
Chapter 1
Algebra and Geometry Through Hamiltonian
Systems

Anatoly T. Fomenko and Andrei Konyaev

Abstract Hamiltonian systems are considered to be the prime tool of classical and
quantum mechanics. The proper investigation of such systems usually requires deep
results from algebra and geometry. Here we present several results which in some
sense go the opposite way: the knowledge about the integrable system enables us to
obtain results on geometric and algebraic structures which naturally appear in such
problems. All the results were obtained by employees of the Chair of Differential
Geometry and Applications in Moscow State University in 2011–2012.

1.1 Introduction

Hamiltonian systems are common in classical and quantum mehanics. Usually the
investigation of such system’s properties requires deep results from different fields
of algebra, geometry, topology etc. Here we present several results which in some
sence go the opposite ways. It means that the study of the objects, which naturally
appear in such problems gets some extra perspective from the study of the dynamics
of the system itself.

The chapter consists of five parts, each related to some topic in study of
Hamiltonian systems. All the results presented were obtained by the employees
of the Chair of Differential Geometry and Applications in Moscow State Univercity
during the period of 2011–2012.

The first part is dedicated to the study of symmetry groups of atoms, which
are the main building block of Fomenko-Ziechang invariants (FZ invariants). These
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invariants provide the classification for the integrable systems with two degrees of
freedom. The main result of this section is due to Fomenko and Kudryavtseva: every
finite group can be realized as a symmetry group for some atom. Moreover, there are
some restriction on atom’s topological complexity in terms of the genus of the atom.

The second part is dedicated to so called integer lattice on bifurcation diagrams.
The similar objects naturally appear in quantum mechanics, but study of their classi-
cal counterparts is a relatively new topic. The results of this section dealwith so called
Fomenko hypothesis. It states that the properties of the lattice are closely related to
the FZ invariants and, as a result, to the property of the system. Kantonistova studies
the system called the Spherical Pendulum. The computation of the ZF invariats for
this system is relatively simple which allows the direct verification of the hypothesis
which, in this case, as Kantonistova showed, is valid.

The third section deals with integrable billiards, that is the motion of the mate-
rial point inside two-dimensional domain in this case bounded by segments of the
quadric from the same family (this section also contains some extra information
about FZ inveriants). The computaion and thorough discription of invariants is done
by Fokicheva for a large family of such systems. She showed, that the properties of
integrable system are closely related to the shape of the domain.

The fourth section is dedicated to the generalization of classical Bertrand’s prob-
lem, that is the discription of such potentials that the movement of a particle (moving
point) in the corresponding field on a surface of bounded revolution has only peri-
odic trajectories. This problem was formulated in nineteenth century and is yet still
interesting. The main result of this section is due to Fedoseev et al.: in two theorems
a discriprion of the class of so called Bertrand’s manifolds (the manifolds that admit
the necessary potentials) is presented.

The final part is the only one that has nothing to do with the integrable systems
with FZ invariants. It deals with the classification of linear Poisson structures with
generic leaves of dimension two. These structures are of an interest as Hamiltonian
systems associated with them have the following property: after the restriction on the
leaf every such system is integrable. The other aspect is that two-dimentional leaves
are the leaves of the smallest possible non-zero dimension while linear brackets are
the simplest possible non-trivial structures. Konyaev proved a theorem that provide
a full description od such brackets.

1.2 Atoms and Their Symmetries

The notion of atom was introduced by Fomenko in [17, 19]. Atoms encode typi-
cal bifurcations of Liouville tori in non-degenerate integrable Hamiltonian systems.
Now many notorious integrable systems with two degrees of freedom and the equiv-
alence classes have been described in terms of two-dimensional atoms and mole-
cules (the set of atoms with additional structure). Moreover many bifurcations of
integrable systems in higher dimensions can be represented as semidirect product
of two-dimensional atoms [34]. Because the notion of semidirect product uses the
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symmetry group of atom, the study of such groups becomes essential. Two-
dimensional saddle atoms (2-atoms) are a special class of atoms which can be
described in many equivalent ways: f-graphs [35], maps also known as abstract
polytopes.

Map (abstract polytope) is an equivalence class of particular cellular decomposi-
tion of closed two-dimensional surface up to cellular homeomorphisms. We call two
decomposition preserving automorphisms of the surface equivalent iff they differ by
the homeomorphism, which sends every cell to itself, preserving any orientation on
it. It turns out that every finite group can be realized as a symmetry group of some
2-atom, orientable map or chord diagram. All three approaches are equivalent.

In [5] Fomenko and Bolsinov formulated a question: is it true that every finite
group can be realized as symmetry group of bifurcation diagram of some integrable
Hamiltonian system or in other terms as symmetry group of some 2-atom? For max-
imally symmetric atoms (the definition is given below) the description of their sym-
metries was done by Oshemkov and Brailov in [9]. In [10] Brailov and Kudryavtseva
discovered an unexpected link between several of the infinite series of maximally
symmetric atoms and stable topological non-conjugacy of integrable Hamiltonian
systems. Thorough investigation of the group symmetries of the atoms was done by
Fomenko et al. [30, 31].

