˆ
a d

⎛⎝ ∑
A∈2X\{∅}

μ({A}) · βA

⎞⎠ .

The claim then follows noticing that the function Bel : 2X → [0, 1] such that for
each B ⊆ X ,

Bel(B) =
∑

A∈2X\{∅}
μ({A}) · βA(B) = μ({A ⊆ X | A ⊆ B})

is a belief function on 2X .

With X being finite, despite the previous representation theorem for crisp-
focal belief functions in terms of Choquet integral, Theorem 3.6 and Example

3.7 yields a unique probability measure μ : 2(2
X) → [0, 1] such that for every

a ∈ [0, 1]X

s(ρ̂a) =
∑

C∈2X

ρ̂a(C) · μ({C}). (8)
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Moreover, it is easy to see that, for every C ⊆ 2X , μ({C}) = s({C}), where
s({C}) is a succint expression for s(χ{C}). Since μ({∅}) = 0, the probability
measure μ induces a mass assignment m such that m(C) = μ({C}). This remark
explains the name crisp-focal for the belief functions as in Definition 4.2. In fact,
from (8), each crisp-focal belief function b̂ assigns, to each element a ∈ [0, 1]X ,

the value b̂(a) =
∑

C⊆X ρ̂a(C) ·m(C). Therefore b̂(a) is only determined by the
crisp elements C ⊆ X for which m(C) > 0, i.e. Boolean (crisp) focal elements.

In Dempster-Shafer theory, given a belief function Bel : 2X → [0, 1], the mass
m that defines Bel can be recovered from Bel by the Möbius transform [50] of
Bel:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B).

In case of crisp-focal belief functions, the situation is analogous.

Proposition 4.4. Let b̂ : [0, 1]X → [0, 1] be a crisp-focal belief function, defined

as b̂(a) = s(ρa) for some state s on [0, 1](2
X) such that s({∅}) = 0 and s({C}) >

0 iff C(x) ∈ {0, 1}, where C 
= ∅. Then

s({A}) = m(A) =
∑

B⊆A(−1)|A\B|b̂(B)

for each A ⊆ X.

Proof. Definition (4.2) directly gives that ρ̂A(C) ∈ {0, 1} for each pair of crisp
sets A,C ⊆ X and thus

b̂(A) =
∑

C∈2X ρ̂A(C) · s({C}) =
∑

B⊆A s({B}) =
∑

B⊆A m(B).

This implies that the restriction of b̂ to 2X is a classical belief function. See [42]
for further details.

As a corollary, observe that, in the hypothesis of the above proposition, the
values b̂(a) for non-crisp a ∈ [0, 1]X are fully determined by the values of b̂ over
the crisp sets of 2X . Indeed, Proposition 4.3 proves that, for any a ∈ [0, 1]X ,

b̂(a) is the Choquet integral of a with respect to the restriction of b̂ over 2X . In
this way we arrive at another characterization of crisp-focal belief functions.

Theorem 4.5. A function b̂ : [0, 1]X → [0, 1] is a crisp-focal belief function iff
its restriction onto 2X is a totally monotone function, i.e., for every natural n
and every A1, . . . , An ∈ 2X, the following inequality holds:

b̂

(
n∨

i=1

Ai

)
≥

∑
∅�=I⊆{1,...,n}

(−1)|I|+1 · b̂
(∧

k∈I

Ak

)
.

The geometrical structure of the set of all crisp-focal belief functions on [0, 1]X

is completely determined by the associated simplex of state assignments on

[0, 1](2
X). For each A ⊆ X , a crisp focal belief function b̂A(a) = min{a(x) :

x ∈ A} for a ∈ [0, 1]X corresponds to the state assignment sA (see Example
3.9). Consequently, we obtain the following characterization of the set of all
crisp focal belief functions.
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Proposition 4.6. The set of all crisp focal belief functions on [0, 1]X is a (2|X|−
2)-simplex whose set of extreme points is {b̂A | A ∈ 2X \ {∅}}.

4.2 The Case of Fuzzy-Focal Elements

The notion of belief function on MV-algebras we are going to introduce in this
section (cf. [25]) generalizes crisp-focal belief function by introducing, for every
a ∈ A = [0, 1]X , a more general inclusion map ρa associating with each fuzzy set
b ∈ A the degree of inclusion of the fuzzy set b into the fuzzy set a as follows:

ρa(b) = min{b(x) ⇒ a(x) : x ∈ X}, (9)

where ⇒ is Lukasiewicz implication in the standard algebra [0, 1]MV defined as
u ⇒ v = (¬u)⊕ v = min(1, 1−u+ v), for all u, v ∈ [0, 1]. The choice of ⇒ in the
above definition is clearly due to the MV-algebraic setting, but different choices
could be made in other fuzzy logic settings.

