
Chapter 9
Dynamics of Vortices in Near-Wall Flows
with Irregular Boundaries

I. M. Gorban and O. V. Khomenko

Abstract Behavior of stationary vortices in near-wall flows with irregular bound-
aries is investigated. The vortices were shown to locate in the critical points of flow
and to be characterizednot only by its strength but by the eigenfrequency that specifies
precession of the vortex about the flow critical point along the small trajectory. Due
to eigenfrequency, the stationary vortex responds selectively on external periodical
perturbations. The last cause low-frequency vortex motion with large amplitudes and
when the frequency of external perturbations is to be near the vortex eigenfrequency
the vortex moves away from the critical point. So, dependency of the amplitude of
perturbed vortex motion from the frequency of external perturbations has the reso-
nance character. The resonant perturbations are shown to cause chaotization of local
circulation zones generated by stationary vortices.

9.1 Introduction

Vortical structure of fluid flows is a determining factor when moving a body in water
or in air as well as when operating hydraulic systems. A lot of important technical
problems in fluid dynamics connect with optimal transformation of vortical pattern
in the flow area. Artificial separation of flow resulting in generation of the local
recirculation zone is the effectiveway that allows changing as the vortical flowpattern
as the flow in whole. One may see the examples when artificial flow separation has
been successfully applied in papers [1–6]. This method of control may be considered
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as a way for regularization of near-wall flows at large Reynolds numbers. Transfer
from a turbulent near-wall flowwith chaotic motion of small-scale vortices to regular
large-scale vortical pattern leads to reducing of energy exchange between the flow
and the surface, in particular, to decreasing the body drag [3, 4]. The control strategy
in this case is directed on creating the “intellectual” flowof fluid, inwhich the vortices
are formed according to the control scheme and either theoretical or semiempirical
model predicting the vortex behavior.

One of the ways to generate large-scale vortices in near-wall flow is artificial
change of the surface configuration with help of bulges, grooves, ribs and so on
[2–4]. The vortices may be immovable ones, stationary recirculation zones, or mov-
ing togetherwith flowalong thewall in regularmanner. The fundamental requirement
when generating the artificial vortex structures is their stability in respect of pertur-
bations of external flow [7]. At the same time, the laboratory experiments testify
fast response of the local separation zones to external perturbations, especially with
a periodic component. This sensitivity is known to grow when rising the Reynolds
number of flow. So, the progress in development of near-wall flow control algorithms
connects with researching dynamical properties of the large-scale vortices and nature
of their chaotic behavior.

Because of generation of large-scale vortices in near-wall flows is under action of
viscous forces its investigation demands development of the mathematical models
and numerical algorithms basing on the Navier-Stokes equations. At the same time,
dynamical properties of the vortices, their stability and interaction with external flow
maybe studiedwithin the scope of themodel of ideal fluid. The efforts in investigation
of the vortex dynamics have led to some understanding of chaotization of fluid flows
[8–10].

It has to be noted that one of advantages of the vortex dynamic models, which
don’t take into consideration viscous effects, is their simplicity. This fact permits use
thesemodels for creation of algorithms of flow control in near-wall areas. Discovered
recently properties of motion of vortices and fluid particles in near-wall flows have
allowed to derive new ways of near-wall flow control [11–13].

It has been mentioned above one of the effective ways to change a near-wall
flow pattern is installation of special irregularities on the wall, in particular, cross
grooves. For the first time this method was proposed in papers [5–7] for decreasing
hydraulic losses in diffusers. Developed byRingleb [7] themodel of standing vortices
in the cross grooves of special configuration allowed derive new shapes of diffusers
with minimal hydraulic losses. Use of the cross groove as a control element in
aerodynamics was demonstrated in papers [3, 14] where an influence of shape, size
and location of the groove onwing hydrodynamic characteristics was experimentally
investigated.

At the same time, researches noted considerable instability of the flows with
stationary recirculation zones and standing vortices [4, 15] that makes difficult its
using in engineering. The knowledge about causes of this phenomenon would permit
to broaden the practical application of the control schemes with standing vortices.

