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Preface

Given collected articles have been organized as a result of joint academic panels of
research workers from Faculty of Mechanics and Mathematics of Lomonosov
Moscow State University and Institute for Applied System Analysis of the
National Technical University of Ukraine ‘‘Kyiv Polytechnic Institute,’’ devoted to
applied problems of mathematics and mechanics, which attracted attention of
researchers from leading scientific schools of Europe, the USA, Russia, Ukraine,
and other countries.

Modern technological applications require development and synthesis of fun-
damental and applied scientific areas, with a view to reducing the gap that may still
exist between theoretical basis used for solving complicated technical problems and
implementation of obtained innovations. To solve these problems, mathematicians,
mechanics, and engineers from Lomonosov Moscow State University and National
Technical University of Ukraine ‘‘Kyiv Polytechnic Institute’’ worked together,
and results of their joint efforts are partially presented here, including abstract
mathematical directions (abstract algebra, number theory, nonlinear functional
analysis, partial differential equations, methods of nonlinear and multivalued
analysis) and its applications in nonlinear mechanics, decision-making theory and
control theory. Also modern mathematical modeling methods for numerical solution
of complicated engineer problems are presented as well as their applications in
hydromechanics, geophysics, mechanics of continua, quantum mechanics, decision-
making theory, etc. In fact, serial publication of such collected papers to similar
seminars is planed.

The book is addressed to a wide circle of mathematical, mechanical, and
engineering readers.

We want to express the special gratitude to Olena L. Poptsova for a technical
support of our collection. Finally, we express our gratitude to editors of the
‘‘Springer’’ Publishing House who worked with collection and everybody who
took part in preparation of the manuscript.

Moscow, July 2013 Mikhail Z. Zgurovsky
Kiev Victor A. Sadovnichiy
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Abstract Algebra and Applications



Chapter 1
Algebra and Geometry Through Hamiltonian
Systems

Anatoly T. Fomenko and Andrei Konyaev

Abstract Hamiltonian systems are considered to be the prime tool of classical and
quantum mechanics. The proper investigation of such systems usually requires deep
results from algebra and geometry. Here we present several results which in some
sense go the opposite way: the knowledge about the integrable system enables us to
obtain results on geometric and algebraic structures which naturally appear in such
problems. All the results were obtained by employees of the Chair of Differential
Geometry and Applications in Moscow State University in 2011–2012.

1.1 Introduction

Hamiltonian systems are common in classical and quantum mehanics. Usually the
investigation of such system’s properties requires deep results from different fields
of algebra, geometry, topology etc. Here we present several results which in some
sence go the opposite ways. It means that the study of the objects, which naturally
appear in such problems gets some extra perspective from the study of the dynamics
of the system itself.

The chapter consists of five parts, each related to some topic in study of
Hamiltonian systems. All the results presented were obtained by the employees
of the Chair of Differential Geometry and Applications in Moscow State Univercity
during the period of 2011–2012.

The first part is dedicated to the study of symmetry groups of atoms, which
are the main building block of Fomenko-Ziechang invariants (FZ invariants). These
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Faculty of Mechanics and Mathematics, Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, Russian Federation 119991
e-mail: fomenko@mech.math.msu.su

A. Konyaev
e-mail: maodzund@bk.ru

M. Z. Zgurovsky and V. A. Sadovnichiy (eds.), Continuous and Distributed Systems, 3
Solid Mechanics and Its Applications 211, DOI: 10.1007/978-3-319-03146-0_1,
© Springer International Publishing Switzerland 2014



4 A. T. Fomenko and A. Konyaev

invariants provide the classification for the integrable systems with two degrees of
freedom. The main result of this section is due to Fomenko and Kudryavtseva: every
finite group can be realized as a symmetry group for some atom. Moreover, there are
some restriction on atom’s topological complexity in terms of the genus of the atom.

The second part is dedicated to so called integer lattice on bifurcation diagrams.
The similar objects naturally appear in quantum mechanics, but study of their classi-
cal counterparts is a relatively new topic. The results of this section dealwith so called
Fomenko hypothesis. It states that the properties of the lattice are closely related to
the FZ invariants and, as a result, to the property of the system. Kantonistova studies
the system called the Spherical Pendulum. The computation of the ZF invariats for
this system is relatively simple which allows the direct verification of the hypothesis
which, in this case, as Kantonistova showed, is valid.

The third section deals with integrable billiards, that is the motion of the mate-
rial point inside two-dimensional domain in this case bounded by segments of the
quadric from the same family (this section also contains some extra information
about FZ inveriants). The computaion and thorough discription of invariants is done
by Fokicheva for a large family of such systems. She showed, that the properties of
integrable system are closely related to the shape of the domain.

The fourth section is dedicated to the generalization of classical Bertrand’s prob-
lem, that is the discription of such potentials that the movement of a particle (moving
point) in the corresponding field on a surface of bounded revolution has only peri-
odic trajectories. This problem was formulated in nineteenth century and is yet still
interesting. The main result of this section is due to Fedoseev et al.: in two theorems
a discriprion of the class of so called Bertrand’s manifolds (the manifolds that admit
the necessary potentials) is presented.

The final part is the only one that has nothing to do with the integrable systems
with FZ invariants. It deals with the classification of linear Poisson structures with
generic leaves of dimension two. These structures are of an interest as Hamiltonian
systems associated with them have the following property: after the restriction on the
leaf every such system is integrable. The other aspect is that two-dimentional leaves
are the leaves of the smallest possible non-zero dimension while linear brackets are
the simplest possible non-trivial structures. Konyaev proved a theorem that provide
a full description od such brackets.

1.2 Atoms and Their Symmetries

The notion of atom was introduced by Fomenko in [17, 19]. Atoms encode typi-
cal bifurcations of Liouville tori in non-degenerate integrable Hamiltonian systems.
Now many notorious integrable systems with two degrees of freedom and the equiv-
alence classes have been described in terms of two-dimensional atoms and mole-
cules (the set of atoms with additional structure). Moreover many bifurcations of
integrable systems in higher dimensions can be represented as semidirect product
of two-dimensional atoms [34]. Because the notion of semidirect product uses the
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symmetry group of atom, the study of such groups becomes essential. Two-
dimensional saddle atoms (2-atoms) are a special class of atoms which can be
described in many equivalent ways: f-graphs [35], maps also known as abstract
polytopes.

Map (abstract polytope) is an equivalence class of particular cellular decomposi-
tion of closed two-dimensional surface up to cellular homeomorphisms. We call two
decomposition preserving automorphisms of the surface equivalent iff they differ by
the homeomorphism, which sends every cell to itself, preserving any orientation on
it. It turns out that every finite group can be realized as a symmetry group of some
2-atom, orientable map or chord diagram. All three approaches are equivalent.

In [5] Fomenko and Bolsinov formulated a question: is it true that every finite
group can be realized as symmetry group of bifurcation diagram of some integrable
Hamiltonian system or in other terms as symmetry group of some 2-atom? For max-
imally symmetric atoms (the definition is given below) the description of their sym-
metries was done by Oshemkov and Brailov in [9]. In [10] Brailov and Kudryavtseva
discovered an unexpected link between several of the infinite series of maximally
symmetric atoms and stable topological non-conjugacy of integrable Hamiltonian
systems. Thorough investigation of the group symmetries of the atoms was done by
Fomenko et al. [30, 31].

Siran and Skoviera in [39] notice, that there are a number of results about various
classes of combinatorial structures saying that every finite group is the automorphism
group of some member of the class. Examples are provided by graphs [22], cubic
graphs [23], Steiner triple systems [32], “pictures” [1], and others. Results of this
type indicate that a given class is, to some extent, rich. On the other hand, there
are some very natural classes that do not have this property, for instance, trees [14].
Similar questions have been asked in connection with graph embeddings on surfaces.
As was proven in [11], every finite group is the automorphism group of some map
on an orientable surface. However, it is by no means obvious that the same holds for
non-orientable maps. The main result of the chapter [39] gives an affirmative answer
to this question.

In [29] Fomenko and Kudryavtseva prove that every finite group can be realized
as a symmetry group of some orientable two-dimensional atom. The method used
in the work differs from the ones described above. In particular the algorithm of the
construction of the atom by the given group is presented together with formulas for
upper estimates of the atom’s genus. The proof utilizes the notion of the covering of
the atoms.

Let us recollect someof the basic notions of the atoms theory. Let M be a connected
closed two-dimensional surface (orientable or non-orientabe) and f : M → R is a
Morse function with exactly three singular values: maximum, minimum and saddle.
We call this kind of function proper Morse function. For such a function its level
surface for saddle value can be considered a connected graph K with only degree 4
vertices. The complement to K consists of two-dimensional cells homeomorphic to
standard two-dimensional discs. Therefore we have degree 4 cellular decomposition.
In particular this means, that such decomposition allows chess coloring, e.g. coloring
of the discs in black and white, such that every edge borders discs of different colors.
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Proper Morse functions f and f on the surfaces M and M respectively are called
leaf-wise equivalent in the neighborhoods P and P of critical levels { f = c} and
{ f = c} iff there exist small ε > 0 and ε > 0 together with diffeomorphism
D : P = {| f − c| < e} → P ⇐ = {| f ⇐ − c⇐| < e⇐} such that the connected
components of level surfaces of f map with D into the connected components of
the level surfaces of f . If D preserves the direction of the growth of the functions f
and f then we call them leaf-wise equipped equivalent.

Atom (P, K ) is a class of leaf-wise equipped equivalence of Morse function f in
the neighborhood P = {| f | < ε} of its saddle critical level K = { f = 0}. We also
call an atom any representative of such class, that is the pair of the surface P with
the graph K embedded into it. The complement to the K consists of rings, which
we denote positive and negative according to the sign of f . To define the symmetry
group of an atom we start with the group of all homeomorphisms of (P, K ) onto
itself, which preserve the structure of an atom and the direction of the growth of th
function. Then we take the quotient by the subgroup which sends every edge of the
K into itself with preservation of any given orientation on it. This group is oviously
descrete and we call it the symmetry group of an atom. In case of orientable surface
P we call a symmetry proper if it preserves the orientation on P . Saddle critical
values of the f are called atom vertecies and their number is atom’s complexity.

As the boundary of P is disjoint union of circles the surface M with the proper
Morse function f described in the beginning of this section is obtained from P by
gluing the boundary of some two-dimentional disc to every such circle (different discs
are taken for different circles). The proper Morse function on M is a continuation
of f such that in every glued disc there’s exactly one maximum or minimum in its
center. The genus of an atom is the genus of M . Orientable atom is called maximally
symmetric [30] if its symmetry group acts transitively on its edges.

There’s a natural bijection between atoms and maps (abstract polytopes) [30].
Recollect that [30, 33] starting with a given map we can construct 2-atom (same as
properMorse function on M). That’s why all the results about atoms can be if needed
reformulated equivalently in terms of maps and their symmetry groups.

These are the main results.

Theorem 1.1 (Fomenko and Kudryavtseva [29]) Every finite group G is a symmetry
group of some orientable two-dimensional atom

It should be noted that the atom X (G) is constructed explicitly. Moreover there are
lots of atoms with symmetry group G, but the properties of the X (G) constructed in
the the proof of the theorem can be described in great detail, e.g. there is an upper
estimation on the genus of M .

Let k, d be a pair of non-negative integers with condition d ≥ 5 for any k ≥ 0
and d ≥ 6 for k = 0. For every such a pair it’s possible to construct an orientable
atom T (k, d) of genus k with boundary consisting of exactly d circles and trivial
symmetry group. Let n be a number of T (k, d) vertices. Define d− as the number
of non-positive boundary circles and d+ as number of positive boundary circles of
T (k, d). Obviously d = d+ + d−.
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Theorem 1.2 (Fomenko and Kudryavtseva [29]) Let k be a number (not necessary
least possible) of generators of a given group G. Among all the atoms with symmetry
group isomorphic to G there exists orientable atom X (G) of genus g = (k−1)|G|+1
where |G| is the order of the group G. At the same time atom X (G) is G-regular cov-
ering of T (k, d) and has n|G| vertices, d−|G| negative boundary circles and d+|G|
positive boundary circles. Every symmetry of sucn atom preserves its orientation.

We should notice that the symmetry group G of an atom X (G) acts freely on its
vertices and boundary circles, that is every symmetry is either trivial or doesn’t have
any invariant vertices and boundary circles. More accurate estimates in some special
cases given in [29].

1.3 Integer Lattices of Action Variables for “Spherical
Pendulum” System

The problem of constructing integer lattices of action variables for integrable
Hamiltonian systems with two degrees of freedom is relatively new. It appeared due
to Fomenko’s hypothesis, which states that the structure of integer lattice of action
variables (see the definition below) in “typical case” is completely determined by
Fomenko-Ziechang invariants (FZ invariants). On the other hand such integer lattice
allows one to calculate at least some of the FZ-invariants of such systems, particularly
the marks on the ribs of “molecule” (see [4] and also Sect. 1.4). It should be noted
that in this case we need not only the lattice but the level lines of action variables.

This hypothesis was proved in case of the Spherical Pendulum by
Kantonistova [26]. She obtained analytical description of the action variables,
momentum map and bifurcation diagram. It turns out, that in this case it’s possi-
ble to describe the algorithm for calculating the monodromy matrix of the isolated
singular value and, therefore, the marks of the molecule.

Definition 1.1 Let (M2n, ω, H) be an integrableHamiltonian systemwith n degrees
of freedom, and F1, . . . , Fn are its first integrals (F1 = H ). The map Φ =
(F1, . . . , Fn) : M2n → Rn is called momentum map.

The approach of Kantonistova is as following. From the Liouville theorem (see
[4, Sect. 1.5]) it’s well-known that regular connected compact level surface Tξ0 of
integrals F1, . . . , Fn on Hamiltonian integrable system on M2n described in def-
inition is an n−dimensional torus T n . Moreover there exists a set of coordinates
(I1, . . . , In, ϕ1, . . . , ϕn) in the neighbourhood U (Tξ0) of the Tξ0 such that Ii depend
only on the first integrals, and expressed by the formulas

Ii (ξ) = 1

2π

∮

γi (ξ)

α, (1.1)
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where γ1(ξ), . . . , γn(ξ) are 1–cycles on the Liouville torus Tξ , which form the basis
of the homology group H1(Tξ ) continiously depending on ξ ∈ U (ξ0), and α being
any 1–form in U (ξ), such that dα = ω. This coordinates are called action-angle
variables, Ii being the angle variables.

Definition 1.2 Fix 1–form α on the connected open domain P2n in M2n , such that
dα = ω. Let all nonsingular Liouville fibers laying in the domain P2n be compact
and connected. Than a set of points inΦ(P2n)\β ⊂ Rn , formed by the intersections
of n level-surfaces {ξ ∈ Φ(P2n)\β | I1(ξ) = c1, . . . , In(ξ) = cn, ci ∈ Z} of
functions Ii , defined above, is called the integer lattice R of action variables (or
simply the lattice).

In the case of spherical pendulum such 1–form α exists on the cotangent bundle
M4 = T ∗S2 and we can assume that P4 = M4.

Definition 1.3 TheSpherical Pendulum is the systemwhich describes themovement
of the particle with mass m, confined to the surface of the sphere with radius R in a
uniform gravitational field of strength g.

The phase space of the system is

T ∗S2 ∼= {(x, p) ∈ R3 × R3 | x2 + y2 + z2 = 1, xpx + ypy + zpz = 0}. (1.2)

For further calculations it is convenient to introduce the following coordinates on the
phase space: ϕ, pϕ = Mz, θ, pθ .

The system has two independent integrals F1 = E (energy antegral) and F2 =
pϕ = Mz (cyclic integral). Hence, the phase space is fibered into two-dimensional
surfaces, which are according to Liouville theorem the 2−tori (in regular connected
case).

Consider the functions W (E, Mz, z) and Mz(E), where:

W (E, Mz, z) = 2(E − z)(1 − z2) − M2
z , (1.3)

where

Mz(E) := 29

(3 − E2 + E
√

E2 + 3)

√
E +

√
E2 + 3. (1.4)

Theorem 1.3 (Kantonistova [26]) The image of the momentum map for given inte-
grals is the variety {(E, Mz)| E ≥ −1, |Mz| ≤ Mz(E)}.

The only interesting pairs (E, Mz), are the ones laying in the image of themomen-
tum map.

Theorem 1.4 (Kantonistova [26])For all pairs (E, Mz) ∈ Φ(M4) I1(E, Mz) = Mz

is an action variable. For all pairs {(E, Mz) ∈ Φ(M4) | Mz > 0} (similar for all
pairs {(E, Mz) ∈ Φ(M4) | Mz < 0}) the action variable I2(E, Mz) is defined by
the formula
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I2(E, Mz) = 1

π

z2∫

z1

√
2(E − z)(1 − z2) − M2

z

1 − z2
dz, (1.5)

where z1, z2 are the roots of the equation W (E, Mz, z) = 2(E −z)(1−z2)−M2
z = 0

such that −1 < z1 < z2 < 1 and W (E, Mz, z) > 0 for all z ∈ (z1, z2).

It turns out that there exists exactly two singular values of rank 0, namely
(E, Mz) = (±1, 0). In the preimage of every singular value there is exactly one
singular point of the momentum map on M4, and its rank is 0. Moreover, the bifur-
cation diagram of momentum map of the system is composed of two sets: piecewise
smooth curve defined by the equation |Mz | = Mz(E), where

Mz(E) := 29

(3 − E2 + E
√

E2 + 3)

√
E +

√
E2 + 3, E ≥ −1 (1.6)

and isolated singular point with the coordinates (E, Mz) = (1, 0). The singular point
of rank 0, corresponding to isolated singular value (E, Mz) = (1, 0), is nonsingular
and has a focus–focus type. The singular point of rank 0, corresponding to isolated
singular value (E, Mz) = (−1, 0), is nonsingular and has a center–center type.

To calculate the lattice for this system the computer programonC++ (with the help
of Wolfram Mathematica 7.0 package) was written by Kantonistova. This program
numerically solves the system of equations with respect to variables E and Mz :

{
I1(E, Mz) = A
I2(E, Mz) = B

(1.7)

for all possible pairs (A, B) ∈ Z × Z .
The result, i.e. the pair of numbers (E, Mz), is drawn on the plane R2(E, Mz).

The set of all pairs which are the solutions of this system forms the required integer
lattice of action variables.

The order of coordinate axes on R2(E, Mz) containing the image of momen-
tum map determines the orientation (i.e. defines the positive direction of circuit) on
R2(E, Mz) and on the image of momentum map. Fix the numbering of functions
I1, I2 in such way that the orientation given by them in every regular point of the
image of momentum map coincide with the orientation induced by the numbering
of coordinate axes. Then fix the order of level-lines of action variables I1, I2 by
the method described above. There appears uniquely defined direction of the circuit
around the isolated singular value of the momentum map. Start “basis” (e1, e2) of
the latticeR, which is not passing through the singular point. Go around the singular
value in a closed loop in the positive direction. As the result a new “basis” (e⇐

1, e⇐
2)

is derived from (e1, e2).
Let M̃ be the transition matrix between the bases (e1, e2) and (e⇐

1, e⇐
2), where

(e⇐
1, e⇐

2) = M̃ (̇e1, e2). M̃ is related to monodromy matrix. Recall the definition of
monodromy matrix.
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Definition 1.4 Let (γ1, γ2) be the basis cycles on the torus Tξ (where ξ is the regular
value of momentum map), (γ ⇐

1, γ
⇐
2) be the result of deformation of the cycles around

the singularity. Matrix M such that (γ ⇐
1, γ

⇐
2) = M (̇γ1, γ2) is called the monodromy

matrix of singular value of the system with respect to the basis (γ1, γ2) on the torus.

Recall that there exists the canonical morphism between the set of cycles on torus
Tξ (where the value ξ is regular) and the set of the integer covectors of the lattice
in R. For every such cycle on the torus there exists some function (action variable)
on the base of Liouville fibration, which diferential is the desired covector.

Let (ε1, ε2) and (ε1
⇐
, ε2

⇐
) be the covector bases corresponding to vector bases

(e1, e2) and (e
⇐
1, e

⇐
2). Using the morphism above we can reformulate the definition

of monodromy matrix.

Definition 1.5 Matrix M such that (ε⇐
1, ε

⇐
2) = M (̇ε1, ε2) is called the monodromy

matrix of singular value of the system with respect to the covector basis (ε1, ε2) of
the lattice R.

There exits a relation between matrices M and M̃ : M = M̃t−1
. Moreover, for the

“Spherical Pendulum” systemmonodromymatrix corresponding to isolated singular

value (E, Mz) = (1, 0) belongs to the conjugation class of matrix M =
(
1 0
1 1

)
in

the group SL(2, Z). The main result of is the following.

Theorem 1.5 (Kantonistova [26]) For the “Spherical Pendulum” system for the
energy levels −1 < E < 1 there is a mark r = 0, and for the energy levels E > 1
there is a mark r = 1

2 .

If E0 > 1 than the level surface Q3
E0

= {E = E0} is diffeomorfic to R P3, and if

−1 < E0 < 1 than the Q3
E0

is diffeomorfic to S3.

1.4 Billiards in Confocal Quadrics

Let Ω be the domain in R2, bounded by some quadrics from the family:

x2

a − Λ
+ y2

b − Λ
= 1, a > 0, b > 0, (1.8)

whereΛ ∈ R is a numerical parameter. Assume that angles of the boundary of theΩ

differ from 3π
2 . Consider the dynamical system describing the motion of the material

point inside this domain with the reflection rule on the boundary P = ∂Ω (including
the vertices) being the equality of angles before and after reflection.

The phase space of this system is the manifold

M4 := {(x, v) | x ∈ Ω, v ∈ Tx R2 , |v| > 0}/ ∼, (1.9)
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with the following equivalence relation:

(x1, v1) ∼ (x2, v2) ⇔ x1 = x2 ∈ P, |v1| = |v2| and v1 − v2 ⊥ Tx1 P.

(1.10)

Where Tx P stands for a tangent line in the point x to the smooth part of boundary
P = ∂Ω and |v| is a euclidian length of velocity v.

Theorem 1.6 (Jacobi, Shasles) Tangent lines to the geodesic curve on the quadric
u ∈ Rn (where u belongs to the family of the confocal quadrics U) are tangent to
the n − 1 different confocal quadrics (u1, ...un−1) ∈ U. The set (u1, ...un−1) is the
same for all points of the initial curve.

Due to this theorem in two-dimensional case the tangent line to each points of
trajectory of the billiard is tangent to an ellipse or a hyperbola confocal to the family
of quadrics that define the boundry of Ω . In other terms this billiard system has
two integrals: velocity |v| and the parameter of the family Λ. Fixing |v| restricts the
system onto three-dimensional surface Q3 ∈ M4.

Definition 1.6 Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be two integrable
Hamiltonian systems on the simplectic manifolds M4

1 and M4
2 with integrals f1, g1

and f2, g2, respectively. Consider restriction of these systems onto the “isoenergetic”
manifolds Q3

1 = {ξ ∈ M4
1 | f1(ξ) = c1} and Q3

2 = {ξ ∈ M4
2 | f2(ξ) = c2}. Two

Liouville foliations on the Q3
1 and Q3

2 are Liouville equivalent iff there exists a dif-
feomorphism that sends the leaves of the first foliation to those of the second one
(with two rather technical restrictions on the orientation) [4].

According to the Liouville theorem the manifold Q3 is foliated into two-
dimentional tori (see [4, Sect. 1.5]) and singular leaves. Consider the base of this
Liouville foliation. It is a one-dimensional graph W , which is called rough mole-
cule. The “atoms” describing the corresponding neighborhoods of the singular leaves
are the vertices of the graph W . In the classical billiards the following atoms appear:
A, A∗, B, C2, D1 [4].

All these atoms except atom A∗ can be described as the cartesian product of the
two-dimensional atom and one-dimensional circle S1. For A this two-dimensional
atom is a disk D2, for atom B it is a neighborhood of the bouquet of two circles
and for C2 this two-dimensional atom is a neighborhood of two intercecting (in two
points) circles on the plane. For the atom D1 we should take a neighborhood of
the three circles intersecting in two points. Finally, the atom A∗ is similar to the
atom B: we start with the bouguet of two circles. The only difference is that when
the neighbourhood of the bouquet is multiplied by S1 it should be cut in one place
and then twisted. As a result we obtain three-dimensional manifold with boundary
consisting of two (instead of three in the case of B) two-dimensional tori.

Rough molecule W does not describe the topology of the Liouville foliation
completely because it does not have information about the gluing of the singular
leaves. To save the information we can choose basis in the fundamental group of the
boundary tori of all atoms (according to the proper set of rules, see [4, 18, 20, 21]
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for the list) and write transformation matrices called the gluing matrices. These
matrices are dependent on the choice of the basis, but it’s possible to calculate a set
of numbers, which are both independent from the choice of basis and at the same
time allow to write gluing matrices after fixing the basis. This numbers are called
marks. Together with the graph they form marked molecule, which is an invariant of
the Liouville equivalence.

Dragovich and Radnovich calculated these marks for some billiard systems [12]
in the domain bounded by confocal quadrics. The work was continued by Fokicheva
[15, 16], who not only completed calculation, but also found that some of the orig-
inal results by Dragovich and Radnovich contained errors. Fokicheva also did the
calculations for so called “covering billiards”. The latter notion was introduced by
Oshemkov and Kudryavtseva

Let us start with the classification of all possible domains Ω . We call domain reg-
ular if its boundary doesn’t contain horizontal line segments and singular otherwise.

Definition 1.7 DomainΩ bounded by quadrics from the family (1.8) is called equiv-
alent to domain Ω ⇐ bounded by quadrics from the same family (1.8) iff Ω ⇐ obtained
from Ω by symmetries via axes and/or continuous change of parameter Λ with the
only condition Λ = b.

For all pairs of real numbers a > b > 0 there are 7 classes of equivalence of the
regular compact domains Ω and 6 classes of singular domains. This is the list of
regular domains:

Domain and its notation Boundary

Ω1 Ellipse
Ω1.1.1 Ellipse and hyperbola
Ω1.1.2 Ellipse and two hyperboles
Ω1.2 Two ellipses
Ω1.2.1 Two ellipses and two hyperbolas
Ω1.2.2 Two ellipses and two hyperbolas
Ω1.2.3 Two ellipses and two hyperbolas

This is the list of singular domains:

Domain and its notation Boundary

ω1 Ellipse and horizontal line
ω2 Ellipse, horizontal line and hyperbola
ω3 Ellipse, two hyperbolas and horizontal line
ω4 Two ellipses, one segment of hyperbola

and one horizontal segment
ω5 Two ellipses and two segments of the hor-

izontal line
ω6 Two ellipses, one hyperbolic segment and

one horizontal segment inside domain
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Theorem 1.7 (Fokicheva [15, 16]) For all 1-connected domains the isoenergetic
manifold Q3 is homeomorphic to sphere S3, for domain bounded by two ellipses this
manifold is homeomorphic to S1 × S2

For the domains which boundary is smooth this fact was mentioned in the article
[25]. Consider now the integral value Λ < b and the trajectory corresponding to it.
This trajectory (or its continuation) is a tangent to the ellipse of the family (1.8) with
the parameter Λ and lies on the Liouville torus on the lower edge of the molecule.
The trajectory corresponding to the integral value Λ > b (or its continuation) is a
tangent to the hyperbola and lies on the upper edge of the molecule. The trajectory
corresponding to the irregular value Λ = b (or its continuation) must go through
the focuses of the family. The critical circles on the corresponding leaf lie along
the horizontal line. The number V of such circles coincides with the number of the
horizontal segments inside the domain. If V = 0 then the neighborhood of such leaf
is a saddle atom. Otherwise this is a torus and the molecule of such system is A–A.

Theorem 1.8 (Fokicheva [15, 16]) The marks and the saddle atom describing the
topology of the billiard system in regular domain are written in the following table.
The molecule describing the topology of the billiard system in domain Ω1.2.1 is A–A,
with marks r = 1 and ε = ±1.

Domain V Saddle
atom

Lower edges Upper edges n

Ω1 1 B r = 0 ε = 1 r = 0 ε = 1 ±1
Ω1.1.1 1 A∗ r = 0 ε = 1 r = 0 ε = 1 ±1
Ω1.1.2 1 B r = 0 ε = 1 r = ∞ ε = ±1
Ω1.2 2 C2 r = ∞ ε = ±1 r = 0 ε = 1
Ω1.2.1 0 – – –
Ω1.2.2 1 B r = ∞ ε = ±1 r = 0 ε = 1
Ω1.2.3 2 D1 r = ∞ ε = ±1 r = 0 ε = 1

The following theorem completes the discription of the topology of billiard sys-
tems in confocal quadrics.

Theorem 1.9 (Fokicheva [15, 16]) The molecule describing the topology of the
billiard system in singular domain (except the domain ω6) is A–A, r = 0, ε = 1.
For ω6 the molecule coincides with the molecule for the system in the domain Ω1.2.2.

The billiard systems admit the following generalization. Consider k copies of the
domainΩ1.2 (this domain is bounded by two ellipses) andmake a cut along the lower
segment of the coordinate line Oy. Then glue cuts by the following rule: the left edge
of the cut on the i-th copy is glued to the right edge of the cut on the i + 1-th copy.
This domain is called Δk . If we glue the rest of the edges of the cut together we get
the domain Δ⇐

k .
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For the first time the problem of the describing this billiard system was proposed
by Oshemkov and Kudryavtseva. Fokicheva showed that the isoenergetic manifold
Q3 for the system in the domainΔk is homeomorphic to S1× S2. She also computed
that the saddle atom describing the topology of the billiard system in Δk is A2k−1
[30], marks are same as marks for the molecule for domain Ω1.2. The isoenergetic
manifold Q3 for the system in the domain Δ⇐

k is homeomorphic to S3. The saddle
atom describing the topology of the billiard system in Δ⇐

k is D2k−1 [30], marks are
like marks in the molecule for domain Ω1.2.3.

1.5 Bertrand’s Manifolds and Their Properties

Consider the movement of a particle (moving point) in a central potential field on
a surface of bounded revolution, that is on a manifold S ≈ (a, b) × S1 with the
metric of revolution ds2 = dr2 + f 2(r)dϕ2 in polar coordinates (r, ϕmod2π) for
some arbitrary smooth function f (r). Denote the potential by V (r). The system is

Hamiltonian with hamiltonian H = p2r
2 + p2ϕ

2 f 2(r)
+ V (r). This construction appears

naturally in many physical and mechanical problems.
Originally this problem was formulated by Bertrand in 1873: if S = R2 and all

the bounded trajectories of the particle are closed (regardless of initial conditions)
what can be said about the potential V (r)? This problem was solved by Bertrand
himself. Later it was generalized as follows: consider a class P of central potentials
with certain properties (that is all the potentials yielding closed trajectories for a
given class of initial conditions) defined on the surface S; the problem is to find
all the pairs ( f ∈ C∞, V ∈ P), i.e. classify all manifolds of revolution allowing a
potential of the chosen class to exist and to describe all the corresponding potentials.

Definition 1.8 Manifolds of revolution equipped with a central potential of classP
are called Bertrand’s P−manifolds.

For Bertrand’s manifolds with such f (r) that f ⇐(r) = 0 ∀r ∈ (a, b) the latter
problemwas completely solved by Fedoseev et al. in the work [13] which generalizes
results obtained by Bertrand [2], Santoprete [37], Darboux, Libman and others.

In their work Fedoseev et al. considered the following classes of potentials:

Definition 1.9 Let V (r) be a central potential on the surface S. It is called closing, if

(∃) there exists a nonsingular bounded noncircular orbit γ in S;
(∀) every nonsingular bounded orbit in S is closed.

Potential V (r) is called locally closing, if

(∃)loc there exists a strongly stable circular orbit {r0} × S1 in S;
(∀)loc for every strongly stable circular orbit {r0} × S1 in S there exists an ε > 0,

that every nonsingular bounded orbit in [r0 − ε, r0 + ε] × S1 with kinetic
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moment in (K0 − ε, K0 + ε), is closed; K0 is the kinetic moment value for
the corresponding circular trajectory.

Potential V (r) is called semi-locally closing, if the conditions (∃), (∀)loc are satisfied
as well as the following:

(∀)sloc every nonsingular bounded orbit in U = [a⇐, b⇐] × S1 with kinetic moment
value equal to K̂ is closed, where a⇐ := inf r |γ , b⇐ := sup r |γ , γ is the
bounded orbit existing due to (∃), K̂ it’s kinetic moment value.

Potential V (r) is called strongly (weakly) closing, if the condition (∀)loc is satisfied
(it’s analog for every orbitally stable circular orbit) and the following condition is
satisfied: every circle {r} × S1 is strongly (orbitally) stable circular orbit.

The following theorem by Fedoseev et al. gives an explicit solution to the stated
above generalized Bertrand problem on surfaces (manifolds) of revolution without
“equators” (i.e. points x ∈ (a, b) such that f ⇐(x) = 0).

Theorem 1.10 (Fedoseev et al. [13]) Consider a manifold of revolution
S ≈ (a, b) × S1 with the metric ds2 = dr2 + f 2(r)dϕ2 in polar coordinates
(r, ϕmod2π) and f ⇐ = 0 on (a, b). Then

(a) the above defined classes of potentials coincide (therefore from now on we call
the potentials in question “closing” meaning potentials of all the defined types);

(b) if there exists such a ξ ∈ Q>0 that the following equality − f ⇐2(r)+ f (r) f ⇐(r)⇐ =
−ξ2 holds for every r ∈ (a, b) on the corresponding surface (Bertrand’s mani-
fold of type I) that there exists exactly two closing potentials and they are of the
form Vi (r) = (−1)i A|θ(r)|2−i2/ i + B, i = 1, 2, where A > 0, B are arbitrary
constants, θ(r) = − f ⇐(r)

f (r)
;

(c) if for every ξ ∈ Q>0 the equality − f ⇐2(r) + f (r) f ⇐(r)⇐ = −ξ2 is not tau-
tological, there exists a smooth function θ = θ(r), θ(r) = 0 on (a, b) such
that in the coordinates (θ, ϕmod2π) the metric can be written as ds2 =

dθ2

(θ2+c−tθ−2)2
+ dϕ2

μ2(θ2+c−tθ−2)
for some constants c ∈ R, t ∈ R \ {0}, μ ∈ Q>0

and there also exists exactly one closing potential on the corresponding sur-
face (Bertrand’s manifold of type II) which is of the form V2(r) = A

2θ(r)
+ B,

A, B ∈ R.

Bertrand’s manifolds of type I can be described explicitly. They are the rational
cones and rational coverings of sphere and hyperbolic plane, that is

f (r) = ξ fc(r − r0) :=

⎧⎪⎨
⎪⎩

±ξ(r − r0), c = 0,
ξ√
c
sin(

√
c(r − r0)), c > 0,

± ξ√−c
sh(

√−c(r − r0)), c < 0,
(1.11)

Type II Bertrand’s manifolds are classified with the pair of parameters (c, t);
the parameter μ is irrelevant to the geometry of the manifold. The following rigor
definition follows from the Theorem 1.10:
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Definition 1.10 Bertrand’smanifold is amanifold Sμ,c,t ≈ ∪kc,t
k=1 Ik,c,t ×S1, Ik,c,t ⊂

(−∞, 0), with coordinates θ, ϕmod2π , and the metric of revolution

ds2μ,c,t = dθ2

(θ2 + c − tθ−2)2
+ dϕ2

μ2(θ2 + c − tθ−2)
. (1.12)

where c, t ∈ R, μ > 0. The manifold consist of kc,t connected components. The
component corresponding to k = 1, is called main, corresponding to k = 2—
additional. The additional component exists only if t < 0. Manifolds with t = 0 are
called type I manifolds, with t = 0—type II.

Not all the type II Bertrand’s manifolds are real surfaces of revolution embedded
in R3. The following result holds:

Theorem 1.11 (Fedoseev et al. [13])

1. Additional component is never realized as a surface of revolution in R3;
2. Main component is realized completely as a surface of revolution for the fol-

lowing values of the parameters (c, t) and only for them: {t = 0, c ≥ 0, μ ≥
1} ∪ {t < 0, c = −2

√−t, μ ≥ 2} ∪ {t < 0, c ≥ 0, μ ≥ 1} ∪ {t < 0,−2
√−t <

c < 0, μ ∈ (1, μ̃)} ∪ {t < 0,−2
√−t < c < 0, μ ∈ [2,∞)}, where μ̃ is a real

positive root of the equation −256t + 192t x2 + (27c2 + 60t)x4 + 4t x6 = 0.

Partial realization of the main component of type II Bertrand’s manifolds was also
completely studied by the authors.

Movement in a closing potential field on a Bertrand’s manifold is an integrable
Hamiltonian systemwith an additional integral pϕ . Therefore a classical hamiltonian
analysis can be performed as well as the construction of Fomenko-Zishang invariants
of Liouville’s equivalence. This was done by Zagryadsky et al. in [13].

It appears thatBertrand’s systems are a simple and natural example ofHamiltonian
systems with non-compact atoms. Therefore those systems are a good testing case
for the non-compact analog to the theory of Fomenko-Zishang invariants.

It is also possible to generalize this problem further to the “Hamiltonian” study
of movement on an arbitrary surface of revolution. Some results concerning the
connections between the properties of the function f (r) and the bifurcation diagram,
the image of the moment map, atoms and molecules were obtained by Zagryadsky
et al.

Bertrand’s problem for the manifolds with equators is still under consideration
as well as the problem on pseudo-Riemannian manifolds of revolution. On those
manifolds the study of dynamics and topology of Liouville foliation is also a natural
and promising problem.
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1.6 Lie Algebras with Generic Coadjoint Orbits
of Dimension Two

The Euler top is a textbook example of integrable system in classical mechanics.
One of the reasons for its popularity is the simplicity of the analysis of its dynamics.
Hamiltonian representation on dual space to Lie algebra so(3) allows to easily see
the effects of small perturbations of “stable rotations”, for example. In this case we
don’t need to write the explicit solution in terms of elliptic functions. Instead we
can just look at the intersection of two-dimensional symplectic leaves and level sur-
face of system’s Hamiltonian. The intersection is one-dimensional and is an integral
trajectory of a system or a disjoint union of such trajectories.

The simplicity is mainly due to the fact that in case of Poisson structure with
symplectic leaves of dimension two the restriction of every Hamiltonian system on
such leaf is integrable as it needs only one integral that isHamiltonian itself. Therefore
the same approach for let’s say dynamical analysis holds for two-dimensional leaves
in case of a linear Poisson manifold of higher dimension. This posses a natural
question: what are the Possion brackets with generic symplectic leaves of dimension
two or, in other terms, what are the Lie algebras with generic coadjoint orbits of
dimension two? This question was formulated in [8] by Bolsinov et al. The complete
answer to the question is given by Konyaev in [27] (see also [38] for similar question
for complex Lie algebras in terms of homogeneous spaces). It turns out that it is
possible to classify up to isomorphism all real Lie algebras with generic coadjoint
orbits of dimension two.

Definition 1.11 We call Poisson bracket with Poisson tensor of rank less or equal
to 2 decomposable if there exist two vector fields v and w such that Poisson tensor
equals to v ∧ w.

From the properties of Schouten bracket immediately follows that wedge product
of two vector fields defines Poisson bivector iff the distribution spanned by these
fields is integrable. This construction gives a lot of simple examples of polynomial
bivector fields. For example, if v and w are both linear then their wedge product
defines quadratic Poisson bracket.

In linear case the decomposable brackets define a dual space to the series of Lie
algebras in the form of semidirect sum R +ρ Rn via representation ρ. These Lie
algebras are solvable. The vector fields, that define their Lie-Poisson tensor can be
chosen in the form of one linear field and one constant vector field, that also commute
and everywhere independent. As both fields are complete, that is their trajectories
exist for all times −∞ < t < ∞, and tangent to the symplectic leaves, it can be
shown that all the generic leaves are diffeomorphic to the two-dimensional plane R2.

Main tool for the classification of Lie algebras with generic coadjoint orbits of
dimension two is the following result by Konyaev, concerning linear vector field.
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Theorem 1.12 (Konyaev [27]) Consider a pair of linear vector fields v and w on
affine space Rn, that are everywhere dependent, i.e. v ∧ w = 0. Than at least one of
the following is true:

• v = λw, where λ is a constant,
• v = l(x)a, w = m(x)a, where a is a constant vector and l(x), m(x) are linear

functions

The following theorem provides a complete description of the Lie algebras with
generic coadjoint orbits of dimension two. It should be noted that the first infinite
series of Lie algebras is a result of the first part of the previous theorem, while the
exceptional cases are central extensions of three-dimensional Lie algebras that are
not isomorphic to the first infinite series.

Theorem 1.13 (Konyaev [27])Up to the direct sum with commutative Lie algebra of
orbitrary dimension there exists one infinite series of real Lie algebras with generic
coadjoint orbits of dimension two and six exeptional Lie algebras. The exeptional
Lie algabras are pairwise non-isomorphic and are not isomorphic to any Lie algebra
from the infinite series:
(1) Semidirect sums R +ρ Rn

(2) Three-dimensional simple Lie algebra so(3)
(3) Three-dimensional simple Lie algebra sl(2)
(4) Four-dimensional solvable Lie algebra A4,8. In the special basis e1, e2, e3, e4
the commutative relations for this Lie algebra have the form (given only non-zero
commutators):

[e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3

(5) Four-dimensional solvable Lie algebra A4,10. In special basis e1, e2, e3, e4 the
commutative relations for this Lie algebra have the form (given only non-zero com-
mutators):

[e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2

(6) Five-dimensional solvable Lie algebra A5,3. In special basis e1, e2, e3, e4, e5 the
commutative relations for this Lie algebra have the form (given only non-zero com-
mutators):

[e3, e4] = e5, [e3, e5] = e1, [e4, e5] = e3

(7) Six-dimensional nilpotent Lie algebra A6,3. In special basis e1, e2, e3, e4, e5, e6
the commutative relations for this Lie algebra have the form (given only non-zero
commutators):
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[e1, e2] = e6, [e1, e3] = e4, [e2, e3] = e5

To complete the classification one needs a theorem, that discribes Lie algebras
from the infinite series R +ρ Rn up to the isomorphism.

Definition 1.12 We call two linear operators P and P ⇐ equivalent iff for some non-
zero constantμ operators P andμP ⇐ are adjoint, that is have the same Jordan normal
forms.

Definition 1.13 We call two linear representations ρ and ρ⇐ of R in gl(Rn) equiva-
lent iff for any v ∈ R and v = 0 operators ρ(v) and ρ⇐(v) are equivalent.

Theorem 1.14 (Konyaev [27])Consider a pair of Lie algebras R+ρ Rn and R+ρ⇐ Rn.
They are isomorphic iff the representations ρ and ρ⇐ are equivalent.

In other words the set of semidirect sums is in bijection with the set of equivalence
classes of operators.

In [28, 36] the invariants for the exceptional Lie algebras are given. For the infinite
series the invariants are the first integrals of some linear vector fields. They have also
been computed see [6, 7]. Recently Konyaev found that these invariant admit a
simpler description.
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Chapter 2
On Hyperbolic Zeta Function of Lattices

L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol’skii and N. N.
Dobrovolsky

Dedicated to the 95th Birth Anniversary
of Nikolai Mikhailovich Korobov

(23.11.1917–25.10.2004)

Abstract This chapter provides an overview of the theory of hyperbolic zeta
function of lattices. A functional equation for the hyperbolic zeta function of
Cartesian lattice is obtained. Information about the history of the theory of the
hyperbolic zeta function of lattices is provided. The relations with the hyperbolic
zeta function of nets and Korobov optimal coefficients are considered.

2.1 Introduction

The introduction contains necessary definitions, results and historical facts about the
appearance of the concepts of the hyperbolic zeta functions of nets and lattices, and
gives its general theoretical review. The article is partly based on the monographs
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[8, 15], but it addresses the given problems from a more unified point of view. The
article also utilizes the data from Chap.6 of the monograph [30].

2.1.1 Lattices

First, we will recall some definitions.

Definition 2.1 Let λ1, . . . , λm, m → s be linearly independent system of vectors
from R

s. The set Λ of all vectors a1λ1 + · · · + amλm, where ai, 1 → i → m
independently run through all integers, is called an m-dimensional lattice in Rs, and
the vectors λ1, . . . , λm are considered its basis.

If m = s, then a lattice is considered complete, otherwise it is incomplete. In this
chapter we assume all lattices to be complete. Obviously, Zs is a lattice. It is also
called the fundamental lattice.

A latticeΛ is called an integer lattice inRs, ifΛ is a sublattice of the fundamental
lattice Zs, i.e.

Λ = {m1λ1 + · · · + msλs|m1, . . . , ms ⇐ Z}

and λ1, . . . , λs is a linearly independent system of integer vectors.

Definition 2.2 For a lattice Λ there is a dual lattice Λ≥, which is the set

Λ≥ = {y | ∈ x ⇐ Λ (y, x) ⇐ Z } . (2.1)

Obviously, a dual lattice Λ≥ for a lattice Λ is set by the dual basis λ≥
1, . . . , λ

≥
s ,

determined by the equations

(
λ≥

i , λj
) = δij =

{
1 i = j,

0 i ⊂= j.
(2.2)

It’s easy to see that the fundamental lattice Zs coincides with its dual lattice and
is also a sublattice of a dual lattice of any integer lattice. Moreover, ifΛ1 ∗ Λ ∗ Z

s,
then Zs ∗ Λ≥ ∗ Λ≥

1; thus, for any C ⊂= 0 we see that (CΛ)≥ = Λ≥/C. The equality
detΛ≥ = (detΛ)−1 is true for any lattice.

The set of all s-dimensional complete lattices from R
s will be denoted as

PRs. The set of Λ + x, where Λ ⇐ PRs and x ⇐ R
s is called a shifted lattice.

The set of all shifted lattices Λ + x from R
s will be denoted as CPRs.

Concepts of lattices, shifted lattices and lattice projections on coordinate subspaces
let us to discuss various issues of number theory in the uniform language.

E.g., if (aj, N) = 1(1 → j → s), then the set Λ = Λ(a1, . . . , as; N) of solutions
of the linearly homogeneous comparison is the lattice Λ with detΛ = N

http://dx.doi.org/10.1007/978-3-319-03146-0_6
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a1 · x1 + · · · + as · xs ∼ 0 (mod N).

If F is a totally real algebraic extension of degree s of the field of rational numbers
Q and ZF is a ring of algebraic integers of the field F, then the set Λ(F), which has
been derived in the following way from ZF , is an s-dimensional lattice

Λ(F) = {(Θ(1), . . . , Θ(s)) | Θ(1) ⇐ ZF}, (2.3)

where (Θ(1), . . . , Θ(s) ) is a system of algebraic conjugates, and if d is the discrim-
inant of the field F, then detΛ(F) = √

d.
These two examples, namely the lattice Λ(a1, . . . , as; N) of solutions of a linear

equation and the algebraic lattice Λ(F), are the focus of this chapter.
A lot of problems of geometry of numbers are defined in terms of shifted lattices

Λ + x, norms N(x) = |x1 · . . . · xs|, lattice norm minimum and shifted lattice norm
minimum.

For an arbitrary lattice Λ ⇐ PRs, a norm minimum is the value

N(Λ) = inf
x⇐Λ\{0} N(x).

For an arbitrary shifted lattice Λ + b ⇐ CPRs, a norm minimum is the value

N(Λ + b) = inf
x⇐(Λ+b)\{0} N(x).

Littlewood hypothesis has the following formula in these terms:
for s > 1 and any non-zero real numbers α1, . . . , αs for the lattice

Λ(α1, . . . , αs) = {(q, q · α1 + p1, . . . , q · αs + ps) | q, p1, . . . , ps ⇐ Z}

N(Λ(α1, . . . , αs)) = 0.

Oppenheim hypothesis, from which follows the Littlewood hypothesis, states in
lattice terms that

for s > 2 any s-dimensional lattice Λ N(Λ) > 0 is similar to an algebraic lattice.
These two hypotheses are closely related to the Korobov’s method of optimal

coefficients.

A norm minimum is closely connected with a truncated norm minimum, or a
hyperbolic lattice parameter. This is the value ([14, 17])

q(Λ) = min
x⇐Λ\{0} q(x),

which has simple geometrical meaning:
the hyperbolic cross Ks(T) does not contain nonzero points of the lattice Λ with

T < q(Λ).
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A hyperbolic cross is the area

Ks(T) = {x | q(x) → T},

where q(x) = x1 · . . . · xs is a truncated norm of x, and for a real x we will define
x = max(1, |x|) ([31], 1963).

Since max(1, N(x)) → q(x), it follows that max(1, N(Λ)) → q(Λ) for any lattice
Λ, and the Minkowski’s theorem on convex bodies states that

q(Λ) → max(detΛ, 1).

The issue of calculation of the hyperbolic parameter of the lattice of solutions of a
linear equation has been addressed in the article [21].

2.1.2 Exponential Sums of Lattices

We will use Gs = [0; 1)s to denote a s-dimensional half-open cube. A net is an
arbitrary nonempty finite set M in Gs. A net with weights is an ordered pair (M, ρ),
where ρ is an arbitrary numerical function on M. For the sake of convenicence,
we will indentify a net M with an ordered pair (M, 1), that is, with a net with unit
weights: ρ ∼ 1.

