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Abstract This chapter provides an overview of the theory of hyperbolic zeta
function of lattices. A functional equation for the hyperbolic zeta function of
Cartesian lattice is obtained. Information about the history of the theory of the
hyperbolic zeta function of lattices is provided. The relations with the hyperbolic
zeta function of nets and Korobov optimal coefficients are considered.

2.1 Introduction

The introduction contains necessary definitions, results and historical facts about the
appearance of the concepts of the hyperbolic zeta functions of nets and lattices, and
gives its general theoretical review. The article is partly based on the monographs
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[8, 15], but it addresses the given problems from a more unified point of view. The
article also utilizes the data from Chap.6 of the monograph [30].

2.1.1 Lattices

First, we will recall some definitions.

Definition 2.1 Let λ1, . . . , λm, m ≤ s be linearly independent system of vectors
from R

s. The set Λ of all vectors a1λ1 + · · · + amλm, where ai, 1 ≤ i ≤ m
independently run through all integers, is called an m-dimensional lattice in Rs, and
the vectors λ1, . . . , λm are considered its basis.

If m = s, then a lattice is considered complete, otherwise it is incomplete. In this
chapter we assume all lattices to be complete. Obviously, Zs is a lattice. It is also
called the fundamental lattice.

A latticeΛ is called an integer lattice inRs, ifΛ is a sublattice of the fundamental
lattice Zs, i.e.

Λ = {m1λ1 + · · · + msλs|m1, . . . , ms ∈ Z}

and λ1, . . . , λs is a linearly independent system of integer vectors.

Definition 2.2 For a lattice Λ there is a dual lattice Λ∗, which is the set

Λ∗ = {y | ∀ x ∈ Λ (y, x) ∈ Z } . (2.1)

Obviously, a dual lattice Λ∗ for a lattice Λ is set by the dual basis λ∗
1, . . . , λ

∗
s ,

determined by the equations

(
λ∗

i , λj
) = δij =

{
1 i = j,

0 i �= j.
(2.2)

It’s easy to see that the fundamental lattice Zs coincides with its dual lattice and
is also a sublattice of a dual lattice of any integer lattice. Moreover, ifΛ1 ⊂ Λ ⊂ Z

s,
then Zs ⊂ Λ∗ ⊂ Λ∗

1; thus, for any C �= 0 we see that (CΛ)∗ = Λ∗/C. The equality
detΛ∗ = (detΛ)−1 is true for any lattice.

The set of all s-dimensional complete lattices from R
s will be denoted as

PRs. The set of Λ + x, where Λ ∈ PRs and x ∈ R
s is called a shifted lattice.

The set of all shifted lattices Λ + x from R
s will be denoted as CPRs.

Concepts of lattices, shifted lattices and lattice projections on coordinate subspaces
let us to discuss various issues of number theory in the uniform language.

E.g., if (aj, N) = 1(1 ≤ j ≤ s), then the set Λ = Λ(a1, . . . , as; N) of solutions
of the linearly homogeneous comparison is the lattice Λ with detΛ = N

http://dx.doi.org/10.1007/978-3-319-03146-0_6
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a1 · x1 + · · · + as · xs ≡ 0 (mod N).

If F is a totally real algebraic extension of degree s of the field of rational numbers
Q and ZF is a ring of algebraic integers of the field F, then the set Λ(F), which has
been derived in the following way from ZF , is an s-dimensional lattice

Λ(F) = {(Θ(1), . . . , Θ(s)) | Θ(1) ∈ ZF}, (2.3)

where (Θ(1), . . . , Θ(s) ) is a system of algebraic conjugates, and if d is the discrim-
inant of the field F, then detΛ(F) = √

d.
These two examples, namely the lattice Λ(a1, . . . , as; N) of solutions of a linear

equation and the algebraic lattice Λ(F), are the focus of this chapter.
A lot of problems of geometry of numbers are defined in terms of shifted lattices

Λ + x, norms N(x) = |x1 · . . . · xs|, lattice norm minimum and shifted lattice norm
minimum.

For an arbitrary lattice Λ ∈ PRs, a norm minimum is the value

N(Λ) = inf
x∈Λ\{0} N(x).

For an arbitrary shifted lattice Λ + b ∈ CPRs, a norm minimum is the value

N(Λ + b) = inf
x∈(Λ+b)\{0} N(x).

Littlewood hypothesis has the following formula in these terms:
for s > 1 and any non-zero real numbers α1, . . . , αs for the lattice

Λ(α1, . . . , αs) = {(q, q · α1 + p1, . . . , q · αs + ps) | q, p1, . . . , ps ∈ Z}

N(Λ(α1, . . . , αs)) = 0.

Oppenheim hypothesis, from which follows the Littlewood hypothesis, states in
lattice terms that

for s > 2 any s-dimensional lattice Λ N(Λ) > 0 is similar to an algebraic lattice.
These two hypotheses are closely related to the Korobov’s method of optimal

coefficients.

A norm minimum is closely connected with a truncated norm minimum, or a
hyperbolic lattice parameter. This is the value ([14, 17])

q(Λ) = min
x∈Λ\{0} q(x),

which has simple geometrical meaning:
the hyperbolic cross Ks(T) does not contain nonzero points of the lattice Λ with

T < q(Λ).
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A hyperbolic cross is the area

Ks(T) = {x | q(x) ≤ T},

where q(x) = x1 · . . . · xs is a truncated norm of x, and for a real x we will define
x = max(1, |x|) ([31], 1963).

Since max(1, N(x)) ≤ q(x), it follows that max(1, N(Λ)) ≤ q(Λ) for any lattice
Λ, and the Minkowski’s theorem on convex bodies states that

q(Λ) ≤ max(detΛ, 1).

The issue of calculation of the hyperbolic parameter of the lattice of solutions of a
linear equation has been addressed in the article [21].

2.1.2 Exponential Sums of Lattices

We will use Gs = [0; 1)s to denote a s-dimensional half-open cube. A net is an
arbitrary nonempty finite set M in Gs. A net with weights is an ordered pair (M, ρ),
where ρ is an arbitrary numerical function on M. For the sake of convenicence,
we will indentify a net M with an ordered pair (M, 1), that is, with a net with unit
weights: ρ ≡ 1.

Definition 2.3 A product of two nets with weights (M1, ρ1) and (M2, ρ2) in Gs is a
net with weights (M, ρ):

M = { {x + y} | x ∈ M1, y ∈ M2 }, ρ(z) =
∑

{x+y}= z,
x ∈M1, y ∈M2

ρ1(x)ρ2(y),

where {z} = ({z1}, . . . , {zs}).
The product of nets with weights (M1, ρ1) and (M2, ρ2) is denoted by

(M1, ρ1) · (M2, ρ2).

Moreover, if (M, ρ) = (M1, ρ1)·(M2, ρ2), thenwewill writeM = M1 ·M2 assuming
that a net M is the product of nets M1 and M2 (see [23]).

Definition 2.4 An exponential sum of a net with weights (M, ρ) for an arbitrary
integer vector m is

S(m, (M, ρ)) =
∑

x ∈M

ρ(x)e2π i(m,x), (2.4)

and a normed exponential sum of a net with weights is
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S∗(m, (M, ρ)) = 1

|M|S(m, (M, ρ)).

Let ρ(M) =
N∑

j=1
|ρj|, then the following trivial estimate is true for all normed

exponential sums of a net with weights:

|S∗(m, (M, ρ))| ≤ 1

|M|ρ(M).

It is easy to see, that for any nets with weights (M1, ρ1) and (M2, ρ2) the following
equality is true:

S(m, (M1, ρ1) · (M2, ρ2)) = S(m, (M1, ρ1)) · S(m, (M2, ρ2)). (2.5)

Definition 2.5 If the following equality is true:

(M, 1) = (M1, 1) · (M2, 1),

then nets M1 and M2 are called coprime nets.

Thus, if M1 and M2 are coprime nets then the equation z = {x + y} does not have
more than one solution for x ∈ M1 and y ∈ M2. That is why the following equality
is only true for coprime nets: |M1 · M2| = |M1| · |M2|.

When ρ ≡ 1 we obtain a definition of an exponential sum of a net.

Definition 2.6 An exponential sum of a net M for an arbitrary integer vector m is
the value

S(m, M) =
∑

x ∈M

e2π i(m,x),

and a normed exponential sum of a net is

S∗(m, M) = 1

|M|S(m, M).

It is easy to see, that for any coprime nets M1 and M2 the following equality is true:

S(m, M1 · M2) = S(m, M1) · S(m, M2). (2.6)

Let us take for an arbitrary integer lattice Λ, an integer vector m and an arbitrary
vector x from a dual lattice Λ∗ the following values:

δΛ(m) =
{
1, if m ∈ Λ,

0, if m ∈ Z
s \ Λ,

δ∗
Λ(x) =

{
1, if x ∈ Z

s,

0, if x ∈ Λ∗ \ Zs.
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The δΛ(m) is the multidimensional generalisation of the famous Korobov’s number-
theoretical symbol

δN (m) =
{
1, if m ≡ 0 (mod N),

0, if m �≡ 0 (mod N).

Definition 2.7 Ageneralised parallelepipedal netM(Λ) is the setM(Λ) = Λ∗∩Gs.

For an integer lattice Λ its generalised parallelepipedal net M(Λ) is a complete
system of residues of a dual lattice Λ∗ modulo the fundamental sublattice Zs. Thus,
we have the equality |M(Λ)| = detΛ.

