
Chapter 18
Optimality Conditions for Partially Observable
Markov Decision Processes

Eugene A. Feinberg, Pavlo O. Kasyanov and Mikhail Z. Zgurovsky

Abstract This note describes sufficient conditions for the existence of optimal
policies for Partially Observable Markov Decision Processes (POMDPs). The
objective criterion is either minimization of total discounted costs or minimization
of total nonnegative costs. It is well-known that a POMDP can be reduced to a Com-
pletely Observable Markov Decision Process (COMDP) with the state space being
the sets of believe probabilities for the POMDP. Thus, a policy is optimal in POMDP
if and only if it corresponds to an optimal policy in the COMDP. Here we provide
sufficient conditions for the existence of optimal policies for COMDP and therefore
for POMDP.

18.1 Introduction

Partially Observable Markov Decision Processes (POMDPs) play an important role
in electrical engineering, computer science, and operations research. They have a
broad range of applications including sensor networks, artificial intelligence, control
and maintenance of complex systems, and medical decision making. In principle, by
ignoring complexity issues, it is known how to solve POMDPs. A POMDP can be
reduced to a Completely Observable Markov Decision Process (COMDP) with the
state space being the sets of believe probabilities for the POMDP [2, 6, 9, 10]. After
an optimal policy for the COMDP is found, it can be used to compute an optimal
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policy for the POMDP. However, except the case of problems with finite state and
action sets and a large variety of particular problems considered in the literature, little
is known regarding the existence and properties of optimal policies for COMDPs in
terms of the original POMDP.

This problem is studied in Hernández-Lerma [6, Chap. 4],where sufficient condi-
tions for the existence of optimal policies for discounted POMDPs with Borel state
spaces, compact action sets, weakly continuous transition and observation prob-
abilities, and bounded continuous cost functions are provided. It is shown there
that the weak continuity of the transition kernel in the filtration equation is suffi-
cient for the existence of optimal policies for COMDPs and therefore for COMDPs.
A sufficient condition for the case of a countable observation case is also provided
in Hernández-Lerma [6, p. 92]. This condition is that the probability of observations
depend continuously on the state-action pairs. Since this is the condition for a count-
able observation space, in the case of general Borel observation spaces, there are three
continuity conditions on the observation probabilities that are equivalent to this con-
dition, when the observation space becomes countable. These conditions are weak
continuity, setwise continuity, and continuity in the total variation of observation
probabilities (also called kernels or stochastic kernel).

In this paper,we awe study eitherminimizationof expected total nonnegative costs
or discounted costswith the one-step cost functions boundedbelow for POMDPswith
Borel state spaces. The goal is to obtain sufficient conditions for the existence and
characterization of optimal policies for COMDPs with possibly non-compact action
sets, unbounded cost functions (they are assumed bounded below), and uncount-
able observation sets. The one-step cost functions are K-infcompact. The notion of
K-infcompactness was introduced recently in Feinberg, Kasyanov, and Zadoianchuk
[3]. As shown in Feinberg, Kasyanov, and Zadoianchuk [4], this mild condition and
weak continuity of transition probabilities are sufficient for the existence of optimal
policies and their characterization for fully observable Markov Decision Processes
(MDPs) with the expected total costs.

Of course, for the existence of optimal policies for a POMDP, additional condi-
tions are required for the transition observation probability. Here we show that the
sufficient condition is its continuity in the total variation of the observation transition
probability. We also provide a general criterion for the existence optimal policies for
weakly continuous transition observation probabilities, which is different from the
weak continuity of the filtration kernel considered in Hernández-Lerma [6, p. 90,
Assumption 4.1(d)].

18.2 Model Description

For a metric space S, let B(S) be its Borel σ -field, that is, the σ -field generated by
all open sets of the metric space S. For a Borel subset E ⊂ S, we denote by B(E)

the σ -field whose elements are intersections of E with elements of B(S). Observe
that E is a metric space with the same metric as on S, andB(E) is its Borel σ -field.
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The space E is a Borel space, if E is a Borel subset of a Polish (complete separable
metric) space S. On E consider the induced metrizable topology. For a metric space
S, we denote by P(S) the set of probability measures on (S,B(S)). A sequence of
probability measures {μn} from P(S) converges weakly (setwise) to μ ∈ P(S) if for
any bounded continuous (bounded Borel-measurable) function f on S

∫
S

f (s)μn(ds) →
∫
S

f (s)μ(ds) as n → ∞.