Definition 2.3 A product of two nets with weights (M1, ρ1) and (M2, ρ2) in Gs is a
net with weights (M, ρ):

M = { {x + y} | x ⇐ M1, y ⇐ M2 }, ρ(z) =
∑

{x+y}= z,
x ⇐M1, y ⇐M2

ρ1(x)ρ2(y),

where {z} = ({z1}, . . . , {zs}).
The product of nets with weights (M1, ρ1) and (M2, ρ2) is denoted by

(M1, ρ1) · (M2, ρ2).

Moreover, if (M, ρ) = (M1, ρ1)·(M2, ρ2), thenwewill writeM = M1 ·M2 assuming
that a net M is the product of nets M1 and M2 (see [23]).

Definition 2.4 An exponential sum of a net with weights (M, ρ) for an arbitrary
integer vector m is

S(m, (M, ρ)) =
∑
x ⇐M

ρ(x)e2π i(m,x), (2.4)

and a normed exponential sum of a net with weights is
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S≥(m, (M, ρ)) = 1

|M|S(m, (M, ρ)).

Let ρ(M) =
N∑

j=1
|ρj|, then the following trivial estimate is true for all normed

exponential sums of a net with weights:

|S≥(m, (M, ρ))| → 1

|M|ρ(M).

It is easy to see, that for any nets with weights (M1, ρ1) and (M2, ρ2) the following
equality is true:

S(m, (M1, ρ1) · (M2, ρ2)) = S(m, (M1, ρ1)) · S(m, (M2, ρ2)). (2.5)

Definition 2.5 If the following equality is true:

(M, 1) = (M1, 1) · (M2, 1),

then nets M1 and M2 are called coprime nets.

Thus, if M1 and M2 are coprime nets then the equation z = {x + y} does not have
more than one solution for x ⇐ M1 and y ⇐ M2. That is why the following equality
is only true for coprime nets: |M1 · M2| = |M1| · |M2|.

When ρ ∼ 1 we obtain a definition of an exponential sum of a net.

Definition 2.6 An exponential sum of a net M for an arbitrary integer vector m is
the value

S(m, M) =
∑
x ⇐M

e2π i(m,x),

and a normed exponential sum of a net is

S≥(m, M) = 1

|M|S(m, M).

It is easy to see, that for any coprime nets M1 and M2 the following equality is true:

S(m, M1 · M2) = S(m, M1) · S(m, M2). (2.6)

Let us take for an arbitrary integer lattice Λ, an integer vector m and an arbitrary
vector x from a dual lattice Λ≥ the following values:

δΛ(m) =
{
1, if m ⇐ Λ,

0, if m ⇐ Z
s \ Λ,

δ≥
Λ(x) =

{
1, if x ⇐ Z

s,

0, if x ⇐ Λ≥ \ Zs.
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The δΛ(m) is the multidimensional generalisation of the famous Korobov’s number-
theoretical symbol

δN (m) =
{
1, if m ∼ 0 (mod N),

0, if m ⊂∼ 0 (mod N).

Definition 2.7 Ageneralised parallelepipedal netM(Λ) is the setM(Λ) = Λ≥≤Gs.

For an integer lattice Λ its generalised parallelepipedal net M(Λ) is a complete
system of residues of a dual lattice Λ≥ modulo the fundamental sublattice Zs. Thus,
we have the equality |M(Λ)| = detΛ.

Definition 2.8 A complete linear multiple exponential sum of an integer lattice Λ

is
s(m,Λ) =

∑
x ⇐M(Λ)

e2π i(m,x) =
∑

x ⇐Λ≥/Zs

e2π i(m,x),

where m is an arbitrary integer vector.

It is clear, that for a generalised parallelepipedal net M(Λ) the following equality is
true: S(m, M(Λ)) = s(m,Λ).

Definition 2.9 A complete linear multiple exponential sum of a dual lattice Λ≥ of
an integer lattice Λ is

s≥(x,Λ) =
∑

m ⇐Zs/Λ

e2π i(m,x) =
N∑

j = 1

e2π i(mj,x),

where x is an arbitrary vector of the dual lattice Λ≥ and m1, . . . , mN is a complete
system of residues of the lattice Zs modulo the sublattice Λ.

The following dual statements are true:

Theorem 2.1 For s(m,Λ) the following equality is true:

s(m,Λ) = δΛ(m) · detΛ.

Theorem 2.2 For any integer lattice Λ with detΛ = N and for an arbitrary x ⇐ Λ≥
the following equality is true:

s≥(x,Λ) = δ≥
Λ(x) · detΛ.
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2.1.3 Multidimensional Quadrature Formulas and Hyperbolic
Zeta Function of a Net

First works by Korobov were published in 1957–1959 [33–35], where the methods
of number theory were applied to the problems of numerical integration of multiple
integrals. After the class of periodical functions Eα

s had been defined, it has become
possible to use methods of harmonic analysis and the theory of exponential sums
(an important branch of analytic number theory) to estimate errors of approximate
integration. The history of the creation of thismethod is presented in the chapter [32].

Banach space Eα
s consists of functions f (x), where each of s variables x1, . . . , xs

has a period of one, for which their Fourier series

f (x) =
∑

m⇐Zs

C(m)e2π i(m1x1+···+msxs) (2.7)

comply with the conditions

sup
m⇐Zs

|C(m)|(m1 . . . ms)
α = ⇔f (x)⇔Eα

s
< ⊥. (2.8)

Clearly, such Fourier series are absolutely convergent, since

⇔f (x)⇔l1 =
∑

m⇐Zs

|C(m)| → ⇔f (x)⇔Eα
s
(1 + 2ζ(α))s,

and thus for any (α > 1) they are continuous functions. Here and hereafter, as usual,
ζ(α) is the Riemann zeta function.

A truncated norm surface with parameter t ≥ 1 is the set Ns(t) = {x | q(x) = t,
x ⊂= 0}, which is the boundary of the hyperbolic cross Ks(t).

For a natural t on a truncated norm surface there is τ ≥
s (t) of integer nonzero points,

where1

τ ≥
s (t) =

∑∞

m⇐N(t)

1 (2.9)

is the number of presentations of the natural number t as t = m1 . . . ms.
Using new definitions, we can rewrite the expression for the norm ||f (x)||Eα

s
. The

following equality is true:

||f (x)||Eα
s

= max

(
|C(0)|, sup

t⇐N

(
tα max

m⇐N(t)
|C(m)|

))
.

It is easy to see, that an arbitrary periodic function f (x) from Eα
s (C) is bounded

in absolute value by C (1 + 2ζ(α))s, and this estimate is achieved by the function

1 Here and hereafter
∑∞ denotes summation over systems: (m1, . . . , ms) ⊂= (0, . . . , 0).
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f (x) =
⊥∑

m=−⊥

C

(m1 · . . . · ms)α
e2π i(m,x)

in the point x = 0.
Obviously, Eα

s (C) ∗ Eβ
s (C) for α ≥ β. For any periodic function

f (x) ⇐ Eα
s (C) ∗ Eβ

s (C)

the following inequality is true

||f (x)||Eα
s

≥ ||f (x)||
Eβ

s
.

The equality is true only for finite exponential polynomials

f (x) = C(0) +
∑

m⇐N(1)

C(m) e2π i(m,x).

Let us take the quadrature formula with weights

1⎧

0

. . .

1⎧

0

f (x1, . . . , xs)dx1 . . . dxs = 1

N

N∑
k=1

ρkf [ξ1(k), . . . , ξs(k)] − RN [f ]. (2.10)

Here, RN [f ] is the error resulting from the replacement of the integral

1⎧

0

. . .

1⎧

0

f (x1, . . . , xs)dx1 . . . dxs

with the weighted average value of the function f (x1, . . . , xs), calculated in points

Mk = (ξ1(k), . . . , ξs(k)) (k = 1, . . . , N).

The set M of points Mk is a net M, and the points themselves are the nodes of
the quadrature formula. The values ρk = ρ(Mk) are the weights of the quadrature
formula. In this chapter we assume all weights to be real-valued.

Definition 2.10 Zeta function of a net M with weights ρ and parameter p ≥ 1 is
the function ζ(α, p|M, ρ) defined in the right half-plane α = σ + it (σ > 1) by the
Dirichlet series

ζ(α, p|M, ρ) =
⊥∑∞

m1,...,ms=−⊥

|S≥(m, (M, ρ))|p
(m1 . . . ms)α

=
⊥∑

n=1

S≥(p, M, ρ, n)

nα
, (2.11)
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where

S≥(p, M, ρ, n) =
∑

m⇐N(n)

|S≥(m, (M, ρ))|p. (2.12)

The definition provides us with the following inequality:

ζ(pα, p|M, ρ) → ζ p(α, 1|M, ρ). (2.13)

When all the weights are 1, we get the zeta function of a net M with parameter p
and denote it as ζ(α, p|M).

The formula (2.11) provides that the zeta function ζ(α, p|M, ρ) of a net M with
weights ρ and parameter p ≥ 1 is a Dirichlet series, which converges in the right
half-plane α = σ + i · t (σ > 1).

The following two Korobov’s generalised theorems on errors of quadrature
formulas are true:

Theorem 2.3 Let the Fourier series of a function f (x) absolutely converge, with
C(m) being its Fourier coefficients and S(m, (M, ρ)) be an exponential sum of a
lattice with weights, then the following equation is true:

RN [f ] = C(0)

(
1

N
S(0, (M, ρ)) − 1

)
+ 1

N

⊥∑∞

m1,...,ms=−⊥
C(m)S(m, (M, ρ)) =

= C(0)
(
S≥(0, (M, ρ)) − 1

) +
⊥∑∞

m1,...,ms=−⊥
C(m)S≥(m, (M, ρ)) (2.14)

and with N ≈ ⊥ the error RN [f ] will tend to zero only if the weighted nodes
of the quadrature formula are evenly distributed in a s-dimensional unit cube.

Theorem 2.4 If f (x1, . . . , xs) ⇐ Eα
s (C), then the following estimate is true for the

error of the quadrature formula:

|RN [f ]| → C

⎪⎪⎪⎪ 1N S(0, (M, ρ)) − 1

⎪⎪⎪⎪ + C

N

⊥∑∞

m1,...,ms=−⊥

|S(m, (M, ρ))|
(m1 . . . ms)α

=

= C
⎪⎪S≥(0, (M, ρ)) − 1

⎪⎪ + C · ζ(α, 1|M, ρ), (2.15)

where the sum S(m, (M, ρ)) is defined by the equality (2.4). On the class Eα
s (C) this

estimate cannot be improved.

The Theorem 2.4 can also be formulated as:
For the norm ⇔RN [f ]⇔Eα

s
of the linear functional of the error of approximate

integration with quadrature formula (2.10) the following equality is true:
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⇔RN [f ]⇔Eα
s

=
⎪⎪⎪⎪ 1N S(0, (M, ρ)) − 1

⎪⎪⎪⎪ + 1

N

⊥∑∞

m1,...,ms=−⊥

|S(m, (M, ρ))|
(m1 . . . ms)α

=

= ⎪⎪S≥(0, (M, ρ)) − 1
⎪⎪ + ζ(α, 1|M, ρ). (2.16)

The method of optimal coefficients has proven to be the most productive for
construction for the s-dimensional cubeGs = [0; 1)s ofmultidimensional quadrature
formulas with parallelepipedal nets of the from:

⎧

Gs

⎧
f (x)dx = 1

N

N∑
k=1

f

({
a1k

N

⎨
, . . . ,

{
ask

N

⎨)
− RN (f ),

where RN (f ) is the error of the quadrature formula, and integers aj (aj, N) = 1
(j = 1, .., s) are the optimal coefficients, chosen in a special way.

The first algorithms for calculation of optimal coefficients were created by
Korobov in 1959. He is also the author of the most efficient and high-performance
algorithms we use nowadays (see [38]). These algorithms are based on the lemma
on hyperbolic parameter of the lattice of solutions of a linear equation by Gelfand
(see [13, 28, 37, 38]). Based on the Korobov’s suggestion, Dobrovol’skii and
Klepikova have made tables of optimal coefficients for dimensions s → 30 and mod-
ulo N = 2k 3 → k → 22 [11], which is far beyond the scope of the famous tables by
Saltykov. The chapter by Bocharova, Van’kova and Dobrovol’skii [2] describes the
modification of the Korobov’s algorithm, which allows to find not only one optimal
net modulo N = 2k , but the whole class of such lattices. One more class of high-
performance algorithms for optimal coefficients calculation has been found in the
article [3]. Problems of finding optimal coefficients for combined lattices have been
addressed in the articles [22, 39].

A series of important articles on applying divisor theory to the optimal coefficients
search for parallelepipedal nets have been produced by Voronin and Timergaliyev
(see [41–44]). In fact, these articles describe algorithms for the search of integer
lattices with high-value hyperbolic lattice parameter.

In the study of the error of approximate integration for quadrature formulas
with parallelepipedal nets on the class of periodical functions Eα

s Korobov in his
article [34] for the first time mentions a special case of the hyperbolic zeta function
of a lattice Λ = Λ(a1, . . . , as; N) for real α > 1:

ζH(Λ|α) =
+⊥∑∞

m1,...,ms=−⊥

δN (a1 · m1 + · · · + as · ms)

(m1 · . . . · ms)α
, (2.17)

where the Korobov’s symbol δN (m) is defined by the following equalities:

δN (m) =
{
1 if m ∼ 0 (mod N),

0 if m ⊂∼ 0 (mod N),
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and (aj, N) = 1 (j = 1, 2, . . . , s).
The hyperbolic zeta function of a lattice Λ = Λ(a1, . . . , as; N) is important,

because for the parallelepipedal net M(a, N), defined by the formula

M(a, N) =
{

Mk =
({

a1k

N

⎨
, . . . ,

{
ask

N

⎨)⎪⎪⎪⎪ k = 0, . . . , N − 1

⎨
,

there is an equality ζH(Λ|α) = ζ(α, 1|M(a, N)), i.e. the norm of the linear functional
of the error of approximate integration with quadrature formulas with parallelpipedal
nets equals the hyperbolic zeta function of the corresponding integer lattice of solu-
tions of a linear equation.

The hyperbolic zeta function of the form (2.17) appears in a lot of articles
addressing the estimate of errors of multidimensional quadrature formulas with par-
allelepipedal nets on the class Eα

s . Specifically, Bakhvalov [1] proved the estimate

ζH(Λ|α) ∀ (ln q(Λ) + 1)s−1

q(Λ)α
. (2.18)

Korobov ([35], 1959) proved, that for such lattices

ζH(Λ|α) ∃ lns−1 detΛ

(detΛ)α
(2.19)

for any integers a1, . . . , as, which are coprime with N .
There are algorithms for finding a1, . . . , as such that

ζH(Λ|α) ∀ lnsα detΛ

(detΛ)α
(Korobov 1960),

ζH(Λ|α) ∀ ln(s−1)α detΛ

(detΛ)α
(Bakhvalov and Korobov). (2.20)

In its general form the hyperbolic zeta function of lattices appears in works by
Frolov [26, 27]. Frolov’s thesis [26] states, that for any α > 1 and an arbitrary
s-dimensional lattice Λ the series

∑∞

x⇐Λ

(x1 · . . . · xs)
−α

absolutely converges.
Having studied an algebraic lattice of the form (2.3), Frolov proved, that for

t > 1 and the lattice Λ(t, F) = tΛ(F) with detΛ(t, F) = ts detΛ(F) the following
estimate is true:

ζH(Λ(t, F)|α) ∀ lns−1 detΛ(t, F)

(detΛ(t, F))α
. (2.21)
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The Frolov’s method is further developed in works by Bykovskii [4, 5] and by
Dobrovol’skii [14, 16]. Construction from the chapter [14] shows, that the methods
of Korobov and Frolov are two opposite poles of the theory of quadrature formulas
with generalised parallelepipedal nets and special weight-function. At the same time,
the problem of calculation of errors of approximate integration by these formulas
can be turned into a number-theoretic problem of estimating the hyperbolic zeta
function of the corresponding lattice once and for all. There’s no need to estimate
the norm of linear functional of errors of approximate integration for each new type
of generalised parallelepipedal nets all over again.

The problems of integration over modified nets have been addressed in
chapters [9, 10].

2.1.4 Hyperbolic Zeta Function of Lattices

The term “hyperbolic zeta function of lattice” has been introduces by Dobrovol’skii
in 1984 in his works [14, 16], where systematic study of the function ζH(Λ|α) has
been started.

Specifically, lower estimates for the hyperbolic zeta function of an arbitrary
s-dimensional lattice have been obtained:

{
ζH(Λ|α) ≥ C1(α, s)(detΛ)−1, if 0 < detΛ → 1,
ζH(Λ|α) ≥ C2(α, s)(detΛ)−α lns−1 detΛ, if detΛ > 1,

(2.22)

where C1(α, s), C2(α, s) > 0 are constants depending only on α and s.
An upper estimate for the hyperbolic zeta function of an s-dimensional lattice has

been proven:{
ζH(Λ|α) → C3(α, s)C1(Λ)s, if q(Λ) = 1,
ζH(Λ|α) → C4(α, s)q−α(Λ)(ln q(Λ) + 1)s−1, if q(Λ) > 1.

(2.23)

This result is a generalisation of the Bakhvalov’s theorem, i.e. the inequality (2.18).
The estimate (2.23) provides uswith the following conclusions. Specifically, it uncon-
ditionally provides us with the result, obtained by Frolov (2.21), as the hyperbolic
parameter q(Λ(t, F)) = ts for t > 1.

Dobrovol’skii has also proven the following theorem: for any integer lattice Λ

and a natural n we have the following presentation:

ζH(Λ|2n) = −1 + (detΛ)−1
∑

x⇐M(Λ)

s⎩
j=1

(
1 − (−1)n(2π)2n

(2n)! B2n(xj)

)
, (2.24)

where B2n(x) is a Bernoulli polynomial of the order 2n and M(Λ) is the generalised
parallelepipedal net of the lattice Λ, which consists of the points of the dual lattice
Λ≥, lying in the s-dimensional half-open unit cube Gs = [0; 1)s;
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ζH(Λ | 2n + 1) = −1 + 1

detΛ

∑
x⇐M(Λ)

s⎩
j=1

⎛
⎝1 − (−1)n (2π)2n+1

(2n + 1)! ×

×
1⎧

0

B2n+1({y + xj}) + B2n+1({y − xj})
2

ctg(πy) dy

⎞
⎠ .

This theorem points out an analogy between the hyperbolic zeta function of a lattice
and the Riemann zeta function, for which

ζ(2n) = (−1)n−1 2
2n−1π2n

(2n)! B2n,

ζ(2n + 1) = (−1)n+1 2
2nπ2n+1

(2n + 1)!
1⎧

0

B2n+1(y)ctg(πy) dy.

Also, the following equality is true:

ζ(α) = 1

2
ζH(Z|α) α = σ + it σ > 1.

The presentation (2.24) unconditionally states that for any integer lattice Λ and an
even α = 2n the value of ζH(Λ|2n) is a transcendental number.

The formula (2.24) allows to utilize O(ns detΛ) of operations to calculate
ζH(Λ|2n). In their joint article, Dobrovol’skii, Esayan, Pihtilkov, Rodionova and
Ustyan [20] have obtained the formula, which allows to calculate ζH(Λ(a; N)|2)
using O(lnN) operations.

For the hyperbolic zeta function of the lattice Λ(t, F) Dobrovol’skii, Van’kova
and Kozlova in their joint article [12] have obtained the asymptotic formula

ζH(Λ(t, F)|α) = 2(detΛ(F))α

R(s − 1)!

⎛
⎝∑

(w)

1

|N(w)|α

⎞
⎠ lns−1 detΛ(t, F)

(detΛ(t, F))α
+

+ O

(
lns−2 detΛ(t, F)

(detΛ(t, F))α

)
, (2.25)

where R is the regulator of a field F, and in the sum
∑
(w)

1

|N(w)|α the summation

is over all the main ideals of the ring ZF .
At the first stage of research (1984–1990), the function ζH(Λ|α) had been studied

only for real α > 1. But the joint articles by Dobrovol’skii, Rebrova and Roshchenya
in 1995 ([17, 19]) introduced a new stage of research of the hyperbolic zeta function
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ζH(Λ|α) of a lattice Λ from different aspects: firstly, as a function of a complex
argument α, and secondly, as a function on a metric space of lattices.

Thus,wehave the followingmost general definition of the hyperbolic zeta function
of a lattice Λ for a complex α.

Definition 2.11 The hyperbolic zeta function of a latticeΛ is the function ζH(Λ|α),
α = σ + it defined for σ > 1 by the absolutely convergent series

ζH(Λ|α) =
∑∞

x ⇐Λ

(x1 · . . . · xs)
−α. (2.26)

By Abel’s theorem ([6], p. 106) the hyperbolic zeta function of lattices can be
represented in the following integral form:

ζH(Λ|α) = α

⊥⎧

1

D(t|Λ)dt

tα+1 ,

where D(T |Λ) is the number of nonzero points of the lattice Λ in the hyperbolic
cross Ks(T).

First, we note that the hyperbolic zeta function of lattices is a Dirichlet series. Let
us give some definitions.

The norm spectrum of a lattice Λ is the set of norm values in the nonzero points
of the lattice Λ:

Nsp(Λ) = {λ | λ = N(x), x ⇐ Λ\{0}}.

Correspondingly, the truncated norm spectrum of a lattice Λ is the set of truncated
norm values in the nonzero points of the lattice:

Qsp(Λ) = {λ | λ = q(x), x ⇐ Λ\{0}}.

The truncated norm spectrum is a discrete numerical set, i.e.

Qsp(Λ) = {λ1 < λ2 < · · · < λk < · · · } lim
k≈⊥ λk = ⊥.

Obviously,
N(Λ) = inf

λ⇐Nsp(Λ)
λ, q(Λ) = min

λ⇐Qsp(Λ)
λ = λ1.

The order of a point of the spectrum is the number of lattice points with the given
norm value. If the number of such lattice points is infinite, then we assume that
the point of the spectrum has an infinite order. The order of a point λ of the norm
spectrum is denoted by n(λ), and the order of a pointλ of the truncated norm spectrum
is denoted by q(λ) correspondingly.



2 On Hyperbolic Zeta Function of Lattices 37

The concept of the order of a point of the spectrum provides a better understanding
of the definition of the hyperbolic zeta function of a lattice. In it instead of the norm
of a point x appears the truncated norm.

Let us give an example of a lattice Λ, for which the series

∑∞

x⇐Λ

|x1 · . . . · xs|−α

diverges for any α > 1.
Actually, let Λ = tΛ(F) be an algebraic lattice, then

∑∞

x⇐Λ

|x1 · . . . · xs|−α =
∑∞

w⇐ZF

|ts · N(w)|−α, (2.27)

where N(w) is the norm of an algebraic integer from the ring ZF . By Dirichlet’s unit
theorem the series on the right side of the equality (2.27) diverges for anyα > 1, as the
ring ZF of algebraic integers of a totally real algebraic number field F of the power s
has an infinite number of units ε and for them |N(ε)| = 1. Thus, in this case each
point of the spectrum has an infinite order, which leads to the series’ divergence
for any α.

This example shows that the usage of the truncated norm of the vector q(x) =
x1 · . . . · xs instead of the norm N(x) = |x1 · . . . · xs| in the definition of ζH(Λ | α) has
substantial meaning, as it provides absolute convergence of the series of the hyper-
bolic zeta function of any lattice Λ.

The discrete nature of the truncated norm spectrum provides that the hyperbolic
zeta function of an arbitrary lattice Λ can be presented as a Dirichlet series:

ζH(Λ|α) =
∑∞

x⇐Λ

(x1 · . . . · xs)
−α =

∑∞

x⇐Λ

q(x)−α =
⊥∑

k=1

q(λk)λ
−α
k =

=
∑

λ⇐Qsp(Λ)

q(λ)λ−α. (2.28)

As D(T |Λ) = 0 for T < q(Λ), then

ζH(Λ|α) = α

⊥⎧

q(Λ)

D(t|Λ)dt

tα+1 .

The equality (2.28) provides, that for any complex α = σ + it in the right half-plane
(σ > 1) there is a regular function of a complex variable, defined by the series (2.26)
and the following inequality is true:

|ζH(Λ|α)| → ζH(Λ|σ).



38 L. P. Dobrovolskaya et al.

A reasonable question arises, whether the hyperbolic zeta function ζH(Λ|α) of
an arbitrary lattice Λ can be extended to the whole complex plane. In their works,
Dobrovol’skii, Rebrova and Roshchenya ([17, 19]) addressed these issues for PZs,
i.e. the set of all integer lattices, PQs, i.e. the set of all rational lattices, PDs i.e. the
set of all lattices with diagonal matrices. It has been proven, that

for any integer lattice Λ ⇐ PZs the hyperbolic zeta function ζH(Λ|α) is a regular
function on all α-plane, excluding the point α = 1, where it has a pole of order s.

For any lattice Λ ⇐ PQs the hyperbolic zeta function ζH(Λ|α) is also a regular
analytic function on all the α-plane, excluding the point α = 1, where it has a pole
of order s.

The behavior of the hyperbolic zeta function of lattices on the lattice space has
been studied. In particular, it was found that

if a sequence of lattices {Λn} converges to the lattice Λ, then the sequence of the
hyperbolic zeta functions of lattices ζH(Λn|α) converges uniformly to the hyperbolic
zeta function of the lattice ζH(Λ|α) in any half-plane σ ≥ σ0 > 1.

Another result of this kind can be formulated as follows:
for any point α on the α-plane, except of the point α = 1, there is neighborhood

|α − β| < δ such that for any lattice Λ = Λ(d1, . . . , ds) ⇐ PDs

lim
M≈Λ,M⇐PDs

ζH(M|β) = ζH(Λ|β),

and this convergence is uniform in the neighborhood of the point α.
The derivation of these results is principally based on the asymptotic formula

for the number of points of an arbitrary lattice in the hyperbolic cross as a func-
tion of the parameter of the hyperbolic cross. The formula has been obtained by
Dobrovol’skii and Roshchenya ([18]):

D(T | Λ) = 2sT lns−1 T

(s − 1)! detΛ + ΘC(Λ)
2sT lns−2 T

detΛ
,

whereC(Λ) is an effective constant, calculated through the lattice basis, and |Θ| → 1.
Gelfond has already pointed out an important relationship between the value of

the hyperbolic parameter q(Λ) of a lattice Λ(a1, . . . , as−1, 1; N) and the valule

Q = min
k=1,...,N−1

k · k1 · . . . · ks−1,

where integers k, k1, . . . , ks−1 comply with the system of equations




k1 ∼ a1 · k
k2 ∼ a2 · k
. . . . . . . . .

ks−1 ∼ as−1 · k

(mod N)
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with the lattice of solutions Λ(p)(a1, . . . , as−1, 1; N). This result is known as the
Gelfond’s lemma. It turned out that this relationship manifests itself during the ana-
lytic continuation into the left half-plane too.

Theorem 2.5 In the left half-plane α = σ + it (σ < 0) the following equalities are
true:

ζH(Λ(a1, . . . , as−1, 1; N) | α) =

=
s∑

t=1

Mt
αN−αt

∑
jt⇐Jt,s

Nt−1ζ(Λ(p)(aj1 , . . . , ajt ; N) | 1 − α),

ζH(Λ(p)(a1, . . . , as−1, 1; N) | α) = −1 +
(
1 + Mα

Nα
ζ(Z | 1 − α)

)s

−

− Ms
α

Nαs
ζ s(Z | 1 − α) + ζ(Λ(a1, . . . , as−1, 1; N) | 1 − α)

Ms
αN

Nαs
,

where

M(α) = 2Γ (1 − α)

(2π)1−α
sin

πα

2
.

This theorem provides the following result for the values of the hyperbolic zeta
function of these lattices in negative odd points:

Theorem 2.6 For α = 1 − 2n, n ⇐ N the following equalities are true:

ζH(Λ(a1, . . . , as−1, 1; N) | α) =

=
s∑

t=1

(−1)tN2nt−t

nt

∑
jt⇐Jt,s

N−1∑
k1,...,kt−1=0

t−1⎩
ν=1

B2n

({
kνajν

N

⎨)
×

× B2n

({−(aj1k1 + · · · + ajs−1ks−1)

N

⎨)
,

ζH(Λ(p)(a1, . . . , as−1, 1; N) | α) = −1 +
(
1 + N2n−1B2n

n

)s

−

−
(

N2n−1B2n

n

)s

+
(
1

n

)s N−1∑
k=0

s⎩
j=1

B2n

({
ajk

N

⎨)
,

and negative even points are trivial zeroes.
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2.1.5 Generalised Hyperbolic Zeta Function of Lattices

Based on the analogy between the hyperbolic zeta function of lattices and the
Riemann zeta function, Rebrova in the article [40] studied the generalisation of
the hyperbolic zeta function of lattices as an s-dimensional analogue of the Hurwitz
zeta function. In her research she tried to answer the questions, naturally arising
from such an approach: to what extent can the results regarding the hyperbolic zeta
function of a lattice be transferred onto a general case? Can we obtain an analytic
continuation of the generalised hyperbolic zeta function of a lattice to the whole
complex plane? What is the behaviour of the generalised hyperbolic zeta function of
a lattice as a function on the metric lattice space?

Definition 2.12 The generalised hyperbolic zeta function of a lattice Λ is the
function ζH(Λ + b|α), defined in the right half-plane α = σ + it (σ > 1) by
the absolutely convergent series

ζH(Λ + b | α) =
∑∞

x⇐Λ

(x1 + b1 · . . . · xs + bs)
−α =

∑
x⇐(Λ+b)\{0}

q(x)−α, (2.29)

where
∑∞ means, that the point x = −b is excluded from the summation.

From this point of view, we have to examine the place of shifted lattices and
explore the possibility to define metrics on them.

Chapter 2 of the monograph [15] (see also [8]) addresses CPRs i.e. the set of all
shifted lattices Λ(x) = Λ + x, where Λ ⇐ PRs is an arbitrary s-dimensional real
lattice, and x ⇐ Rs is an arbitrary vector. A metric is defined on this set.

For the construction of an analytic continuation of the generalised hyperbolic zeta
function, a fairly broad class of lattices is allocated—Cartesian lattices. We need the
following definitions.

Definition 2.13 A simple Cartesian lattice is a shifted lattice Λ + x of the form

Λ + x = (t1Z + x1) × (t2Z + x2) × · · · × (tsZ + xs),

where tj ⊂= 0 (j = 1, . . . , s).

In other words, if the lattice Λ+ x is a simple Cartesian lattice then it is the result
of the stretching of the fundamental lattice along the axes with coefficients t1, . . . , ts
followed by a shift by the vector x.

Definition 2.14 A Cartesian lattice is a shifted lattice, which can be presented as a
union of a finite number of simple Cartesian lattices.

Definition 2.15 ACartesian lattice is a shifted lattice with a shifted sublattice which
is a simple Cartesian lattice.

Theorem 2.7 Definitions 2.14 and 2.15 are equivalent.

http://dx.doi.org/10.1007/978-3-319-03146-0_2
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Theorem 2.8 Any shift of a rational lattice is a Cartesian lattice.

Two lattices Λ and Γ are considered similar, if

Γ = D(d1, . . . , ds) · Λ, Λ = D

(
1

d1
, . . . ,

1

ds

)
· Γ,

where

D(d1, . . . , ds) =
⎛
⎜⎝

d1 . . . 0
...

. . .
...

0 . . . ds

⎞
⎟⎠

is an arbitrary diagonal matrix, d1 · . . . · ds ⊂= 0.
The set of all nonsingular real diagonal matrices of an order s will be denoted as

Ds(R) = {D(d1, . . . , ds) | d1 · . . . · ds ⊂= 0}.

Regarding the operation of matrix multiplicationDs(R) is a multiplicative abelian
group.

The set of all unimodular real diagonal matrices DUs(R) is a subgroup of the
group Ds(R). Moreover,

Ds(R) ∪= DUs(R) × R
+,

where isomorphism ϕ between Ds(R) and the direct product DUs(R) ×R
+ is given

by the rule
ϕ(D(d1, . . . , ds)) =

=
(

D

(
d1

s
√|d1 · . . . · ds| , . . . ,

ds
s
√|d1 · . . . · ds|

)
, s
√|d1 · . . . · ds|

)
.

Theorem 2.9 An arbitrary Cartesian lattice is similar to a shifted integer lattice.

Definition 2.16 An integer latticeΛ is simple, if its projections on any axis coincide
with Z.

Theorem 2.10 Any integer lattice Λ is similar to a simple lattice uniquely deter-
mined by the lattice Λ.

Theorem 2.11 For any Cartesian lattice Λ there is only one presentation:

Λ = D(t1, . . . , ts)Λ0, t1, . . . , ts > 0,

where Λ0 is a simple lattice.

Let M≥(Λ) be the set of points of the lattice Λ located in the s-dimensional half-
open cube [0; detΛ)s. Thus, for any integer lattice Λ the set M≥(Λ) is the complete
system of residues of the lattice Λ modulo the sublattice detΛ × Z

s.
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Theorem 2.12 Let

x(k1, . . . , ks−1) =
(

k1, . . . , ks−1, N

{−(a1k1 + · · · + as−1ks−1)

N

⎨)
,

then for the lattice Λ = Λ(a1, . . . , as−1, 1; N)

M≥(Λ) = {x(k1, . . . , ks−1) | 0 → kν → N − 1 (ν = 1, . . . , s − 1)} (2.30)

and the following partition is true:

Λ(a1, . . . , as−1, 1; N) =
⋃

x⇐M≥(Λ)

(NZ
s + x) =

=
N−1⋃

k1,...,ks−1=0

(NZ
s + x(k1, . . . , ks−1)). (2.31)

Corollary 2.1 The following partition is true:

Λ(a1, . . . , as−1, 1; N) =

=
N−1⋃

k1,...,ks−1=0

⎛
⎝s−1⎩

j=1

(NZ + kj)

⎞
⎠ × (NZ − a1k1 − · · · − as−1ks−1).

For the lattice Λ(a1, . . . , as−1, 1; N) we will examine its combined lattice Λ(p)

(a1, . . . , as−1; N) of solutions of the system of linear equations




m1 ∼ a1 · ms

m2 ∼ a2 · ms

. . . . . . . . .

ms−1 ∼ as−1 · ms

(mod N). (2.32)

For (aj, N) = 1 (j = 1, . . . , s−1) the latticeΛ(p)(a1, . . . , as−1, 1; N) is also simple.

Corollary 2.2 The following partition is true:

Λ(p)(a1, . . . , as−1; N) =
N−1⋃
k=0

⎛
⎝s−1⎩

j=1

(NZ + ajk)

⎞
⎠ × (NZ + k).

For an arbitrary shifted lattice Λ + b ⇐ CPRs a truncated norm minimum, or a
hyperbolic parameter, is the value
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q(Λ + b) = min
x⇐(Λ+b)\{0} q(x).

As max(1, N(x)) → q(x), then max(1, N(Λ+ b)) → q(Λ+ b), for any lattice Λ.
The norm spectrum of the shifted lattice Λ + b is the set of norm values in the

nonzero points of the shifted lattice Λ + b:

Nsp(Λ + b) = {λ | λ = N(x), x ⇐ (Λ + b)\{0}}.

Correspondingly, the truncated norm spectrum of the shifted lattice Λ + b is the
set of truncated norm values in the nonzero points of the shifted lattice:

Qsp(Λ + b) = {λ | λ = q(x), x ⇐ (Λ + b)\{0}}.

Obviously,
N(Λ + b) = inf

λ⇐Nsp(Λ+b)
λ,

q(Λ + b) = min
λ⇐Qsp(Λ+b)

λ.

An order of a point of the spectrum is the number of points of the shifted lattice
with the given norm value. If the number of such points of the shifted lattice is
infinite, then we assume the point of the spectrum to have an infinite order. The order
of a point λ of the spectrum is denoted by n(λ), and the order of a point λ of the
truncated norm spectrum is denoted by q(λ).

The following analogue of the Lemma 1 from the article [17] is true.

Lemma 2.1 For any lattice Λ + b and any point λ of the truncated norm spectrum
Qsp(Λ + b) the order of the point λ is finite and Qsp(Λ + b)—discrete.

The Lemma 2.1 provides, that

Qsp(Λ + b) = {λ1 < λ2 < · · · < λn < · · · }

and
q(Λ + b) = λ1, lim

n≈⊥ λn = ⊥.

That provides, that the hyperbolic zeta function of an arbitrary shifted lattice Λ + b
can be presented as a Dirichlet series:

ζH(Λ + b | α) =
∑

x⇐(Λ+b)\{0}
q(x)−α =

⊥∑
k=1

q(λk)λ
−α
k =

∑
λ⇐Qsp(Λ+b)

q(λ)λ−α.
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Theorem 2.13 For any α = σ + it in the right half-plane σ > 1 the Dirichlet series
for ζH(Λ + b | α) is absolutely convergent; and in the half-plane σ ≥ σ0 > 1 it is
uniformly convergent.

As for α = σ + it and σ ≥ σ0 > 0

⊥∑
k=1

⎪⎪⎪⎪q(λk)

λα
k

⎪⎪⎪⎪ →
⊥∑

k=1

q(λk)

λ
σ0
k

= ζH(Λ + b | σ0),

then the Theorem 2.13 provides, that for any complex α = σ + it in the right
half-plane (σ > 1) there is a regular function of a complex variable, defined by the
series (2.29) and the following inequality is true:

|ζH(Λ + b | α)| → ζH(Λ + b | σ).

Theorem 2.14 The generalised hyperbolic zeta function of the unidimensional
fundamental lattice is an analytic function on the whole α-plane, excluding the point
α = 1, where it has a pole of order 1 with the residue equal to 2.

Theorem 2.15 For an arbitrary shifted unidimensional lattice Λ + b = dZ + b
the generalised hyperbolic zeta function ζH(d · Z + b | α) is analytic on the whole
α-plane, excluding the point α = 1, where it has a pole of order 1 with the residue

equal to
2

detΛ
.

Theorem 2.16 The generalised hyperbolic zeta function ζH(Λ | α) of any simple
Cartesian lattice Λ = ⎫s

j=1(djZ + aj) is analytic on the whole α-plane, excluding
the point α = 1, where it has a pole of order s.

Theorem 2.17 For any Cartesian lattice Λ the generalised hyperbolic zeta function
ζH(Λ + b | α) is analytic on the whole α-plane, excluding the point α = 1, where it
has a pole of order s.

After that the problem of behavior of the generalised hyperbolic zeta function on
the orbit of Cartesian lattices is addressed. Again, we start the examination with the
unidimensional case.

Theorem 2.18 For any point α on the α-plane, excluding the point α = 1, there is
neighborhood |α − β| < δ such that for any shifted lattice Λ + b ⇐ CPR1

lim
Γ +g≈Λ+b

ζH(Γ + g | β) = ζH(Λ + b | β),

and this convergence is uniform in the neighborhood of the point α.

Theorem 2.19 For any point α on the α-plane, excluding the point α = 1, there is
neighborhood |α − β| < δ such that for any Cartesian lattice Λ + b ⇐ CPRs
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lim
D(q1,...,qs)·Λ+g≈Λ+b

ζH(D(q1, . . . , qs) · Λ + g | β) = ζH(Λ + b | β),

and this convergence is uniform in the neighborhood of the point α.

2.2 Functional Equation for Hyperbolic Zeta Function
of Integer Lattices

The articles [24, 25] utilized a new approach to obtain the functional equation for the
hyperbolic zeta function. Earlier, to prove the existence of an analytic continuation
of the hyperbolic zeta function of an arbitrary Cartesian lattice only the method of
expansion of the integer lattice Λ on sublattice detΛ · Zs was used followed by the
Hurwitz functional equation. Now exponential sums of a lattice were used, which
allowed to apply the known features of Dirichlet series with periodic coefficients.
Moreover, the concept of the zeta function helps to simplify the arguments and
formulas.

As usual, we will use N(x) = |x1 . . . xs| to denote the multiplicative norm of the
vector x. It has non-zero values only in points of general position, i.e. points without
zero coordinates. Let us present new definitions using the multiplicative norm.

Definition 2.17 The zeta function of a lattice Λ is the function ζ(Λ|α), α = σ + it,
defined for σ > 1 by the series

ζ(Λ|α) =
∑

x ⇐Λ, N(x) ⊂=0

|x1 . . . xs|−α. (2.33)

Generally speaking, there is no zeta function for certain latticesΛ, as the correspond-
ing series can diverge for any value of α = σ + it but for an arbitrary Cartesian lattice
Λ it is obviously exist for σ > 1.

Also, the hyperbolic zeta function is not homogeneous (as a function of a lattice),
while the zeta function of a lattice is homogeneous:

ζ(TΛ|α) = T−sαζ(Λ|α). (2.34)

The concept of the zeta function of a lattice is the special case with b = 0 of the
concept of the generalised zeta function of a lattice.

Definition 2.18 A generalised zeta function of a lattice Λ is the function
ζ (Λ + b| α), α = σ + it, defined for σ > 1 by the series

ζ (Λ + b| α) =
∑

x ⇐Λ+b, N(x) ⊂=0

|x1 . . . xs|−α. (2.35)
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It is easy to see, that the hyperbolic zeta function of a lattice Λ is directly defined by
the sum of the zeta function of a lattice Λ and the zeta functions of corresponding
integer lattices of smaller dimensions, which are obtained by discarding of zero
coordinates.

Let

Jt,s = {jt = (j1, . . . , js) | 1 → j1 < · · · < jt → s, 1 → jt+1 < · · · < js → s,

{j1, . . . , js} = {1, 2, . . . , s}}.

In other words, the set Jt,s consists of integer vectors jt , coordinates of which form
a permutation of numbers from 1 to s, while coordinates from 1 to t and from t + 1
to s form increasing sequences.

If we denote the coordinate subspace as Π(jt)

Π(jt) = {x | xjν = 0 (ν = t + 1, . . . , s)},

and denote the projection of intersection of (Λ+a)
⎬

Π(jt) onRt as (Λ+a)jt , then
for any shifted lattice the following equality is true:

ζH(Λ + a | α) =
s∑

t=1

∑
jt⇐Jt,s

ζ((Λ + a)jt | α).

2.2.1 Periodized in the Parameter b Hurwitz Zeta Function

Hereafter we will use the periodized in the parameter b Hurwitz zeta function

ζ ≥(α; b) =
∑

0<n+b

(n + b)−α =




⊥∑
n=1

n−α, {b} = 0,

⊥∑
n=0

(n + {b})−α, {b} > 0
, (σ > 1).

It’s easy to write out various explicit formulas for analytic continuation on the
whole complex plane except the point α = 1 of the periodized Hurwitz zeta function.
In this point for any real value of b the periodized Hurwitz zeta function has a pole
of order 1 with residue equal to 1.

The following formulas cover the whole complex plane and define the explicit
analytic continuation of ζ ≥(α; b).
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ζ ≥(α; b) =

=




∑
0<n+b

(n + b)−α, σ >1,

1

2
+ 1

α − 1
− α(α + 1)

⊥⎧

1

{x}2 − {x}dx

2xα+2 , {b} = 0, σ >−1,

1

2{b}α + 1

(α − 1){b}α−1 − α(α + 1)

⊥⎧

1

{x}2 − {x} dx

2 (x + {b})α+2 , {b} ⊂= 0, σ >−1,

2(2π)α−1Γ (1−α)

⎭
sin

πα

2

⊥∑
n=1

cos 2πnb

n1−α
+cos

πα

2

⊥∑
n=1

sin 2πnb

n1−α

)
, σ <0.

(2.36)

2.2.2 Dirichlet Series with Periodic Coefficients

Let us examine the special case of Dirichlet series with periodic coefficients of the
form

l

(
α,

b

n

)
=

⊥∑
m=1

e2π i bm
n

mα
(σ > 1) (2.37)

and prove for them the special case of the general theorem (see [7]) on analytic
continuation of Dirichlet series with periodic coefficients on the whole complex
plane.

Lemma 2.2 For σ > 1 the following equality is true:

l

(
α,

b

n

)
=




ζ(α) if δn(b) = 1,
1

nα

n∑
j=1

e2π i bj
n ζ ≥

(
α,

j

n

)
if δn(b) = 0.

(2.38)

Lemma 2.3 For σ > 0 and δn(b) = 0 the following equality is true:

⊥⎧

1

e2π i b[t]
n

tα+1 dt = (α + 1)

⊥⎧

1

e2π i b[t]
n −e2π i b

n

e2π i b
n −1

+ e2π i b[t]
n {t}

tα+2 dt. (2.39)

Theorem 2.20 For a natural n, an integer b with δn(b) = 0 and analytic continua-

tion of the function l
(
α, b

n

)
on the whole complex plane the following presentations

are true:
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l

(
α,

b

n

)
=

=




⊥∑
m=1

e2π i bm
n

mα
, σ >1,

αe2π i b
n

e2π i b
n − 1

⊥⎧

1

e2π i b[t]
n

tα+1 dt − e2π i b
n

e2π i b
n − 1

, σ >0,

α(α + 1)e2π i b
n

e2π i b
n − 1

⊥⎧

1

e2π i b[t]
n −e2π i b

n

e2π i b
n −1

+ e2π i b[t]
n {t}

tα+2 dt − e2π i b
n

e2π i b
n − 1

, σ >−1,

(2π)α−1Γ (1−α)

⎛
⎜⎝

⊥∑
m=1

e
π i(α−1)

2(
m −

{
b
n

})1−α
+

⊥∑
m=0

e
−π i(α−1)

2(
m +

{
b
n

})1−α

⎞
⎟⎠, σ <0.

(2.40)

This result can be applied to another type of Dirichlet series with periodic coeffi-
cients. Let

l≥
(

α,
b

n

)
=

⊥∑
m=−⊥

e2π i bm
n

mα (∧α > 1). (2.41)

The Dirichlet series of the latest form can directly define the hyperbolic zeta function
of integer lattices for σ > 1, if we use exponential sums of lattices, and namely, for
any integer lattice Λ:

ζH(Λ|α) + 1 =
∑∞

x ⇐Λ

(x1 · . . . · xs)
−α + 1 =

∑
m⇐Zs

δΛ(m)

(m1 · . . . · ms)α
=

= 1

detΛ

∑
x ⇐M(Λ)

∑
m⇐Zs

e2π i(m,x)

(m1 · . . . · ms)α
=

= 1

detΛ

∑
x ⇐M(Λ)

s⎩
j=1

⊥∑
mj=−⊥

e2π imjxj

mα
j

= 1

detΛ

∑
x ⇐M(Λ)

s⎩
j=1

l≥
(

α,
bj(x)

detΛ

)
, (2.42)

where bj(x) = xj detΛ is an integer (j = 1, . . . , s) for any point x = (x1, . . . , xs) ⇐
M(Λ).

Theorem 2.21 For a natural n, an integer b with δn(b) = 0 and analytic continua-

tion of the function l≥
(
α, b

n

)
on the whole complex plane the following presentations

are true:
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l≥
(
α,

b

n

)
=

=




⊥∑
m=−⊥

e2π i bm
n

mα , σ >1,

α

e2π i b
n − 1

⊥⎧

1

e2π i b([t]+1)
n − e−2π i b[t]

n

tα+1 dt, σ >0,

α(α+1)

e2π i b
n −1

⊥⎧

1

g(t, b, n)

tα+2 dt, σ >−1,

1 + 2(2π)α−1Γ (1−α) cos
π(α − 1)

2
· n1−α

⊥∑
m=−⊥

1(
nm + b

)1−α
σ <0,

(2.43)

where

g(t, b, n) =
e2π i b

n

(
e2π i b[t]

n − e2π i b
n + e−2π i b[t]

n − e−2π i b
n

)

e2π i b
n − 1

+

+
(

e2π i b([t]+1)
n − e−2π i b[t]

n

)
{t}.

Note 2.1 The latest equality won’t change if rewritten as follows

l≥
(

α,
b

n

)
= 1 + 2(2π)α−1Γ (1−α) cos

π(α − 1)

2
· n1−α

⊥∑
m=−⊥,
nm+b ⊂=0

1(
nm + b

)1−α
,

which remains true with δn(b) = 1:

l≥
(

α,
0

n

)
= 1 + 2ζ(α) = 1 + 2(2π)α−1Γ (1−α) cos

π(α − 1)

2

⊥∑
m=1

1

m1−α
=

= 1 + 2(2π)α−1Γ (1−α) cos
π(α − 1)

2
· n1−α

⊥∑
m=−⊥,

nm ⊂=0

1

(nm)1−α
.
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2.2.3 Functional Equation for Hyperbolic Zeta Zunction
of Integer Lattices

Let us obtain the explicit form of the ζH(Λ | α) in the left half-plane for an arbitrary
integer lattice Λ. For this, we will need a combined lattice Λ(p), which is defined by
the following relationship:

Λ(p) = detΛ · Λ≥. (2.44)

For any integer lattice Λ its combined latice Λ(p) is also integer. As these lattices are
special cases of Cartesian lattices, then, as we know, there are analytic continuations

ζH(Λ | α) and ζH(Λ(p) | α)

on the whole complex α–plane, excluding the point α = 1, where they have a pole
of order s.

For the sake of convenience, we will use the following notations:

N = detΛ, M(p)(Λ) = detΛ · M(Λ), M≥(Λ) = Λ ≤ [0; detΛ)s. (2.45)

It is clear, that the following expansions are true:

Λ =
⋃

x⇐M≥(Λ)

(
x + NZ

s) , Λ(p) =
⋃

x⇐M(p)(Λ)

(
x + NZ

s) . (2.46)

Let jt ⇐ Jt,s. We will denote the coordinate subspace as Π(jt)

Π(jt) = {x | xjν = 0 (ν = t + 1, . . . , s)}.