The analysis shows [15–17] that minimal energy losses for generating and sup-
porting standing vortices will be achieved if one takes into account flow topology in



9 Dynamics of Vortices in Near-Wall Flows with Irregular Boundaries 117

the region under consideration. Modern methods of near-flow control are connected
with creating the needed flow topology that characterized by location of flow critical
points, its type, separatrix shape and so on. Note the flow topology governs also
chaotic processes in the region.

In the present paper, topology of the flows in the regions with non-regular bound-
aries and standing vortices is researched on the base of the standing vortex model.
It will be shown that the vortex located in the neighborhood of a stable critical point
is characterized by eigenfrequency which responsible for dynamical reaction of the
vortex with external flow perturbations.

9.2 Model of Standing Vortex

A simplified model that describes dynamic properties of local recirculation zones
formed near non-regular flow boundaries is considered. Linear parameters of the
surface irregularity are supposed to exceed considerably the boundary layer thickness
on the wall. The separation zone is simulated by a vortex that locates in the vorticity
center and whose circulation is equal to integral vorticity strength in the region. In
spite of simplicity, this model is effective enough for researching dynamic properties
of near-wall flows [7].

Two-dimensional flow of ideal incompressible fluid bounded by non-regular wall
is considered. Motion of a vortex located in this region is governed by a set of
non-linear equations:

dxv

dt
= νx (xv, yv, t),

dyv

dt
= νy(xv, yv, t), (9.1)

where xv, yv are the vortex coordinates and vx , vy are the components of the vortex
velocity.

To determine the right part of system (9.1), one has to solve the Laplace equation
for the complex flow potential Φ:

ΔΦ = 0 (9.2)

with boundary conditions on the wall:

∂Φ

∂n

∣
∣
∣
∣
Σ

= 0, (9.3)

and at infinity:
∂Φ

∂z

∣
∣
∣
∣
z→∞

= U0, (9.4)

Here Σ is the flow boundary and U0 is the flow velocity.
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Note if the velocity U0 does not change in time, system (9.1) will be autonomous
one. Analysis of its solutions may be carried out with applying the theory of critical
points [18]. According to this theory, critical points of the flow with a vortex are
determined from the condition of vortex equilibrium:

νx (xν, yν) = 0, νy(xν, yν) = 0. (9.5)

The divergence divν = ∂νx

∂x
+ ∂νy

∂y
and Jacobean J = (

∂νx

∂x
)(

∂νy

∂y
)−(

∂νx

∂y
)(

∂νy

∂x
) of

set (9.1) specify the type of critical points. The critical pointmay be a saddle, if J < 0,

a node, if J < ± div2ν
4 , and a focus, if J > ± div2ν

4 . Saddles are always unstable points,
noses and foci may be either stable, when divν < 0, or unstable, when divν > 0.
As we consider conservative flows, without energy supply, the divergence is equal to
zero. Then critical points may be either unstable hyperbolic, if J < 0, or elliptical,
when J > 0. For us, the latest points are interesting because they are conditionally
stable ones and such a flow may be only realized in practice. The vortex, whose
parameters are similar to those of the standing vortex, moves periodically around the
elliptical point. For the standing vortex, the precession trajectory is infinitesimal and
the precession frequency ω0 = √

J may be considered as its eigenfrequency. The
eigenfrequency is a very important characteristic of the standing vortex. In particular,
it governs the vortex reaction to external flow perturbations.

To find the solution of Eq. (9.2), we use the conformal mapping of the flow field
in the physical z-plane into an upper half-plane of the auxiliary plane ζ(ξ, η). In
ζ -plane, the complex flow potential is:

Φ(ζ) = Φ0(ζ ) + Γ

2π i
ln

ζ − ζν

ζ − ζ ν

, (9.6)

where Γ is the vortex circulation, ζν and Φ0(ζ ) are the vortex complex coordinate
and the non-separated flow potential in ζ -plane respectively.

