
Chapter 13
Topological Properties of Strong Solutions
for the 3D Navier-Stokes Equations

Pavlo O. Kasyanov, Luisa Toscano and Nina V. Zadoianchuk

Abstract In this chapter we give a criterion for the existence of global strong
solutions for the 3D Navier-Stokes system for any regular initial data.

13.1 Introduction

Let Ω ⊆ R
3 be a bounded open set with sufficiently smooth boundary ∂Ω and

0 < T < +∞. We consider the incompressible Navier-Stokes equations

⎧
⎨

⎩

yt + (y · ∇)y = ν�y − ∇p + f in Q = Ω × (0, T),

div y = 0 in Q,

y = 0 on ∂Ω × (0, T), y(x, 0) = y0(x) in Ω,

(13.1)

where ν > 0 is a constant. We define the usual function spaces

V = {u ∈ (C∞
0 (Ω))3 : div u = 0},

H = closure of V in (L2(Ω))3, V = {u ∈ (H1
0 (Ω))3 : div u = 0}.
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We denote by V∗ the dual space of V . The spaces H and V are separable Hilbert
spaces and V ⊂ H ⊂ V∗ with dense and compact embedding when H is identified
with its dual H∗. Let (·, ·), ‖ · ‖H and ((·, ·)), ‖ · ‖V be the inner product and the
norm in H and V , respectively, and let 〈·, ·〉 be the pairing between V and V∗. For
u, v, w ∈ V , the equality

b(u, v, w) =
∫

Ω

3∑

i,j=1

ui
∂vj

∂xi
wjdx

defines a trilinear continuous form on V with b(u, v, v) = 0 when u ∈ V and v ∈
(H1

0 (Ω))3. For u, v ∈ V , let B(u, v) be the element of V∗ defined by 〈B(u, v), w〉 =
b(u, v, w) for all w ∈ V .

We say that the function y is a weak solution of Problem (13.1) on [0, T ], if
y ∈ L∞(0, T; H) ∩ L2(0, T; V), dy

dt ∈ L1(0, T; V∗), if

d

dt
(y, v) + ν((y, v)) + b(y, y, v) = 〈f , v〉 for all v ∈ V , (13.2)

in the sense of distributions on (0, T), and if y satisfies the energy inequality

V(y)(t) ≤ V(y)(s) for all t ∈ [s, T ], (13.3)

for a.e. s ∈ (0, T) and for s = 0, where

V(y)(t) : = 1

2
‖y(t)‖2H + ν

t∫

0

‖y(τ )‖2V dτ −
t∫

0

〈f (τ ), y(τ )〉dτ. (13.4)

This class of solutions is called Leray–Hopf or physical one. If f ∈ L2(0, T; V∗), and
if y satisfies (13.2), then y ∈ C([0, T ]; Hw), dy

dt ∈ L
4
3 (0, T; V∗), where Hw denotes

the space H endowed with the weak topology. In particular, the initial condition
y(0) = y0 makes sense for any y0 ∈ H.

Let A : V → V∗ be the linear operator associated to the bilinear form ((u, v)) =
〈Au, v〉. Then A is an isomorphism from D(A) onto H with D(A) = (H2(Ω))3 ∩ V .

We recall that the embedding D(A) ⊂ V is dense and continuous. Moreover, we
assume ‖Au‖H as the norm on D(A), which is equivalent to the one induced by
(H2(Ω))3. The Problem (13.1) can be rewritten as

{ dy
dt + νAy + B(y, y) = f in V∗,
y(0) = y0,

(13.5)

where the first equation we understand in the sense of distributions on (0, T). Now
we write
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D(y0, f ) ={ y : y is a weak solution of Problem (13.1) on [0, T]}.

It is well known (cf. [1]) that if f ∈ L2(0, T; V∗), and if y0 ∈ H, then D(y0, f ) is
not empty.

