
Chapter 3
The Distribution of Values of Arithmetic
Functions

G. V. Fedorov

Abstract Let us usual τk(n) denote the number of ways n may be written as a
product of k fixed factors. In this chapter there introduce the notation

Dk(x) =
∑

n≤x

τk(n).

We show that the asymptotic formula for Dk(x) is changing with growing values of
k and present specific values of k, which is a change.

In [1], this author obtained the estimate

Dk(x) ≤ x
k−1∑

j=0

(
k − 1

j

)
ln j x

j ! , (3.1)

for Dk(x), which is uniform in the parameter k and holds for any real x ≥ 1 and
integer k ≥ 2.

The value of the quantity Dk(x) equals the number of points in the integer lattice
in a domain of the form 1 ≤ x1, x2, . . . xk ≤ x . Note that if the parameter k grows
as x → ∞, then the form of the asymptotic formula for Dk(x) is different from that
of the formula for fixed k. In 2001, Pavlov [3] proved the following assertion.

Theorem 3.1 Suppose that x → ∞, k is an integer, and C1(ln x)β < k <

C2(ln x)α , where α < 2
3 and β > 6 are fixed and C1 and C2 are positive con-

stant. Then

Dk(x) = x
(ln x)k−1

(k − 1)! eγ k2
ln x

(
1 + O

(
k−ρ0

))
,
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where γ is the Euler constant and ρ0 > 0 is positive and does not depend on
k and x.

In this chapter, we obtain more accurate boundary values of the parameter k in
Pavlov’s theorem. The following assertion is valid.

Theorem 3.2 (Main Theorem) Suppose that the integer parameter satisfies the con-
dition k = k(x) → ∞ as x → ∞, and for some fixed 0 < ρ < 1

3 , the inequality

k � (ln x)
4

5+ρ holds. Then, the asymptotic formula

Dk(x) = x
(ln x)k−1

(k − 1)! exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
,

is valid, in which the functions qk(x) and Lk(x) are defined by

qk(x) = γ0
k2

ln x
−

(
γ 2
0 + γ1

) k3

ln2 x
+

(
5

3
γ 3
0 + 3γ0γ1 + γ2

2

)
k4

ln3 x
, (3.2)

Lk(x) = 1 − k

ln x

(
γ0 + 3

2

)
+ k2

ln2 x

(
3γ 2

0

2
+ γ1 + 3γ0 + 7

4

)
−

− k3

ln3 x

(
21

4
γ 2
0 + 5

2
γ 3
0 + 3γ0γ1 + 3

2
γ1 + 21

4
γ0 + 15

8

)
, (3.3)

and the Stieltjes constants are defined by

γn = lim
m→∞

(
m∑

k=1

(ln k)n

k
− (lnm)n+1

n + 1

)
, (3.4)

in particular, γ0 = γ is the Euler constant.

The proof of the main theorem is based on the following assertion.

Lemma 3.1 Suppose that σ = 1 + 1
b , b = γ0 + ln x

k and

Ik(x) = 1

2π i

∫ σ+ i
2

σ− i
2

ζ k(s)
xs+1

s(s + 1)
ds.

Suppose also that x → ∞ and k → ∞ so that, for some fixed 0 < ρ < 1
3 , the

inequality k � (ln x)
4

5+ρ holds. Then the asymptotic formula



3 The Distribution of Values of Arithmetic Functions 65

Ik(x) = x2

2
· (ln x)k−1

(k − 1)! exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
,

(3.5)
is valid, in which the functions qk(x) and Lk(x) are determined from (3.2) and (3.3).

This lemma sharpens the corresponding lemma from Pavlov’s chapter ([3],
Lemma 1).

The proof of lemma 3.1 uses the Laurent expansion of Riemann’s zeta function
ζ(s) in the neighborhood of the pole s = 1

ζ(s) = 1

s − 1
+

∞∑

n=0

(−1)n

n! · γn · (s − 1)n,

where constants γn defined from 3.4.
As is known, for �s > 1

∞∑

n=1

τk(n)

ns
= ζ k(s),

where ζ(s) is the Riemann zeta function. We have (see [2])

∫ x

1
Dk(t)dt = 1

2π i

∫ σ+iT

σ−iT
ζ k(s)

xs+1

s(s + 1)
ds + R(x) = Jk(x) + R(x), (3.6)

where the parameter σ is the same as in the lemma 3.1. Using estimate (3.1), we
obtain the following estimate for the remainder:

R(x) � x2

T

(
ln x

k

)k

exp

{
k + (γ0 + 1)

k2

ln x

}

+
(

x2

T
+ x

ln T

ln x

) √
k

(
ln x

k

)k

exp

{
k + k2

ln x

}
. (3.7)

For k � (ln x)
5
7 , we deform the interval of integration in Jk(x) as

∫ σ+iT

σ−iT
=

∫ 1−iT

σ−iT
+

∫ 1− i
2

1−iT
+

∫ σ− i
2

1− i
2

+
∫ σ+ i

2

σ− i
2

+
∫ 1+ i

2

σ+ i
2

+
∫ 1+iT

1+ i
2

+
∫ σ+iT

1+iT
,

by virtue of the estimate |ζ(1+i t)| ≤ C ln
2
3 |t |where |t | > 2 andC is some constant,

we have
Jk(x) = Ik(x) + O

(
Ck x2(ln T )

2k
3

)
.
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We can choose the parameter T so that k2
ln x � ln T � ( ln x

k

) 3
2 and the remainders

in expressions (3.6) and (3.7) do not exceed those in (3.5). Applying the lemma 3.1,
we obtain ∫ x

1
Dk(t)dt =

= ek

√
2πk

x2

2

(
ln x

k

)k−1

exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
.

(3.8)
In the case of k 	 (ln x)

2
3 , we decompose the integral Jk(x) into three integrals

as

Jk(x) = 1

2π i

∫ σ− i
2

σ−iT
+ 1

2π i

∫ σ+ i
2

σ− i
2

+ 1

2π i

∫ σ+iT

σ+ i
2

=

= Ik(x) + O

(
x2

(
ln x

k

)k

exp

{
k + γ 2

0 k3

ln2 x

})
,

Let T = x ; then the remainder R(x) does not exceed the remainders in formula (3.5)
given in the lemma 3.1; therefore, the relation (3.8) again holds.

The function Dk(x) is nondecreasing. We have

1

h

∫ x

x−h
Dk(t)dt ≤ Dk(x) ≤ 1

h

∫ x+h

x
Dk(t)dt.

Applying (3.8) and choosing h = x k5+ρ

ln4 x
, we obtain the assertion of the Main

Theorem.
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