Siran and Skoviera in [39] notice, that there are a number of results about various
classes of combinatorial structures saying that every finite group is the automorphism
group of some member of the class. Examples are provided by graphs [22], cubic
graphs [23], Steiner triple systems [32], “pictures” [1], and others. Results of this
type indicate that a given class is, to some extent, rich. On the other hand, there
are some very natural classes that do not have this property, for instance, trees [14].
Similar questions have been asked in connection with graph embeddings on surfaces.
As was proven in [11], every finite group is the automorphism group of some map
on an orientable surface. However, it is by no means obvious that the same holds for
non-orientable maps. The main result of the chapter [39] gives an affirmative answer
to this question.

In [29] Fomenko and Kudryavtseva prove that every finite group can be realized
as a symmetry group of some orientable two-dimensional atom. The method used
in the work differs from the ones described above. In particular the algorithm of the
construction of the atom by the given group is presented together with formulas for
upper estimates of the atom’s genus. The proof utilizes the notion of the covering of
the atoms.

Let us recollect someof the basic notions of the atoms theory. Let M be a connected
closed two-dimensional surface (orientable or non-orientabe) and f : M → R is a
Morse function with exactly three singular values: maximum, minimum and saddle.
We call this kind of function proper Morse function. For such a function its level
surface for saddle value can be considered a connected graph K with only degree 4
vertices. The complement to K consists of two-dimensional cells homeomorphic to
standard two-dimensional discs. Therefore we have degree 4 cellular decomposition.
In particular this means, that such decomposition allows chess coloring, e.g. coloring
of the discs in black and white, such that every edge borders discs of different colors.
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Proper Morse functions f and f on the surfaces M and M respectively are called
leaf-wise equivalent in the neighborhoods P and P of critical levels { f = c} and
{ f = c} iff there exist small ε > 0 and ε > 0 together with diffeomorphism
D : P = {| f − c| < e} → P ′ = {| f ′ − c′| < e′} such that the connected
components of level surfaces of f map with D into the connected components of
the level surfaces of f . If D preserves the direction of the growth of the functions f
and f then we call them leaf-wise equipped equivalent.

Atom (P, K ) is a class of leaf-wise equipped equivalence of Morse function f in
the neighborhood P = {| f | < ε} of its saddle critical level K = { f = 0}. We also
call an atom any representative of such class, that is the pair of the surface P with
the graph K embedded into it. The complement to the K consists of rings, which
we denote positive and negative according to the sign of f . To define the symmetry
group of an atom we start with the group of all homeomorphisms of (P, K ) onto
itself, which preserve the structure of an atom and the direction of the growth of th
function. Then we take the quotient by the subgroup which sends every edge of the
K into itself with preservation of any given orientation on it. This group is oviously
descrete and we call it the symmetry group of an atom. In case of orientable surface
P we call a symmetry proper if it preserves the orientation on P . Saddle critical
values of the f are called atom vertecies and their number is atom’s complexity.

As the boundary of P is disjoint union of circles the surface M with the proper
Morse function f described in the beginning of this section is obtained from P by
gluing the boundary of some two-dimentional disc to every such circle (different discs
are taken for different circles). The proper Morse function on M is a continuation
of f such that in every glued disc there’s exactly one maximum or minimum in its
center. The genus of an atom is the genus of M . Orientable atom is called maximally
symmetric [30] if its symmetry group acts transitively on its edges.

There’s a natural bijection between atoms and maps (abstract polytopes) [30].
Recollect that [30, 33] starting with a given map we can construct 2-atom (same as
properMorse function on M). That’s why all the results about atoms can be if needed
reformulated equivalently in terms of maps and their symmetry groups.

These are the main results.

Theorem 1.1 (Fomenko and Kudryavtseva [29]) Every finite group G is a symmetry
group of some orientable two-dimensional atom

It should be noted that the atom X (G) is constructed explicitly. Moreover there are
lots of atoms with symmetry group G, but the properties of the X (G) constructed in
the the proof of the theorem can be described in great detail, e.g. there is an upper
estimation on the genus of M .

Let k, d be a pair of non-negative integers with condition d ≥ 5 for any k ≥ 0
and d ≥ 6 for k = 0. For every such a pair it’s possible to construct an orientable
atom T (k, d) of genus k with boundary consisting of exactly d circles and trivial
symmetry group. Let n be a number of T (k, d) vertices. Define d− as the number
of non-positive boundary circles and d+ as number of positive boundary circles of
T (k, d). Obviously d = d+ + d−.
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Theorem 1.2 (Fomenko and Kudryavtseva [29]) Let k be a number (not necessary
least possible) of generators of a given group G. Among all the atoms with symmetry
group isomorphic to G there exists orientable atom X (G) of genus g = (k−1)|G|+1
where |G| is the order of the group G. At the same time atom X (G) is G-regular cov-
ering of T (k, d) and has n|G| vertices, d−|G| negative boundary circles and d+|G|
positive boundary circles. Every symmetry of sucn atom preserves its orientation.

We should notice that the symmetry group G of an atom X (G) acts freely on its
vertices and boundary circles, that is every symmetry is either trivial or doesn’t have
any invariant vertices and boundary circles. More accurate estimates in some special
cases given in [29].