A weak solution y of Problem (13.1) on [0, T ] is called a strong one, if it addi-
tionally belongs to Serrin’s class L8(0, T; (L4(Ω))3). We note that any strong solu-
tion y of Problem (13.1) on [0, T ] belongs to C([0, T ]; V) ∩ L2(0, T; D(A)) and
dy
dt ∈ L2(0, T; H) (cf. [2, Theorem 1.8.1, p. 296] and references therein).

For any f ∈ L∞(0, T; H) and y0 ∈ V it is well known the only local existence
of strong solutions for the 3D Navier-Stokes equations (cf. [1–4] and references
therein). Here we provide a criterion for existence of strong solutions for Problem
(13.1) on [0, T ] for any initial data y0 ∈ V and 0 < T < +∞. Presented results were
announced in [5].

13.2 Topological Properties of Strong Solutions

The main result of this note has the following form.

Theorem 13.1 Let f ∈ L2(0, T; H) and y0 ∈ V. Then either for any λ ∈ [0, 1] there
is an yλ ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) such that yλ ∈ D(λy0, λf ), or the set

{y ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) : y ∈ D(λy0, λf ), λ ∈ (0, 1)} (13.6)

is unbounded in L8(0, T; (L4(Ω))3).

In the proof of Theorem 13.1 we use an auxiliary statement connected with conti-
nuity property of strong solutions on parameters of Problem (13.1) in Serrin’s class
L8(0, T; (L4(Ω))3).

Theorem 13.2 Let f ∈ L2(0, T; H) and y0 ∈ V. If y is a strong solution for Problem
(13.1) on [0, T ], then there exist L, δ > 0 such that for any z0 ∈ V and g ∈
L2(0, T; H), satisfying the inequality

‖z0 − y0‖2V + ‖g − f ‖2L2(0,T ;H)
< δ, (13.7)

the set D(z0, g) is one-point set {z} which belongs to C([0, T ]; V)∩ L2(0, T; D(A)),
and

‖z − y‖2C( [0,T ];V) + ν

4
‖z − y‖2D(A) ≤ L

(
‖z0 − y0‖2V + ‖g − f ‖2L2(0,T ;H)

)
. (13.8)

Remark 13.1 We note that from Theorem 13.2 with z0 ∈ V and g ∈ L2(0, T; H)

with ‖z0‖2V + ‖g‖2
L2(0,T ;H)

sufficiently small, Problem (13.1) has only one global
strong solution.
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Remark 13.2 Theorem 13.2 provides that, if for any λ ∈ [0, 1] there is an yλ ∈
L8(0, T; (L4(Ω))3) such that yλ ∈ D(λy0, λf ), then the set

{y ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) : y ∈ D(λy0, λf ), λ ∈ (0, 1)}

is bounded in L8(0, T; (L4(Ω))3).

If Ω is a C∞-domain and if f ∈ C∞
0 ((0, T) × Ω)3, then any strong solution y of

Problem (13.1) on [0, T ] belongs to C∞((0, T ]×Ω)3 and p ∈ C∞((0, T ]×Ω) (cf.
[2, Theorem 1.8.2, p. 300] and references therein). This fact directly provides the
next corollary of Theorems 13.1 and 13.2.

Corollary 13.1 Let Ω be a C∞-domain, f ∈ C∞
0 ((0, T) × Ω)3. Then either for any

y0 ∈ V there is a strong solution of Problem (13.1) on [0, T ], or the set

{y ∈ C∞((0, T ] × Ω)3 : y ∈ D(λy0, λf ), λ ∈ (0, 1)}

is unbounded in L8(0, T; (L4(Ω))3) for some y0 ∈ C∞
0 (Ω)3.