If we assume, that j≥t = (jt+1, . . . , js, j1, . . . , jt), then j≥t ⇐ Js−t,s and

R
s = Π(jt)

⊕
Π(j≥t )

is decomposition into the direct sum of coordinate subspaces. If we denote pro-
jections of a shifted lattice on coordinate subspaces Π(jt) and Π(j≥t ) according
to decomposition of the space in the direct sum of these coordinate subspaces as
(Λ + a)

(1)
jt

and (Λ + a)
(2)
jt

; and denote its intersections with coordinate subspaces as
(Λ + a)jt = (Λ + a)

⎬
Π(jt) and (Λ + a)j≥t = (Λ + a)

⎬
Π(j≥t ), then, generally

speaking, (Λ+a)
(1)
jt

⊂= (Λ+a)jt and (Λ+a)
(2)
jt

⊂= (Λ+a)j≥t . The equality is possible,
if and only ifΛ+a = (Λ1+a1)×(Λ2+a2),Λ1+a1 = (Λ+a)jt Λ2+a2 = (Λ+a)j≥t .

We need to recall that

M(α) = 2Γ (1 − α)

(2π)1−α
sin

πα

2
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and that for an arbitrary integer lattice Λ its zeta function ζ(Λ | α) in the right
half-plane is defined by the equality

ζ(Λ | α) =
∑

x⇐Λ, N(x) ⊂=0

|x1 . . . xs|−α.

Theorem 2.22 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζ(Λ | α) = 1

N

(
M(α)N1−α

)s
ζ
(
Λ(p)

⎪⎪⎪ 1 − α
)

. (2.47)

If we address dual lattices, then this theorem can be rewritten in the following
way:

Theorem 2.23 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζ(Λ | α) = M(α)s

N
ζ
(
Λ≥⎪⎪ 1 − α

)
. (2.48)

Proof As we can see, Λ(p) = N · Λ≥, therefore
(

N1−α
)s

ζ
(
Λ(p)

⎪⎪⎪ 1 − α
)

=
(

N1−α
)s ∑

x ⇐Λ(p), N(x) ⊂=0

|x1 . . . xs|α−1 =

=
∑

x ⇐Λ(p), N(x) ⊂=0

⎪⎪⎪x1
N

. . .
xs

N

⎪⎪⎪α−1=
∑

y ⇐Λ≥, N(y) ⊂=0

|y1 . . . ys|α−1=ζ
(
Λ≥⎪⎪ 1 − α

)
,

which proves the statement of the theorem.

According to the aforementioned definitions, (Λ)jt = Λ
⎬

Π(jt) is the intersec-
tion of the lattice and the coordinate subspace. Let us denote a t-dimensional lattice
derived from the lattice (Λ)jt by discarding s − t zero coordinates from each point

asΛjt and denote its determinant as Njt . Thus,Λ
(p)

jt
is the “combined” t-dimensional

lattice, Njt = detΛjt and Njt |N .

Theorem 2.24 For the zeta function of an arbitrary integer lattice Λ in the left
half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

M(α)t
∑

jt⇐Jt,s

Nt(1−α)−1
jt

ζ
(
Λ

(p)

jt

⎪⎪⎪ 1 − α
)

. (2.49)
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If we use the Theorem 2.23 and denote the t-dimensional dual lattice as Λ≥
jt
, then

we will obtain a new form of the functional equation for the hyperbolic zeta function
of an integer lattice.

Theorem 2.25 For the hyperbolic zeta function of an arbitrary integer lattice Λ in
the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

∑
jt⇐Jt,s

M(α)t

Njt

ζ
(
Λ≥

jt

⎪⎪⎪ 1 − α
)

. (2.50)

Proof The definitions of the hyperbolic zeta function of a lattice and the zeta
function of a lattice provide, that

ζH(Λ | α) =
s∑

t=1

∑
jt⇐Jt,s

ζ
(
Λjt

⎪⎪α) . (2.51)

Applying to each term of the right side the Theorem 2.23 we obtain the required
result.

2.3 Functional Equation for Hyperbolic Zeta Function
of Cartesian Lattices

First of all, we need the main result on the form of an arbitrary Cartesian lattice (see
Theorem 2.11). According to this theorem, a Cartesian lattice Λ can be unambigu-
ously presented as

Λ = D(d1, . . . , ds) · Λ0, d1, . . . , ds > 0,

where Λ0 is a simple lattice, and D(d1, . . . , ds) is a diagonal matrix.
Similarly to the aforementioned definitions, (Λ0)j t = Λ0

⎬
Π(j t) is the inter-

section of the lattice and the coordinate space. Let us denote the t-dimensional lattice
derived from the lattice (Λ0)j t by discarding s − t zero coordinates from each point

as Λ0,j t . Thus, Λ
(p)

0,j t
is the “combined” t-dimensional lattice.

First, let us examine the simpler case,where all the elements dj ≥ 1 (j = 1, . . . , s).

Theorem 2.26 For the hyperbolic zeta function of a Cartesian lattice Λ of the form
Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all its elements dj ≥ 1
(j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

M(α)t
∑

j t⇐Jt,s

t⎩
ν=1

(djν )
−αNt(1−α)−1

0,j t
ζ
(
Λ

(p)

0,j t

⎪⎪⎪ 1 − α
)

, (2.52)
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where N0,j t = detΛ0,j t .

Proof The definitions of the hyperbolic zeta function of a lattice and the zeta
function of a lattice provide that

ζH(Λ | α) =
s∑

t=1

∑
j t⇐Jt,s

t⎩
ν=1

(djν )
−αζ

(
Λ0,j t

⎪⎪α) . (2.53)

Applying to each term of the right side the Theorem 2.22 we obtain the required
result.

Now we will obtain a functional equation using a dual lattice.

Theorem 2.27 For the hyperbolic zeta function of a Cartesian lattice Λ of the form
Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all elements dj ≥ 1
(j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation is true:

ζH(Λ | α) =
s∑

t=1

∑
j t⇐Jt,s

M(α)t

detΛj t

ζ
(
Λ≥

j t

⎪⎪⎪ 1 − α
)

. (2.54)

Proof First of all,weneed to state, thatΛ≥ = (D(d1, . . ., ds) · Λ0)
≥ = D

(
1
d1

, . . . , 1
ds

)
·

Λ≥
0 and det (D(d1, . . . , ds) · Λ0) = d1 · · · ds · detΛ0.

If we address the projections of Λj t , then we will obtain that

Λj t = D(dj1 , . . . , dj t ) · Λ0,j t ,

Λ≥
j t

= (
D(dj1 , . . . , dj t ) · Λ0,j t

)≥ = D

(
1

dj1N0,j t

, . . . ,
1

dj t N0,j t

)
· Λ

(p)

0,j t
=

= D

(
1

dj1
, . . . ,

1

dj t

)
· Λ≥

0,j t
,

Λ≥
0,j t

= D(dj1 , . . . , dj t )Λ
≥
j t
,

det
(
D(dj1 , . . . , dj t ) · Λ0,j t

) = dj1 · . . . · dj t · detΛ0,j t = dj1 · . . . · dj t · N0,j t ,

ζ
(
Λ≥

0,j t

⎪⎪⎪ 1 − α
)

= (
dj1 · . . . · dj t

)α−1
ζ
(
Λ≥

j t

⎪⎪⎪ 1 − α
)

.

The definitions of the hyperbolic zeta function of a lattice and the zeta function
of a lattice provide that

ζH(Λ | α) =
s∑

t=1

∑
j t⇐Jt,s

t⎩
ν=1

(djν )
−αζ

(
Λ0,j t

⎪⎪α) . (2.55)

Applying to each term of the right side the Theorem 2.23, we obtain that
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ζH(Λ | α) =
s∑

t=1

∑
j t⇐Jt,s

t⎩
ν=1

(djν )
−α M(α)t

N0,j t

ζ
(
Λ≥

0,j t

⎪⎪⎪ 1 − α
)

=

=
s∑

t=1

∑
j t⇐Jt,s

t⎩
ν=1

(djν )
−α M(α)t

N0,j t

(
dj1 · · · dj t

)α−1
ζ
(
Λ≥

j t

⎪⎪⎪ 1 − α
)

=

=
s∑

t=1

∑
j t⇐Jt,s

M(α)t

detΛj t

ζ
(
Λ≥

j t

⎪⎪⎪ 1 − α
)

, (2.56)

which proves the statement of the theorem.

Now, let us examine a general case, where the set D1 = {j|0 < dj < 1} ⊂= ∅. For
this, we need to examine one more type of Dirichlet series with periodic coefficients.
Let

l≥≥
(

α, d,
b

n

)
=

⊥∑
m=−⊥

e2π i bm
n

dm
α (∧α > 1, d > 0). (2.57)

The Dirichlet series of the latest form can directly define the hyperbolic zeta function
of Cartesian lattices for σ > 1, if we use exponential sums of lattices, and namely,
for any Cartesian lattice Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice, and
D(d1, . . . , ds) is a diagonal matrix:

ζH(Λ|α) + 1 =
∑∞

x ⇐Λ

(x1 · · · xs)
−α + 1 =

=
∑

m⇐Zs

δΛ0(m)

(d1m1 · · · dsms)α
=

= 1

detΛ0

∑
x ⇐M(Λ0)

∑
m⇐Zs

e2π i(m,x)

(d1m1 · · · dsms)α
=

= 1

detΛ0

∑
x ⇐M(Λ0)

s⎩
j=1

⊥∑
mj=−⊥

e2π imjxj

djmj
α =

= 1

detΛ0

∑
x ⇐M(Λ0)

s⎩
j=1

l≥≥
(

α, dj,
bj(x)

detΛ0

)
, (2.58)

where bj(x) = xj detΛ0 is an integer (j = 1, . . . , s) for any point x = (x1, . . . , xs) ⇐
M(Λ0).

As it was stated above the hyperbolic zeta function of a lattice is not homogeneous,
while the zeta function is. Our previous arguments provide, that the homogeneous
zeta function of a lattice is crucial for the analytic continuation. In the general case, the
hyperbolic zeta function of a lattice can not be presented as a sum of homogeneous
components (as it can be done with integer lattices), but in the case of Cartesian
lattices we can define j t-components.
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As it has been done above, for a Cartesian lattice Λ we will use Λj t to denote the
projection of the intersection Λ

⎬
Π(j t) on R

t .

Definition 2.19 The j t-component of the hyperbolic zeta function of the lattice Λ

is the function ζH,j t (Λ|α), α = σ + it, defined for σ > 1 by the series

ζH,j t (Λ|α) =
∑

x ⇐ΛH,j t , N(x) ⊂=0

|x1 · · · x t |−α. (2.59)

It is easy to see, that for the j t-component of the hyperbolic zeta function of a lattice
Λ the analogue of the formula (2.58) is true.

ζH,j t (Λ|α) = 1

detΛ0,j t

∑
x ⇐M(Λ0,j t )

t⎩
ν=1

(
l≥≥

(
α, djν ,

bj(x)

detΛ0,j t

)
− 1

)
. (2.60)

Moreover, we can see the decomposition into components:

ζH(Λ|α) =
s∑

t=1

∑
j t⇐J(t,s)

ζH,j t (Λ|α). (2.61)

Definition 2.20 Let the js-component of the hyperbolic zeta function of a lattice Λ

be called the main component and denoted as ζH,s(Λ|α).

It is clear, that the following equality is true:

ζH,j t (Λ|α) = ζH, t(Λj t |α). (2.62)

Theorem 2.28 For a natural n, an integer b with δn(b) = 0, a positive d and the

analytic continuation of the function l≥≥
(
α, d, b

n

)
on the whole complex plane the

following presentations are true:

l≥≥
(
α, d,

b

n

)
= 1 + 1

dα

(
l≥
(
α,

b

n

)
− 1

)
+ f

(
α, d,

b

n

)
, (2.63)

where

f

(
α, d,

b

n

)
=

∑
1→|m|→

[
1
d

] e2π i bm
n

(
1 − 1

|dm|α
)

and f
(
α, d, b

n

)
= 0 with d ≥ 1.

Proof For σ > 1 from the definition follows that
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l≥≥
(
α, d,

b

n

)
= 1 +

∑
1→|m|→

[
1
d

] e2π i bm
n +

∑
|m|>

[
1
d

]
e2π i bm

n

|dm|α =

= 1 +
∑

1→|m|→
[
1
d

] e2π i bm
n

(
1 − 1

|dm|α
)

+
∑

|m|≥1

e2π i bm
n

|dm|α =

= 1 + 1

dα

(
l≥
(
α,

b

n

)
− 1

)
+ f

(
α, d,

b

n

)
.

As there are analytic functions in the right side of the equality, which are defined
on the whole complex α-plane, excluding the point α = 1, where is a pole of order 1,
then the theorem is proven.

Let us introduce some additional definitions. For 1 → r → |D1| and 1 → t → s − r
let us define the set of integer vectors

Jt,r,s(D1) = {jt,r = (j1, . . . , js) | 1 → j1 < · · · < j t → s, 1 → jt+r+1 < · · · < js → s,

1 → jt+1 < · · · < jt+r → s, {j1, . . . , js} = {1, 2, . . . , s},

jt+ν ⇐ D1 if 1 → ν → r} .

In other words, the set Jt,r,s(D1) consists of integer vectors jt,r , coordinates of which
form the permutation of numbers from 1 to s, wile coordinates from 1 to t, and
from t + 1 to t + r, and from t + r + 1 to s form increasing sequences. Moreover, all
coordinates from t+1 to t+r belong to the setD1. Obviously, Jt,r,s|D1| = Ct

s−rCr|D1|.

Theorem 2.29 For the main component of the hyperbolic zeta function of an arbi-
trary Cartesian lattice Λ of the form Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple
lattice and all its elements dj > 0 (j = 1, . . . , s), in the left half-plane σ < 0 the
following functional equation is true:

ζH,s(Λ | α) = M(α)s

detΛ
ζ
(
Λ≥⎪⎪ 1 − α

) + 1

detΛ0

∑
x ⇐M(Λ0)

|D1|∑
r=1

M(α)s−rNs−r−α(s−r)
0

·
∑

js−r,r⇐Js−r,r,s(D1)

s−r⎩
ν=1

(djν )
−α

s⎩
ν=s−r+1

f

(
α, djν ,

bjν (x)

detΛ0

)
ζ
(

N0Z
s−r + bs−r(x)

⎪⎪ 1 − α
)
,

(2.64)

where N0 = detΛ0.

Proof According to the equality (2.60) and the Theorem 2.28 for the main compo-
nent of the hyperbolic zeta function of an arbitrary Cartesian lattice
Λ = D(d1, . . . , ds) · Λ0 on the whole complex α-plane, excluding the point α = 1,
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which has a pole of order s, the following equality is true:

ζH,s(Λ|α) = 1

detΛ

∑
x ⇐M(Λ0)

s⎩
j=1

(
l≥≥

(
α, dj,

bj(x)

detΛ0

)
− 1

)
. (2.65)

For σ < 0, let us apply the Theorems 2.28 and 2.21, and therefore obtain that

ζH,s(Λ|α) = 1

detΛ0

∑
x ⇐M(Λ0)

s⎩
j=1

⎭
1

dα
j

(
l≥
(
α,

bj(x)

detΛ0

)
− 1

)
+ f

(
α, dj,

bj(x)

detΛ0

))
=

= 1

detΛ0

∑
x ⇐M(Λ0)

s⎩
j=1

⎛
⎜⎜⎝M(α)

dα
j

N1−α
0

⊥∑
m=−⊥,

N0 ·m+bj (x)⊂=0

1⎪⎪N0 · m + bj(x)
⎪⎪1−α

+ f

(
α, dj,

bj(x)

detΛ0

)
⎞
⎟⎟⎠ .

(2.66)

To expand the product in the right side of the formula (2.66) let us use the following
equality:

s⎩
j=1

⎛
⎜⎜⎝M(α)

dα
j

N1−α
0

⊥∑
m=−⊥,

N0 ·m+bj(x) ⊂=0

1⎪⎪N0 · m + bj(x)
⎪⎪1−α

+ f

(
α, dj,

bj(x)

detΛ0

)
⎞
⎟⎟⎠ =

=
⎩
j⇐D1

⎛
⎜⎜⎝M(α)

dα
j

N1−α
0

⊥∑
m=−⊥,

N0 ·m+bj (x) ⊂=0

1⎪⎪N0 · m + bj(x)
⎪⎪1−α

+ f

(
α, dj,

bj(x)

detΛ0

)
⎞
⎟⎟⎠×

×
⎩
j ⊂⇐D1

⎛
⎜⎜⎝M(α)

dα
j

N1−α
0

⊥∑
m=−⊥,

N0 ·m+bj(x) ⊂=0

1⎪⎪N0 · m + bj(x)
⎪⎪1−α

⎞
⎟⎟⎠ =

= M(α)s

N (α−1)s
0

s⎩
j=1

(dj)
−α

⊥∑
mj=−⊥(1→j→s),
N0 ·mj+bj (x) ⊂=0

1

|(N0 · m1 + b1(x)) · · · (N0 · ms + bs(x))|1−α
+

+
|D1|∑
r=1

⎛
⎝M(α)s−rNs−r−α(s−r)

0

∑
js−r,r⇐Js−r,r,s(D1)

s−r⎩
ν=1

(djν )
−α

s⎩
ν=s−r+1

f

(
α, djν ,

bjν (x)

detΛ0

)
×
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×
⊥∑

mjν =−⊥(1→ν→s−r),
N0 ·mjν +bjν (x) ⊂=0

1⎪⎪(N0 · mj1 + bj1(x)) · · · (N0 · mjs−r + bjs−r (x))
⎪⎪1−α

⎞
⎟⎟⎠ .

(2.67)

From (2.66) and (2.67), assuming that b t(x) = (bj1(x), . . . , bj t (x)), we will obtain
that

ζH,s(Λ|α)

= 1

detΛ0

∑
x ⇐M(Λ0)

⎛
⎝M(α)sNs−αs

0

s⎩
j=1

(dj)
−α×

×
⊥∑

mj=−⊥(1→j→s),
N0 ·mj+bj (x) ⊂=0

1

|(N0 · m1 + b1(x)) · · · (N0 · ms + bs(x))|1−α
+

+
|D1|∑
r=1

⎛
⎝M(α)s−rNs−r−α(s−r)

0

∑
js−r,r⇐Js−r,r,s(D1)

s−r⎩
ν=1

(djν )
−α

s⎩
ν=s−r+1

f

(
α, djν ,

bjν (x)

detΛ0

)
×

×
⊥∑

mjν =−⊥(1→ν→s−r),
N0 ·mjν +bjν (x) ⊂=0

1⎪⎪(N0 · mj1 + bj1(x)) · · · (N0 · mjs−r + bjs−r (x))
⎪⎪1−α

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

= 1

detΛ0

∑
x ⇐M(Λ0)

⎛
⎝M(α)sNs−αs

0

s⎩
j=1

(dj)
−αζ

(
N0Z

s + bs(x)
⎪⎪ 1 − α

)+

+
|D1|∑
r=1

⎛
⎝M(α)s−rNs−r−α(s−r)

0

∑
js−r,r⇐Js−r,r,s(D1)

s−r⎩
ν=1

(djν )
−α

s⎩
ν=s−r+1

f

(
α, djν ,

bjν (x)

detΛ0

)
×

×ζ
(

N0Z
s−r + bs−r(x)

⎪⎪ 1 − α
)))

. (2.68)

As

1

detΛ0

∑
x ⇐M(Λ0)

M(α)sNs−αs
0

s⎩
j=1

(dj)
−αζ

(
N0Z

s + bs(x)
⎪⎪ 1 − α

) =

= 1

detΛ0
M(α)sNs−αs

0

s⎩
j=1

(dj)
−αζ

(
Λ

(p)
0

⎪⎪⎪ 1 − α
)

= M(α)s

detΛ
ζ
(
Λ≥⎪⎪ 1 − α

)
,

(2.69)

then the statement of the theorem is completely proven.
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Theorem 2.30 For the hyperbolic zeta function of an arbitrary Cartesian lattice Λ
of the form Λ = D(d1, . . . , ds) · Λ0, where Λ0 is a simple lattice and all elements
dj > 0 (j = 1, . . . , s), in the left half-plane σ < 0 the following functional equation
is true:

ζH (Λ | α) =
s∑

t=1

∑
j t⇐J(t,s)

M(α)t

detΛj t

ζ
(

Λ≥
j t

⎪⎪⎪ 1 − α
)

+

+
s∑

t=1

∑
j t⇐J(t,s)

1

detΛ0,j t

∑
x ⇐M(Λ0,j t )

|D1,j t |∑
r=1

M(α)t−rNt−r−α(t−r)
0,j t

×
∑

j t−r,r⇐J t−r,r,t (D1,j t )

t−r⎩
ν=1

(djν )
−α

t⎩
ν=t−r+1

f

(
α, djν ,

bjν (x)

detΛ0,j t

)

ζ
(

N0,j tZ
t−r + bt−r(x)

⎪⎪ 1−α
)
, (2.70)

where N0,j t = detΛ0,j t .

Proof The theorem statement follows from the decomposition into components
formula (see (2.61)) and the application of the Theorem 2.29 to each component
according to the formula (2.62).

2.4 On Some Unsolved Problems of the Theory of Hyperbolic
Zeta Function of Lattices

The article [9] hints at some possible directions of further development of Korobov
number-theoretical method in approximate analysis. We are going to examine the
problems regarding the theory of the hyperbolic zeta function of lattices in more
detail.

The problem of right order The class of algebraic lattices is known for making
it possible to achieve the correct order of decreasing hyperbolic zeta function of
lattices when increasing the determinant of lattices (see the formulas (2.19) and
(2.21)). Moreover, the asymptotic formula (2.25) is true for these lattices. The con-
tinuity of the hyperbolic function on the lattice space provides that the correct order
of decreasing hyperbolic zeta function of lattices can be achieved on the class of
rational lattices. It is enough to take rational lattices from very small neighborhoods
of algebraic lattices. A natural question arise: can the correct order of decreasing
be achieved in the class of integer lattices, or not? If it can be achieved, we need to
provide an algorithm for construction of such optimal parallelepipedal nets, which
would have the right order of the error of approximate integration on the classes
Eα

s . Otherwise, we will obtain a kind of the theorem, which is analogous to the
Liouville-Thue-Siegel-Roth theorem for algebraic lattices, as the impossibility of
the right order means that algebraic lattices can not be correctly approximated by
integer ones.
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The problem of existence of analytic continuation As stated above, any Cartesian
lattice has an analytic continuation of the hyperbolic zeta function of an arbitrary
Cartesian lattice.Moreover, there’s been obtained the functional equation for an arbi-
trary Cartesian lattice, which explicitly defines this analytic continuation. Naturally,
there are questions, whether an analytic continuation of the hyperbolic zeta function
exists in the following cases:

for a lattice of joint approximations Λ(θ1, . . . , θs), defined by the equality

Λ(θ1, . . . , θs) = {(q, qθ1 − p1, . . . , qθs − ps) | q, p1, . . . , ps ⇐ Z},

where θ1, . . . , θs are arbitrary irrational numbers.

for an algebraic lattice Λ(t, F) = tΛ(F), where the lattice Λ(F) is defined by the
equality (2.3).

for an arbitrary lattice Λ. If the hyperbolic zeta function of an arbitrary lattice can
not be continued onto the whole complex plane (and we have strong doubts about
that), then we will have to describe a new class, containing all lattices, for which
their hyperbolic zeta functions can be analytically continued onto the whole complex
plane, excluding the point α = 1, which has a pole of order s.

The problem of the critical strip behaviour This problem has been underlined by
Korobov. He suggested the hypothesis, according to which the analytic continuation
of the hyperbolic zeta function of a lattice into the critical strip from the right half-
plane and the analytic continuation of the hyperbolic zeta function of a dual lattice
or combined lattices into the critical strip from the left half-plane will allow us to get
the constants in the corresponding transfer theorems.
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Chapter 3
The Distribution of Values of Arithmetic
Functions

G. V. Fedorov

Abstract Let us usual τk(n) denote the number of ways n may be written as a
product of k fixed factors. In this chapter there introduce the notation

Dk(x) =
∑
n→x

τk(n).

We show that the asymptotic formula for Dk(x) is changing with growing values of
k and present specific values of k, which is a change.

In [1], this author obtained the estimate

Dk(x) → x
k−1∑
j=0

(
k − 1

j

)
ln j x

j ! , (3.1)

for Dk(x), which is uniform in the parameter k and holds for any real x ⇐ 1 and
integer k ⇐ 2.

The value of the quantity Dk(x) equals the number of points in the integer lattice
in a domain of the form 1 → x1, x2, . . . xk → x . Note that if the parameter k grows
as x ≥ ∈, then the form of the asymptotic formula for Dk(x) is different from that
of the formula for fixed k. In 2001, Pavlov [3] proved the following assertion.

Theorem 3.1 Suppose that x ≥ ∈, k is an integer, and C1(ln x)β < k <

C2(ln x)α , where α < 2
3 and β > 6 are fixed and C1 and C2 are positive con-

stant. Then

Dk(x) = x
(ln x)k−1

(k − 1)! eγ k2
ln x

(
1 + O

(
k−ρ0

))
,
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where γ is the Euler constant and ρ0 > 0 is positive and does not depend on
k and x.

In this chapter, we obtain more accurate boundary values of the parameter k in
Pavlov’s theorem. The following assertion is valid.

Theorem 3.2 (Main Theorem) Suppose that the integer parameter satisfies the con-
dition k = k(x) ≥ ∈ as x ≥ ∈, and for some fixed 0 < ρ < 1

3 , the inequality

k ⊂ (ln x)
4

5+ρ holds. Then, the asymptotic formula

Dk(x) = x
(ln x)k−1

(k − 1)! exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
,

is valid, in which the functions qk(x) and Lk(x) are defined by

qk(x) = γ0
k2

ln x
−

(
γ 2
0 + γ1

) k3

ln2 x
+

(
5

3
γ 3
0 + 3γ0γ1 + γ2

2

)
k4

ln3 x
, (3.2)

Lk(x) = 1 − k

ln x

(
γ0 + 3

2

)
+ k2

ln2 x

(
3γ 2

0

2
+ γ1 + 3γ0 + 7

4

)
−

− k3

ln3 x

(
21

4
γ 2
0 + 5

2
γ 3
0 + 3γ0γ1 + 3

2
γ1 + 21

4
γ0 + 15

8

)
, (3.3)

and the Stieltjes constants are defined by

γn = lim
m≥∈

(
m∑

k=1

(ln k)n

k
− (lnm)n+1

n + 1

)
, (3.4)

in particular, γ0 = γ is the Euler constant.

The proof of the main theorem is based on the following assertion.

Lemma 3.1 Suppose that σ = 1 + 1
b , b = γ0 + ln x

k and

Ik(x) = 1

2π i

∫ σ+ i
2

σ− i
2

ζ k(s)
xs+1

s(s + 1)
ds.

Suppose also that x ≥ ∈ and k ≥ ∈ so that, for some fixed 0 < ρ < 1
3 , the

inequality k ⊂ (ln x)
4

5+ρ holds. Then the asymptotic formula
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Ik(x) = x2

2
· (ln x)k−1

(k − 1)! exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
,

(3.5)
is valid, in which the functions qk(x) and Lk(x) are determined from (3.2) and (3.3).

This lemma sharpens the corresponding lemma from Pavlov’s chapter ([3],
Lemma 1).

The proof of lemma 3.1 uses the Laurent expansion of Riemann’s zeta function
ζ(s) in the neighborhood of the pole s = 1

ζ(s) = 1

s − 1
+

∈∑
n=0

(−1)n

n! · γn · (s − 1)n,

where constants γn defined from 3.4.
As is known, for ∗s > 1

∈∑
n=1

τk(n)

ns
= ζ k(s),

where ζ(s) is the Riemann zeta function. We have (see [2])

∫ x

1
Dk(t)dt = 1

2π i

∫ σ+iT

σ−iT
ζ k(s)

xs+1

s(s + 1)
ds + R(x) = Jk(x) + R(x), (3.6)

where the parameter σ is the same as in the lemma 3.1. Using estimate (3.1), we
obtain the following estimate for the remainder:

R(x) ⊂ x2

T

(
ln x

k

)k

exp

{
k + (γ0 + 1)

k2

ln x

}

+
(

x2

T
+ x

ln T

ln x

) ∼
k

(
ln x

k

)k

exp

{
k + k2

ln x

}
. (3.7)

For k ⊂ (ln x)
5
7 , we deform the interval of integration in Jk(x) as

∫ σ+iT

σ−iT
=

∫ 1−iT

σ−iT
+

∫ 1− i
2

1−iT
+

∫ σ− i
2

1− i
2

+
∫ σ+ i

2

σ− i
2

+
∫ 1+ i

2

σ+ i
2

+
∫ 1+iT

1+ i
2

+
∫ σ+iT

1+iT
,

by virtue of the estimate |ζ(1+i t)| → C ln
2
3 |t |where |t | > 2 andC is some constant,

we have
Jk(x) = Ik(x) + O

(
Ck x2(ln T )

2k
3

)
.
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We can choose the parameter T so that k2
ln x ⊂ ln T ⊂ ( ln x

k

) 3
2 and the remainders

in expressions (3.6) and (3.7) do not exceed those in (3.5). Applying the lemma 3.1,
we obtain ∫ x

1
Dk(t)dt =

= ek

∼
2πk

x2

2

(
ln x

k

)k−1

exp {qk(x)} Lk(x)

(
1 + O

(
k5+ρ

ln4 x

)
+ O

(
k3ρ−1

))
.

(3.8)
In the case of k √ (ln x)

2
3 , we decompose the integral Jk(x) into three integrals

as

Jk(x) = 1

2π i

∫ σ− i
2

σ−iT
+ 1

2π i

∫ σ+ i
2

σ− i
2

+ 1

2π i

∫ σ+iT

σ+ i
2

=

= Ik(x) + O

(
x2

(
ln x

k

)k

exp

{
k + γ 2

0 k3

ln2 x

})
,

Let T = x ; then the remainder R(x) does not exceed the remainders in formula (3.5)
given in the lemma 3.1; therefore, the relation (3.8) again holds.

The function Dk(x) is nondecreasing. We have

1

h

∫ x

x−h
Dk(t)dt → Dk(x) → 1

h

∫ x+h

x
Dk(t)dt.

Applying (3.8) and choosing h = x k5+ρ

ln4 x
, we obtain the assertion of the Main

Theorem.
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Chapter 4
On the One Method of Constructing Digital
Control System with Minimal Structure

V. V. Palin

Abstract We consider the linear digital control system with invariable matrix A.
In this report we introduce one method which permit to obtain the characteristic
of completely controllability and construct the matrix of control B with minimal
structure without calculation of eigenvalues of matrix A.

4.1 The Statement of Problem and Some Familiar Results

Let us discuss stationary open discrete system

Xk+1 = AXk . (4.1)

We will find the full rank matrix B of control actions with n × p size such that the
following closed stationary system

Xk+1 = AXk + BUk + Fk (4.2)

will be completely controllable.

Definition 4.1 Characteristic of completely controllable for system (4.1) is the min-
imal number p → N such that the system (4.2) can make completely controllable by
the choice of full rank matrix B of n × p size.

On 2010 the article [1] was published in journal Doklady Akademii Nauk. There
the structural minimization problem discussed and the following result obtained:
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Theorem 4.1 Characteristic of completely controllable of system (4.1) is equivalent
to the maximal geometric multiplicity of eigenvalues of A.

More over, in this article the method of constructing the matrix B was established
for the case where the Jordan canonical form of A was given.

In this article we obtain the method to find the characteristic of completely con-
trollable for (4.1) and constructing the matrix B without evaluation of eigenvalues of
A.

4.2 Definitions and Some Preliminary Transformations

Suppose that A is square matrix with n × n size, λj are eigenvalues of A, qA(x) is the
minimal polynomial for A and dA(x) = det(xE − A). We note that the polynomial
qA(x) can be found without calculations of eigenvalues of A; dA(x) is characteristic
polynomial ofA, multiplied by (−1) powering relevant (so that the leading coefficient
equal to 1) hence, this polynomial can be obtainedwithout calculations of eigenvalues
of A. Let

qA(x) =
m∏

j=1

(x − λj)
kj .

We denote
q(x,A,⇐ r) =

∏
j:kj⇐r

(x − λj),

q(x,A,= r) =
∏

j:kj=r

(x − λj).

Let us note that the polynomial q(x, a,⇐ r) can be found without factorization of
qA(x). For example,

q(x,A,⇐ 1) = qA(x)

g.c.d.(qA(x), q≥
A(x))

,

and q(x,A,⇐ 2) can be obtained by the same formula, where qA(x) changes by
g.c.d.(qA(x), q≥

A(x)) and so forth. We can evaluate the polynomials q(x,A,= r) by
the polynomials q(x,A,⇐ r):

q(x,A,⇐ r) = q(x,A,= r)q(x,A,⇐ r + 1).

Similarly we define d(x,A,⇐ r) and d(x,A,= r).
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4.3 The Method to Obtain the Characteristic of Completely
Controllable

Let us denote A1 = q(A,A,⇐ 1). Because the polynomial dA(x) is the divisor for
(q(x,A,⇐ 1))n and dA(A) = 0, the following identity holds: An

1 = 0. More over,
from the definition of the eigenvector of A and the Jordan canonical form for the
matrix A1 it follows that the eigenvectors {v1, . . . , vs} of the matrix A form the basis
in the kernel of A1.

If A1 = 0 then the matrix A has the basis consists of it’s eigenvectors. Hence,
the geometric multiplicity of any eigenvalue of the matrix A is equivalent to it’s
algebraical multiplicity. Thus, p = max{t | d(x,A,⇐ t) ∈= 1} in this case.

Suppose that A1 ∈= 0, Ker(A1) = Lin{v1, . . . , vs}. Let us note that we can find
vectors of the basis of the kernel of A1 as orthogonal complement of the linear
envelope of the set of rows of A1. Suppose that vs+1, . . . , vn is basis of the set of
columns of AT

1 . Let C1 be the matrix constructed of vectors v1, . . . , vn as columns.
Let j ⊂ s be the fixed index and e1, . . . , en is a basis consists of unit vectors.
By virtue of definition of the matrix C1 we have C1ej → Lin{v1, . . . , vs}, AC1ej →
Lin{v1, . . . , vs},C−1

1 AC1ej → Lin{e1, . . . , es}. Hence thematrixC−1
1 AC1 is sectional

upper triangular:

C−1
1 AC1 =

(
M11 M12
0 M22

)
. (4.3)

Further from the arguments given above it follows that there is one-to-one corre-
spondence between the eigenvectors of A and the eigenvectors of M11. Hence, the
characteristics of completely controllable for matrix A and M11 are equivalent. Let
us note that M11 has the basis consists of eigenvectors.

Remark 4.1 The set Ker(d(A,M11,= t)) is the linear envelope of all eigenvectors
of A such that their correspond eigenvalues has geometric multiplicity of exactly t.

4.4 Auxiliary Statements

To describe a method of constructing a matrix B without finding eigenvalues of the
matrixA, we need two lemmas. The proof of the first of them is trivial, and we omit it.

Theorem 4.2 Let λ1, . . . ,λs—eigenvalues of a matrix A, vector h → Ker(
s∏

j=1
(A −

λjE)), h ∈= 0. Then if q → N of such that vectors h, Ah, A2h, . . . ,Aq−1h are linearly
independent, and vectors h, Ah, A2h, . . . ,Aqh linearly dependent, there will be

eigenvectors z1, . . . , zq → Ker(
s∏

j=1
(A − λjE)) such that h = z1 + z2 + . . . + zq.
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Back, if there are eigenvectors z1, . . . , zq → Ker(
s∏

j=1
(A − λjE)) such that h = z1 +

z2 + · · · + zq, vectors h, Ah, A2h, . . . ,Aq−1h are linearly independent, and vectors
h, Ah, A2h, . . . ,Aqh linearly dependent.

Theorem 4.3 Let πk(x) is a polynomial of degree tk such that Ker(πk(A)) is the lin-
ear envelope of the eigenvectors of the matrix A of geometric multiplicity of exactly k.
Then, without finding the eigenvalues of the matrix A can be built vectors w1, . . . ,wCC

such that Ker(πk(A)) = Lin{w1,Aw1, . . . ,Atk−1w1, . . . ,Atk−1wkk}.
Proof We give an algorithm that allows each step reduce one of k or tk by 1.
Let us take an arbitrary non-zero vector h1 → Ker(πk(A)). There is a q → N

such that the vectors h1,ACAh1, . . . ,Aq−1h1 are linearly independent, and vectors
h1,ACAh1, p(A2h1, . . . ,Aqh1 are linearly dependent. On Lemma 1, we obtain that
q ⊂ tk . If q = tk , thenw1 = h1, and, demanding further orthogonality of the vector h2
to all vectors Ajh1, we obtain that k has decreased by 1. If q < tk , then, by Lemma 1,
there are eigenvectors z1, . . . , zq such that h1 = z1+· · ·+zq.Add orthogonal vectors
vq+1, . . . , vn in the system of vectors v1 = h1, v2 = Ah1, . . . , vq = Aq−1h1 to obtain
the basis of all space. We write the matrix C2, the columns of which are vectors
v1, . . . , vn. As in the previous section, the matrix C2AC−1

2 is upper triangular. Let us
denote by N11 its upper the left bloc. Left to note that there exists a polynomial p̃(x)
such that

πk(x) = d(x,N11,⇐ 1)p̃(x).

Thus, the problem for the polynomialπk(x) is reduced to the problem for polynomials
d(x,N11,⇐ 1) and p̃(x), the sum of which degrees is equal to tk . This means that in
this case we have managed to reduce the tk at least by 1.

4.5 The Absence of Associated Vectors Case

Let us discuss the method of constructing B in the case when the matrix A has a
basis consists of the eigenvalues. In this case we construct polynomials πk(x) =
d(x,A,= k) and, using lemma 2, we obtain vectors w1k, . . . ,wkk for any of these
polynomials. Let us denote

bj =
p∑

k=j

wjk .

Left to notice that the matrix B with the columns b1, . . . , bp is sought-for matrix.
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4.6 The Case of General Position

Let τ is the degree of polynomial qA(x). Let V1 = Ker(q(A,A,⇐ 1)), V2 are the
set of all vectors from Ker(q(A,A,⇐ 2)), orthogonal to V1, V3 are the set of all
vectors from Ker(q(A,A,⇐ 3)), orthogonal to V1 + V2, etc. Let us notice that for
finding basis in any Vj it suffices to use orthogonalization method. Let W1 is the set
of orthogonal to AV2 vectors from V1, W2 is the set of orthogonal to AV3 vectors from
V2, etc.. The basis in each of the spaces Wj can be found by using orthogonalization
method. Let us consider the mapping

g :
τ∑

j=1

Wj ∗ V1.

By this mapping the vector gwj → V1 is associated to the vector wj → Wj such
that gwj → V1 is orthogonal projection of vector Aj−1wj on V1. The mapping g is
invertible: it is sufficient to note that g is linear, has zero kernel, and to set the basis
in any of Wj, and the result of mapping g on this basis.

Let us describe the method of constructing the matrix B in the case of general
position. As well as the case of absence of associated vectors, we construct the
polynomials πk(x) = d(x,M11,= k) and, using the lemma 2 for each polynomial,
we obtain the vectors w1k, . . . ,wkk . Further, we put

b̃j =
p∑

k=j

wjk,

bj = g−1b̃j.

Left to notice that the matrix B with the columns b1, . . . , bp is sought-for matrix.
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Chapter 5
On Norm Maps and “Universal Norms”
of Formal Groups Over Integer Rings
of Local Fields

Nikolaj M. Glazunov

To the memory of Oleg Nikolaevich Vvedenskii (1937–1981)

Abstract We review and investigate norm maps and “universal norms” of formal
groups over integer ring of local and quasi-local fields. Theorem on triviality of
universal norm group of one dimensional fornal groups of reduction height 3 over
integer ring of local and quasi-local fields is presented. The theorem on triviality of
universal norm group is based on the lemma about function that gives the minimal
degree of elements of the subgroup Ft

K of the group F K that contains the norm group
NL/K (Fn

L ). In the case of formal groups of elliptic curves the function has used by
O. N. Vvedenskii and is denoted as μ(n). The proof of the lemma is also presented.

5.1 Introduction

Under the construction by Shafarevich [1], Tate [2], Ogg [3], Vvedenskii [4, 5]
the analog of local and quasi-local class field theory for elliptic curves and abelian
varieties the authors use arithmetic properties of formal groups that corresponds to
elliptic curves. Foundations of local and quasi-local class field theories of elliptic
curves in the framework were constructed by Vvedenskii [4, 5] in contexts of elliptic
curves over local and quasi-local fields. Important statements of these theories were
introduced as statements about norm maps of commutative formal groups of elliptic
curves.

It is well known that formal groups of elliptic curves over finite fields have height
(reduction height) one or two [6–11].
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Let A be an elliptic curves over quasi-local fields K , F(x, y) its formal group
over the ring of integers OK of K , D→

K it’s group of universal norms [4, 5]. In the
case O.N. Vvedenskii have proved.

Theorem 5.1 [4, 5] D→
K = 0.

Author extends, following to the advice of O. N. Vvedenskii, Theorem 5.1 and
some another results of O. N. Vvedenskii to more general formal groups and present
their in papers [8, 10]. Complete proves of the results are contained in author’s
candidate dissertation that is not published.

Here we present theorem on triviality of universal norm group of one dimensional
formal groups of height 3 over integer ring of local and quasi-local fields and present
the lemma about function μ(n) that gives the minimal degree of elements of the
subgroup Ft

K of the group F K that contains the norm group NL/K (Fn
L ).

Let K be a complete discrete variation field with the ring of integers OK and the
maximal ideal MK .

A complete discrete variation field with finite residue field is called a local
field [12].

A complete discrete variation field K with algebraically closed residue field k is
called a quasi-local field [5]. Belowwewill suppose that in the case the characteristic
of k satisfies p > 0.

Let K be a local or quasi-local field. If K is a local field [12] and has the charac-
teristic 0 then it is a finite extension of the field of p-adic numbers Qp. Let νK be
the normalized exponential valuation of K . If [K : Qp] = n then n = e · f , where
e = νK (p) and f = [k : Fp], where k is the residue field of K (always assumed
perfect).

If K has the characteristic p > 0 then it isomorphic to the field k((T )) of formal
power series, where T is uniformizing parameter.

Let L be a finite extension of a local field K , k, l their residue fields, p = char k
and eL/K ramification index of L over K .

An extension L/K is said to be unramified if eL/K = 1 and extension l/k is
separable.

An extension L/K is said to be tamely ramified if p not devides eL/K and the
residue extension l/k is separable.

An extension L/K is said to be totally ramified if eL/K = [L : K ] =
(char k)s, s ⇐ 1.

Let L/K be the finite Galois extension of quasi-local field K with Galois group
G, F(x, y) one dimensional formal group low over the ring of integers OK of the
field K , F(MK ) be the G-module, that is defined by the group low F(x, y) on the
maxilal ideal MK of the ring OK , Mt

K (t ≥ Z, t ⇐ 1) be the subgroup of t-th degrees
of elements from MK , Ft

K := F(Mt
K ).

Definition 5.1 For n ≥ Z the function μ(n), NL/K (Fn
L ) ∈ Fμ(n)

K is defined by the

condition: Fμ(n)
K is the least of subgroups Ft

K (t = 1, 2, . . .) containes NL/K (Fn
L ).

Below we will suppose that char k > 3.
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5.2 Norm Maps

Here we use results on formal groups from [9–11, 13]. Let FL = F(ML) be the
G-module that is defined by the n-dimentional group low F(x, y) on the product
(ML)n := ML × · · · × ML , (n times) of maximal ideals of the ring OL of any finite
Galois extension L of the field K .

Definition 5.2 The norm map N : FL ⊂ FK of the module FL to FK is defined
by the formula N (a) = (((a +F σa) +F · · · ) +F σsa), where a +F b denotes the
addition of points in the sense of group structure of the module FL , a, b ≥ ML , G =
Gal(L/K ), σs ≥ G, [G : 1] = s.

Let p := char k, e := νK (p), (e = +∗, if characteristic of the field K is
equal p and e is positive integer in the opposide case), L/K be the Galois extension
of the prime degree q, F(x, y) be the one dimensional group low over OK . Let
p := char k > 0.

Lemma 5.1 If Πs ≥ π s
L · OL, s ⇐ 1 then

N (Πs) ∼ T r(Πs) + ∑∗
n=1 cn[Norm Πs]n(mod T r(π2s

L · OL))

where cn ≥ OK are coefficients of the p-iteration of the group low. The iteration
is defined below.

(In paper [6] the lemmahas proved for one dimensional group lows that correspond
to elliptic curves)

Proof At first make two remarks:

1. If F(x, y)—one dimensional group low over the ring OK , then p-iteration
[p]F (T ) of the group low F has the form [9]
[p]F (T ) = p(T + · · · ) + ∑∗

i=1 ci T pi ,
where dots denote intermediates of the degree greater than one.

2. If the series expansion of the expression (((t1 +F t2) +F · · · ) +F tn)
includes monomial t1α1 · · · tq

αq , then it also includes a monomial that is the
result of acting of arbitrary permutation of digits 1, 2, . . . , q on it.

Let us go to the proof of the lemma. Let G = Gal(L/K ). If ω = r1+r2σ +· · ·+
rqσ q−1 is an element of the group algebra Z[G] (where Z is the ring of integers).
Let

Πω
s := Π

r1
s (σΠ

r2
s ) · · · (σ q−1Π

rq
s ).

Wehave N (Πs) = (((Πs +FσΠs)+F · · · )+Fσ q−1Πs) = ∑
(r1,...,rq ) dr1,...,rq Π

ω
s

where dr1,...,rq ≥ OK , and sum by corresponding ω. By symmetry (see remark 2)

in the expansion of N (Πs) with dr1,...,rq Π
ω
s comes also dr1,...,rq Π

σ i ω
s (i = 1, 2,

. . . , q − 1). Since
σ iω = ω

(i is one of numbers i = 1, 2, . . . , q − 1), so ω = n(1+ σ + · · · + σ q−1). Hence
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N (Πs) =
∗∑

n=1

dn[Norm(Πs)]n +
∑
ω

dr1,...,rq T r(Πω
s ), (5.1)

where sum by ω such that do not satisfy the condition σ iω = ω.
If r1 + · · · + rq > 1 then by ([14], lemma 2)
T r(Πω

s ) ∈ T r(π2s
L · OL), hence

N (Πs) ∼ T r(Πs) +
∗∑

n=1

dn[Norm Πs]n(mod T r(π2s
L · OL)). (5.2)

Demonstrate that as a dn we may take cn from the expansion of [p]F (T ). This
follow from the fact that as dn so cn define to mod p.

Let r := νK (c1), r j := νK (c j ), j > 1 and let the height of F is ∗ > h ⇐ 1;
recall that νK (cph−1) = 0.

By ([14], lemma2) T r(πn
L · OL) = π

y0(n)
K where y0(n) = √ (m+1)(p − 1) + n

p ≤.
Put y1(n) = r + n, y2(n) = r2 + 2n, . . . , yp−1(n) = rp−1 + (p − 1)n, yp(n) =

rn + pn, . . . , yph−1(n) = rn + pn.

Lemma 5.2

μ(n) = min{y0(n), y1(n), yp(n), yp2(n), . . . , yph−1(n)}. (5.3)

Proof (we follow to [7]).
Define μ1(n) = min{y0(n), y1(n), y2(n), . . . , yp(n), yp2(n), . . . , yph−1(n)}.
It is clear since the estimation (5.2) that μ(n) ⇐ μ1(n) (μ(n) is understood in the

sense of the definition5.1). Choose Πn such that νL(Πn) = n, νK (T r(Πn)) = y0.
Let d ≥ OK . Consider expression N (dΠn). By (5.1) in the case d ≥ OK the

terms from N (dΠn) that are included in the ideal T r(π2n
L ) and have the form

T r(σ i1(dΠn)k1 · · · σ is (dΠn)ks ) (5.4)

under k1 +· · ·+ ks ⇐ p + 1 will have the norm in K greater then y0(n). This follow
from the computation by the formula for y0(n). Hence

N (dΠn) = π
μ1(n)
K [(π−μ1(n)

K T r(Πn))d + (summands contain d from 2 to p-s degree,

that obtained from terms of N(dΠn), that include in

T r(π2n
L )) +

ph∑
i=1

π
−μ1(n)
K × ci [Norm(Πn)]i d pi + · · · ] (5.5)

where dots denote terms of higher orders.
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Term π
μ1(n)
K in (5.5) helds coefficient that is polynomial from d of degree not

greater than ph ; if μ1(n) = y j (n)( j = 0, 2, 3, . . . , ph−1; j is different from 1) then
the coefficient under d pj is not equal zero mod πK , hence μ(n) = μ1(n); if

μ1(n) = y1(n) < y0(n), y2(n), . . . , yp(n), yp2(n), . . . , yph−1(n).

then terms from N (dΠn) that are included in T r(π2n
L ), will have in K a norm that

is not less then y0(n), hence only coefficient under d p will differ from zero under
mod πK , hence again μ(n) = μ1(n). Hence always

μ(n) = μ1(n).

Demonstrate now that actually

μ1(n) = min{y0(n), y1(n), yp(n), yp2(n), . . . , yph−1(n)}.