The mapping ρa can be indeed regarded as a generalized inclusion opera-
tor between fuzzy sets (cf. [25] for further details) since the following intuitive
properties are satisfied by such mappings:

– ρa(b) = 1 iff b(x) ≤ a(x), for all x ∈ X ;
– ρa(b) ≥ ρa(b

′), whenever b(x) ≤ b′(x), for all x ∈ X ;
– ρa(b) = 0 iff there is x ∈ X such that b(x) = 1 and a(x) = 0.

Next proposition shows that the mapping ρa generalizes both the previously
introduced mappings βA and ρ̂a.

Proposition 4.7. (i) For all a, a′ ∈ A, ρa∧a′ = min{ρa, ρa′}, and ρa∨a′ ≥
max{ρa, ρa′}.

(ii) For every a ∈ A, the restriction of ρa to B(A) coincides with the trans-
formation ρ̂a defined by (6).

(iii) For every A ∈ B(A), the restriction of ρA to B(A) coincides with the
transformation βA defined by (3).

Proof. (i) In every MV-chain, and in particular in the standard chain [0, 1]MV

the equation ¬c⊕ (a ∧ b) = (¬c⊕ a) ∧ (¬c⊕ b) holds:, i.e. (c ⇒ (a ∧ b)) = (c ⇒
a) ∧ (c ⇒ b). Therefore, for every a, a′, b ∈ A,

ρa∧a′(b) = min{b(x) ⇒ (a ∧ a′)(x) : x ∈ X}
= min{b(x) ⇒ (a(x) ∧ a′(x)) : x ∈ X}
= min{(b(x) ⇒ a(x)) ∧ (b(x) ⇒ a′(x)) : x ∈ X}
= min{ρa(b), ρa′(b)}.

An easy computation shows that ρa∨a′ ≥ max{ρa, ρa′}.
(ii) For every B ∈ B(A), ρa(B) = min{B(x) ⇒ a(x) : x ∈ X}. Whenever

x 
∈ B, B(x) = 0, and hence B(x) ⇒ a(x) = 1 for all those x 
∈ B. On the other
hand for all x ∈ B, B(x) = 1, and so B(x) ⇒ a(x) = 1 ⇒ a(x) = a(x) for all
x ∈ B. Consequently, ρa(B) = min{a(x) : x ∈ B}.

(iii) It follows immediately from (ii) together with Remark 4.1.
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For every A ∈ 2X (i.e. whenever A is identified with a vector in [0, 1]X having
integer coordinates), the map ρA : [0, 1]X → [0, 1] is a pointwise minimum of
finitely many linear functions with integer coefficients, and hence ρA is a non-
increasing McNaughton function [7].

Lemma 4.8. The MV-algebra R2 generated by the set �2 = {ρA : A ∈ 2X}
coincides with the free MV-algebra over n generators F(n), where n is the car-
dinality of X.

Proof. By [8, Theorem 3.13], if a variety V of algebras is generated by an alge-
bra A, then the free algebra over a cardinal n > 0 is, up to isomorphisms, the

subalgebra of AAX

generated by the projection functions θi : A
X → A. There-

fore, in order to prove our claim it suffices to show that the projection functions
θ1, . . . , θn belong to �2.

For every i = 1, . . . , n, let the vector i ∈ {0, 1}X be defined as

i(j) =

{
0, if j = i
1, otherwise.

Then ρi = 1 − θi. In fact, for every b ∈ [0, 1]X , and for every i, j ∈ X such
that j 
= i, we have b(j) → i(j) = 1, and b(i) → i(i) = 1 − b(i), so that
1− ρi(b) = θi(b) = b(i). This actually shows that the MV-algebra R¬

2 generated

by the set ¬�2 = {1− ρA : A ∈ 2X} is isomorphic to F(n). Clearly R2 and R¬
2

are isomorphic through the map g : a ∈ R2 (→ 1− a ∈ R¬
2 .

Therefore, if we consider the MV-algebra RX generated by the set � = {ρa : a ∈
[0, 1]X} we obtain a semisimple MV-algebra that properly extends F(n), and
whose elements are continuous functions from [0, 1]X into [0, 1]. This implies, in
particular, that RX is separating.

Definition 4.9 (Fuzzy-Focal Belief Function). Let X be a finite set and let
A = [0, 1]X . A map b : A → [0, 1] will be called a (fuzzy-focal) belief function
on the finite domain MV-clan A provided there exists a state s : RX → [0, 1]
such that for every a ∈ A,

b(a) = s(ρa). (10)

We will denote by Bel(A) the class of all the (fuzzy-focal) belief functions over
the finite domain MV-clan A.