A sequence of probability measures {μn} from P(S) converges in the total variation
to μ ∈ P(S) if

sup
f ∈F1(S)

{∫
S

f (s)μn(ds) −
∫
S

f (s)μ(ds)

}
,

where F1(S) is the set of Borel-measurable functions on S such that |f (s)| ≤ 1 for
all s ∈ S.

Note that P(S) is a Polish space with respect to the weak convergence topology
for probability measures; Parthasarathy [8, Chap. 2]. For Borel spaces S1 and S2, a
(Borel-measurable) transition kernel R(ds1|s2) on S1 given S2 is a mapping R( · | · ) :
B(S1)×S2 → [0, 1], such thatR( · |s2) is a probabilitymeasure onS1 for any s2 ∈ S2,
and R(B| · ) is a Borel-measurable function on S2 for any Borel set B ∈ B(S1).
A transition kernel R(ds1|s2) on S1 given S2 defines a Borel measurable mapping
s2 → R(·|s1) of S2 to the metric space P(S1) endowed with the topology of weak
convergence.A transition kernelR(ds1|s2)onS1 givenS2 is called weakly continuous
(setwise continuous, continuous in the total variation), if R( · |xn) converges weakly
(setwise, in the total variation) to R( · |x) whenever xn converges to x in S2.

LetX,Y, andA beBorel spaces,P(dx′|x, a) is a transition kernel onX givenX×A,
Q(dy|a, x) is a transition kernel on Y given A × X, Q0(dy|x) is a transition kernel
on Y given X, p0 is a probability distribution on X, c : X×A → R = R∪ {+∞} is
a bounded from below Borel function on X × A.

Partially observable Markov decision process (POMDP) is specified by (X,Y,A,

P, Q, c), where X is the state space, Y is the observation set, A is the action set,
P(dx′|x, a) is the state transition law, Q(dy|a, x) is the observation kernel, c : X ×
A → R is the one-step cost.

The partially observable Markov decision process evolves as follows:

• at time t = 0, the initial unobservable state x0 has a given prior distribution p0;
• the initial observation y0 is generated according to the initial observation kernel

Q0( · |x0);
• at each time epoch n = 0, 1, 2, . . . , if the state of the system is xn ∈ X and the
decision-maker chooses an action an ∈ A, then the cost c(xn, an) is incurred;

• the system moves to state xn+1 according to the transition law P( · |xn, an);
• the observation yn+1 ∈ Y is generated by the observation kernels Q( · |an, xn+1),

n = 0, 1, . . . , and Q0( · |x0).
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Define the observable histories: h0 := (p, y0) ∈ H0 and hn := (p, y0, a0, . . . ,
yn−1, an−1, yn) ∈ Hn for all n = 1, 2, . . . , where H0 := P(X) × Y and Hn :=
Hn−1 × A × Y if n = 1, 2, . . . . Then a policy for the POMDP is defined as a
sequence π = {πn} such that, for each n = 0, 1, . . . , πn is a transition kernel
on A given Hn. Moreover, π is called nonrandomized, if each probability measure
πn(·|hn) is concentrated at one point. A nonrandomized policy is called Markov, if
all of the decisions depend on the current state and time only. A Markov policy is
called stationary, if all the decisions depend on the current state only. The set of
all policies is denoted by Π . The Ionescu Tulcea theorem (Bertsekas and Shreve
[1, pp. 140–141] or Hernández-Lerma and Lassere [7, p. 178]) implies that a policy
π ∈ Π and an initial distribution p0 ∈ P(X), together with the transition kernels P,
Q and Q0 determine a unique probability measure Pπ

p0 on the set of all trajectories
H∞ = P(X) × (Y × A)∞ endowed with the product of σ -field defined by Borel
σ -field ofP(X),Y, andA respectively. The expectationwith respect to this probability
measure is denoted by Eπ

p0 .
Let us specify a performance criterion. For a finite horizon N = 0, 1, . . . , and for

a policy π ∈ Π , let us define the expected total discounted costs

vπ
N,α(p) := E

π
p

N−1∑
n=0

αnc(xn, an), p ∈ P(X), (18.1)

where α ≥ 0 is the discount factor, vπ
0,α(p) = 0. When N = ∞, we always assume

that at least one of the following two assumptions holds:

Assumption (D) c is bounded below on X × A and α ∈ [0, 1].
Assumption (P) c is nonnegative on X × A and α ∈ [0, 1].