We prove this by induction on n. If n = 1 and μ1(1) = y0(1) then the lemma is
proved, and then

y0(1) ⇔ yi (1) (i = 1, 2, 3, ..., ph−1) and all yi (n), i ⊥= 0 grow faster then y0(n).
Ifμ1(1) = yi (1) < y0(1), 1 ⇔ i ⇔ ph−1 (specifically: i = r0), then demonstrate

at first that μ1(n) is strictly increasing function

μ1(1) < μ1(2).

If μ1(2) = yr0(2) (r0 ⊥= 0) then we have
y2(1) ⇔ yr0(2), that is μ1(1) < μ1(2).
But ifμ1(2) = y0(2) thenμ1(1) = yr (1) < y0(1), hence y2(1) < y0(1) ⇔ y0(2),

and again μ1(1) < μ1(2).
Thereby the homomorphism

F1
L/F2

L

N→
1−⊂ Fμ1(1)

K /Fμ1(1)+1
K (5.6)

that is induced by N is defined. Under πL − πK isomorphisms [7] it passes to
homomorphism N 1

→ : Ga(l) ⊂ Ga(k) where Ga(k) is the additive group of the
field l = OL/ML that is defined by polynomial from (5.5) under reduction by
mod πK . But any homomorphism of additive groups of the field of characteristic
p > 0 is given by the polynomial from T, T p, T p2 , . . . (sums of degrees of Frobenius
automorphism), hence in the case n = 1 the lemma is proved.

Let lemma is true for n = n0. Prove it for n = n0 + 1. If μ1(n0) = yn0(n) then
the lemma is proved. If μ1(n0) = y j (n0) (1 ⇔ j ⇔ ph−1, j ⊥= 0) then we have

μ1(n0) < μ1(n0 + 1)

Ipso facto the homomorphism
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Fn0
L /Fn0+1

L

N→
n0−⊂ Fμ1(n0)

K /Fμ1(n0)+1
K (5.7)

that is induced by N is defined. And again the passage to the homomorphism N n0
→ :

Ga(l) ⊂ Ga(k) demonstrates that (5.3) takes place.

5.3 Results

Let F(x, y) be the one dimensional formal groups of height 3 over integer ring of
local and quasi-local fields K .

Consider the tower of fields

K = L0 − L1 − L2 − · · · − Ls−1 − Ls (5.8)

where Li/Li−1, (i = 1, 2, . . . , s) are Galois extensions with Galois groups Z/pZ.
Let μi (n) be the function of the definition5.1 that is computed on the i-s floor of

the tower (5.8) and let mi be the number of the last nontrivial ramification group of
the extension Li/Li−1.

Put r1 := νK (cp), r2 := νK (cp2), e := νK (p).

Lemma 5.3 Depend on numbers r1, r2, e the function μi (n) is computed by the next
four formulas:

(i) If r1, r2 ⇐ e then the computation of the μi (n) makes by the formula

μi (n) =
{

p2n, n ⇔ mi +1
p2+p+1

√ (m1+1)(p−1)+n
p ≤, n >

mi +1
p2+p+1

(A)

(ii) If r2
p2

⇔ e
p2+p+1

⇔ r1
p2+p

then the computation of the μi (n) makes by the formula

μi (n) =




p2n, n ⇔ r2 pi−1

p(p−1)

r2 pi−1 + pn,
r2 pi−1

p(p−1) < n <
[

(mi +1)(p−1)+pi r2
p2−1

⎧

√ (m1+1)(p−1)+n
p ≤, n >

[
(mi +1)(p−1)+pi r2

p2−1

⎧ (B)

(iii) If r1
p2+p

⇔ r2
p2

⇔ e
p2+p+1

then the computation of the μi (n) makes by the formula

μi (n) =




p2n, n ⇔ r2 pi−1

(p2−1)

r1 pi−1 + n,
r1 pi−1

(p2−1)
< n <

[
(mi +1)(p−1)+pi r1

p−1

⎧

√ (m1+1)(p−1)+n
p ≤, n >

[
(mi +1)(p−1)+pi r1

p−1

⎧ (C)

(iv) If r2
p2

⇔ r1
p2+p

⇔ e
p2+p+1

then the computation of the μi (n) makes by the formula
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μi (n) =




p2n, n ⇔ r2 pi−1

p(p−1)

r2 pi−1 + pn,
r2 pi−1

p(p−1) < n ⇔ (r1−r2)pi−1

p−1

r1 pi−1 + n,
(r1−r2)pi−1

p−1 < n ⇔
[

(mi +1)(p−1)+pi r1
p−1

⎧

√ (m1+1)(p−1)+n
p ≤, n >

[
(mi +1)(p−1)+pi r1

p−1

⎧
(D)

The lemma is proved by direct computation.
Let K be a local or quasi-local field and F(x, y) be the one dimensional formal

group over integer ring of K . Let FL = F(ML) be the G-module that is defined by
the group low F(x, y) on the maximal ideal ML of the ring OL of any finite Galois
extension L of the field K .

In the case when K is the quasi-local field it is possible, follow to Serre [15],
induced on FL the structure of the proalgebraic group. Denote the group as F L . Let
π1(F L) be its fundamental group.

Definition 5.3 Let K be a local field, NL/K : FL ⊂ FK the norm homomorphism.
The subgroup

VK =
⎪
K

NL/K (FL)

(intersection on all finite Galois extensions L/K ) of the group FK is called the
universal norm group of the group F defined over ring OK .

If K is a quasi-local field, then the subgroup

V →
K =

⎪
K

NL/K (π1(F L))

(intersection on all finite Galois extensions L/K ) of the group π1(F L) is called the
universal norm group of the group F defined over ring OK .

Theorem 5.2
VK (respectively V →

K ) = 0.

Sketch of the proof We use an extension of the method of Vvedenskii [4] by
which he prove the result for one dimensional fornal groups of reduction height 1
and 2 over integer ring of local and quasi-local fields.

If K is a local field, then the prove of the theorem reduced to the prove of the next
lemma5.4. If K is a quasi-local field, then we follow the method that has proposed in
the paper [13]. In the case it is sufficient to prove that for any finite Galois extensions
L/K the next equality and inclusion take place

NL/K (V →
L ) = V →

K

V →
L ∈ pπ1(F L)
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Lemma 5.4 For any integer n, n ⇐ 1 there is such finite Galois extension L/K , that
the image NL/K (FL) (respectively NL/K (π1(F L)) of the norm homomorphism

NL/K : FL ⊂ FK

(respectively NL/K : π1(F L) ⊂ π1(F K )) is contained in Fn
K (respectively in

π1(F K )).
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Chapter 6
Assignment of Factors Levels for Design
of Experiments with Resource Constraints

S. A. Smirnov, O. O. Glushchenko, K. A. Ilchuk, I. L. Makeenko
and N. A. Oriekhova

Abstract An optimal procedure for factors levels assignment is proposed. The
procedure is based on choice of levels number proportionally to factor significance,
guaranteed estimation of entropy, and 1D-parametrization of iteration process for
multidimensional mapping fixed point finding. Solution existence and convergence
of the procedure is proved.

6.1 Introduction

One of the major planning stages, that predestinates an effectiveness of experiment,
is the choice of the most significant parameters of the situation as a factors of experi-
ment, and the appointment some discrete values as their levels. In this case, for the set
of admissible values for each factor, it is reasonable to use a partition into disjoint
subsets covering it completely, and as a factor level to choose one representative
value for each partition element. Naturally the question arises as to effectively select
the set partition and the corresponding representative values. Then it is necessary to
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take into account the resource constraints of the experiment, always present, and try
to manage them well.

Thus, for a complex system undergoing experimental investigation, to have to
build a simplified mathematical model, based on reduced descriptions. It uses not
all existing independent variables, but only the most important, which is determined
by natural resource constraints assigned for the solution. Those restrictions limit the
number of values taken by each of the parameters. Formalization of such problems,
with emphasis on the situation of decision-making can be found in monograph [1].

6.2 Hansel Method

Among the methods of formation of the simplified discrete model we single out a
method of Hansel, proposed in work [2] and based on the idea of appointment of
representative values of all parameters in proportion to their significance. Under the
significance of the independent parameter means the product of its relevance to the
entropy.

Parameters of an experiment, which values we can change, is called factors, and
result of an experiment (numerical value) is called observable.Relevance (coefficient
of impact) Rl is defined as the ratio of the range of observable values for different
values of this parameter, to its average value (with nominal values of other para-
meters). It describes the influence, and usually normalized by all parameters, and
that is a weighting coefficient of this parameter. To calculate relevance you need to
know the dependence of observable from all factors. Entropy of a factor is calculated
traditionally, as:

Hl (Nl) = −∑Nl
j=1 Pj ln(Pj ),

where Nl—number of levels of l-th factor, and Pj—the probability of the j-th value of
l-th factor, characterizes informational complexity of representation of correspond-
ing parameter. Discretization of the continuous variables is realized by corresponding
values of the factor levels.

Let us assumed that N = ∏L
l=1 Nl is the number, defined from resource restric-

tions, that meets the full set of combinations of the levels of all factors. This number
characterize the combinatorial size of the problem. Since the significance of para-
meter is the product of its relevance to its entropy, and the entropy depends on the
same number

Nl= k Rl Hl (Nl),

where 1≤ l ≤ L is parameter index, and k—the proportionality coefficient. Then
numbers Nl can be find as a fixed point of a multidimensional mapping Φ(N ):

N = Φ(N ) ⇐⇒



N1= k R1H1 (N1)

. . .

NL= k RL HL (NL)

under condition N = ∏L
l=1 Nl .
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Author of the method have considered the dependence Hl (Nl) for the cases of
three probability distributions: normal, Weibull and log-normal and for partitioning
into intervals of equal length. For a normal distribution with equidistant partition
entropy formula:

Hl (Nl) = ln
(
2
√

(2πe)Nl/σ
)
,

for others distributions entropy formulas look more complicated. Then author
proposed to calculate a fixed point by sequential approximation method

Note some weaknesses of Hansel method:

1. Equidistant partition and is a very special case.
2. The choice of the initial approximation is arbitrary, there are no recommendations.
3. Convergence of iterations L-dimensional mapping of the specified type is not

theoretically justified and in practice is rare.
4. Integer rounding adds complexity for multidimensional mapping.

Thus, the absolute advantage of the method is the construction of an iterative
process of finding Nl , and disadvantage—its complexity and the lack of any guarantee
of convergence.

6.3 Modification

Here we propose a modification of this method to get rid of its shortcomings. It is
based on two considerations.

1. Using of equiprobable partition to select representative value (Fig. 6.1), that
working for the probability distributions of any kind. This partitionwith guarantee
has the property of maximum entropy, that is optimum on the information criteria.

Fig. 6.1 Equiprobable
5-partition on (8; 12) interval
for normal distribution
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For such case there is an exact expression for the entropy Hl (Nl) = ln (Nl).Then
we choose representative value from partition element as a level of factor. It is
taken as the average value in the corresponding interval, or as the most probable
value out of it.

2. The transition from L- to 1-parametric representation of the iterative process fixed
point searching. For this we use the expression for the fixed point Nl/ ln (Nl) =
k Rl , from which we conclude that for determination of all numbers Nl it is
sufficient to find the coefficient of proportionality k—only one scalar parameter.
It is the maximum decomposition, because a multidimensional mapping splits
into direct product of independent 1-dimensional mappings.

How to organize an iterative process 1-dimensional search of a value, that
correspond a fixed point of multidimensional mapping? We suggest the following
procedure. The initial value k0 is obtained from the obvious inequality for levels
number of factor with minimal relevancy N1 ≥ 2. Then

k0 = 3/(R1 ln 3) ≈ 2.73/R1

is the lower bound for the k finding value. From the other hand N1 ≤ L
√

N , and then

k1 = L L
√

N/(R1 ln N )

is the upper bound, k0 ≤ k ≤ k1. We can calculate the zero approximation Nl from
the equation x/ ln (x) = k0RL . Note that the function x/ ln(x) is unimodal (one
minimum at e point), and the solution is unique for x > e (see Fig. 6.2). Let N (0)—
the product of all zero approximation estimates Nl . It turns N (0) < N (in other case
our problem is unsolvable), then calculate the first approximation from the equation
x/ ln (x) = k1RL . If N (1) is the product of all first approximation estimates Nl , it
turns N (1) > N . Then perform a one-dimensional search in the interval between k0
and k1. Second approximation we find from

k2 = (k0 + k1)/2,

and refine sign of inequality between N (2) and N . For construction of a sequence
kn use a dichotomous iteration. Method of division in halves allows to guarantee a
convergence of the iterative process.

In fact, due to the inevitability of the integer rounding, a condition

(Nl+1 − Nl)
2 < 1

can serve as iteration stopping criteria, and final assessments of Nl meet the
requirements of the fixed point only approximately. But if we have exact solution,
we compare different integer rounding by discrepancy evaluation. So, the obtaining
computing solution is optimal, due to its integer-valued nature it is the best possible.

Thus, the basic idea of the proposed procedure:

1. Best (on criterion of entropy) approach to the selection of representative values
(factor levels), that is universal for all probability distributions;

2. One-dimensional parametrization of the iterative process for finding a fixed point
of a multidimensional nonlinear mapping.
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Fig. 6.2 Graph of the function x/ ln (x) in a small and b large scale

6.4 Example

Let to consider some 3-factors experiment with relevancies R1 = 1/5, R2 = 0.3,
R3 = 1/2. Our calculations gives next numbers of factor levels (Table 6.1).
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Table 6.1 3-factors experiment with relevancies R1 = 0.2, R2 = 0.3, R3 = 0.5

N1 2 3 4 5 6 7 8 9 10 11 12
N2 10 9 10 11 13 14 16 18 19 21 23
N3 22 21 22 25 28 31 34 37 40 43 46

N 440 567 880 1375 2184 3038 4352 5508 7600 9933 12696

Table 6.2 2-factor problem with relevancies 3/8 and 5/8

N1 2 2 2 2 2 2 2 2
N2 2 3 4 5 6 7 8 9
N3 12 11 12 13 15 17 19 21

N 48 66 96 130 180 238 304 378

So, on the base of the approach of minimal relevancy we can choose the numbers,
that are corresponds in a best way to combinatorial complexity restrictions of exper-
iment.

Some words about fast experiments. For N < 440 an optimal planning of a level
numbers is uncertain. A good way is to froze minimal value N1 = 2, and to solve
a 2-factor problem with relevancies 3/8 and 5/8. Here are the results of calculations
(Table6.2).

6.5 Conclusions

Thanks to the implementationof theproposedmodification, the constructedprocedure
has guaranteed convergence, significantly greater ease of realization and flexibility of
reconfiguration at the refinement of the problem statement. For design of experiment
problems the proposed procedure can manage the available resources in the best
way. Particular attention should be paid to the assessment of the relevance of various
factors, since their determination procedures can not be completely formalized. It is
reasonable to use expert interval estimates for relevancies of factors, based on the
technique, developed in [3]. We also believe that it is useful to make greater employ-
ment of entropy criterion for constructing estimates based on subjective measures.
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Chapter 7
How to Formulate the Initial-Boundary-Value
Problem of Elastodynamics in Terms
of Stresses?

D. V. Georgievskii

Abstract In case when loadings are given on all the boundary of deformable solid,
the initial-boundary-value problem for obtaining stress-strain state seems to be more
suitable and effective if it is formulated and investigated in terms of stress tensor
components. In this chapter typical peculiarities of some (in chronological order)
formulations the initial-boundary-value problems in dynamic theory for isotropic
linear elastic solid are discussed.

7.1 The Classic Formulation of the Dynamic Problem
and its Peculiarities

As is generally known, the problem of elastodynamics for linear isotropic solid
consists of investigation inside a solid domain V of the system

S(σ˜, u) → Divσ˜ + ρF − ρu, t t = 0 (7.1)

σ˜ = λθI˜+ 2με˜, θ = trε˜, −1 < ν <
1

2
(7.2)

ε˜ = Defu → 1

2

(⇐u + (⇐u)T )
(7.3)

by fulfilment of initial conditions

u(0, x) = U(x), u, t (0, x) = V(x) (7.4)

D. V. Georgievskii (B)

Mechanical and Mathematical Faculty, Moscow State University,
Vorobjovy Gory, Moscow, Russia 119991
e-mail: georgiev@mech.math.msu.su

M. Z. Zgurovsky and V. A. Sadovnichiy (eds.), Continuous and Distributed Systems, 89
Solid Mechanics and Its Applications 211, DOI: 10.1007/978-3-319-03146-0_7,
© Springer International Publishing Switzerland 2014



90 D. V. Georgievskii

Let the following loadings
(σ˜ · n)Σ = P≥ (7.5)

are given on all the boundary Σ = ∂V . Here λ, μ are the Lame constants, ν is the
Poisson ratio, F is mass force (mass acceleration), I˜is two-rank unit tensor, ρ is mass
density, n is unit normal in each point of the boundary Σ .

Cauchy stress tensor σ˜(0, x), low strain tensor ε˜(0, x), and displacement vector
u(0, x) must be obtained from the system (7.1)–(7.5). A presence of the Cauchy
relations (7.3) guarantees an identical fulfilment of well-known six Saint-Venant
compatibility equations

η˜(ε˜) → Inkε˜ = 0 (7.6)

where η˜ is the Kröner unit incompatibility tensor. The Eq. (7.6) may also be written
in Cartesian coordinates in one of two following forms

ηil = εi jkεlmnεkm, jn = 0 (7.7)

ηαα → 2εβγ,βγ − εββ,γγ − εγγ,ββ = 0

ηαβ → εαβ,γγ + εγγ,αβ − εαγ,γβ − εβγ,γα = 0 (7.8)

where εi jk are the Levi-Civita symbols; (α,β, γ) = {(1, 2, 3); (2, 3, 1); (3, 1, 2)}.
We remind that the summation from 1 to 3 is realized by recurring twice (in each
monomial) Latin subscripts. There is no summation by Greek subscripts.

From the point of view of computational mechanics and, generally, mechanics
of deformable solid, in case when the conditions (7.5) are given on all the surface
Σ it is very convenient to formulate the initial-boundary-value problem in terms
of stress tensor [1–5]. This is explained by the fact that namely stress components
(but not displacement ones) are the main values being of interest in most practical
and engineering applications. These components are contained in various tests and
criteria of strength, fracture, and phase transfers.

The problem (7.1)–(7.5) of isotropic elastodynamics in terms of stresses may be
formulated in the following classic way:

S
[
σ˜, u

(
ε˜(σ˜)

)] → Divσ˜ + ρF − ρu
(
ε˜(σ˜)

)
,t t = 0 (7.9)

η˜
(
ε˜(σ˜)

) = 0 (7.10)

σ˜(0, x) = λ divU I˜+ 2μDefU, σ˜,t (0, x) = λ divV I˜+ 2μDefV (7.11)

The boundary conditions (7.5) should be added here.
We keep in mind that the inverse to (7.2) law

ε˜ = 1

E

(−3νσI˜+ (1 + ν)σ˜
)
, 3σ = trσ˜ (7.12)
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as well as the Cesaro formulae expressing displacements in terms of strains

u = u≥ + (x − x≥) · Ω˜
≥ +

M∫

M≥

[
ε˜+ (x − x∈) · ⇐ε˜− ⇐ε˜ · (x − x∈)

] · dx∈ (7.13)

Ω˜ = 1

2

(⇐u − (⇐u)T )
(7.14)

are used in the Eqs. (7.9) and (7.10). Here E is Young modulus, Ω˜ is antisymmetric
rotation tensor, M≥ is some fixed point of solid with coordinates x≥ (both displace-
ments u≥ and rotations Ω˜

≥ are known in M≥), M is arbitrary moving point with
coordinates x.

A presence of the contour integral in (7.13) turns the equations of motion (7.9)
into integro-differential ones with respect to σ˜. This considerably complicates an
analytical investigation and makes the classic formulation as a whole inefficient for
application of computational methods. Note that this complexity is missing in the
corresponding static (quasistatic) problem. In this case one can derive the Beltrami–
Michel compatibility equations

Δσ˜ + 3

1 + ν
⇐⇐σ = − ρν

1 − ν
divF I˜− 2ρDefF (7.15)

using conditions (7.10) after substitution there combinations Def (Divσ˜).
Equation (7.15) may be derived [3] not resorting to the Saint-Venant identities

(7.10) but using the Lame equations and the Hooke law in inverse form (7.12).

7.2 Ignaczak–Nowacki’ Formulation

The generalized Beltrami–Michel compatibility equations in the problem of elato-
dynamics may be obtained by means of any of two methods mentioned above. In
fact, applying operator Def to left and right hands of the motion Eq. (7.9) we derive
at first

(DefS)(σ˜) = 0 (7.16)

or in detail

2Def (Divσ˜ + ρF) = − 3ν

(1 + ν)c22
σ,t t I˜+ 1

c22
σ˜,t t

(
→ 2ρε˜(σ˜),t t

)
(7.17)

where c2 = ⊂
μ/ρ is a shear wave velocity in elastic medium. Then on the basis of

(7.17) we can write the generalized Beltrami–Michel compatibility Equations
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(
Δ − 1

c22

∂2

∂t2

)
σ˜ + 3

1 + ν

(
⇐⇐σ + ν

2(1 − ν)c22
σ, t t I˜

)
=

= − ρν

1 − ν
divF I˜− 2ρDefF (7.18)

For thefirst time theEqs. (7.17) and (7.18) are led out in [1, 6]. Significant attention
inmonograph [4] is devoted to these subjects too. In this way the Ignaczak–Nowacki’
formulation consists of six generalized Beltrami–Michel compatibility equations
inside domain V as well as three Eq. (7.9) by satisfaction the boundary conditions
(7.5) and the initial conditions (7.11). In [6] an uniqueness theorem for the problem
in terms of stresses is proved without using of some kind of energetic concepts.

7.3 Konovalov’ Formulation

Both formulations of the dynamic problem which are discussed above presuppose a
solving in V nine equations with respect to six components of symmetric tensor σ˜by fulfilment of only three boundary conditions on Σ . Furthermore, it is necessary
to express displacements u in terms of σ˜ by means of contour integrals (7.13).

It should be noted that initial stresses σ˜(0, x), σ˜, t (0, x) (7.11) are taken in such a
way that they are compatible certainly, i. e. initial strains ε˜(0, x), ε˜,t (0, x) which are
obtained using (7.12) turn the Eq. (7.6) into identities. The following tensor relation

ρε˜(σ˜) =
t∫

0

t ∈∫

0

Def (Divσ˜ + ρF)(t ∈∈, x) dt ∈∈ dt ∈ + ρε˜,t (0, x) t + ρε˜(0, x) (7.19)

turns out after double integration (7.17) by time.
All three terms in right hand of (7.19) comply with the Eqs. (7.6) or (7.10). There-

fore, the stress field satisfying with both the Eq. (7.17) inside V and boundary con-
ditions (7.5) on Σ and initial conditions (7.11) is also adjusted with the Eq. (7.10).

The stated formulation of the dynamic problem in terms of stresses as well as a
development of corresponding computational methods were realized in the sixties
and seventies of twentieth century in works of Konovalov (see his monograph [3]).

The Eq. (7.17) do not yet ensure an identical fulfilment of the motion Eq. (7.9)
inside V as the classic formulation demands. For the following consequent statement

DefS = 0 =∗ S = 0, x ∼ V, t > 0 (7.20)

it is necessary and sufficiently to require two additional conditions in any point ξ ∼ V :

S = 0, ⇐S − (⇐S)T = 0, x = ξ, t > 0 (7.21)
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where the second condition is equivalent to rot S = 0.
Let us choose in the capacity of point ξ some pole M≥ with coordinates x≥ where

both displacements u≥ and rotations Ω˜
≥ are known by t > 0 (see (7.13)). Then two

additional conditions (7.21) may be written in the following way

(Divσ˜ + ρF)(t, x≥) = ρu≥
, t t (7.22)

1

2

{
⇐[

Divσ˜ + ρF
] − (⇐[

Divσ˜ + ρF
])T

}
(t, x≥) = ρΩ˜

≥
,t t (7.23)

The conditions (7.22) and (7.23) also are part of the Konovalov’ formulation in
which it is not necessary to express unknown inside V displacements in terms of
stresses σ˜.

7.4 Pobedria’ Formulation

In the late seventies of twenteeth century Pobedria proposed [7] a new formulation
the problem in terms of stresses in mechanics of solids which is better adjusted
to applications of computational algorithms. The classic variational Castigliano’
principle is employed bad for a construction of difference schemes by one or another
level so long so the question is about conditional extremum of Castiglianian. So the
new variational principle had been stated.

The Pobedria’ formulation [5] consists of solution inside elastic solid six gener-
alized compatibility equations in terms of stresses by satisfying on all the boundary
three motion (equilibrium) equations as well as three boundary conditions. It should
be given also initial conditions in case of the problem of elastodynamics.

For the last thirty years this formulation acquires awidespreadworld fame (see, for
example, the papers [8–10] that are devoted to its development). With the Pobedria’
formulation help many 2D and 3D quasistaic boundary-value problems in elasticity,
plasticity, viscoelasticity, contact problems, heat transfer problems, tasks of compu-
tational mechanics of composites have been analyzed by numerical and analytical
methods.

In conformity to the problem of isotropic elastodynamics, this formulation
requires a solving six generalized compatibility Beltrami–Michel Eq. (7.18) inside
the domain V by satisfying in each point of the boundary Σ three Eq. (7.9) as well
as three conditions (7.5) and initial conditions (7.11).

7.5 One More Possible Formulation

We require a fulfilment inside V of six generalized compatibility Beltrami–Michel
Eq. (7.18) by satisfying on Σ six conditions (7.17) and three boundary conditions
(7.5) as well as the additional equalities (7.22) and (7.23) in some point x≥ ∼ V̄ . Let
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us show that such formulation of the dynamic problem is equivalent, for example, to
the Ignaczak–Nowacki’ formulation in terms of stresses.

In fact, the Ignaczak–Nowacki’ formulation involving the motion Eq. (7.9) inside
V guarantees a validity of (7.17) inside V and on Σ by virtue of continuity. Further-
more, the equalities (7.22) and (7.23) are realized in some point x≥ ∼ V̄ where u≥
and Ω˜

≥ are known.
A method of proof to another hand consists of two standard stages.

1. We make a full contraction of the generalized compatibility Beltrami–Michel
Eq. (7.18) with 2-rank identity tensor I˜ and express Δσ:

Δσ = − (1 + ν)ρ

3(1 − ν)
divF + 1 − 2ν

2(1 − ν)c22
σ,t t (7.24)

It is naturally that by ν < 1/2 amean stress σ turns out to satisfy with not uniform
wave equation with wave spreading velocity

√
2(1 − ν)

1 − 2ν
c2 = c1 (7.25)

2. We apply operator Div to both hands of (7.18) and take into account the equality
(7.24):

ΔDivσ˜ − 1

c22

[
Divσ˜ − 3

2(1 + ν)
⇐σ

]
, t t

= −ρΔF (7.26)

An expression in square brackets is equal to μΔu (this may be verified by substi-
tution σ˜ = λ divu I˜+ 2μDefu consistent with the initial conditions (7.11)).

Thus, vector S(σ˜) as well as tensor DefS(σ˜) are harmonic inside V . As the
conditions (7.17) are realized on all the boundary Σ , i. e. [DefS(σ˜)]Σ = 0, then the
equalities (7.16) are correct in any point of the solid V . In addition, if the equalities
(7.22) and (7.23) are realized then [S(σ˜)]V = 0, i. e. the motion Eq. (7.9) are correct.
A required equivalence have been shown.

A proof withstands a passage to the limit to incompressible material. When ν =
1/2 it is necessary to write (instead of (7.24)) Poisson’ equation for mean stress:
Δσ = −ρ divF and instead of (7.26):

ΔDivσ˜ − 1

c22

[
Divσ˜ − ⇐σ

]
,t t = −ρΔF (7.27)

The terms in square brackets in (7.27) as before are equal to μΔu what now may be
verified in result of substitution σ˜ = −p I˜+ 2μDefu taking account of div u = 0.
Here

p = − lim
ν√1/2

(λ divu) = −σ (7.28)

is hydrostatic pressure in incompressible elastic solid.
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Both in the Konovalov’ formulation and in this one we do not require in any point
an expression of unknown displacements u in terms of stresses σ˜.
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Chapter 8
Finite-Difference Method of Solution
of the Shallow Water Equations
on an Unstructured Mesh

G. M. Kobelkov and A. V. Drutsa

Abstract In the chapter we consider a linearized system of shallowwater equations.
Since this problem should be solved in domains being seas and oceans (or their parts),
then solving this problem should use unstructured meshes to approximate domains
under consideration properly. This problem was studied in the papers [1–4]. Here
we consider finite-difference approximation of these equations, prove convergence
of approximate solution to the differential one, and provide a number of numeri-
cal experiments confirming theoretical results. We also carried out some numerical
experiments for real geographic objects.

8.1 Introduction

In the chapter we consider a linearized system of shallow water equations. Since
this problem should be solved in domains being seas and oceans (or their parts),
then solving this problem should use unstructured meshes to approximate domains
under consideration properly. This problem was studed in the papers [1–4]. Here
we consider finite-difference approximation of these equations, prove convergence
of approximate solution to the differential one, and provide a number of numeri-
cal experiments confirming theoretical results. We also carried out some numerical
experiments for real geographic objects.

8.2 Formulation of the Problem

Let us consider the system of shallow water equations in 2D Cartesian coordinates
(see, e.g., [4–6]):

ut = g→ζ − Ru − λk̄ × u + f, (8.1)
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ζt = divHu; (8.2)

hereu = (u, v) is a velocity vector, ζ—height of a tidal wave, k̄—aunite vector in Oz
direction, R, λ, g—some constants, H(x, y) is a depth—a function of coordinates.
These equations are considered in a bounded domain Ω with the boundary Γ1

⋃
Γ2.

Boundary conditions are of the form of impermeability conditions or fixed wave
height:

u · n ⇐ un1 + vn2 = 0, on Γ1; (8.3)

ζ = 0, on Γ1; (8.4)

Initial conditions are
u(x, y, 0) = u0(x, y),

ζ(x, y, 0) = ζ0(x, y),
(8.5)

where ζ0(x, y) is some initial distributionofflow levelwhileu0(x, y) is somevelocity
vector field. Our aim is to approximate problem (8.1)–(8.5).

8.3 Mesh and Mesh Operators

Triangulate Ω in such a way that Ωh (triangulation of the original domain) contains
acute triangles only.

A boundary of Ωh is denoted as Γ h = Γ h
1

⋃
Γ h
1 . A mesh is constructed in the

following way: a cell center is a center of circumference described round a triangle,
intersection point of a segment connecting centers of two neighboring cells and their
common side is called flow node. Since all the triangles are acute, then centers of
cells are inside of each triangle, while a flow node is a middle of the side where it
locates. Enumerate cell centers k = 1, 2, . . . , K and flow nodes i = 1, . . . N . Denote
a center of the k-th cell by Ok and the i-th flow node—by Xi . By double upper index
k, α we denote various mesh elements associated with the flow node Xi laying on
α-th side of the k-th cell (i.e., Xi = Xk,α). By double lower index i, m we denote
elements associated with the k-th cell containing the flow node Xi (i.e., Oi,1 = Ok).
A node Ok and basic elements of a cell (side length—lk,α , length of the segment
connecting centers—dk,α , square of the cell—Sk) are illustrated in Fig. 8.1. A flow
node Xi and elements of the mesh associated with it (length of i-th side li , square
of the quadrangle Si ) are illustrated in Fig. 8.2. By O we denote variety of triangle
centers and by X—variety of flow nodes.

Introduce the scalar products as

( f, g) =
K∑

k=1

Sk f k · gk, (ζ, ξ) =
N∑

i=1

Siζi · ξi ,

where functions f, g are defined at cell centers, while ζ, ξ are defined at flow nodes.
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Fig. 8.1 A node Ok and three
neighbor nodes Ok,α, α =
1, 2, 3

Fig. 8.2 Flow node Xi and
two neighbor cells with the
centers Oi,1 and Oi,2

To approximate the gradient and divergence operators we use the Fryazinov
method [7]. The finite-dimensional gradient operator of ζ is defined at the cell center
while ζ is defined at flow nodes. Define it by the formula

→hζ

∣∣∣∣
Ok

= 1

Sk

3∑
α=1

lk,αζ k,αnk,α, k = 1, K , (8.6)

where nk,α is an outer normal to the side lk,α of the triangle Ok , ζ k,α is a value of
the function ζ at Xk,α . Components of the normal nk,α are denoted by nk,α

x and nk,α
y .

Let a function u be defined on cell centers. Approximate divergence operator of
this function in inner flow nodes by the formula

divh u
∣∣∣

Xi
= li

Si

(−ui,1ni,1 − ui,2ni,2
)
, (8.7)
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where ui,m is a value of the function u at Oi,m . For the nodes laying on the part of
boundarywhere the impermeability condition holds, the approximation of divergence
is of the form

divh u
∣∣∣

Xi
= li

Si

(−ui,1ni,1
)
, (8.8)

In [7] it was shown that the operators introduced above are conjugate (up to
a sign), namely, (uh,→hζh) = −(divh uh, ζh), and the order of approximation is
O(h); hereafter by h we denote the maximal size of cells.

8.4 Finite-Dimensional Problem

For problem (8.1)–(8.5), introduce discretization in time with the time step τ , t j =
jτ , j = 0, 1, 2, . . . . Velocities and wave height on the top layer we shall denote
by the same letters but with hat on them: û, ζ̂ . Velocities are defined on cell centers
and wave height—on flow nodes.Write down completely implicit finite-dimensional
approximation for (8.1)–(8.5) using (8.6), (8.7). We have

ûk − uk

τ
= λk × ûk − Rûk + f |Ok + g→h ζ̂ , k = 1, K , (8.9)

where k is a unit vector in Oz direction, f = ( f1, f2).Approximation of the continuity
Eq. (8.2) in inner nodes is of the form

ζ̂i − ζi

τ
= divh û, i = 1, N Xi ≥ Ωh\Γ h . (8.10)

In boundary nodes Xi ≥ Γ h
1 the continuity equation is modified in the following

way:
ζ̂i − ζi

τ
= divh û ⇐ li

Si

(−ûi,1ni,1
)
, i = 1, N Xi ≥ Γ h

1 . (8.11)

For the rest nodes Xi ≥ Γ h
2 , the equations look as boundary conditions (8.4):

ζ̂i = 0, i = 1, N Xi ≥ Γ h
2 . (8.12)

Eqs. (8.9)–(8.12) approximate problem (8.1)–(8.2) and boundary conditions
(8.3)–(8.4). In [2] it was proved that the system (8.9)–(8.12) is a systemwith symmet-
ric positive definite M-matrix under the condition that all mesh triangles are acute
ones.
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8.5 Convergence

Theorem 8.1 Let a solution to (8.1)–(8.5) be smooth enough and angles of all cells
be less than π/2−μ for some μ > 0. Then a solution to system (8.9)–(8.12) converges
to a solution to the original problem as O(τ + h) for τ, h ∈ 0.

Proof Since approximation of the operators is of order O(h) (see [7]), then the
following relations hold

∂u
∂t

∣∣∣
Ok

= u(t + τ) − u(t)

τ

∣∣∣
Ok

− ε

∣∣∣
Ok

,
∂ζ

∂t

∣∣∣
Xi

= ζ(t + τ) − ζ(t)

τ

∣∣∣
Xi

− ε

∣∣∣
Xi

,

divu
∣∣∣

Xi
= divhu

∣∣∣
Xi

+ υ

∣∣∣
Xi

, →ζ

∣∣∣
Ok

= →hζ

∣∣∣
Ok

+ υ

∣∣∣
Ok

.

(8.13)
For the functions ε, ε, υ, υ the following relation takes place

ε
∣∣
Ok = O(τ ), ε

∣∣
Xi

= O(τ ), υ
∣∣
Ok = O(hk), υ

∣∣
Xi

= O(hi ), (8.14)

where hk is a diameter of k-th cell and hi is a diameter of the quadrangle with the
diagonals Li and Di . Then

⊂ε⊂ =
√√√√ N∑

i=1

Si

(
ε
∣∣

Xi

)2 ∗ C1mes1/2(Ω)τ,

⊂ε⊂ =
√√√√ K∑

k=1

Sk ε
∣∣
Ok · ε

∣∣
Ok ∗ C2mes1/2(Ω)τ, (8.15)

⊂υ⊂ =
√√√√ N∑

i=1

Si

(
υ
∣∣

Xi

)2 ∗ C3mes1/2(Ω)h,

⊂υ⊂ =
√√√√ K∑

k=1

Sk υ
∣∣
Ok · υ

∣∣
Ok ∗ C4mes1/2(Ω)h, (8.16)

where C1, C2, C3, C4—some constants not depending on the mesh.
Note a solution to the differetial problem (8.1)–(8.5) by ũ, ζ̃ , i.e.,

ũt = g→ ζ̃ − Rũ − λk̄ × ũ + f,
ζ̃t = divũ.

(8.17)
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Substituting formulas for the operators from (8.13) into (8.17), we have

ũ(t + τ) − ũ(t)

τ

∣∣∣
Ok

= g→h ζ̃

∣∣∣
Ok

− Rũ
∣∣∣
Ok

− λk̄ × ũ
∣∣∣
Ok

+ f
∣∣∣
Ok

+ ε

∣∣∣
Ok

+ gυ

∣∣∣
Ok

,

ζ̃ (t + τ) − ζ̃ (t)

τ

∣∣∣
Xi

= divh ũ
∣∣∣

Xi
+ ε

∣∣∣
Xi

+ υ

∣∣∣
Xi

. (8.18)

Let un , ζ n be a solution to finite-difference problem (8.9), (8.12) for nth time
layer. Then the difference

wn = ũ(nτ) − un, ξn = ζ̃ (nτ) − ζ n (8.19)

satisfies the system of equations

wn+1 − wn

τ

∣∣∣
Ok

= g→hξn+1
∣∣∣
Ok

− Rwn+1
∣∣∣
Ok

− λk̄ × wn+1
∣∣∣
Ok

+ ε

∣∣∣
Ok

+ gυ

∣∣∣
Ok

,

ξn+1 − ξn

τ

∣∣∣
Xi

= divhwn+1
∣∣∣

Xi
+ ε

∣∣∣
Xi

+ υ

∣∣∣
Xi

,

w0 = 0, ξ0 = 0. (8.20)

From conjugation of mesh operators and the second equation of (8.20) it follows

(→hξn+1, wn+1) = −(divhwn+1, ξn+1) = −(ξn+1
t , ξn+1)+ (ε+υ, ξn+1), (8.21)

where ξn+1
t = ξn+1−ξn

τ
.

Take a scalar product of the first equation of (8.20) and 2τwn+1. After some
obvious transformations we obtain

⊂wn+1⊂2 − ⊂wn⊂2 + τ 2⊂wn+1
t ⊂2 + 2Rτ⊂wn+1⊂2

+ g(⊂ξn+1⊂2 − ⊂ξn⊂2 + τ 2⊂ξn+1
t ⊂2)

= 2τ(ε + gυ, wn+1) + 2gτ(ε + υ, ξn+1). (8.22)

Estimate the right-hand side with the use of Cauchy-Bunyakovskii-Schwarz inequal-
ity and the Young inequality with the parameters (2, 2):

⊂wn+1⊂2 − ⊂wn⊂2 + τ 2⊂wn+1
t ⊂2 + 2Rτ⊂wn+1⊂2

+ g(⊂ξn+1⊂2 − ⊂ξn⊂2 + τ 2⊂ξn+1
t ⊂2)

∗ τ⊂ε + gυ⊂2 + τ⊂wn+1⊂2 + τg⊂ε + υ⊂2 + τg⊂ξn+1⊂2.
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Sum up the above relation over time layers n = 0, 1, . . . , m − 1 and use the initial
conditions w0 = 0 and ξ0 = 0:

⊂wm⊂2 + g⊂ξm⊂2 +
m∑

n=1

(
τ 2⊂wn

t ⊂2 + 2Rτ⊂wn⊂2 + gτ 2⊂ξn
t ⊂2)

∗ mτ(⊂ε + gυ⊂2 + g⊂ε + υ⊂2) + τ
m∑

n=1
(⊂wn⊂2 + g⊂ξn⊂2).

The Gronwall lemma [8] gives

⊂wm⊂2 + g⊂ξm⊂2 + τ

m∑
n=1

(
τ⊂wn

t ⊂2 + 2R⊂wn⊂2 + gτ⊂ξn
t ⊂2

)

∗ exp

(
τm

1 − τ

)(
τ

m∑
n=1

(⊂ε + gυ⊂2 + g⊂ε + υ⊂2)
)

. (8.23)

Let t = mτ . Then using (8.15) and (8.16), one has

⊂wm⊂2 + g⊂ξm⊂2 ∗ e
t

1−τ

(
τ

m∑
n=1

(⊂ε + gυ⊂2 + g⊂ε + υ⊂2)
)

∗ C2tmes(Ω)e
t

1−τ (τ + h)2, (8.24)

where C = √
max{g(max{C1, C3})2, (max{C2, C4})2}. Since the last inequality is

fulfilled for each m = 0, . . . , M , where T = mτ , then

max
m=0,...,M

(⊂wm⊂2 + g⊂ξm⊂2) ∗ C2Tmes(Ω)e
T

1−τ (τ + h)2,

Taking into account (8.19), we get

max
m=0,...,M

⊂ũ(tm) − um⊂ ∗ C
√

Tmes(Ω)e
T

2−2τ (τ + h),

max
m=0,...,M

⊂ζ̃ (tm) − ζm⊂ ∗ C
√

Tmes(Ω)e
T

2−2τ (τ + h); (8.25)

a constant C does not depend on τ and h.
Therefore, a solution to the finite-dimensional problem converges to a solution to

the differential one for τ, h ∈ 0. The theorem is proved.
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8.6 Results of Numerical Experiments

8.6.1 Estimation of Convergence Order

To check order of convergence, a number of numerical experiments was carried out
on the domainΩ = [0, 1]× [0, 1]. An analytical solution to the differential problem
for the appropriate right-hand side is of the form:

ũ(x, y, t) = −(cos(6t) + 2) sin(2πx) sin(πy),

ṽ(x, y, t) = (cos(6t) + 2) sin(πx) sin(2πy),

ζ̃ (x, y, t) = −2π(
sin(6t)

6
+ 2t)(cos(2πx) sin(πy) − sin(πx) cos(2πy)).
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Impermeability boundary condition was put. Parameters and time step were chosen
as follows: R = 1

100 , λ = 0, T = 1.
With theuseof themeshgeneratorsgmsh [9] a number ofmesheswere constructed

each of which was obtained from the previous one by dividing of each cell onto for
ones. A diameter of maximal cell for such a variety of meshes diminishes two times
when passing from the coursemesh to the finer one. Therewere constructed 4meshes
and for each mesh the appropriate time step was chosen:

• Ωh
1—number of triangles—64, number of flow nodes—104. Time step τ = 0.01.

Number of time steps—100.
• Ωh

2—number of triangles—256, number of flow nodes—400. Time step τ =
0.005. Number of time steps—200.

• Ωh
3—number of triangles—1024, number of flow nodes—1568. Time step τ =

0.0025. Number of time steps—400.
• Ωh

4—number of triangles—4096, number of flow nodes—6208. Time step τ =
0.00125. Number of time steps—800.

In Fig. 8.3 the meshes Ωh
1 , Ω

h
2 , Ω

h
3 , Ω

h
4 are illustrated. In the table given below, the

norm of a difference between finite-difference and analytical solutions is presented:

FΩh (t) = ⊂ζ̂ (x, y, t) − ζ̃ (x, y, t)⊂2,h .

Domain τ FΩ(1)

Ωh
1 0.01 0.2609552

Ωh
2 0.005 0.0674637

Ωh
3 0.0025 0.0173317

Ωh
4 0.00125 0.0049251

Remark 8.1 As is seen from the table, an order of convergence is O(τ 2 + h2).

8.6.2 Computation of the Real Geographic Domain

The aim of this numerical experiment was numerical solution of the problem under
consideration on the real domain, namely, Black sea. Initial conditions were chosen
in the following way:

u0(x, y) = 0, v0(x, y) = 0,

ζ0(x, y) = 0.25e−0.02(x − 2200)2 − (y − 2500)2 + 0.2e−0.02(x − 1830)2 − (y − 2500)2 .

So, ζ0 is some initial perturbation. We simulated distribution of the wave from the
initial perturbation. Impermeability boundary condition was set. An unstructured
mesh was constructed by the generator ani2d [10]. Number of triangles—7305,
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Fig. 8.4 Mesh on Black sea

number of flow nodes—11498. Number of obtusangular triangles is about 8%. The
mesh of Ω is illustrated in Fig. 8.5; obtusangular triangles are marked by red. The
parameters and time step were chosen in the following way:

R = 0, λ = 0, T = 100.0, τ = 0.1.

In Figs. 8.5, 8.6, 8.7, 8.8, 8.9 and 8.10 wave heights obtained by computations are
presented at various time instants: t = 0, t = 10, t = 20, t = 40, t = 60, t = 80.

Thus, approximation of the problem under consideration proposed and justified
in the chapter allows us to simulate propagation of waves in domains of complex
formwith the use of unstructured meshes and can be applied for modeling tidal wave
dynamics of lakes, rivers, seas, oceans, etc.
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Fig. 8.5 Wave height at initial time instant
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Fig. 8.6 Wave height at time instant t = 10
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Fig. 8.7 Wave height at time instant t = 20
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Fig. 8.8 Wave height at time instant t = 40
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Fig. 8.9 Wave height at time instant t = 60
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Fig. 8.10 Wave height at time instant t = 80
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Chapter 9
Dynamics of Vortices in Near-Wall Flows
with Irregular Boundaries

I. M. Gorban and O. V. Khomenko

Abstract Behavior of stationary vortices in near-wall flows with irregular bound-
aries is investigated. The vortices were shown to locate in the critical points of flow
and to be characterizednot only by its strength but by the eigenfrequency that specifies
precession of the vortex about the flow critical point along the small trajectory. Due
to eigenfrequency, the stationary vortex responds selectively on external periodical
perturbations. The last cause low-frequency vortex motion with large amplitudes and
when the frequency of external perturbations is to be near the vortex eigenfrequency
the vortex moves away from the critical point. So, dependency of the amplitude of
perturbed vortex motion from the frequency of external perturbations has the reso-
nance character. The resonant perturbations are shown to cause chaotization of local
circulation zones generated by stationary vortices.

9.1 Introduction

Vortical structure of fluid flows is a determining factor when moving a body in water
or in air as well as when operating hydraulic systems. A lot of important technical
problems in fluid dynamics connect with optimal transformation of vortical pattern
in the flow area. Artificial separation of flow resulting in generation of the local
recirculation zone is the effectiveway that allows changing as the vortical flowpattern
as the flow in whole. One may see the examples when artificial flow separation has
been successfully applied in papers [1–6]. This method of control may be considered
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as a way for regularization of near-wall flows at large Reynolds numbers. Transfer
from a turbulent near-wall flowwith chaotic motion of small-scale vortices to regular
large-scale vortical pattern leads to reducing of energy exchange between the flow
and the surface, in particular, to decreasing the body drag [3, 4]. The control strategy
in this case is directed on creating the “intellectual” flowof fluid, inwhich the vortices
are formed according to the control scheme and either theoretical or semiempirical
model predicting the vortex behavior.

One of the ways to generate large-scale vortices in near-wall flow is artificial
change of the surface configuration with help of bulges, grooves, ribs and so on
[2–4]. The vortices may be immovable ones, stationary recirculation zones, or mov-
ing togetherwith flowalong thewall in regularmanner. The fundamental requirement
when generating the artificial vortex structures is their stability in respect of pertur-
bations of external flow [7]. At the same time, the laboratory experiments testify
fast response of the local separation zones to external perturbations, especially with
a periodic component. This sensitivity is known to grow when rising the Reynolds
number of flow. So, the progress in development of near-wall flow control algorithms
connects with researching dynamical properties of the large-scale vortices and nature
of their chaotic behavior.

Because of generation of large-scale vortices in near-wall flows is under action of
viscous forces its investigation demands development of the mathematical models
and numerical algorithms basing on the Navier-Stokes equations. At the same time,
dynamical properties of the vortices, their stability and interaction with external flow
maybe studiedwithin the scope of themodel of ideal fluid. The efforts in investigation
of the vortex dynamics have led to some understanding of chaotization of fluid flows
[8–10].

It has to be noted that one of advantages of the vortex dynamic models, which
don’t take into consideration viscous effects, is their simplicity. This fact permits use
thesemodels for creation of algorithms of flow control in near-wall areas. Discovered
recently properties of motion of vortices and fluid particles in near-wall flows have
allowed to derive new ways of near-wall flow control [11–13].

It has been mentioned above one of the effective ways to change a near-wall
flow pattern is installation of special irregularities on the wall, in particular, cross
grooves. For the first time this method was proposed in papers [5–7] for decreasing
hydraulic losses in diffusers. Developed byRingleb [7] themodel of standing vortices
in the cross grooves of special configuration allowed derive new shapes of diffusers
with minimal hydraulic losses. Use of the cross groove as a control element in
aerodynamics was demonstrated in papers [3, 14] where an influence of shape, size
and location of the groove onwing hydrodynamic characteristics was experimentally
investigated.

At the same time, researches noted considerable instability of the flows with
stationary recirculation zones and standing vortices [4, 15] that makes difficult its
using in engineering. The knowledge about causes of this phenomenon would permit
to broaden the practical application of the control schemes with standing vortices.

