
Chapter 14
Inertial Manifolds and Spectral Gap Properties
for Wave Equations with Weak and Strong
Dissipation

Natalia Chalkina

Abstract Sufficient conditions for the existence of an inertial manifold for the
equation utt − 2γsΔut + 2γwut − Δu = f (u), γs > 0, γw ≥ 0 are found. The
nonlinear function f is supposed to satisfy Lipschitz property. The proof is based
on construction of a new inner product in the phase space in which the conditions of
a general theorem on the existence of inertial manifolds for an abstract differential
equation in a Hilbert space are satisfied.

14.1 Introduction

In the theory of nonlinear evolution partial differential equations, great attention is
paid to long-time behavior of dynamic systems. Someway of such description relates
with notion of an inertial manifold (see [5, 6, 9]).

Let us consider an initial-value problem for an abstract differential equation in a
Hilbert space,

d

dt
y+Ay = F(y), y ∈ H , (14.1)

y
∣
∣
t=0 = y0 ∈ H . (14.2)

Here A is a linear operator and F is a nonlinear operator. Suppose problem (14.1),
(14.2) has a unique solution y for any y0 ∈ H . Hence, this problem generates
a continuous semigroup {S(t) | t ≥ 0}, acting in the space H by the formula
S(t)y0 = y(t) ∈ H .

Definition 14.1 A Lipschitz finite dimensional manifold M ⊂ H is an inertial
manifold for the semigroup S(t) if it is invariant (i.e., S(t)M = M , ∀t ≥ 0) and it
satisfies the following asymptotic completeness property:
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∀y0 ∈ H ∃ỹ0 ∈ M such that ‖S(t)y0 − S(t)ỹ0‖H ≤ q(‖y0‖H )e−ct , t ≥ 0,

where the positive constant c and the monotonic function q are independent of y0.
Inertial manifolds enable one to reduce the study of the behavior of an

infinite-dimensional dynamical system to the investigation of this problem for some
finite-dimensional dynamical system generated by original system on an inertial
manifold.

For the abstract equation of the form (14.1), there are known sufficient conditions
under which there is an inertial manifold in the Hilbert space H (see [3]). Let us
present these conditions. LetA be a linear closed (possibly unbounded) operator with
dense domain D(A) inH and let the spectrum σ(A) of A be disjoint from the strip
{m < 	ζ < M}, where M ≥ 0, M > m. Denote by P the orthogonal projection to
the invariant subspace of A corresponding to the part of the spectrum σ ∩ {	ζ ≤ m}
and write Q = Id − P . Assume that the space P(H ) is finite-dimensional.

Theorem 14.1 Let the space H be equiped with an inner product in such a way
that the space P(H ) and Q(H ) are orthogonal and the following relations hold:

(Ay, y) ≤ m|y|2 ∀y ∈ P(H ),

(Ay, y) ≥ M |y|2 ∀y ∈ Q(H ) ∩ D(A).
(14.3)

Moreover, let F(y) be a nonlinear function such that F(0) = 0 and let F satisfy the
Lipschitz condition with the constant L, where

2L < M − m. (14.4)

In this case, there is an inertial manifold M in the Hilbert space H , and this
manifold is the graph of a Lipschitz continuous function Φ: P(H) → Q(H).

In the present chapter, an initial-boundary value problem for a wave equation
with weak and strong dissipation is considered. The nonlinear term depends on the
unknown function u, these term is assumed to be Lipschitzian,

utt − 2γsΔut + 2γwut − Δu = f (u).

For this equation, we obtain a condition on the Lipschitz constant of the func-
tion f which ensures the existence of an inertial manifold. The result is stated in
Theorems 14.2 and 14.3. The proof is based on construction of a new inner product
in the phase space in which the conditions of Theorem 14.1 are satisfied.
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14.2 Statement of the Problem and Spectrum of the Linear
Operator

In a bounded domainΩ , we consider the inertial-boundary value problem for a wave
equation with dissipation,

utt − 2γsΔut + 2γwut − Δu = f (u), u|∂Ω = 0, (14.5)

u|t=0 = u0(x) ∈ H1
0 (Ω), ut |t=0 = p0 ∈ L2(Ω). (14.6)