13.3 Proof of Theorem 13.2

Let f ∈ L2(0, T; H), y0 ∈ V , and y ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) be a strong
solution of Problem (13.1) on [0, T ]. Due to [6], [1, Chap. 3] the set D(y0, f ) = {y}.
Let us now fix z0 ∈ V and g ∈ L2(0, T; H) satisfying (13.7) with

δ = min
{
1; ν

4

}
e−2TC, C = max

{
27c4

2ν3
; 7

7c8

29ν7

} (
‖y‖4C([0,T ];V) + 1

)2
, (13.9)

c > 0 is a constant from the inequalities (cf. [2, 1])

|b(u, v, w)| ≤ c‖u‖V ‖v‖
1
2
V ‖v‖

1
2
D(A)‖w‖H ∀u ∈ V , v ∈ D(A), w ∈ H; (13.10)

|b(u, v, w)| ≤ c‖u‖
3
4
D(A)‖u‖

1
4
V ‖v‖V ‖w‖H ∀u ∈ D(A), v ∈ V , w ∈ H. (13.11)

The auxiliary Problem

{ dη
dt + νAη + B(η, η) + B(y, η) + B(η, y) = g − f in V∗,
η(0) = z0 − y0,

(13.12)

has a strong solution η ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) with dη
dt ∈ L2(0, T; H), i.e.
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d

dt
(η, v)+ν((η, v))+b(η, η, v)+b(y, η, v)+b(η, y, v) = 〈g− f , v〉 for all v ∈ V ,

in the sense of distributions on (0, T). In fact, let {wj}j≥1 ⊂ D(A) be a special basis
(cf. [7, p. 56]), i.e. Awj = λjwj, j = 1, 2, ..., 0 < λ1 ≤ λ2 ≤ · · · , λj → +∞,
j → +∞. We consider Galerkin approximations ηm : [0, T ] → span{wj}m

j=1 for
solutions of Problem (13.12) satisfying

d

dt
(ηm, wj) + ν((ηm, wj)) + b(ηm, ηm, wj) + b(y, ηm, wj) + b(ηm, y, wj) = 〈g − f , wj〉,

with (ηm(0), wj) = (z0 − y0, wj), j = 1, m. Due to (13.10), (13.11) and Young’s
inequality we get

2〈g − f , Aηm〉 ≤ 2‖g − f ‖H‖ηm‖D(A) ≤ ν

4
‖ηm‖2D(A) + 4

ν
‖f − g‖2H ;

−2b(ηm, ηm, Aηm) ≤ 2c‖ηm‖
3
2
V ‖ηm‖

3
2
D(A) ≤ ν

2
‖ηm‖2D(A) + 27c4

2ν3
‖ηm‖6V ;

−2b(y, ηm, Aηm) ≤ 2c‖y‖V ‖ηm‖
1
2
V ‖ηm‖

3
2
D(A) ≤ ν

2
‖ηm‖2D(A) + 27c4

2ν3
‖y‖4C([0,T ];V)‖ηm‖2V ;

−2b(ηm, y, Aηm) ≤ 2c‖ηm‖
7
4
D(A)‖ηm‖

1
4
V ‖y‖V ≤ ν

2
‖ηm‖2D(A) + 77c8

29ν7
‖y‖8C([0,T ];V)‖ηm‖2V .

Thus,
d

dt
‖ηm‖2V + ν

4
‖ηm‖2D(A) ≤ C(‖ηm‖2V + ‖ηm‖6V ) + 4

ν
‖g − f ‖2H ,

where C > 0 is a constant from (13.9). Hence, the absolutely continuous function
ϕ = min{‖ηm‖2V , 1} satisfies the inequality d

dt ϕ ≤ 2Cϕ + 4
ν
‖g − f ‖2H , and therefore

ϕ ≤ L(‖z0−y0‖2V +‖g−f ‖2
L2(0,T ;H)

) < 1 on [0, T ], whereL = δ−1. Thus, {ηn}n≥1 is

bounded in L∞(0, T; V)∩ L2(0, T; D(A)) and { d
dt ηn}n≥1 is bounded in L2(0, T; H).

In a standard waywe get that the limit function η of ηn, n → +∞, is a strong solution
of Problem (13.12) on [0, T ]. Due to [6], [1, Chap. 3] the set D(z0, g) is one-point
z = y +η ∈ L8(0, T; (L4(Ω))3). So, z is strong solution of Problem (13.1) on [0, T ]
satisfying (13.8).

