
Chapter 16
On Global Attractors for Autonomous
Damped Wave Equation with Discontinuous
Nonlinearity

Nataliia V. Gorban, Oleksiy V. Kapustyan, Pavlo O. Kasyanov
and Liliia S. Paliichuk

Abstract We consider autonomous damped wave equation with discontinuous
nonlinearity. The long-term prognosis of the state functions when the conditions
on the parameters of the problem do not guarantee uniqueness of solution of the cor-
responding Cauchy problem are studied. We prove the existence of a global attractor
and investigate its structure. It is obtained that trajectory of every weak solution
defined on [0;+∞) tends to a fixed point.

16.1 Introduction

This manuscript is devoted to the research of asymptotical behavior of the
autonomous damped wave equation with discontinuous nonlinearity. The investi-
gated problem is considered in a bounded domain Ω with a sufficiently regular
boundary ∂Ω . The interaction function f : R → R satisfies the standard growth and
sign conditions. Wave equation with a non-smooth nonlinearity f can be interpreted
as the mathematical model of the controlled piezoelectric fields or processes. The
asymptotic behavior of solutions for such problems were studied by Ball [1, 2], Sell
[11], Zgurovsky et al. [17–19] and many others. The case of the continuous function
f is well-known [2]. The case of the non-autonomous equation with continuous non-
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linearity was investigated by Kapustyan [6], Melnik [8, 10], Valero [13]. The case
when extension of f admits the maximal monotone graph was studied by Zgurovsky
and his scholars [6, 7, 15, 16].

Here we provide sufficient conditions for existence of compact in natural phase
space global attractor for the nonlinear damped equation with discontinuous non-
monotone in general case interaction function.

16.2 Setting of the Problem

Let β > 0 be a constant, Ω ⊂ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − �u + f (u) = 0,
u|∂Ω = 0,

(16.1)

where u(x, t) is unknown state function defined on Ω × R+; f : R → R is an
interaction function such that

lim|u|→∞
f (u)

u
> −λ1, (16.2)

where λ1 is the first eigenvalue for −� in H1
0 (Ω);

∃ D ≥ 0 : | f (u)| ≤ D(1 + |u|), ∀u ∈ R. (16.3)

Further, we use such denotation

f (s) := lim
t→s

f (t), f (s) := lim
t→s

f (t), G(s) := [ f (s), f (s)], s ∈ R.

Let us set V = H1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (16.1). For the Hilbert space X as (·, ·)X and ‖ ·‖X denote the inner product
and the norm in X respectively.

Definition 16.1 Let T > 0, τ < T . The function ϕ(·) = (u(·), ut (·))T ∈
L∞(τ, T ; X) is called a weak solution of Problem (16.1) on (τ, T ) if for a.e.
(x, t) ∈ Ω×(τ, T ), there exists l = l(x, t) ∈ L2(τ, T ; L2(Ω)) l(x, t) ∈ G(u(x, t)),
such that ∀ψ ∈ H1

0 (Ω), ∀η ∈ C∞
0 (τ, T ),

−
T∫

τ

(ut , ψ)H ηt dt +
T∫

τ

(β(ut , ψ)H + (u, ψ)V + (l, ψ)H )ηdt = 0. (16.4)
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The main goal of the manuscript is to obtain the existence of the global attractor
generated by the weak solutions of Problem (16.1) in the phase space X .

16.3 Preliminaries

Lemma 16.1 Zgurovsky et al. [19] For any ϕτ = (u0, u1)
T ∈ X and τ < T there

exists a weak solution ϕ(·) of Problem (16.1) on (τ, T ) such that ϕ(τ) = ϕτ .

Show that in the general case, when the interaction function f is typically multi-
valued, the m-semiflow generated by all solutions of Problem (16.1) have no a com-
pact global attractor.

Example 16.1 Consider the problem

⎧⎨
⎩

utt + βut − �u + [−ε, ε] � 0, (x, t) ∈ (0, π) × R+,

u(0, t) = u(π, t) = 0,
u(x, 0) = ε

β
ϕn(x), ut (x, 0) = 0, |ϕ′

n(x)| ≤ 1.
(16.5)

There exists a solution un(x, t) of Problem (16.5) such that {un(·, tn)}n≥1 is not pre-
compact set in H1

0 (0, π) for some {tn}n≥1, tn → ∞, and some bounded in H1
0 (0, π)

sequence {ϕn}.
D’Alembert’s formula implies that Problem (16.5) has the solution of the form

un(x, t) = ε

2β
(ϕn(x + t) − ϕn(t − x))

for any sufficiently smooth ϕn : R → R such that ϕn(x)=−ϕn(−x)=−ϕn(2π−x).
Indeed, untt − �un = 0 and

βunt (x, t) = β
ε

2π

(
ϕ′

n(x + t) − ϕ′
n(t − x)

) ∈ [−ε, ε].

