
Chapter 4
On the One Method of Constructing Digital
Control System with Minimal Structure

V. V. Palin

Abstract We consider the linear digital control system with invariable matrix A.
In this report we introduce one method which permit to obtain the characteristic
of completely controllability and construct the matrix of control B with minimal
structure without calculation of eigenvalues of matrix A.

4.1 The Statement of Problem and Some Familiar Results

Let us discuss stationary open discrete system

Xk+1 = AXk . (4.1)

We will find the full rank matrix B of control actions with n × p size such that the
following closed stationary system

Xk+1 = AXk + BUk + Fk (4.2)

will be completely controllable.

Definition 4.1 Characteristic of completely controllable for system (4.1) is the min-
imal number p ∈ N such that the system (4.2) can make completely controllable by
the choice of full rank matrix B of n × p size.

On 2010 the article [1] was published in journal Doklady Akademii Nauk. There
the structural minimization problem discussed and the following result obtained:
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Theorem 4.1 Characteristic of completely controllable of system (4.1) is equivalent
to the maximal geometric multiplicity of eigenvalues of A.

More over, in this article the method of constructing the matrix B was established
for the case where the Jordan canonical form of A was given.

In this article we obtain the method to find the characteristic of completely con-
trollable for (4.1) and constructing the matrix B without evaluation of eigenvalues of
A.

4.2 Definitions and Some Preliminary Transformations

Suppose that A is square matrix with n × n size, λj are eigenvalues of A, qA(x) is the
minimal polynomial for A and dA(x) = det(xE − A). We note that the polynomial
qA(x) can be found without calculations of eigenvalues of A; dA(x) is characteristic
polynomial ofA, multiplied by (−1) powering relevant (so that the leading coefficient
equal to 1) hence, this polynomial can be obtainedwithout calculations of eigenvalues
of A. Let

qA(x) =
m∏

j=1

(x − λj)
kj .

We denote
q(x,A,≥ r) =

∏

j:kj≥r

(x − λj),

q(x,A,= r) =
∏

j:kj=r

(x − λj).

Let us note that the polynomial q(x, a,≥ r) can be found without factorization of
qA(x). For example,

q(x,A,≥ 1) = qA(x)

g.c.d.(qA(x), q′
A(x))

,

and q(x,A,≥ 2) can be obtained by the same formula, where qA(x) changes by
g.c.d.(qA(x), q′

A(x)) and so forth. We can evaluate the polynomials q(x,A,= r) by
the polynomials q(x,A,≥ r):

q(x,A,≥ r) = q(x,A,= r)q(x,A,≥ r + 1).

Similarly we define d(x,A,≥ r) and d(x,A,= r).
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4.3 The Method to Obtain the Characteristic of Completely
Controllable

Let us denote A1 = q(A,A,≥ 1). Because the polynomial dA(x) is the divisor for
(q(x,A,≥ 1))n and dA(A) = 0, the following identity holds: An

1 = 0. More over,
from the definition of the eigenvector of A and the Jordan canonical form for the
matrix A1 it follows that the eigenvectors {v1, . . . , vs} of the matrix A form the basis
in the kernel of A1.

If A1 = 0 then the matrix A has the basis consists of it’s eigenvectors. Hence,
the geometric multiplicity of any eigenvalue of the matrix A is equivalent to it’s
algebraical multiplicity. Thus, p = max{t | d(x,A,≥ t) �= 1} in this case.

Suppose that A1 �= 0, Ker(A1) = Lin{v1, . . . , vs}. Let us note that we can find
vectors of the basis of the kernel of A1 as orthogonal complement of the linear
envelope of the set of rows of A1. Suppose that vs+1, . . . , vn is basis of the set of
columns of AT

1 . Let C1 be the matrix constructed of vectors v1, . . . , vn as columns.
Let j ≤ s be the fixed index and e1, . . . , en is a basis consists of unit vectors.
By virtue of definition of the matrix C1 we have C1ej ∈ Lin{v1, . . . , vs}, AC1ej ∈
Lin{v1, . . . , vs},C−1

1 AC1ej ∈ Lin{e1, . . . , es}. Hence thematrixC−1
1 AC1 is sectional

upper triangular:

C−1
1 AC1 =

(
M11 M12
0 M22

)
. (4.3)

Further from the arguments given above it follows that there is one-to-one corre-
spondence between the eigenvectors of A and the eigenvectors of M11. Hence, the
characteristics of completely controllable for matrix A and M11 are equivalent. Let
us note that M11 has the basis consists of eigenvectors.

Remark 4.1 The set Ker(d(A,M11,= t)) is the linear envelope of all eigenvectors
of A such that their correspond eigenvalues has geometric multiplicity of exactly t.