Definition 2.8 A complete linear multiple exponential sum of an integer lattice Λ

is
s(m,Λ) =

∑

x ∈M(Λ)

e2π i(m,x) =
∑

x ∈Λ∗/Zs

e2π i(m,x),

where m is an arbitrary integer vector.

It is clear, that for a generalised parallelepipedal net M(Λ) the following equality is
true: S(m, M(Λ)) = s(m,Λ).

Definition 2.9 A complete linear multiple exponential sum of a dual lattice Λ∗ of
an integer lattice Λ is

s∗(x,Λ) =
∑

m ∈Zs/Λ

e2π i(m,x) =
N∑

j = 1

e2π i(mj,x),

where x is an arbitrary vector of the dual lattice Λ∗ and m1, . . . , mN is a complete
system of residues of the lattice Zs modulo the sublattice Λ.

The following dual statements are true:

Theorem 2.1 For s(m,Λ) the following equality is true:

s(m,Λ) = δΛ(m) · detΛ.

Theorem 2.2 For any integer lattice Λ with detΛ = N and for an arbitrary x ∈ Λ∗
the following equality is true:

s∗(x,Λ) = δ∗
Λ(x) · detΛ.
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2.1.3 Multidimensional Quadrature Formulas and Hyperbolic
Zeta Function of a Net

First works by Korobov were published in 1957–1959 [33–35], where the methods
of number theory were applied to the problems of numerical integration of multiple
integrals. After the class of periodical functions Eα

s had been defined, it has become
possible to use methods of harmonic analysis and the theory of exponential sums
(an important branch of analytic number theory) to estimate errors of approximate
integration. The history of the creation of thismethod is presented in the chapter [32].

Banach space Eα
s consists of functions f (x), where each of s variables x1, . . . , xs

has a period of one, for which their Fourier series

f (x) =
∑

m∈Zs

C(m)e2π i(m1x1+···+msxs) (2.7)

comply with the conditions

sup
m∈Zs

|C(m)|(m1 . . . ms)
α = ‖f (x)‖Eα

s
< ∞. (2.8)

Clearly, such Fourier series are absolutely convergent, since

‖f (x)‖l1 =
∑

m∈Zs

|C(m)| ≤ ‖f (x)‖Eα
s
(1 + 2ζ(α))s,

and thus for any (α > 1) they are continuous functions. Here and hereafter, as usual,
ζ(α) is the Riemann zeta function.

A truncated norm surface with parameter t ≥ 1 is the set Ns(t) = {x | q(x) = t,
x �= 0}, which is the boundary of the hyperbolic cross Ks(t).

For a natural t on a truncated norm surface there is τ ∗
s (t) of integer nonzero points,

where1

τ ∗
s (t) =

∑′

m∈N(t)

1 (2.9)

is the number of presentations of the natural number t as t = m1 . . . ms.
Using new definitions, we can rewrite the expression for the norm ||f (x)||Eα

s
. The

following equality is true:

||f (x)||Eα
s

= max

(
|C(0)|, sup

t∈N

(
tα max

m∈N(t)
|C(m)|

))
.

It is easy to see, that an arbitrary periodic function f (x) from Eα
s (C) is bounded

in absolute value by C (1 + 2ζ(α))s, and this estimate is achieved by the function

1 Here and hereafter
∑′ denotes summation over systems: (m1, . . . , ms) �= (0, . . . , 0).
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f (x) =
∞∑

m=−∞

C

(m1 · . . . · ms)α
e2π i(m,x)

in the point x = 0.
Obviously, Eα

s (C) ⊂ Eβ
s (C) for α ≥ β. For any periodic function

f (x) ∈ Eα
s (C) ⊂ Eβ

s (C)

the following inequality is true

||f (x)||Eα
s

≥ ||f (x)||
Eβ

s
.

The equality is true only for finite exponential polynomials

f (x) = C(0) +
∑

m∈N(1)

C(m) e2π i(m,x).

Let us take the quadrature formula with weights

1∫

0

. . .

1∫

0

f (x1, . . . , xs)dx1 . . . dxs = 1

N

N∑

k=1

ρkf [ξ1(k), . . . , ξs(k)] − RN [f ]. (2.10)

Here, RN [f ] is the error resulting from the replacement of the integral

1∫

0

. . .

1∫

0

f (x1, . . . , xs)dx1 . . . dxs

with the weighted average value of the function f (x1, . . . , xs), calculated in points

Mk = (ξ1(k), . . . , ξs(k)) (k = 1, . . . , N).

The set M of points Mk is a net M, and the points themselves are the nodes of
the quadrature formula. The values ρk = ρ(Mk) are the weights of the quadrature
formula. In this chapter we assume all weights to be real-valued.

Definition 2.10 Zeta function of a net M with weights ρ and parameter p ≥ 1 is
the function ζ(α, p|M, ρ) defined in the right half-plane α = σ + it (σ > 1) by the
Dirichlet series

ζ(α, p|M, ρ) =
∞∑′

m1,...,ms=−∞

|S∗(m, (M, ρ))|p
(m1 . . . ms)α

=
∞∑

n=1

S∗(p, M, ρ, n)

nα
, (2.11)
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where

S∗(p, M, ρ, n) =
∑

m∈N(n)

|S∗(m, (M, ρ))|p. (2.12)

The definition provides us with the following inequality:

ζ(pα, p|M, ρ) ≤ ζ p(α, 1|M, ρ). (2.13)

When all the weights are 1, we get the zeta function of a net M with parameter p
and denote it as ζ(α, p|M).

The formula (2.11) provides that the zeta function ζ(α, p|M, ρ) of a net M with
weights ρ and parameter p ≥ 1 is a Dirichlet series, which converges in the right
half-plane α = σ + i · t (σ > 1).

The following two Korobov’s generalised theorems on errors of quadrature
formulas are true:

Theorem 2.3 Let the Fourier series of a function f (x) absolutely converge, with
C(m) being its Fourier coefficients and S(m, (M, ρ)) be an exponential sum of a
lattice with weights, then the following equation is true:

RN [f ] = C(0)

(
1

N
S(0, (M, ρ)) − 1

)
+ 1

N

∞∑′

m1,...,ms=−∞
C(m)S(m, (M, ρ)) =

= C(0)
(
S∗(0, (M, ρ)) − 1

) +
∞∑′

m1,...,ms=−∞
C(m)S∗(m, (M, ρ)) (2.14)

and with N → ∞ the error RN [f ] will tend to zero only if the weighted nodes
of the quadrature formula are evenly distributed in a s-dimensional unit cube.

Theorem 2.4 If f (x1, . . . , xs) ∈ Eα
s (C), then the following estimate is true for the

error of the quadrature formula:

|RN [f ]| ≤ C

∣∣∣∣
1

N
S(0, (M, ρ)) − 1

∣∣∣∣ +
C

N

∞∑′

m1,...,ms=−∞

|S(m, (M, ρ))|
(m1 . . . ms)α

=

= C
∣∣S∗(0, (M, ρ)) − 1

∣∣ + C · ζ(α, 1|M, ρ), (2.15)

where the sum S(m, (M, ρ)) is defined by the equality (2.4). On the class Eα
s (C) this

estimate cannot be improved.

The Theorem 2.4 can also be formulated as:
For the norm ‖RN [f ]‖Eα

s
of the linear functional of the error of approximate

integration with quadrature formula (2.10) the following equality is true:
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‖RN [f ]‖Eα
s

=
∣∣∣∣
1

N
S(0, (M, ρ)) − 1

∣∣∣∣ +
1

N

∞∑′

m1,...,ms=−∞

|S(m, (M, ρ))|
(m1 . . . ms)α

=

= ∣
∣S∗(0, (M, ρ)) − 1

∣
∣ + ζ(α, 1|M, ρ). (2.16)

The method of optimal coefficients has proven to be the most productive for
construction for the s-dimensional cubeGs = [0; 1)s ofmultidimensional quadrature
formulas with parallelepipedal nets of the from:

∫

Gs

∫
f (x)dx = 1

N

N∑

k=1

f

({
a1k

N

}
, . . . ,

{
ask

N

})
− RN (f ),

where RN (f ) is the error of the quadrature formula, and integers aj (aj, N) = 1
(j = 1, .., s) are the optimal coefficients, chosen in a special way.

The first algorithms for calculation of optimal coefficients were created by
Korobov in 1959. He is also the author of the most efficient and high-performance
algorithms we use nowadays (see [38]). These algorithms are based on the lemma
on hyperbolic parameter of the lattice of solutions of a linear equation by Gelfand
(see [13, 28, 37, 38]). Based on the Korobov’s suggestion, Dobrovol’skii and
Klepikova have made tables of optimal coefficients for dimensions s ≤ 30 and mod-
ulo N = 2k 3 ≤ k ≤ 22 [11], which is far beyond the scope of the famous tables by
Saltykov. The chapter by Bocharova, Van’kova and Dobrovol’skii [2] describes the
modification of the Korobov’s algorithm, which allows to find not only one optimal
net modulo N = 2k , but the whole class of such lattices. One more class of high-
performance algorithms for optimal coefficients calculation has been found in the
article [3]. Problems of finding optimal coefficients for combined lattices have been
addressed in the articles [22, 39].

A series of important articles on applying divisor theory to the optimal coefficients
search for parallelepipedal nets have been produced by Voronin and Timergaliyev
(see [41–44]). In fact, these articles describe algorithms for the search of integer
lattices with high-value hyperbolic lattice parameter.