Let ϕn(x) = 1
n sin nx , x ∈ (0, π). Then

un(x, t) = 1

n

ε

2β
(sin n(x + t) − sin n(t − x)) , (x, t) ∈ (0, π) × R+;

u′
nx

(x, t) = ε

2β
(cos n(x + t) + cos n(t − x)) , (x, t) ∈ (0, π) × R+.

Let {tn}n≥1 ⊂ R+ be the sequence such that tn = 2π
n + 2πn, ∀n ≥ 1. Then

‖un(·, tn) − um(·, tm)‖2
H1
0 (0,π)

=
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= ε2

4β2

π∫
0

(cos n(x + tn) + cos n(tn − x) − cosm(x + tm) − cosm(tm − x))2 dx =

= ε2

β2

π∫
0

(cos nx − cosmx)2dx = πε2

β2 , ∀n, m ≥ 1.

Thus {un(·, tn)}n≥1 is not precompact set in H1
0 (0, π), n → +∞.

Further, we assume that

f (s) = f1(s) − f2(s), s ∈ R,

where fi : R → R, i = 1, 2, are nondecreasing functions.
We remark that

[ f (s), f (s)] ⊆ [ f1(s), f1(s)] − [ f2(s), f2(s)], s ∈ R.

Thus we consider more general evolution inclusion

{
utt + βut − �u + [ f1(u), f1(u)] − [ f2(u), f2(u)] � 0,
u|∂Ω = 0.

(16.6)

Let us set

Gi (s) :=
s∫

0

fi (ξ)dξ, Ji (u) :=
∫
Ω

Gi (u(x))dx, J (u) = J1(u)− J2(u), u ∈ H, i = 1, 2.

The functionals Gi and Ji are locally Lipschitz and regular; Clarke [3, Chap. I]. Thus
the next result holds.

Lemma 16.2 Kasyanov et al. [9] Let u ∈ C1([τ, T ]; H). Then for a.e. t ∈ (τ, T ),
the functions Ji ◦ u are classically differentiable at the point t . Moreover,

d

dt
(Ji ◦ u)(t) = (p, ut (t)) ∀p ∈ ∂ Ji (u(t)), i = 1, 2,

and d
dt (Ji ◦ u)(·) ∈ L1(τ, T ).

Consider W T
τ = C([τ, T ]; X). Lebourgue’s mean value theorem (see Clarke

[3, Chap. 2]) provides the existence of constants c1, c2 > 0 and μ ∈ (0, λ1) such
that

|J (u)| ≤ c1(1 + ‖u‖2H ), J (u) ≥ −μ

2
‖u‖2H − c2 ∀u ∈ H. (16.7)
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The weak solution of the Problem (16.1) with initial data

u(τ ) = a, u′(τ ) = b (16.8)

on the interval [τ, T ] exists for any a ∈ V, b ∈ H. It follows from Zadoianchuk and
Kasyanov [15, Theorem 1.4]. Thus the next lemma holds true (see Kasyanov et al.
[9, Lemma 3.2]).

Lemma 16.3 Kasyanov et al. [9, Lemma3.2]For any τ < T,a ∈ V,b ∈ H, Cauchy
Problem (16.1), (16.8) has the weak solution (u, ut )

T ∈ L∞(τ, T ; X). Moreover,
each weak solution (u, ut )

T of Cauchy Problem (16.1), (16.8) on the interval [τ, T ]
belongs to the space C([τ, T ]; X) and utt ∈ L2(τ, T ; V ∗).

16.4 Properties of Solutions

For any ϕτ = (a, b)T ∈ X , denote

Dτ,T (ϕτ ) =
{
(u(·), ut (·))T

∣∣∣∣ (u, ut )
T is a weak solution of Problem (16.1) on [τ, T ],

u(τ ) = a, ut (τ ) = b

}
.

From Lemma 16.3 it follows that Dτ,T (ϕτ ) ⊂ C([τ, T ]; X) = W T
τ . Let us check

that translation and concatenation of weak solutions are weak solutions too.

Lemma 16.4 If τ < T , ϕτ ∈ X, ϕ(·) ∈ Dτ,T (ϕτ ), then ∀s ψ(·) = ϕ(· + s) ∈
Dτ−s,T −s(ϕτ ). If τ < t < T , ϕτ ∈ X, ϕ(·) ∈ Dτ,t (ϕτ ) and ψ(·) ∈ Dt,T (ϕτ ), then

θ(s) =
{

ϕ(s), s ∈ [τ, t],
ψ(s), s ∈ [t, T ] ∈ Dτ,T (ϕτ ).

Proof The proof is trivial (see Kasyanov et al. [9, Lemma 4.1]).

Let ϕ = (a, b)T ∈ X and

V (ϕ) = 1

2
‖ϕ‖2X + J1(a) − J2(a). (16.9)

Lemma 16.5 Let τ < T , ϕτ ∈ X, ϕ(·) = (u(·), ut (·))T ∈ Dτ,T (ϕτ ). Then V ◦
ϕ : [τ, T ] → R is absolutely continuous and for a.e. t ∈ (τ, T ), d

dt V (ϕ(t)) =
−β‖ut (t)‖2H .