1.3 Integer Lattices of Action Variables for “Spherical
Pendulum” System

The problem of constructing integer lattices of action variables for integrable
Hamiltonian systems with two degrees of freedom is relatively new. It appeared due
to Fomenko’s hypothesis, which states that the structure of integer lattice of action
variables (see the definition below) in “typical case” is completely determined by
Fomenko-Ziechang invariants (FZ invariants). On the other hand such integer lattice
allows one to calculate at least some of the FZ-invariants of such systems, particularly
the marks on the ribs of “molecule” (see [4] and also Sect. 1.4). It should be noted
that in this case we need not only the lattice but the level lines of action variables.

This hypothesis was proved in case of the Spherical Pendulum by
Kantonistova [26]. She obtained analytical description of the action variables,
momentum map and bifurcation diagram. It turns out, that in this case it’s possi-
ble to describe the algorithm for calculating the monodromy matrix of the isolated
singular value and, therefore, the marks of the molecule.

Definition 1.1 Let (M2n, ω, H) be an integrableHamiltonian systemwith n degrees
of freedom, and F1, . . . , Fn are its first integrals (F1 = H ). The map Φ =
(F1, . . . , Fn) : M2n → Rn is called momentum map.

The approach of Kantonistova is as following. From the Liouville theorem (see
[4, Sect. 1.5]) it’s well-known that regular connected compact level surface Tξ0 of
integrals F1, . . . , Fn on Hamiltonian integrable system on M2n described in def-
inition is an n−dimensional torus T n . Moreover there exists a set of coordinates
(I1, . . . , In, ϕ1, . . . , ϕn) in the neighbourhood U (Tξ0) of the Tξ0 such that Ii depend
only on the first integrals, and expressed by the formulas

Ii (ξ) = 1

2π

∮

γi (ξ)

α, (1.1)
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where γ1(ξ), . . . , γn(ξ) are 1–cycles on the Liouville torus Tξ , which form the basis
of the homology group H1(Tξ ) continiously depending on ξ ∈ U (ξ0), and α being
any 1–form in U (ξ), such that dα = ω. This coordinates are called action-angle
variables, Ii being the angle variables.

Definition 1.2 Fix 1–form α on the connected open domain P2n in M2n , such that
dα = ω. Let all nonsingular Liouville fibers laying in the domain P2n be compact
and connected. Than a set of points inΦ(P2n)\� ⊂ Rn , formed by the intersections
of n level-surfaces {ξ ∈ Φ(P2n)\� | I1(ξ) = c1, . . . , In(ξ) = cn, ci ∈ Z} of
functions Ii , defined above, is called the integer lattice R of action variables (or
simply the lattice).

In the case of spherical pendulum such 1–form α exists on the cotangent bundle
M4 = T ∗S2 and we can assume that P4 = M4.

Definition 1.3 TheSpherical Pendulum is the systemwhich describes themovement
of the particle with mass m, confined to the surface of the sphere with radius R in a
uniform gravitational field of strength g.

The phase space of the system is

T ∗S2 ∼= {(x, p) ∈ R3 × R3 | x2 + y2 + z2 = 1, xpx + ypy + zpz = 0}. (1.2)

For further calculations it is convenient to introduce the following coordinates on the
phase space: ϕ, pϕ = Mz, θ, pθ .

The system has two independent integrals F1 = E (energy antegral) and F2 =
pϕ = Mz (cyclic integral). Hence, the phase space is fibered into two-dimensional
surfaces, which are according to Liouville theorem the 2−tori (in regular connected
case).

Consider the functions W (E, Mz, z) and Mz(E), where:

W (E, Mz, z) = 2(E − z)(1 − z2) − M2
z , (1.3)

where

Mz(E) := 29

(3 − E2 + E
√

E2 + 3)

√
E +

√
E2 + 3. (1.4)

Theorem 1.3 (Kantonistova [26]) The image of the momentum map for given inte-
grals is the variety {(E, Mz)| E ≥ −1, |Mz| ≤ Mz(E)}.

The only interesting pairs (E, Mz), are the ones laying in the image of themomen-
tum map.

Theorem 1.4 (Kantonistova [26])For all pairs (E, Mz) ∈ Φ(M4) I1(E, Mz) = Mz

is an action variable. For all pairs {(E, Mz) ∈ Φ(M4) | Mz > 0} (similar for all
pairs {(E, Mz) ∈ Φ(M4) | Mz < 0}) the action variable I2(E, Mz) is defined by
the formula
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I2(E, Mz) = 1

π

z2∫

z1

√
2(E − z)(1 − z2) − M2

z

1 − z2
dz, (1.5)

where z1, z2 are the roots of the equation W (E, Mz, z) = 2(E −z)(1−z2)−M2
z = 0

such that −1 < z1 < z2 < 1 and W (E, Mz, z) > 0 for all z ∈ (z1, z2).

It turns out that there exists exactly two singular values of rank 0, namely
(E, Mz) = (±1, 0). In the preimage of every singular value there is exactly one
singular point of the momentum map on M4, and its rank is 0. Moreover, the bifur-
cation diagram of momentum map of the system is composed of two sets: piecewise
smooth curve defined by the equation |Mz | = Mz(E), where

Mz(E) := 29

(3 − E2 + E
√

E2 + 3)

√
E +

√
E2 + 3, E ≥ −1 (1.6)

and isolated singular point with the coordinates (E, Mz) = (1, 0). The singular point
of rank 0, corresponding to isolated singular value (E, Mz) = (1, 0), is nonsingular
and has a focus–focus type. The singular point of rank 0, corresponding to isolated
singular value (E, Mz) = (−1, 0), is nonsingular and has a center–center type.