The analysis shows [15–17] that minimal energy losses for generating and sup-
porting standing vortices will be achieved if one takes into account flow topology in
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the region under consideration. Modern methods of near-flow control are connected
with creating the needed flow topology that characterized by location of flow critical
points, its type, separatrix shape and so on. Note the flow topology governs also
chaotic processes in the region.

In the present paper, topology of the flows in the regions with non-regular bound-
aries and standing vortices is researched on the base of the standing vortex model.
It will be shown that the vortex located in the neighborhood of a stable critical point
is characterized by eigenfrequency which responsible for dynamical reaction of the
vortex with external flow perturbations.

9.2 Model of Standing Vortex

A simplified model that describes dynamic properties of local recirculation zones
formed near non-regular flow boundaries is considered. Linear parameters of the
surface irregularity are supposed to exceed considerably the boundary layer thickness
on the wall. The separation zone is simulated by a vortex that locates in the vorticity
center and whose circulation is equal to integral vorticity strength in the region. In
spite of simplicity, this model is effective enough for researching dynamic properties
of near-wall flows [7].

Two-dimensional flow of ideal incompressible fluid bounded by non-regular wall
is considered. Motion of a vortex located in this region is governed by a set of
non-linear equations:

dxv

dt
= νx (xv, yv, t),

dyv

dt
= νy(xv, yv, t), (9.1)

where xv, yv are the vortex coordinates and vx , vy are the components of the vortex
velocity.

To determine the right part of system (9.1), one has to solve the Laplace equation
for the complex flow potential Φ:

ΔΦ = 0 (9.2)

with boundary conditions on the wall:

∂Φ

∂n

∣∣∣∣
Σ

= 0, (9.3)

and at infinity:
∂Φ

∂z

∣∣∣∣
z→⇐

= U0, (9.4)

Here Σ is the flow boundary and U0 is the flow velocity.
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Note if the velocity U0 does not change in time, system (9.1) will be autonomous
one. Analysis of its solutions may be carried out with applying the theory of critical
points [18]. According to this theory, critical points of the flow with a vortex are
determined from the condition of vortex equilibrium:

νx (xν, yν) = 0, νy(xν, yν) = 0. (9.5)

The divergence divν = ∂νx

∂x
+ ∂νy

∂y
and Jacobean J = (

∂νx

∂x
)(

∂νy

∂y
)−(

∂νx

∂y
)(

∂νy

∂x
) of

set (9.1) specify the type of critical points. The critical pointmay be a saddle, if J < 0,

a node, if J < ± div2ν
4 , and a focus, if J > ± div2ν

4 . Saddles are always unstable points,
noses and foci may be either stable, when divν < 0, or unstable, when divν > 0.
As we consider conservative flows, without energy supply, the divergence is equal to
zero. Then critical points may be either unstable hyperbolic, if J < 0, or elliptical,
when J > 0. For us, the latest points are interesting because they are conditionally
stable ones and such a flow may be only realized in practice. The vortex, whose
parameters are similar to those of the standing vortex, moves periodically around the
elliptical point. For the standing vortex, the precession trajectory is infinitesimal and
the precession frequency ω0 = ≥

J may be considered as its eigenfrequency. The
eigenfrequency is a very important characteristic of the standing vortex. In particular,
it governs the vortex reaction to external flow perturbations.

To find the solution of Eq. (9.2), we use the conformal mapping of the flow field
in the physical z-plane into an upper half-plane of the auxiliary plane ζ(ξ, η). In
ζ -plane, the complex flow potential is:

Φ(ζ) = Φ0(ζ ) + Γ

2π i
ln

ζ − ζν

ζ − ζ ν

, (9.6)

where Γ is the vortex circulation, ζν and Φ0(ζ ) are the vortex complex coordinate
and the non-separated flow potential in ζ -plane respectively.

If the conformal mapping function ζ = f (z) is known, one has the following
expression for the vortex velocity in the physical plane:

ν(xν, yν) =
(

dΦ0

dζ
+ Γ

4πην

)
d f

dz

∣∣∣∣
ζ=ζν

+ Γ

4π i

(
d2 f

dz2

/
dζ

dz

) ∣∣∣∣
ζ=ζν

. (9.7)

The real and imaginary components of (9.7) are the right-hand sides of (9.1).
The coordinates x0, y0 of the critical point are determined from the condition of

the flow equilibrium here:
ν|z=z0 = 0, (9.8)

where z0 = x0 + iy0.
Taking into account that coordinates of the critical point and the standing vortex

coincide, we obtain from (9.7) the following equation:
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(
dΦ0

dζ

∣∣∣∣
ζ=ζ0

+ Γ

4πη0

) [(
d f

dz

)2 /
d2 f

dz2

] ∣∣∣∣
ζ=ζ0

− iΓ

4π
= 0. (9.9)

From (9.9), two transcendental equations for determining the standing vortex coor-
dinates are derived. To calculate the vortex circulation, this set has to be completed
by an equation that follows from physical conditions of the problem under consid-
eration. For example, if the flow boundary has a sharp edge, the unsteady Kutta
condition can be involved.

9.3 Standing Vortex in Cross Groove

It was mentioned above cross grooves on the flowed surface are an effective way of
near-wall flow control. We make here analysis of dynamic properties of the standing
vortex in the uniform flow above the surface with a circular groove. The geometry
of interest in the present study is presented in Fig. 9.1a. The mapping function that
transforms the half-plane with a cut circular hollow (Fig. 9.1a) into the upper half-
plane (Fig. 9.1b) has the following form:

f (z) = aγ

1 +
(

z − a

z + a

)γ

1 −
(

z − a

z + a

)γ , γ = β

π − β
(9.10)

Here a is the semichord of groove, angle β characterizes the groove depth (β < 0).
The dependence of the groove depth on the angle β is shown in Fig. 9.3, curve 1.
The semichord a and the free-stream velocity U0 are characteristic parameters of the
problem. The dimensionless circulation is introduced as Γ = Γ/aU0.

The stationary point coordinates x0, y0 and standing vortex circulation Γ0 are
determined from (9.9) andKutta condition in the sharp groove edges. The last requires
finiteness of the flow velocity in the groove edge:

Fig. 9.1 Coordinate system in the physical plane z and the transformed plane ζ . Here ABC D
denote points in the physical plane which are mapped to points in the transformed plane A∈ B ∈C ∈ D∈
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dΦ

dz

∣∣∣∣
z=z⊂

= const, (9.11)

where z⊂ is the coordinate of the sharp edge in the physical plane.

Using the ratio
dΦ

dz

∣∣∣∣
z=z⊂

= dΦ

dζ

d f

dz

∣∣∣∣
z=z⊂

and taking into account that the function

f (z) has a singularity in the sharp edge, one obtains:

dΦ

dζ

∣∣∣∣
ζ=ζ⊂

= 0, (9.12)

where ζ⊂(ξ⊂, 0) is the coordinate of the sharp edge in ζ -plane.
Taking into account symmetry of the flow region, it is sufficient to fulfill condition

(9.12) in one groove edge only. As the unity flow in the physical plane transfers into
the same flow in the transformed plane, from (9.6) the following equation may be
derived:

π + Γ0η0

(ξ⊂ − ξ0)
2 + η20

= 0, (9.13)

where (ξ0, η0) is the stationary point image in ζ -plane.
In the present research, Eqs. (9.9 and 9.13) are solved numerically with applying

the secant method. The obtained results show that there are three stationary points
when a vortex interacts with the stream in the considered region. As seen on the
portrait of vortex trajectories (Fig. 9.2a), two points locate near the groove edges. As
follows from analysis of their stability they are unstable. So, the flowwith such stand-
ing vortices does not realize in physical experiment. The elliptical stationary point,
which is conditionally stable, lies on the groove axis. The flow pattern corresponding
such a standing vortex is shown in Fig. 9.2b.

Fig. 9.2 Portrait of vortex trajectories—a and streamlines—b above the medium-sized groove
(β = −90∗)
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Fig. 9.3 Groove depth h (curve 2)—a, vertical coordinate y0 (curve 1)—a, circulation Γν (curve
1)—b and eigenfrequency ω0 (curve 2)—b of the standing vortex against the angle β

The vertical coordinate y0 of the standing vortex against the angleβ characterizing
the groove depth is represented in Fig. 9.3a. It follows from this curve, the standing
vortex locates above the wall for shallow grooves (h < 0, 2). So, a very small
groove on the flowed surface promotes to stabilization of a vortex here. Because of
the vortices placed above the flat wall are always non-stable, shallow grooves may be
used for stabilization of vortices in near-wall flows. It is important for development
of the control schemes that use stable vortices on the surface (“vortical lubrication”
of a wall).

The circulation Γν and eigenfrequency ω0 of standing vortex against the angle
β are represented in Fig. 9.3b. These results point out fast reduction ω0 as with
increasing as with decreasing the groove depth. The standing vortex circulation Γν

is large enough in deep hollows and it grows slightly in shallow grooves due to
approaching thevortex to surface y = 0 in this case.Minimal circulation andmaximal
eigenfrequency of the standing vortex are observed in medium-sized hollows (β ∼
−90∗).

9.4 Standing Vortex in an Angular Region

In the simple cases, for example,when thefluidflow in an angular region is considered
(Fig. 9.4), the standing vortex parametersmaybe obtained analytically. The following
function maps interior of the angle β into a half-plane:

ζ = z
π
β . (9.14)

Taking into account that potential of irrotational flow isΦ0(ζ ) = −ζ , one hasmotion
equations of a vortex within the angular region in the following form:
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Fig. 9.4 Flow patternwith the
standing vortex in an angular
region (β = π

2 )

dxv

dt
=

(
Γ

4π sin γ ϕ
− 1

)
γ cosϕ(γ − 1) − Γ

4π
yν

dyv

dt
= −

(
Γ

4π sin γ ϕ
− 1

)
γ sin ϕ(γ − 1) + Γ

4π
xν,

(9.15)

where ϕ = arctan
yν

xν

, γ = π

β
. The standing vortex circulation and coordinates of

flow stationary point are derived by putting to zero the right-hand sides of (9.15):

Γ0 = 4πγ, x0 = cos
β

2
, y0 = sin

β

2
(9.16)

The carried out dynamic analysis shows the stationary point will be conditionally
stable elliptic, when β < π . The circulation Γν = Γ0/4π and eigenfrequency
ω0 of the standing vortex against the angle β are represented in Fig. 9.5. Both the
characteristics are seen growth when decreasing the angle β. So, the obtained results
reveal the conditions when existence of the standing vortex in an angular region is
possible and give value of the vortex parameters.
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Fig. 9.5 The circulation Γν

(curve 1) and eigenfrequency
ω0 (curve 2) of the standing
vortex against angle β

9.5 Resonant Properties of Standing Vortices
and Their Behavior in Perturbed Flow

In practice, near-wall flows are heterogeneous. There are many factors that entail
nonstationarity of an external stream, such as body vibrations, migration of turbulent
spots andmotion of external vortices. So, it is crucial to investigate how behavior of a
standing vortex changes under external flow disturbances. We consider here periodic
perturbations of the flow velocity:

U = U0(1 + ε sinΩt), ε √ 1 (9.17)

where ε, Ω are the amplitude and frequency of perturbations respectively.
It is supposed that at an initial instance t = 0, the vortex of circulation Γ0 locates

in the stable stationary point (x0, y0). Reaction of the vortex on perturbations given
by (9.17) will be studied. To determine the vortex trajectory in the perturbed flow,
(9.1) are integrated numerically by a fourth-order Runge-Kutta method.

The obtained results show the standing vortex begins to move around its station-
ary position under influence of the external perturbations. Character of this motion
depends on ratio between the external frequency Ω and the eigenfrequency ω0. If
the value of external frequency is far from that of eigenfrequency ω0 or its subhar-

monics
ω0

2
and 2ω0, the vortex will move periodically on a closed trajectory in the

small neighborhood of stationary point. The neighborhood size is proportional to the
amplitude of perturbations ε. The vortex trajectory will be much more complicated
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when the external frequencyΩ tends to the vortex frequencyω0 or its subharmonics.
Then multiperiodic large amplitude motion of the standing vortex is generated.

Motion of the vortex is characterized by its deviation from the stationary point
(x0, y0):

R(t) =
√

(xν(t) − x0)2 + (yν(t) − y0)2. (9.18)

Then the maximum deviation

Rmax = max{R(t) | t = (0,⇐)} (9.19)

gives us the amplitude of vortex motion in the perturbed flow.
As follows from the results obtained, the amplitude Rmax is finite although the

external perturbation is small. It is due to non-linear character of the equations that
govern motion of a vortex near complex flow boundaries. Dependence Rmax on the
perturbation frequencyΩ has the resonant character. UnderΩ → ω0 , the amplitude
of the vortex precession Rmax increases rapidly.

The curves characterizing function Rmax

(
Ω

ω0

)
in angular regions are depicted in

Fig. 9.6. Three curves there correspond to different values β. These results approve
the resonant character of interaction between the standing vortex and periodic per-
turbations of external flow. The sharpest display of that is observed for blunt angles.

Flow perturbations lead also to significant stimulation of fluid mixing in the
recirculation zone. If perturbations are absent, fluid particles of this zone will move
along closed trajectories around the standing vortex. Under resonant perturbation,
advection of the fluid particles intensifies. To define the character of motion of fluid
particles and of standing vortex in the perturbed flow, the corresponding Puincare

Fig. 9.6 Maximum deviation
Rmax of the standing vortex
from the stationary point in
an angular region against the
relative frequency of external

perturbation
Ω

ω0
: ε = 0, 01,

1 − β = 3π

4
, 2 − β = π

2
,

3 − β = π

3
.
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Fig. 9.7 Poincare sections of trajectories of the standing vortex and a fluid particle—a and two

vortices of circulations Γ1 = Γν and Γ2 = Γν

20
—b in the angular region (β = π

2
) at resonant flow

perturbations: ε = 0, 001, Ω = ω0

sections are computed when positions of particle or of vortex are calculated at the

following points of time: tn = nT , where T = 2π

Ω
, n = 1, 2, .... Then those are

plotted in the physical flow region. The resulting Puincare sections in the angular

region with β = π

2
and Ω = ω0, ε = 0, 01 are represented in Fig. 9.7a. It denotes

the chaotic motion of fluid particles because the points depicting the particle posi-
tions after the period fill closely certain area in the physical plane. On the contrary,
the points corresponding to the vortex positions dispose along the closed curve that
indicates on regular character of the vortex motion.

Figure 9.7b depicts Puincare sections for two vortices placed in the flow with
resonant perturbations. One of those is the standing vortex of circulation Γν . At an
initial instance, it is located in the stationary point (x0, y0). Another small vortex,

whose circulation is
Γν

20
, moves around the first one. It is obvious that motion of the

small vortex has chaotic character. But in this case, the standing vortex positions after
the period fill the annulus of the finite thickness. It points out presence of secondary
small vortices in the perturbed flow leads to chaotic motions of the large-scale vortex
generated in the recirculation zone. Such dynamic reaction of the large vortex on the
external perturbations is very important factor that acts on development of flow as a
whole. Note it is an example of appearance of chaos in nonautonomous system.

The similar behavior of the standing vortex is observed in the periodically per-
turbed flow above the surface with a gross groove. Figure9.8 demonstrates the vor-
tex trajectory and corresponding time dependence of vortex deviation R(t) from
the stationary point under condition that the perturbation frequency Ω is close to
the vortex eigenfrequency ω0, (Ω = 1, 1ω0). The vortex motion is likely to be
multiperiodic one with a small basic frequency and high-frequency pulsations. The
amplitude of the vortex oscillations Rmax is comparable with the groove size. Note
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Fig. 9.8 Trajectory of the standing vortex in the perturbed flow near the wall with a groove—a
and corresponding time dependence of the vortex deviation from the stationary point—b: ε = 0, 1,
Ω

ω0
= 1, 1

Fig. 9.9 Trajectory of the
standing vortex in the per-
turbed flow when the vortex is
carried away from a groove:

ε = 0, 1,
Ω

ω0
= 1, 15

a Kutta-Joukowski condition satisfies in the sharp edges of the boundary as long as
the vortex is in a small neighborhood of the stationary point. With increasing the
amplitude of perturbed motion Rmax , this condition violates and groove edges begin
to generate vortex layers.

Other unfavorable outcome is connected with ejection of the vortex into the near-
wall region that is possible when the perturbation amplitude grows (Fig. 9.9). From
a standpoint of dynamic analysis, the vortex loses its stability and jumps across the
separatrix between different trajectories on a phase portrait (Fig. 9.2). In practice,
the vortex is carried away by flow. Taking into account continuous generation of
vorticity in the upstream edge, one may predict periodical replication of this process
that leads to degradation of body hydrodynamic characteristics.

Dependence of the amplitude of vortex perturbed motion Rmax on relative fre-

quency of external perturbation
Ω

ω0
has the resonant character (Figs. 9.10, 9.11).

The size of resonant peak depends on both the amplitude of perturbation ε and the
groove depth h (or angle β). Under ε > 0, 1, the secondary peaks of a resonant curve
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Fig. 9.10 Maximum devia-
tion Rmax of the standing vor-
tex from the stationary point
in different grooves against
the relative frequency of

external perturbation
Ω

ω0
:

ε = 0, 01, 1 − β = −5∗,
2 − β = −30∗, 3 − β =
−150∗

Fig. 9.11 Influence of inten-
sity of external perturbations

on dependence Rmax

(
Ω

ω0

)
:

β = −π

6
, 1 − ε =

0, 02, 2 − ε = 0, 005

near the frequencies
ω0

2
and 2ω0 (Fig. 9.11) take place due to non-linear character

of the considered dynamic system.
External periodic perturbations in the flow above a hollow also lead to chaotic

motion of fluid particles and small vortices in the field governed by the standing
vortex that intensifies fluid mixing.

The obtained results show that instability of the standing vortex generated in near-
wall flowwith a non-regular boundary is connectedwith periodic perturbationswhich
are present in the free-stream.Response of the vortex to perturbation ismaximalwhen
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the perturbation frequency is close to the vortex eigenfrequency that is display of
resonant interaction between the vortex and the perturbed flow.

9.6 Summary

The pattern of the near-wall flow bounded by a non-regular surface is shown to
depend on flow topological properties, in particular, on a type of flow critical points
and existing of stationary vortices. If the critical point is stable, a strong enough vortex
may be generated in the point environment (standing vortex). The vortex stabilizes
the near-wall flow due to suppression of vorticity generation in sharp edges of the
boundary.

A standing vortex is characterized by its eigenfrequency which governs the
dynamic behavior of the vortex in the periodically perturbed flow. Periodic oscil-
lations of the flow velocity cause multiperiodic large amplitude motion of the stand-
ing vortex. The maximal amplitude of deviation of the vortex from its stationary
point depends on the external perturbation frequency in resonance manner. When
the perturbation frequency approaches to the vortex eigenfrequency, the deviation
amplitude grows rapidly.

Resonance flow perturbations in the regions bounded non-regular wall cause
intensification of fluid mixing in recirculation zones. They stimulate generation of
vorticity in sharp boundary edges, lead to chaotization of motion of both fluid parti-
cles and small vortices, cause non-regular fluctuations of the flow.

The obtained results are useful for further development of control algorithms in
near-wall flows as well as for understanding of chaotization processes in nonau-
tonomous systems.
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Chapter 10
Strongly Convergent Algorithms
for Variational Inequality Problem Over
the Set of Solutions the Equilibrium Problems

Vladimir V. Semenov

Abstract This chapter deals with a variational inequality problem over the set of
solutions the equilibrium problem or over the set of solutions the system of equilib-
rium problems in a real Hilbert space. Several new iterative algorithms are proposed.
Strong convergence theorems for algorithms are proved. The convergence of iterative
algorithms with the presence of computational errors without traditional summabil-
ity conditions also studied. To this aim, we use newMainge’s techniques for analysis
non–Fejerian iterative processes (Set–Valued Analysis. 16, 899–912, 2008).

10.1 Introduction

Throughout, H is a real Hilbert space with inner product (·, ·) and induced norm →·→.
We denote the strongly convergence and the weak convergence of (xn) to x ⇐ H
by xn ≥ x and xn ε x, respectively. For operator A : H ≥ H, set M ∈ H, and
bifunction F : H × H ≥ R ⊂ {+∗} we denote by VI(A, M) and EP(F, M) sets
{x ⇐ M : (Ax, y − x) ∼ 0 √ y ⇐ M} and {x ⇐ M : F(x, y) ∼ 0 √ y ⇐ M}, respec-
tively.

In this chapter, we are interested in the approximate solvability of problems

find x ⇐ VI(A, EP(F, C)), (10.1)

and,

find x ⇐ VI(A, EP(F1, C1) ≤ EP(F2, C2)). (10.2)
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Problems of form (10.1) or (10.2) are referred as variational inequality over the set of
solutions the equilibrium problem or over the set of solutions the system of equilib-
rium problems. This problems have found applications in a wide array of disciplines,
including mechanics, economics, partial differential equations, information theory,
approximation theory, signal and image processing, game theory, optimal transport
theory, probability and statistics, and machine learning. About the computational
aspects mainly, see [5, 6, 12, 13, 15, 18, 22, 24].

Our main objective is to devise iterative algorithms for solving (10.1) and (10.2)
and to analyze their asymptotic behavior. We’ll use Mainge’s techniques for analysis
non–Fejerian iterative processes [11]. We are continuing our research published in
[1, 7, 10, 12, 16, 17, 20, 22].

For solving the problem (10.1), let us assume that set C ∈ H, bifunction F :
C × C ≥ R, and operator A : H ≥ H all satisfy the following set of standard
properties:

(A1) C ∈ H is a nonempty closed convex set;
(A2) F(x, x) = 0, for all x ⇐ C;
(A3) F(x, y) + F(y, x) ⇔ 0, for all x, y ⇐ C (monotonicity);
(A4) for each x ⇐ C, the fuctional F(x, ·) is convex and lower semicontinuous;
(A5) for each x, y, z ⇐ C, lim supt≥ + 0 F(x + t(z − x), y) ⇔ F(x, y);
(A6) EP(F, C) ⊥= ∅;
(A7) A : H ≥ H is a l–strongly monotone and L–Lipschitz continuous operator.

Remark 10.1 EP(F, C) is a closed convex set [6].Assumptions (A1)–(A7) guarantee
the uniqueness and existence of the solution of variational inequality (10.1).

We need the following important notion.

Definition 10.1 ([6]) The resolvent of a bifunction F : C × C ≥ R is the set–
valued operator JF : H ≥ 2H: x ∞≥ JFx = {z ⇐ C : F(z, y) + (z − x, y − z) ∼ 0
√y ⇐ C}.
Theorem 10.1 ([6]) Let C ∈ H be a nonempty closed convex set, let F : C×C ≥ R

be a bifunction satisfying (A2)–(A5). Then, the following statements hold:

(a) dom JF = {x ⇐ H : JFx ⊥= ∅} = H;
(b) JF single–valued and firmly nonexpansive, i.e.

→JFx − JFy→2 ⇔ (JFx − JFy, x − y) √x, y ⇐ H;

(c) E(F, C) = Fix JF , where Fix JF = {x ⇐ H : JFx = x}.
Remark 10.2 Equivalently, from the (b) we have

→JFx − JFy→2 ⇔ →x − y→2 − →(x − JFx) − (y − JFy)→2 √x, y ⇐ H. (10.3)

Now let us present algorithm for solving problem (10.1) under assumptions
(A1)–(A7).
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Algorithm 1 Select an arbitrary point x1 ⇐ H and generates the sequence (xn)

iteratively by {
yn = JλnFxn,

xn+1 = yn − ωnAyn,

where λn, ωn > 0.

Remark 10.3 This iterativemethod belongs to the class of the hybrid steepest descent
methods [24].

Finally, let us present iterative algorithms for solving variational inequality (10.2).
At first, we make the following assumptions throughout this chapter (i = 1, 2):

(B1) Ci ∈ H is a nonempty closed convex set;
(B2) Fi(x, x) = 0, for all x ⇐ Ci;
(B3) Fi(x, y) + Fi(y, x) ⇔ 0, for all x, y ⇐ Ci;
(B4) for each x ⇐ Ci, the fuctional Fi(x, ·) is convex and lower semicontinuous;
(B5) for each x, y, z ⇐ Ci, lim supt≥ + 0 Fi(x + t(z − x), y) ⇔ Fi(x, y);
(B6) EP(F1, C1) ≤ EP(F2, C2) ⊥= ∅;
(B7) A : H ≥ H is a l–strongly monotone and L–Lipschitz continuous operator.

Remark 10.4 Assumptions (B1)–(B7) guarantee the uniqueness and existence of the
solution of variational inequality (10.2).

Now we introduce two schemes for solving problem (10.2).

Algorithm 2 (Barycentric) Select an arbitrary point x1 ⇐ H and generates the se-
quence (xn) iteratively by 



yn = JλnF1xn,

zn = JλnF2xn,

vn = 1
2yn + 1

2 zn,

xn+1 = vn − ωnAvn,

where λn, ωn > 0.

Remark 10.5 Our Barycentric Algorithm 2 has parallel organization.

Algorithm 3 (Alternating) Select an arbitrary point x1 ⇐ H and generates the se-
quence (xn) iteratively by 


yn = JλnF1xn,

zn = JλnF2yn,

xn+1 = zn − ωnAzn,

where λn, ωn > 0.

Remark 10.6 Our alternating method is inspired by von Neumann’s original alter-
nating projections method [14, 8]. Let us mention that Algorithm 3 can be regarded
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as a Halpern–type regularization for alternatingmethod [2]. In 2005 Bauschke, Com-
bettes and Reich [4, 3] studied the alternating resolvents method for finding a com-
mon zero of two maximal monotone mappings.

The remainder of the chapter is organized as follows. In Sect. 10.2, we provide
technical facts that will be used in subsequent section. In Sect. 10.3, we establish
convergence results for methods to solve (10.1) and (10.2). Some final conclusions
are given in the last section.

10.2 Preliminaries

The following lemmas will be crucial in proving our main results.

Lemma 10.1 ([23]) Let (Φn) be a sequence of nonnegative real numbers satisfying:
Φn+1 ⇔ (1 − ωn)Φn + ωnξn + ϕn for any n ⇐ N, where (ωn), (ξn) and (ϕn) are real
sequences such that: (i) ωn ⇐ (0, 1) with

∑∗
n=1 ωn = +∗; (ii) lim supn≥∗ ξn ⇔ 0;

(iii) ϕn ⇐ [0,+∗) with
∑∗

n=1 ϕn < +∗. Then limn≥∗ Φn = 0.

Lemma 10.2 ([11]) Let (an) be a sequence of real numbers such that there exists
a subsequence (ank ) such that ank < ank+1 for all k ⇐ N. Then there exists a
nondecreasing sequence (mk) of N such that mk ≥ +∗ and amk ⇔ amk+1, ak ⇔
amk+1 for all k ∼ n1.

Remark 10.7 Lemma 10.2 is fundamental tools for the techniques of analysis used
through this chapter.

The following lemma put out basic contraction property of Lipschitz continuous
and strongly monotone mappings.

Lemma 10.3 ([24]) Let A : D(A) ≥ H be a l–strongly monotone and L–Lipschitz
continuous operator. An operator Tω : D(A) ≥ H defined by Tωx = x − ωAx,
ω ⇐ (0,+∗). Then the following inequality holds

→Tωx − Tωy→ ⇔
(
1 − πμ−1ω

)
→x − y→ √x ⇐ D(A) √y ⇐ D(A),

where μ ⇐ ⎧
0, 2lL−2

⎪
, ω ⇐ (0, μ], π = 1 − ⎨

1 − 2lμ + L2μ2 ⇐ (0, 1].

We need the following “demiclosed–type" lemma.

Lemma 10.4 Suppose that (xn) is a sequence in H such that
⎧
I − JλnF

⎪
xn ≥ 0 and

xn ε x, where λn ∼ λ > 0. Then x ⇐ EP(F, C).

Proof Wemay assume without loss of generality that λn ≥ λ0 ⇐ [λ,+∗)⊂{+∗}
n ≥ ∗. We have λnF

⎧
JλnF xn, y

⎪+ ⎧
JλnF xn − xn, y − JλnF xn

⎪ ∼ 0 for any y ⇐ C.
Since the bifunction F is monotone, we get

λ−1
n

⎧
JλnF xn − xn, y − JλnF xn

⎪ ∼ F
⎧
y, JλnF xn

⎪ √y ⇐ C.
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We have JλnF xn ε x. Taking into account (A4), we obtain 0 ∼ F(y, x) for any
y ⇐ C. For t ⇐ (0, 1), let yt = ty + (1 − t)x ⇐ C. From (A2) and (A4), we have

0 = F(yt, yt) ⇔ tF(yt, y) + (1 − t)F(yt, x) ⇔ tF(yt, y).

Dividing by t, we get F(yt, y) ∼ 0. Letting t ≥ 0 and from (A5), we get F(x, y) ∼ 0
foa all √y ⇐ C. Therefore, we obtain x ⇐ EP(F, C). The proof is finished.

Remark 10.8 Let λ0 < +∗. In this case x ⇐ EP(F, C) follows from the well known

resolvent identity (see [4]): JξFx = JωF

(
ω
ξ

x +
(
1 − ω

ξ

)
JξFx

)
, ω, ξ > 0. Indeed,

we have

⎩⎩JλnF xn − Jλ0F xn
⎩⎩ =

⎩⎩⎩Jλ0F

(
λ0λ

−1
n xn +

(
1 − λ0λ

−1
n

)
JλnFxn

)
− Jλ0F xn

⎩⎩⎩
⇔ |λn − λ0| λ−1

n

⎩⎩JλnFxn − xn
⎩⎩ ≥ 0.

Therefore,

⎩⎩xn − Jλ0F xn
⎩⎩ ⇔ ⎩⎩xn − JλnF xn

⎩⎩ + ⎩⎩JλnF xn − Jλ0F xn
⎩⎩ ≥ 0 as n ≥ ∗ .

Since the operator I − Jλ0F is demiclosed, we obtain x ⇐ Fix Jλ0F = EP(F, C).

10.3 Convergence Analysis

Our first result is a strong convergence result for Algorithm 1. The following two
Lemmas are needed for proving our convergence theorem.

Lemma 10.5 Assume that limn≥0 ωn = 0. Let (xn), (yn) be sequences generated by
Algorithm 1. Then (xn), (yn) are bounded.

Proof Let z ⇐ EP(F, C). We have

→xn+1 − z→ = →yn − ωnAyn − z→ ⇔ →(yn − ωnAyn) − (z − ωnAz)→ + ωn →Az→ .

Using Lemma 10.3 with μ ⇐
(
0, 2l

L2

)
and ωn ⇐ (0, μ), we get

→(yn − ωnAyn) − (z − ωnAz)→ ⇔
(
1 − ωnμ

−1ξ
)

→yn − z→ ,

where ξ = 1 − ⎨
1 − 2lμ + L2μ2 ⇐ (0, 1). Since the operator JλF : H ≥ C is

nonexpansive and x ⇐ EP(F, C) ≈ x = JλFx whenever λ > 0, we have

→yn − z→ = ⎩⎩JλnFxn − JλnFz
⎩⎩ ⇔ →xn − z→ . (10.4)
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Therefore,

→xn+1 − z→ ⇔
(
1 − ξμ−1ωn

)
→xn − z→ + ξμ−1ωn

(
μξ−1 →Az→

)

⇔ max
⎛
→xn − z→, μξ−1 →Az→

⎝
.

Since limn≥∗ ωn = 0, we can assume that ωn ⇐ (0, μ) for all n ⇐ N. Hence,

→xn+1 − z→ ⇔ max
⎛
→x1 − z→, μξ−1 →Az→

⎝
. (10.5)

From (10.5) it follows that the sequence (xn) is bounded. From (10.4) it follows that
the sequence (yn) is bounded.

Lemma 10.6 Let z ⇐ EP(F, C), and let (xn), (yn) be sequences generated by
Algorithm 1. Then, for each n ⇐ N, the following inequality holds

→xn+1 − z→2 − →xn − z→2 + →xn+1 − yn→2
+ →yn − xn→2 ⇔ −2ωn(Ayn, xn+1 − z). (10.6)

Proof We have

→xn+1 − z→2 = →yn − ωnAyn − z→2 = →yn − z→2 − 2ωn(Ayn, yn − z)

+ω2
n →Ayn→2 = →yn − z→2 − 2ωn(Ayn, xn+1 − z) − →xn+1 − yn→2 .

(10.7)

From (10.3) it follows that

→yn − z→2 ⇔ →xn − z→2 − →yn − xn→2 . (10.8)

Substituting right side of (10.8) for →yn − z→2 in (10.7), we obtain the inequality
(10.6).

Now, we claim the main result for Algorithm 1.

Theorem 10.2 Let hypotheses (A1)–(A7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0,
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗), where λ > 0.

Then the sequences (xn), (yn) generated by Algorithm 1 converge strongly to the
unique x ⇐ VI(A, EP(F, C)).

Proof Let x ⇐ H be the unique solution to (10.1). From Lemma 10.5 it follows
that there exists M > 0 such that |(Ayn, xn+1 − x)| ⇔ M for all n ⇐ N. Using
Lemma 10.6 we derive that
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→xn+1 − x→2 − →xn − x→2 + →xn+1 − yn→2 + →yn − xn→2 ⇔ 2ωnM. (10.9)

Consider the sequence (→xn − x→). We have two cases:

(a) there exists n ⇐ N such that

→xn+1 − x→ ⇔ →xn − x→ √ n ∼ n;

(b) there exists increasing sequence (nk) such that

⎩⎩xnk+1 − x
⎩⎩ >

⎩⎩xnk − x
⎩⎩ √ k ⇐ N.

At first we consider the case (a). It follows that limn≥∗ →xn − x→ = c ⇐ R

exists. We assume c > 0 and we show that this latter hypothesis is impossible. Since
→xn+1 − x→2 − →xn − x→2 ≥ 0 and ωn ≥ 0, we have

→xn+1 − yn→ ≥ 0, →yn − xn→ ≥ 0. (10.10)

Using strong monotonicity of operator A, we get

(Ayn, xn+1 − x) ∼ l →yn − x→2 + (Ax, yn − x) + (Ayn, xn+1 − yn). (10.11)

Since (yn) is a bounded sequence and (10.10), it follows that

lim
n≥∗(Ayn, xn+1 − yn) = 0. (10.12)

The sequence ((Ax, yn − x)) is bounded. It is then immediate that there exists a
subsequence (ynk ) of (yn) such that ynk ε y ⇐ C and

lim inf
n≥∗ (Ax, yn − x) = lim

k≥∗(Ax, ynk − x). (10.13)

Applying Lemma 10.4, we have y ⇐ EP(F, C). Therefore, in (10.13) we get

lim inf
n≥∗ (Ax, yn − x) = lim

k≥∗(Ax, ynk − x) = (Ax, y − x) ∼ 0. (10.14)

Observing that →xn − x→ − →yn − xn→ ⇔ →yn − x→ ⇔ →xn − x→ + →yn − xn→, we
immediately have

lim
n≥∗ →yn − x→ = c. (10.15)

Therefore, by (10.11), (10.12), (10.14), and (10.15), we obtain lim infn≥∗(Ayn,

xn+1 − x) ∼ l · c2 > 0. Take the real γ ⇐ (0, l · c2). There exists some n∀ ⇐ N such
that, for any n ∼ n∀ there holds (Ayn, xn+1−x) ∼ γ. Then, for any n ∼ n∀ and taking
into account (10.6), we deduce →xn+1 − x→2 − →xn − x→2 ⇔ −2γωn, which leads to
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→xn+1 − x→2 ⇔ ⎩⎩xn∀ − x
⎩⎩2 − 2γ

n⎞
i=n∀

ωi.

Since
∑∗

n=1 ωn = +∗, it follows that →xn − x→ ≥ −∗, which is absurd. As a
sraightforward consequence, we deduce c = 0; namely, xn ≥ x and yn ≥ x.

Nowwe consider the case (b). Let (mk) be the integer sequence as in Lemma 10.2:

(i) mk ∃ +∗;
(ii)

⎩⎩xmk+1 − x
⎩⎩ ∼ ⎩⎩xmk − x

⎩⎩ k ∼ n1;

(iii)
⎩⎩xmk+1 − x

⎩⎩ ∼ →xk − x→ k ∼ n1.

From (10.9) and (ii), it follows that
⎩⎩xmk+1 − ymk

⎩⎩2 + ⎩⎩ymk − xmk

⎩⎩2 ⇔ 2ωmk M.
Hence,

lim
k≥∗

⎩⎩xmk+1 − ymk

⎩⎩ = 0, lim
k≥∗

⎩⎩ymk − xmk

⎩⎩ = 0.

Let us prove that the sequence (ymk ) convergence strongly to x as k ≥ ∗. Since
the sequence (ymk ) is bounded, we see that there exists subsequence (ymkj

) which
converges weakly to some point y ⇐ C.We have y ⇐ EP(F, C). By (ii), (10.6), so that

(Aymk , xmk+1 − y) ⇔ 0 √k ∼ n1. (10.16)

For k ∼ n1 and using strong monotonicity of operator A, we have

(Aymk − Ax, ymk − x)= (Aymk , xmk+1 − x) + (Aymk , ymk − xmk+1)

−(Ax, ymk − x) ∼ l
⎩⎩ymk − x

⎩⎩2 .

Taking into account (10.16), we obtain

⎩⎩ymk − x
⎩⎩2 ⇔ ⎠

(Aymk , ymk − xmk+1) − (Ax, ymk − x)
}
/l. (10.17)

Observing that limk≥∗(Aymk , ymk − xmk+1) = 0, limj≥∗(Ax, ymkj
− x) = (Ax, y −

x), by (10.17), we get lim supj≥∗ →ymkj
− x→2 ⇔ −(Ax, y − x)/l ⇔ 0. Therefore,

ymkj
≥ x. By the uniqueness of x, and y = x, we deduce that limk≥∗

⎩⎩ymk − x
⎩⎩ = 0.

From
⎩⎩xmk+1 − x

⎩⎩ ⇔ ⎩⎩xmk+1 − ymk

⎩⎩ + ⎩⎩ymk − x
⎩⎩ it follows that

limk≥∗
⎩⎩xmk+1 − x

⎩⎩ = 0. Taking into account (iii), we obtain

lim
n≥∗ →xn − x→ = 0. (10.18)

From (10.18), and (10.9) it follows that limn≥∗ →xn − yn→ = 0. Hence,

lim
n≥∗ →yn − x→ = 0.
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This completes the proof of Theorem 10.2.

Next, we prove strong convergence theorem related to Algorithm 2. At first, we
get the boundedness of the sequences generated by Algorithm 2.

Lemma 10.7 Assume that limn≥0 ωn = 0. Let (xn), (yn), (zn), and (vn) be sequences
generated by Algorithm 2. Then (xn), (yn), (zn), and (vn) are bounded.

Now, we provide useful estimate needed for proving convergence theorem related
to Algorithm 2.

Lemma 10.8 Let z ⇐ EP(F1, C1)≤ EP(F2, C2), and let (xn), (yn), (zn), and (vn) be
sequences generated by Algorithm 2. Then, for each n ⇐ N, the following inequality
holds

→xn+1 − z→2 −→xn − z→2 + →xn+1 − vn→2 + 1

2
→yn − xn→2 + 1

2
→zn − xn→2

+ 1

4
→yn − zn→2 ⇔ −2ωn(Avn, xn+1 − z). (10.19)

Proof Let z ⇐ EP(F1, C1) ≤ EP(F2, C2). We have

→xn+1 − z→2 = →vn − ωnAvn − z→2 = →vn − z→2 − 2ωn(Avn, vn − z)

+ ω2
n →Avn→2 = →vn − z→2 − 2ωn(Avn, xn+1 − z) − →xn+1 − vn→2 .

(10.20)

We have

→vn − z→2 =
⎩⎩⎩⎩12yn + 1

2
zn − z

⎩⎩⎩⎩
2

= 1

2
→yn − z→2 + 1

2
→zn − z→2 − 1

4
→yn − zn→2 .

From (10.3) it follows that

→yn − z→2 ⇔ →xn − z→2 − →yn − xn→2 , →zn − z→2 ⇔ →xn − z→2 − →zn − xn→2 .

Therefore,

→vn − z→2 ⇔ →xn − z→2 − 1

2
→yn − xn→2 − 1

2
→zn − xn→2 − 1

4
→yn − zn→2 . (10.21)

Substituting right side of (10.21) for →vn − z→2 in (10.20), we obtain the (10.19).

Now, we claim the main theorem for Algorithm 2.

Theorem 10.3 Let hypotheses (B1)–(B7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0,
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗), where λ > 0.
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Then the sequence (xn) generated by Algorithm 2 converges strongly to the unique
x ⇐ VI(A, EP(F1, C1) ≤ EP(F2, C2)).

Proof Let x ⇐ H be the unique solution to (10.2). From Lemma 10.7 it follows that
there exists M > 0 such that |(Avn, xn+1 − x)| ⇔ M for any n ⇐ N. Using Lemma
10.8, we derive

→xn+1 − x→2 − →xn − x→2 + →xn+1 − vn→2 + 1

2
→yn − xn→2

+ 1

2
→zn − xn→2 + 1

4
→yn − zn→2 ⇔ 2ωnM. (10.22)

Consider the sequence (→xn − x→). We have two cases:

(a) there exists number n ⇐ N such that

→xn+1 − x→ ⇔ →xn − x→ √ n ∼ n;

(b) there exists increasing sequence (nk) such that

⎩⎩xnk+1 − x
⎩⎩ >

⎩⎩xnk − x
⎩⎩ √ k ⇐ N.

At first we consider the case (a). In this case, limn≥∗ →xn − x→ = c ⇐ R exists.
We assume c > 0. Since →xn+1 − x→2 − →xn − x→2 ≥ 0 and ωn ≥ 0, we have

→xn+1 − vn→2 ≥ 0, (10.23)

→yn − xn→2 ≥ 0, (10.24)

→zn − xn→2 ≥ 0, (10.25)

→yn − zn→2 ≥ 0. (10.26)

Next, we make use of the fact that operator A is strongly monotone. We have

(Avn, xn+1 − x) ∼ l →vn − x→2 + (Ax, vn − x) + (Avn, xn+1 − vn). (10.27)

Since (vn) is a bounded sequence and (10.23), it follows that

lim
n≥∗(Avn, xn+1 − vn) = 0. (10.28)

The sequence ((Ax, vn − x)) is bounded. It is then immediate that there exists a
subsequence (vnk ) of (vn) such that vnk ε v ⇐ H and

lim inf
n≥∗ (Ax, vn − x) = lim

k≥∗(Ax, vnk − x). (10.29)

Taking into account (10.23)–(10.26) and applying Lemma 10.4, we obtain v ⇐
EP(F1, C1) ≤ EP(F2, C2). Therefore, for (10.29) we get
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lim inf
n≥∗ (Ax, vn − x) = lim

k≥∗(Ax, vnk − x) = (Ax, v − x) ∼ 0. (10.30)

Observing that

→xn+1 − x→ − →vn − xn+1→ ⇔ →vn − x→ ⇔ →xn+1 − x→ + →vn − xn+1→ ,

we get
lim

n≥∗ →vn − x→ = c. (10.31)

Therefore, by (10.27), (10.28), (10.30), and (10.31), we obtain lim infn≥∗(Avn,

xn+1−x) ∼ l ·c2 > 0. Take the real γ ⇐ (0, l ·c2). There exists some number n∀ ⇐ N

such that, for any n ∼ n∀ there holds (Avn, xn+1 − x) ∼ γ. Then, for any n ∼ n∀
and taking into account (10.19), we deduce →xn+1 − x→2 − →xn − x→2 ⇔ −2γωn.
Therefore,

→xn+1 − x→2 ⇔ ⎩⎩xn∀ − x
⎩⎩2 − 2γ

n⎞
i=n∀

ωi.

Since
∑∗

n=1 ωn = +∗, it follows that →xn − x→ ≥ −∗, which is absurd. As a
sraightforward consequence, we deduce c = 0, namely, limn≥∗ →xn − x→ = 0.

Now finally analyze the case (b).We apply Lemma 10.2 to obtain a sequence (mk)

of positive integers such that:

(i) mk ∃ +∗;
(ii)

⎩⎩xmk+1 − x
⎩⎩ ∼ ⎩⎩xmk − x

⎩⎩ k ∼ n1;

(iii)
⎩⎩xmk+1 − x

⎩⎩ ∼ →xk − x→ k ∼ n1.

From (10.22) and (ii), we get the following estimate:

⎩⎩xmk+1 − vmk

⎩⎩2 + 1

2

⎩⎩ymk − xmk

⎩⎩2 + 1

2

⎩⎩zmk − xmk

⎩⎩2 + 1

4

⎩⎩ymk − zmk

⎩⎩2 ⇔ 2ωmk M.

Hence,
lim

k≥∗
⎩⎩xmk+1 − vmk

⎩⎩ = lim
k≥∗

⎩⎩ymk − xmk

⎩⎩ = 0,

lim
k≥∗

⎩⎩zmk − xmk

⎩⎩ = lim
k≥∗

⎩⎩ymk − zmk

⎩⎩ = 0.

Let as show that the sequence (vmk ) convergence strongly to x. Since the sequence
(vmk ) is bounded,we see that there exists subsequence (vmkj

)which convergesweakly

to some point v ⇐ H. Since vmkj
= ymkj

+ 1
2 (zmkj

− ymkj
) = zmkj

+ 1
2 (ymkj

− zmkj
),

we get ymkj
ε v, zmkj

ε v. Hence v ⇐ EP(F1, C1) ≤ EP(F2, C2). By (ii), (10.19),
so that

(Avmk , xmk+1 − v) ⇔ 0 √k ∼ n1. (10.32)
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For k ∼ n1 and using strong monotonicity of operator A, we get

(Avmk − Ax, vmk − x) = (Avmk , xmk+1 − x) + (Avmk , vmk − xmk+1)

− (Ax, vmk − x) ∼ l
⎩⎩vmk − x

⎩⎩2 .

Taking into account (10.32), we obtain

⎩⎩vmk − x
⎩⎩2 ⇔ ⎠

(Avmk , vmk − xmk+1) − (Ax, vmk − x)
}
/l. (10.33)

Observing that limk≥∗(Avmk , vmk − xmk+1) = 0, limj≥∗(Ax, vmkj
− x) = (Ax, v − x),

by (10.33), we get lim supj≥∗ →vmkj
− x→2 ⇔ −(Ax, v − x)/l ⇔ 0. Therefore,

lim
j≥∗

⎩⎩⎩vmkj
− x

⎩⎩⎩ = 0.

By the uniqueness of x, and v = x, we deduce that limk≥∗
⎩⎩vmk − x

⎩⎩ = 0. From⎩⎩xmk+1 − x
⎩⎩ ⇔ ⎩⎩xmk+1 − vmk

⎩⎩ + ⎩⎩vmk − x
⎩⎩ it follows that limk≥∗

⎩⎩xmk+1 − x
⎩⎩

= 0.Taking into account (iii),weobtain limn≥∗ →xn − x→ = 0.Theproof is finished.

Now we present results for Alternating Algorithm 3. Proofs are omitted.

Lemma 10.9 Let z ⇐ EP(F1, C1) ≤ EP(F2, C2), and let (xn), (yn), and (zn) be
sequences generated by Algorithm 3. Then, for each n ⇐ N, the following inequality
holds

→xn+1 − z→2 −→xn − z→2 + →xn+1 − zn→2 + →xn − yn→2
+ →yn − zn→2 ⇔ −2ωn(Azn, xn+1 − z).

Theorem 10.4 Let hypotheses (B1)–(B7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0,
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗), where λ > 0.

Then the sequence (xn) generated by Algorithm 3 converges strongly to the unique
x ⇐ VI(A, EP(F1, C1) ≤ EP(F2, C2)).

We now describe algorithms with computational errors and analyze its conver-
gence. To solve the problem (10.1), we propose the following iterative procedure.

Algorithm 4 Select an arbitrary point v1 ⇐ H and generates the sequence (vn)

iteratively by {
un = JλnF (vn + en) ,

vn+1 = un − ωnAun,

where λn, ωn > 0 and en ⇐ H is an error.
Now let us make a convergence analysis on Algorithm 4.
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Theorem 10.5 Let hypotheses (A1)–(A7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0 with
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗) for some λ > 0;

(iii) either
∑∗

n=1 →en→ < +∗ or →en→ω−1
n ≥ 0.

Then the sequences (vn), (un) generated by Algorithm 4 converge strongly to the
unique x ⇐ VI(A, EP(F, C)).

Proof Taking into account the Theorem 10.2, if we can show that →vn − xn→ ≥ 0
as n ≥ ∗, then the sequence (vn) strongly converges to the solution of (10.1). For
sufficiently large number n ⇐ N we have

→vn+1 − xn+1→ = →(un − ωnAun) − (yn − ωnAyn)→ ⇔
(
1 − ωnμ

−1ξ
)

→un − yn→ ,

where μ ⇐ ⎧
0, 2lL−2

⎪
, ξ = 1 − ⎨

1 − 2lμ + L2μ2 ⇐ (0, 1). Since operators JλnF

are nonexpansive, we get →vn+1 − xn+1→ ⇔ ⎧
1 − ωnμ

−1ξ
⎪ →vn − xn→ + →en→. By

Lemma 10.1, we obtain that →vn − xn→ ≥ 0 as n ≥ ∗. From →un − yn→ ⇔
→vn − xn→ + →en→ it follows that the sequence (un) converges strongly to the unique
solution of (10.1).