In the both cases (18.1) defines an infinite horizon expected total discounted cost,
and we denote it by vπ

α (p). By using notations (D) and (P), we follow Bertsekas and
Shreve [1, p. 214]. However, our Assumption (D) is weaker than the corresponding
assumption in [1], because c was assumed to be bounded under Assumption (D)
in [1].

Since the function c is bounded below on X×A, a discounted model can be con-
verted into a positive model by shifting the cost function. In particular, let c(x, a) ≥
−K for any (x, a) ∈ X×A. Consider a new cost function ĉ(x, a) := c(x, a) + K for
any (x, a) ∈ X × A. Then the corresponding total discounted reward is equal to

v̂π
α (p) := vπ

α (p) + K

1 − α
, π ∈ Π, p ∈ P(X).

Thus, optimizing vπ
α and v̂π

α are equivalent problems, but v̂π
α is the objective function

for the positive model. Though positive models are more general, discounted models
are met in lager classes of applications. Thus we formulate the results for either of
these models.
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For any function gπ (p), including gπ (p) = vπ
N,α(p) and gπ (p) = vπ

α (p) define the
optimal cost

g(p) := inf
π∈Π

gπ (p), p ∈ P(X),

where Π is the set of all policies. A policy π is called optimal for the respective
criterion, if gπ (p) = g(p) for all p ∈ P(X). For gπ = vπ

n,α , the optimal policy is
called n-horizon discount-optimal; for gπ = vπ

α , it is called discount-optimal.
We recall that a function c defined on X × A is inf-compact (or lower semi-

compact) if the set {(x, a) ∈ X × A : c(x, a) ≤ λ} is compact for any finite number
λ. A function c defined on X×A is called K-inf-compact on X×A, if for any com-
pact subset K ofX, the function c is inf-compact on K ×A; Feinberg, Kasyanov, and
Zadoianchuk [3, Definition 11]. K-inf-inf-compactness is a mild assumption that
is weaker than inf-compactness. Essentially, K-inf-compactness of the cost func-
tion c is almost equivalent to lower-semicontinuity of c in the state variable x and
lower semi-continuity in the action variable a. This property holds for many appli-
cations including inventory control and various problems with least square criteria.
According to Feinberg, Kasyanov, and Zadoianchuk [3, Lemma 2.5], a bounded
below function c is K-inf-compact on the product of metric spaces X and A if and
only if it satisfies the following two conditions:

(a) c is lower semi-continuous;
(b) if a sequence {xn}n=1,2,... with values in X converges and its limit x belongs

to X then any sequence {an}n=1,2,... with an ∈ A, n = 1, 2, . . . , satisfying the
condition that the sequence {c(xn, an)}n=1,2,... is bounded above, has a limit point
a ∈ A.

As an POMDP (X,Y,A, P, Q, c), consider the classical MDP (X,A, P, c), when
all the states are observable. An MDP can be viewed as a particular POMDPs with
Y = X and Q(B|a, x) = Q(B|x) = I{x ∈ B} for all x ∈ X, a ∈ A, and ∈ B(X).
In fact, this POMP possesses a special property that action sets at all the states are
equal. For MDPs, Feinberg, Kasyanov, and Zadoianchuk [4] the following general
general conditions for the existence of optimal policies, validity of optimality equa-
tions, and convergence of value iterations. Here we formulate these conditions for
an MDP whose action sets at different states are equal.
Assumption (W∗) (cf. Feinberg, Kasyanov, and Zadoianchuk [4] and Lemma 2.5
in [3]).

(i) c is K-inf-compact on X × A;
(ii) the transition probability P( · |x, a) is weakly continuous in (x, a) ∈ X × A.