The theorem is proved.

13.4 Proof of Theorem 13.1

We provide the proof of Theorem 13.1. Let f ∈ L2(0, T; H) and y0 ∈ V . We consider
the 3D controlled Navier-Stokes system (cf. [8, 9])
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{ dy
dt + νAy + B(z, y) = f ,
y(0) = y0,

(13.13)

where z ∈ L8(0, T; (L4(Ω))3).
By using standard Galerkin approximations (see [1]) it is easy to show that for

any z ∈ L8(0, T; (L4(Ω))3) there exists an unique weak solution y ∈ L∞(0, T; H)∩
L2(0, T; V) of Problem (13.13) on [0, T ], that is,

d

dt
(y, v) + ν((y, v)) + b(z, y, v) = 〈f , v〉 , for all v ∈ V , (13.14)

in the sense of distributions on (0, T). Moreover, by the inequality

|b(u, v, Av)| ≤ c1‖u‖(L4(Ω))3‖v‖
1
4
V ‖v‖

7
4
D(A) ≤ ν

2
‖v‖2D(A) + c2‖u‖8

(L4(Ω))3
‖v‖2V ,

(13.15)

for all u ∈ (L4(Ω))3 and v ∈ D(A), where c1, c2 > 0 are some constants that
do not depend on u, v (cf. [1]), we find that y ∈ C([0, T ]; V) ∩ L2(0, T; D(A))

and B(z, y) ∈ L2(0, T; H), so dy
dt ∈ L2(0, T; H) as well. We add that, for any

z ∈ L8(0, T; (L4(Ω))3) and corresponding weak solution y ∈ C([0, T ]; V) ∩
L2(0, T; D(A)) of (13.13) on [0, T ], by using Gronwall inequality, we obtain

‖y(t)‖2V ≤ ‖y0‖2V e
2c2

t∫

0
‖z(t)‖8

(L4(Ω))3
dt

, ∀t ∈ [0, T ];

ν
T∫

0
‖y(t)‖2D(A)dt ≤ ‖y0‖2V

⎡

⎣1 + 2c2e
2c2

T∫

0
‖z(t)‖8

(L4(Ω))3
dt

‖z‖8
L8(0,T ;(L4(Ω))3)

⎤

⎦ .

(13.16)

Let us consider the operator F : L8(0, T; (L4(Ω))3) → L8(0, T; (L4(Ω))3), where
F(z) ∈ C([0, T ]; V) ∩ L2(0, T; D(A)) is the unique weak solution of (13.13) on
[0, T ] corresponded to z ∈ L8(0, T; (L4(Ω))3).

Let us check that F is a compact transformation of Banach space L8(0, T;
(L4(Ω))3) into itself (cf. [10]). In fact, if {zn}n≥1 is a bounded sequence in L8(0, T;
(L4(Ω))3), then, due to (13.15) and (13.16), the respective weak solutions yn,
n = 1, 2, ..., of Problem (13.13) on [0, T ] are uniformly bounded in C([0, T ]; V) ∩
L2(0, T; D(A)) and their time derivatives dyn

dt , n = 1, 2, ..., are uniformly bounded in
L2(0, T; H). So, {F(zn)}n≥1 is a precompact set in L8(0, T; (L4(Ω))3). In a standard
way we deduce that F : L8(0, T; (L4(Ω))3) → L8(0, T; (L4(Ω))3) is continuous
mapping.

Since F is a compact transformation of L8(0, T; (L4(Ω))3) into itself, Schae-
fer’s Theorem (cf. [10, p. 133] and references therein) and Theorem 13.2 provide
the statement of Theorem 13.1. We note that Theorem 13.2 implies that the set
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{z ∈ L8(0, T; (L4(Ω))3) : z = λF(z), λ ∈ (0, 1)} is bounded inL8(0, T; (L4(Ω))3)

iff the set defined in (13.6) is bounded in L8(0, T; (L4(Ω))3).
The theorem is proved.
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