If the conformal mapping function ζ = f (z) is known, one has the following
expression for the vortex velocity in the physical plane:

ν(xν, yν) =
(

dΦ0

dζ
+ Γ

4πην

)
d f

dz

∣
∣
∣
∣
ζ=ζν

+ Γ

4π i

(
d2 f

dz2

/
dζ

dz

) ∣
∣
∣
∣
ζ=ζν

. (9.7)

The real and imaginary components of (9.7) are the right-hand sides of (9.1).
The coordinates x0, y0 of the critical point are determined from the condition of

the flow equilibrium here:
ν|z=z0 = 0, (9.8)

where z0 = x0 + iy0.
Taking into account that coordinates of the critical point and the standing vortex

coincide, we obtain from (9.7) the following equation:
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(

dΦ0

dζ

∣
∣
∣
∣
ζ=ζ0

+ Γ

4πη0

) [(
d f

dz

)2 /
d2 f

dz2

] ∣
∣
∣
∣
ζ=ζ0

− iΓ

4π
= 0. (9.9)

From (9.9), two transcendental equations for determining the standing vortex coor-
dinates are derived. To calculate the vortex circulation, this set has to be completed
by an equation that follows from physical conditions of the problem under consid-
eration. For example, if the flow boundary has a sharp edge, the unsteady Kutta
condition can be involved.

9.3 Standing Vortex in Cross Groove

It was mentioned above cross grooves on the flowed surface are an effective way of
near-wall flow control. We make here analysis of dynamic properties of the standing
vortex in the uniform flow above the surface with a circular groove. The geometry
of interest in the present study is presented in Fig. 9.1a. The mapping function that
transforms the half-plane with a cut circular hollow (Fig. 9.1a) into the upper half-
plane (Fig. 9.1b) has the following form:

f (z) = aγ

1 +
(

z − a

z + a

)γ

1 −
(

z − a

z + a

)γ , γ = β

π − β
(9.10)

Here a is the semichord of groove, angle β characterizes the groove depth (β < 0).
The dependence of the groove depth on the angle β is shown in Fig. 9.3, curve 1.
The semichord a and the free-stream velocity U0 are characteristic parameters of the
problem. The dimensionless circulation is introduced as Γ = Γ/aU0.

The stationary point coordinates x0, y0 and standing vortex circulation Γ0 are
determined from (9.9) andKutta condition in the sharp groove edges. The last requires
finiteness of the flow velocity in the groove edge:

Fig. 9.1 Coordinate system in the physical plane z and the transformed plane ζ . Here ABC D
denote points in the physical plane which are mapped to points in the transformed plane A′ B ′C ′ D′
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dΦ

dz

∣
∣
∣
∣
z=z∗

= const, (9.11)

where z∗ is the coordinate of the sharp edge in the physical plane.

Using the ratio
dΦ

dz

∣
∣
∣
∣
z=z∗

= dΦ

dζ

d f

dz

∣
∣
∣
∣
z=z∗

and taking into account that the function

f (z) has a singularity in the sharp edge, one obtains:

dΦ

dζ

∣
∣
∣
∣
ζ=ζ∗

= 0, (9.12)

where ζ∗(ξ∗, 0) is the coordinate of the sharp edge in ζ -plane.
Taking into account symmetry of the flow region, it is sufficient to fulfill condition

(9.12) in one groove edge only. As the unity flow in the physical plane transfers into
the same flow in the transformed plane, from (9.6) the following equation may be
derived:

π + Γ0η0

(ξ∗ − ξ0)
2 + η20

= 0, (9.13)

where (ξ0, η0) is the stationary point image in ζ -plane.
In the present research, Eqs. (9.9 and 9.13) are solved numerically with applying

the secant method. The obtained results show that there are three stationary points
when a vortex interacts with the stream in the considered region. As seen on the
portrait of vortex trajectories (Fig. 9.2a), two points locate near the groove edges. As
follows from analysis of their stability they are unstable. So, the flowwith such stand-
ing vortices does not realize in physical experiment. The elliptical stationary point,
which is conditionally stable, lies on the groove axis. The flow pattern corresponding
such a standing vortex is shown in Fig. 9.2b.