Theorem 18.1 (cf. Feinberg,Kasyanov, andZadoianchuk [4,Theorem2]). Let MDP
(X,A, P, c) satisfies Assumption (W∗). Consider either positive or discounted model.
Then:

(i) the functions vn,α , n = 0, 1, 2, . . ., and vα are lower semi-continuous on X, and
vn,α(x) → vα(x) as n → ∞ for all x ∈ X;
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(ii) for any x ∈ X, and n = 0, 1, . . . ,

vn+1,α(x)

= min
a∈A(x)

{
c(x, a) + α

∫
X

vn,α(y)P(dy|x, a)

}
,

(18.2)

where v0,α(x) = 0 for all x ∈ X, and the nonempty sets

An,α(x) :={a ∈ A : vn+1,α(x) = c(x, a)

+ α

∫
X

vn,α(y)P(dy|x, a)}

satisfy the following properties: (a) the graph Gr(An,α) = {(x, a) : x ∈ X, a ∈
An,α(x)}, n = 0, 1, . . . , is a Borel subset of X × A, and (b) if vn+1,α(x) = ∞,
then An,α(x) = A(x) and, if vn+1,α(x) < ∞, then An,α(x) is compact;

(iii) for any N = 1, 2, . . ., there exists a Markov optimal N-horizon policy (φ0, . . . , φN−1)

and if, for an N-horizon Markov policy (φ0, . . . , φN−1) the inclusionsφN−1−n(x) ∈
An,α(x), x ∈ X, n = 0, . . . , N − 1, hold then this policy is N-horizon optimal;

(iv) for α ∈ [0, 1]
vα(x) = min

a∈A(x)
{c(x, a)

+ α

∫
X

vα(y)P(dy|x, a)}, x ∈ X,
(18.3)

and the nonempty sets

Aα(x) :={a ∈ A : vα(x) = c(x, a)

+ α

∫
X

vα(y)P(dy|x, a)}, x ∈ X,

satisfy the following properties: (a) the graph Gr(Aα) = {(x, a) : x ∈ X, a ∈
Aα(x)} is a Borel subset of X × A, and (b) if vα(x) = ∞, then Aα(x) = A(x)
and, if vα(x) < ∞, then Aα(x) is compact;

(v) for an infinite-horizon there exists a stationary discount-optimal policy φα , and
a stationary policy is optimal if and only if φα(x) ∈ Aα(x) for all x ∈ X;

(vi) (Feinberg and Lewis [5, Proposition 3.1(iv)]) if c is inf-compact on X×A, then
the functions vn,α , n = 1, 2, . . ., and vα are inf-compact on X.

18.3 Reduction of POMDPs to COMDPs and Optimality Results

In this section, we formulate the known reduction of a POMDP to the completely
observable Markov decision process (COMDP). Based on general results for MDPs
(Feinberg, Kasyanov, Zadoianchuk [4, Theorem 4.1], Theorem 18.2 states sufficient
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conditions for the validity of the following results for the COMDP: the existence of
stationary optimal policies, the validity of optimality equations, the characterization
of optimal policies via optimality equations, and the convergence of value iterations.
Then, we formulate the main result of this paper, Theorem 18.3, that states sufficient
conditions of these properties in terms of the parameters of the original POMDP.

First, we formulate the well-known reduction of a POMDP to the COMDP
([1, 2, 6, 9, 11]). To simplify notations, we drop sometimes the time parameter.
Given a posterior distribution z of the state x at time epoch n = 0, 1, . . . and given
an action a selected at epoch n, denote by R(B × C|z, a) the joint probability that
the state at time (n + 1) belongs to the set B ∈ B(X) and the observation at time n
belongs to the set C ∈ B(Y),

R(B × C|z, a) :=
∫

X

∫

B

Q(C|a, x′)P(dx′|x, a)z(dx), (18.4)

where R is a transition kernel on X × Y given P(X) × A; see Bertsekas and Shreve
[1]; or Dynkin and Yushkevich [2]; or Hernández-Lerma [6]; or Yushkevich [11] for
details. Therefore, the probability R′(C|z, a) that the observation y at time n belongs
to the set C ∈ B is

R′(C|z, a) =
∫

X

∫

X

Q(C|a, x′)P(dx′|x, a)z(dx), (18.5)

where R′ is a transition kernel on Y given P(X) × A. By Bertsekas and Shreve
[1, Proposition 7.27], there exist a transition kernel H on X given P(X) × A × Y

such that

R(B × C|z, a) =
∫

C

H(B|z, a, y)R′(dy|z, a), (18.6)