Here γw and γs are positive coefficients of the dissipation, and the nonlinear function
f is continuously differentiable and satisfy the global Lipschitz condition,

| f (v1) − f (v2)| ≤ l|v1 − v2| ∀v1, v2 ∈ R, (14.7)

Moreover, let f (0) = g(0) = 0.
Under these assumptions, problem (14.5), (14.6) has a unique weak solution

u ∈ C
([0, T ]; H1

0 (Ω)
)

, ∂t u ∈ C
([0, T ]; L2(Ω)

)

for any T > 0 (see [7, 8, 10]).
Hence, this problem generates a continuous semigroup {S(t)}, t ≥ 0, acting in the
phase space H = H1

0 (Ω) × L2(Ω) by the formula

S(t)(u0(x), p0(x)) = y(t) ≡ (u(t, x), p(t, x)) ∈ H,

where u(t, x) is a solution of the problem (14.5), (14.6), p(t, x) = ∂t u(t, x) stands
for the derivative of this solution w.r.t. t , and y = (u, p) ∈ H .

Let us represent the initial-boundary value problem in the form of an ordinary
differential equation to find the unknown vector function y = (u, p) ∈ H ,

d

dt
y(t) + Ay = F(y), Ay =

(

0 −1
−Δ 2γw − 2γsΔ

)

y, F(y) =
(

0
f (u)

)

.

Let ek(x) and λk be the eigenfunctions and the eigenvalues of the operator −Δ in
the domain Ω with the Dirichlet conditions on the boundary,

−Δek(x) = λkek(x), ek(x)
∣
∣
∂Ω

= 0, ek(x) 
≡ 0,

0 < λ1 < λ2 ≤ λ3 ≤ · · · → +∞.

Denote by (·, ·)H and ‖ · ‖ the standard inner product and the corresponding norm
in the space H , namely,

(y, ỹ)H = (∇u,∇ũ) + (p, p̃) =
∞
∑

k=1

(λkuk ũk + pk p̃k) ,

where uk = (u, ek), pk = (p, ek), and (·, ·) stands for the inner product in L2(Ω).
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The two-dimensional subspace Hk with basis (ek, 0), (0, ek) is invariant under
the operator A. The restriction of the operator A to the subspace Hk has the matrix

Ak =
(

0 −1
λk 2(γw + γsλk)

)

. The eigenvalues of Ak are equal to

μk = γk −
√

γ 2
k − λk and νk = γk +

√

γ 2
k − λk

where we denote γk = γw + γsλk . In Figs. 14.1 and 14.2, we show the qualita-
tive displacement of these eigenvalues on the complex plane in two cases, namely,
4γwγs < 1 and 4γwγs ≥ 1. In the first case, the operator A has both real and nonreal
eigenvalues and, in the other case, all eigenvalues are real.

If the orthogonal projection P satisfies the assumptions of the Theorem 14.1, then
the image P(H ) (which is finite-dimensional) must correspond to finitely many
eigenvalues of A belonging to the domain {Reζ ≤ m}. However, μk → 1/(2γs) and

Fig. 14.1 4γwγs < 1

Fig. 14.2 4γwγs > 1
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νk → +∞ as λk → +∞, and thus the quantity m must be less than 1/(2γs). In the
case 4γwγs < 1, to the values μk and νk lying to the left of the accumulation point
1/(2γs) there correspond values λk <

1−2γwγs
2γ 2

s
. If 4γwγs ≥ 1, then μk < 1/(2γs)

for any k.

14.3 Sufficient Conditions for the Existence of Inertial Manifolds

In this section, we present conditions for the existence of a gap both in the real part
(Theorem 14.2) and in the nonreal part (Theorem 14.3) of the spectrum of A.

First let us consider a gap in the real part of the spectrum. Thus, for 4γwγs < 1,

the additional condition m <
1−√

1−4γwγs
2γs

is imposed, which corresponds to the

inequality λk <
1−2γwγs−√

1−4γwγs
2γ 2

s
.

Remark 14.1 If Eq. (14.5) has not strongly dissipative term (i.e., γs = 0), then the
circle to which a part of eigenvalues of the operator A belongs (see Fig. 14.1) is
transformed to the vertical line {	ζ = γw} (see Fig. 14.3), and the condition on m
becomes m < γw.