In analogy with the case of crisp-focal belief functions, the state s defining b
will be henceforth called the state assignment of b.

As in the previous section, we will identify the mass of a belief function b with
the unique Borel regular probability measure μ over B([0, 1]X) that represents
the state s via Theorem 3.6.

Remark 4.10. Note that if the set {b ∈ [0, 1]X | μ({b}) > 0} is countable then
the above Definition 4.9 yields

b(a) =
∑
b∈A

ρa(b) · μ({b}). (11)
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In this case, a focal element is any b ∈ A such that μ({b}) > 0 and hence, in
contrast with the case of crisp-focal belief functions, it is clear that focal elements
of b can be proper fuzzy sets.

We showed in Theorem 4.5 that the property of total monotonicity charac-
terizes crisp focal belief functions on MV-algebras. As for the case of fuzzy-focal
belief functions, the problem of characterizing those belief functions in terms of
(a variant of) total monotonicity is open, but the following implication holds.

Proposition 4.11. For every finite-domain MV-clan A and for every b ∈
Bel(M), b is totally monotone on the lattice reduct of A.

Proof. Since for every a ∈ A, ρa is monotone, and every state s is monotone, b
is monotone as well. Moreover, for every n and for every a1, . . . , an ∈ A, from
(10) and Proposition 4.7 (i) we have the following chain of inequalities:

b (
∨n

i=1 ai) = s(ρa1∨...∨an)
≥ s(ρa1 ∨ . . . ∨ ρan)

=
∑

∅�=I⊆{1,...,n}(−1)|I|+1 · s
(∧

k∈I ρak

)
=

∑
∅�=I⊆{1,...,n}(−1)|I|+1 · s

(
ρ(

∧
k∈I ak)

)
=

∑
∅�=I⊆{1,...,n}(−1)|I|+1 · b

(∧
k∈I ak

)
.

Since belief functions on [0, 1]X are defined by states on RX and differ-
ent states s1 and s2 determine different belief functions b1 and b2, the set
Bel([0, 1]X) of belief functions on [0, 1]X is in 1-1 correspondence with the set
S(RX) of all states on RX . Moreover, this correspondence is an affine map-

ping. Hence Bel([0, 1]X) is a compact convex subset of [0, 1]([0,1]
X). Therefore

Krein-Mil’man theorem shows that Bel([0, 1]X) is in the closed convex hull of
its extremal points. The following result characterizes the extremal points of
Bel([0, 1]X).

Proposition 4.12. For every x ∈ [0, 1]X, the belief function bx defined by

bx(a) = sx(ρa) = ρa(x), a ∈ [0, 1]X , (12)

is an extremal point of Bel([0, 1]X).

Proof. A belief function b ∈ Bel([0, 1]X) is extremal iff its state assignment is
extremal in S(RX). In fact s is not extremal iff there exist s1, s2 ∈ S(RX) and
a real number λ ∈ (0, 1) such that s = λs1 + (1 − λ)s2. In particular, for every
a ∈ [0, 1]X ,

b(a) = s(ρa) = λs1(ρa) + (1− λ)s2(ρa) = λb1(a) + (1− λ)b2(a),

whence b would not be extremal as well.
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As recalled above, RX is separating. Therefore from Proposition 4.12 the
extreme points of its state space are MV-homomorphisms sx, for each x ∈ [0, 1]X .
Hence the following holds due to (12).

Theorem 4.13. Every belief function b is a pointwise limit of a convex combi-
nation of some functions ρ.(a

1),. . . , ρ.(a
k), where a1,. . . , ak ∈ [0, 1]X.

Remark 4.14. Consider the restriction b− of a fuzzy-focal belief function b to
the Boolean skeleton 2X of its domain [0, 1]X . Then, although it has fuzzy-focal
elements, the map b− actually is a classical belief function since, by Proposition
4.11, b− keeps being total monotone. Therefore, there exists a mass assignment
on crisp subsets of X giving the same b−. In other words there exists a mass
assignment m− : 2X → [0, 1] such that, for every A ∈ 2X one has:

b(A) = b−(A) =
∑
B⊆A

m−(B)

In the framework of finitely-valued fuzzy sets on the scale Sk =
{0, 1/k, . . . , (k − 1)/k, 1}, an interesting question is how to compute the mass
m− from the mass μ giving b, that is, what is the map m− : 2X → [0, 1] fulfilling
the constraints ∑

a∈(Sk)X

ρA(a) · μ(a) =
∑
B⊆A

m−(B)

for each A ∈ 2X . In fact, following [18,55], to find the solution the idea is to
decompose the mass μ(a) of each fuzzy-focal element a into its level cuts aαi ,
with αi ∈ Sk, as follows:

ma(aαi) = μ(a) · (αi − αi−1)

where αi = i/k, for i = 0, 1, . . . , k. Finally, since it may be the case that two
(or more) level sets of different fuzzy-focal elements coincide, we define for each
A ∈ 2X :

m−(A) =
∑

{ma(aα) | a ∈ (Sk)
X , α ∈ Sk such that aα = A}.