4.4 Auxiliary Statements

To describe a method of constructing a matrix B without finding eigenvalues of the
matrixA, we need two lemmas. The proof of the first of them is trivial, and we omit it.

Theorem 4.2 Let λ1, . . . ,λs—eigenvalues of a matrix A, vector h ∈ Ker(
s∏

j=1
(A −

λjE)), h �= 0. Then if q ∈ N of such that vectors h, Ah, A2h, . . . ,Aq−1h are linearly
independent, and vectors h, Ah, A2h, . . . ,Aqh linearly dependent, there will be

eigenvectors z1, . . . , zq ∈ Ker(
s∏

j=1
(A − λjE)) such that h = z1 + z2 + . . . + zq.
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Back, if there are eigenvectors z1, . . . , zq ∈ Ker(
s∏

j=1
(A − λjE)) such that h = z1 +

z2 + · · · + zq, vectors h, Ah, A2h, . . . ,Aq−1h are linearly independent, and vectors
h, Ah, A2h, . . . ,Aqh linearly dependent.

Theorem 4.3 Let πk(x) is a polynomial of degree tk such that Ker(πk(A)) is the lin-
ear envelope of the eigenvectors of the matrix A of geometric multiplicity of exactly k.
Then, without finding the eigenvalues of the matrix A can be built vectors w1, . . . ,wCC

such that Ker(πk(A)) = Lin{w1,Aw1, . . . ,Atk−1w1, . . . ,Atk−1wkk}.
Proof We give an algorithm that allows each step reduce one of k or tk by 1.
Let us take an arbitrary non-zero vector h1 ∈ Ker(πk(A)). There is a q ∈ N

such that the vectors h1,ACAh1, . . . ,Aq−1h1 are linearly independent, and vectors
h1,ACAh1, p(A2h1, . . . ,Aqh1 are linearly dependent. On Lemma 1, we obtain that
q ≤ tk . If q = tk , thenw1 = h1, and, demanding further orthogonality of the vector h2
to all vectors Ajh1, we obtain that k has decreased by 1. If q < tk , then, by Lemma 1,
there are eigenvectors z1, . . . , zq such that h1 = z1+· · ·+zq.Add orthogonal vectors
vq+1, . . . , vn in the system of vectors v1 = h1, v2 = Ah1, . . . , vq = Aq−1h1 to obtain
the basis of all space. We write the matrix C2, the columns of which are vectors
v1, . . . , vn. As in the previous section, the matrix C2AC−1

2 is upper triangular. Let us
denote by N11 its upper the left bloc. Left to note that there exists a polynomial p̃(x)
such that

πk(x) = d(x,N11,≥ 1)p̃(x).

Thus, the problem for the polynomialπk(x) is reduced to the problem for polynomials
d(x,N11,≥ 1) and p̃(x), the sum of which degrees is equal to tk . This means that in
this case we have managed to reduce the tk at least by 1.

4.5 The Absence of Associated Vectors Case

Let us discuss the method of constructing B in the case when the matrix A has a
basis consists of the eigenvalues. In this case we construct polynomials πk(x) =
d(x,A,= k) and, using lemma 2, we obtain vectors w1k, . . . ,wkk for any of these
polynomials. Let us denote

bj =
p∑

k=j

wjk .

Left to notice that the matrix B with the columns b1, . . . , bp is sought-for matrix.



4 On the One Method of Constructing Digital Control System 71

4.6 The Case of General Position

Let τ is the degree of polynomial qA(x). Let V1 = Ker(q(A,A,≥ 1)), V2 are the
set of all vectors from Ker(q(A,A,≥ 2)), orthogonal to V1, V3 are the set of all
vectors from Ker(q(A,A,≥ 3)), orthogonal to V1 + V2, etc. Let us notice that for
finding basis in any Vj it suffices to use orthogonalization method. Let W1 is the set
of orthogonal to AV2 vectors from V1, W2 is the set of orthogonal to AV3 vectors from
V2, etc.. The basis in each of the spaces Wj can be found by using orthogonalization
method. Let us consider the mapping

g :
τ∑

j=1

Wj → V1.

By this mapping the vector gwj ∈ V1 is associated to the vector wj ∈ Wj such
that gwj ∈ V1 is orthogonal projection of vector Aj−1wj on V1. The mapping g is
invertible: it is sufficient to note that g is linear, has zero kernel, and to set the basis
in any of Wj, and the result of mapping g on this basis.

Let us describe the method of constructing the matrix B in the case of general
position. As well as the case of absence of associated vectors, we construct the
polynomials πk(x) = d(x,M11,= k) and, using the lemma 2 for each polynomial,
we obtain the vectors w1k, . . . ,wkk . Further, we put

b̃j =
p∑

k=j

wjk,

bj = g−1b̃j.

Left to notice that the matrix B with the columns b1, . . . , bp is sought-for matrix.
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