Write

γ� =

⎧

⎪⎨

⎪⎩

γ1, if 1 ≤ 2γsγ1;
1/(2γs), if 2γsγ1 ≤ 1 ≤ 2γsγN+1;
γN+1, if 2γsγN+1 ≤ 1;

λ� = γ� − γw

γs
.

Fig. 14.3 Weak dissipation,
γs = 0
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Theorem 14.2 Let f satisfy condition (14.7). Moreover, suppose that there is an N
such that the following inequality holds:

2
l

√

γ 2
� − λ�

< μN+1−μN = γN+1−
√

γ 2
N+1 − λN+1−γN +

√

γ 2
N − λN , (14.8)

and, if 4γwγs < 1, then the following inequality also holds:

λN+1 <
1 − 2γwγs − √

1 − 4γwγs

2γ 2
s

.

In this case, there is an N-dimensional inertial manifold for problem (14.5), (14.6)
in the space H .

Remark 14.2 If γs = 0, then condition (14.8) coincides with the similar condition
obtained in [4].

Remark 14.3 If there is no weak dissipation, then all real point of the spectrum of
the operator A are located to the right of the number 1/(2γs) (see Fig. 14.4), and
Theorem 14.2 cannot be applied to this situation.

Now we consider case of spectral gap in nonreal part of spectrum. Hence we
assume that 4γwγs < 1.

Let values m and M be chosen in such a way that

1 − √
1 − 4γwγs

2γs
≤ m < M ≤ 1

2γs
, (14.9)

Fig. 14.4 Strong dissipation,
γw = 0
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and the spectrum σ(A) of A be disjoint from the strip {m < 	ζ < M}, but the set
σ(A) ∩ {	ζ ≤ m} is not empty.

Let numbers k1, k2 are such that values νk1 and νk2+1 belong to the domain
{	ζ ≥ M}, and numbers νk1+1 and νk2 belong to the domain {	ζ ≤ m} (see
Fig. 14.5). Thus for ν1 
∈ R or ν1 ∈ R, ν1 ≤ m we have k1 = 0; for the converse
case we get 	νk1+1 ≤ m < M ≤ 	νk1 .

If there are not numbers νk to the left of the strip, then we have M ≤ 	νk2+1
and M ≤ 	νk1 = νk1 = νk2 . Otherwise number k2 is such that 	νk2 ≤ m < M ≤
	νk2+1.

Denote numbers κI , κI I , κI I I and κI V . First if k1 = 0 then formally write

κI = +∞. In the other case write κI =
√

γ 2
k1

− λk1 . Secondly if k2 = k1 then

formally write κI I = κI I I = +∞. Otherwise denote κI I = sk1+1, κI I I = sk2 ,
where

sk =
√

m2 − 2mγk + λk + m − γk . (14.10)

Fig. 14.5 A spectral gap in nonreal part of the spectrum
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Finally write λM = (M − γw)/γs and κI V = √

λM − M2.

Theorem 14.3 Let nonlinear function f satisfies condition (14.7). Moreover, sup-
pose that the following inequality holds:

2l < (M − m)min{κI , κI I , κI I I , κI V }. (14.11)

Then there is a (2k2 − k1)-dimensional inertial manifold for problem (14.5), (14.6)
in the space H .

Remark 14.4 It follows from condition (14.11) that there are enough large gaps in
the spectrum of operator −Δ in domain Ω . Actually, we have

κI V =
√

λM − M2 =
√

M − γw − γs M2

γs
=

=
√

4γs M−4γwγs−4γ 2
s M2

4γ 2
s

=
√

1 − 4γwγs − (2γs M − 1)2

4γ 2
s

<

√
1 − 4γwγs

2γs
.

Moreover, the inequalities γk2 ≤ m and M ≤ γk2+1 hold by definition of the

number k2. Indeed if νk2 ∈ R, then we have νk2 < 1
2γs

, γk2 <
1−√

1−4γwγs
2γs

≤ m
(see (14.9)); otherwise we have γk2 = 	νk2 ≤ m. Similarly if νk2+1 ∈ R, then we

have νk2 > 1
2γs

, γk2 >
1+√

1−4γwγs
2γs

> M ; otherwise we get γk2+1 = 	νk2+1 ≥ M .