In the study of the error of approximate integration for quadrature formulas
with parallelepipedal nets on the class of periodical functions Eα

s Korobov in his
article [34] for the first time mentions a special case of the hyperbolic zeta function
of a lattice Λ = Λ(a1, . . . , as; N) for real α > 1:

ζH(Λ|α) =
+∞∑′

m1,...,ms=−∞

δN (a1 · m1 + · · · + as · ms)

(m1 · . . . · ms)α
, (2.17)

where the Korobov’s symbol δN (m) is defined by the following equalities:

δN (m) =
{
1 if m ≡ 0 (mod N),

0 if m �≡ 0 (mod N),



2 On Hyperbolic Zeta Function of Lattices 33

and (aj, N) = 1 (j = 1, 2, . . . , s).
The hyperbolic zeta function of a lattice Λ = Λ(a1, . . . , as; N) is important,

because for the parallelepipedal net M(a, N), defined by the formula

M(a, N) =
{

Mk =
({

a1k

N

}
, . . . ,

{
ask

N

})∣∣∣
∣ k = 0, . . . , N − 1

}
,

there is an equality ζH(Λ|α) = ζ(α, 1|M(a, N)), i.e. the norm of the linear functional
of the error of approximate integration with quadrature formulas with parallelpipedal
nets equals the hyperbolic zeta function of the corresponding integer lattice of solu-
tions of a linear equation.

The hyperbolic zeta function of the form (2.17) appears in a lot of articles
addressing the estimate of errors of multidimensional quadrature formulas with par-
allelepipedal nets on the class Eα

s . Specifically, Bakhvalov [1] proved the estimate

ζH(Λ|α) � (ln q(Λ) + 1)s−1

q(Λ)α
. (2.18)

Korobov ([35], 1959) proved, that for such lattices

ζH(Λ|α) � lns−1 detΛ

(detΛ)α
(2.19)

for any integers a1, . . . , as, which are coprime with N .
There are algorithms for finding a1, . . . , as such that

ζH(Λ|α) � lnsα detΛ

(detΛ)α
(Korobov 1960),

ζH(Λ|α) � ln(s−1)α detΛ

(detΛ)α
(Bakhvalov and Korobov). (2.20)

In its general form the hyperbolic zeta function of lattices appears in works by
Frolov [26, 27]. Frolov’s thesis [26] states, that for any α > 1 and an arbitrary
s-dimensional lattice Λ the series

∑′

x∈Λ

(x1 · . . . · xs)
−α

absolutely converges.
Having studied an algebraic lattice of the form (2.3), Frolov proved, that for

t > 1 and the lattice Λ(t, F) = tΛ(F) with detΛ(t, F) = ts detΛ(F) the following
estimate is true:

ζH(Λ(t, F)|α) � lns−1 detΛ(t, F)

(detΛ(t, F))α
. (2.21)
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The Frolov’s method is further developed in works by Bykovskii [4, 5] and by
Dobrovol’skii [14, 16]. Construction from the chapter [14] shows, that the methods
of Korobov and Frolov are two opposite poles of the theory of quadrature formulas
with generalised parallelepipedal nets and special weight-function. At the same time,
the problem of calculation of errors of approximate integration by these formulas
can be turned into a number-theoretic problem of estimating the hyperbolic zeta
function of the corresponding lattice once and for all. There’s no need to estimate
the norm of linear functional of errors of approximate integration for each new type
of generalised parallelepipedal nets all over again.

The problems of integration over modified nets have been addressed in
chapters [9, 10].

2.1.4 Hyperbolic Zeta Function of Lattices

The term “hyperbolic zeta function of lattice” has been introduces by Dobrovol’skii
in 1984 in his works [14, 16], where systematic study of the function ζH(Λ|α) has
been started.

Specifically, lower estimates for the hyperbolic zeta function of an arbitrary
s-dimensional lattice have been obtained:

{
ζH(Λ|α) ≥ C1(α, s)(detΛ)−1, if 0 < detΛ ≤ 1,
ζH(Λ|α) ≥ C2(α, s)(detΛ)−α lns−1 detΛ, if detΛ > 1,

(2.22)

where C1(α, s), C2(α, s) > 0 are constants depending only on α and s.
An upper estimate for the hyperbolic zeta function of an s-dimensional lattice has

been proven:
{

ζH(Λ|α) ≤ C3(α, s)C1(Λ)s, if q(Λ) = 1,
ζH(Λ|α) ≤ C4(α, s)q−α(Λ)(ln q(Λ) + 1)s−1, if q(Λ) > 1.

(2.23)

This result is a generalisation of the Bakhvalov’s theorem, i.e. the inequality (2.18).
The estimate (2.23) provides uswith the following conclusions. Specifically, it uncon-
ditionally provides us with the result, obtained by Frolov (2.21), as the hyperbolic
parameter q(Λ(t, F)) = ts for t > 1.

Dobrovol’skii has also proven the following theorem: for any integer lattice Λ

and a natural n we have the following presentation:

ζH(Λ|2n) = −1 + (detΛ)−1
∑

x∈M(Λ)

s∏

j=1

(
1 − (−1)n(2π)2n

(2n)! B2n(xj)

)
, (2.24)

where B2n(x) is a Bernoulli polynomial of the order 2n and M(Λ) is the generalised
parallelepipedal net of the lattice Λ, which consists of the points of the dual lattice
Λ∗, lying in the s-dimensional half-open unit cube Gs = [0; 1)s;
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ζH(Λ | 2n + 1) = −1 + 1

detΛ

∑

x∈M(Λ)

s∏

j=1

⎛

⎝1 − (−1)n (2π)2n+1

(2n + 1)! ×

×
1∫

0

B2n+1({y + xj}) + B2n+1({y − xj})
2

ctg(πy) dy

⎞

⎠ .

This theorem points out an analogy between the hyperbolic zeta function of a lattice
and the Riemann zeta function, for which

ζ(2n) = (−1)n−1 2
2n−1π2n

(2n)! B2n,

ζ(2n + 1) = (−1)n+1 2
2nπ2n+1

(2n + 1)!
1∫

0

B2n+1(y)ctg(πy) dy.

Also, the following equality is true:

ζ(α) = 1

2
ζH(Z|α) α = σ + it σ > 1.

The presentation (2.24) unconditionally states that for any integer lattice Λ and an
even α = 2n the value of ζH(Λ|2n) is a transcendental number.

The formula (2.24) allows to utilize O(ns detΛ) of operations to calculate
ζH(Λ|2n). In their joint article, Dobrovol’skii, Esayan, Pihtilkov, Rodionova and
Ustyan [20] have obtained the formula, which allows to calculate ζH(Λ(a; N)|2)
using O(lnN) operations.

For the hyperbolic zeta function of the lattice Λ(t, F) Dobrovol’skii, Van’kova
and Kozlova in their joint article [12] have obtained the asymptotic formula

ζH(Λ(t, F)|α) = 2(detΛ(F))α

R(s − 1)!

⎛

⎝
∑

(w)

1

|N(w)|α

⎞

⎠ lns−1 detΛ(t, F)

(detΛ(t, F))α
+

+ O

(
lns−2 detΛ(t, F)

(detΛ(t, F))α

)
, (2.25)

where R is the regulator of a field F, and in the sum
∑

(w)

1

|N(w)|α the summation

is over all the main ideals of the ring ZF .
At the first stage of research (1984–1990), the function ζH(Λ|α) had been studied

only for real α > 1. But the joint articles by Dobrovol’skii, Rebrova and Roshchenya
in 1995 ([17, 19]) introduced a new stage of research of the hyperbolic zeta function
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ζH(Λ|α) of a lattice Λ from different aspects: firstly, as a function of a complex
argument α, and secondly, as a function on a metric space of lattices.

Thus,wehave the followingmost general definition of the hyperbolic zeta function
of a lattice Λ for a complex α.

Definition 2.11 The hyperbolic zeta function of a latticeΛ is the function ζH(Λ|α),
α = σ + it defined for σ > 1 by the absolutely convergent series

ζH(Λ|α) =
∑′

x ∈Λ

(x1 · . . . · xs)
−α. (2.26)

By Abel’s theorem ([6], p. 106) the hyperbolic zeta function of lattices can be
represented in the following integral form:

ζH(Λ|α) = α

∞∫

1

D(t|Λ)dt

tα+1 ,

where D(T |Λ) is the number of nonzero points of the lattice Λ in the hyperbolic
cross Ks(T).

First, we note that the hyperbolic zeta function of lattices is a Dirichlet series. Let
us give some definitions.

The norm spectrum of a lattice Λ is the set of norm values in the nonzero points
of the lattice Λ:

Nsp(Λ) = {λ | λ = N(x), x ∈ Λ\{0}}.

Correspondingly, the truncated norm spectrum of a lattice Λ is the set of truncated
norm values in the nonzero points of the lattice:

Qsp(Λ) = {λ | λ = q(x), x ∈ Λ\{0}}.

The truncated norm spectrum is a discrete numerical set, i.e.

Qsp(Λ) = {λ1 < λ2 < · · · < λk < · · · } lim
k→∞ λk = ∞.

Obviously,
N(Λ) = inf

λ∈Nsp(Λ)
λ, q(Λ) = min

λ∈Qsp(Λ)
λ = λ1.

The order of a point of the spectrum is the number of lattice points with the given
norm value. If the number of such lattice points is infinite, then we assume that
the point of the spectrum has an infinite order. The order of a point λ of the norm
spectrum is denoted by n(λ), and the order of a pointλ of the truncated norm spectrum
is denoted by q(λ) correspondingly.
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The concept of the order of a point of the spectrum provides a better understanding
of the definition of the hyperbolic zeta function of a lattice. In it instead of the norm
of a point x appears the truncated norm.