Proof Let −∞ < τ < T < +∞, ϕ(·) = (u(·), ut (·))T ∈ W T
τ be an arbitrary

weak solution of Problem (16.1) on (τ, T ). Since ∂ J (u(·)) ⊂ L2(τ, T ; H), from
Temam [12] and Zgurovsky et al. [19, Chap.2] we obtain that the function t →
‖ut (t)‖2H + ‖u(t)‖2V is absolutely continuous and for a.e. t ∈ (τ, T ),

http://dx.doi.org/10.1007/978-3-319-03146-0_2
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1
2

d
dt

[‖ut (t)‖2H + ‖u(t)‖2V
] = (utt (t) − �u(t), ut (t))H =

= −β‖ut (t)‖2H − (d1(t), ut (t))H + (d2(t), ut (t))H,
(16.10)

where di (t) ∈ ∂ Ji (u(t)) for a.e. t ∈ (τ, T ) and di (·) ∈ L2(τ, T ; H), i = 1, 2. As
u(·) ∈ C1([τ, T ]; H) and Ji : H → R, i = 1, 2 is regular and locally Lipschitz, due
to Lemma 16.2 we obtain that for a.e. t ∈ (τ, T ), ∃ d

dt (Ji ◦u)(t), i = 1, 2. Moreover,
d
dt (Ji ◦ u)(·) ∈ L1(τ, T ), i = 1, 2 and for a.e. t ∈ (τ, T ), ∀p ∈ ∂ Ji (u(t)),

d

dt
(Ji ◦ u)(t) = (p, ut (t))H , i = 1, 2.

In particular for a.e. t ∈ (τ, T ), d
dt (Ji ◦ u)(t) = (di (t), ut (t))H . Taking into account

(16.10) we finally obtain the necessary statement.
This completes the proof.

Lemma 16.6 Let T > 0. Then any weak solution of Problem (16.1) on [0, T ] can
be extended to a global one defined on [0,+∞).

Proof The statement of this lemma follows from Lemmas 16.3–16.5, (16.7) and
from the next estimates

∀τ < T, ∀t ∈ [τ, T ], ∀ϕτ ∈ X, ∀ϕ(·) = (u(·), ut (·))T ∈ Dτ,T (ϕτ ),

2c1 +
(
1 + 2c1

λ1

)
‖u(τ )‖2V + ‖ut (τ )‖2H ≥ 2V (ϕ(τ)) ≥ 2V (ϕ(t)) =

= ‖u(t)‖2V + ‖ut (t)‖2H + 2J (u(t)) ≥
(
1 − μ

λ1

)
‖u(t)‖2V + ‖ut (t)‖2H − 2c2.

The lemma is proved.

For an arbitrary ϕ0 ∈ X let D(ϕ0) be the set of all weak solutions (defined on
[0,+∞)) of Problem (16.1) with initial data ϕ(0) = ϕ0. We remark that from the
proof of Lemma 16.6 we obtain the next corollary.

Corollary 16.1 For any ϕ0 ∈ X and ϕ ∈ D(ϕ0), the next inequality is fulfilled

‖ϕ(t)‖2X ≤ λ1 + 2c1
λ1 − μ

‖ϕ(0)‖2X + 2(c1 + c2)λ1
λ1 − μ

∀t > 0. (16.11)

From Corollary 16.1 in a standard way we obtain such statement.

Theorem 16.1 Let τ < T, {ϕn(·)}n≥1 ⊂ W T
τ be an arbitrary sequence of weak

solutions of Problem (16.1) on [τ, T ] such that ϕn(τ ) → ϕτ weakly in X, n → +∞,
and let {tn}n≥1 ⊂ [τ, T ] be a sequence such that tn → t0, n → +∞. Then there
exists ϕ ∈ Dτ,T (ϕτ ) such that up to a subsequence ϕn(tn) → ϕ(t0) weakly in X ,
n → +∞.
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Proof We prove this theorem in several steps.
Step 1. Let τ < T, {ϕn(·) = (un(·), u′

n(·))}n≥1 ⊂ W T
τ be an arbitrary sequence

of weak solutions of Problem (16.1) on [τ, T ] and {tn}n≥1 ⊂ [τ, T ] such that
ϕn(τ ) → ϕτ weakly in X, tn → t0, n → +∞. (16.12)