Fig. 9.2 Portrait of vortex trajectories—a and streamlines—b above the medium-sized groove
(β = −90◦)
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Fig. 9.3 Groove depth h (curve 2)—a, vertical coordinate y0 (curve 1)—a, circulation Γν (curve
1)—b and eigenfrequency ω0 (curve 2)—b of the standing vortex against the angle β

The vertical coordinate y0 of the standing vortex against the angleβ characterizing
the groove depth is represented in Fig. 9.3a. It follows from this curve, the standing
vortex locates above the wall for shallow grooves (h < 0, 2). So, a very small
groove on the flowed surface promotes to stabilization of a vortex here. Because of
the vortices placed above the flat wall are always non-stable, shallow grooves may be
used for stabilization of vortices in near-wall flows. It is important for development
of the control schemes that use stable vortices on the surface (“vortical lubrication”
of a wall).

The circulation Γν and eigenfrequency ω0 of standing vortex against the angle
β are represented in Fig. 9.3b. These results point out fast reduction ω0 as with
increasing as with decreasing the groove depth. The standing vortex circulation Γν

is large enough in deep hollows and it grows slightly in shallow grooves due to
approaching thevortex to surface y = 0 in this case.Minimal circulation andmaximal
eigenfrequency of the standing vortex are observed in medium-sized hollows (β ≈
−90◦).

9.4 Standing Vortex in an Angular Region

In the simple cases, for example,when thefluidflow in an angular region is considered
(Fig. 9.4), the standing vortex parametersmaybe obtained analytically. The following
function maps interior of the angle β into a half-plane:

ζ = z
π
β . (9.14)

Taking into account that potential of irrotational flow isΦ0(ζ ) = −ζ , one hasmotion
equations of a vortex within the angular region in the following form:
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Fig. 9.4 Flow patternwith the
standing vortex in an angular
region (β = π

2 )

dxv

dt
=

(
Γ

4π sin γ ϕ
− 1

)

γ cosϕ(γ − 1) − Γ

4π
yν

dyv

dt
= −

(
Γ

4π sin γ ϕ
− 1

)

γ sin ϕ(γ − 1) + Γ

4π
xν,

(9.15)

where ϕ = arctan
yν

xν

, γ = π

β
. The standing vortex circulation and coordinates of

flow stationary point are derived by putting to zero the right-hand sides of (9.15):

Γ0 = 4πγ, x0 = cos
β

2
, y0 = sin

β

2
(9.16)

The carried out dynamic analysis shows the stationary point will be conditionally
stable elliptic, when β < π . The circulation Γν = Γ0/4π and eigenfrequency
ω0 of the standing vortex against the angle β are represented in Fig. 9.5. Both the
characteristics are seen growth when decreasing the angle β. So, the obtained results
reveal the conditions when existence of the standing vortex in an angular region is
possible and give value of the vortex parameters.
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Fig. 9.5 The circulation Γν

(curve 1) and eigenfrequency
ω0 (curve 2) of the standing
vortex against angle β

9.5 Resonant Properties of Standing Vortices
and Their Behavior in Perturbed Flow

In practice, near-wall flows are heterogeneous. There are many factors that entail
nonstationarity of an external stream, such as body vibrations, migration of turbulent
spots andmotion of external vortices. So, it is crucial to investigate how behavior of a
standing vortex changes under external flow disturbances. We consider here periodic
perturbations of the flow velocity:

U = U0(1 + ε sinΩt), ε 	 1 (9.17)

where ε, Ω are the amplitude and frequency of perturbations respectively.
It is supposed that at an initial instance t = 0, the vortex of circulation Γ0 locates

in the stable stationary point (x0, y0). Reaction of the vortex on perturbations given
by (9.17) will be studied. To determine the vortex trajectory in the perturbed flow,
(9.1) are integrated numerically by a fourth-order Runge-Kutta method.