Let us give an example of a lattice Λ, for which the series

∑′

x∈Λ

|x1 · . . . · xs|−α

diverges for any α > 1.
Actually, let Λ = tΛ(F) be an algebraic lattice, then

∑′

x∈Λ

|x1 · . . . · xs|−α =
∑′

w∈ZF

|ts · N(w)|−α, (2.27)

where N(w) is the norm of an algebraic integer from the ring ZF . By Dirichlet’s unit
theorem the series on the right side of the equality (2.27) diverges for anyα > 1, as the
ring ZF of algebraic integers of a totally real algebraic number field F of the power s
has an infinite number of units ε and for them |N(ε)| = 1. Thus, in this case each
point of the spectrum has an infinite order, which leads to the series’ divergence
for any α.

This example shows that the usage of the truncated norm of the vector q(x) =
x1 · . . . · xs instead of the norm N(x) = |x1 · . . . · xs| in the definition of ζH(Λ | α) has
substantial meaning, as it provides absolute convergence of the series of the hyper-
bolic zeta function of any lattice Λ.

The discrete nature of the truncated norm spectrum provides that the hyperbolic
zeta function of an arbitrary lattice Λ can be presented as a Dirichlet series:

ζH(Λ|α) =
∑′

x∈Λ

(x1 · . . . · xs)
−α =

∑′

x∈Λ

q(x)−α =
∞∑

k=1

q(λk)λ
−α
k =

=
∑

λ∈Qsp(Λ)

q(λ)λ−α. (2.28)

As D(T |Λ) = 0 for T < q(Λ), then

ζH(Λ|α) = α

∞∫

q(Λ)

D(t|Λ)dt

tα+1 .

The equality (2.28) provides, that for any complex α = σ + it in the right half-plane
(σ > 1) there is a regular function of a complex variable, defined by the series (2.26)
and the following inequality is true:

|ζH(Λ|α)| ≤ ζH(Λ|σ).
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A reasonable question arises, whether the hyperbolic zeta function ζH(Λ|α) of
an arbitrary lattice Λ can be extended to the whole complex plane. In their works,
Dobrovol’skii, Rebrova and Roshchenya ([17, 19]) addressed these issues for PZs,
i.e. the set of all integer lattices, PQs, i.e. the set of all rational lattices, PDs i.e. the
set of all lattices with diagonal matrices. It has been proven, that

for any integer lattice Λ ∈ PZs the hyperbolic zeta function ζH(Λ|α) is a regular
function on all α-plane, excluding the point α = 1, where it has a pole of order s.

For any lattice Λ ∈ PQs the hyperbolic zeta function ζH(Λ|α) is also a regular
analytic function on all the α-plane, excluding the point α = 1, where it has a pole
of order s.

The behavior of the hyperbolic zeta function of lattices on the lattice space has
been studied. In particular, it was found that

if a sequence of lattices {Λn} converges to the lattice Λ, then the sequence of the
hyperbolic zeta functions of lattices ζH(Λn|α) converges uniformly to the hyperbolic
zeta function of the lattice ζH(Λ|α) in any half-plane σ ≥ σ0 > 1.

Another result of this kind can be formulated as follows:
for any point α on the α-plane, except of the point α = 1, there is neighborhood

|α − β| < δ such that for any lattice Λ = Λ(d1, . . . , ds) ∈ PDs

lim
M→Λ,M∈PDs

ζH(M|β) = ζH(Λ|β),

and this convergence is uniform in the neighborhood of the point α.
The derivation of these results is principally based on the asymptotic formula

for the number of points of an arbitrary lattice in the hyperbolic cross as a func-
tion of the parameter of the hyperbolic cross. The formula has been obtained by
Dobrovol’skii and Roshchenya ([18]):

D(T | Λ) = 2sT lns−1 T

(s − 1)! detΛ + ΘC(Λ)
2sT lns−2 T

detΛ
,

whereC(Λ) is an effective constant, calculated through the lattice basis, and |Θ| ≤ 1.
Gelfond has already pointed out an important relationship between the value of

the hyperbolic parameter q(Λ) of a lattice Λ(a1, . . . , as−1, 1; N) and the valule

Q = min
k=1,...,N−1

k · k1 · . . . · ks−1,

where integers k, k1, . . . , ks−1 comply with the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

k1 ≡ a1 · k
k2 ≡ a2 · k
. . . . . . . . .

ks−1 ≡ as−1 · k

(mod N)
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with the lattice of solutions Λ(p)(a1, . . . , as−1, 1; N). This result is known as the
Gelfond’s lemma. It turned out that this relationship manifests itself during the ana-
lytic continuation into the left half-plane too.

Theorem 2.5 In the left half-plane α = σ + it (σ < 0) the following equalities are
true:

ζH(Λ(a1, . . . , as−1, 1; N) | α) =

=
s∑

t=1

Mt
αN−αt

∑

jt∈Jt,s

Nt−1ζ(Λ(p)(aj1 , . . . , ajt ; N) | 1 − α),

ζH(Λ(p)(a1, . . . , as−1, 1; N) | α) = −1 +
(
1 + Mα

Nα
ζ(Z | 1 − α)

)s

−

− Ms
α

Nαs
ζ s(Z | 1 − α) + ζ(Λ(a1, . . . , as−1, 1; N) | 1 − α)

Ms
αN

Nαs
,

where

M(α) = 2Γ (1 − α)

(2π)1−α
sin

πα

2
.

This theorem provides the following result for the values of the hyperbolic zeta
function of these lattices in negative odd points:

Theorem 2.6 For α = 1 − 2n, n ∈ N the following equalities are true:

ζH(Λ(a1, . . . , as−1, 1; N) | α) =

=
s∑

t=1

(−1)tN2nt−t

nt

∑

jt∈Jt,s

N−1∑

k1,...,kt−1=0

t−1∏

ν=1

B2n

({
kνajν

N

})
×

× B2n

({−(aj1k1 + · · · + ajs−1ks−1)

N

})
,

ζH(Λ(p)(a1, . . . , as−1, 1; N) | α) = −1 +
(
1 + N2n−1B2n

n

)s

−

−
(

N2n−1B2n

n

)s

+
(
1

n

)s N−1∑

k=0

s∏

j=1

B2n

({
ajk

N

})
,

and negative even points are trivial zeroes.
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2.1.5 Generalised Hyperbolic Zeta Function of Lattices

Based on the analogy between the hyperbolic zeta function of lattices and the
Riemann zeta function, Rebrova in the article [40] studied the generalisation of
the hyperbolic zeta function of lattices as an s-dimensional analogue of the Hurwitz
zeta function. In her research she tried to answer the questions, naturally arising
from such an approach: to what extent can the results regarding the hyperbolic zeta
function of a lattice be transferred onto a general case? Can we obtain an analytic
continuation of the generalised hyperbolic zeta function of a lattice to the whole
complex plane? What is the behaviour of the generalised hyperbolic zeta function of
a lattice as a function on the metric lattice space?

Definition 2.12 The generalised hyperbolic zeta function of a lattice Λ is the
function ζH(Λ + b|α), defined in the right half-plane α = σ + it (σ > 1) by
the absolutely convergent series

ζH(Λ + b | α) =
∑′

x∈Λ

(x1 + b1 · . . . · xs + bs)
−α =

∑

x∈(Λ+b)\{0}
q(x)−α, (2.29)

where
∑′ means, that the point x = −b is excluded from the summation.

From this point of view, we have to examine the place of shifted lattices and
explore the possibility to define metrics on them.

Chapter 2 of the monograph [15] (see also [8]) addresses CPRs i.e. the set of all
shifted lattices Λ(x) = Λ + x, where Λ ∈ PRs is an arbitrary s-dimensional real
lattice, and x ∈ Rs is an arbitrary vector. A metric is defined on this set.

For the construction of an analytic continuation of the generalised hyperbolic zeta
function, a fairly broad class of lattices is allocated—Cartesian lattices. We need the
following definitions.

Definition 2.13 A simple Cartesian lattice is a shifted lattice Λ + x of the form

Λ + x = (t1Z + x1) × (t2Z + x2) × · · · × (tsZ + xs),

where tj �= 0 (j = 1, . . . , s).

In other words, if the lattice Λ+ x is a simple Cartesian lattice then it is the result
of the stretching of the fundamental lattice along the axes with coefficients t1, . . . , ts
followed by a shift by the vector x.

Definition 2.14 A Cartesian lattice is a shifted lattice, which can be presented as a
union of a finite number of simple Cartesian lattices.

Definition 2.15 ACartesian lattice is a shifted lattice with a shifted sublattice which
is a simple Cartesian lattice.

Theorem 2.7 Definitions 2.14 and 2.15 are equivalent.

http://dx.doi.org/10.1007/978-3-319-03146-0_2
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Theorem 2.8 Any shift of a rational lattice is a Cartesian lattice.

Two lattices Λ and Γ are considered similar, if

Γ = D(d1, . . . , ds) · Λ, Λ = D

(
1

d1
, . . . ,

1

ds

)
· Γ,

where

D(d1, . . . , ds) =
⎛

⎜
⎝

d1 . . . 0
...

. . .
...

0 . . . ds

⎞

⎟
⎠

is an arbitrary diagonal matrix, d1 · . . . · ds �= 0.
The set of all nonsingular real diagonal matrices of an order s will be denoted as

Ds(R) = {D(d1, . . . , ds) | d1 · . . . · ds �= 0}.

Regarding the operation of matrix multiplicationDs(R) is a multiplicative abelian
group.