To calculate the lattice for this system the computer programonC++ (with the help
of Wolfram Mathematica 7.0 package) was written by Kantonistova. This program
numerically solves the system of equations with respect to variables E and Mz :

{
I1(E, Mz) = A
I2(E, Mz) = B

(1.7)

for all possible pairs (A, B) ∈ Z × Z .
The result, i.e. the pair of numbers (E, Mz), is drawn on the plane R2(E, Mz).

The set of all pairs which are the solutions of this system forms the required integer
lattice of action variables.

The order of coordinate axes on R2(E, Mz) containing the image of momen-
tum map determines the orientation (i.e. defines the positive direction of circuit) on
R2(E, Mz) and on the image of momentum map. Fix the numbering of functions
I1, I2 in such way that the orientation given by them in every regular point of the
image of momentum map coincide with the orientation induced by the numbering
of coordinate axes. Then fix the order of level-lines of action variables I1, I2 by
the method described above. There appears uniquely defined direction of the circuit
around the isolated singular value of the momentum map. Start “basis” (e1, e2) of
the latticeR, which is not passing through the singular point. Go around the singular
value in a closed loop in the positive direction. As the result a new “basis” (e′

1, e′
2)

is derived from (e1, e2).
Let M̃ be the transition matrix between the bases (e1, e2) and (e′

1, e′
2), where

(e′
1, e′

2) = M̃ (̇e1, e2). M̃ is related to monodromy matrix. Recall the definition of
monodromy matrix.
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Definition 1.4 Let (γ1, γ2) be the basis cycles on the torus Tξ (where ξ is the regular
value of momentum map), (γ ′

1, γ
′
2) be the result of deformation of the cycles around

the singularity. Matrix M such that (γ ′
1, γ

′
2) = M (̇γ1, γ2) is called the monodromy

matrix of singular value of the system with respect to the basis (γ1, γ2) on the torus.

Recall that there exists the canonical morphism between the set of cycles on torus
Tξ (where the value ξ is regular) and the set of the integer covectors of the lattice
in R. For every such cycle on the torus there exists some function (action variable)
on the base of Liouville fibration, which diferential is the desired covector.

Let (ε1, ε2) and (ε1
′
, ε2

′
) be the covector bases corresponding to vector bases

(e1, e2) and (e
′
1, e

′
2). Using the morphism above we can reformulate the definition

of monodromy matrix.

Definition 1.5 Matrix M such that (ε′
1, ε

′
2) = M (̇ε1, ε2) is called the monodromy

matrix of singular value of the system with respect to the covector basis (ε1, ε2) of
the lattice R.

There exits a relation between matrices M and M̃ : M = M̃t−1
. Moreover, for the

“Spherical Pendulum” systemmonodromymatrix corresponding to isolated singular

value (E, Mz) = (1, 0) belongs to the conjugation class of matrix M =
(
1 0
1 1

)
in

the group SL(2, Z). The main result of is the following.

Theorem 1.5 (Kantonistova [26]) For the “Spherical Pendulum” system for the
energy levels −1 < E < 1 there is a mark r = 0, and for the energy levels E > 1
there is a mark r = 1

2 .

If E0 > 1 than the level surface Q3
E0

= {E = E0} is diffeomorfic to R P3, and if

−1 < E0 < 1 than the Q3
E0

is diffeomorfic to S3.

1.4 Billiards in Confocal Quadrics

Let Ω be the domain in R2, bounded by some quadrics from the family:

x2

a − Λ
+ y2

b − Λ
= 1, a > 0, b > 0, (1.8)

whereΛ ∈ R is a numerical parameter. Assume that angles of the boundary of theΩ

differ from 3π
2 . Consider the dynamical system describing the motion of the material

point inside this domain with the reflection rule on the boundary P = ∂Ω (including
the vertices) being the equality of angles before and after reflection.

The phase space of this system is the manifold

M4 := {(x, v) | x ∈ Ω, v ∈ Tx R2 , |v| > 0}/ ∼, (1.9)
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with the following equivalence relation:

(x1, v1) ∼ (x2, v2) ⇔ x1 = x2 ∈ P, |v1| = |v2| and v1 − v2 ⊥ Tx1 P.

(1.10)

Where Tx P stands for a tangent line in the point x to the smooth part of boundary
P = ∂Ω and |v| is a euclidian length of velocity v.

Theorem 1.6 (Jacobi, Shasles) Tangent lines to the geodesic curve on the quadric
u ∈ Rn (where u belongs to the family of the confocal quadrics U) are tangent to
the n − 1 different confocal quadrics (u1, ...un−1) ∈ U. The set (u1, ...un−1) is the
same for all points of the initial curve.

Due to this theorem in two-dimensional case the tangent line to each points of
trajectory of the billiard is tangent to an ellipse or a hyperbola confocal to the family
of quadrics that define the boundry of Ω . In other terms this billiard system has
two integrals: velocity |v| and the parameter of the family Λ. Fixing |v| restricts the
system onto three-dimensional surface Q3 ∈ M4.