5 On Normalized Belief Functions

The height of a fuzzy set a ∈ [0, 1]X is defined in the literature as

h(a) = max{a(x) : x ∈ X}. (13)

The value h(a) can be interpreted as the degree of normalization of a. As a
matter of fact, a fuzzy set a is called normalized whenever h(a) = 1, otherwise
it is called non-normalized. A non-normalized fuzzy set represents a partially
inconsistent information.
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The map ρ0 evaluating the degree of inclusion of any fuzzy set b ∈ [0, 1]X in
the empty fuzzy set 0 (constantly zero function) does not coincide, in general,
with 0 itself. In fact, whenever b is a non-normalized fuzzy set (i.e. h(b) < 1),
ρ0(b) > 0. Therefore, if s is a faithful state on RX , the fuzzy-focal belief function
defined through s satisfies b(0) > 0.

Definition 5.1. A (fuzzy-focal) belief function b : [0, 1]X → [0, 1] is said to be
normalized provided that

b(0) = s(ρ0) = 0. (14)

In this section we will focus on normalized fuzzy-focal belief functions. Indeed
it is worth noticing that crisp-focal belief functions are normalized, i.e. they
always satisfy (14).

In classical Dempster-Shafer theory, the notion of focal element is crucial
for classifying belief functions. Whenever X = {1, . . . , n} is a finite set, the
Boolean algebra 2X is finite, and hence the mass assignment m : 2X → [0, 1]
obviously defines only finitely many focal elements. On the other hand, the MV-
algebra [0, 1]X has uncountably many elements, and hence we cannot find in
general a mass assignment μ defined over B([0, 1]X) and supported by an at
most countable set only. This observation leads to the following definition.

Definition 5.2. Let K be the set of all compact subsets of an MV-algebra
of fuzzy sets [0, 1]X . For every regular Borel probability measure μ defined on
B([0, 1]X), we call the set

spt μ =
⋂
{K|K ∈ K, μ(K) = 1}

the support of μ.

By Theorem 3.6 we can regard spt μ as the support of the state s defined
from μ via (5). In particular, the following holds:

b(a) =

ˆ
[0,1]X

ρa dμ =

ˆ
spt μ

ρa dμ. (15)

Therefore, for a belief function b on [0, 1]X whose state assignment s is repre-
sented by a regular Borel probability measure μ, we will henceforth refer to spt μ
as the set of focal elements of b.

Proposition 5.3. The set S0 of all states on RX satisfying (14) is a nonempty
compact convex subset of [0, 1]RX considered with its product topology.

Proof. S0 is nonempty: let s1 be defined by

s1(ρ) = ρ(1),

for every ρ ∈ RX , where 1 : X → [0, 1] is the constant function of value 1. This
gives in particular s1(ρ0) = ρ0(1) = 0 and thus s1 ∈ S0. Let s, s′ ∈ S0 and
α ∈ (0, 1). Then the function given by

αs+ (1− α)s′
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is a state on RX which clearly satisfies (14). Hence S0 is a convex subset of
the product space [0, 1]RX . Since the space [0, 1]RX is compact, we only need to
show that S0 is closed (in its subspace product topology). To this end, consider
a convergent sequence (sm)m∈N in S0 whose limit is s. As the set of all states
on RX is closed, s is a state. That s satisfies (14) follows from the fact that
s(ρ0) = limm→∞ sm(ρ0) = 0.

The family of states S0 can be characterized by employing the integral repre-
sentation of states. Namely, we will show that a state assignment s ∈ S0 iff s is
“supported” by normal fuzzy sets in [0, 1]X , i.e. fuzzy sets a ∈ [0, 1]X such that
a(x) = 1 for some x ∈ X . We will denote by NF(X) the set of normalized fuzzy
sets from [0, 1]X , i.e.

NF(X) = {a ∈ [0, 1]X | a(x) = 1 for some x ∈ X}.

The following result characterizes normalized fuzzy-focal belief functions in terms
of the support of their state assignment.