The set of all unimodular real diagonal matrices DUs(R) is a subgroup of the
group Ds(R). Moreover,

Ds(R) ∼= DUs(R) × R
+,

where isomorphism ϕ between Ds(R) and the direct product DUs(R) ×R
+ is given

by the rule
ϕ(D(d1, . . . , ds)) =

=
(

D

(
d1

s
√|d1 · . . . · ds| , . . . ,

ds
s
√|d1 · . . . · ds|

)
, s
√|d1 · . . . · ds|

)
.

Theorem 2.9 An arbitrary Cartesian lattice is similar to a shifted integer lattice.

Definition 2.16 An integer latticeΛ is simple, if its projections on any axis coincide
with Z.

Theorem 2.10 Any integer lattice Λ is similar to a simple lattice uniquely deter-
mined by the lattice Λ.

Theorem 2.11 For any Cartesian lattice Λ there is only one presentation:

Λ = D(t1, . . . , ts)Λ0, t1, . . . , ts > 0,

where Λ0 is a simple lattice.

Let M∗(Λ) be the set of points of the lattice Λ located in the s-dimensional half-
open cube [0; detΛ)s. Thus, for any integer lattice Λ the set M∗(Λ) is the complete
system of residues of the lattice Λ modulo the sublattice detΛ × Z

s.
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Theorem 2.12 Let

x(k1, . . . , ks−1) =
(

k1, . . . , ks−1, N

{−(a1k1 + · · · + as−1ks−1)

N

})
,

then for the lattice Λ = Λ(a1, . . . , as−1, 1; N)

M∗(Λ) = {x(k1, . . . , ks−1) | 0 ≤ kν ≤ N − 1 (ν = 1, . . . , s − 1)} (2.30)

and the following partition is true:

Λ(a1, . . . , as−1, 1; N) =
⋃

x∈M∗(Λ)

(NZ
s + x) =

=
N−1⋃

k1,...,ks−1=0

(NZ
s + x(k1, . . . , ks−1)). (2.31)

Corollary 2.1 The following partition is true:

Λ(a1, . . . , as−1, 1; N) =

=
N−1⋃

k1,...,ks−1=0

⎛

⎝
s−1∏

j=1

(NZ + kj)

⎞

⎠ × (NZ − a1k1 − · · · − as−1ks−1).

For the lattice Λ(a1, . . . , as−1, 1; N) we will examine its combined lattice Λ(p)

(a1, . . . , as−1; N) of solutions of the system of linear equations

⎧
⎪⎪⎨

⎪⎪⎩

m1 ≡ a1 · ms

m2 ≡ a2 · ms

. . . . . . . . .

ms−1 ≡ as−1 · ms

(mod N). (2.32)

For (aj, N) = 1 (j = 1, . . . , s−1) the latticeΛ(p)(a1, . . . , as−1, 1; N) is also simple.

Corollary 2.2 The following partition is true:

Λ(p)(a1, . . . , as−1; N) =
N−1⋃

k=0

⎛

⎝
s−1∏

j=1

(NZ + ajk)

⎞

⎠ × (NZ + k).

For an arbitrary shifted lattice Λ + b ∈ CPRs a truncated norm minimum, or a
hyperbolic parameter, is the value
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q(Λ + b) = min
x∈(Λ+b)\{0} q(x).

As max(1, N(x)) ≤ q(x), then max(1, N(Λ+ b)) ≤ q(Λ+ b), for any lattice Λ.
The norm spectrum of the shifted lattice Λ + b is the set of norm values in the

nonzero points of the shifted lattice Λ + b:

Nsp(Λ + b) = {λ | λ = N(x), x ∈ (Λ + b)\{0}}.

Correspondingly, the truncated norm spectrum of the shifted lattice Λ + b is the
set of truncated norm values in the nonzero points of the shifted lattice:

Qsp(Λ + b) = {λ | λ = q(x), x ∈ (Λ + b)\{0}}.

Obviously,
N(Λ + b) = inf

λ∈Nsp(Λ+b)
λ,

q(Λ + b) = min
λ∈Qsp(Λ+b)

λ.

An order of a point of the spectrum is the number of points of the shifted lattice
with the given norm value. If the number of such points of the shifted lattice is
infinite, then we assume the point of the spectrum to have an infinite order. The order
of a point λ of the spectrum is denoted by n(λ), and the order of a point λ of the
truncated norm spectrum is denoted by q(λ).

The following analogue of the Lemma 1 from the article [17] is true.

Lemma 2.1 For any lattice Λ + b and any point λ of the truncated norm spectrum
Qsp(Λ + b) the order of the point λ is finite and Qsp(Λ + b)—discrete.

The Lemma 2.1 provides, that

Qsp(Λ + b) = {λ1 < λ2 < · · · < λn < · · · }

and
q(Λ + b) = λ1, lim

n→∞ λn = ∞.

That provides, that the hyperbolic zeta function of an arbitrary shifted lattice Λ + b
can be presented as a Dirichlet series:

ζH(Λ + b | α) =
∑

x∈(Λ+b)\{0}
q(x)−α =

∞∑

k=1

q(λk)λ
−α
k =

∑

λ∈Qsp(Λ+b)

q(λ)λ−α.
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Theorem 2.13 For any α = σ + it in the right half-plane σ > 1 the Dirichlet series
for ζH(Λ + b | α) is absolutely convergent; and in the half-plane σ ≥ σ0 > 1 it is
uniformly convergent.

As for α = σ + it and σ ≥ σ0 > 0

∞∑

k=1

∣∣∣
∣
q(λk)

λα
k

∣∣∣
∣ ≤

∞∑

k=1

q(λk)

λ
σ0
k

= ζH(Λ + b | σ0),

then the Theorem 2.13 provides, that for any complex α = σ + it in the right
half-plane (σ > 1) there is a regular function of a complex variable, defined by the
series (2.29) and the following inequality is true:

|ζH(Λ + b | α)| ≤ ζH(Λ + b | σ).

Theorem 2.14 The generalised hyperbolic zeta function of the unidimensional
fundamental lattice is an analytic function on the whole α-plane, excluding the point
α = 1, where it has a pole of order 1 with the residue equal to 2.

Theorem 2.15 For an arbitrary shifted unidimensional lattice Λ + b = dZ + b
the generalised hyperbolic zeta function ζH(d · Z + b | α) is analytic on the whole
α-plane, excluding the point α = 1, where it has a pole of order 1 with the residue

equal to
2

detΛ
.

Theorem 2.16 The generalised hyperbolic zeta function ζH(Λ | α) of any simple
Cartesian lattice Λ = ∏s

j=1(djZ + aj) is analytic on the whole α-plane, excluding
the point α = 1, where it has a pole of order s.

Theorem 2.17 For any Cartesian lattice Λ the generalised hyperbolic zeta function
ζH(Λ + b | α) is analytic on the whole α-plane, excluding the point α = 1, where it
has a pole of order s.

After that the problem of behavior of the generalised hyperbolic zeta function on
the orbit of Cartesian lattices is addressed. Again, we start the examination with the
unidimensional case.

Theorem 2.18 For any point α on the α-plane, excluding the point α = 1, there is
neighborhood |α − β| < δ such that for any shifted lattice Λ + b ∈ CPR1

lim
Γ +g→Λ+b

ζH(Γ + g | β) = ζH(Λ + b | β),

and this convergence is uniform in the neighborhood of the point α.

Theorem 2.19 For any point α on the α-plane, excluding the point α = 1, there is
neighborhood |α − β| < δ such that for any Cartesian lattice Λ + b ∈ CPRs
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lim
D(q1,...,qs)·Λ+g→Λ+b

ζH(D(q1, . . . , qs) · Λ + g | β) = ζH(Λ + b | β),

and this convergence is uniform in the neighborhood of the point α.

2.2 Functional Equation for Hyperbolic Zeta Function
of Integer Lattices

The articles [24, 25] utilized a new approach to obtain the functional equation for the
hyperbolic zeta function. Earlier, to prove the existence of an analytic continuation
of the hyperbolic zeta function of an arbitrary Cartesian lattice only the method of
expansion of the integer lattice Λ on sublattice detΛ · Zs was used followed by the
Hurwitz functional equation. Now exponential sums of a lattice were used, which
allowed to apply the known features of Dirichlet series with periodic coefficients.
Moreover, the concept of the zeta function helps to simplify the arguments and
formulas.

As usual, we will use N(x) = |x1 . . . xs| to denote the multiplicative norm of the
vector x. It has non-zero values only in points of general position, i.e. points without
zero coordinates. Let us present new definitions using the multiplicative norm.

Definition 2.17 The zeta function of a lattice Λ is the function ζ(Λ|α), α = σ + it,
defined for σ > 1 by the series

ζ(Λ|α) =
∑

x ∈Λ, N(x) �=0

|x1 . . . xs|−α. (2.33)

Generally speaking, there is no zeta function for certain latticesΛ, as the correspond-
ing series can diverge for any value of α = σ + it but for an arbitrary Cartesian lattice
Λ it is obviously exist for σ > 1.

Also, the hyperbolic zeta function is not homogeneous (as a function of a lattice),
while the zeta function of a lattice is homogeneous:

ζ(TΛ|α) = T−sαζ(Λ|α). (2.34)

The concept of the zeta function of a lattice is the special case with b = 0 of the
concept of the generalised zeta function of a lattice.

Definition 2.18 A generalised zeta function of a lattice Λ is the function
ζ (Λ + b| α), α = σ + it, defined for σ > 1 by the series

ζ (Λ + b| α) =
∑

x ∈Λ+b, N(x) �=0

|x1 . . . xs|−α. (2.35)
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It is easy to see, that the hyperbolic zeta function of a lattice Λ is directly defined by
the sum of the zeta function of a lattice Λ and the zeta functions of corresponding
integer lattices of smaller dimensions, which are obtained by discarding of zero
coordinates.