Definition 1.6 Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be two integrable
Hamiltonian systems on the simplectic manifolds M4

1 and M4
2 with integrals f1, g1

and f2, g2, respectively. Consider restriction of these systems onto the “isoenergetic”
manifolds Q3

1 = {ξ ∈ M4
1 | f1(ξ) = c1} and Q3

2 = {ξ ∈ M4
2 | f2(ξ) = c2}. Two

Liouville foliations on the Q3
1 and Q3

2 are Liouville equivalent iff there exists a dif-
feomorphism that sends the leaves of the first foliation to those of the second one
(with two rather technical restrictions on the orientation) [4].

According to the Liouville theorem the manifold Q3 is foliated into two-
dimentional tori (see [4, Sect. 1.5]) and singular leaves. Consider the base of this
Liouville foliation. It is a one-dimensional graph W , which is called rough mole-
cule. The “atoms” describing the corresponding neighborhoods of the singular leaves
are the vertices of the graph W . In the classical billiards the following atoms appear:
A, A∗, B, C2, D1 [4].

All these atoms except atom A∗ can be described as the cartesian product of the
two-dimensional atom and one-dimensional circle S1. For A this two-dimensional
atom is a disk D2, for atom B it is a neighborhood of the bouquet of two circles
and for C2 this two-dimensional atom is a neighborhood of two intercecting (in two
points) circles on the plane. For the atom D1 we should take a neighborhood of
the three circles intersecting in two points. Finally, the atom A∗ is similar to the
atom B: we start with the bouguet of two circles. The only difference is that when
the neighbourhood of the bouquet is multiplied by S1 it should be cut in one place
and then twisted. As a result we obtain three-dimensional manifold with boundary
consisting of two (instead of three in the case of B) two-dimensional tori.

Rough molecule W does not describe the topology of the Liouville foliation
completely because it does not have information about the gluing of the singular
leaves. To save the information we can choose basis in the fundamental group of the
boundary tori of all atoms (according to the proper set of rules, see [4, 18, 20, 21]
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for the list) and write transformation matrices called the gluing matrices. These
matrices are dependent on the choice of the basis, but it’s possible to calculate a set
of numbers, which are both independent from the choice of basis and at the same
time allow to write gluing matrices after fixing the basis. This numbers are called
marks. Together with the graph they form marked molecule, which is an invariant of
the Liouville equivalence.

Dragovich and Radnovich calculated these marks for some billiard systems [12]
in the domain bounded by confocal quadrics. The work was continued by Fokicheva
[15, 16], who not only completed calculation, but also found that some of the orig-
inal results by Dragovich and Radnovich contained errors. Fokicheva also did the
calculations for so called “covering billiards”. The latter notion was introduced by
Oshemkov and Kudryavtseva

Let us start with the classification of all possible domains Ω . We call domain reg-
ular if its boundary doesn’t contain horizontal line segments and singular otherwise.

Definition 1.7 DomainΩ bounded by quadrics from the family (1.8) is called equiv-
alent to domain Ω ′ bounded by quadrics from the same family (1.8) iff Ω ′ obtained
from Ω by symmetries via axes and/or continuous change of parameter Λ with the
only condition Λ = b.

For all pairs of real numbers a > b > 0 there are 7 classes of equivalence of the
regular compact domains Ω and 6 classes of singular domains. This is the list of
regular domains:

Domain and its notation Boundary

Ω1 Ellipse
Ω1.1.1 Ellipse and hyperbola
Ω1.1.2 Ellipse and two hyperboles
Ω1.2 Two ellipses
Ω1.2.1 Two ellipses and two hyperbolas
Ω1.2.2 Two ellipses and two hyperbolas
Ω1.2.3 Two ellipses and two hyperbolas

This is the list of singular domains:

Domain and its notation Boundary

ω1 Ellipse and horizontal line
ω2 Ellipse, horizontal line and hyperbola
ω3 Ellipse, two hyperbolas and horizontal line
ω4 Two ellipses, one segment of hyperbola

and one horizontal segment
ω5 Two ellipses and two segments of the hor-

izontal line
ω6 Two ellipses, one hyperbolic segment and

one horizontal segment inside domain
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Theorem 1.7 (Fokicheva [15, 16]) For all 1-connected domains the isoenergetic
manifold Q3 is homeomorphic to sphere S3, for domain bounded by two ellipses this
manifold is homeomorphic to S1 × S2

For the domains which boundary is smooth this fact was mentioned in the article
[25]. Consider now the integral value Λ < b and the trajectory corresponding to it.
This trajectory (or its continuation) is a tangent to the ellipse of the family (1.8) with
the parameter Λ and lies on the Liouville torus on the lower edge of the molecule.
The trajectory corresponding to the integral value Λ > b (or its continuation) is a
tangent to the hyperbola and lies on the upper edge of the molecule. The trajectory
corresponding to the irregular value Λ = b (or its continuation) must go through
the focuses of the family. The critical circles on the corresponding leaf lie along
the horizontal line. The number V of such circles coincides with the number of the
horizontal segments inside the domain. If V = 0 then the neighborhood of such leaf
is a saddle atom. Otherwise this is a torus and the molecule of such system is A–A.