The transition kernel H( · |z, a, y) defines a measurable mapping H : P(X) × A ×
Y → P(X), whereH(z, a, y)[ · ] = H( · |z, a, y). For each pair (z, a) ∈ P(X)×A, the
mapping H(z, a, ·) : Y → P(Y) is defined R′( · |z, a)-a.s. uniquely in y; Dynkin and
Yushkevich [2, p. 309]. It is known that for a posterior distribution zn ∈ P(X), action
an ∈ A(x), and an observation yn+1 ∈ Y, the posterior distribution zn+1 ∈ P(X) is

zn+1 = H(zn, an, yn+1). (18.7)

However, the observation yn+1 is not available in the COMDP model, and therefore
yn+1 is a random variable with the distribution R′( · |zn, an), and (18.7) is a stochastic
equation that maps (zn, an) ∈ P(X) × A to P(P(X)). The stochastic kernel that
defines the distribution of zn+1 on P(X) given P(X) × X is defined uniquely as
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q(D|z, a) :=
∫

Y

1D[H(z, a, y)]R′(dy|z, a), (18.8)

where

1D[u] =
{
1, u ∈ D ∈ B(P(X)),

0, u /∈ D ∈ B(P(X));

Hernández-Lerma [7, p. 87]. The measurable particular choice of stochastic kernel
H from (18.6) does not effect on the definition of q from (18.8), since for each pair
(z, a) ∈ P(X) × A, the mapping H(z, a, ·) : Y → P(Y) is defined R′( · |z, a)-a.s.
uniquely in y; Dynkin and Yushkevich [2, p. 309].

The COMDP is defined as an MDP with parameters (P(X), A, q, c), where

(i) P(X) is the state space;
(ii) A is the action set available at all state z ∈ P(X);
(iii) the one-step cost function c : P(X) × A → R, defined as

c(z, a) :=
∫

X

c(x, a)z(dx), z ∈ P(X), a ∈ A; (18.9)

(iv) transition probabilities q on P(X) given P(X) × A defined in (18.8).

see Bertsekas and Shreve [1, Corollary 7.27.1, p. 139] or Dynkin and Yushkevich
[2, p. 215], or Hernández-Lerma [6] for details.

If a stationary optimal policy for the COMDP exists and found, it allows the
decision maker to compute an optimal policy for the COMDP. First, we recall how
the initial state distribution z0 ∈ P(P(X)) can be computed for the COMDP. Similarly
to transition kernels R, R′, and H, consider a transition kernel

R0(B × C|p) :=
∫

B

Q0(C|x)p(dx), B ∈ B(X)

on X × Y given P(X). It can be decomposed as

R0(B × C|p) =
∫

C

H0(B|p, y)R′
0(dy|p), (18.10)

where

R′
0(C|p) =

∫

X

Q0(C|x)p(dx), C ∈ B(Y), p ∈ P(X),

is a transition kernel on Y given P(X) and H0(·|·, ·) is a transition kernel on P(X)

given P(X) × Y that for any initial prior distribution p0 ∈ P(X) and the inital
observation y0 sets the initial posteriori distribution z0 = H0(p0, y0). Similarly to
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(18.7), the observation y0 is not available in the COMDP, and this equation is a
stochastic equation. In addition, H0(p, y) is defined R′

0(dy|p)-a.s. uniquely in y for
each p ∈ P(X).

Similarly to (18.8), the transition kernel

q0(D|p) :=
∫

Y

1D[H0(p, y)]R′
0(dy|p), (18.11)

on P(X) given P(X) defines the initial posterior distribution. In particular,

z0 := q0(D|p0), D ∈ P(X). (18.12)

Define a sequence of information vectors

in := (z0, a0, . . . , zn−1, an−1, zn) ∈ In, n = 0, 1, . . . ,

where z0 ∈ P(X) is defined in (18.12), zn ∈ P(X) is recursively defined by Eq. (18.7),
In := P(X) × (A × P(X))n for all n = 0, 1, . . ., with I0 := P(X). An information
policy (I-policy) is a policy in a new COMDP, i.e. I-policy is a sequence δ = {δn :
n = 0, 1, . . . } such that, for each n = 0, 1, . . . , δn( · |in) is a transition kernel on A

given In; Hernández-Lerma [6, p. 88]. Denote by � the set of all I-policies. Identify
the set of all Markov I-policies with a subset of Δ.