In virtue of Corollary 16.1 we have that {ϕn(·)}n≥1 is bounded on W T
τ ⊂

L∞(τ, T ; X). Therefore up to a subsequence {ϕnk (·)}k≥1 ⊂ {ϕn(·)}n≥1 we have

unk → u weakly star in L∞(τ, T ; V ), k → +∞,
u′

nk
→ u′ weakly star in L∞(τ, T ; H), k → +∞,

u′′
nk

→ u′′ weakly star in L∞(τ, T ; V ∗), k → +∞,

dnk ,i → di weakly star in L∞(τ, T ; H), i = 1, 2, k → +∞,
unk → u in L2(τ, T ; H), k → +∞,

unk (t) → u(t) in H for a.e. t ∈ [τ, T ], k → +∞,
u′

nk
(t) → u′(t) in V ∗ for a.e. t ∈ (τ, T ), k → +∞,

�unk → �u weakly in L2(τ, T ; V ∗), k → +∞,

(16.13)

where ∀n ≥ 1 dn,i ∈ L2(τ, T ; H) and

u′′
n(t) + βu′

n(t) + dn,1(t) − dn,2(t) − �un(t) = 0̄,
dn,i (t) ∈ ∂ Ji (un(t)), i = 1, 2, for a.e. t ∈ (τ, T ).

(16.14)

Step 2. ∂ Ji , i = 1, 2 are demiclosed. So, by a standard way we get that di (·) ∈
∂ Ji (u(·)), i = 1, 2, ϕ := (u, u′) ∈ Dτ,T (ϕτ ) ⊂ W T

τ .

Step 3. From (16.13) it follows that for arbitrary fixed h ∈ V the sequences
of real functions (unk (·), h)H , (u′

nk
(·), h)H : [τ, T ] → R are uniformly bounded

and equipotentionally continuous. Taking into account (16.13), (16.11) and density
of the embedding V ⊂ H we obtain that u′

nk
(tnk ) → u′(t0) weakly in H and

unk (tnk ) → u(t0) weakly in V as k → +∞.
The theorem is proved.

Theorem 16.2 Let τ < T, {ϕn(·)}n≥1 ⊂ W T
τ be an arbitrary sequence of weak

solutions of Problem (16.1) on [τ, T ] such thatϕn(τ ) → ϕτ strongly in X, n → +∞,
then up to a subsequence ϕn(·) → ϕ(·) in C([τ, T ]; X), n → +∞.

Proof Let τ < T, {ϕn(·) = (un(·), u′
n(·))T }n≥1 ⊂ W T

τ be an arbitrary sequence of
weak solutions of Problem (16.1) on [τ, T ] and {tn}n≥1 ⊂ [τ, T ]:

ϕn(τ ) → ϕτ strongly in X, n → +∞. (16.15)

From Theorem 16.1 we have that there exists ϕ ∈ Dτ,T (ϕτ ) such that up to the
subsequence {ϕnk (·)}k≥1 ⊂ {ϕn(·)}n≥1 ϕn(·) → ϕ(·) weakly in X , uniformly on
[τ, T ], k → +∞. Let us prove that

ϕnk → ϕ in W T
τ , k → +∞. (16.16)
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By contradiction, suppose the existence of L > 0 and the subsequence {ϕk j } j≥1 ⊂
{ϕnk }k≥1 such that ∀ j ≥ 1,

max
t∈[τ,T ] ‖ϕk j (t) − ϕ(t)‖X = ‖ϕk j (t j ) − ϕ(t j )‖X ≥ L .

Without loss of generality we suggest that t j → t0 ∈ [τ, T ], j → +∞. Therefore
by virtue of a continuity of ϕ : [τ, T ] → X we have

lim
j→+∞

‖ϕk j (t j ) − ϕ(t0)‖X ≥ L . (16.17)

On the other hand, we prove that

ϕk j (t j ) → ϕ(t0) in X, j → +∞. (16.18)

First we remark that

ϕk j (t j ) → ϕ(t0) weakly in X, j → +∞ (16.19)

(see Theorem 16.1 for details). Secondly let us prove that

lim
j→+∞ ‖ϕk j (t j )‖X ≤ ‖ϕ(t0)‖X . (16.20)

Since J is sequentially weakly continuous, V is sequentially weakly lower semi-
continuous on X . Hence we obtain

V (ϕ(t0)) ≤ lim
j→+∞

V (ϕk j (t j )),

t0∫
τ

‖u′(s)‖2H ds ≤ lim
j→+∞

t j∫
τ

‖u′
k j

(s)‖2H ds
(16.21)

and

V (ϕ(t0)) + β

t0∫
τ

‖u′(s)‖2H ds ≤ lim
j→+∞

⎛
⎜⎝V (ϕk j (t j )) + β

t j∫
τ

‖u′
k j

(s)‖2Hds

⎞
⎟⎠ .

(16.22)
Since by the energy equation both sides of (16.22) equal V (ϕ(τ)) (see Lemma 16.5),
it follows from (16.21) thatV (ϕk j (t j )) → V (ϕ(t0)), j → +∞ and (16.20). Conver-
gence (16.18) directly follows from (16.19), (16.20) and Gajewski et al. [5, Chap. I].
To finish the proof of the theorem we remark that (16.18) contradicts (16.17). There-
fore (16.16) holds.

The theorem is proved.
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Define the m-semiflow G as

G (t, ξ0) = {ξ(t) | ξ(·) ∈ D(ξ0)}, t ≥ 0.