Thus, by (14.11) it follows the inequality,

2l < (γk2+1 − γk2)

√
1 − 4γwγs

2γs
= (λk2+1 − λk2)

√
1 − 4γwγs

2
.

This means that there are spectral gaps on the order of l:

λk2+1 − λk2 > 4l
√

1 − 4γwγs .

The proofs of Theorems 14.2 and 14.3 are based on the construction of a new
norm in the phase spaceH , in which the assumptions of Theorem 14.1 are satisfied.
Note the schemes of the new inner product construction are essentially different for
gaps in the real part and in the nonreal part of the spectrum. Then this two cases are
considered separately. In the present chapter we prove Theorem 14.3. The proof of
Theorem 14.2 presented in [1].

Remark 14.5 The case of the gap in the nonreal part of the spectrum was par-
tially studied in [2], where a strongly dissipative wave equation (i.e., γw = 0) was
considered.
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14.4 Proof of Theorem 14.3

Let us decompose the entire phase spaceH in direct sum of spaces that are pairwise
orthogonal, H = H1 ⊕ H2 ⊕ . . . ⊕ Hk2 ⊕ H∞, where every subspace Hk , k =
1, . . . , k2, is two-dimensional and corresponds to the eigenvector ek with respect to
u and p, and H∞ = (H1 ⊕ H2 ⊕ . . . ⊕ Hk2)

⊥ is the subspace of codimension
2k2 which corresponds to the eigenvectors ek2+1, ek2+2, . . . of the Laplace operator.
Note that the spaces Hk , k = 1, . . . , k2, and H∞ are invariant with respect to the
action of the linear operator A.

The new inner product [·, ·] introduced below preserves the condition that the
spacesHk , k = 1, . . . , k2,∞, are pairwise orthogonal andmodifies the inner product
in each of these subspaces. Thus, if y = (u, p) ∈ H and the orthogonal projections
of y toHk are denoted by yk = (ukek, pkek) ∈ Hk , k = 1, . . . , k2,∞, then the new
norm inH is defined by the formula

|||y|||2 =
k2∑

k=1

|||yk |||2k + |||y∞|||2∞.

14.4.1 New Norm in the Spaces Hk, k = 1, . . . , k1

By definition the number k1, for k = 1, . . . , k1 the eigenvalues μk and νk are real
and lie to the different sides of the strip {m < 	ζ < M}. We introduce the new
inner product in such a way that the eigenvectors ξk and ηk , which correspond to the
eigenvalues μk and νk , are orthogonal with respect to this inner product.

Define a new inner product [·, ·]k of vectors y = (u, p), ỹ = (ũ, p̃), y, ỹ ∈ Hk

by the rule

[y, ỹ]k = (2γ 2
k − λk)(u, ũ) + γk(u, p̃) + γk(p, ũ) + (p, p̃).

The following assertions hold.

Lemma 14.1 The eigenvectors ξk and ηk corresponding to the eigenvalues μk and
νk , are orthogonal with respect to the new inner product.

Proof The eigenvectors of the matrix Ak in the space Hk are the vectors ξk =
(1,−μk) and ηk = (1,−νk). It follows from μk + νk = 2γk and μkνk = λk that

[ξk, ηk]k = 2γ 2
k − λk − γk(μk + νk) + μkνk = 0.

Since γ 2
k > λk for k ≤ k1, it follows that the new inner product defines the norm

|||y|||2k = [y, y]k = (γ 2
k − λk)‖u‖2 + ‖γku + p‖2.
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Let us prove that

Lemma 14.2 The minimum of the function κ1(γ ) = γ 2 − λ(γ ), where λ(γ ) =
γ − γw

γs
, on the interval γ ∈ [γ1, γk1 ] is achieved at the point γ = γk1 .

Proof Let us show that the derivative of κ1(γ ) is negative on the interval γ ∈
[γ1, γk1 ]. Indeed, by definition of the number k1 we get γ < γk1 < 1/(2γs). Hence
for γ < γk1 we have

γsκ1
′
γ = 2γ γs − 1 < 0.