Consider Δ as a subset of Π ; Hernández-Lerma [6, p. 89]. The correspondence
of policies in a new COMDP (I-policies) δ = {δn : n = 0, 1, . . . } in � with
respective policies πδ = {πδ

n : n = 0, 1, . . . } inΠ is given; Dynkin and Yushkevich
[2, pp. 251, 238] and references therein. Moreover, for all n = 0, 1, . . . ,

πδ
n ( · |hn) := δn( · |in(hn)) for all hn ∈ Hn. (18.13)

where in(hn) ∈ In is the information vector determined by the observable history hn

via (18.7). Thus δ and πδ are equivalent in the sense that, for every n = 0, 1, . . . ,
πδ

n assigns the same conditional probability on A as that assigned by δn for any
observable history hn; Dynkin and Yushkevich [2, pp. 251, 238]; Hernández-Lerma
[6, p. 89]. Equality (18.13) yields that I-policy in COMDP is optimal, then the
respective policy in initial POMDP is optimal too. For optimality of policy π ∈ Π

with initial distribution p necessary and sufficient the optimality of respective δπ ∈ �
with respective initial distribution zp from (18.12). If δ is stationary, then respective
π is stationary too. Therefore, consider an I-policy δ ∈ � as a policy π ∈ Π ; see, for
example, Dynkin andYushkevich [2, p. 251], Sawaragi and Yoshikawa [10], Rhenius
[9], Yushkevich [11]. The set of policies for the COMDP (P(X),A, q, q0, c) is the
set � of I-policies; Sawaragi and Yoshikawa [10], Rhenius [9], Yushkevich [11].

This reduction holds formeasurable transition kernelsP,Q,Q0. Themeasurability
of these kernels and cost function c lead to themeasurability of transition probabilities
for the corresponding COMDP. However, it is well known that, except the case of
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finite action sets, measurability of transition probabilities is not sufficient for the
existence of optimal policies in COMDPs. In spite of this certain properties hold
if COMDP satisfies stronger measurability conditions. These properties are provide
the validity of optimality equations

vα(z) = inf
a∈A

{
c(z, a) + α

∫
P(X)

vα(s)q(ds|z, a)

}
,

where z ∈ P(X), and the property that vα is a minimal solution of this equation. In
addition if the function c is boundedonP(X)×A, andα ∈ [0, 1], vα is uniquebounded
solution of the optimality equation and can be found by value iterations. However, if
c is just bounded below on X×A, value iterations cannot be applied; Bertsekas [1].
For COMDPs there are sufficient conditions for the existence of stationary optimal
policies. If the equivalent COMDP satisfies these conditions, then the optimal policy
exists, the value function can be computed by value iterations, the infimum can be
substituted with minimum in the optimality equations, and the optimal policy can
be derived from the optimality equations. We show below that, if POMDP satisfies
these conditions then the COMDP also satisfies them.

For the COMDP, Assumption (W∗) can be rewritten in the following form:

(i) c is K-inf-compact on P(X) × A;
(ii) the transition probability q(·|z, a) is weakly continuous in (z, a) ∈ P(X) × A.

Theorem 18.1 has the following form for the COMDP (P(X),A, q, c):

Theorem 18.2 (cf. Feinberg, Kasyanov, and Zadoianchuk [4, Theorem 2]). Let
COMDP (P(X),A, q, c) satisfy Assumption (W∗) and, in addition, either Assump-
tion (D) or Assumption (P) holds. Then:

(i) the functions vn, α , n = 0, 1, 2, . . ., and vα are lower semi-continuous on P(X),
and vn,α(z) → vα(z) as n → ∞ for all z ∈ P(X);

(ii) for any z ∈ P(X), and n = 0, 1, . . . ,

vn+1, α(z) = min
a∈A

{c(z, a) + α

∫
P(X)

vn,α(z′)q(dz′|z, a)}

= min
a∈A

{ ∫

X

c(x, a)z(dx) +
∫

X

∫

X

∫

Y

vn,α(H(z, a, y))