Theorem 5.4. Let s be a state assignment on RX and μ be the regular Borel
probability measure associated with s. Then spt μ ⊆ NF(X) if and only if s ∈ S0.

Proof. Let μ be a probability measure on Borel subsets of [0, 1]X such that
spt μ ⊆ NF(X). Put

s(a) =

ˆ
[0,1]X

a dμ, a ∈ RX . (16)

Since ρ0(a) = 0 for each a ∈ spt μ, it follows that

s(ρ0) =

ˆ
spt μ

ρ0 dμ = 0,

hence s ∈ S0. Conversely, assume that

s(ρ0) =

ˆ
[0,1]X

ρ0 dμ = 0,

which implies ρ0 = 0 μ-almost everywhere over [0, 1]X . Since ρ0(a) = 0 iff
a ∈ [0, 1]X is such that a(x) = 1, for some x ∈ X , we obtain μ(NF(X)) = 1.

In particular, every state assignment of a crisp-focal belief function belongs to S0.

6 Soft-Normalization for Fuzzy-Focal Belief Functions

Throughout the rest of the paper, we stipulate the following:

We always assume a mass μ such that its support spt μ is countable.
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Consider a belief function b with a state assignment s supported by spt μ.
Assume that there exists a focal element a ∈ spt μ that is a non-normalized
fuzzy set. Since spt μ is countable, we have neccesarily μ({a}) > 0,2 and b is
associating a positive degree of evidence to a (partially) inconsistent information,
which is reflected on the value that b assigns to the empty fuzzy set 0. Indeed,
in this case we have ρ0(a) > 0, and hence

b(0) = s(ρ0) =
∑

b∈spt μ

ρ0(b)μ({b}) ≥ ρ0(a) · μ({a}) > 0.

Notice that the more inconsistent the focal elements of b are, the greater is
the value b(0). When events and focal elements are crisp sets (and hence the
unique possible non-normalized focal element is 0), normalization consists in
redistributing the mass that μ assigns to 0 to the other focal elements of μ (if
any).

Dealing with fuzzy-focal elements makes it possible to introduce a notion of
soft normalization for belief functions. In particular, this construction allows for
a finer redistribution of the masses, which depends on two thresholds. Recall the
notion of height h(a) of a fuzzy set a introduced in (13). Then we introduce the
following definition of α-normalization.

Definition 6.1. A mass assignment μ : [0, 1]X → [0, 1] is said to be α-
normalized provided that inf{h(a) : a ∈ spt μ} = α.

In other words, a mass is α-normalized provided that each focal element of μ
has at least height α. In particular, for a belief function b we define the degree
of normalization of b as the value

inf{h(a) : a ∈ spt (μ)},

where μ is the mass associated to b.
Let now μ : [0, 1]X → [0, 1] be an α-normalized mass assignment, and assume

that there exists a focal element b for m such that h(b) = β > α.
The mass μ can be renormalized to the higher degree β by defining a new

mass μβ as follows: for every a ∈ [0, 1]X ,

μβ({a}) =
{
0, if h(a) < β
μ({b})
1−K , otherwise

(17)

where K =
∑

h(l)<β μ({l}).
The idea of this β-normalization, similarly to the classical normalization, con-

sists in fixing the value β as a new level of consistency for the mass we are
considering. Since α < β ≤ 1, the class of focal elements of height lower then
β is not empty. Then the process of β-normalization consists in redistribut-
ing all the mass which μ assigns to the fuzzy sets of height lower than β, i.e.
K =

∑
h(l)<β μ({l}), to those focal elements of height greater of (or equal to) β.

Clearly, every mass μ can be renormalized up to a maximum value given by

2 If spt μ is not countable, the condition a ∈ spt μ does not guarantee μ({a}) > 0.
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βmax = sup{h(a) : a ∈ spt (μ)}.

We will make use of β-normalization in the next section where we discuss a
generalization of the Dempster rule of combination.