Nowweconsider the variant of barycentricmethodwith errors for solving problem
(10.2).

Algorithm 5 (Barycentric with errors)Select an arbitrary point p1 ⇐ H and generates
the sequence (pn) iteratively by




u1n = JλnF1

⎧
pn + e1n

⎪
,

u2n = JλnF2

⎧
pn + e2n

⎪
,

wn = 1
2u1n + 1

2u2n,
pn+1 = wn − ωnAwn,

where λn, ωn > 0 and e1n, e2n ⇐ H are computational errors.
We have the following theorem.

Theorem 10.6 Let hypotheses (B1)–(B7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0 with
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗) for some λ > 0.

In addition, if any of the following conditions is satified,

(iii)
∑∗

n=1

⎩⎩e1n
⎩⎩ < +∗ and

∑∗
n=1

⎩⎩e2n
⎩⎩ < +∗;

(iv)
∑∗

n=1

⎩⎩e1n
⎩⎩ < +∗ and limn≥∗

⎩⎩e2n
⎩⎩ω−1

n = 0;
(v)

∑∗
n=1

⎩⎩e2n
⎩⎩ < +∗ and limn≥∗

⎩⎩e1n
⎩⎩ω−1

n = 0;
(vi) limn≥∗

⎩⎩e1n
⎩⎩ω−1

n = 0 and limn≥∗
⎩⎩e2n

⎩⎩ω−1
n = 0;

then the sequence (pn) generated by Algorithm 5 converges strongly to the unique
x ⇐ VI(A, EP(F1, C1) ≤ EP(F2, C2)).
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Proof In light of Theorem10.4, it is enough to show that →pn − xn→ ≥ 0 asn ≥ ∗,
where sequence (xn) generated by Algorithm 2. For sufficiently large number n ⇐ N

we have

→pn+1 − xn+1→ = →(wn − ωnAwn) − (vn − ωnAvn)→ ⇔ ⎧
1 − ωnμ

−1ξ
⎪ →wn − vn→ .

where μ ⇐ ⎧
0, 2lL−2

⎪
, ξ = 1 − ⎨

1 − 2lμ + L2μ2 ⇐ (0, 1). Further, we have

→wn − vn→ =
⎩⎩⎩⎩12 (u1n − yn) + 1

2
(u2n − zn)

⎩⎩⎩⎩ ⇔ 1

2

⎩⎩JλnF1

⎧
pn + e1n

⎪ − JλnF1xn
⎩⎩

+1

2

⎩⎩JλnF2

⎧
pn + e2n

⎪ − JλnF2xn
⎩⎩ ⇔ →pn − xn→ + 1

2

⎩⎩e1n
⎩⎩ + 1

2

⎩⎩e2n
⎩⎩ .

These two inequalities imply that

→pn+1 − xn+1→ ⇔
(
1 − ξμ−1ωn

)
→pn − xn→ + 1

2

⎩⎩⎩e1n

⎩⎩⎩ + 1

2

⎩⎩⎩e2n

⎩⎩⎩ .

By Lemma 10.1, we obtain desired fact.

Finally, we consider alternating method with errors.

Algorithm 6 (Alternating with errors) Select an arbitrary point p1 ⇐ H and generates
the sequence (pn) iteratively by




un = JλnF1

⎧
pn + e1n

⎪
,

vn = JλnF2

⎧
un + e2n

⎪
,

pn+1 = pn − ωnApn,

where λn, ωn > 0 and e1n, e2n ⇐ H are computational errors.

Theorem 10.7 Let hypotheses (B1)–(B7) hold. Assume that

(i) ωn ⇐ (0,+∗), ωn ≥ 0 with
∑∗

n=1 ωn = +∗;
(ii) λn ⇐ [λ,+∗) for some λ > 0.

In addition, if any of the following conditions is satified,

(iii)
∑∗

n=1

⎩⎩e1n
⎩⎩ < +∗ and

∑∗
n=1

⎩⎩e2n
⎩⎩ < +∗;

(iv)
∑∗

n=1

⎩⎩e1n
⎩⎩ < +∗ and limn≥∗

⎩⎩e2n
⎩⎩ω−1

n = 0;
(v)

∑∗
n=1

⎩⎩e2n
⎩⎩ < +∗ and limn≥∗

⎩⎩e1n
⎩⎩ω−1

n = 0;
(vi) limn≥∗

⎩⎩e1n
⎩⎩ω−1

n = 0 and limn≥∗
⎩⎩e2n

⎩⎩ω−1
n = 0;

then the sequence (pn) generated by Algorithm 6 converges strongly to the unique
solution x ⇐ H of variational inequality (10.2).

Proof This result is immediately deduced from Theorem 10.4 and Lemma 10.1.



10 Strongly Convergent Algorithms for Variational Inequality Problem 145

10.4 Concluding Remarks

This chapter presented several iterative algorithms to solve the variational inequal-
ity problem over the solutions set of equilibrium problems. Using Mainge’s tech-
niques for analysis non–Fejerian iterative processes, strong convergence theorems for
algorithms are proved. This methods have theoretical value mainly. From a practical
point of view, main disadvantage of these methods is the calculation of resolvents
(generally, hard computational problem). Motivated by the idea of Korpelevich’s
extragradient method [9] and modern extensions the extragradient method to equi-
librium problem [19, 21], we’ll introduce a new and maybe efficient method for
solving problem (10.2). One version of this method is following.

Algorithm 7 (Barycentric resolvents free) Select an arbitrary point x1 ⇐ H and
generates the sequence (xn) iteratively by




vn = proxλnF1(xn,·) xn, yn = proxλnF1(vn,·) xn,

un = proxλnF2(xn,·) xn, zn = proxλnF2(un,·) xn,

wn = 1
2yn + 1

2 zn,

xn+1 = wn − ωnAwn.

where λn, ωn > 0.
This method use the Moreau’s proximity operator [4]. Principal difference here,

at each iteration, we solve strongly convex programming problems only instead
of a auxiliary equilibrium programming problems. On the convergence of similar
schemes, see [1, 19, 21]. This will be discussed in a further papers.

Acknowledgments The author has been partially supported by the Ukrainian State Fund for Fun-
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Chapter 11
Multivalued Dynamics of Solutions
for Autonomous Operator Differential
Equations in Strongest Topologies

Mikhail Z. Zgurovsky and Pavlo O. Kasyanov

Abstract We consider nonlinear autonomous operator differential equations with
pseudomonotone interaction functions satisfying (S)-property. The dynamics of all
weak solutions on the positive time semi-axis is studied. We prove the existence of
a trajectory and a global attractor in a strongest topologies and study their structure.
As a possible application, we consider the class of high-order nonlinear parabolic
equations.

11.1 Introduction: Statement of the Problem

In this chapter, we study the limiting behavior as time t → +⇐ of the solutions of
first-order general nonlinear evolution equations of the form

u≥(t) + A(u(t)) = 0̄, (11.1)

It is assumed that the nonlinear operator A : V → V ∈, acts in a Banach space
V , which is reflexive and separable and, for some Hilbert space H , the embed-
dings V � H ⊂ H ∗ V ∈ are valid. Suppose that the nonlinear operator A is
pseudomonotone and satisfies dissipation conditions of the form

∼A(u), u√V ≤ ε⇔u⇔p
V − β ⊥u ∈ V, (11.2)

where p ≤ 2, and ε, β > 0, and also power growth conditions of the form
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⇔A(u)⇔V ∈ ∞ c(1 + ⇔u⇔p−1
V ) ⊥u ∈ V, (11.3)

for some c > 0. Here ∼·, ·√V : V ∈ × V → R is the pairing in V ∈ × V coinciding on
H × V with the inner product (·, ·) in the Hilbert space H .

By a weak solution of the operator differential equation (11.1) on a closed interval
[ω, T ] we mean an element u of the space L p(ω, T ; V ) such that

⊥Φ ∈ C⇐
0 ([ω, T ]; V ) −

T∫

ω

(Φ ≥(t), u(t))dt +
T∫

ω

∼A(u(t)), Φ(t)√V dt = 0. (11.4)

Many evolution partial differential equations in a domain ξ whose leading part
is a pth power nonlinear monotone differential operator and which may contain
lower (now nonmonotone) summands with subordinate nonlinearity growth can be
reduced to the form (11.1). In this case, the space V is a Sobolev space of the
corresponding order, while the space H is H = L2(ξ). Such equations are very
often used to describe complicated evolution processes in various models in physics
and mechanics. For equations of the form (11.1), there is a well-developed technique
for constructing global (i.e., for all t ≤ 0) weak solutions u(t), t ≤ 0, from the
space Lloc

p (R+; V ) such that u≥(·) ∈ Lloc
q (R+; V ∈) (here 1/p + 1/q = 1). It is well

known that such weak solutions u(t) are continuous functions with values in H , i.e.,
u(·) ∈ C(R+; H).

The problem is to study the asymptotic behavior as t → +⇐ of the families of
weak solutions {u(t)} of Eq. (11.1) in the norm of H under the assumption that the
initial data {u(0)} constitute a bounded set in H .

Note that, under certain additional conditions on the nonlinear operator A(u)

ensuring, for Eq. (11.1), the unique solvability of the Cauchy problem u|t=0 = u0
for any u0 ∈ H , the study of the class of weak solutions under consideration involves
the highly fruitful theory of dynamical semigroups and their global attractors in
infinite-dimensional phase spaces. This theory has been successfully developed over
a period of more than 30 years; its foundations were created by Ladyzhenskaya,
Babin, Vishik, Hale, Temam and other well-known mathematicians [4, 11, 14–16,
21].

Theproblembecomes significantlymore complicated if the correspondingCauchy
problem is not uniquely solvable or the proof of the relevant theorem is not known.
Such a situation often occurs in complicated mathematical models. In this case,
the “classical” method based on unique semigroups and global attractors cannot be
applied directly. However, two approaches to the study of the dynamics of the corre-
sponding weak solutions are well known. The first method is based on the theory of
multivalued semigroups; it was developed in ground-breaking papers of Babin and
Vishik (see, for example, [3]). The second approach uses the method of trajectory
attractors; it was proposed in the papers [5, 7] of Chepyzhov and Vishik as well as
in the independent work [20] of Sell.
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The new result contained in the present chapter consists in the application of these
two approaches to the study of the asymptotic behavior of the weak solutions of
equations of the form (11.1) with general nonlinear pseudomonotone operator A(u)

satisfying (S)-property without any conditions guaranteeing the unique solvability
of the Cauchy problem; cf. [1, 2, 4, 9, 14, 16, 19, 21, 23] . In this chapter, we prove
a theorem on the existence of a global attractorA in the space H for the multivalued
semigroup corresponding to Eq. (11.1) as well as a theorem on the existence of a
trajectory attractorP in the spaceCloc(R+; H)≈Lloc

p (R+; V ) for the corresponding
translation semigroup in the space of all weak trajectories (weak solutions on the
half-line) of Eq. (11.1). We also describe the structure of the global and trajectory
attractors as well as establish a simple relation between these attractors.

11.2 Additional Properties of Solutions

For fixed ω < T let us set

Xω,T = L p(ω, T ; V ), X∈
ω,T = Lq(ω, T ; V ∈), Wω,T = {u ∈ Xω,T | u≥ ∈ X∈

ω,T },

where u≥ is a derivative of an element u ∈ Xω,T in the sense of the space of distri-
butions D([ω, T ]; V ∈) (see, for example, [10, Definition IV.1.10, p. 168]). We note
that

A(u)(t) = A(u(t)), for any u ∈ Xω,T and a.e. t ∈ (ω, T ).

The space Wω,T is a reflexive Banach space with the graph norm of a derivative (see,
for, example [24, Proposition 4.2.1, p. 291]):

⇔u⇔Wω,T = ⇔u⇔Xω,T + ⇔u≥⇔X∈
ω,T

, u ∈ Wω,T . (11.5)

Properties of A and (V, H, V ∈) provide the existence of a weak solution of
Cauchy problem (11.1) with initial data

u(ω ) = uω (11.6)

on the interval [ω, T ] for an arbitrary yω ∈ H . Therefore, the next result takes place:

Lemma 11.1 Kasyanov [12] For any ω < T, yω ∈ H Cauchy problem (11.1),
(11.6) has a weak solution on the interval [ω, T ]. Moreover, each weak solution
u ∈ Xω,T of Cauchy problem (11.1), (11.6) on the interval [ω, T ] belongs to Wω,T ∗
C([ω, T ]; H).

For fixed ω < T we denote

Dω,T (uω ) = {u(·) | u is a weak solution of (11.1) on [ω, T ], u(ω ) = uω }, uω ∈ H.
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From Lemma 11.1 it follows that Dω,T (uω ) ∀= ∃ and Dω,T (uω ) ∗ Wω,T ⊥ω < T,

uω ∈ H .
We note that the translation and concatenation of weak solutions is a weak

solution too.

Lemma 11.2 Kasyanov [12] If ω < T , uω ∈ H, u(·) ∈ Dω,T (uω ), then v(·) =
u(· + s) ∈ Dω−s,T −s(uω ) ⊥s. If ω < t < T , uω ∈ H, u(·) ∈ Dω,t (uω ) and v(·) ∈
Dt,T (u(t)), then

z(s) =
{

u(s), s ∈ [ω, t],
v(s), s ∈ [t, T ]

belongs to Dω,T (uω ).

As a rule, the proof of the existence of compact global and trajectory attractors
for equations of type (11.1) is based on the properties of the set of weak solutions of
problem (11.1) related to the absorption of the generatedm-semiflow of solutions and
its asymptotic compactness (see, for example, [18, 22] and the references therein).
The following lemma on a priori estimates of solutions and Theorem 11.1 on the
dependence of solutions on initial datawill play a key role in the study of the dynamics
of the solutions of problem (11.1) as t → +⇐.

Lemma 11.3 Kasyanov [12] There exist c4, c5, c6, c7 > 0 such that for any finite
interval of time [ω, T ] every weak solution u of problem (11.1) on [ω, T ] satisfies
estimates: ⊥t ≤ s, t, s ∈ [ω, T ]

⇔u(t)⇔2H + c4

t∫

s

⇔u(Φ)⇔p
V dΦ ∞ ⇔u(s)⇔2H + c5(t − s), (11.7)

⇔u(t)⇔2H ∞ ⇔u(s)⇔2H e−c6(t−s) + c7. (11.8)

We recall that A : V → V ∈ satisfies (S)-property, if from un → u weakly in V
and ∼A(un), un − u√V → 0, as n → ⇐, it follows that un → u strongly in V , as
n → +⇐.

Further we assume that A satisfies (S)-property.

Theorem 11.1 Let ω < T , {un}n≤1 be an arbitrary sequence of weak solutions of
(11.1) on [ω, T ] such that un(ω ) → ϕ weakly in H. Then there exist {unk }k≤1 ∗
{un}n≤1 and u(·) ∈ Dω,T (ϕ) such that

⊥π ∈ (0, T − ω) max
t∈[ω+π,T ] ⇔unk (t) − u(t)⇔H +

T∫

ω+π

⇔unk (t) − u(t)⇔p
V dt → 0,

k → +⇐. (11.9)

Before the proof of Theorem 11.1 let us provide some auxiliary statements.
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Lemma 11.4 Let ω < T , yn → y weakly in Wω,T , and

lim
n→+⇐∼A(yn), yn − y√Xω,T ∞ 0. (11.10)

Then

lim
n→+⇐

T∫

ω

|∼A(yn(t)), yn(t) − y(t)√V | dt = 0. (11.11)

Proof There exists a set of measure zero, γ1 ∗ (ω, T ) such that for t /∈ γ1, we
have that

yn(t) ∈ V for all n ≤ 1.

Similarly to [13, p. 7] we verify the following claim.

Claim Let yn → y weakly in Wω,T and let t /∈ γ1. Then

lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V ≤ 0.

Proof of the claim Fix t /∈ γ1 and suppose to the contrary that

lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V < 0. (11.12)

Then up to a subsequence {ynk }k≤1 ∗ {yn}n≤1 we have

lim
k→+⇐∼A(ynk (t)), ynk (t) − y(t)√V = lim

n→+⇐
∼A(yn(t)), yn(t) − y(t)√V < 0.

(11.13)
Therefore, for all rather large k, growth and dissipation conditions imply

ε⇔ynk (t)⇔p
V − β ∞ ⇔A(ynk (t))⇔V ∈⇔y(t)⇔V ∞ c(1 + ⇔ynk (t)⇔p−1

V )⇔y(t)⇔V .

which implies that the sequences {⇔ynk (t)⇔V }k≤1 and consequently {⇔A(ynk (t))
⇔V ∈}k≤1 are bounded sequences. In virtue of the continuous embedding Wω,T ∗
C([ω, T ]; H) we obtain that ynk (t) → y(t) weakly in H . Due to boundedness of
{ynk (t)}k≤1 in V we finally have

⊥t ∈ [ω, T ]\γ1 ynk (t) → y(t) weakly in V, k → +⇐. (11.14)

The pseudomonotony of A, (11.12), (11.13) and (11.14) imply that
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lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V ≤ ∼A(y(t)), y(t) − y(t)√V

= 0 > lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V .

We obtain a contradiction.
The claim is proved.
Now let us continue the proof of Lemma 11.4. The claim provides that for a.e.

t ∈ [ω, T ], in fact for any t /∈ γ1, we have

lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V ≤ 0. (11.15)

Dissipation and growth conditions imply that, if α ∈ Xω,T , then

∼A(yn(t)), yn(t) − α(t)√V ≤ ε⇔yn(t)⇔p
V − β − c(1 + ⇔yn(t)⇔p−1

V )⇔α(t)⇔V for a.e. t ∈ [ω, T ]\γ1.

Using p − 1 = p
q , the right side of the above inequality equals to

ε⇔yn(t)⇔p
V − β − c⇔yn(t)⇔

p
q
V ⇔α(t)⇔V − c⇔α(t)⇔V .

Now using Young’s inequality, we can obtain a constant c(c, ε) depending on c, ε
such that

c⇔yn(t)⇔
p
q
V ⇔α(t)⇔V ∞ ε

2
⇔yn(t)⇔p

V + ⇔α(t)⇔p
V · c(c, ε).

Letting c̄ = max{β + c
q ; c(c, ε) + c

p } it follows that

∼A(yn(t)), yn(t) − α(t)√V ≤ −c̄(1 + ⇔α(t)⇔p
V ) for a.e. t ∈ [ω, T ]. (11.16)

Letting α = y, we can use Fatou’s lemma and we obtain

lim
n→+⇐

T∫

0

[∼A(yn(t)), yn(t) − y(t)√V + c̄(1 + ⇔y(t)⇔p
V )]dt ≤

≤
T∫

0

lim
n→+⇐

[∼A(yn(t)), yn(t)− y(t)√V + c̄(1+⇔y(t)⇔p
V )]dt ≤ c̄

T∫

0

(1+⇔y(t)⇔p
V )dt.

Therefore,

0 ≤ lim
n→+⇐∼A(yn), yn − y√Xω,T ≤ lim

n→+⇐

T∫

ω

∼A(yn(t)), yn(t) − y(t)√V dt =
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= lim
n→+⇐

∼A(yn), yn − y√Xω,T ≤
T∫

ω

lim
n→+⇐

∼A(yn(t)), yn(t) − y(t)√V dt = 0,

showing that

lim
n→+⇐∼A(yn), yn − y√Xω,T = 0. (11.17)

From (11.16),

⊥n ≤ 1 ⊥t /∈ γ1 0 ∞ ∼A(yn(t)), yn(t) − y(t)√−V ∞ c̄(1 + ⇔y(t)⇔p
V ),

where a− = max{0,−a}, for a ∈ R. Due to (11.15) we know that for a.e. t,
∼A(yn(t)), yn(t) − y(t)√V ≤ −π for all rather large n. Therefore, for such n,

∼A(yn(t)), yn(t) − y(t)√−V ∞ π, if ∼A(yn(t)), yn(t) − y(t)√V < 0 and ∼A(yn(t)),
yn(t) − y(t)√−V = 0, if ∼A(yn(t)), yn(t) − y(t)√V ≤ 0. Therefore, lim

n→+⇐∼A(yn(t)),

yn(t) − y(t)√−V = 0 and we can apply the dominated convergence theorem and from
(11.15) we conclude that

lim
n→+⇐

T∫

ω

∼A(yn(t)), yn(t) − y(t)√−V =
T∫

ω

lim
n→+⇐∼A(yn(t)), yn(t) − y(t)√−V dt = 0.

Now by (11.17) and the above equation we have

lim
n→+⇐

T∫

ω

∼A(yn(t)), yn(t) − y(t)√+V dt =

= lim
n→+⇐

T∫

0

[∼A(yn(t)), yn(t) − y(t)√V + ∼A(yn(t)), yn(t) − y(t)√−V
]

dt =

= lim
n→+⇐∼A(yn), yn − y√Xω,T = 0.

Therefore,

lim
n→+⇐

T∫

ω

|∼A(yn(t)), yn(t) − y(t)√V |dt = 0.

The lemma is proved.
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Lemma 11.5 Let ω < T , yn → y weakly in Wω,T , and (11.10) holds. Then there
exists a subsequence {ynk }k≤1 ∗ {yn}n≤1 such that for a.e. t ∈ (ω, T ) we have that
ynk (t) → y(t) weakly in V, and ∼A(ynk (t)), ynk (t) − y(t)√V → 0, k → +⇐.

Proof Let yn → y weakly in Wω,T and

lim
n→+⇐∼A(yn), yn − y√Xω,T ∞ 0.

In virtue of Lemma 11.4 we obtain

lim
n→+⇐

T∫

ω

|∼A(yn(t)), yn(t) − y(t)√V |dt = 0. (11.18)

Due to the continuous embedding Wω,T ∗ C([ω, T ]; H) we have

⊥t ∈ [ω, T ] yn(t) → y(t) weakly in H, n → +⇐. (11.19)

From (11.18) it follows that there exists a subsequence {ynk }k≤1 ∗ {yn}n≤1 such that

for a.e. t ∈ [ω, T ] ∼A(ynk (t)), ynk (t) − y(t)√V → 0, k → +⇐.

Let γ1 ∗ [ω, T ] be a set of measure zero such that for t /∈ γ1 ynk (t), y(t) are
well-defined ⊥k ≤ 1, and

∼A(ynk (t)), ynk (t) − y(t)√V → 0, k → +⇐.

In virtue of growth and dissipation conditions we obtain

⊥t /∈ γ1 ⊥k ≤ 1 lim
k→+⇐

(
ε⇔ynk (t)⇔p

V − β − c(1 + ⇔ynk (t)⇔p−1
V )⇔y(t)⇔V

)
∞ 0.

Thus ⊥t /∈ γ1

lim
k→+⇐ ⇔ynk (t)⇔p

V ∞ c(c, ε, β, p)(1 + ⇔y(t)⇔p
V ).

Therefore, due to (11.19) we obtain that for a.e. t ∈ (ω, T ) ynk (t) → y(t) weakly in
V, k → +⇐.

The lemma is proved.

Proof (Proof of Theorem11.1) Let ω < T , {un}n≤1 be an arbitrary sequence ofweak
solutions of (11.1) on [ω, T ] such that un(ω ) → ϕ weakly in H . Theorem 1 from
[12] implies the existence of a subsequence {unk }k≤1 ∗ {un}n≤1 and u(·) ∈ Dω,T (ϕ)

such that
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⊥π ∈ (0, T − ω) max
t∈[ω+π,T ] ⇔unk (t) − u(t)⇔H → 0, k → +⇐. (11.20)

Let us prove that

⊥π ∈ (0, T − ω)

T∫

ω+π

⇔unk (t) − u(t)⇔p
V dt → 0, k → +⇐. (11.21)

On the contrary, without loss of generality we assume that for some π ∈ (0, T −ω)

and β > 0 it is fulfilled

T∫

ω+π

⇔unk (t) − u(t)⇔p
V dt ≤ β, ⊥k ≤ 1. (11.22)

In virtue of (11.7), without loss of generality we claim that

unk → u weakly in Wω+π,T , k → +⇐. (11.23)

Moreover, due to (11.20), we have

lim
k→⇐

T∫

ω+π

∼A(unk (t)), unk (t) − u(t)√V dt ∞ 0. (11.24)

Thus, Lemma 11.5 and (S)-property for A imply that up to a subsequence which we
denote again as {unk }k≤1 for a.e. t ∈ (ω + π, T ) we have that unk (t) → u(t) strongly
in V, k → +⇐. Moreover, Lemma 11.4 provides that

lim
k→+⇐

T∫

ω+π

∣∣∼A(unk (t)), unk (t) − u(t)√V
∣∣ dt = 0.

Dissipation and growth conditions follow the existence a constant C > 0 such that

⇔unk (t) − u(t)⇔p
V ∞ C(1 + ⇔u(t)⇔p

V + ∣∣∼A(unk (t)), unk (t) − u(t)√V
∣∣)

for a.e. t ∈ (ω + π, T ) and any k ≤ 1. Therefore,

lim
k→+⇐

T∫

ω+π

⇔unk (t) − u(t)⇔p
V dt = 0.

We obtain a contradiction.
The theorem is proved.
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11.3 Attractors in Strongest Topologies

First we consider constructions presented in [18]. Denote the set of all nonempty
(nonempty bounded) subsets of H by P(H) (B(H)). We recall that the multivalued
map G : R × H → P(H) is said to be a m-semiflow if:

(a) G(0, ·) = Id (the identity map),
(b) G(t + s, x) ∗ G(t, G(s, x)) ⊥x ∈ H, t, s ∈ R+;

m-semiflow is a strict one if G(t + s, x) = G(t, G(s, x)) ⊥x ∈ H, t, s ∈ R+.
From Lemmas 11.2 and 11.3 it follows that any weak solution can be extended to

a global one defined on [0,+⇐). For an arbitrary y0 ∈ H let D(y0) be the set of all
weak solutions (defined on [0,+⇐)) of problem (11.1) with initial data y(0) = y0.

We define the m-semiflow G as G(t, y0) = {y(t) | y(·) ∈ D(y0)}.
Lemma 11.6 Kasyanov [12] G is the strict m-semiflow.

We recall that the set A is said to be a global attractor G, if:

(1) A is negatively semiinvariant (i.e. A ∗ G(t,A ) ⊥t ≤ 0);
(2) A is attracting, that is,

dist(G(t,B),A ) → 0, t → +⇐ ⊥B ∈ B(H), (11.25)

where dist(C,D) = sup
c∈C

inf
d∈D

⇔c − d⇔H is the Hausdorff semidistance;

(3) For any closed set Y ∗ H satisfying (11.25), we have A ∗ Y (minimality).

The global attractor is said to be invariant if A = G(t,A ) ⊥t ≤ 0.

Theorem 11.2 Kasyanov [12] The m-semiflow G has the invariant compact in the
phase space H global attractor A .

Let us consider the familyK+ = ∪y0∈HD(y0) of all weak solutions of inclusion
(11.1) defined on the semi-infinite interval [0,+⇐). Note that K+ is translation
invariant one, i.e. ⊥u(·) ∈ K+, ⊥h ≤ 0 uh(·) ∈ K+, where uh(s) = u(h + s),
s ≤ 0. We set the translation semigroup {T (h)}h≤0, T (h)u(·) = uh(·), h ≤ 0,
u ∈ K+ onK+.

We shall construct the attractor of the translation semigroup {T (h)}h≤0 acting on
K+. OnK+ we consider a topology induced from the Fréchet space Cloc(R+; H)≈
Lloc

p (R+; V ). Note that θM is the restriction operator to the interval [0, M]. We
denote the restriction operator to the semi-infinite interval [0,+⇐) by θ+.

We recall that the aP ∗ Cloc(R+; H) ≈ L⇐(R+; H) is said to be attracting for
the trajectory space K+ of inclusion (11.1) in the topology of Cloc(R+; H) if for
any bounded in L⇐(R+; H) set B ∗ K+ and any number M ≤ 0 the following
relation holds:
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distC([0,M];H)(θMT(t)B,θMP) → 0, t → +⇐. (11.26)

A set U ∗ K+ is said to be trajectory attractor in the trajectory spaceK+ with
respect to the topology of Cloc(R+; H) ≈ Lloc

p (R+; V ) if

(i) U is a compact set inCloc(R+; H)≈Lloc
p (R+; V ) and bounded in L⇐(R+; H);

(ii) U is strictly invariant with respect to {T (h)}h≤0, i.e. T (h)U = U ⊥h ≤ 0;
(iii) U is an attracting set in the trajectory spaceK+ in the topology Cloc(R+; H)≈

Lloc
p (R+; V ).

Let us consider inclusions (11.1) on the entire time axis. Similarly to the space
Cloc(R+; H) the space Cloc(R; H) is equipped with the topology of local uni-
form convergence on each interval [−M, M] ∗ R (see, for example, [22, p. 198]).
A function u ∈ Cloc(R; H)≈ L⇐(R; H) is called a complete trajectory of inclusion
(11.1) if ⊥h ∈ R θ+uh(·) ∈ K+ [22, p. 198]. Let K be a family all complete
trajectories of inclusion (11.1). Note that

⊥h ∈ R, ⊥u(·) ∈ K uh(·) ∈ K . (11.27)

Lemma 11.7 The set K is nonempty, compact in Cloc(R; H) ≈ Lloc
p (R+; V ) and

bounded in L⇐(R; H). Moreover,

⊥y(·) ∈ K , ⊥t ∈ R y(t) ∈ A , (11.28)

where A is the global attractor from Theorem 11.2.

Proof The statement of lemma follows from [12] and Theorem 11.1.

Lemma 11.8 Kasyanov [12] Let A be a global attractor from Theorem 11.2. Then

⊥y0 ∈ A ∧y(·) ∈ K : y(0) = y0. (11.29)

Theorem 11.3 Let A be a global attractor from Theorem 11.2. Then there exists
the trajectory attractor P ∗ K+ in the space K+. At that the next formula holds:

P = θ+K = θ+{y ∈ K | y(t) ∈ A ⊥t ∈ R}, (11.30)

Proof The statement of theorem follows from Theorem 11.1 and [12].
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11.4 Application

Consider an example of the class of nonlinear boundary value problems for which
we can investigate the dynamics of solutions as t → +⇐. Note that in discussion
we do not claim generality.

Let n ≤ 2, m ≤ 1, p ≤ 2, 1 < q ∞ 2, 1
p + 1

q = 1, ξ ∗ R
n be a bounded domain

with rather smooth boundary Ω = Λξ . We denote a number of differentiations by x
of order ∞ m − 1 (correspondingly of order = m) by N1 (correspondingly by N2).
Let Aε(x, ϕ; Φ) be a family of real functions (|ε| ∞ m), defined in ξ ×R

N1 ×R
N2

and satisfying the next properties:
(C1) for a.e. x ∈ ξ the function (ϕ, Φ) → Aε(x, ϕ, Φ) is continuous one in

R
N1 × R

N2 ;
(C2) ⊥(ϕ, Φ) ∈ R

N1 × R
N2 the function x → Aε(x, ϕ, Φ) is measurable one in

ξ;
(C3) exist such c1 ≤ 0 and k1 ∈ Lq(ξ), that for a.e. x ∈ ξ , ⊥(ϕ, Φ) ∈ R

N1 ×R
N2

|Aε(x, ϕ, Φ)| ∞ c1[|ϕ|p−1 + |Φ |p−1 + k1(x)];

(C4) exist such c2 > 0 and k2 ∈ L1(ξ), that for a.e. x ∈ ξ , ⊥(ϕ, Φ) ∈ R
N1 ×R

N2

∑
|ε|=m

Aε(x, ϕ, Φ)Φε ≤ c2|Φ |p − k2(x);

(C5) there exists increasing function ∂ : R+ → R such that for a.e. x ∈ ξ ,
⊥ϕ ∈ R

N1 , ⊥Φ, Φ∈ ∈ R
N2 , Φ ∀= Φ∈ the inequality

∑
|ε|=m

(Aε(x, ϕ, Φ) − Aε(x, ϕ, Φ∈))(Φε − Φ∈
ε ) ≤ (∂(|Φε|) − ∂(|Φ∈

ε |))(|Φε| − |Φ∈
ε |)

takes place.
Consider such denotations: Dku = {Dβu, |β| = k}, βu = {u, Du, ..., Dm−1u}

(see [17, p. 194]).
For an arbitrary fixed interior force f ∈ L2(ξ) we investigate the dynamics of

all weak (generalized) solutions defined on [0,+⇐) of such problem:

Λy(x, t)

Λt
+

∑
|ε|∞m

(−1)|ε| Dε
(

Aε(x, βy(x, t), Dm y(x, t))
) = f (x) on ξ×(0,+⇐),

(11.31)
Dε y(x, t) = 0 on Ω × (0,+⇐), |ε| ∞ m − 1 (11.32)

as t → +⇐.

Consider such denotations (see for detail [17, p. 195]): H = L2(ξ), V =
W m,p

0 (ξ) is a real Sobolev space,
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a(u, α) =
∑

|ε|∞m

∫

ξ

Aε(x, βu(x), Dmu(x))Dεα(x)dx, u, α ∈ V .

Note that the operator A : V → V ∈, defined by the formula ∼A(u), α√V = a(u, α)

⊥u, α ∈ V , satisfies all mentioned assumptions. Hence, we can pass from problem
(11.31)–(11.32) to corresponding problem in “generalized” setting (11.1). Note that

A(u) =
∑

|ε|∞m

(−1)|ε| Dε
(

Aε(x, βu, Dmu)
) ⊥u ∈ C⇐

0 (ξ).

Therefore, all statements from previous sections are fulfilled for weak (generalized)
solutions of problem (11.31)–(11.32).

Remark 11.1 As applications we can also consider new classes of problems with
degenerations, problems on a manifold, problems with delay, stochastic partial dif-
ferential equations etc. [6, 8, 17, 20] with differential operators of pseudomonotone
type as corresponding choice of the phase space.

11.5 Conclusions

For the class of autonomous differential operator equations with pseudomonotone
nonlinear dependence between the defining parameters of the problem, we have
studied the dynamics as t → +⇐ in strongest topologies of all global weak solutions
defined on [0,+⇐). We have proved the existence of a global compact attractor and
a compact trajectory attractor, studied their structure. The results obtained allow one
to study the dynamics of solutions for new classes of evolution equations related to
nonlinear mathematical models of geophysical and socioeconomic processes and for
fields with interaction functions of pseudomonotone type satisfying the (S)-property,
the condition of “power growth”, and the standard sign condition.
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Chapter 12
Structure of Uniform Global Attractor
for General Non-Autonomous
Reaction-Diffusion System

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero and Mikhail Z.
Zgurovsky

Abstract In this paper we study structural properties of the uniform global attractor
for non-autonomous reaction-diffusion system in which uniqueness of Cauchy prob-
lem is not guarantied. In the case of translation compact time-depended coefficients
we prove that the uniform global attractor consists of bounded complete trajecto-
ries of corresponding multi-valued processes. Under additional sign conditions on
non-linear term we also prove (and essentially use previous result) that the uniform
global attractor is, in fact, bounded set in L→(Ω) ⇐ H1

0 (Ω).

12.1 Introduction

In this paper we study the structural properties of the uniform global attractor of
non-autonomous reaction-diffusion system in which the nonlinear term satisfy suit-
able growth and dissipative conditions on the phase variable, suitable translation
compact conditions on time variable, but there is no condition ensuring uniqueness
of Cauchy problem. In autonomous case such system generates in the general case
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a multi-valued semiflow having a global compact attractor (see [1–5]). Also, it is
known [1, 2, 6], that the attractor is the union of all bounded complete trajectories
of the semiflow. Here we prove the same result for non-autonomous system. More
precisely, we prove that the family of multi-valued processes, generated by weak
solutions of reaction-diffusion system, has uniform global attractor which is union
of bounded complete trajectories of corresponding processes. Using this result, we
can prove that under additional restrictions on nonlinear termobtained uniformglobal
attractor is bounded set in the space L→(Ω) ⇐ H1

0 (Ω).

12.2 Setting of the Problem

In a bounded domain Ω ≥ R
n with sufficiently smooth boundary ∂Ω we consider

the following non-autonomous parabolic problem (named RD-system) [7–17]

{
ut = aΔu − f (t, u) + h(t, x), x ∈ Ω, t > τ,

u|∂Ω = 0,
(12.1)

where τ ∈ R is initial moment of time, u = u(t, x) = (u1(t, x), ..., uN (t, x)) is
unknown vector-function, f = (f 1, ..., f N ), h = (h1, ..., hN ) are given functions, a
is real N × N matrix with positive symmetric part 1

2 (a + a⊂) ∗ βI, β > 0,

h ∈ L2
loc(R; (L2(Ω))N ), f ∈ C(R × R

N ;RN ), (12.2)

∼ C1, C2 > 0, γi > 0, pi ∗ 2, i = 1, N such that √ t ∈ R√v ∈ R
N

N∑
i=1

|f i(t, v)|
pi

pi−1 ≤ C1(1 +
N∑

i=1

|vi|pi), (12.3)

N∑
i=1

f i(t, v)vi ∗
N∑

i=1

γi|vi|pi − C2. (12.4)

In further arguments we will use standard functional spaces

H = (L2(Ω))N with the norm |v|2 =
∫

Ω

N∑
i=1

|vi(x)|2dx,

V = (H1
0 (Ω))N with the norm ⇔v⇔2 =

∫

Ω

N∑
i=1

|⊥vi(x)|2dx.
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Let us denote V ′ = (H−1(Ω))N , qi = pi
pi−1 , p = (p1, ..., pN ), q = (q1, ..., qN ),

Lp(Ω) = Lp1(Ω) × · · · × LpN (Ω).

Definition 12.1 The function u = u(t, x) ∈ L2
loc(τ,+→; V)

⋂
Lp

loc(τ,+→;
Lp(Ω)) is called a (weak) solution of the problem (12.1) on (τ,+→) if for all
T > τ, v ∈ V ⇐ Lp(Ω)

d

dt

∫

Ω

u(t, x)v(x)dx +
∫

Ω

(
a⊥u(t, x)⊥v(x) + f (t, u(t, x))v(x) − h(t, x)v(x)

)
dx = 0

(12.5)
in the sense of scalar distributions on (τ, T).

From (12.3) and Sobolev embedding theorem we see that every solution of
(12.1) satisfies inclusion ut ∈ Lq

loc(τ,+→; H−r(Ω)), where r = (r1, ..., rN ), rk =
max{1, n( 12 − 1

pk
)}. The following theorem is well-known result about global resolv-

ability of (12.1) for initial conditions from the phase space H.

Theorem 12.1 [18, Theorem 2] or [8, p.284]. Under conditions (12.3), (12.4) for
every τ ∈ R, uτ ∈ H there exists at least one weak solution of (12.1) on (τ,+→)

with u(τ ) = uτ (and it may be non unique) and any weak solution of (12.1) belongs
to C ([τ,+→); H). Moreover, the function t ∞≈ |u(t)|2 is absolutely continuous and
for a.a. t ∗ τ the following energy equality holds

1

2

d

dt
|u(t)|2 + (a⊥u(t),⊥u(t)) + (f (t, u(t)), u(t)) = (h(t), u(t)). (12.6)

Under additional not-restrictive conditions on function f and h it is known that solu-
tion of (12.1) generate non-autonomous dynamical system (two-parametric family
of m-processes), which has uniform global attractor. The aim of this paper is to give
description of the attractor in terms of bounded complete trajectories and show some
regularity property of this set.

12.3 Multi-Valued Processes and Uniform Attractors

Let (X, ρ) be a complete metric space. The Hausdorff semidistance from A to B is
given by

dist(A, B) = sup
x∈A

inf
y∈B

ρ(x, y),

By A and Oε(A) = {x ∈ X | inf
y∈A

ρ(x, y) < ε}we denote closure and

ε-neighborhood of the set A. Denote by P(X) (β(X), C(X), K(X)) the set of all
non-empty (not-empty bounded, not-empty closed, not-empty compact) subsets
of X,

Rd = {(t, τ ) ∈ R
2|t ∗ τ }.
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Let Σ be some complete metric space {T(h) : Σ ∞≈ Σ}h∗0 be a continuous
semigroup, acting on Σ . Note, that in most applications T(h) is shift semigroup.

Definition 12.2 Two-parameter family of multi-valued mappings {Uσ : Rd × X ∞≈
P(X)}σ∈Σ is said to be the family of m-processes (family ofMP), if √ σ ∈ Σ, τ ∈ R:

(1) Uσ (τ, τ, x) = x √x ∈ X,
(2) Uσ (t, τ, x) ∀ Uσ (t, s, Uσ (s, τ, x)),√t ∗ s ∗ τ √x ∈ X,

(3) Uσ (t + h, τ + h, x) ∀ UT(h)σ (t, τ, x) √t ∗ τ √h ∗ 0, √ x ∈ X,

where for A ≥ X, B ≥ Σ UB(t, s, A) = ⋃
σ∈B

⋃
x∈A

Uσ (t, s, x) , in particular

UΣ(t, τ, x) =
⋃
σ∈Σ

Uσ (t, τ, x).

Family of MP {Uσ |σ ∈ Σ} is called strict, if in conditions (2), (3) equality take
place.

Definition 12.3 A set A ≥ X is called uniformly attracting for the family of MP
{Uσ |σ ∈ Σ}, if for arbitrary τ ∈ R, B ∈ β(X)

dist(UΣ(t, τ, B), A) ≈ 0, t ≈ +→, (12.7)

that is √ε > 0, τ ∈ R and B ∈ β(X) there exists T = T(τ, ε, B) such that

UΣ(t, τ, B) ≥ Oε(A)√ t ∗ T .

For fixed B ≥ X and (s, τ ) ∈ Rd let us define the following sets

γ τ
s,σ (B) =

⋃
t∗s

Uσ (t, τ, B), γ τ
s,Σ (B) =

⋃
t∗s

UΣ(t, τ, B),

ωΣ(τ, B) =
⎧
s∗τ

clX(γ τ
s,Σ(B)).

It is clear that ωΣ(τ, B) = ⋂
s∗p

clX(γ τ
s,Σ(B)) √p ∗ τ.

Definition 12.4 The family of MP {Uσ |σ ∈ Σ} is called uniformly asymptotically
compact, if for arbitrary τ ∈ R and B ∈ β(X) there exists A(τ, B) ∈ K(X) such that

UΣ(t, τ, B) ≈ A(τ, B), t ≈ +→ in X.

It is known [19] that if √τ ∈ R, √B ∈ β(X) ∼T = T(τ, B) γ τ
T ,Σ(B) ∈ β(X), then the

condition of uniformly asymptotically compactness is equivalent to the following
one: √τ ∈ R √B ∈ β(X) √tn ∃ →

every sequence ξn ∈ UΣ(tn, τ, B) is precompact.
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Definition 12.5 A set ΘΣ ≥ X is called uniform global attractor of the family of
MP {Uσ |σ ∈ Σ}, if :
(1) ΘΣ is uniformly attracting set;
(2) for every uniformly attracting set Y we have ΘΣ ≥ clXY .

Uniform global attractor ΘΣ ≥ X is called invariant (semiinvariant), if √ (t, τ ) ∈
Rd

ΘΣ = UΣ(t, τ,ΘΣ) (ΘΣ ≥ UΣ(t, τ,ΘΣ)).

If ΘΣ is compact, invariant uniform global attractor, then it is called stable if
√ ε > 0∼ δ > 0√ (t, τ ) ∈ Rd

UΣ(t, τ, Oδ(ΘΣ)) ≥ Oε(ΘΣ).

The following sufficient conditions we can obtain with slight modifications
from [19].

Theorem 12.2 (I) Let us assume that the family of MP {Uσ |σ ∈ Σ} satisfies the
following conditions:

(1) ∼ B0 ∈ β(X) √ B ∈ β(X) √τ ∈ R ∼ T = T(τ, B)

√ t ∗ T UΣ(t, τ, B) ≥ B0;

(2) {Uσ |σ ∈ Σ} is uniformly asymptotically compact.
Then {Uσ }σ∈Σ has compact uniform global attractor

ΘΣ =
⋃
τ∈R

⋃
B∈β(X)

ωΣ(τ, B) = ωΣ(0, B0) = ωΣ(τ, B0) √τ ∈ R. (12.8)

(II) If {Uσ }σ∈Σ satisfy (1), (2), Σ is compact and √t ∗ τ the mapping

(x, σ ) ∞≈ Uσ (t, τ, x) (12.9)

has closed graph , then ΘΣ is semiinvariant.
If, moreover, √h ∗ 0 T(h)Σ = Σ and the family MP {Uσ |σ ∈ Σ} is strict,
then ΘΣ is invariant.

(III) If {Uσ }σ∈Σ satisfy (1), (2), Σ is connected and compact, √t ∗ τ the mapping
(12.9) is upper semicontinuous and has closed and connected values, B0 is
connected set, then ΘΣ is connected set.

(IV) If {Uσ |σ ∈ Σ} is strict, T(h)Σ = Σ for any h ∗ 0, there exists a compact,
invariant uniform global attractor ΘΣ and the following condition hold:

if yn ∈ UΣ(tn, τ, xn), tn ≈ t0, xn ≈ x0,
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then up to subsequence yn ≈ y0 ∈ UΣ(t0, τ, x0), (12.10)

then ΘΣ is stable.

Proof (I) From conditions (1), (2) due to [19] we have that √τ ∈ R √B ∈
β(X) ωΣ(τ, B) ∪= ∧, is compact , ωΣ(τ, B) ≥ B0 and the set

ΘΣ =
⋃
τ∈R

⋃
B∈β(X)

ωΣ(τ, B)

is uniform global attractor. Let us prove thatωΣ(τ, B) ≥ ωΣ(τ0, B0) √τ, τ0 ∈ R.

Uσ (t, τ, B)≥Uσ (t,
t

2
, Uσ (

t

2
, τ, B))≥UT( t

2−τ0)σ
(

t

2
+ τ0, τ0, Uσ (

t

2
, τ, B)) ≥

≥ UΣ(
t

2
+ τ0, τ0, B0), if

t

2
∗ T(τ, B) + |τ0| + |τ | := T .

So, for t ∗ 2T

UΣ(t, τ, B) ≥ UΣ(
t

2
+ τ0, τ0, B0).

Then for s ∗ 2T

⋃
t∗s

UΣ(t, τ, B) ≥
⋃
t∗s

UΣ(
t

2
+ τ0, τ0, B0) =

⋃
p∗ s

2+τ0

UΣ(p, τ0, B0),

⎧
s∗2T

⋃
t∗s

UΣ(t, τ, B) = ωΣ(τ, B) ≥
⎧

s∗2T

⋃
p∗ s

2+τ0

UΣ(p, τ0, B0)

=
⎧

s′∗T+τ0

⋃
p∗s′

UΣ(p, τ0, B0) = ωΣ(τ0, B0).

So we deduce equality (12.8).

(II) Due to (12.8) √ξ ∈ ΘΣ = ωΣ(τ, B0) ∼tn ∃ +→, ∼σn ∈ Σ ∼ξn ∈
UΣn(tn, τ, B0) such that ξ = lim

n≈→ ξn. Then

ξn ∈ Uσn(tn − t − τ + t + τ, τ, B0) ≥

≥ Uσn(tn − t − τ + t + τ, tn − t + τ, Uσn(tn − t + τ, τ, B0))

≥ UT(tn−t)σn(t, τ, ηn),

where ηn ∈ Uσn(tn − t + τ, τ, B0), t ∗ τ and for sufficiently large n ∗ 1.
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From uniform asymptotically compactness we have that on some subsequence
ηn ≈ η ∈ ωΣ(τ, B0) = ΘΣ,

T(tn − t)σn ≈ σ ∈ Σ.

Then from (12.9) we deduce :

ξ ∈ UΣ(t, τ,ΘΣ),

and therefore ΘΣ ≥ UΣ(t, τ,ΘΣ).

Other statements of the theorem are proved analogously to [19]. Theorem is
proved.

Corollary 12.1 If for the family of MP {Uσ }σ∈Σ we have :

(1) √h ∗ 0 T(h)Σ = Σ;
(2) √(t, τ ) ∈ Rd √h ∗ 0 √σ ∈ Σ √x ∈ X

Uσ (t + h, τ + h, x) = UT(h)σ (t, τ, x),

then all conditions of previous theorem can be verified only for τ = 0.

Proof Under conditions (1), (2) √t ∗ τ if τ ∗ 0 then

Uσ (t, τ, x) = UT(τ )σ (t − τ, 0, x),

and if τ ≤ 0 then ∼σ ′ ∈ Σ : σ = T(−τ)σ ′, so

Uσ (t, τ, x) = UT(−τ)σ ′(t, τ, x) = Uσ ′(t − τ, 0, x).

In the single-valued case it is known [8], that the uniform global attractor consists
of bounded complete trajectories of processes {Uσ }σ∈Σ .

Definition 12.6 The mapping ϕ : [τ,+→) ∞≈ X is called trajectory of MP Uσ , if
√t ∗ s ∗ τ

ϕ(t) ∈ Uσ (t, s, ϕ(s)). (12.11)

If for ϕ : R ∞≈ X the equality (12.11) takes place √t ∗ s, then ϕ is called complete
trajectory.