Thus, the function κ1(γ ) decreases on the interval γ ∈ [γ1, γk1 ], and its minimum is
attained at γ = γk1 .

Since Lemma 14.2 the following estimate of the norm of the vector y = y1+· · ·+
yk1 , yk = (uk, pk) ∈ Hk , holds

|||y|||2 =
k1∑

k=1

|||yk |||2k ≥
k1∑

k=1

(γ 2
k − λk)‖uk‖2 ≥ min

1≤k≤k1

{

γ 2
k − λk

}

·
k1∑

k=1

‖uk‖2 =

= (γ 2
k1 − λk1)‖u‖2 = κ

2
I ‖u‖2. (14.12)

14.4.2 New Norm in the Spaces Hk, k = k1 + 1, . . . , k2

By definition the numbers k1, k2 for k = k1 + 1, . . . , k2 the eigenvalues μk and νk

belong to the domain {	ζ < m}. In this section, we introduce the new inner product
[·, ·]k in the spacesHk , k = k1 + 1, . . . , k2, in such a way that [Ay, y]k ≤ m[y, y]k

for any vector y ∈ Hk .
Define the new inner product [·, ·]k of the vectors y = (u, p), ỹ = (ũ, p̃),

y, ỹ ∈ Hk by the rule

[y, ỹ]k = bk(u, ũ) + γk(u, p̃) + γk(p, ũ) + (p, p̃),

where bk = γ 2
k + s2k and the numbers sk are defined in (14.10).

Define the auxiliary function

s(γ ) =
√

m2 − 2γ m + λ(γ ) + m − γ,

where λ(γ ) = (γ − γw)/γs . Then s(γk) = sk . For γ ∈ [γk1+1, γk2 ] the value s(γ )

is real. Actually, by the choice of k1, k2 we have m ≥ 	ν = 	
(

γ + √

γ 2 − λ(γ )
)

for γ ∈ [γk1+1, γk2 ]. Hence m ≥ γ , m2 − 2γ m + λ(γ ) ≥ 0.
Since the numbers sk are real, we see that the inner product defines the norm
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|||y|||2k = [y, y]k = s2k ‖u‖2 + ‖γku + p‖2.

The following assertions hold.

Lemma 14.3 For any vector y = (u, p) ∈ Hk , [Ay, y]k ≤ m[y, y].
Proof Since γk = γw + γsλk , we see that Ay = (−p, λku + 2γk p) and

[Ay, y]k = −bk(p, u) − γk(p, p) + γk(λku + 2γk p, u) + (λku + 2γk p, p)=
= γkλk‖u‖2 + (2γ 2

k − bk + λk)(u, p) + γk‖p‖2.

Then

[Ay, y]k − m[y, y]k = (γkλk − mbk)‖u‖2 +
+ (2γ 2

k − bk + λk − 2mγk)(u, p) + (γk − m)‖p‖2.

Simple monomorphisms can show that the determinant of the last quadratic form is
equal to

D = (2γ 2
k − bk + λk − 2mγk)

2 − 4(γkλk − mbk)(γk − m)=
= (bk − λk − 2(m − γk)

2)2 − 4(γk − m)2(m2 − 2γkm + λk).

The reader will easily prove that

bk − 2m2 + 2γk(2m − γk) − λk = 2(m − γk)

√

m2 − 2γkm + λk .

Thus D = 0.Moreover, since γk −m ≤ 0 then the quadratic form [Ay, y]k −m[y, y]k

is confluent and nonpositive. This completes the proof of the lemma.

Let us show that mink1+1≤k≤k2{sk} = min{sk1+1, sk2}.
Lemma 14.4 The minimum of the function s(γ ) on the closed interval I =
[γk1+1, γk2 ] is attained at the ends of the closed interval.

Proof The derivative of s(γ ) is given by

s′
γ = −2γsm + 1

2γs

√

m2 − 2γ m + λ(γ )
− 1.