Denote the set of all nonempty (nonempty bounded) subsets of X by P(X)(β(X)).
Note that the multivalued map G : R+ × X → P(X) is a strict m-semiflow, i.e., (see
Lemma 16.4)

1. G (0, ·) = Id (the identity map);
2. G (t + s, x) = G (t,G (s, x)) ∀x ∈ X, t, s ∈ R+.
Further, ϕ ∈ G means that ϕ ∈ D(ξ0) for some ξ0 ∈ X .

Definition 16.2 G is called an asymptotically compact m-semiflow if for any
sequence {ϕn}n≥1 ⊂ G with {ϕn(0)}n≥1 bounded, and for any sequence {tn}n≥1:
tn → +∞, n → ∞, the sequence {ϕn(tn)}n≥1 has a convergent subsequence Ball
[2, p. 35].

Theorem 16.3 G is an asymptotically compact m-semiflow.

Proof Let ξn ∈ G (tn, vn), vn ∈ B, B ∈ β(X), n ≥ 1, tn → +∞, n → +∞. Let us
check a precompactness of {ξn}n≥1 in X . Without loss of the generality, we extract a
convergent in X subsequence from {ξn}n≥1. FromCorollary 16.1 we obtain that there
exists {ξnk }k≥1 and ξ ∈ X such that ξnk → ξ weakly in X , ‖ξnk ‖X → a ≥ ‖ξ‖X ,
k → +∞. Show that a ≤ ‖ξ‖X .

Let us fix an arbitrary T0 > 0. Then for rather big k ≥ 1, G (tnk , vnk ) ⊂
G (T0,G (tnk − T0, vnk )). Hence ξnk ∈ G (T0, βnk ), where βnk ∈ G (tnk − T0, vnk )

and sup
k≥1

‖βnk ‖X < +∞ (see Corollary 16.1). From Theorem 16.1 for some

{ξk j , βk j } j≥1 ⊂ {ξnk , βnk }k≥1, βT0 ∈ X , we obtain

ξ ∈ G (T0, βT0), βk j → βT0 weakly in X, j → +∞. (16.23)

From the definition of G we set ∀ j ≥ 1, ξk j = (u j (T0), u′
j (T0))

T , βk j =
(u j (0), u′

j (0))
T , ξ = (u0(T0), u′

0(T0))
T , βT0 = (u0(0), u′

0(0))
T , where ϕ j =

(u j , u′
j )

T ∈ C([0, T0]; X), u′′
j ∈ L2(0, T0; V ∗), d j ∈ L∞(0, T0; H),

u′′
j (t) + βu′

j (t) − �u j (t) + d j,1(t) − d j,2(t) = 0̄,

d j,i (t) ∈ ∂ Ji (u j (t)), i = 1, 2 for a.e. t ∈ (0, T0).

Let for every t ∈ [0, T0],

I (ϕ j (t)) := 1

2
‖ϕ j (t)‖2X + J1(u j (t)) − J2(u j (t)) + β

2
(u′

j (t), u j (t))H .

Then in virtue of Lemma 16.2, Gajewski et al. [5, Chap. IV], Temam [12] and
Zgurovsky et al. [19]
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d I (ϕ j (t))

dt
= −β I (ϕ j (t)) + βH (ϕ j (t)), for a.e. t ∈ (0, T0),

where

H (ϕ j (t)) = J1(u j (t)) − 1

2
(d j,1(t), u j (t))H − J2(u j (t)) + 1

2
(d j,2(t), u j (t))H .

From (16.11), (16.23) we have ∃R̄ > 0 : ∀ j ≥ 0, ∀t ∈ [0, T0],

‖u′
j (t)‖2H + ‖u j (t)‖2V ≤ R̄2.

Moreover,

u j → u0 weakly in L2(0, T0; V ), j → +∞,

u′
j → u′

0 weakly in L2(0, T0; H), j → +∞,

u j → u0 in L2(0, T0; H), j → +∞,

d j,i → di weakly in L2(0, T0; H), i = 1, 2, j → +∞,

u′′
j → u′′

0 weakly in L2(0, T0; V ∗), j → +∞,

∀t ∈ [0, T0] u j (t) → u0(t) in H, j → +∞.

(16.24)

For every j ≥ 0 and t ∈ [0, T0],

I (ϕ j (t)) = I (ϕ j (0))e
−βt +

t∫
0

H (ϕ j (s))e
−β(t−s)ds.

In particular I (ϕ j (T0)) = I (ϕ j (0))e−βT0 +
T0∫
0
H (ϕ j (s))e−β(T0−s)ds.

From (16.24) and Lemma 16.2 we have

T0∫
0

H (ϕ j (s))e
−β(T0−s)ds →

T0∫
0

H (ϕ0(s))e
−β(T0−s)ds, j → +∞.