Now we assume that for arbitrary σ ∈ Σ and τ ∈ R we have the set Kτ
σ of

mappings ϕ : [τ,+→) ∞≈ X such that :

(a) √x ∈ X ∼ϕ(·) ∈ Kτ
σ such, that ϕ(τ) = x;

(b) √ϕ(·) ∈ Kτ
σ √s ∗ τ ϕ(·)|[s,+→) ∈ Ks

σ ;
(c) √h ∗ 0 √ϕ(·) ∈ Kτ+h

σ ϕ(· + h) ∈ Kτ
T(h)σ

.
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Let us put
Uσ (t, τ, x) = {ϕ(t)|ϕ(·) ∈ Kτ

σ , ϕ(τ ) = x}. (12.12)

Lemma 12.1 Formula (12.12) defines the family of MP {Uσ }σ∈Σ, and √ϕ(·) ∈ Kτ
σ

√t ∗ s ∗ τ ϕ(t) ∈ Uσ (t, s, ϕ(s)). (12.13)

Proof Let us check conditions of the Definition 12.2.

(1) Uσ (τ, τ, x) = ϕ(τ) = x;
(2) √ξ ∈ Uσ (t, τ, x) ξ = ϕ(t), where ϕ ∈ Kτ

σ , ϕ(τ ) = x. Then for s ∈
[τ, t] ϕ(s) ∈ Uσ (s, τ, x) and from ϕ|[s,+→) ∈ Ks

σ we have ϕ(t) ∈ Uσ (t, s,
ϕ(s)). So

ξ ∈ Uσ (t, s, Uσ (s, τ, x)).

(3) √ξ ∈ Uσ (t + h, τ + h, x) ξ = ϕ(t + h), where ϕ ∈ Kτ+h
σ , ϕ(τ + h) = x. Then

ψ(·) = ϕ(· + h) ∈ Kτ
T(h)σ

, ψ(τ) = x, so ξ = ψ(t) ∈ UT(h)σ (t, τ, x). Lemma
is proved.

It is easy to show that under conditions (a)–(c), if √s ∗ τ √ψ ∈ Kτ
σ ,√ϕ ∈ Ks

σ

such that ψ(s) = ϕ(s), we have

θ(p) =
{

ψ(p), p ∈ [τ, s]
ϕ(p), p > s,

∈ Kτ
σ , (12.14)

then in the condition (2) of Definition 12.2 equality takes place.
If √h ∗ 0 √ϕ ∈ Kτ

T(h)σ
ϕ(· − h) ∈ Kτ+h

σ , then in the condition (3) of Definition
12.2 equality takes place.

From (12.13) we immediately obtain that if for mapping ϕ(·) : R ∞≈ X for
arbitrary τ ∈ R we have ϕ(·)|[τ,+→) ∈ Kτ

σ , then ϕ(·) is complete trajectory of Uσ .
The next result is generalization on non-autonomous case results from [20, 21].

Lemma 12.2 Let the family of MP {Uσ }σ∈Σ be constructed by the formula (12.12),
√ϕ(·) ∈ Kτ

σ is continuous on [τ,+→), the condition (12.14) takes place and the
following one: if ϕn(·) ∈ Kτ

σ , ϕn(τ ) = x, then ∼ϕ(·) ∈ Kτ
σ , ϕ(τ ) = x such that on

some subsequence
ϕn(t) ≈ ϕ(t) √t ∗ τ.

Then every continuous on [τ,+→) trajectory of MP Uσ belongs to Kτ
σ .

Proof Let ψ : [τ,+→) ∞≈ X be continuous trajectory. Let us construct sequence
{ϕn(·)}→n=1 ≥ Kτ

σ such that

ϕn(τ + j2−n) = ψ(τ + j2−n), j = 0, 1, ..., n2n.
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For ϕ1(·) we have

ψ(τ + 1

2
) ∈ Uσ (τ + 1

2
, τ, ψ(τ)),

ψ(τ + 1) ∈ Uσ (τ + 1, τ + 1

2
, ψ(τ + 1

2
).

So there exists ⎪ϕ(·) ∈ Kτ
σ , there exists⎪⎪ϕ(·) ∈ K

τ+ 1
2

σ such that

ψ(τ + 1

2
) = ⎪ϕ(τ + 1

2
), ⎪ϕ(τ) = ψ(τ),

ψ(τ + 1) =⎪⎪ϕ(τ + 1), ⎪⎪ϕ(τ + 1

2
) = ψ(τ + 1

2
).

Therefore due to (12.14) for function

ϕ1(p) =
{⎪ϕ(p), τ ≤ p ≤ τ + 1

2 ,⎪⎪ϕ(p), p > τ + 1
2

we have:

ϕ1(·) ∈ Kτ
σ , ϕ1(τ ) = ψ(τ), ϕ1(τ + 1

2
) = ψ(τ + 1

2
), ϕ1(τ + 1) = ψ(τ + 1).

Further, using (12.14), we obtain required property for every n ∗ 1. As ϕn(τ ) =
ψ(τ), so ∼ϕ(·) ∈ Kτ

σ , ϕ(τ ) = ψ(τ) such that on subsequence √t ∗ τ ϕn(t) ≈ ϕ(t).
As √t = τ + j2−n ϕ(t) = ψ(t), so from continuity ϕ(t) = ψ(t) √t ∗ τ . Lemma is
proved.

The following theorem declare structure of uniform global attractor in terms of
bounded complete trajectories of corresponding m-processes. It should be noted that
this result is known for single-valued case [8] and in multi-valued case for very
special class of strict processes, generated by strict compact semiprocesses, which
act in Banach spaces [22].

Theorem 12.3 Let Σ is compact, T(h)Σ = Σ √ h ∗ 0, the family of MP {Uσ }σ∈Σ

satisfies (12.12), in condition (3) of Definition 12.2 equality takes place, the mapping
(x, σ ) ∞≈ Uσ (t, 0, x) has closed graph. Let us assume that there exists ΘΣ—compact
uniform global attractor of the family {Uσ }σ∈Σ , and one of two conditions hold:
either the family of MP {Uσ }σ∈Σ is strict, or

for every σn ≈ σ0, xn ≈ x0 if ϕn(·) ∈ K0
σn

, ϕn(0) = xn,

so ∼ ϕ(·) ∈ K0
σ0

, ϕ(0) = x0 such that on subsequnce √t ∗ 0 ϕn(t) ≈ ϕ(t). (12.15)
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Then the following structural formula holds

ΘΣ =
⋃
σ∈Σ

Kσ (0), (12.16)

where Kσ is the set of all bounded complete trajectories of MP Uσ .

Proof First let us consider situation when the family ofMP {Uσ }σ∈Σ is strict. In this
case one can consider multivalued semigroup (m-semiflow) on the extended phase
space X × Σ by the rule

G(t, {x, σ }) = {Uσ (t, 0, x), T(t)σ }. (12.17)

Then G is strict, has closed graph and compact attracting set ΘΣ × Σ . So G has
compact invariant global attractor

A =
⎧
s∗0

⋃
t∗s

G(t,ΘΣ × Σ) = {γ (0)|γ is bounded complete trajectories of G}.

Hereunder complete trajectory ofm-semiflowGwemean themappingR ∅ t ∞≈ γ (t)
such that

√ t ∈ R √ s ∗ 0 γ (t + s) ∈ G(s, γ (t)).

Let us consider two projectors Π1 and Π2,Π1(u, σ ) = u,Π2(u, σ ) = σ . As
T(t)Σ = Σ , so Π2A = Σ . Let us prove that Π1A = ΘΣ.

As √ B ∈ β(X) G(t, B × Σ) ≈ A , t ≈ +→, so

UΣ(t, τ, B) ≈ Π1A ,

so ΘΣ ≥ Π1A . Let us prove that Π1A = ⋃
σ∈Σ

Kσ (0). For this purpose we take

(u0, σ0) ∈ A . Then there exists γ (·) = {u(·), σ (·)}, which is bounded complete
trajectory of G and such that γ (0) = (u0, σ0). Then √t ∗ τ

u(t) ∈ Uσ(τ)(t − τ, 0, u(τ )), σ (t) = T(t − τ)σ (τ).

If τ ∗ 0, then σ(τ) = T(τ )σ0, that is

u(t) ∈ UT(τ )σ0(t − τ, 0, u(τ )) = Uσ0(t, τ, u(τ )).

If τ < 0, then σ0 = T(−τ)σ (τ), so

u(t) ∈ Uσ(τ)(t − τ, τ − τ, u(τ )) = UT(−τ)σ (τ)(t, τ, u(τ )) = Uσ0(t, τ, u(τ )).

Therefore u0 = u(0) ∈ Kσ0(0) ≥ ⋃
σ∈Σ

Kσ (0).
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Now let u0 = u(0) ∈ Kσ0(0), u(t) ∈ Uσ0(t, τ, u(τ )) √t ∗ τ. As T(t)Σ = Σ ,
so there exists σ(s), s ∈ R, such that σ(t) = T(t − τ)σ (τ), √t ∗ τ, σ (0) = σ0.

Then for s ∗ 0 we have

G(t, {u(s), σ (s)}) = (Uσ(s)(t, 0, u(s)), T(t)σ (s))

= (UT(s)σ0(t, 0, u(s)), σ (t + s)) = (Uσ0(t + s, s, u(s)), σ (t + s)),

{u(t + s), σ (t + s)} ∈ (Uσ0(t + s, s, u(s)), σ (t + s)).

If s < 0, then σ0 = T(−s)σ (s), and

u(t + s) ∈ Uσ0(t + s, s, u(s)) = UT(−s)σ (s)(t + s, s, u(s)) = Uσ(s)(t, 0, u(s)).

Then u0 ∈ Π1A and Π1A = ⋃
σ∈Σ Kσ (0).

Since for arbitrary attracting set P and for arbitrary bounded complete trajectory
Γ = {u(s)}s∈R of the process Uσ we have

u(0) ∈ Uσ (0,−n, u(−n)) = UT(n)σ (−n)(0,−n, u(−n))

≥ UΣ(n, 0, Γ ) ≈ P, n ≈ +→,

so u(0) ∈ P, and we obtain (12.16).
Now let us consider another case, when family of m-processes is not strict, but

the condition (12.15) holds. Let us show thatKσ (0) ≥ ΘΣ. If z ∈ Kσ (0), then there
exists bounded complete trajectory ϕ(·) of m-process Uσ , such that ϕ(0) = z. Let
us denote Γ = ⋃

t∈R
ϕ(t) ∈ β(X). Then for z = ϕ(0) we have

ϕ(0) ∈ Uσ (0,−n, ϕ(−n)) = UT(n)σn(0,−n, ϕ(−n)) ≥ UΣ(n, 0, Γ ).

Since √ε > 0 ∼n0 √n ∗ n0 UΣ(n, 0, Γ ) ≥ Oε(ΘΣ), then z ∈ ΘΣ and we obtain
required embedding.

Now let z ∈ ΘΣ = ωΣ(0, B0). Then z = lim
n≈+→ ξn, ξn ∈ UΣ(tn, 0, B0).

Therefore on some subsequence

z = lim
n≈+→ ϕn(tn), ϕn(·) ∈ K0

σn
, ϕn(0) ∈ B0, σn ≈ σ.

For √n ∗ 1 let us consider

ψn(·) := ϕn(· + tn) ∈ K−tn
T(tn)σn

,

that is ψn(·) ∈ K−tn
σ̃n

, where σ̃n = T(tn)σn. Then ψn(·) ∈ K0
σ̃n

, σ̃n ≈ σ̃ , ψn(0) =
ϕn(tn) ≈ z, so there exists ψ(0)(·) ∈ K0

σ̃
, ψ(0)(0) = z, such that
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√t ∗ 0 ψn(t) = ϕn(t + tn) ≈ ψ(0)(t).

For τ = −1 √n ∗ n1 − tn < −1, therefore ψn(·) ∈ K−1
σ̃n

and on some subsequence

ψn(−1) = ϕn(tn − 1) ≈ z1.

Herewith there exists ψ(−1)(·) ∈ K−1
σ̃

such that on subsequence

ψn(t) = ϕn(t + tn) ≈ ψ(−1)(t) √t ∗ −1,

and √t ∗ 0 ψ(0)(t) = ψ(−1)(t). By standard diagonal procedure we construct
sequence of functions

ψ(−k)(·) ∈ K−k
σ̃

, k ∗ 0,

with ψ(−k+1)(t) = ψ(−k)(t) √t ∗ −k + 1. Let us put

ψ(t) := ψ(−k)(t), if t ∗ −k.

Then the function ψ(·) is correctly defined, ψ : R ∞≈ X.

Moreover √τ < 0 ∼k such that [τ,+→) ≥ [−k,+→), on [−k,+→) ψ(·) ≡
ψ(−k), so ψ(·) ∈ K−k

σ̃
, and from this

ψ(·) ∈ Kτ
σ̃ , ψ(0) = ψ(0)(0) = z.

Since on subsequence

√t ∈ R ψ(t) = lim
n≈+→ ϕn(t + tn) ∈ ωΣ(0, B0) ∈ β(X),

then z = ψ(0) ∈ Kσ̃ and theorem is proved.

12.4 Uniform Global Attractor for RD-System

Definition 12.7 LetΘ be some topological space of functions fromR to topological
space E. The function ξ ∈ Θ is called translation compact in Θ , if the set

H(ξ) = clΘ {ξ(· + s) | s ∈ R}

is compact in Θ .

To construct family of m-processes for the problem (12.1) we suppose that time-
depended functions f and h are translation compact in natural spaces [8]. More
precisely, we will assume that
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h is translation compact in L2,w
loc (R; H), (12.18)

where L2,w
loc (R; H) is the space L2

loc(R; H)with the local weak convergence topology,
and

f is translation compact in C(R; C(RN ,RN )), (12.19)

where C(R; C(RN ,RN )) equipped with local uniform convergence topology.
It is known that condition (12.18) is equivalent to

|h|2+ := sup
t∈R

t+1∫

t

|h(s)|2ds < → (12.20)

It is also known that condition (12.19) is equivalent to

√ R > 0 f is bounded and uniformly continuous on
Q(R) = {(t, v) ∈ R × R

N | |v|RN ≤ R}. (12.21)

If conditions (12.18),(12.19) take place, then the symbol space

Σ = clC(R;C(RN ,RN ))×L2,w
loc (R;H)

{(f (· + s), h(· + s)) | s ∈ R} (12.22)

is compact, and √ s ∗ 0 T(s)Σ = Σ , where T(s) is translation semigroup, which is
continuous on Σ .

For every σ = (fσ , hσ ) ∈ Σ we consider the problem

{
ut = aΔu − fσ (t, u) + hσ (t, x), x ∈ Ω, t > τ,

u|∂Ω = 0.
(12.23)

It is proved in [19] that √ σ ∈ Σ fσ satisfies (12.3), (12.4) with the same con-
stants C1, C2, γi, |hσ |+ ≤ |h|+. So we can apply Theorem 2 and obtain that
√ τ ∈ R, uτ ∈ H the problem (12.23) has at least one solution on (τ,+→), each
solution of (12.23) belongs to C([τ,+→); H) and satisfies energy equality (12.6).
For every σ ∈ Σ, τ ∈ R we define

Kτ
σ = {u(·) | u(·) is solution of (12.23) on (τ,+→)} (12.24)

and according to (12.12) we put √ σ ∈ Σ,√ t ∗ τ,√ uτ ∈ H

Uσ (t, τ, uτ ) = {u(t)|u(·) ∈ Kτ
σ , u(τ ) = uτ }. (12.25)

From [19] and Theorem 13 we obtain the following result

Theorem 12.4 Under conditions (12.3), (12.4), (12.18), (12.19) formula (12.25)
defines a strict family of MP {Uσ }σ∈Σ which has compact, invariant, stable and con-
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nected uniform global attractor ΘΣ , which consists of bounded complete
trajectories, that is

ΘΣ =
⋃
σ∈Σ

Kσ (0), (12.26)

where Kσ is the set of all bounded complete trajectories of MP Uσ .

Now we want to use formula (12.26) for proving that the uniform global attractor
of RD-system is bounded set in the space (L→(Ω))N ⇐ V .

First let us consider the following conditions:

∼ Mi > 0, i = 1, N such that for all v = (v1, ..., vN ) ∈ R
N for a.a. x ∈ Ω √ t ∈ R

N∑
i=1

(f i(t, v) − hi(t, x))(vi − Mi)
+ ∗ 0 (12.27)

N∑
i=1

(f i(t, v) − hi(t, x))(vi + Mi)
− ≤ 0 (12.28)

where ϕ+ = max{0, ϕ}, ϕ− = max{0,−ϕ}, ϕ = ϕ+ − ϕ−.
Let us consider some example, which allow to verify conditions (12.27), (12.28).

Lemma 12.3 If N = 1 (scalar equation), then from (12.3), (12.4) and h ∈ L→(R×
Ω) we have (12.27), (12.28).

Proof From (12.3) and h ∈ L→(Ω) for a.a. x ∈ Ω and u ∈ R,

γ̃ |u|p − C̃2 ≤ g(t, x, u)u ≤ C̃1|u|p + C̃1,

where g(t, x, u) = f (t, u) − h(t, x), γ̃ does not depend on t, u, x.
If u ≤ M, then g(t, x, u)(u − M)+ = 0.
If u > M, then

g(t, x, u)(u − M)+ = g(t, x, u)u
(u − M)+

u
= g(t, x, u)u(1 − M

u
)

∗ (γ̃ up − C̃2)(1 − M

u
) ∗ (γ̃ Mp − C̃2)(1 − M

u
)

and if we choose M =
(

C̃2
γ̃

) 1
p
, then g(t, x, u)(u − M)+ ∗ 0 a.e.

Lemma 12.4 If for arbitrary N ∗ 1 h ≡ 0, f (t, u) = (f 1(t, u), ...f N (t, u)), where

f i(t, u) = (
N⎨

i=1
|ui|2 − R2)ui, R > 0 is positive constant, then conditions (12.27),

(12.28) hold for Mi = R.



12 Structure of Uniform Global Attractor for General Non-Autonomous 177

Proof If
N⎨

i=1
|ui|2 < R2, so √ i = 1, N |ui| < R and

N∑
i=1

f i(t, u)(ui − R)+ = 0,

N∑
i=1

f i(t, u)(ui + R)− = 0.

If
N⎨

i=1
|ui|2 ∗ R2, then

N∑
i=1

f i(t, u)(ui − R)+ = (

N∑
i=1

|ui|2 − R2)

N∑
i=1

ui(ui − R)+ ∗ 0,

N∑
i=1

f i(t, u)(ui + R)− = (

N∑
i=1

|ui|2 − R2)

N∑
i=1

ui(ui + R)− ≤ 0.

Theorem 12.5 If conditions (12.3), (12.4), (12.18), (12.19), (12.27), (12.28) hold
and matrix a is diagonal, then the uniform global attractor ΘΣ is bounded set in the
space (L→(Ω))N ⇐ V.

Proof First let us prove that √σ ∈ Σ functions fσ , hσ satisfy (12.27), (12.28).
Indeed, there exists sequence tn ∃ → such that √ T > 0, R > 0, η ∈ L2

((−T , T) × Ω)

sup
|t|≤T

sup
|v|≤R

N∑
i=1

|f i(t + tn, v) − f i
σ (t, v)|2 ≈ 0, n ≈ →,

N∑
i=1

T∫

−T

∫

Ω

(hi(t + tn, x) − hi
σ (t, x))η(t, x)dxdt ≈ 0, n ≈ →.

From (12.27)

N∑
i=1

(f i(t + tn, v) − hi(t + tn, x))(vi − Mi)
+ ∗ 0. (12.29)

Therefore for fixed v and for arbitrary ε > 0 there exists N ∗ 1 such that √ n ∗ N
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N∑
i=1

hi(t + tn, x)(vi − Mi)
+ ≤

N∑
i=1

f i(t + tn, v)(vi − Mi)
+ <

N∑
i=1

f i
σ (t, v)(vi − Mi)

+ + ε.

Because

N∑
i=1

hi(t + tn, x)(vi − Mi)
+ ≈

N∑
i=1

hi
σ (t, x)(vi − Mi)

+ weakly in L2((−T , T)×Ω),

from Mazur’s Theorem we deduce that

N∑
i=1

hi
σ (t, x)(vi − Mi)

+ ≤
N∑

i=1

f i
σ (t, v)(vi − Mi)

+ + ε for a.a. x ∈ Ω.

From arbitrary choice of ε we can obtain required result.
It is easy to obtain that for arbitrary weak solution of (12.1) and for every η ∈

C→
0 (τ, T)

T∫

τ

(ut, u+)ηdt = −1

2

T∫

τ

|u+|2ηtdt. (12.30)

Then putting gσ = fσ − hσ and for numbers M1, ..., MN from condition (12.27) we
have

1

2

d

dt

N∑
i=1

|(ui −Mi)
+|2 +β

N∑
i=1

⇔(ui −Mi)
+⇔2 +

∫

Ω

N∑
i=1

gi
σ (t, x, u)(ui −Mi)

+dx = 0.

Then from (12.27)

d

dt

N∑
i=1

|(ui − Mi)
+|2 + 2β

N∑
i=1

|(ui − Mi)
+|2 ≤ 0

and for all t > τ

N∑
i=1

|(ui − Mi)
+(t)|2 ≤

N∑
i=1

|(ui − Mi)
+(τ )|2e−2λ1β(t−τ). (12.31)

If u(·) ∈ Kσ then from (12.31) taking τ ≈ −→ we obtain ui(x, t) ≤ Mi, i =
1, N, √t ∈ R, for a.a. x ∈ Ω.

In the same way we will have ui(x, t) ∗ Mi (using (ui + Mi)
−).

Then
ess sup

x∈Ω

|zi(x)| ≤ Mi √z = (z1, ..., zN ) ∈ ΘΣ.
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So we obtain that ΘΣ is bounded set in the space (L→(Ω))N . From the equality
ΘΣ = UΣ(t, τ,ΘΣ)√ t ∗ τ we deduce that √ σ ∈ Σ Uσ (t, τ,ΘΣ) ≥ ΘΣ . Now
let us consider arbitrary complete trajectory u(·) ∈ Kσ . Due to definition of weak
solution for a.a . t ∈ R u(t) ∈ V . We take such τ ∈ R that u(τ ) ∈ V and consider
the following Cauchy problem

⎩⎛
⎝

vt = aΔv − fσ (t, u) + hσ (t, x), x ∈ Ω, t > τ,

v|∂Ω = 0,
v|t=τ = u(τ ).

(12.32)

Because √ t ∗ τ u(t) ∈ ΘΣ , which is bounded in (L→(Ω))N , we have that
fσ (t, u(t, x)) ∈ (L→(Ω))N . Thus for linear problem (12.32) fromwell-known results
one can deduce that √ T > τ v ∈ C([τ, T ]; V). So from uniqueness of the solution
of Cauchy problem (12.32) v ≡ u on [τ,+→) and, therefore, √ t ∗ τ u(t) ∈ V . It
means that √ t ∈ R u(t) ∈ V and from the formula (12.26) ΘΣ ≥ V .

From the energy equality, applying to function u, and boundness of ΘΣ in the
space H we deduce, that ∼ C > 0, which does not depend on σ , such that √ t ∈ R

t+1∫

t

⇔u(s)⇔2ds ≤ C(1 +
t+1∫

t

|hσ (s)|2ds).

From translation compactness of h we have

t+1∫

t

⇔u(s)⇔2ds ≤ C(1 + |h|2+).

So for arbitrary t ∈ R we find τ ∈ [t, t + 1] such that ⇔u(τ )⇔2 ≤ C(1+ |h|2+). Then
for the problem (12.32) we obtain inequality

√ t ∗ τ ⇔v(t)⇔2 ≤ e−δ(t−τ)⇔u(τ )⇔2 + D,

where positive constants δ, D do not depend on σ . Thus

√ t ∈ R ⇔u(t)⇔2 ≤ C(1 + |h|2+) + D

and theorem is proved.
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Chapter 13
Topological Properties of Strong Solutions
for the 3D Navier-Stokes Equations

Pavlo O. Kasyanov, Luisa Toscano and Nina V. Zadoianchuk

Abstract In this chapter we give a criterion for the existence of global strong
solutions for the 3D Navier-Stokes system for any regular initial data.

13.1 Introduction

Let Ω → R
3 be a bounded open set with sufficiently smooth boundary ∂Ω and

0 < T < +⇐. We consider the incompressible Navier-Stokes equations




yt + (y · ≥)y = ν∈y − ≥p + f in Q = Ω × (0, T),

div y = 0 in Q,

y = 0 on ∂Ω × (0, T), y(x, 0) = y0(x) in Ω,

(13.1)

where ν > 0 is a constant. We define the usual function spaces

V = {u ⊂ (C⇐
0 (Ω))3 : div u = 0},

H = closure of V in (L2(Ω))3, V = {u ⊂ (H1
0 (Ω))3 : div u = 0}.

P. O. Kasyanov (B)

Institute for Applied System Analysis, National Technical University of Ukraine “Kyiv
Polytechnic Institute”, Peremogy ave., 37, build, 35, Kyiv 03056, Ukraine
e-mail: kasyanov@i.ua

L. Toscano
Department of Mathematics and Applications R. Caccioppoli, University of Naples “Federico II”,
via Claudio 21, 80125 Naples, Italy
e-mail: luisatoscano@libero.it

N. V. Zadoianchuk
Department of Computational Mathematics, Taras Shevchenko National University of Kyiv,
Volodimirska Street 64, Kyiv 03601, Ukraine
e-mail: ninellll@i.ua

M. Z. Zgurovsky and V. A. Sadovnichiy (eds.), Continuous and Distributed Systems, 181
Solid Mechanics and Its Applications 211, DOI: 10.1007/978-3-319-03146-0_13,
© Springer International Publishing Switzerland 2014



182 P. O. Kasyanov et al.

We denote by V∗ the dual space of V . The spaces H and V are separable Hilbert
spaces and V ∼ H ∼ V∗ with dense and compact embedding when H is identified
with its dual H∗. Let (·, ·), √ · √H and ((·, ·)), √ · √V be the inner product and the
norm in H and V , respectively, and let ≤·, ·⇔ be the pairing between V and V∗. For
u, v, w ⊂ V , the equality

b(u, v, w) =
∫

Ω

3∑
i,j=1

ui
∂vj

∂xi
wjdx

defines a trilinear continuous form on V with b(u, v, v) = 0 when u ⊂ V and v ⊂
(H1

0 (Ω))3. For u, v ⊂ V , let B(u, v) be the element of V∗ defined by ≤B(u, v), w⇔ =
b(u, v, w) for all w ⊂ V .

We say that the function y is a weak solution of Problem (13.1) on [0, T ], if
y ⊂ L⇐(0, T; H) ⊥ L2(0, T; V), dy

dt ⊂ L1(0, T; V∗), if

d

dt
(y, v) + ν((y, v)) + b(y, y, v) = ≤f , v⇔ for all v ⊂ V , (13.2)

in the sense of distributions on (0, T), and if y satisfies the energy inequality

V(y)(t) ≤ V(y)(s) for all t ⊂ [s, T ], (13.3)

for a.e. s ⊂ (0, T) and for s = 0, where

V(y)(t) : = 1

2
√y(t)√2H + ν

t∫

0

√y(τ )√2V dτ −
t∫

0

≤f (τ ), y(τ )⇔dτ. (13.4)

This class of solutions is called Leray–Hopf or physical one. If f ⊂ L2(0, T; V∗), and
if y satisfies (13.2), then y ⊂ C([0, T ]; Hw), dy

dt ⊂ L
4
3 (0, T; V∗), where Hw denotes

the space H endowed with the weak topology. In particular, the initial condition
y(0) = y0 makes sense for any y0 ⊂ H.

Let A : V ∞ V∗ be the linear operator associated to the bilinear form ((u, v)) =
≤Au, v⇔. Then A is an isomorphism from D(A) onto H with D(A) = (H2(Ω))3 ⊥ V .

We recall that the embedding D(A) ∼ V is dense and continuous. Moreover, we
assume √Au√H as the norm on D(A), which is equivalent to the one induced by
(H2(Ω))3. The Problem (13.1) can be rewritten as

{ dy
dt + νAy + B(y, y) = f in V∗,
y(0) = y0,

(13.5)

where the first equation we understand in the sense of distributions on (0, T). Now
we write
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D(y0, f ) ={ y : y is a weak solution of Problem (13.1) on [0, T]}.

It is well known (cf. [1]) that if f ⊂ L2(0, T; V∗), and if y0 ⊂ H, then D(y0, f ) is
not empty.

A weak solution y of Problem (13.1) on [0, T ] is called a strong one, if it addi-
tionally belongs to Serrin’s class L8(0, T; (L4(Ω))3). We note that any strong solu-
tion y of Problem (13.1) on [0, T ] belongs to C([0, T ]; V) ⊥ L2(0, T; D(A)) and
dy
dt ⊂ L2(0, T; H) (cf. [2, Theorem 1.8.1, p. 296] and references therein).

For any f ⊂ L⇐(0, T; H) and y0 ⊂ V it is well known the only local existence
of strong solutions for the 3D Navier-Stokes equations (cf. [1–4] and references
therein). Here we provide a criterion for existence of strong solutions for Problem
(13.1) on [0, T ] for any initial data y0 ⊂ V and 0 < T < +⇐. Presented results were
announced in [5].

13.2 Topological Properties of Strong Solutions

The main result of this note has the following form.

Theorem 13.1 Let f ⊂ L2(0, T; H) and y0 ⊂ V. Then either for any λ ⊂ [0, 1] there
is an yλ ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) such that yλ ⊂ D(λy0, λf ), or the set

{y ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) : y ⊂ D(λy0, λf ), λ ⊂ (0, 1)} (13.6)

is unbounded in L8(0, T; (L4(Ω))3).

In the proof of Theorem 13.1 we use an auxiliary statement connected with conti-
nuity property of strong solutions on parameters of Problem (13.1) in Serrin’s class
L8(0, T; (L4(Ω))3).

Theorem 13.2 Let f ⊂ L2(0, T; H) and y0 ⊂ V. If y is a strong solution for Problem
(13.1) on [0, T ], then there exist L, δ > 0 such that for any z0 ⊂ V and g ⊂
L2(0, T; H), satisfying the inequality

√z0 − y0√2V + √g − f √2L2(0,T ;H)
< δ, (13.7)

the set D(z0, g) is one-point set {z} which belongs to C([0, T ]; V)⊥ L2(0, T; D(A)),
and

√z − y√2C( [0,T ];V) + ν

4
√z − y√2D(A) ≤ L

(
√z0 − y0√2V + √g − f √2L2(0,T ;H)

)
. (13.8)

Remark 13.1 We note that from Theorem 13.2 with z0 ⊂ V and g ⊂ L2(0, T; H)

with √z0√2V + √g√2
L2(0,T ;H)

sufficiently small, Problem (13.1) has only one global
strong solution.
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Remark 13.2 Theorem 13.2 provides that, if for any λ ⊂ [0, 1] there is an yλ ⊂
L8(0, T; (L4(Ω))3) such that yλ ⊂ D(λy0, λf ), then the set

{y ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) : y ⊂ D(λy0, λf ), λ ⊂ (0, 1)}

is bounded in L8(0, T; (L4(Ω))3).

If Ω is a C⇐-domain and if f ⊂ C⇐
0 ((0, T) × Ω)3, then any strong solution y of

Problem (13.1) on [0, T ] belongs to C⇐((0, T ]×Ω)3 and p ⊂ C⇐((0, T ]×Ω) (cf.
[2, Theorem 1.8.2, p. 300] and references therein). This fact directly provides the
next corollary of Theorems 13.1 and 13.2.

Corollary 13.1 Let Ω be a C⇐-domain, f ⊂ C⇐
0 ((0, T) × Ω)3. Then either for any

y0 ⊂ V there is a strong solution of Problem (13.1) on [0, T ], or the set

{y ⊂ C⇐((0, T ] × Ω)3 : y ⊂ D(λy0, λf ), λ ⊂ (0, 1)}

is unbounded in L8(0, T; (L4(Ω))3) for some y0 ⊂ C⇐
0 (Ω)3.

13.3 Proof of Theorem 13.2

Let f ⊂ L2(0, T; H), y0 ⊂ V , and y ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) be a strong
solution of Problem (13.1) on [0, T ]. Due to [6], [1, Chap. 3] the set D(y0, f ) = {y}.
Let us now fix z0 ⊂ V and g ⊂ L2(0, T; H) satisfying (13.7) with

δ = min
⎧
1; ν

4

⎪
e−2TC, C = max

{
27c4

2ν3
; 7

7c8

29ν7

⎨(
√y√4C([0,T ];V) + 1

)2
, (13.9)

c > 0 is a constant from the inequalities (cf. [2, 1])

|b(u, v, w)| ≤ c√u√V √v√
1
2
V √v√

1
2
D(A)√w√H ≈u ⊂ V , v ⊂ D(A), w ⊂ H; (13.10)

|b(u, v, w)| ≤ c√u√
3
4
D(A)√u√

1
4
V √v√V √w√H ≈u ⊂ D(A), v ⊂ V , w ⊂ H. (13.11)

The auxiliary Problem

{ dη
dt + νAη + B(η, η) + B(y, η) + B(η, y) = g − f in V∗,
η(0) = z0 − y0,

(13.12)

has a strong solution η ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) with dη
dt ⊂ L2(0, T; H), i.e.
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d

dt
(η, v)+ν((η, v))+b(η, η, v)+b(y, η, v)+b(η, y, v) = ≤g− f , v⇔ for all v ⊂ V ,

in the sense of distributions on (0, T). In fact, let {wj}j∀1 ∼ D(A) be a special basis
(cf. [7, p. 56]), i.e. Awj = λjwj, j = 1, 2, ..., 0 < λ1 ≤ λ2 ≤ · · · , λj ∞ +⇐,
j ∞ +⇐. We consider Galerkin approximations ηm : [0, T ] ∞ span{wj}m

j=1 for
solutions of Problem (13.12) satisfying

d

dt
(ηm, wj) + ν((ηm, wj)) + b(ηm, ηm, wj) + b(y, ηm, wj) + b(ηm, y, wj) = ≤g − f , wj⇔,

with (ηm(0), wj) = (z0 − y0, wj), j = 1, m. Due to (13.10), (13.11) and Young’s
inequality we get

2≤g − f , Aηm⇔ ≤ 2√g − f √H√ηm√D(A) ≤ ν

4
√ηm√2D(A) + 4

ν
√f − g√2H ;

−2b(ηm, ηm, Aηm) ≤ 2c√ηm√
3
2
V √ηm√

3
2
D(A) ≤ ν

2
√ηm√2D(A) + 27c4

2ν3
√ηm√6V ;

−2b(y, ηm, Aηm) ≤ 2c√y√V √ηm√
1
2
V √ηm√

3
2
D(A) ≤ ν

2
√ηm√2D(A) + 27c4

2ν3
√y√4C([0,T ];V)√ηm√2V ;

−2b(ηm, y, Aηm) ≤ 2c√ηm√
7
4
D(A)√ηm√

1
4
V √y√V ≤ ν

2
√ηm√2D(A) + 77c8

29ν7
√y√8C([0,T ];V)√ηm√2V .

Thus,
d

dt
√ηm√2V + ν

4
√ηm√2D(A) ≤ C(√ηm√2V + √ηm√6V ) + 4

ν
√g − f √2H ,

where C > 0 is a constant from (13.9). Hence, the absolutely continuous function
ϕ = min{√ηm√2V , 1} satisfies the inequality d

dt ϕ ≤ 2Cϕ + 4
ν
√g − f √2H , and therefore

ϕ ≤ L(√z0−y0√2V +√g−f √2
L2(0,T ;H)

) < 1 on [0, T ], whereL = δ−1. Thus, {ηn}n∀1 is

bounded in L⇐(0, T; V)⊥ L2(0, T; D(A)) and { d
dt ηn}n∀1 is bounded in L2(0, T; H).

In a standard waywe get that the limit function η of ηn, n ∞ +⇐, is a strong solution
of Problem (13.12) on [0, T ]. Due to [6], [1, Chap. 3] the set D(z0, g) is one-point
z = y +η ⊂ L8(0, T; (L4(Ω))3). So, z is strong solution of Problem (13.1) on [0, T ]
satisfying (13.8).

The theorem is proved.

13.4 Proof of Theorem 13.1

We provide the proof of Theorem 13.1. Let f ⊂ L2(0, T; H) and y0 ⊂ V . We consider
the 3D controlled Navier-Stokes system (cf. [8, 9])
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{ dy
dt + νAy + B(z, y) = f ,
y(0) = y0,

(13.13)

where z ⊂ L8(0, T; (L4(Ω))3).
By using standard Galerkin approximations (see [1]) it is easy to show that for

any z ⊂ L8(0, T; (L4(Ω))3) there exists an unique weak solution y ⊂ L⇐(0, T; H)⊥
L2(0, T; V) of Problem (13.13) on [0, T ], that is,

d

dt
(y, v) + ν((y, v)) + b(z, y, v) = ≤f , v⇔ , for all v ⊂ V , (13.14)

in the sense of distributions on (0, T). Moreover, by the inequality

|b(u, v, Av)| ≤ c1√u√(L4(Ω))3√v√
1
4
V √v√

7
4
D(A) ≤ ν

2
√v√2D(A) + c2√u√8

(L4(Ω))3
√v√2V ,

(13.15)

for all u ⊂ (L4(Ω))3 and v ⊂ D(A), where c1, c2 > 0 are some constants that
do not depend on u, v (cf. [1]), we find that y ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A))

and B(z, y) ⊂ L2(0, T; H), so dy
dt ⊂ L2(0, T; H) as well. We add that, for any

z ⊂ L8(0, T; (L4(Ω))3) and corresponding weak solution y ⊂ C([0, T ]; V) ⊥
L2(0, T; D(A)) of (13.13) on [0, T ], by using Gronwall inequality, we obtain

√y(t)√2V ≤ √y0√2V e
2c2

t⎩
0

√z(t)√8
(L4(Ω))3

dt
, ≈t ⊂ [0, T ];

ν
T⎩
0

√y(t)√2D(A)dt ≤ √y0√2V

⎛
⎝1 + 2c2e

2c2
T⎩
0

√z(t)√8
(L4(Ω))3

dt
√z√8

L8(0,T ;(L4(Ω))3)

⎞
⎠ .

(13.16)

Let us consider the operator F : L8(0, T; (L4(Ω))3) ∞ L8(0, T; (L4(Ω))3), where
F(z) ⊂ C([0, T ]; V) ⊥ L2(0, T; D(A)) is the unique weak solution of (13.13) on
[0, T ] corresponded to z ⊂ L8(0, T; (L4(Ω))3).

Let us check that F is a compact transformation of Banach space L8(0, T;
(L4(Ω))3) into itself (cf. [10]). In fact, if {zn}n∀1 is a bounded sequence in L8(0, T;
(L4(Ω))3), then, due to (13.15) and (13.16), the respective weak solutions yn,
n = 1, 2, ..., of Problem (13.13) on [0, T ] are uniformly bounded in C([0, T ]; V) ⊥
L2(0, T; D(A)) and their time derivatives dyn

dt , n = 1, 2, ..., are uniformly bounded in
L2(0, T; H). So, {F(zn)}n∀1 is a precompact set in L8(0, T; (L4(Ω))3). In a standard
way we deduce that F : L8(0, T; (L4(Ω))3) ∞ L8(0, T; (L4(Ω))3) is continuous
mapping.

Since F is a compact transformation of L8(0, T; (L4(Ω))3) into itself, Schae-
fer’s Theorem (cf. [10, p. 133] and references therein) and Theorem 13.2 provide
the statement of Theorem 13.1. We note that Theorem 13.2 implies that the set
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{z ⊂ L8(0, T; (L4(Ω))3) : z = λF(z), λ ⊂ (0, 1)} is bounded inL8(0, T; (L4(Ω))3)

iff the set defined in (13.6) is bounded in L8(0, T; (L4(Ω))3).
The theorem is proved.
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Chapter 14
Inertial Manifolds and Spectral Gap Properties
for Wave Equations with Weak and Strong
Dissipation

Natalia Chalkina

Abstract Sufficient conditions for the existence of an inertial manifold for the
equation utt − 2εs∆ut + 2εwut − ∆u = f (u), εs > 0, εw → 0 are found. The
nonlinear function f is supposed to satisfy Lipschitz property. The proof is based
on construction of a new inner product in the phase space in which the conditions of
a general theorem on the existence of inertial manifolds for an abstract differential
equation in a Hilbert space are satisfied.

14.1 Introduction

In the theory of nonlinear evolution partial differential equations, great attention is
paid to long-time behavior of dynamic systems. Someway of such description relates
with notion of an inertial manifold (see [5, 6, 9]).

Let us consider an initial-value problem for an abstract differential equation in a
Hilbert space,

d

dt
y+Ay = F(y), y ⇐ H , (14.1)

y
∣∣
t=0 = y0 ⇐ H . (14.2)

Here A is a linear operator and F is a nonlinear operator. Suppose problem (14.1),
(14.2) has a unique solution y for any y0 ⇐ H . Hence, this problem generates
a continuous semigroup {S(t) | t → 0}, acting in the space H by the formula
S(t)y0 = y(t) ⇐ H .

Definition 14.1 A Lipschitz finite dimensional manifold M ≥ H is an inertial
manifold for the semigroup S(t) if it is invariant (i.e., S(t)M = M , ∈t → 0) and it
satisfies the following asymptotic completeness property:

N. Chalkina (B)
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∈y0 ⇐ H ⊂ỹ0 ⇐ M such that ∗S(t)y0 − S(t)ỹ0∗H ∼ q(∗y0∗H )e−ct , t → 0,

where the positive constant c and the monotonic function q are independent of y0.
Inertial manifolds enable one to reduce the study of the behavior of an

infinite-dimensional dynamical system to the investigation of this problem for some
finite-dimensional dynamical system generated by original system on an inertial
manifold.

For the abstract equation of the form (14.1), there are known sufficient conditions
under which there is an inertial manifold in the Hilbert space H (see [3]). Let us
present these conditions. LetA be a linear closed (possibly unbounded) operator with
dense domain D(A) inH and let the spectrum ω(A) of A be disjoint from the strip
{m < √Φ < M}, where M → 0, M > m. Denote by P the orthogonal projection to
the invariant subspace of A corresponding to the part of the spectrum ω ≤ {√Φ ∼ m}
and write Q = Id − P . Assume that the space P(H ) is finite-dimensional.

Theorem 14.1 Let the space H be equiped with an inner product in such a way
that the space P(H ) and Q(H ) are orthogonal and the following relations hold:

(Ay, y) ∼ m|y|2 ∈y ⇐ P(H ),

(Ay, y) → M |y|2 ∈y ⇐ Q(H ) ≤ D(A).
(14.3)

Moreover, let F(y) be a nonlinear function such that F(0) = 0 and let F satisfy the
Lipschitz condition with the constant L, where

2L < M − m. (14.4)

In this case, there is an inertial manifold M in the Hilbert space H , and this
manifold is the graph of a Lipschitz continuous function ξ: P(H) ⇔ Q(H).

In the present chapter, an initial-boundary value problem for a wave equation
with weak and strong dissipation is considered. The nonlinear term depends on the
unknown function u, these term is assumed to be Lipschitzian,

utt − 2εs∆ut + 2εwut − ∆u = f (u).

For this equation, we obtain a condition on the Lipschitz constant of the func-
tion f which ensures the existence of an inertial manifold. The result is stated in
Theorems 14.2 and 14.3. The proof is based on construction of a new inner product
in the phase space in which the conditions of Theorem 14.1 are satisfied.
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14.2 Statement of the Problem and Spectrum of the Linear
Operator

In a bounded domainϕ , we consider the inertial-boundary value problem for a wave
equation with dissipation,

utt − 2εs∆ut + 2εwut − ∆u = f (u), u|πϕ = 0, (14.5)

u|t=0 = u0(x) ⇐ H1
0 (ϕ), ut |t=0 = p0 ⇐ L2(ϕ). (14.6)

Here εw and εs are positive coefficients of the dissipation, and the nonlinear function
f is continuously differentiable and satisfy the global Lipschitz condition,

| f (v1) − f (v2)| ∼ l|v1 − v2| ∈v1, v2 ⇐ R, (14.7)

Moreover, let f (0) = g(0) = 0.
Under these assumptions, problem (14.5), (14.6) has a unique weak solution

u ⇐ C
([0, T ]; H1

0 (ϕ)
)
, πt u ⇐ C

([0, T ]; L2(ϕ)
)
for any T > 0 (see [7, 8, 10]).

Hence, this problem generates a continuous semigroup {S(t)}, t → 0, acting in the
phase space H = H1

0 (ϕ) × L2(ϕ) by the formula

S(t)(u0(x), p0(x)) = y(t) ⊥ (u(t, x), p(t, x)) ⇐ H,

where u(t, x) is a solution of the problem (14.5), (14.6), p(t, x) = πt u(t, x) stands
for the derivative of this solution w.r.t. t , and y = (u, p) ⇐ H .

Let us represent the initial-boundary value problem in the form of an ordinary
differential equation to find the unknown vector function y = (u, p) ⇐ H ,

d

dt
y(t) + Ay = F(y), Ay =

(
0 −1

−∆ 2εw − 2εs∆

)
y, F(y) =

(
0

f (u)

)
.

Let ek(x) and γk be the eigenfunctions and the eigenvalues of the operator −∆ in
the domain ϕ with the Dirichlet conditions on the boundary,

−∆ek(x) = γkek(x), ek(x)
∣∣
πϕ

= 0, ek(x) ⊥ 0,

0 < γ1 < γ2 ∼ γ3 ∼ · · · ⇔ +∞.

Denote by (·, ·)H and ∗ · ∗ the standard inner product and the corresponding norm
in the space H , namely,

(y, ỹ)H = (≈u,≈ũ) + (p, p̃) =
∞∑

k=1

(γkuk ũk + pk p̃k) ,

where uk = (u, ek), pk = (p, ek), and (·, ·) stands for the inner product in L2(ϕ).
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The two-dimensional subspace Hk with basis (ek, 0), (0, ek) is invariant under
the operator A. The restriction of the operator A to the subspace Hk has the matrix

Ak =
(

0 −1
γk 2(εw + εsγk)

)
. The eigenvalues of Ak are equal to

μk = εk −
√

ε 2
k − γk and αk = εk +

√
ε 2

k − γk

where we denote εk = εw + εsγk . In Figs. 14.1 and 14.2, we show the qualita-
tive displacement of these eigenvalues on the complex plane in two cases, namely,
4εwεs < 1 and 4εwεs → 1. In the first case, the operator A has both real and nonreal
eigenvalues and, in the other case, all eigenvalues are real.

If the orthogonal projection P satisfies the assumptions of the Theorem 14.1, then
the image P(H ) (which is finite-dimensional) must correspond to finitely many
eigenvalues of A belonging to the domain {ReΦ ∼ m}. However, μk ⇔ 1/(2εs) and

Fig. 14.1 4εwεs < 1

Fig. 14.2 4εwεs > 1
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αk ⇔ +∞ as γk ⇔ +∞, and thus the quantity m must be less than 1/(2εs). In the
case 4εwεs < 1, to the values μk and αk lying to the left of the accumulation point
1/(2εs) there correspond values γk <

1−2εwεs
2ε 2

s
. If 4εwεs → 1, then μk < 1/(2εs)

for any k.

14.3 Sufficient Conditions for the Existence of Inertial Manifolds

In this section, we present conditions for the existence of a gap both in the real part
(Theorem 14.2) and in the nonreal part (Theorem 14.3) of the spectrum of A.

First let us consider a gap in the real part of the spectrum. Thus, for 4εwεs < 1,

the additional condition m <
1−∀

1−4εwεs
2εs

is imposed, which corresponds to the

inequality γk <
1−2εwεs−∀

1−4εwεs
2ε 2

s
.

Remark 14.1 If Eq. (14.5) has not strongly dissipative term (i.e., εs = 0), then the
circle to which a part of eigenvalues of the operator A belongs (see Fig. 14.1) is
transformed to the vertical line {√Φ = εw} (see Fig. 14.3), and the condition on m
becomes m < εw.

Write

εβ =

⎧⎪
⎧⎨

ε1, if 1 ∼ 2εsε1;
1/(2εs), if 2εsε1 ∼ 1 ∼ 2εsεN+1;
εN+1, if 2εsεN+1 ∼ 1;

γβ = εβ − εw

εs
.

Fig. 14.3 Weak dissipation,
εs = 0
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Theorem 14.2 Let f satisfy condition (14.7). Moreover, suppose that there is an N
such that the following inequality holds:

2
l⎩

ε 2
β − γβ

< μN+1−μN = εN+1−
√

ε 2
N+1 − γN+1−εN +

√
ε 2

N − γN , (14.8)

and, if 4εwεs < 1, then the following inequality also holds:

γN+1 <
1 − 2εwεs − ∀

1 − 4εwεs

2ε 2
s

.

In this case, there is an N-dimensional inertial manifold for problem (14.5), (14.6)
in the space H .

Remark 14.2 If εs = 0, then condition (14.8) coincides with the similar condition
obtained in [4].

Remark 14.3 If there is no weak dissipation, then all real point of the spectrum of
the operator A are located to the right of the number 1/(2εs) (see Fig. 14.4), and
Theorem 14.2 cannot be applied to this situation.

Now we consider case of spectral gap in nonreal part of spectrum. Hence we
assume that 4εwεs < 1.

Let values m and M be chosen in such a way that

1 − ∀
1 − 4εwεs

2εs
∼ m < M ∼ 1

2εs
, (14.9)

Fig. 14.4 Strong dissipation,
εw = 0
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and the spectrum ω(A) of A be disjoint from the strip {m < √Φ < M}, but the set
ω(A) ≤ {√Φ ∼ m} is not empty.