The obtained results show the standing vortex begins to move around its station-
ary position under influence of the external perturbations. Character of this motion
depends on ratio between the external frequency Ω and the eigenfrequency ω0. If
the value of external frequency is far from that of eigenfrequency ω0 or its subhar-

monics
ω0

2
and 2ω0, the vortex will move periodically on a closed trajectory in the

small neighborhood of stationary point. The neighborhood size is proportional to the
amplitude of perturbations ε. The vortex trajectory will be much more complicated
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when the external frequencyΩ tends to the vortex frequencyω0 or its subharmonics.
Then multiperiodic large amplitude motion of the standing vortex is generated.

Motion of the vortex is characterized by its deviation from the stationary point
(x0, y0):

R(t) =
√

(xν(t) − x0)2 + (yν(t) − y0)2. (9.18)

Then the maximum deviation

Rmax = max{R(t) | t = (0,∞)} (9.19)

gives us the amplitude of vortex motion in the perturbed flow.
As follows from the results obtained, the amplitude Rmax is finite although the

external perturbation is small. It is due to non-linear character of the equations that
govern motion of a vortex near complex flow boundaries. Dependence Rmax on the
perturbation frequencyΩ has the resonant character. UnderΩ → ω0 , the amplitude
of the vortex precession Rmax increases rapidly.

The curves characterizing function Rmax

(
Ω

ω0

)

in angular regions are depicted in

Fig. 9.6. Three curves there correspond to different values β. These results approve
the resonant character of interaction between the standing vortex and periodic per-
turbations of external flow. The sharpest display of that is observed for blunt angles.

Flow perturbations lead also to significant stimulation of fluid mixing in the
recirculation zone. If perturbations are absent, fluid particles of this zone will move
along closed trajectories around the standing vortex. Under resonant perturbation,
advection of the fluid particles intensifies. To define the character of motion of fluid
particles and of standing vortex in the perturbed flow, the corresponding Puincare

Fig. 9.6 Maximum deviation
Rmax of the standing vortex
from the stationary point in
an angular region against the
relative frequency of external

perturbation
Ω

ω0
: ε = 0, 01,

1 − β = 3π

4
, 2 − β = π

2
,

3 − β = π

3
.
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Fig. 9.7 Poincare sections of trajectories of the standing vortex and a fluid particle—a and two

vortices of circulations Γ1 = Γν and Γ2 = Γν

20
—b in the angular region (β = π

2
) at resonant flow

perturbations: ε = 0, 001, Ω = ω0

sections are computed when positions of particle or of vortex are calculated at the

following points of time: tn = nT , where T = 2π

Ω
, n = 1, 2, .... Then those are

plotted in the physical flow region. The resulting Puincare sections in the angular

region with β = π

2
and Ω = ω0, ε = 0, 01 are represented in Fig. 9.7a. It denotes

the chaotic motion of fluid particles because the points depicting the particle posi-
tions after the period fill closely certain area in the physical plane. On the contrary,
the points corresponding to the vortex positions dispose along the closed curve that
indicates on regular character of the vortex motion.

Figure 9.7b depicts Puincare sections for two vortices placed in the flow with
resonant perturbations. One of those is the standing vortex of circulation Γν . At an
initial instance, it is located in the stationary point (x0, y0). Another small vortex,

whose circulation is
Γν

20
, moves around the first one. It is obvious that motion of the

small vortex has chaotic character. But in this case, the standing vortex positions after
the period fill the annulus of the finite thickness. It points out presence of secondary
small vortices in the perturbed flow leads to chaotic motions of the large-scale vortex
generated in the recirculation zone. Such dynamic reaction of the large vortex on the
external perturbations is very important factor that acts on development of flow as a
whole. Note it is an example of appearance of chaos in nonautonomous system.