Theorem 1.8 (Fokicheva [15, 16]) The marks and the saddle atom describing the
topology of the billiard system in regular domain are written in the following table.
The molecule describing the topology of the billiard system in domain Ω1.2.1 is A–A,
with marks r = 1 and ε = ±1.

Domain V Saddle
atom

Lower edges Upper edges n

Ω1 1 B r = 0 ε = 1 r = 0 ε = 1 ±1
Ω1.1.1 1 A∗ r = 0 ε = 1 r = 0 ε = 1 ±1
Ω1.1.2 1 B r = 0 ε = 1 r = ∞ ε = ±1
Ω1.2 2 C2 r = ∞ ε = ±1 r = 0 ε = 1
Ω1.2.1 0 – – –
Ω1.2.2 1 B r = ∞ ε = ±1 r = 0 ε = 1
Ω1.2.3 2 D1 r = ∞ ε = ±1 r = 0 ε = 1

The following theorem completes the discription of the topology of billiard sys-
tems in confocal quadrics.

Theorem 1.9 (Fokicheva [15, 16]) The molecule describing the topology of the
billiard system in singular domain (except the domain ω6) is A–A, r = 0, ε = 1.
For ω6 the molecule coincides with the molecule for the system in the domain Ω1.2.2.

The billiard systems admit the following generalization. Consider k copies of the
domainΩ1.2 (this domain is bounded by two ellipses) andmake a cut along the lower
segment of the coordinate line Oy. Then glue cuts by the following rule: the left edge
of the cut on the i-th copy is glued to the right edge of the cut on the i + 1-th copy.
This domain is called Δk . If we glue the rest of the edges of the cut together we get
the domain Δ′

k .
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For the first time the problem of the describing this billiard system was proposed
by Oshemkov and Kudryavtseva. Fokicheva showed that the isoenergetic manifold
Q3 for the system in the domainΔk is homeomorphic to S1× S2. She also computed
that the saddle atom describing the topology of the billiard system in Δk is A2k−1
[30], marks are same as marks for the molecule for domain Ω1.2. The isoenergetic
manifold Q3 for the system in the domain Δ′

k is homeomorphic to S3. The saddle
atom describing the topology of the billiard system in Δ′

k is D2k−1 [30], marks are
like marks in the molecule for domain Ω1.2.3.

1.5 Bertrand’s Manifolds and Their Properties

Consider the movement of a particle (moving point) in a central potential field on
a surface of bounded revolution, that is on a manifold S ≈ (a, b) × S1 with the
metric of revolution ds2 = dr2 + f 2(r)dϕ2 in polar coordinates (r, ϕmod2π) for
some arbitrary smooth function f (r). Denote the potential by V (r). The system is

Hamiltonian with hamiltonian H = p2r
2 + p2ϕ

2 f 2(r)
+ V (r). This construction appears

naturally in many physical and mechanical problems.
Originally this problem was formulated by Bertrand in 1873: if S = R2 and all

the bounded trajectories of the particle are closed (regardless of initial conditions)
what can be said about the potential V (r)? This problem was solved by Bertrand
himself. Later it was generalized as follows: consider a class P of central potentials
with certain properties (that is all the potentials yielding closed trajectories for a
given class of initial conditions) defined on the surface S; the problem is to find
all the pairs ( f ∈ C∞, V ∈ P), i.e. classify all manifolds of revolution allowing a
potential of the chosen class to exist and to describe all the corresponding potentials.

Definition 1.8 Manifolds of revolution equipped with a central potential of classP
are called Bertrand’s P−manifolds.

For Bertrand’s manifolds with such f (r) that f ′(r) = 0 ∀r ∈ (a, b) the latter
problemwas completely solved by Fedoseev et al. in the work [13] which generalizes
results obtained by Bertrand [2], Santoprete [37], Darboux, Libman and others.

In their work Fedoseev et al. considered the following classes of potentials:

Definition 1.9 Let V (r) be a central potential on the surface S. It is called closing, if

(∃) there exists a nonsingular bounded noncircular orbit γ in S;
(∀) every nonsingular bounded orbit in S is closed.

Potential V (r) is called locally closing, if

(∃)loc there exists a strongly stable circular orbit {r0} × S1 in S;
(∀)loc for every strongly stable circular orbit {r0} × S1 in S there exists an ε > 0,

that every nonsingular bounded orbit in [r0 − ε, r0 + ε] × S1 with kinetic
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moment in (K0 − ε, K0 + ε), is closed; K0 is the kinetic moment value for
the corresponding circular trajectory.

Potential V (r) is called semi-locally closing, if the conditions (∃), (∀)loc are satisfied
as well as the following:

(∀)sloc every nonsingular bounded orbit in U = [a′, b′] × S1 with kinetic moment
value equal to K̂ is closed, where a′ := inf r |γ , b′ := sup r |γ , γ is the
bounded orbit existing due to (∃), K̂ it’s kinetic moment value.

Potential V (r) is called strongly (weakly) closing, if the condition (∀)loc is satisfied
(it’s analog for every orbitally stable circular orbit) and the following condition is
satisfied: every circle {r} × S1 is strongly (orbitally) stable circular orbit.

The following theorem by Fedoseev et al. gives an explicit solution to the stated
above generalized Bertrand problem on surfaces (manifolds) of revolution without
“equators” (i.e. points x ∈ (a, b) such that f ′(x) = 0).