× αQ(dy|a, x′)P(dx′|x, a)z(dx)
}
,

(18.14)

where v0, α(z) = 0 for all z ∈ P(X), and the nonempty sets

An,α(z) :=
{

a ∈ A : vn+1,α(z)

= c(z, a) + α

∫
P(X)

vn,α(z′)q(dz′|z, a)
}
,
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where z ∈ P(X) , satisfy the following properties: (a) the graph Gr(An,α) =
{(z, a) : z ∈ P(X), a ∈ An,α(z)}, n = 0, 1, . . . , is a Borel subset of P(X) × A,
and (b) if vn+1,α(z) = ∞, then An,α(z) = A and, if vn+1,α(z) < ∞, then
An,α(z) is compact;

(iii) for any N = 1, 2, . . . , there exists a Markov optimal N-horizon I-policy
(φ0, . . . , φN−1) and if, for an N-horizon Markov I-policy (φ0, . . . , φN−1) the
inclusions φN−1−n(z) ∈ An,α(z), z ∈ P(X), n = 0, . . . , N − 1, hold then this
I-policy is N-horizon optimal;

(iv) for α ∈ [0, 1]

vα(z) = min
a∈A

{
c(z, a) + α

∫
P(X)

vα(z′)q(dz′|z, a)
}

= min
a∈A

{ ∫

X

c(x, a)z(dx) + α

∫

X

∫

X

∫

Y

vα(H(z, a, y))

× Q(dy|a, x′)P(dx′|x, a)z(dx)
}
, z ∈ P(X),

and the nonempty sets

Aα(z) :={a ∈ A : vα(z) = c(z, a)

+ α

∫
P(X)

vα(z′)q(dz′|z, a)}, z ∈ P(X),

satisfy the following properties: (a) the graphGr(Aα) = {(z, a) : z ∈ P(X), a ∈
Aα(z)} is a Borel subset of P(X) × A, and (b) if vα(z) = ∞, then Aα(z) = A

and, if vα(z) < ∞, then Aα(z) is compact.
(v) for an infinite horizon there exists a stationary discount-optimal I-policy φα ,

and a stationary I-policy is optimal if and only if φα(z) ∈ Aα(z) for all z ∈ P(X).

(vi) if the function c is inf-compact, the functions vn,α , n = 1, 2, . . ., and vα are
inf-compact on P(X).

Note that statement (vi) of Theorem 18.2 follows from Feinberg and Lewis [5,
Proposition 3.1(iv)].

Hernández-Lerma [6, Sect. 4.4] provided the following conditions for the exis-
tence of optimal policies for the COMDP: (a)A is compact, (b) the cost function c is
bounded and continuous, (c) the transition probability P(·|x, a) and the observation
kernel Q(·|a, x) are weakly continuous transition kernels; (d) there exists a weakly
continuous H : P(X) × A × Y → P(X) satisfying (18.6). Consider the following
relaxed version of Assumption (d).
Assumption (H) There exists a transition kernel H on X given P(X) × A × Y

satisfying (18.6) such that: if a sequence {zn} ⊆ P(X) converges weakly to z ∈
P(X), and {an} ⊆ A converges to a ∈ A, n → ∞, then there exists a subsequence
{(znk , ank )}k≥1 ⊆ {(zn, an)}n≥1 such that
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H(znk , ank , y) converges weakly to H(z, a, y), n → ∞,

and this convergence takes place R′( · |z, a) almost surely for all y ∈ Y.
The following theorem relaxes assumptions (a), (b), and (d) in Hernández-

Lerma [6, Sect. 4.4].

Theorem 18.3 Under the following four conditions:

(a) either Assumption (D) or Assumption (P) holds;
(b) Assumption (W∗) holds for the MDP (X,A, P, c);
(c) either the stochastic kernel R′(dy|z, a) onY givenP(X)×A is setwise continuous

and Assumption (H) holds, or the stochastic kernel Q(dy|a, x) on Y given A×X

is weakly continuous and there exists a weakly continuous H : P(X)×A×Y →
P(X) satisfying (18.6);

the COMDP (P(X),A, q, c) satisfies Assumption (W∗) and therefore statements
(i)–(vi) of Theorem 18.2 hold.

If transition kernelQ(dy|a, x) onY givenA×X is continuous in the total variation,
then Assumption (H) holds, and this leads to the following theorem.