7 Generalized Dempster’s Rule of Combination

The power of Dempster-Shafer theory is in the possibility of combining all the
available evidences about an event. In order to describe this aggregation process,
Dempster introduced in [13] the so called Dempster rule of combination, briefly
recalled next. Given a frame of discernment X , consider two masses m1 and m2

on 2X encoding the beliefs about evidences coming from two (possibly different)
sources. Then the new mass assignment m on 2X is obtained from m1 and m2

according to the Dempster rule is as follows: for every Y ⊆ X ,

m(Y ) =
∑

A∩B=Y

m1(A) ·m2(B) (18)

This rule may result in a non-normalized mass assignment as soon as there
exist focal elements A and B for m1 and m2 respectively such that A ∩B = ∅.
The normalized version of the rule yields the mass assignment m′ defined as
m′(∅) = 0 and for every ∅ 
= Y ⊆ X ,

m′(Y ) =
m(Y )

1−
( ∑

C∩D=∅
m1(C) ·m2(D)

) . (19)

Let us illustrate this situation with the following well known example due
to Smets [52] (see also [49]): Mr Jones has been murdered, and we know the
murderer was in the set X = {Peter, Paul,Mary}. The only evidence we have
is that Mrs Jones, who saw the killer leaving the scene of the murder, is 80%
sure that the murderer is a man. Hence all the available evidence is expressed
as Prob(Man) = 0.8.

As recalled, within Dempster-Shafer theory each piece of evidence is encoded
by a mass assignment m : 2X → [0, 1], assigning a value to each subset of X
such that

∑
A∈2X m(A) = 1 and m(∅) = 0 (i.e. there is no belief on the empty

set).
Turning back to the case of Mr. Jones’ murder, and since we know that

Prob(Man) = 0.8, the set {Paul, Peter} is a focal element of mass m1, and
in particular we assign m1({Paul, Peter}) = 0.8. We know nothing about the
remaining probabilities, so we allocate the remaining mass 0.2 to the whole frame
of discernment X (i.e. m1(X) = 0.2). Therefore, the only focal elements in this
example are X = {Peter, Paul,Mary} and {Paul, Peter}.

Consider a possible second piece of evidence providing an alibi for Peter with
confidence 0.6. This new information is hence encoded in the model with a new
mass assignment m2 such that m2({Paul,Mary}) = 0.6 and m2(X) = 0.4.
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The Dempster rule of combination given by (18) then provides a new mass
assignment m resulting from the combination of m1 and m2:

m({∅}) = 0;
m({Paul}) = 0.48;

m({Paul,Mary}) = 0.12;
m({Peter, Paul}) = 0.32;

m({X}) = 0.08.

Notice that this mass is normalized and hence it coincides with the mass resulting
from (19). From the combined mass assignment m we can compute the resulting
belief function bm : 2X → [0, 1] as follows: for every Y ⊆ X

bm(Y ) =
∑
Z⊆Y

m(Z). (20)

The previous formula yields for instance:

bm({Paul}) = 0.48;
bm({Paul,Mary}) = 0.6;
bm({Paul, Peter}) = 0.8;

bm(X) = 1.

In the example of Mr Jones’ murder, the masses m1 and m2 were assigned to
statements expressing precise properties regarding the individuals in the set of
hypothesis X . On the other hand, we may argue that usually a description of
the witness would be affected not only by uncertainty regarding the statements,
but also by the imprecision of the statements. Therefore the classical framework
would be insufficient to analyse the facts provided by the witness.

In [25] the authors present a generalization of the Dempster rule in order to
combine the information carried by two belief functions b1,b2 ∈ Bel([0, 1]X)
into a single belief function b1,2 ∈ Bel([0, 1]X). In the rest of this section we
will recall the basic steps of that construction and we will conclude with some
remarks about the procedure. We start with an easy result about the definition of
states in a product space needed in the construction of the generalized Dempster
rule.

Proposition 7.1. For every MV-algebra A, and for every pair of states s1, s2 :
A → [0, 1], there exists a state s1,2 defined on the direct product A×A such that
for every (b, c) ∈ A×A, s1,2(b, c) = s1(b) · s2(c).

Let now A = [0, 1]X , and let RX be the MV-algebra defined in Section 4.2.
Further, let s1, s2 be two state assignments on RX such that b1(a) = s1(ρa)
and b2(a) = s2(ρa) for all a ∈ A. Assume that μ1, μ2 : B(A) → [0, 1] are the
two regular probability measures of support spt μ1 and spt μ2, respectively, such
that for i = 1, 2,

si(f) =

ˆ
spt μi

f dμi, f ∈ RX .
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Let
μ1,2 : B(A×A) → [0, 1]

be the product measure on Borel subsets generated by A ×A and s1,2 be the
state on the MV-algebra of all measurable functions A × A → [0, 1] that is
defined as an integral with respect to μ1,2.

Notice that s1,2 actually coincides with the state s1,2 on RX ×RX defined as
in Proposition 7.1 through the identification

s1,2(g, h) =

ˆ
B(A)

g dμ1 ·
ˆ
B(A)

h dμ2 =

ˆ
B(A×A)

g · h dμ1,2 = s1,2(g · h).