Theorem 1.10 (Fedoseev et al. [13]) Consider a manifold of revolution
S ≈ (a, b) × S1 with the metric ds2 = dr2 + f 2(r)dϕ2 in polar coordinates
(r, ϕmod2π) and f ′ = 0 on (a, b). Then

(a) the above defined classes of potentials coincide (therefore from now on we call
the potentials in question “closing” meaning potentials of all the defined types);

(b) if there exists such a ξ ∈ Q>0 that the following equality − f ′2(r)+ f (r) f ′(r)′ =
−ξ2 holds for every r ∈ (a, b) on the corresponding surface (Bertrand’s mani-
fold of type I) that there exists exactly two closing potentials and they are of the
form Vi (r) = (−1)i A|θ(r)|2−i2/ i + B, i = 1, 2, where A > 0, B are arbitrary
constants, θ(r) = − f ′(r)

f (r)
;

(c) if for every ξ ∈ Q>0 the equality − f ′2(r) + f (r) f ′(r)′ = −ξ2 is not tau-
tological, there exists a smooth function θ = θ(r), θ(r) = 0 on (a, b) such
that in the coordinates (θ, ϕmod2π) the metric can be written as ds2 =

dθ2

(θ2+c−tθ−2)2
+ dϕ2

μ2(θ2+c−tθ−2)
for some constants c ∈ R, t ∈ R \ {0}, μ ∈ Q>0

and there also exists exactly one closing potential on the corresponding sur-
face (Bertrand’s manifold of type II) which is of the form V2(r) = A

2θ(r)
+ B,

A, B ∈ R.

Bertrand’s manifolds of type I can be described explicitly. They are the rational
cones and rational coverings of sphere and hyperbolic plane, that is

f (r) = ξ fc(r − r0) :=

⎧⎪⎨
⎪⎩

±ξ(r − r0), c = 0,
ξ√
c
sin(

√
c(r − r0)), c > 0,

± ξ√−c
sh(

√−c(r − r0)), c < 0,
(1.11)

Type II Bertrand’s manifolds are classified with the pair of parameters (c, t);
the parameter μ is irrelevant to the geometry of the manifold. The following rigor
definition follows from the Theorem 1.10:
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Definition 1.10 Bertrand’smanifold is amanifold Sμ,c,t ≈ ∪kc,t
k=1 Ik,c,t ×S1, Ik,c,t ⊂

(−∞, 0), with coordinates θ, ϕmod2π , and the metric of revolution

ds2μ,c,t = dθ2

(θ2 + c − tθ−2)2
+ dϕ2

μ2(θ2 + c − tθ−2)
. (1.12)

where c, t ∈ R, μ > 0. The manifold consist of kc,t connected components. The
component corresponding to k = 1, is called main, corresponding to k = 2—
additional. The additional component exists only if t < 0. Manifolds with t = 0 are
called type I manifolds, with t = 0—type II.

Not all the type II Bertrand’s manifolds are real surfaces of revolution embedded
in R3. The following result holds:

Theorem 1.11 (Fedoseev et al. [13])

1. Additional component is never realized as a surface of revolution in R3;
2. Main component is realized completely as a surface of revolution for the fol-

lowing values of the parameters (c, t) and only for them: {t = 0, c ≥ 0, μ ≥
1} ∪ {t < 0, c = −2

√−t, μ ≥ 2} ∪ {t < 0, c ≥ 0, μ ≥ 1} ∪ {t < 0,−2
√−t <

c < 0, μ ∈ (1, μ̃)} ∪ {t < 0,−2
√−t < c < 0, μ ∈ [2,∞)}, where μ̃ is a real

positive root of the equation −256t + 192t x2 + (27c2 + 60t)x4 + 4t x6 = 0.

Partial realization of the main component of type II Bertrand’s manifolds was also
completely studied by the authors.

Movement in a closing potential field on a Bertrand’s manifold is an integrable
Hamiltonian systemwith an additional integral pϕ . Therefore a classical hamiltonian
analysis can be performed as well as the construction of Fomenko-Zishang invariants
of Liouville’s equivalence. This was done by Zagryadsky et al. in [13].

It appears thatBertrand’s systems are a simple and natural example ofHamiltonian
systems with non-compact atoms. Therefore those systems are a good testing case
for the non-compact analog to the theory of Fomenko-Zishang invariants.

It is also possible to generalize this problem further to the “Hamiltonian” study
of movement on an arbitrary surface of revolution. Some results concerning the
connections between the properties of the function f (r) and the bifurcation diagram,
the image of the moment map, atoms and molecules were obtained by Zagryadsky
et al.

Bertrand’s problem for the manifolds with equators is still under consideration
as well as the problem on pseudo-Riemannian manifolds of revolution. On those
manifolds the study of dynamics and topology of Liouville foliation is also a natural
and promising problem.
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1.6 Lie Algebras with Generic Coadjoint Orbits
of Dimension Two

The Euler top is a textbook example of integrable system in classical mechanics.
One of the reasons for its popularity is the simplicity of the analysis of its dynamics.
Hamiltonian representation on dual space to Lie algebra so(3) allows to easily see
the effects of small perturbations of “stable rotations”, for example. In this case we
don’t need to write the explicit solution in terms of elliptic functions. Instead we
can just look at the intersection of two-dimensional symplectic leaves and level sur-
face of system’s Hamiltonian. The intersection is one-dimensional and is an integral
trajectory of a system or a disjoint union of such trajectories.