Theorem 18.4 Let the transition kernel P(dx′|x, a) on X given X × A be weakly
continuous and let the transition kernel Q(dy|a, x) on Y given A×X be continuous
in the total variation. Then: (i) the transition kernel R′(dy|z, a) on Y given P(X)×A

is setwise continuous, Assumption (H) holds, and (iii) the transition kernel q on P(X)

given P(X) × A is setwise continuous.

Theorems 18.3 and 18.4 imply the following result.

Theorem 18.5 Let assumptions of (a) and (b) from Theorem 18.3 hold and let the
transition kernel Q(dy|a, x) on Y given A × X be continuous in the total variation.
Then statements (i)–(vi) of Theorem 18.2 hold.

18.4 Example

LetX,A andY are nonemptyBorel subsets ofR, {ξn}n≥1 is a sequence of independent
and identically distributed random vectors with values in some Borel subset S of a
Polish space. Assume that the generic disturbance ξ has a distributionμ onS. Let also
{ηn}n≥1 is a sequence of independent and identically distributed random variables,
that uniformly distributed on [0, 1]. The goal is to minimize the expected discounted
total costs over the infinite time horizon.

Consider a stochastic partially observable control system of the form

xn+1 = F(xn, an, ξn), n = 0, 1, . . . , (18.15)
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yn+1 = G(an, xn+1, ηn), n = 0, 1, . . . , (18.16)

where F and G are given measurable function from X × A × S to X and from
A × X × [0, 1] to Y respectively. The states xn are not observable, while the states
yn are observable.

The transition law of the system can be written as

P(B|x, a) =
∫
S

1{F(x, a, s) ∈ B}μ(ds).

The observation kernel is given by

Q(C|a, x) =
∫

[0,1]
1{G(a, x, s) ∈ C}λ(ds),

where λ ∈ P([0, 1]) is a Lebesgue measure on [0, 1].
It is clear that, if (x, a) → F(x, a, s) is continuous mapping on X × A for every

s ∈ S, then stochastic kernel P(dx′|x, a) on X given X × A is weakly continuous.
Assume that G is a continuous mapping on A × X × [0, 1], its derivative by the

last variable exists (we denote it by g) is a continuous mapping on A × X × [0, 1]
and it has a fixed sign, i.e. for some constant β > 0 we have |g(a, x, s)| ≥ β for any
a ∈ A, x ∈ X, s ∈ G(a, x, [0, 1]), where G(a, x, [0, 1]) = {G(a, x, s′) : s′ ∈ [0, 1]}.
Then it is possible to show that that the observation transition kernel Q on Y given
A × X is continuous in the total variation.

Finally, we assume that one-period cost c : X × A → R is K-inf-compact
function (see for details Feinberg, Kasyanov, and Zadoianchuk [3]), it is bounded
from below. Then the MDP satisfies Assumption (W∗), that is, K-inf-compactness
of the cost function c and weak continuity of the transition kernel P that describes
transition probabilities for the MDP. In addition, the observation transition kernel Q
is continuous in the total variation. Therefore, the corresponding COMDP satisfies
Assumption (W∗). Thus, in view of Theorems 18.3–18.5 for the COMDP there exist
a stationary optimal, they satisfy optimality equations, and the value function can be
computed via value iterations. By using the standard known procedures [6, Chap. 4],
an optimal policy for the COMDP can be used to construct an optimal policy for the
initial problem, which is typically nonstationary.

18.5 Conclusions

This presentation studies POMDPs with Borel state, action, and observation spaces
satisfying mild continuity assumptions that guarantee the following properties for
the underlying fully observableMDP: (i) the existence of stationary optimal policies,
(ii) validity of optimality equations, and (iii) convergence of value iterations for the
expected total discounted costs as well as for the expected total costs, when the one-
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step cost function is nonnegative. This presentation provides additional sufficient
conditions under which the COMDP possesses the same continuity assumptions
as the underlying MDP and, therefore, properties (i)–(iii) are also satisfied for the
COMDP. One of such sufficient conditions is the continuity of the observation transi-
tion kernel in the total probability; see Theorem 18.5. Therefore, this paper provides
theoretical foundations to analyze POMDPs with general state and action spaces and
with expected total cost criteria.
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