Therefore

lim
j→+∞ I (ϕ j (T0)) ≤ lim

j→+∞ I (ϕ j (0))e−βT0 +
T0∫
0
H (ϕ0(s))e−β(T0−s)ds =

= I (ϕ0(T0)) +
[

lim
j→+∞ I (ϕ j (0)) − I (ϕ0(0))

]
e−βT0 ≤ I (ϕ0(T0)) + c3e−βT0 ,

where c3 does not depend on T0 > 0.
On the other hand, from (16.24) we have
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lim
j→+∞ I (ϕ j (T0)) ≥ 1

2
lim

j→+∞ ‖ϕ j (T0)‖2X + J (u0(T0)) + β

2
(u′

0(T0), u0(T0))H .

Therefore we obtain 1
2a2 ≤ 1

2‖ξ‖2X + c3e−βT0 ∀T0 > 0.
Thus, a ≤ ‖ξ‖X .

The Theorem is proved.

Let us consider the family K+ = ∪u0∈XD(u0) of all weak solutions of Problem
(16.1) defined on [0,+∞). Note that K+ is translation invariant one, i.e., ∀u(·) ∈
K+, ∀h ≥ 0, uh(·) ∈ K+, where uh(s) = u(h + s), s ≥ 0. On K+ we set the
translation semigroup {T (h)}h≥0, T (h)u(·) = uh(·), h ≥ 0, u ∈ K+. In view of the
translation invariance of K+ we conclude that T (h)K+ ⊂ K+ as h ≥ 0.

On K+ we consider a topology induced from the Fréchet space Cloc(R+; X).
Note that

fn(·) → f (·) in Cloc(R+; X) ⇐⇒ ∀M > 0, ΠM fn(·) → ΠM f (·) in C([0, M]; X),

where ΠM is the restriction operator to the interval [0, M]; Vishik and Chepyzhov
[14, p. 179]. We denote the restriction operator to [0,+∞) by Π+.

Let us consider Problem (16.1) on the entire time axis. Similarly to the space
Cloc(R+; X) the space Cloc(R; X) is endowed with the topology of a local uniform
convergence on each interval [−M, M] ⊂ R (cf. Vishik andChepyzhov [14, p. 180]).
A functionu ∈ Cloc(R; X)∩L∞(R; X) is said to bea complete trajectory of Problem
(16.1) if ∀h ∈ R, Π+uh(·) ∈ K+; Vishik and Chepyzhov [14, p. 180].

Let K be a family of all complete trajectories of Problem (16.1). Note that
∀h ∈ R, ∀u(·) ∈ K uh(·) ∈ K . We say that the complete trajectory ϕ ∈ K is
stationary if ϕ(t) = z for all t ∈ R for some z ∈ X. Following Ball [1, p. 486] we
denote by Z(G ) the set of all rest points of G . Note that

Z(G ) = {(0̄, u) | u ∈ V, −�(u) + ∂ J (u) � 0̄}.

Lemma 16.7 Z(G ) is an bounded set in X.

The existence of a Lyapunov function for G follows from Lemma 16.5 (see Ball
[1, p. 486]).

Lemma 16.8 A functional V : X → R defined by (16.9) is a Lyapunov function
for G .

16.5 The Existence of a Global Attractor

At first we consider constructions presented in Ball [1], Mel’nik and Valero [10]. We
recall that the set A is said to be a global attractor G if

(1) A is negatively semiinvariant (i.e., A ⊂ G (t,A ) ∀t ≥ 0);
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(2) A is attracting set, i.e.,

dist(G (t, B),A ) → 0, t → +∞, ∀B ∈ β(X), (16.25)

where dist(C, D) = sup
c∈C

inf
d∈D

‖c − d‖X is the Hausdorff semidistance;

(3) for any closed set Y ⊂ H satisfying (16.25), we have A ⊂ Y (minimality).
The global attractor is said to be invariant if A = G (t,A ), ∀t ≥ 0.
Note that by definition a global attractor is unique.
We prove the existence of an invariant compact global attractor.

Theorem 16.4 The m-semiflow G has an invariant compact in the phase space X
global attractor A . For each ψ ∈ K the limit sets

α(ψ) = {z ∈ X| ψ(t j ) → z for some sequence t j → −∞},

ω(ψ) = {z ∈ X| ψ(t j ) → z for some sequence t j → +∞}

are connected subsets of Z(G ) on whichV is constant. If Z(G ) is totally disconnected
(in particular if Z(G ) is countable) the limits

z− = lim
t→−∞ ψ(t), z+ = lim

t→+∞ ψ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point as t → +∞
for every solution ϕ ∈ K+.

Proof The existence of a global attractor for Second Order Evolution Inclusions
directly follows from Lemmas 16.3, 16.4, 16.7, 16.8, Theorems 16.1–16.3 and Ball
[2, Theorem 2.7].