Since 2γsm < 1 then s′
γ has the same sign as the following expression

(1 − 2γsm)2 − 4γ 2
s (m2 − 2γ m + λ(γ )) = 1 − 4γsm + 4γ 2

s m2 −
−4γ 2

s (m2 − 2γ m) − 4γs(γ − γw) = 1 − 4γsm + 4γsγw + 4γs(2γsm − 1)γ.
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The last expression is linear with respect to γ and the leading coefficient is negative.
Hence, s′

γ may have only one root on the interval I and this root corresponds to the
maximum of s(γ ). We get that the minimum of s is attained at the ends of the closed
interval.

By Lemma 14.4 the minimum of sk for k1 + 1 ≤ k ≤ k2 is achieved either at
k = k1 + 1 or at k = k2. This implies the following estimate of the norm of vector
y = yk1+1 + . . . + yk2 , yk ∈ Hk ,

|||y|||2 =
k2∑

k=k1+1

|||yk |||2k ≥
k2∑

k=k1+1

s2k ‖uk‖ ≥ min
k1+1≤k≤k2

{

s2k

} k2∑

k=k1+1

‖uk‖2 ≥

≥ min{s2k1+1, s2k2}‖u‖2 = min{κ2
I I , κ

2
I I I }‖u‖2. (14.13)

14.4.3 New Norm in the Space H∞

The spaceH∞ is infinitely-dimensional. We introduce the new inner product [·, ·]∞,
which is equivalent to the standard one, in such a way that for any vector y ∈ H∞,
[Ay, y]∞ ≥ M[y, y]∞.

Define the inner product of vectors y = (u, p) ∈ H∞, ỹ = (ũ, p̃) ∈ H∞, by the
rule

[y, ỹ]∞ = (1− 2Mγs)(∇u,∇ũ)+ 2MγsλM (u, ũ)+ M(u, p̃)+ M(p, ũ)+ (p, p̃),

where λM = M−γw
γs

. By (14.9) we have λM > M2. Moreover, for any vector y =
(u, p) ∈ H∞,

‖∇u‖2 ≥ λk2+1‖u‖2 = γk2+1 − γw

γs
‖u‖2 ≥ λM‖u‖2. (14.14)

Corresponding norm is defined by the formula

|||y|||2∞ = (1 − 2Mγs)‖∇u‖2 + M(2γsλM − M)‖u‖2 + ‖Mu + p‖2.

Lemma 14.5 The norms |||y|||∞ and ‖y‖H are equivalent on the space H∞.

Proof Since 2γs M < 1 and

|||y|||2∞ ≤ (1 − 2Mγs)‖∇u‖2 + M(2γsλM − M)‖u‖2 + (M‖u‖ + ‖p‖)2,

it follows that the quantity |||y|||2∞ is bounded above by a quantity depending on
‖∇u‖2 and ‖p‖2.

Let us find a lower bound for |||y|||2∞. For some ε > 0, we have λM (1− ε) > M2.
With regard to (14.14), we have
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||y|||2∞ = (1 − 2Mγs)‖∇u‖2 + (2MγsλM − M2)‖u‖2 + ‖Mu + p‖2 ≥
≥ ε‖∇u‖2 + (1 − 2Mγs − ε)‖∇u‖2 + λM (2Mγs − 1 + ε)‖u‖2 +
+ ‖Mu + p‖2 ≥ ε‖∇u‖2 + ‖Mu + p‖2 ≥ ε

2
‖∇ + u‖2 + ελM

2
‖u‖2 +

+ (M‖u‖ − ‖p‖)2.

The expression on the right-hand side is a positive-defined quadratic form in ‖∇u‖,
‖u‖ and ‖p‖, which can be estimated below by multiple of ‖∇u‖2 + ‖p‖2.
Lemma 14.6 For any vector y = (u, p) ∈ H∞,

|||y|||∞ ≥
√

λM − M2‖u‖ = κI V ‖u‖. (14.15)

Proof By (14.14) we have

|||y|||2∞ ≥ ((1 − 2Mγs)λM + 2MγsλM )‖u‖2 − 2M‖u‖‖p‖ + ‖p‖2 =
= (λM − M2)‖u‖2 + (M‖u‖ − ‖p‖)2 ≥ (λM − M2)‖u‖2.