The similar behavior of the standing vortex is observed in the periodically per-
turbed flow above the surface with a gross groove. Figure9.8 demonstrates the vor-
tex trajectory and corresponding time dependence of vortex deviation R(t) from
the stationary point under condition that the perturbation frequency Ω is close to
the vortex eigenfrequency ω0, (Ω = 1, 1ω0). The vortex motion is likely to be
multiperiodic one with a small basic frequency and high-frequency pulsations. The
amplitude of the vortex oscillations Rmax is comparable with the groove size. Note
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Fig. 9.8 Trajectory of the standing vortex in the perturbed flow near the wall with a groove—a
and corresponding time dependence of the vortex deviation from the stationary point—b: ε = 0, 1,
Ω

ω0
= 1, 1

Fig. 9.9 Trajectory of the
standing vortex in the per-
turbed flow when the vortex is
carried away from a groove:

ε = 0, 1,
Ω

ω0
= 1, 15

a Kutta-Joukowski condition satisfies in the sharp edges of the boundary as long as
the vortex is in a small neighborhood of the stationary point. With increasing the
amplitude of perturbed motion Rmax , this condition violates and groove edges begin
to generate vortex layers.

Other unfavorable outcome is connected with ejection of the vortex into the near-
wall region that is possible when the perturbation amplitude grows (Fig. 9.9). From
a standpoint of dynamic analysis, the vortex loses its stability and jumps across the
separatrix between different trajectories on a phase portrait (Fig. 9.2). In practice,
the vortex is carried away by flow. Taking into account continuous generation of
vorticity in the upstream edge, one may predict periodical replication of this process
that leads to degradation of body hydrodynamic characteristics.

Dependence of the amplitude of vortex perturbed motion Rmax on relative fre-

quency of external perturbation
Ω

ω0
has the resonant character (Figs. 9.10, 9.11).

The size of resonant peak depends on both the amplitude of perturbation ε and the
groove depth h (or angle β). Under ε > 0, 1, the secondary peaks of a resonant curve
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Fig. 9.10 Maximum devia-
tion Rmax of the standing vor-
tex from the stationary point
in different grooves against
the relative frequency of

external perturbation
Ω

ω0
:

ε = 0, 01, 1 − β = −5◦,
2 − β = −30◦, 3 − β =
−150◦

Fig. 9.11 Influence of inten-
sity of external perturbations

on dependence Rmax

(
Ω

ω0

)

:

β = −π

6
, 1 − ε =

0, 02, 2 − ε = 0, 005

near the frequencies
ω0

2
and 2ω0 (Fig. 9.11) take place due to non-linear character

of the considered dynamic system.
External periodic perturbations in the flow above a hollow also lead to chaotic

motion of fluid particles and small vortices in the field governed by the standing
vortex that intensifies fluid mixing.

The obtained results show that instability of the standing vortex generated in near-
wall flowwith a non-regular boundary is connectedwith periodic perturbationswhich
are present in the free-stream.Response of the vortex to perturbation ismaximalwhen
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the perturbation frequency is close to the vortex eigenfrequency that is display of
resonant interaction between the vortex and the perturbed flow.

9.6 Summary

The pattern of the near-wall flow bounded by a non-regular surface is shown to
depend on flow topological properties, in particular, on a type of flow critical points
and existing of stationary vortices. If the critical point is stable, a strong enough vortex
may be generated in the point environment (standing vortex). The vortex stabilizes
the near-wall flow due to suppression of vorticity generation in sharp edges of the
boundary.

A standing vortex is characterized by its eigenfrequency which governs the
dynamic behavior of the vortex in the periodically perturbed flow. Periodic oscil-
lations of the flow velocity cause multiperiodic large amplitude motion of the stand-
ing vortex. The maximal amplitude of deviation of the vortex from its stationary
point depends on the external perturbation frequency in resonance manner. When
the perturbation frequency approaches to the vortex eigenfrequency, the deviation
amplitude grows rapidly.

Resonance flow perturbations in the regions bounded non-regular wall cause
intensification of fluid mixing in recirculation zones. They stimulate generation of
vorticity in sharp boundary edges, lead to chaotization of motion of both fluid parti-
cles and small vortices, cause non-regular fluctuations of the flow.

The obtained results are useful for further development of control algorithms in
near-wall flows as well as for understanding of chaotization processes in nonau-
tonomous systems.
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