Hence, in particular, for any g, h : A → [0, 1] and f such that f(x, y) =
g(x) · h(y), then Proposition 7.1 yields s1,2(f) = s1(g) · s2(h).

Finally, for every a ∈ A, consider the map ρ∧a : A×A → [0, 1] defined by

ρ∧a (b, c) = ρa(b ∧ c).

Then we are ready to define the following combination of belief functions.

Definition 7.2 (Generalized Dempster rule). Given b1,b2 ∈ Bel(A) as
above, define its min-conjunctive combination b1,2 : A → [0, 1] as follows: for all
a ∈ A,

b1,2(a) = s1,2(ρ
∧
a ). (21)

Regarding the support of the combined measure, it is worth noticing that
by [29, Theorem 417C (v)], spt μ1,2 = spt μ1 × spt μ2, and hence, if μ1 and
μ2 are normalized in the sense that their support is included into NF(X), then
spt μ1,2 ⊆ NF(X) as well. Therefore, by Proposition 5.4 one might deduce that,
if b1 and b2 are normalized belief functions, then b1,2 is normalized as well. The
following example shows that this is not the case, since in the definition of b1,2,
together with the product measure μ1,2, we also use the map ρ∧ which, in fact,
is not a genuine fuzzy-inclusion operator.

Example 7.3. Consider two belief functions b1 and b2 on [0, 1]2 with masses
concentrated as follows:

μ1(1, 0) = 1/4; μ1(1, 1) = 3/4; μ2(0, 1) = 1/2; μ2(1, 1) = 1/2.

Then, the product measure μ1,2 has support in the cartesian product of the
supports of the two masses:

{((1, 0), (0, 1)), ((1, 0), (1, 1)), ((1, 1), (0, 1)), ((1, 1), (1, 1))},

and it takes the following values:

μ1,2((1, 0), (0, 1)) = 1/8,
μ1,2((1, 0), (1, 1)) = 1/8,
μ1,2((1, 1), (0, 1)) = 3/8,
μ1,2((1, 1), (1, 1)) = 3/8.
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So, μ1,2 is normalized in the sense that each of its focal elements can be regarded
as a normal fuzzy set in [0, 1]2×[0, 1]2. On the other hand, b1,2 is non-normalized:
indeed, since (0, 0) = (1, 0) ∧ (0, 1), ρ(0,0)(0, 0) = 1 and ρ(0,0)(b, c) = 0 for focal
(b, c) 
= (0, 0), we have

b1,2(0, 0) =
∑

b,c:b∧c=(0,0)

ρ(0,0)(b ∧ c)) · μ1,2(b, c) = μ1,2((1, 0), (0, 1)) = 1/8 > 0.

The example we presented at the beginning of this section —the murder of
Mrs Jones [52]— can be adapted to the context of belief functions on fuzzy sets
as follows.

Example 7.4. Recall the 3 suspects of Mr. Jones’ murder: Peter, Paul, and
Mary. Consider the information provided by Mrs. Jones, she heard his husband
yelling and the person she saw running was a man . It turns out that Mary has
short hair, so she may be mistaken for a man at first sight, and hence the set of
suspects looking like a man can be considered fuzzy as well, with membership
function:

μman-like(Peter) = 1, μman-like(Paul) = 1, μman-like(Mary) = 0.5.

The evidence supplied by Mrs Jones may be represented by a mass assignment
m1 : [0, 1]X → [0, 1] such that m1(man-like) = α > 0, m1(X) = 1 − α and
m1(a) = 0 for any other a ∈ [0, 1]X .

A second piece of evidence is provided by the janitor living in the same house,
who reports that he saw in the darkness a small person quickly leaving the scene
of the crime. Paul and Mary are not tall while Peter is taller (Paul is 1.65 m
tall, Mary is 1.60 m tall and Peter is 1.85 m). So, actually, the subset of small
suspects of X = {Peter, Paul,Mary} can be also considered as a fuzzy set, with
membership function μsmall given by, say,

μsmall(Peter) = 0, μsmall(Paul) = 0.7, μsmall(Mary) = 0.9.

The evidence supplied by the janitor may be represented by a second mass
assignment m2 : [0, 1]X → [0, 1] such that m2(small) = β > 0, m2(X) = 1 − β
and m2(a) = 0 for any other a ∈ [0, 1]X .

Let us compute the resulting mass by combining m1 and m2 by means of the
generalized Dempster rule according to Definition 7.2:

b∧
1,2(a) =

∑
b,c∈{man-like,small,X}

ρa(b ∧ c) ·m1(b) ·m2(c) .