16.6 Global Attractors for Typically Discontinuous Interaction
Functions

Let β > 0 be a constant, Ω ∈ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − �u ∈ − f (u) + G(u) + h,

u|∂Ω = 0,
(16.26)

where u(x, t) is unknown state function defined onΩ×R+, h ∈ L2(Ω), f : R → R

is an interaction function such that

f ∈ C(R), G = [g1, g2], gi ∈ C(R), i = 1, 2. (16.27)
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There exist a small constant C ≥ 0 (C < min{β, λ1}), and Di ≥ 0, i = 1, 2 such
that

lim
|u|→∞

f (u)

u
> −λ1, (16.28)

where λ1 is the first eigenvalue for −� in H1
0 (Ω),

|gi (u)| ≤ C |u| + D1, ∀u ∈ R, i = 1, 2, (16.29)

| f (u)| ≤ D2(1 + |u| n
n−2 ), ∀u ∈ R. (16.30)

Remark 16.1 The case of ε–neighborhood of f (u) satisfies conditions (16.27)–
(16.30), i.e., if lim

|u|→∞
f (u)

u > −λ1, G(u) = [−ε, ε].

Let us set V = H1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (16.26).

Definition 16.3 Let T > 0. The function ϕ(·) = (u(·), ut (·))T ∈ L∞(0, T, X) is
called a weak solution of Problem (16.26) on (0, T ) if for a.e. (x, t) ∈ Ω × (0, T ),
there exists l = l(x, t) ∈ L2(0, T : L2(Ω)), l(x, t) ∈ G(u(x, t)) such that ∀ψ ∈
H1
0 (Ω), η ∈ C∞

0 (0, T )

−
∫ T

0
(ut , ψ)H ηt dt +

∫ T

0
[(β(ut , ψ)H +

+(u, ψ)V + ( f (u), ψ)H − (l, ψ)H − (h, ψ)H )η] dt = 0.

Lemma 16.9 For all ϕ0 = (u0, u1)
T ∈ X, T > 0, there exists a weak solution

ϕ(·) of Problem (16.26) such that ϕ(0) = ϕ0. Moreover, if ϕ(·) = (u(·), ut (·))T

is a weak solution of Problem (16.26) with respective l ∈ L2(0, T ; L2(Ω)), then
ϕ ∈ C([0, T ]; X), functions

t �→ ‖ut (t)‖2H + ‖u(t)‖2V , t �→ (F(u(t)), 1)H

are absolutely continuous on [0, T ], and for t, s ∈ [0, T ], s ≤ t ,

1

2

d

dt
(‖ut (t)‖2H + ‖u(t)‖2V + (F(u(t)), 1)H ) =

= −β‖ut (t)‖2H + (l(t), ut (t))H + (h, ut (t))H , (16.31)

‖ut (t)‖2H + ‖u(t)‖2V ≤ e−δ(t−s)
(

‖ut (s)‖2H + ‖u(s)‖
2n−2
n−2

V

)
+ D3, (16.32)
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where F(u) = ∫ u
0 f (s)ds, u ∈ R and constants δ > 0, D3 > 0 do not depend on ϕ.

Proof Let us deduce condition (16.32). Consider

Y (t) = 1

2
‖ut (t)‖2H + 1

2
‖u(t)‖2V + (F(u(t)), 1)H + α(ut (t), u(t))H , t ∈ [0, T ],

where α > 0. Then for sufficiently small C > 0 and δ > 0

dY (t)
dt = (utt (t), ut (t))H − (�u, ut (t))H + ( f (u(t)), ut (t))H +

+ α(utt (t), u(t))H + α‖ut (t)‖2H =
= (−βut (t) + l(t) + h, ut (t))H + α‖ut (t)‖2H +
+ α(−βut (t) + �u − f (u(t)) + l(t) + h, u(t))H =
= −(β − α)‖ut (t)‖2H + (l(t), ut (t))H + (h, ut (t))H −
− αβ(ut (t), u(t))H − α‖u(t)‖2V −
− α( f (u(t)), u(t))H + α(l(t) + h, u(t))H ≤
≤ −(β − α − ε)‖ut (t)‖2H + C‖u(t)‖H ‖ut (t)‖H

≤ −α‖u(t)‖2V − α(−λ1 + C + ε)‖u(t)‖2H +
+ αC‖u(t)‖2H + K ≤ −δY (t) + K̃ .

Therefore the inequalities

F(u) ≥
(

−λ1

2
+ ε

)
u2 + L , F(u) ≤ M

(
1 + |u| 2u−2

u−2

)
, ∀u ∈ R, (16.33)

imply (16.32). All the other statements follow from Ball [2], Temam [12]. The exis-
tence of a solution follows from the existence of a continuous selector for G.

Remark 16.2 The set of solutions of Problem (16.26) is not covered by all continuous
selectors of G : R �→ 2R.