Let

Jt,s = {jt = (j1, . . . , js) | 1 ≤ j1 < · · · < jt ≤ s, 1 ≤ jt+1 < · · · < js ≤ s,

{j1, . . . , js} = {1, 2, . . . , s}}.

In other words, the set Jt,s consists of integer vectors jt , coordinates of which form
a permutation of numbers from 1 to s, while coordinates from 1 to t and from t + 1
to s form increasing sequences.

If we denote the coordinate subspace as Π(jt)

Π(jt) = {x | xjν = 0 (ν = t + 1, . . . , s)},

and denote the projection of intersection of (Λ+a)
⋂

Π(jt) onRt as (Λ+a)jt , then
for any shifted lattice the following equality is true:

ζH(Λ + a | α) =
s∑

t=1

∑

jt∈Jt,s

ζ((Λ + a)jt | α).

2.2.1 Periodized in the Parameter b Hurwitz Zeta Function

Hereafter we will use the periodized in the parameter b Hurwitz zeta function

ζ ∗(α; b) =
∑

0<n+b

(n + b)−α =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=1

n−α, {b} = 0,

∞∑
n=0

(n + {b})−α, {b} > 0
, (σ > 1).

It’s easy to write out various explicit formulas for analytic continuation on the
whole complex plane except the point α = 1 of the periodized Hurwitz zeta function.
In this point for any real value of b the periodized Hurwitz zeta function has a pole
of order 1 with residue equal to 1.

The following formulas cover the whole complex plane and define the explicit
analytic continuation of ζ ∗(α; b).
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ζ ∗(α; b) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

0<n+b

(n + b)−α, σ >1,

1

2
+ 1

α − 1
− α(α + 1)

∞∫

1

{x}2 − {x}dx

2xα+2 , {b} = 0, σ >−1,

1

2{b}α + 1

(α − 1){b}α−1 − α(α + 1)

∞∫

1

{x}2 − {x} dx

2 (x + {b})α+2 , {b} �= 0, σ >−1,

2(2π)α−1Γ (1−α)

(

sin
πα

2

∞∑

n=1

cos 2πnb

n1−α
+cos

πα

2

∞∑

n=1

sin 2πnb

n1−α

)

, σ <0.

(2.36)

2.2.2 Dirichlet Series with Periodic Coefficients

Let us examine the special case of Dirichlet series with periodic coefficients of the
form

l

(
α,

b

n

)
=

∞∑

m=1

e2π i bm
n

mα
(σ > 1) (2.37)

and prove for them the special case of the general theorem (see [7]) on analytic
continuation of Dirichlet series with periodic coefficients on the whole complex
plane.

Lemma 2.2 For σ > 1 the following equality is true:

l

(
α,

b

n

)
=

⎧
⎪⎨

⎪⎩

ζ(α) if δn(b) = 1,
1

nα

n∑

j=1
e2π i bj

n ζ ∗
(

α,
j

n

)
if δn(b) = 0.

(2.38)

Lemma 2.3 For σ > 0 and δn(b) = 0 the following equality is true:

∞∫

1

e2π i b[t]
n

tα+1 dt = (α + 1)

∞∫

1

e2π i b[t]
n −e2π i b

n

e2π i b
n −1

+ e2π i b[t]
n {t}

tα+2 dt. (2.39)

Theorem 2.20 For a natural n, an integer b with δn(b) = 0 and analytic continua-

tion of the function l
(
α, b

n

)
on the whole complex plane the following presentations

are true:
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l

(
α,

b

n

)
=

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=1

e2π i bm
n

mα
, σ >1,

αe2π i b
n

e2π i b
n − 1

∞∫

1

e2π i b[t]
n

tα+1 dt − e2π i b
n

e2π i b
n − 1

, σ >0,

α(α + 1)e2π i b
n

e2π i b
n − 1

∞∫

1

e2π i b[t]
n −e2π i b

n

e2π i b
n −1

+ e2π i b[t]
n {t}

tα+2 dt − e2π i b
n

e2π i b
n − 1

, σ >−1,

(2π)α−1Γ (1−α)

⎛

⎜
⎝

∞∑

m=1

e
π i(α−1)

2

(
m −

{
b
n

})1−α
+

∞∑

m=0

e
−π i(α−1)

2

(
m +

{
b
n

})1−α

⎞

⎟
⎠, σ <0.

(2.40)

This result can be applied to another type of Dirichlet series with periodic coeffi-
cients. Let

l∗
(

α,
b

n

)
=

∞∑

m=−∞

e2π i bm
n

mα (�α > 1). (2.41)

The Dirichlet series of the latest form can directly define the hyperbolic zeta function
of integer lattices for σ > 1, if we use exponential sums of lattices, and namely, for
any integer lattice Λ:

ζH(Λ|α) + 1 =
∑′

x ∈Λ

(x1 · . . . · xs)
−α + 1 =

∑

m∈Zs

δΛ(m)

(m1 · . . . · ms)α
=

= 1

detΛ

∑

x ∈M(Λ)

∑

m∈Zs

e2π i(m,x)

(m1 · . . . · ms)α
=

= 1

detΛ

∑

x ∈M(Λ)

s∏

j=1

∞∑

mj=−∞

e2π imjxj

mα
j

= 1

detΛ

∑

x ∈M(Λ)

s∏

j=1

l∗
(

α,
bj(x)

detΛ

)
, (2.42)

where bj(x) = xj detΛ is an integer (j = 1, . . . , s) for any point x = (x1, . . . , xs) ∈
M(Λ).

Theorem 2.21 For a natural n, an integer b with δn(b) = 0 and analytic continua-

tion of the function l∗
(
α, b

n

)
on the whole complex plane the following presentations

are true:
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l∗
(
α,

b

n

)
=

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=−∞

e2π i bm
n

mα , σ >1,

α

e2π i b
n − 1

∞∫

1

e2π i b([t]+1)
n − e−2π i b[t]

n

tα+1 dt, σ >0,

α(α+1)

e2π i b
n −1

∞∫

1

g(t, b, n)

tα+2 dt, σ >−1,

1 + 2(2π)α−1Γ (1−α) cos
π(α − 1)

2
· n1−α

∞∑

m=−∞

1
(

nm + b
)1−α

σ <0,

(2.43)

where

g(t, b, n) =
e2π i b

n

(
e2π i b[t]

n − e2π i b
n + e−2π i b[t]

n − e−2π i b
n

)

e2π i b
n − 1

+

+
(

e2π i b([t]+1)
n − e−2π i b[t]

n

)
{t}.

Note 2.1 The latest equality won’t change if rewritten as follows

l∗
(

α,
b

n

)
= 1 + 2(2π)α−1Γ (1−α) cos

π(α − 1)

2
· n1−α

∞∑

m=−∞,
nm+b �=0

1
(

nm + b
)1−α

,

which remains true with δn(b) = 1:

l∗
(

α,
0

n

)
= 1 + 2ζ(α) = 1 + 2(2π)α−1Γ (1−α) cos

π(α − 1)

2

∞∑

m=1

1

m1−α
=

= 1 + 2(2π)α−1Γ (1−α) cos
π(α − 1)

2
· n1−α

∞∑

m=−∞,
nm �=0

1

(nm)1−α
.
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2.2.3 Functional Equation for Hyperbolic Zeta Zunction
of Integer Lattices

Let us obtain the explicit form of the ζH(Λ | α) in the left half-plane for an arbitrary
integer lattice Λ. For this, we will need a combined lattice Λ(p), which is defined by
the following relationship:

Λ(p) = detΛ · Λ∗. (2.44)

For any integer lattice Λ its combined latice Λ(p) is also integer. As these lattices are
special cases of Cartesian lattices, then, as we know, there are analytic continuations

ζH(Λ | α) and ζH(Λ(p) | α)

on the whole complex α–plane, excluding the point α = 1, where they have a pole
of order s.

For the sake of convenience, we will use the following notations:

N = detΛ, M(p)(Λ) = detΛ · M(Λ), M∗(Λ) = Λ ∩ [0; detΛ)s. (2.45)

It is clear, that the following expansions are true:

Λ =
⋃

x∈M∗(Λ)

(
x + NZ

s) , Λ(p) =
⋃

x∈M(p)(Λ)

(
x + NZ

s) . (2.46)

Let jt ∈ Jt,s. We will denote the coordinate subspace as Π(jt)

Π(jt) = {x | xjν = 0 (ν = t + 1, . . . , s)}.

If we assume, that j∗t = (jt+1, . . . , js, j1, . . . , jt), then j∗t ∈ Js−t,s and

R
s = Π(jt)

⊕
Π(j∗t )

is decomposition into the direct sum of coordinate subspaces. If we denote pro-
jections of a shifted lattice on coordinate subspaces Π(jt) and Π(j∗t ) according
to decomposition of the space in the direct sum of these coordinate subspaces as
(Λ + a)

(1)
jt

and (Λ + a)
(2)
jt

; and denote its intersections with coordinate subspaces as
(Λ + a)jt = (Λ + a)

⋂
Π(jt) and (Λ + a)j∗t = (Λ + a)

⋂
Π(j∗t ), then, generally

speaking, (Λ+a)
(1)
jt

�= (Λ+a)jt and (Λ+a)
(2)
jt

�= (Λ+a)j∗t . The equality is possible,
if and only ifΛ+a = (Λ1+a1)×(Λ2+a2),Λ1+a1 = (Λ+a)jt Λ2+a2 = (Λ+a)j∗t .