Here, the membership function of small∧man-like (interpreting ∧ by the min)
is given by

μsmall∧man-like(Peter) = 0;
μsmall∧man-like(Paul) = 0.7;
μsmall∧man-like(Mary) = 0.5.
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Suppose we are interested in computing the belief that the suspect is Paul.
We then need to compute:

ρ∧{Paul}(small ∧man-like) = min
x∈X

{μsmall∧man-like(x) ⇒ μPaul(x)}

= min{0 ⇒ 0, 1 ⇒ 1, 0.5 ⇒ 0}
= min{1, 0.5} = 0.5

ρ∧{Paul}(small ∧X) = min
x∈X

{μsmall(x) ⇒ μPaul(x)}

= min{0 ⇒ 0, 0.7⇒ 1, 0.9 ⇒ 0}
= min{1, 0.1} = 0.1

ρ∧{Paul}(X ∧man-like) = min
x∈X

{μman-like(x) ⇒ μPaul(x)}

= min{1 ⇒ 0, 1 ⇒ 1, 0.5 ⇒ 0}
= min{0, 1, 0.5} = 0

and ρ∧{Paul}(X) = 0. Finally, we have

b∧
1,2({Paul}) =

∑
a∈[0,1]X

ρ∧{Paul}(b ∧ c) ·m1(b) ·m2(c)

= ρ∧{Paul}(small ∧man-like) ·m1(man-like) ·m2(small ) +

ρ∧{Paul}(small ) ·m1(X) ·m2(small)

= 0.5 · α · β + 0.1 · (1− α) · β > 0.

Hence, we get a positive belief degree of Paul being the murderer. This is in
contrast with the results we would obtain, in case we assume Mary can be
mistaken for a man, with both the classical model and the crisp-focal model,
where focal elements are only allowed to be classical subsets of X . Indeed, in
that case, we would be forced to take as focal element for m1, besides X itself,
the set man-like = {Paul,Mary}, and since there would be no focal element
included in {Paul}, we would get b∧

1,2({Paul}) = 0. �

The above min-conjunctive combination can easily be extended to well-known
MV-operations on fuzzy sets, such as max-disjunction ∨, strong conjunction �
and strong disjunction ⊕, by defining

(b1 � b2)(a) = s1,2(ρ
�
a ),

for � being one of these operations, and defining

ρ�a (b, c) = ρa(b � c).

In this generalized case, the map b�
1,2 resulting from the respective combination

rule will be called the �-combination of b1 and b2.
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Whenever the supports of μ1 and μ2 are countable, it is easy to prove that b�
1,2

is a belief function in the sense of Definition 4.9. In fact, in this case Definition
7.2 yields

b�
1,2(a) =

∑
b,c∈A

ρa(b � c) · μ1({b}) · μ2({c}). (22)

Notice that (22) reduces to

b�
1,2(a) =

∑
d∈A

∑
b,c∈A
b�c=d

ρa(d) · (μ1({b}) · μ2({c})) =
∑
d∈A

ρa(d) · μ∗({d}),

where
μ∗({d}) =

∑
b,c∈A
b�c=d

μ1({b}) · μ2({c})

is indeed a mass assignment and hence b�
1,2 ∈ Bel([0, 1]X). Therefore, turning

back to the above Example 7.3 and Proposition 5.4, there exists a mass μ 
= μ1,2

for b�
1,2 such that spt μ 
⊆ NF(X).

8 Conclusions and Further Reading

In this chapter we have discussed several ways to define belief functions on MV-
algebras of fuzzy sets based on some previous results by the authors [41,42,25,28].
In particular we have surveyed two main frames in which belief functions on fuzzy
sets are characterized by the fact that focal elements are either crisp or fuzzy
sets. We have then studied the normalization and soft-normalization problem
together with a generalization of Dempster’s rule of combination.

Another logical-based approach, extending the one in [30] for classical events,
has been introduced in [27], where a modal logic for belief functions on an MV-
algebra has been presented.

Belief functions on Boolean algebras can also be described in geometrical
terms: in [9,10] the author presents several results in this directions. In a similar
way, the problem of extending a partial assignment over formulas of �Lukasi-
ewicz logic can be characterized in geometrical terms by combining tropical-
idempotent convex geometry and classical Euclidean convex geometry as well.
The paper [22] studies this geometrical foundation for belief functions on MV-
algebras.

The problem of extending a partial assignment to a probability measure is
well known in the literature as de Finetti’s coherence criterion [11,12]. As for
belief functions on Boolean events, a similar interpretation of belief functions in
terms of betting scheme has been presented in [38] and there is some ongoing
work for the case of fuzzy events [23].
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Stupňanová, Andrea 63

Torra, Vicenç 1
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