Lemma 14.7 For any vector y = (u, p) ∈ H∞ ∩ D(A), [Ay, y]∞ ≥ M[y, y]∞.

Proof With regard to M = γw + γsλM , we have

[y, y]∞ = (1 − 2Mγs)‖∇u‖2 + 2M(M − γw)‖u‖2 + 2M(u, p) + ‖p‖2;
Ay = (−p,−Δu + 2γw p − 2γsΔp);

[Ay, y]∞ = − (1 − 2Mγs)(∇ p,∇u) + 2M(M − γw)(−p, u) + M(−p, p)+
+ (−Δu + 2γw p − 2γsΔp, Mu + p)=M‖∇u‖2+4Mγs(∇ p,∇u)+
+ 2γs‖∇ p‖2 + 2M(2γw − M)(u, p) + (2γw − M)‖p‖2.

It follows that

[Ay, y]∞ − M[y, y]∞ = 2M2γs‖∇u‖2 + 4Mγs(∇ p,∇u) + 2γs‖∇ p‖2 −
− 2M2(M − γw)‖u‖2 + 2M(2γw − 2M)(u, p)+
+ (2γw − 2M)‖p‖2 =

= 2γs‖M∇u + ∇ p‖2 − 2γsλM‖Mu + p‖2.

The last expression is nonnegative by (14.14).
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14.4.4 End of the Proof of Theorem 14.3

Denote H η = 〈η1e1, . . . , ηk1ek1〉, H ξ = 〈ξ1e1, . . . , ξk1ek1〉, H I = H η ⊕
Hk1+1 ⊕ . . .Hk2 , H

I I = H ξ ⊕ H∞. The spaces H I and H I I are orthogo-
nal to each other with respect to the new inner product.

Since A(ξkek) = μk(ξkek), A(ηkek) = νk(ηkek) for k = 1, . . . , k1, it follows that

[Ay, y] ≤ max
1≤k≤k1

μk · [y, y] = μk1 [y, y] ∀y ∈ H ξ , (14.16)

[Ay, y] ≥ min
1≤k≤k1

νk · [y, y] = νk1 [y, y] ∀y ∈ H η. (14.17)

It follows from condition (14.16), Lemma 14.3, and the inequality m > μk1 that

[Ay, y] ≤ m[y, y] ∀y ∈ H I . (14.18)

Also, condition (14.17), Lemma 14.7, and the inequality M < νk1 imply that

[Ay, y] ≥ M[y, y] ∀y ∈ H I I ∩ D(A). (14.19)

Since the vector F(y) has zero u-component, it follows that

|||F(y1) − F(y2)||| = ‖F(y1) − F(y2)‖H = ‖ f (u1) − f (u2)‖ ≤ l‖u1 − u2‖.
(14.20)

By estimates (14.12), (14.13), (14.15) of the vector y = y1−y2 = y1+. . .+yk2+y∞,
yk ∈ Hk , y∞ ∈ H∞, we obtain

|||y|||2 =
k1∑

k=1

|||yk |||2k +
k2∑

k=k1+1

|||yk |||2k + |||y∞|||2∞ ≥ min{κ2
I , κ

2
I I , κ

2
I I I , κ

2
I V }‖u‖2.

(14.21)
It follows from inequalities (14.20) and (14.21) that

|||F(y1) − F(y2)||| ≤ l‖u1 − u2‖ ≤ l |||y1 − y2|||
min{κI , κI I , κI I I , κI V } .

Thus the global Lipschitz constant L for the function F(y) is equal to

L = l

min{κI , κI I , κI I I , κI V } .

Let us define the orthogonal projection to the (2k2 − k1)-dimensional space H I =
P(H ) and denote it by P and define the orthogonal projection Q = Id − P to
H I I ⊕ H∞ = Q(H ). Then the inequalities (14.18) and (14.19) acquire the form
(14.3), and the spectral gap condition (14.4) is equivalent to condition (14.11).
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Thus, all conditions of Theorem 14.1 are satisfied, and thus the spaceH contains
an integral manifold which dimension is equal to that of the subspace H I , i. e., to
2k2 − k1. This completes the proof of the theorem.

Acknowledgments The author express her gratitude to A.Yu. Goritsky and V.V. Chepyzhov for
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