We need to recall that

M(α) = 2Γ (1 − α)

(2π)1−α
sin

πα

2
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and that for an arbitrary integer lattice Λ its zeta function ζ(Λ | α) in the right
half-plane is defined by the equality

ζ(Λ | α) =
∑

x∈Λ, N(x) �=0

|x1 . . . xs|−α.

Theorem 2.22 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζ(Λ | α) = 1

N

(
M(α)N1−α

)s
ζ
(
Λ(p)

∣∣∣ 1 − α
)

. (2.47)

If we address dual lattices, then this theorem can be rewritten in the following
way:

Theorem 2.23 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζ(Λ | α) = M(α)s

N
ζ
(
Λ∗∣∣ 1 − α

)
. (2.48)

Proof As we can see, Λ(p) = N · Λ∗, therefore
(

N1−α
)s

ζ
(
Λ(p)

∣∣∣ 1 − α
)

=
(

N1−α
)s ∑

x ∈Λ(p), N(x) �=0

|x1 . . . xs|α−1 =

=
∑

x ∈Λ(p), N(x) �=0

∣∣∣
x1
N

. . .
xs

N

∣∣∣
α−1=

∑

y ∈Λ∗, N(y) �=0

|y1 . . . ys|α−1=ζ
(
Λ∗∣∣ 1 − α

)
,

which proves the statement of the theorem.

According to the aforementioned definitions, (Λ)jt = Λ
⋂

Π(jt) is the intersec-
tion of the lattice and the coordinate subspace. Let us denote a t-dimensional lattice
derived from the lattice (Λ)jt by discarding s − t zero coordinates from each point

asΛjt and denote its determinant as Njt . Thus,Λ
(p)

jt
is the “combined” t-dimensional

lattice, Njt = detΛjt and Njt |N .

Theorem 2.24 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

M(α)t
∑

jt∈Jt,s

Nt(1−α)−1
jt

ζ
(
Λ

(p)

jt

∣∣∣ 1 − α
)

. (2.49)
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If we use the Theorem 2.23 and denote the t-dimensional dual lattice as Λ∗
jt
, then

we will obtain a new form of the functional equation for the hyperbolic zeta function
of an integer lattice.

Theorem 2.25 For the hyperbolic zeta function of an arbitrary integer lattice Λ in
the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

∑

jt∈Jt,s

M(α)t

Njt

ζ
(
Λ∗

jt

∣
∣∣ 1 − α

)
. (2.50)

Proof The definitions of the hyperbolic zeta function of a lattice and the zeta
function of a lattice provide, that

ζH(Λ | α) =
s∑

t=1

∑

jt∈Jt,s

ζ
(
Λjt

∣∣α
)
. (2.51)

Applying to each term of the right side the Theorem 2.23 we obtain the required
result.

2.3 Functional Equation for Hyperbolic Zeta Function
of Cartesian Lattices

First of all, we need the main result on the form of an arbitrary Cartesian lattice (see
Theorem 2.11). According to this theorem, a Cartesian lattice Λ can be unambigu-
ously presented as

Λ = D(d1, . . . , ds) · Λ0, d1, . . . , ds > 0,

where Λ0 is a simple lattice, and D(d1, . . . , ds) is a diagonal matrix.
Similarly to the aforementioned definitions, (Λ0)j t = Λ0

⋂
Π(j t) is the inter-

section of the lattice and the coordinate space. Let us denote the t-dimensional lattice
derived from the lattice (Λ0)j t by discarding s − t zero coordinates from each point

as Λ0,j t . Thus, Λ
(p)

0,j t
is the “combined” t-dimensional lattice.

First, let us examine the simpler case,where all the elements dj ≥ 1 (j = 1, . . . , s).

Theorem 2.26 For the hyperbolic zeta function of a Cartesian lattice Λ of the form
Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all its elements dj ≥ 1
(j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

M(α)t
∑

j t∈Jt,s

t∏

ν=1

(djν )
−αNt(1−α)−1

0,j t
ζ
(
Λ

(p)

0,j t

∣
∣∣ 1 − α

)
, (2.52)
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where N0,j t = detΛ0,j t .

Proof The definitions of the hyperbolic zeta function of a lattice and the zeta
function of a lattice provide that

ζH(Λ | α) =
s∑

t=1

∑

j t∈Jt,s

t∏

ν=1

(djν )
−αζ

(
Λ0,j t

∣∣α
)
. (2.53)

Applying to each term of the right side the Theorem 2.22 we obtain the required
result.

Now we will obtain a functional equation using a dual lattice.

Theorem 2.27 For the hyperbolic zeta function of a Cartesian lattice Λ of the form
Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all elements dj ≥ 1
(j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

∑

j t∈Jt,s

M(α)t

detΛj t

ζ
(
Λ∗

j t

∣∣∣ 1 − α
)

. (2.54)

Proof First of all,weneed to state, thatΛ∗ = (D(d1, . . ., ds) · Λ0)
∗ = D

(
1
d1

, . . . , 1
ds

)
·

Λ∗
0 and det (D(d1, . . . , ds) · Λ0) = d1 · · · ds · detΛ0.

If we address the projections of Λj t , then we will obtain that

Λj t = D(dj1 , . . . , dj t ) · Λ0,j t ,

Λ∗
j t

= (
D(dj1 , . . . , dj t ) · Λ0,j t

)∗ = D

(
1

dj1N0,j t

, . . . ,
1

dj t N0,j t

)
· Λ

(p)

0,j t
=

= D

(
1

dj1
, . . . ,

1

dj t

)
· Λ∗

0,j t
,

Λ∗
0,j t

= D(dj1 , . . . , dj t )Λ
∗
j t
,

det
(
D(dj1 , . . . , dj t ) · Λ0,j t

) = dj1 · . . . · dj t · detΛ0,j t = dj1 · . . . · dj t · N0,j t ,

ζ
(
Λ∗

0,j t

∣∣
∣ 1 − α

)
= (

dj1 · . . . · dj t

)α−1
ζ
(
Λ∗

j t

∣∣
∣ 1 − α

)
.

The definitions of the hyperbolic zeta function of a lattice and the zeta function
of a lattice provide that

ζH(Λ | α) =
s∑

t=1

∑

j t∈Jt,s

t∏

ν=1

(djν )
−αζ

(
Λ0,j t

∣
∣α

)
. (2.55)

Applying to each term of the right side the Theorem 2.23, we obtain that
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ζH(Λ | α) =
s∑

t=1

∑

j t∈Jt,s

t∏

ν=1

(djν )
−α M(α)t

N0,j t

ζ
(
Λ∗

0,j t

∣∣
∣ 1 − α

)
=

=
s∑

t=1

∑

j t∈Jt,s

t∏

ν=1

(djν )
−α M(α)t

N0,j t

(
dj1 · · · dj t

)α−1
ζ
(
Λ∗

j t

∣∣∣ 1 − α
)

=

=
s∑

t=1

∑

j t∈Jt,s

M(α)t

detΛj t

ζ
(
Λ∗

j t

∣∣
∣ 1 − α

)
, (2.56)

which proves the statement of the theorem.

Now, let us examine a general case, where the set D1 = {j|0 < dj < 1} �= ∅. For
this, we need to examine one more type of Dirichlet series with periodic coefficients.
Let

l∗∗
(

α, d,
b

n

)
=

∞∑

m=−∞

e2π i bm
n

dm
α (�α > 1, d > 0). (2.57)

The Dirichlet series of the latest form can directly define the hyperbolic zeta function
of Cartesian lattices for σ > 1, if we use exponential sums of lattices, and namely,
for any Cartesian lattice Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice, and
D(d1, . . . , ds) is a diagonal matrix:

ζH(Λ|α) + 1 =
∑′

x ∈Λ

(x1 · · · xs)
−α + 1 =

=
∑

m∈Zs

δΛ0(m)

(d1m1 · · · dsms)α
=

= 1

detΛ0

∑

x ∈M(Λ0)

∑

m∈Zs

e2π i(m,x)

(d1m1 · · · dsms)α
=

= 1

detΛ0

∑

x ∈M(Λ0)

s∏

j=1

∞∑

mj=−∞

e2π imjxj

djmj
α =

= 1

detΛ0

∑

x ∈M(Λ0)

s∏

j=1

l∗∗
(

α, dj,
bj(x)

detΛ0

)
, (2.58)

where bj(x) = xj detΛ0 is an integer (j = 1, . . . , s) for any point x = (x1, . . . , xs) ∈
M(Λ0).

As it was stated above the hyperbolic zeta function of a lattice is not homogeneous,
while the zeta function is. Our previous arguments provide, that the homogeneous
zeta function of a lattice is crucial for the analytic continuation. In the general case, the
hyperbolic zeta function of a lattice can not be presented as a sum of homogeneous
components (as it can be done with integer lattices), but in the case of Cartesian
lattices we can define j t-components.
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As it has been done above, for a Cartesian lattice Λ we will use Λj t to denote the
projection of the intersection Λ

⋂
Π(j t) on R

t .

Definition 2.19 The j t-component of the hyperbolic zeta function of the lattice Λ

is the function ζH,j t (Λ|α), α = σ + it, defined for σ > 1 by the series

ζH,j t (Λ|α) =
∑

x ∈ΛH,j t , N(x) �=0

|x1 · · · x t |−α. (2.59)

It is easy to see, that for the j t-component of the hyperbolic zeta function of a lattice
Λ the analogue of the formula (2.58) is true.