Indeed, let f ≡ 0, G(u) ≡ [−ε, ε], h ≡ 0. Consider solutions of the problem

{�u ∈ [−ε, ε], in Ω = (0, π),

u(0) = u(π) = 0,

i.e., consider stationary solutions of Problem (16.26). Then the function

u(x) = ε

2
sin x + ε

8
sin 2x, x ∈ (0, π),

is a solution of the given problem but there is no g ∈ C(R) such that g(u) ∈ [−ε, ε],
∀u ∈ R, and �u(x) = g(u(x)), x ∈ (0, π). Indeed, assume the converse. Suppose
that such function exists. The equation

ε

2
sin x + ε

8
sin 2x = ε

2
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has two solutions
x = π

2
and x = x∗ �= π

2
∈ (0, π).

If x = π
2 , then

g(
ε

2
) = u′′(π

2
) = −ε

2
.

If x = x∗, then

g(
ε

2
) = −ε

2
sin x∗ − ε

2
sin 2x∗ = −ε

2
− 3ε

8
sin 2x∗ �= −ε

2
.

This contradiction concludes the example.

Remark 16.3 If G(u) ≡ g(u) is a single-valued function, then the existence of a
global attractor was proved in Ball [2].

Select the class of solutions for which there exists a global attractor. For this purpose
we use the notion of “energy” equation Ball [2], which describes the conservation
laws of energy.

Let ϕ ∈ C ([0,+∞); X) is a solution of Problem (16.26). Denote

I (ϕ) = 1

2
‖ut (t)‖2H + 1

2
‖u(t)‖2V + (F(u(t)), 1)H + β

2
(ut (t), u(t))H ,

gλ(u) = λg1(u) + (1 − λg2(u)), Gλ(u) =
u∫

0

gλ(s)ds, λ ∈ [0, 1],

H(ϕ) = β(F(u), 1)H − β

2
( f (u), u)H + β

2
(h, u)H + (h, ut )H .

Definition 16.4 Aweak solution ϕ of Problem (16.26) with the corresponding func-
tion l is called an energy solution if there exists λ ∈ [0, 1] (λ = λ(ϕ)) such that
∀t ≥ 0,

d

dt
I (ϕ(t))+β I (ϕ(t))− d

dt
(Gλ(u(t)), 1)H = β

2
(l(t), u(t))H + H(ϕ(t)). (16.34)

Remark 16.4 Any solution satisfies the equation

d

dt
I (ϕ(t)) + β I (ϕ(t)) − (l(t), ut (t))H = β

2
(l(t), u(t))H + H(ϕ(t)).

Any ”selector” solution satisfies the equation
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d

dt
I (ϕ(t)) + β I (ϕ(t)) − (g(u(t)), ut (t))H = β

2
(g(u(t)), u(t))H + H(ϕ(t)).

Remark 16.5 Any stationary solution u(t) obviously satisfies (16.34). So, the set
of all “selector” solutions (solutions of Problem (16.26) with l(x, t) = g(u(x, t)),
g ∈ G) does not include the set of energy solutions. Moreover, the set of all energy
solutions is wider than the set of all solutions of (16.26) with l(x, t) = gλ(u(x, t)).

Let us set

G (t, ϕ0) = {ϕ(t) | ϕ(·) is an energy solution of(16.26), ϕ(0) = ϕ0} (16.35)

Theorem 16.5 The m-semiflow G has an invariant compact in the phase space X
global attractor.

Proof G is the m-semiflow (but not strict; it will be strict if in the definition 16.4
[0,+∞) is divided into intervals with different λ). Note that G is dissipative; G has
a closed graph (it is necessary to pass to the limit in (16.34)); G is asymptotically
semicompact m-semiflow. Indeed, similarly to Ball [2] we obtain the equation

I (ϕ j (t j )) − (Gλ j (u j (t j )), 1)H =
= (

I (ϕ j (t j − M)) − (Gλ j (ϕ j (t j − M)), 1)H
)

e−βM +
M∫
0

eβ(t−M)·
·
(

H(ϕ j (t)) + β
2 (l j (t), u j (t))H − β(Gλ j (ϕ j (t)), 1)H

)
dt.

(16.36)

Since up to a subsequence λ j → λ, ϕ j (t j ) → χ weakly in H1
0 (Ω), we obtain

(
Gλ j (ϕ j (t j )), 1

)
H

→ (Gλ(χ), 1)H

and similarly Ball [2] we have

I (ϕ j (t j )) → I (χ).

Remark 16.6 It is possible to build another multivalued semiflow generated by
selector solutions, i.e.,

G (t, ϕ0) =
⎧⎨
⎩ϕ(t)

∣∣∣∣∣∣
ϕ(·) is a solution of (16.26),
ϕ(0) = ϕ0,

∃g ∈ G : ϕ(·) is a solution of the resp. equation with g

⎫⎬
⎭ .

However in this case, for the sequence {ϕ j }∞j=1, we have {g j }∞j=1, g j (u) ∈ G(u),
∀u ∈ R. In order to g j (u) → g(u) ∀u ∈ R, g ∈ G, it is necessary to strengthen the
conditions for G. But in this case, the question about solvability of Problem (16.26)
arises.
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