The simplicity is mainly due to the fact that in case of Poisson structure with
symplectic leaves of dimension two the restriction of every Hamiltonian system on
such leaf is integrable as it needs only one integral that isHamiltonian itself. Therefore
the same approach for let’s say dynamical analysis holds for two-dimensional leaves
in case of a linear Poisson manifold of higher dimension. This posses a natural
question: what are the Possion brackets with generic symplectic leaves of dimension
two or, in other terms, what are the Lie algebras with generic coadjoint orbits of
dimension two? This question was formulated in [8] by Bolsinov et al. The complete
answer to the question is given by Konyaev in [27] (see also [38] for similar question
for complex Lie algebras in terms of homogeneous spaces). It turns out that it is
possible to classify up to isomorphism all real Lie algebras with generic coadjoint
orbits of dimension two.

Definition 1.11 We call Poisson bracket with Poisson tensor of rank less or equal
to 2 decomposable if there exist two vector fields v and w such that Poisson tensor
equals to v ∧ w.

From the properties of Schouten bracket immediately follows that wedge product
of two vector fields defines Poisson bivector iff the distribution spanned by these
fields is integrable. This construction gives a lot of simple examples of polynomial
bivector fields. For example, if v and w are both linear then their wedge product
defines quadratic Poisson bracket.

In linear case the decomposable brackets define a dual space to the series of Lie
algebras in the form of semidirect sum R +ρ Rn via representation ρ. These Lie
algebras are solvable. The vector fields, that define their Lie-Poisson tensor can be
chosen in the form of one linear field and one constant vector field, that also commute
and everywhere independent. As both fields are complete, that is their trajectories
exist for all times −∞ < t < ∞, and tangent to the symplectic leaves, it can be
shown that all the generic leaves are diffeomorphic to the two-dimensional plane R2.

Main tool for the classification of Lie algebras with generic coadjoint orbits of
dimension two is the following result by Konyaev, concerning linear vector field.
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Theorem 1.12 (Konyaev [27]) Consider a pair of linear vector fields v and w on
affine space Rn, that are everywhere dependent, i.e. v ∧ w = 0. Than at least one of
the following is true:

• v = λw, where λ is a constant,
• v = l(x)a, w = m(x)a, where a is a constant vector and l(x), m(x) are linear

functions

The following theorem provides a complete description of the Lie algebras with
generic coadjoint orbits of dimension two. It should be noted that the first infinite
series of Lie algebras is a result of the first part of the previous theorem, while the
exceptional cases are central extensions of three-dimensional Lie algebras that are
not isomorphic to the first infinite series.

Theorem 1.13 (Konyaev [27])Up to the direct sum with commutative Lie algebra of
orbitrary dimension there exists one infinite series of real Lie algebras with generic
coadjoint orbits of dimension two and six exeptional Lie algebras. The exeptional
Lie algabras are pairwise non-isomorphic and are not isomorphic to any Lie algebra
from the infinite series:
(1) Semidirect sums R +ρ Rn

(2) Three-dimensional simple Lie algebra so(3)
(3) Three-dimensional simple Lie algebra sl(2)
(4) Four-dimensional solvable Lie algebra A4,8. In the special basis e1, e2, e3, e4
the commutative relations for this Lie algebra have the form (given only non-zero
commutators):

[e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3

(5) Four-dimensional solvable Lie algebra A4,10. In special basis e1, e2, e3, e4 the
commutative relations for this Lie algebra have the form (given only non-zero com-
mutators):

[e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2

(6) Five-dimensional solvable Lie algebra A5,3. In special basis e1, e2, e3, e4, e5 the
commutative relations for this Lie algebra have the form (given only non-zero com-
mutators):

[e3, e4] = e5, [e3, e5] = e1, [e4, e5] = e3

(7) Six-dimensional nilpotent Lie algebra A6,3. In special basis e1, e2, e3, e4, e5, e6
the commutative relations for this Lie algebra have the form (given only non-zero
commutators):
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[e1, e2] = e6, [e1, e3] = e4, [e2, e3] = e5

To complete the classification one needs a theorem, that discribes Lie algebras
from the infinite series R +ρ Rn up to the isomorphism.

Definition 1.12 We call two linear operators P and P ′ equivalent iff for some non-
zero constantμ operators P andμP ′ are adjoint, that is have the same Jordan normal
forms.

Definition 1.13 We call two linear representations ρ and ρ′ of R in gl(Rn) equiva-
lent iff for any v ∈ R and v = 0 operators ρ(v) and ρ′(v) are equivalent.

Theorem 1.14 (Konyaev [27])Consider a pair of Lie algebras R+ρ Rn and R+ρ′ Rn.
They are isomorphic iff the representations ρ and ρ′ are equivalent.

In other words the set of semidirect sums is in bijection with the set of equivalence
classes of operators.

In [28, 36] the invariants for the exceptional Lie algebras are given. For the infinite
series the invariants are the first integrals of some linear vector fields. They have also
been computed see [6, 7]. Recently Konyaev found that these invariant admit a
simpler description.
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