ζH,j t (Λ|α) = 1

detΛ0,j t

∑

x ∈M(Λ0,j t )

t∏

ν=1

(
l∗∗

(
α, djν ,

bj(x)

detΛ0,j t

)
− 1

)
. (2.60)

Moreover, we can see the decomposition into components:

ζH(Λ|α) =
s∑

t=1

∑

j t∈J(t,s)

ζH,j t (Λ|α). (2.61)

Definition 2.20 Let the js-component of the hyperbolic zeta function of a lattice Λ

be called the main component and denoted as ζH,s(Λ|α).

It is clear, that the following equality is true:

ζH,j t (Λ|α) = ζH, t(Λj t |α). (2.62)

Theorem 2.28 For a natural n, an integer b with δn(b) = 0, a positive d and the

analytic continuation of the function l∗∗
(
α, d, b

n

)
on the whole complex plane the

following presentations are true:

l∗∗
(
α, d,

b

n

)
= 1 + 1

dα

(
l∗
(
α,

b

n

)
− 1

)
+ f

(
α, d,

b

n

)
, (2.63)

where

f

(
α, d,

b

n

)
=

∑

1≤|m|≤
[
1
d

]
e2π i bm

n

(
1 − 1

|dm|α
)

and f
(
α, d, b

n

)
= 0 with d ≥ 1.

Proof For σ > 1 from the definition follows that
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l∗∗
(
α, d,

b

n

)
= 1 +

∑

1≤|m|≤
[
1
d

]
e2π i bm

n +
∑

|m|>
[
1
d

]

e2π i bm
n

|dm|α =

= 1 +
∑

1≤|m|≤
[
1
d

]
e2π i bm

n

(
1 − 1

|dm|α
)

+
∑

|m|≥1

e2π i bm
n

|dm|α =

= 1 + 1

dα

(
l∗
(
α,

b

n

)
− 1

)
+ f

(
α, d,

b

n

)
.

As there are analytic functions in the right side of the equality, which are defined
on the whole complex α-plane, excluding the point α = 1, where is a pole of order 1,
then the theorem is proven.

Let us introduce some additional definitions. For 1 ≤ r ≤ |D1| and 1 ≤ t ≤ s − r
let us define the set of integer vectors

Jt,r,s(D1) = {jt,r = (j1, . . . , js) | 1 ≤ j1 < · · · < j t ≤ s, 1 ≤ jt+r+1 < · · · < js ≤ s,

1 ≤ jt+1 < · · · < jt+r ≤ s, {j1, . . . , js} = {1, 2, . . . , s},

jt+ν ∈ D1 if 1 ≤ ν ≤ r} .

In other words, the set Jt,r,s(D1) consists of integer vectors jt,r , coordinates of which
form the permutation of numbers from 1 to s, wile coordinates from 1 to t, and
from t + 1 to t + r, and from t + r + 1 to s form increasing sequences. Moreover, all
coordinates from t+1 to t+r belong to the setD1. Obviously, Jt,r,s|D1| = Ct

s−rCr|D1|.

Theorem 2.29 For the main component of the hyperbolic zeta function of an arbi-
trary Cartesian lattice Λ of the form Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple
lattice and all its elements dj > 0 (j = 1, . . . , s), in the left half-plane σ < 0 the
following functional equation is true:

ζH,s(Λ | α) = M(α)s

detΛ
ζ
(
Λ∗∣∣ 1 − α

) + 1

detΛ0

∑

x ∈M(Λ0)

|D1|∑

r=1

M(α)s−rNs−r−α(s−r)
0

·
∑

js−r,r∈Js−r,r,s(D1)

s−r∏

ν=1

(djν )
−α

s∏

ν=s−r+1

f

(
α, djν ,

bjν (x)

detΛ0

)
ζ
(

N0Z
s−r + bs−r(x)

∣
∣ 1 − α

)
,

(2.64)

where N0 = detΛ0.

Proof According to the equality (2.60) and the Theorem 2.28 for the main compo-
nent of the hyperbolic zeta function of an arbitrary Cartesian lattice
Λ = D(d1, . . . , ds) · Λ0 on the whole complex α-plane, excluding the point α = 1,
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which has a pole of order s, the following equality is true:

ζH,s(Λ|α) = 1

detΛ

∑

x ∈M(Λ0)

s∏

j=1

(
l∗∗

(
α, dj,

bj(x)

detΛ0

)
− 1

)
. (2.65)

For σ < 0, let us apply the Theorems 2.28 and 2.21, and therefore obtain that

ζH,s(Λ|α) = 1

detΛ0

∑

x ∈M(Λ0)

s∏

j=1

(
1

dα
j

(
l∗
(
α,

bj(x)

detΛ0

)
− 1

)
+ f
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))

=

= 1
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1
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∣
∣1−α
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detΛ0
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⎟
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(2.66)

To expand the product in the right side of the formula (2.66) let us use the following
equality:
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⎝
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×
∞∑

mjν =−∞(1≤ν≤s−r),
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∣∣(N0 · mj1 + bj1(x)) · · · (N0 · mjs−r + bjs−r (x))

∣∣1−α

⎞

⎟⎟
⎠ .

(2.67)

From (2.66) and (2.67), assuming that b t(x) = (bj1(x), . . . , bj t (x)), we will obtain
that

ζH,s(Λ|α)

= 1

detΛ0
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. (2.68)

As

1

detΛ0

∑

x ∈M(Λ0)

M(α)sNs−αs
0

s∏

j=1

(dj)
−αζ

(
N0Z

s + bs(x)
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= 1

detΛ0
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(
Λ

(p)
0

∣∣∣ 1 − α
)

= M(α)s

detΛ
ζ
(
Λ∗∣∣ 1 − α

)
,

(2.69)

then the statement of the theorem is completely proven.
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Theorem 2.30 For the hyperbolic zeta function of an arbitrary Cartesian lattice Λ
of the form Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all elements
dj > 0 (j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation
is true:

ζH (Λ | α) =
s∑

t=1

∑

j t∈J(t,s)

M(α)t

detΛj t

ζ
(

Λ∗
j t

∣
∣∣ 1 − α

)
+

+
s∑

t=1

∑

j t∈J(t,s)

1

detΛ0,j t

∑

x ∈M(Λ0,j t )

|D1,j t |∑

r=1

M(α)t−rNt−r−α(t−r)
0,j t

×
∑

j t−r,r∈J t−r,r,t (D1,j t )

t−r∏

ν=1

(djν )
−α

t∏

ν=t−r+1

f

(
α, djν ,

bjν (x)

detΛ0,j t

)

ζ
(

N0,j tZ
t−r + bt−r(x)

∣
∣ 1−α

)
, (2.70)

where N0,j t = detΛ0,j t .

Proof The theorem statement follows from the decomposition into components
formula (see (2.61)) and the application of the Theorem 2.29 to each component
according to the formula (2.62).

2.4 On Some Unsolved Problems of the Theory of Hyperbolic
Zeta Function of Lattices

The article [9] hints at some possible directions of further development of Korobov
number-theoretical method in approximate analysis. We are going to examine the
problems regarding the theory of the hyperbolic zeta function of lattices in more
detail.

The problem of right order The class of algebraic lattices is known for making
it possible to achieve the correct order of decreasing hyperbolic zeta function of
lattices when increasing the determinant of lattices (see the formulas (2.19) and
(2.21)). Moreover, the asymptotic formula (2.25) is true for these lattices. The con-
tinuity of the hyperbolic function on the lattice space provides that the correct order
of decreasing hyperbolic zeta function of lattices can be achieved on the class of
rational lattices. It is enough to take rational lattices from very small neighborhoods
of algebraic lattices. A natural question arise: can the correct order of decreasing
be achieved in the class of integer lattices, or not? If it can be achieved, we need to
provide an algorithm for construction of such optimal parallelepipedal nets, which
would have the right order of the error of approximate integration on the classes
Eα

s . Otherwise, we will obtain a kind of the theorem, which is analogous to the
Liouville-Thue-Siegel-Roth theorem for algebraic lattices, as the impossibility of
the right order means that algebraic lattices can not be correctly approximated by
integer ones.
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The problem of existence of analytic continuation As stated above, any Cartesian
lattice has an analytic continuation of the hyperbolic zeta function of an arbitrary
Cartesian lattice.Moreover, there’s been obtained the functional equation for an arbi-
trary Cartesian lattice, which explicitly defines this analytic continuation. Naturally,
there are questions, whether an analytic continuation of the hyperbolic zeta function
exists in the following cases:

for a lattice of joint approximations Λ(θ1, . . . , θs), defined by the equality

Λ(θ1, . . . , θs) = {(q, qθ1 − p1, . . . , qθs − ps) | q, p1, . . . , ps ∈ Z},

where θ1, . . . , θs are arbitrary irrational numbers.

for an algebraic lattice Λ(t, F) = tΛ(F), where the lattice Λ(F) is defined by the
equality (2.3).

for an arbitrary lattice Λ. If the hyperbolic zeta function of an arbitrary lattice can
not be continued onto the whole complex plane (and we have strong doubts about
that), then we will have to describe a new class, containing all lattices, for which
their hyperbolic zeta functions can be analytically continued onto the whole complex
plane, excluding the point α = 1, which has a pole of order s.

The problem of the critical strip behaviour This problem has been underlined by
Korobov. He suggested the hypothesis, according to which the analytic continuation
of the hyperbolic zeta function of a lattice into the critical strip from the right half-
plane and the analytic continuation of the hyperbolic zeta function of a dual lattice
or combined lattices into the critical strip from the left half-plane will allow us to get
the constants in the corresponding transfer theorems.
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