Chapter 3
The Distribution of Values of Arithmetic

Functions

G. V. Fedorov

Abstract Let us usual 74(n) denote the number of ways n may be written as a
product of k fixed factors. In this chapter there introduce the notation

Di(x) = D w(n).

n<x

We show that the asymptotic formula for Dy (x) is changing with growing values of
k and present specific values of k, which is a change.
In [1], this author obtained the estimate

Dk(x)<x2( )ln]x, 3.1)

for Dy (x), which is uniform in the parameter k& and holds for any real x > 1 and
integer k > 2.

The value of the quantity Dy (x) equals the number of points in the integer lattice
in a domain of the form 1 < xp, x2, ... x; < x. Note that if the parameter k grows
as x — 0o, then the form of the asymptotic formula for Dy (x) is different from that
of the formula for fixed k. In 2001, Pavlov [3] proved the following assertion.

Theorem 3.1 Suppose that x — oo, k is an integer, and C1(Inx)? < k <
Ca(Inx)%, where o < % and B > 6 are fixed and C| and Cy are positive con-
stant. Then

(Inx)k—1 e

Dy (x) = xmeym (1+0 k™),
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where y is the Euler constant and py > 0 is positive and does not depend on
k and x.

In this chapter, we obtain more accurate boundary values of the parameter k in
Pavlov’s theorem. The following assertion is valid.

Theorem 3.2 (Main Theorem) Suppose that the integer parameter satisfies the con-
dition k = k(x) — o0 as x — 00, and for some fixed 0 < p < % the inequality

4
k < (Inx) 5t holds. Then, the asymptotic formula

1 k—1 k5+p
Di(x) = x% exp {qx (x)} Lr(x) (1 + 0( 7 )+ 0 (k3p 1))

is valid, in which the functions qx(x) and Li(x) are defined by

@ = (7 +n) E (e aom + 2) (3.2)
X)) =yp— — — - =)=, .
qk Yo Inx Yo ™V 2 x 3 Yo Yov1 AR
Ly =1- 2~ +3+k2 3y°+ L)
x —_— —_— — — —
k mx (0t )t 5ttty
S 20 3m +om + 2+ 2). (63
e \ 4 Yo ™ 5% vt syt et ). O
and the Stieltjes constants are defined by
m 1
. (Ink)”  (Inm)**
=1 — , 34
yo = lim (kz_% . p (34

in particular, yo = y is the Euler constant.

The proof of the main theorem is based on the following assertion.
Lemma 3.1 Suppose thato =1+ %, b=y + me and

1 o+h s+l
Ik(x):%/ l_ A0 56 +1)

2

Suppose also that x — 00 and k — 00 so that, for some fixed 0 < p < %, the

4
inequality k < (Inx)5t holds. Then the asymptotic formula
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X2 (Inx)F! k>te 3p-1
I (x) = PR exp {qk(x)}Lk(x)(l +0 (E) +0 (k P ) ,
(3.5)

is valid, in which the functions qr(x) and L (x) are determined from (3.2) and (3.3).

This lemma sharpens the corresponding lemma from Pavlov’s chapter ([3],
Lemma 1).

The proof of lemma 3.1 uses the Laurent expansion of Riemann’s zeta function
¢ (s) in the neighborhood of the pole s = 1

e ¢]

1 -1
;(s)=—+z(n,) a5 = D",

s—1 =

where constants y, defined from 3.4.
As is known, for is > 1

Zﬂf) =),
n=1 n

where ¢ (s) is the Riemann zeta function. We have (see [2])

X 1 o+iT . xs-‘rl
/] De(t)di = %/HT ) s + RW) = ) + R, (36)

where the parameter o is the same as in the lemma 3.1. Using estimate (3.1), we
obtain the following estimate for the remainder:

x2 (Inx\* K2
RX) <K —=— ) expik+ o+ 1)—
T k Inx

x2 InT Inx\* k2
+=4+x—)Vk(—) explk+—1}. (3D
T Inx k In x

For k < (Inx) 5 , we deform the interval of integration in Ji(x) as

o+T 1-iT 1-4 o4 o+5 144 14+iT o+iT
o—iT o—iT 1-ir  J1-4 o—% o+ 1+ 14iT

by virtue of the estimate |{ (14-it)| < C In3 |t| where |f| > 2 and C is some constant,
we have
k.2 2%k
() = Li(x) + O (c 2(nT)3 ) .
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3
We can choose the parameter T so that % <InT « (1“7)‘) 2 and the remainders
in expressions (3.6) and (3.7) do not exceed those in (3.5). Applying the lemma 3.1,

we obtain .
/ Dy (t)dt =
1

k 2 k—1 5+p
= ;k% (lnTx) exp {Qk(x)}Lk(x)(l + O(i;Tx)’L 0 (W—l)).

(3.8)
In the case of k > (In x)%, we decompose the integral Ji(x) into three integrals

as ) .
1 (7717 1 (r+l§ 1 o+iT
Jex) = —./ S I =
o

27i Jo_iT  2mi o1t 2mi o+h

I k 2k3
=hLx)+ 0O x2 (H) expqk+ V02 ,
k In- x
Let T = x; then the remainder R(x) does not exceed the remainders in formula (3.5)

given in the lemma 3.1; therefore, the relation (3.8) again holds.
The function Di(x) is nondecreasing. We have

1 x 1 x+h
1 / De(Ddt < Dy(x) < ~ / De(tdt.
x—h h x

h
Applying (3.8) and choosing & = x’l‘;TJr;, we obtain the assertion of the Main
Theorem.
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