Let numbers k1, k2 are such that values αk1 and αk2+1 belong to the domain
{√Φ → M}, and numbers αk1+1 and αk2 belong to the domain {√Φ ∼ m} (see
Fig. 14.5). Thus for α1 ⇐ R or α1 ⇐ R, α1 ∼ m we have k1 = 0; for the converse
case we get √αk1+1 ∼ m < M ∼ √αk1 .

If there are not numbers αk to the left of the strip, then we have M ∼ √αk2+1
and M ∼ √αk1 = αk1 = αk2 . Otherwise number k2 is such that √αk2 ∼ m < M ∼
√αk2+1.

Denote numbers κI , κI I , κI I I and κI V . First if k1 = 0 then formally write

κI = +∞. In the other case write κI =
√

ε 2
k1

− γk1 . Secondly if k2 = k1 then

formally write κI I = κI I I = +∞. Otherwise denote κI I = sk1+1, κI I I = sk2 ,
where

sk =
√

m2 − 2mεk + γk + m − εk . (14.10)

Fig. 14.5 A spectral gap in nonreal part of the spectrum
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Finally write γM = (M − εw)/εs and κI V = ⎩
γM − M2.

Theorem 14.3 Let nonlinear function f satisfies condition (14.7). Moreover, sup-
pose that the following inequality holds:

2l < (M − m)min{κI , κI I , κI I I , κI V }. (14.11)

Then there is a (2k2 − k1)-dimensional inertial manifold for problem (14.5), (14.6)
in the space H .

Remark 14.4 It follows from condition (14.11) that there are enough large gaps in
the spectrum of operator −∆ in domain ϕ . Actually, we have

κI V =
⎩

γM − M2 =
⎛

M − εw − εs M2

εs
=

=
⎛
4εs M−4εwεs−4ε 2

s M2

4ε 2
s

=
⎛
1 − 4εwεs − (2εs M − 1)2

4ε 2
s

<

∀
1 − 4εwεs

2εs
.

Moreover, the inequalities εk2 ∼ m and M ∼ εk2+1 hold by definition of the

number k2. Indeed if αk2 ⇐ R, then we have αk2 < 1
2εs

, εk2 <
1−∀

1−4εwεs
2εs

∼ m
(see (14.9)); otherwise we have εk2 = √αk2 ∼ m. Similarly if αk2+1 ⇐ R, then we

have αk2 > 1
2εs

, εk2 >
1+∀

1−4εwεs
2εs

> M ; otherwise we get εk2+1 = √αk2+1 → M .

Thus, by (14.11) it follows the inequality,

2l < (εk2+1 − εk2)

∀
1 − 4εwεs

2εs
= (γk2+1 − γk2)

∀
1 − 4εwεs

2
.

This means that there are spectral gaps on the order of l:

γk2+1 − γk2 > 4l
⎩
1 − 4εwεs .

The proofs of Theorems 14.2 and 14.3 are based on the construction of a new
norm in the phase spaceH , in which the assumptions of Theorem 14.1 are satisfied.
Note the schemes of the new inner product construction are essentially different for
gaps in the real part and in the nonreal part of the spectrum. Then this two cases are
considered separately. In the present chapter we prove Theorem 14.3. The proof of
Theorem 14.2 presented in [1].

Remark 14.5 The case of the gap in the nonreal part of the spectrum was par-
tially studied in [2], where a strongly dissipative wave equation (i.e., εw = 0) was
considered.
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14.4 Proof of Theorem 14.3

Let us decompose the entire phase spaceH in direct sum of spaces that are pairwise
orthogonal, H = H1 ∃ H2 ∃ . . . ∃ Hk2 ∃ H∞, where every subspace Hk , k =
1, . . . , k2, is two-dimensional and corresponds to the eigenvector ek with respect to
u and p, and H∞ = (H1 ∃ H2 ∃ . . . ∃ Hk2)

∪ is the subspace of codimension
2k2 which corresponds to the eigenvectors ek2+1, ek2+2, . . . of the Laplace operator.
Note that the spaces Hk , k = 1, . . . , k2, and H∞ are invariant with respect to the
action of the linear operator A.

The new inner product [·, ·] introduced below preserves the condition that the
spacesHk , k = 1, . . . , k2,∞, are pairwise orthogonal andmodifies the inner product
in each of these subspaces. Thus, if y = (u, p) ⇐ H and the orthogonal projections
of y toHk are denoted by yk = (ukek, pkek) ⇐ Hk , k = 1, . . . , k2,∞, then the new
norm inH is defined by the formula

|||y|||2 =
k2∑

k=1

|||yk |||2k + |||y∞|||2∞.

14.4.1 New Norm in the Spaces Hk, k = 1, . . . , k1

By definition the number k1, for k = 1, . . . , k1 the eigenvalues μk and αk are real
and lie to the different sides of the strip {m < √Φ < M}. We introduce the new
inner product in such a way that the eigenvectors θk and Ωk , which correspond to the
eigenvalues μk and αk , are orthogonal with respect to this inner product.

Define a new inner product [·, ·]k of vectors y = (u, p), ỹ = (ũ, p̃), y, ỹ ⇐ Hk

by the rule

[y, ỹ]k = (2ε 2
k − γk)(u, ũ) + εk(u, p̃) + εk(p, ũ) + (p, p̃).

The following assertions hold.

Lemma 14.1 The eigenvectors θk and Ωk corresponding to the eigenvalues μk and
αk , are orthogonal with respect to the new inner product.

Proof The eigenvectors of the matrix Ak in the space Hk are the vectors θk =
(1,−μk) and Ωk = (1,−αk). It follows from μk + αk = 2εk and μkαk = γk that

[θk, Ωk]k = 2ε 2
k − γk − εk(μk + αk) + μkαk = 0.

Since ε 2
k > γk for k ∼ k1, it follows that the new inner product defines the norm

|||y|||2k = [y, y]k = (ε 2
k − γk)∗u∗2 + ∗εku + p∗2.
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Let us prove that

Lemma 14.2 The minimum of the function Λ1(ε ) = ε 2 − γ(ε ), where γ(ε ) =
ε − εw

εs
, on the interval ε ⇐ [ε1, εk1 ] is achieved at the point ε = εk1 .

Proof Let us show that the derivative of Λ1(ε ) is negative on the interval ε ⇐
[ε1, εk1 ]. Indeed, by definition of the number k1 we get ε < εk1 < 1/(2εs). Hence
for ε < εk1 we have

εsΛ1
∧
ε = 2ε εs − 1 < 0.

Thus, the function Λ1(ε ) decreases on the interval ε ⇐ [ε1, εk1 ], and its minimum is
attained at ε = εk1 .

Since Lemma 14.2 the following estimate of the norm of the vector y = y1+· · ·+
yk1 , yk = (uk, pk) ⇐ Hk , holds

|||y|||2 =
k1∑

k=1

|||yk |||2k →
k1∑

k=1

(ε 2
k − γk)∗uk∗2 → min

1∼k∼k1

⎝
ε 2

k − γk

⎞
·

k1∑
k=1

∗uk∗2 =

= (ε 2
k1 − γk1)∗u∗2 = κ

2
I ∗u∗2. (14.12)

14.4.2 New Norm in the Spaces Hk, k = k1 + 1, . . . , k2

By definition the numbers k1, k2 for k = k1 + 1, . . . , k2 the eigenvalues μk and αk

belong to the domain {√Φ < m}. In this section, we introduce the new inner product
[·, ·]k in the spacesHk , k = k1 + 1, . . . , k2, in such a way that [Ay, y]k ∼ m[y, y]k

for any vector y ⇐ Hk .
Define the new inner product [·, ·]k of the vectors y = (u, p), ỹ = (ũ, p̃),

y, ỹ ⇐ Hk by the rule

[y, ỹ]k = bk(u, ũ) + εk(u, p̃) + εk(p, ũ) + (p, p̃),

where bk = ε 2
k + s2k and the numbers sk are defined in (14.10).

Define the auxiliary function

s(ε ) =
√

m2 − 2ε m + γ(ε ) + m − ε,

where γ(ε ) = (ε − εw)/εs . Then s(εk) = sk . For ε ⇐ [εk1+1, εk2 ] the value s(ε )

is real. Actually, by the choice of k1, k2 we have m → √α = √
⎠
ε + ⎩

ε 2 − γ(ε )
)

for ε ⇐ [εk1+1, εk2 ]. Hence m → ε , m2 − 2ε m + γ(ε ) → 0.
Since the numbers sk are real, we see that the inner product defines the norm
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|||y|||2k = [y, y]k = s2k ∗u∗2 + ∗εku + p∗2.

The following assertions hold.

Lemma 14.3 For any vector y = (u, p) ⇐ Hk , [Ay, y]k ∼ m[y, y].
Proof Since εk = εw + εsγk , we see that Ay = (−p, γku + 2εk p) and

[Ay, y]k = −bk(p, u) − εk(p, p) + εk(γku + 2εk p, u) + (γku + 2εk p, p)=
= εkγk∗u∗2 + (2ε 2

k − bk + γk)(u, p) + εk∗p∗2.

Then

[Ay, y]k − m[y, y]k = (εkγk − mbk)∗u∗2 +
+ (2ε 2

k − bk + γk − 2mεk)(u, p) + (εk − m)∗p∗2.

Simple monomorphisms can show that the determinant of the last quadratic form is
equal to

D = (2ε 2
k − bk + γk − 2mεk)

2 − 4(εkγk − mbk)(εk − m)=
= (bk − γk − 2(m − εk)

2)2 − 4(εk − m)2(m2 − 2εkm + γk).

The reader will easily prove that

bk − 2m2 + 2εk(2m − εk) − γk = 2(m − εk)

√
m2 − 2εkm + γk .

Thus D = 0.Moreover, since εk −m ∼ 0 then the quadratic form [Ay, y]k −m[y, y]k

is confluent and nonpositive. This completes the proof of the lemma.

Let us show that mink1+1∼k∼k2{sk} = min{sk1+1, sk2}.
Lemma 14.4 The minimum of the function s(ε ) on the closed interval I =
[εk1+1, εk2 ] is attained at the ends of the closed interval.

Proof The derivative of s(ε ) is given by

s∧
ε = −2εsm + 1

2εs

⎩
m2 − 2ε m + γ(ε )

− 1.

Since 2εsm < 1 then s∧
ε has the same sign as the following expression

(1 − 2εsm)2 − 4ε 2
s (m2 − 2ε m + γ(ε )) = 1 − 4εsm + 4ε 2

s m2 −
−4ε 2

s (m2 − 2ε m) − 4εs(ε − εw) = 1 − 4εsm + 4εsεw + 4εs(2εsm − 1)ε.
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The last expression is linear with respect to ε and the leading coefficient is negative.
Hence, s∧

ε may have only one root on the interval I and this root corresponds to the
maximum of s(ε ). We get that the minimum of s is attained at the ends of the closed
interval.

By Lemma 14.4 the minimum of sk for k1 + 1 ∼ k ∼ k2 is achieved either at
k = k1 + 1 or at k = k2. This implies the following estimate of the norm of vector
y = yk1+1 + . . . + yk2 , yk ⇐ Hk ,

|||y|||2 =
k2∑

k=k1+1

|||yk |||2k →
k2∑

k=k1+1

s2k ∗uk∗ → min
k1+1∼k∼k2

⎝
s2k

⎞ k2∑
k=k1+1

∗uk∗2 →

→ min{s2k1+1, s2k2}∗u∗2 = min{κ2
I I , κ

2
I I I }∗u∗2. (14.13)

14.4.3 New Norm in the Space H∞

The spaceH∞ is infinitely-dimensional. We introduce the new inner product [·, ·]∞,
which is equivalent to the standard one, in such a way that for any vector y ⇐ H∞,
[Ay, y]∞ → M[y, y]∞.

Define the inner product of vectors y = (u, p) ⇐ H∞, ỹ = (ũ, p̃) ⇐ H∞, by the
rule

[y, ỹ]∞ = (1− 2Mεs)(≈u,≈ũ)+ 2MεsγM (u, ũ)+ M(u, p̃)+ M(p, ũ)+ (p, p̃),

where γM = M−εw
εs

. By (14.9) we have γM > M2. Moreover, for any vector y =
(u, p) ⇐ H∞,

∗≈u∗2 → γk2+1∗u∗2 = εk2+1 − εw

εs
∗u∗2 → γM∗u∗2. (14.14)

Corresponding norm is defined by the formula

|||y|||2∞ = (1 − 2Mεs)∗≈u∗2 + M(2εsγM − M)∗u∗2 + ∗Mu + p∗2.

Lemma 14.5 The norms |||y|||∞ and ∗y∗H are equivalent on the space H∞.

Proof Since 2εs M < 1 and

|||y|||2∞ ∼ (1 − 2Mεs)∗≈u∗2 + M(2εsγM − M)∗u∗2 + (M∗u∗ + ∗p∗)2,

it follows that the quantity |||y|||2∞ is bounded above by a quantity depending on
∗≈u∗2 and ∗p∗2.

Let us find a lower bound for |||y|||2∞. For some ∂ > 0, we have γM (1− ∂) > M2.
With regard to (14.14), we have



14 Inertial Manifolds and Spectral Gap Properties 201

||y|||2∞ = (1 − 2Mεs)∗≈u∗2 + (2MεsγM − M2)∗u∗2 + ∗Mu + p∗2 →
→ ∂∗≈u∗2 + (1 − 2Mεs − ∂)∗≈u∗2 + γM (2Mεs − 1 + ∂)∗u∗2 +
+ ∗Mu + p∗2 → ∂∗≈u∗2 + ∗Mu + p∗2 → ∂

2
∗≈ + u∗2 + ∂γM

2
∗u∗2 +

+ (M∗u∗ − ∗p∗)2.

The expression on the right-hand side is a positive-defined quadratic form in ∗≈u∗,
∗u∗ and ∗p∗, which can be estimated below by multiple of ∗≈u∗2 + ∗p∗2.
Lemma 14.6 For any vector y = (u, p) ⇐ H∞,

|||y|||∞ →
⎩

γM − M2∗u∗ = κI V ∗u∗. (14.15)

Proof By (14.14) we have

|||y|||2∞ → ((1 − 2Mεs)γM + 2MεsγM )∗u∗2 − 2M∗u∗∗p∗ + ∗p∗2 =
= (γM − M2)∗u∗2 + (M∗u∗ − ∗p∗)2 → (γM − M2)∗u∗2.

Lemma 14.7 For any vector y = (u, p) ⇐ H∞ ≤ D(A), [Ay, y]∞ → M[y, y]∞.

Proof With regard to M = εw + εsγM , we have

[y, y]∞ = (1 − 2Mεs)∗≈u∗2 + 2M(M − εw)∗u∗2 + 2M(u, p) + ∗p∗2;
Ay = (−p,−∆u + 2εw p − 2εs∆p);

[Ay, y]∞ = − (1 − 2Mεs)(≈ p,≈u) + 2M(M − εw)(−p, u) + M(−p, p)+
+ (−∆u + 2εw p − 2εs∆p, Mu + p)=M∗≈u∗2+4Mεs(≈ p,≈u)+
+ 2εs∗≈ p∗2 + 2M(2εw − M)(u, p) + (2εw − M)∗p∗2.

It follows that

[Ay, y]∞ − M[y, y]∞ = 2M2εs∗≈u∗2 + 4Mεs(≈ p,≈u) + 2εs∗≈ p∗2 −
− 2M2(M − εw)∗u∗2 + 2M(2εw − 2M)(u, p)+
+ (2εw − 2M)∗p∗2 =

= 2εs∗M≈u + ≈ p∗2 − 2εsγM∗Mu + p∗2.

The last expression is nonnegative by (14.14).
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14.4.4 End of the Proof of Theorem 14.3

Denote H Ω = ∅Ω1e1, . . . , Ωk1ek1〉, H θ = ∅θ1e1, . . . , θk1ek1〉, H I = H Ω ∃
Hk1+1 ∃ . . .Hk2 , H

I I = H θ ∃ H∞. The spaces H I and H I I are orthogo-
nal to each other with respect to the new inner product.

Since A(θkek) = μk(θkek), A(Ωkek) = αk(Ωkek) for k = 1, . . . , k1, it follows that

[Ay, y] ∼ max
1∼k∼k1

μk · [y, y] = μk1 [y, y] ∈y ⇐ H θ , (14.16)

[Ay, y] → min
1∼k∼k1

αk · [y, y] = αk1 [y, y] ∈y ⇐ H Ω. (14.17)

It follows from condition (14.16), Lemma 14.3, and the inequality m > μk1 that

[Ay, y] ∼ m[y, y] ∈y ⇐ H I . (14.18)

Also, condition (14.17), Lemma 14.7, and the inequality M < αk1 imply that

[Ay, y] → M[y, y] ∈y ⇐ H I I ≤ D(A). (14.19)

Since the vector F(y) has zero u-component, it follows that

|||F(y1) − F(y2)||| = ∗F(y1) − F(y2)∗H = ∗ f (u1) − f (u2)∗ ∼ l∗u1 − u2∗.
(14.20)

By estimates (14.12), (14.13), (14.15) of the vector y = y1−y2 = y1+. . .+yk2+y∞,
yk ⇐ Hk , y∞ ⇐ H∞, we obtain

|||y|||2 =
k1∑

k=1

|||yk |||2k +
k2∑

k=k1+1

|||yk |||2k + |||y∞|||2∞ → min{κ2
I , κ

2
I I , κ

2
I I I , κ

2
I V }∗u∗2.

(14.21)
It follows from inequalities (14.20) and (14.21) that

|||F(y1) − F(y2)||| ∼ l∗u1 − u2∗ ∼ l |||y1 − y2|||
min{κI , κI I , κI I I , κI V } .

Thus the global Lipschitz constant L for the function F(y) is equal to

L = l

min{κI , κI I , κI I I , κI V } .

Let us define the orthogonal projection to the (2k2 − k1)-dimensional space H I =
P(H ) and denote it by P and define the orthogonal projection Q = Id − P to
H I I ∃ H∞ = Q(H ). Then the inequalities (14.18) and (14.19) acquire the form
(14.3), and the spectral gap condition (14.4) is equivalent to condition (14.11).
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Thus, all conditions of Theorem 14.1 are satisfied, and thus the spaceH contains
an integral manifold which dimension is equal to that of the subspace H I , i. e., to
2k2 − k1. This completes the proof of the theorem.

Acknowledgments The author express her gratitude to A.Yu. Goritsky and V.V. Chepyzhov for
setting the problem and permanent attention to the research.
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Chapter 15
On Regularity of All Weak Solutions and Their
Attractors for Reaction-Diffusion Inclusion
in Unbounded Domain

Nataliia V. Gorban and Pavlo O. Kasyanov

Abstract We consider the reaction-diffusion equation with multivalued function of
interaction in an unbounded domain.Conditions on the parameters of the problemcan
not guarantee the uniqueness of the solution of the Cauchy problem. In this work we
focus on the study of long-term forecasts of the state functions of reaction-diffusion
equation with use of the theory of global attractors for multivalued semiflows. It is
obtained the results of the existence and properties of all weak solutions. We obtain
the standard a priori estimates for weak solutions of the investigated problem, prove
the existence of weak solutions, the existence of global and trajectory attractors for
the problem in phase and extended phase spaces respectively.We provide the regular-
ity properties for all globally defined weak solutions and their global and trajectory
attractors. The results can be used for the investigation of specific physical mod-
els including combustion models in porous media, conduction models of electrical
impulses into the nerve endings, climate models.

15.1 Introduction

Let N → 1, f , f : RN+1 ⇐ R are some real functions. We consider the semilinear
reaction-diffusion inclusion

ut − ≥u + [ f (x, u), f (x, u)] ∈ 0 in RN × (τ, T ), (−⊂ < τ < T < +⊂),

(15.1)
with initial conditions
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u(τ ) = uτ ∗ L2(RN ), (15.2)

where u is unknown function, ut = ∂u/∂t ,

[a, b] = {αa + (1 − α)b | α ∗ [0, 1]}, a, b ∗ R.

Note that f = [ f , f ] : R
N+1 ⇐ 2R \ {∼}. Let us specify the conditions for

parameters of the problem:

(α1) f , f : RN+1 ⇐ R are measurable functions such that for a.e. x ∗ R
N f (x, ·)

is lower semi-continuous (l.s.c.), and f (x, ·) is upper semi-continuous (u.s.c.);
(α2) there exist C1 ∗ L1(RN ) and α > 0 such that for a.e. x ∗ R

N , √u ∗ R

f (x, u)u → α|u|2 − C1(x), u ≤ 0;
f (x, u)u → α|u|2 − C1(x), u → 0; (15.3)

(α3) there exist C2 ∗ L1(RN ), C2 → 0, and β > 0 such that for a.e. x ∗ R
N ,

√u ∗ R

| f (x, u)|2 ≤ C2(x) + β|u|2,
| f (x, u)|2 ≤ C2(x) + β|u|2,
f (x, u) ≤ f (x, u).

(15.4)

Further we use the following standard notations: H = L2(RN ), V = H1
0 (RN ), V ⇔

is the dual space of V . Let us consider real spaces H , V and V ⇔ with corresponding
norms ⊥ · ⊥, ⊥ · ⊥V and ⊥ · ⊥V ⇔ . The norm in R

N, inner product in H and in R
N we

will denote by | · |, (·, ·)H , (·, ·) respectively. The function u(·) ∗ L2(τ, T ; V ) is
a weak solution of Problem (15.1) on [τ, T ], if there exists a measurable function
d : RN × (τ, T ) ⇐ R such that

d(x, t) ∗ [ f (u(x, t)), f (u(x, t))] for a.e. (x, t) ∗ R
N × (τ, T ); (15.5)

−
∫ T

τ

〈
u,

dξ

dt

〉
dt +

∫ T

τ

∫
RN

(∇u,∇ξ) dxdt +
∫ T

τ

∫
RN

(d, ξ) dxdt = 0 (15.6)

for all ξ ∗ C⊂
0 (RN × (τ, T )), where ∞·, ·≈ denotes the pairing in the space V .

We note that Problem (15.1) arises in many important models for distributed
parameter control problems and the large class of identification problems enter this
formulation. Let us indicate a problem which is one of motivations for the study
of the autonomous evolution inclusion (15.1) (cf. [19, 31] and references therein).
We consider the nonstationary heat conduction equation

∂y

∂t
− ≥y = f in R

3 × (0,+⊂)
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with initial conditions and suitable boundary ones. Here y = y(x, t) represents the

temperature at the point x ∗ R
3 and time t > 0. It is supposed that f = f̄ + ¯̄f,

where ¯̄f is given and f̄ is a known function of the temperature of the form

− f̄ (x, t) ∗ ∂ j (x, y(x, t)) a.e. (x, t) ∗ R
3 × (0,+⊂).

Here ∂ j (x, ξ) denotes generalized gradient of Clarke (cf. [7]) with respect to the last
variable of a function j : RN ×R ⇐ Rwhich is assumed to be locally Lipschitz in ξ

(cf. [19] and references therein). The multivalued function ∂ j (x, ·) : R ⇐ 2R is
generally nonmonotone and it includes the vertical jumps. In a physicist’s language
it means that the law is characterized by the generalized gradient of a nonsmooth
potential j (cf. [17, 22, 29, 30]).

Other motivations connected with parabolic equations with a discontinuous non-
linearity. In [25] it is considered the case, when f is the difference of maximal
monotone maps. Global attractor in phase space H for such type equations is consid-
ered there. Obtained inclusion is a particular case of an abstract differential inclusion
generated by a difference of subdifferential maps of proper convex lower semicon-
tinuous functionals [21]. Models of physical interest includes also the next (cf. [1]
and references therein):

• a model of combustion in porous media;
• a model of conduction of electrical impulses in nerve axons;
• a climate energy balance model;

etc. The dynamics in H and topological properties (but not regularity) of attractors for
all weak solutions of such type differential equations and inclusions were examined
(cf. [1, 25] and references therein). We note that for any uτ ∗ H there exists at least
one weak solution of Problem (15.1) on [τ, T ]with initial condition u(x, τ ) = uτ (x)

in R
N . Moreover, each weak solution u(·) of Problem (15.1) on [τ, T ] belongs to

C([τ, T ]; H) ∀ L2(τ, T ; V ) and ut (·) ∗ L2(τ, T ; V ⇔) (cf. [10, 28], chap. 2 [31] and
references therein).

In general case Problem (15.1) on [τ, T ] with initial condition u(x, τ ) = uτ (x)

in R
N does not have a unique weak solution with uτ ∗ H (cf. [1, p. 2600] and

references therein). Thus, for investigation of the long-time behavior as t ⇐ +⊂
of all weak solutions of Problem (15.1) with initial data from H , the results for
global and trajectory attractors of multivalued semiflows in infinite-dimensional
spaces were applied (cf. [1–12, 18–27] and references therein). 2[31] implies the
existence of compact in the phase space H invariant global attractor A for mul-
tivalued (in the general case) semiflow G, constructed on all weak solutions of
reaction-diffusion system in a bounded domain with continuous interaction func-
tion both in autonomous and nonautonomous case. In [27, Theorem 2.3, 2] it was
specified the trajectory attractor for translation semigroup acting on the trajectory
space of main problem in a bounded domain with the topology of strong local con-
vergence of the sequences {um(·)}m→1 as m ⇐ +⊂ in the norm on the Banach
spaces L⊂(0, M; H) ∀ C([0, M]; H) for each M > 0. The constructions on the-

http://dx.doi.org/10.1007/978-3-319-03146-0_2
http://dx.doi.org/10.1007/978-3-319-03146-0_2
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ory of trajectory and global attractors presented in [1–6, 11–16, 18, 23–27, 31] are
sufficiently used there. In paper [11] the equality of global attractors in the sense of
[18, Definition 6] as well as [6, Definition 2.2] is proved. The pointwise behavior of
complete trajectories studied in [18, Definition 6] under the existence of Lyapunov
function on a phase space. The regularity properties of trajectory attractors for sys-
tems of reaction-diffusion equations with continuous nonlinearity of an arbitrary
polynomial grows considered in [27]; for reaction-diffusion inclusion in a bounded
domain in [13].

Themain purpose of this paper is to investigate regularity properties of all globally
defined weak solutions and their attractors for Problem (15.1) with initial data uτ ∗
H under listed above assumptions.

15.2 On Compact Global Attractor for Reaction-Diffusion
Inclusion in Unbounded Domain

The conditions α1–α3 do not provide the uniqueness of the solution of the Problems
(15.1–15.2), so let us introduce the definition of multivalued, in the general case,
semiflow and its global attractor (see for example [31]), that describe the dynamics
of the solutions of initial problem as t ⇐ +⊂. We set P(H) = 2H \ {∼}.
Definition 15.1 A map G : R+ × H ⇐ P(H) is called the multivalued semiflow
(m-semiflow) on H , if

(1) G(0, ·) = IH is identical motion H ;
(2) G(t + s, x) ∃ G(t, G(s, x)) √ t, s ∗ R+, √ x ∗ H .

M-semiflow is called the strict, if G(t +s, x) = G(t, G(s, x)) √ t, s ∗ R+, √ x ∗ H .

Definition 15.2 M-semiflow G is asymptotically compact, if for any nonempty
bounded set B ∗ P(H) such, that

γ +
T (B) =

⋃
t→T

G(t, B)

is bounded for some T = T (B) → 0, an arbitrary sequence {ξn}n→1, ξn ∗ G(tn, B),
tn ⇐ +⊂, is precompact in H .

Definition 15.3 A set A ∃ H that satisfies the next properties:

(1) A is absorbing set, i.e.,

dist(G(t, B),A ) ⇐ 0, as t ⇐ +⊂,

for any bounded set B, where dist(C, A) = sup
c∗C

inf
a∗A

⊥c − a⊥;



15 On Regularity of All Weak Solutions and Their Attractors 209

(2) A is semi-invariant, i.e.,

A ∃ G(t, A), for every t → 0;

(3) A is minimal closed absorbing set (i.e. for any closed absorbing set C we have,
that A ∃ C)
is called the global attractor A for the m-semiflow G.

The global attractor is called invariant, if A = G(t, A), for every t → 0.

Let now Ω ∃ R
N is a bounded domain, T > 0, Q = Ω × (0, T ), Y = L2(Q).

Further by ⊥·⊥E we denote the norm in a real Banach space E . The next lemma is
necessary for the proof of the main theorem.

Lemma 15.1 Let f satisfies assumption α1, and {un, dn}n→0 ∃ Y satisfies such
conditions

(1) for a.e. (x, t) ∗ Q un(x, t) ⇐ u0(x, t) as n ⇐ +⊂,
(2) dn ⇐ d0 weakly in Y as n ⇐ +⊂,
(3) √n → 1 for a.e. (x, t) ∗ Q dn(x, t) ∗ f (x, un(x, t)).

Then for a.e. (x, t) ∗ Q d0(x, t) ∗ f (x, u0(x, t)).

Proof Let {un, dn}n→1 ∃ Y satisfy the lemma conditions. Let us select the complete
measure set Q1 ∃ Q such, that

√(x, t) ∗ Q1 un(x, t) ⇐ u0(x, t) as n ⇐ ⊂. (15.7)

The space L2(Q) is a Hilbert space. So, in virtue of [9, Remark I.6.2] L2(Q) is
uniformly convex space. (see for example [9, Definition I.5.9]). From the proof of
[8, Theorem 1, p. 64–66] it follows that any weakly convergent to 0̄ sequence {dn −
d0}n→1 in Y has a subsequence {dnk − d0}k→1 ∃ {dn − d0}n→1, which arithmetical
means converge strongly to 0̄ in L2(Q) (in [8, Theorem 1, p. 64–66] it is proved
stronger statement than the Banach-Saks property), i.e.

⊥1
k

k∑
j=1

(dn j − d0)⊥Y ⇐ 0 as k ⇐ +⊂.

It means that

1

k

k∑
j=1

dn j ⇐ d0 strongly in L2(Q) as k ⇐ +⊂. (15.8)

Further, ∪Q2 ∃ Q1 such, that Q2 is measurable, meas(Q1\Q2) = 0 and √(x, t) ∗
Q2 √k → 1

f (x, unk (x, t)) ≤ dnk (x, t) ≤ f (x, unk (x, t)).
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So, √k → 1, √(x, t) ∗ Q2

1

k

k∑
j=1

f (x, un j (x, t)) ≤ 1

k

k∑
j=1

dn j (x, t) ≤ 1

k

k∑
j=1

f (x, un j (x, t)). (15.9)

From (15.8) there exists a subsequence
{ 1

kl

kl∑
j=1

dn j

}
l→1 ∃ { 1

k

k∑
j=1

dn j

}
k→1 and a

complete measure set Q3 ∃ Q2:

√(x, t) ∗ Q3
1

kl

kl∑
j=1

dn j (x, t) ⇐ d0(x, t) as l ⇐ +⊂. (15.10)

For a.e. (x, t) ∗ Q3 let us set ak = f (x, unk (x, t)), k → 1, a0 = f (x, u0(x, t)).
From α1 and (15.7) it follows, that lim

k⇐⊂ ak ≤ a0. Thus,

lim
k⇐+⊂

1

k

k∑
j=1

f (x, un j (x, t)) ≤ f (x, u0(x, t)).

Similarly,

lim
k⇐+⊂

1

k

k∑
j=1

f (x, un j (x, t)) → f (x, u0(x, t)).

Taking into account (15.9–15.10), we obtain that d0(x, t) ∗ f (x, u0(x, t)) for a.e.
(x, t) ∗ Q.

Provide the standard a priori estimates for solutions.

Lemma 15.2 [10] Let assumptions α1–α3 hold. Then, for any weak solution u of
Problems (15.1–15.2) on [τ, T ] we have

⊥u⊥X (τ,T ) ≤ K1(⊥uτ⊥, T − τ), (15.11)

⊥ut⊥U (τ,T ) ≤ K2(⊥uτ⊥, T − τ), (15.12)

where Ki are nondecreasing by each variable functions, X (τ, T ) = L2(τ, T ; V ) ∀
C([τ, T ], H) and U (τ, T ) = L2(τ, T ; V ⇔).

Theorem 15.1 [10] Let assumptions α1–α3 hold. Then for any τ < T , and each
uτ ∗ L2(RN ), Problems (15.1–15.2) has at least one weak solution on [τ, T ].

Since in Theorem 15.1 T > 0 is an arbitrary and the concatenation of weak
solutions is the weak solution, then similarly to [20, p. 119], each weak solution can
be continued to the global one, defined on [0,+⊂).
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Let us denote the family of all global solutions of Problems (15.1–15.2) byD(u0).

Note thatD(u0) ∃ L2
loc(0,+⊂; V )∀C([0,+⊂), H). Let us provide thatD(u0) ∃

L⊂(0,+⊂; H) √u0 ∗ L2(RN ).

Lemma 15.3 [10] Let assumptions α1–α3 hold. If u is a globally defined weak
solution of Problems (15.1–15.2), then

√t → 0 ⊥u(t)⊥2 + 2

t∫

0

e−2α(t−s)⊥∇ y⊥2ds ≤ ⊥u(0)⊥2e−2αt + D, (15.13)

where D = ⊥C1⊥L1(RN )/α.

Define the m-semiflow map G : R+ × H ⇐ P(H):

G(t, u0) = {z ∗ H | ∪u ∗ D(u0) : u(0) = u0, u(t) = z}.

Theorem 15.2 Let assumptions α1–α3 hold. Then Problems (15.1–15.2) defines the
m-semiflow in the phase space H, that possesses the invariant global attractor.

Proof 1∧ Prove that G is the strict m-semiflow. The proof of G(t + s, x) ∃
G(t, G(s, x)) repeats the proof of similar inclusion from [20, Lemma 7]. Let us
check that G(t, G(s, x)) ∃ G(t + s, x). Let z ∗ G(t, G(s, x)). Then there exist z1,
u1(·) ∗ D(x), u2(·) ∗ D(z1), d1, d2 such that

u1(0) = x, u1(s) = z1,

u2(0) = z1, u2(t) = z,

d1 = ≥u1 − ∂u1

∂t
, d1(ξ, ζ ) ∗ f (ξ, u1(ξ, ζ )) for a.e. (ξ, ζ ) ∗ R

N × R+,

d2 = ≥u2 − ∂u2

∂t
, d2(ξ, ζ ) ∗ f (ξ, u2(ξ, ζ )) for a.e. (ξ, ζ ) ∗ R

N × R+.

Show that there exists u(·) ∗ D(u0): u(0) = x , u(t + s) = z. Let us define u by:

u(r) =
⎧

u1(r), 0 ≤ r ≤ s,
u2(r − s), s ≤ r.

For a.e. (ξ, ζ ) ∗ R
N × R+ let us set

d(ξ, ζ ) =
⎧

d1(ξ, ζ ), 0 ≤ ζ ≤ s,
d2(ξ, ζ − s), s ≤ ζ.

Remark that
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d(ξ, ζ ) ∗ f (ξ, u(ξ, ζ )) for a.e. (ξ, ζ ) ∗ R
N × R+.

Fianlly,

T∫

0

⎪∂u

∂r
, v
⎨
V

dr +
T∫

0

⎩
⎛⎝(∇u,∇v)dr +

∫

RN

d(x, r)v(x, r)dx

⎞
⎠ dr +

=
s∫

0

⎪∂u1

∂r
, v
⎨
V

dr +
s∫

0

⎩
⎛⎝(∇u1,∇v)dr +

∫

RN

d1(x, r)v(x, r)dx

⎞
⎠ dr +

+
T∫

s

⎪∂u2(r − s)

∂r
, v
⎨
V

dr +
T∫

s

[(∇u2(r − s),∇v)dr +

+
∫

RN

d2(x, r − s)v(x, r − s)dx

⎞
⎠ dr =

= 0 +
T −s∫

0

⎪∂u2

∂r
, v
⎨
V

dr +
T −s∫

0

⎩
⎛⎝(∇u2,∇v)dr +

∫

RN

d2(x, r)v(x, r)dx

⎞
⎠ dr = 0

√T > s + t , √v ∗ C⊂
0 ([0, T ] × R

N ).
2∧ For any fixed k > 0 we denote by Ωk the ball of radius k with the center at 0.

Let us prove that for an arbitrary nonempty bounded set B ∃ H , each u0 ∗ B, any
u ∗ D(u0), and all ε > 0 there exist T (ε, B), K (ε, B) such that

√t → T, k → K
∫

|x |→∅
2k

|u(x, t)|2dx ≤ ε.

Indeed, let s ∗ R+. Let us consider a smooth function

θ(s) =


0, 0 ≤ s ≤ 1,
0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2,
1, s → 2

such that |θ ⇔(s)| ≤ C √s ∗ R+. Moreover, suppose that
∅

θ is smooth too.

Let us apply [20, Lemma 3] to ρ(x) =
⎜

θ(
|x |2
k2

). From the definition of the weak
solution of Eq. (15.1) it follows that
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for a.e. t → 0
1

2

d

dt

∫

RN

θ

⎟ |x |2
k2

)
|u|2dx = ∞ut , ρ

2u≈V =

= ∞≥u, ρ2u≈V −
∫

RN

θ

⎟ |x |2
k2

)
d(x, t)u(x, t)dx, (15.14)

where

d = ≥u − ∂u

∂t
, d(ξ, ζ ) ∗ f (ξ, u(ξ, ζ )) for a.e. (ξ, ζ ) ∗ R

N × R+,

Similarly to [20, p. 122–123], the first term in the right part of the last relation is
estimated by the next way:

∞≥u, ρ2u≈V ≤ ε⇔(1 + ⊥∇u⊥2) (15.15)

for an arbitrary k → K1(ε
⇔), where ε⇔ > 0 is an arbitrary and rather small.

For the second term from (15.14), due to assumptions α2 and α3, we obtain the
estimates

−
∫

RN

θ

⎟ |x |2
k2

)
d(x, t)u(x, t)dx ≤ −α

∫

RN

θ

⎟ |x |2
k2

)
|u(x, t)|2dx +

+
∫

RN

θ

⎟ |x |2
k2

)
C1(x)dx ≤ −α

∫

RN

θ

⎟ |x |2
k2

)
|u(x, t)|2dx + 2ε⇔, (15.16)

as soon as k → K2(ε
⇔). Let us set

Y (t) =
∫

RN

θ

⎟ |x |2
k2

)
|u(x, t)|2dx .

Then from (15.14–15.16) it follows that

1

2

d

dt
Y (t) + αY (t) ≤ 3ε⇔ + ε⊥∇u⊥2,

as soon as k → max{K1, K2}. By using the Gronwall-Bellman inequality and
Lemma 15.3, we obtain

Y (t) ≤ Y (0)e−2αt + 3

α
ε⇔ + ε⇔

2
(⊥u0⊥2 + D).

Choosing ε⇔, T (ε, B) such that
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3

α
ε⇔ + ε⇔

2
(⊥u0⊥2 + D) ≤ ε

2
, Y (0)e−2αt ≤ ε

2
, √u0 ∗ B, t → T,

we obtain Y (t) ≤ ε and

∫

|x |→∅
2k

|u(x, t)|2dx ≤
∫

RN

θ

⎟ |x |2
k2

)
|u(x, t)|2dx ≤ ε.

3∧ For a bounded set B ∃ H and T ∗ R+ let us consider

γ +
T (B) =

⋃
t→T

G(t, B).

Following by the proof of [20, Lemma 8] and the proof of Theorem 15.1 we obtain
the next result, that is necessity for the proof of asymptotic compactness of the
m-semiflow G. Namely, the graph of G(t, ·) is weakly closed. This means that if
ξn ⇐ ξ⊂, βn ⇐ β⊂ weakly in H as n ⇐ ⊂, where ξn ∗ G(t, βn) √n → 1, then
ξ⊂ ∗ G(t, β⊂).

4∧ Show that m-semiflow G is asymptotically compact. Let ξn ∗ G(tn, vn) vn∗B,
n → 1, B be a bounded set in H. Since γ +

T (B)(B) is bounded and ξn ∗ G(tn, vn) ∃
γ +

T (B)(B) for n → n0, then there exists the weakly convergent in H subsequence (let
us denote it by {ξn}n→1 again) to some ξ as n ⇐ ⊂. Let T0 > 0 be an arbitrary
number. Using 1∧ we get that ξn ∗ G(tn, vn) = G(T0, G(tn − T0, vn)) for every
n → 1. Then for every n → 1 there exists βn ∗ G(tn − T0, vn) such that ξn ∗
G(T0, βn). Let us choose N (B, T0) such that √n → N (B, T0) tn − T0 → T (B)

and G(tn − T0, vn) ∃ γ +
T (B)(B) is bounded. βn ⇐ ξT0 weakly in H as n ⇐ ⊂.

From 3∧ it follows, that the graph G(T0, ·) is weakly closed. So, ξ ∗ G(T0, ξT0) and
lim

n⇐⊂
⊥ξn⊥ → ⊥ξ⊥. Show that up to subsequence, lim

n⇐⊂ ⊥ξn⊥ ≤ ⊥ξ⊥ as n ⇐ ⊂.

Any weak solution u satisfies

1

2

d

dt
⊥u⊥2 + 1

2
⊥u⊥2 + ⊥∇u⊥2 = −

∫

RN

d · u dx + 1

2
⊥u⊥2, a.e. on [0, T ],

where d ∗ L2(0, T ; H): d(x, t) ∗ f (x, u(x, t)) for a.e. (x, t) ∗ R
N × (0, T ). Let

{un(·)}n→1 is the sequence of weak solutions such that for any n → 1 un(T0) = ξn

and un(0) = βn . In view of the Gronwall-Bellman lemma, √n → 1
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⊥ξn⊥2 = e−T0⊥βn⊥2 − 2

T0∫

0

e−(T0−s)⊥∇un⊥2ds

− 2

T0∫

0

∫

RN

e−(T0−s)dn · un dxds +
T0∫

0

e−(T0−s)⊥un⊥2ds, (15.17)

where dn ∗ L2(0, T ; H): dn(x, t) ∗ f (x, un(x, t)) for a.e. (x, t) ∗ R
N × (0, T ).

From Lemma 15.2 and the Banach-Alaoglu theorem, up to subsequence (we denote
it again by {un, dn}n→1), {un}n→1 converges to some weak solution u in the following
sense

un ⇐ u weakly in L2(0, T ; V ), n ⇐ ⊂
un ⇐ u weakly star in L⊂(0, T ; H), n ⇐ ⊂
dn ⇐ d weakly in L2(0, T ; V ⇔), n ⇐ ⊂

∂un
∂t ⇐ ∂u

∂t weakly in L2(0, T ; V ⇔), n ⇐ ⊂.

(15.18)

From 3∧, u(0) = ξT0 , u(T0) = ξ.

Since the sequence {βn}n→1 is bounded in H , then

√n e−T0⊥βn⊥2 ≤ e−T0 M. (15.19)

Further,

lim
n⇐⊂


⎫−2

T0∫

0

e−(T0−s)⊥∇un⊥2ds

⎬
⎭ ≤ −2

T0∫

0

e−(T0−s)⊥∇u⊥2ds. (15.20)

On the other hand,

T0∫

0

e−(T0−s)⊥un⊥2ds =
T0∫

0

∫

Ωk

e−(T0−s)|un|2dxds +
T0∫

0

e−(T0−s)
∫

|x |→k

|un|2dxds.

From 1∧ it follows, that un(s) ∗ G(s, G(tn − T0, vn)) = G(s + tn − T0, vn). From
2∧, for any ε > 0 there exist such T (ε, B), K1(ε, B) > 0, that

∫

|x |→k

|un(s)|2dx ≤ ε,

as soon as k → K1, tn − T0 → T . Repeating the respective steps from the proof
of Theorem 15.1, we obtain that (up to subsequence) Lkun ⇐ Lku strongly in
L2(0, T ; Hk) as n ⇐ ⊂. So,
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lim
n⇐⊂

T0∫

0

e−(T0−s)⊥un⊥2ds ≤
T0∫

0

e−(T0−s)⊥u⊥2dxds + ε. (15.21)

Let us consider the “nonlinear term”. Note that assumption α3 provides

−2

T0∫

0

∫

|x |→k

e−(T0−s)dn · un dxds ≤ 4ε

T0∫

0

e−(T0−s)ds ≤ 4ε,

as soon as k → K2(ε). Since un ⇐ u strongly in L2(0, T ; Hk) as n ⇐ ⊂, then
up to a subsequence, un(t, x) ⇐ u(t, x), n ⇐ ⊂ for a.e. (t, x) ∗ (0, T0) × Ωk .

Lemma 15.1 and (15.18) imply

lim
n⇐⊂


⎫−2

T0∫

0

∫

Ωk

e−(T0−s)dn · un dxds

⎬
⎭ = −2

T0∫

0

∫

Ωk

e−(T0−s)d · u dxds.

Thus,

lim
n⇐⊂


⎫−2

T0∫

0

∫

Ωk

e−(T0−s)dn · un dxds

⎬
⎭ ≤ −2

T0∫

0

∫

Ωk

e−(T0−s)d · u dxds + 4ε.

(15.22)
Passing to the limit as k ⇐ ⊂ in (15.22) and using (15.17) and (15.19–15.22) we
find, that

lim
n⇐⊂ ⊥ξn⊥2 ≤ e−T0 M − 2

T0∫

0

∫

RN

e−(T0−s)|∇u|2dxds +

+
T0∫

0

∫

RN

e−(T0−s)|u|2dxds − 2

T0∫

0

∫

RN

e−(T0−s)d · u dxds + 5ε =

= ⊥ξ⊥2 + e−T0 M − e−T0⊥ξT0⊥2 + 5ε. (15.23)

Passing to the limit as T0 ⇐ +⊂, and then, directing ε ⇐ 0, we finally obtain the
inequality

lim
n⇐⊂ ⊥ξn⊥2 ≤ ⊥ξ⊥2.

So, up to subsequence, ξn ⇐ ξ strongly in H as n ⇐ ⊂.
5∧ Let us prove the semi-continuity of the m-semiflow G [20, p. 126]. Namely,

let us prove that the map G(t, ·) is upper semi-continuous and has compact values
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for any t → 0. Indeed, let ξn ∗ G(t, xn) for every n → 1 and xn ⇐ x0 as n ⇐ ⊂.

Let us prove, that the sequence {ξn}n→1 is pre-compact in H. From Lemma 15.3, the
sequence {ξn}n→1 is bounded, so, up to the subsequence, {ξn}n→1 isweakly convergent
to some ξ. Supposing analogically to the proof of 4∧, there exist weak solutions un,

n → 1, u such that √n → 1 un(t) = ξn, un(0) = xn, u(t) = ξ, u(0) = x0 and un

converges to u in the sense of (15.18). Repeating the suppositions from 4∧ we obtain
that lim

n⇐⊂ ⊥ξn⊥2 ≤ ⊥ξ⊥2. Thus, ξn ⇐ ξ strongly in H as n ⇐ ⊂. So, taking into

account 3∧, G(t, x0) is compact.
Suppose that G(t, ·) is not upper semi-continuous. Then there exists the point x0,

the neighborhood O of the set G(t, x0) and the sequence {ξn}n→1 such that ξn ∗
G(t, xn) √n → 1, ⊥xn − x0⊥ ⇐ 0 as n ⇐ +⊂, ξn /∗ O √n → 1. Passing to the
subsequences we obtain that ξnk ⇐ ξ, xnk ⇐ x0 strongly in H as k ⇐ ⊂. From 3∧
it follows, that ξ ∗ G(t, x0). We obtain the contradiction.

Properties 1–5∧ imply the existence of the global compact invariant attractor for
G (see [18, Theorem 3, Remark 8]), that is minimal closed absorbing set.

The theorem is proved.

15.3 Regularity of All Weak Solutions and Their Attractors

Further we need to consider the restriction of v : [τ, T ] ⇐ V ⇔ on [s, T ], s ∗ (τ, T ),
τ < T . To simplify conclusions denote it by the same symbol v.

Theorem 15.3 Let assumptions α1–α3 hold, u be an arbitrary weak solution of
Problem (15.1) on [τ, T ]. Then for any ε ∗ (0, T − τ) u ∗ C([τ + ε, T ]; V ) ∀
L2(τ + ε, T ; H2(RN ) ∀ V ) and ut ∗ L2(τ + ε, T ; H).

Proof Let u be an arbitrary weak solution of Problem (15.1) on [τ, T ]. Then there
exists a measurable function d : R

N × (τ, T ) ⇐ R such that u and d satisfy
(15.5–15.6). As u ∗ L2(RN × (τ, T )) and the growth condition (15.4) holds, then
d ∗ L2(RN × (τ, T )). The set

D := {s ∗ (τ, T ) | u(s) ∗ V }

is dense in [τ, T ]. For any arbitrary fixed s ∗ D we note that u is a unique weak
solution on [s, T ] of the problem

⎧
zt − ≥z = −d(x, t) in RN × (s, T ),

z(x, s) = u(x, s) in RN .
(15.24)

Moreover, u ∗ L2(s, T ; H2(RN )∀V )∀C([s, T ]; V ) and ut ∗ L2(s, T ; H), s ∗ D
(cf. [23, Chapter 4.I], [24, Chapter III] and references therein). Thus for any ε ∗
(0, T − τ) u ∗ C([τ + ε, T ]; V ) ∀ L2(τ + ε, T ; H2(RN ) ∀ V ) and ut ∗ L2(τ +
ε, T ; H).
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The theorem is proved.

Let us consider the familyK+ = ∪u0∗HD(u0) of all weak solutions of Problem
(15.1) defined on the semi-infinite interval [0,+⊂). We note thatK+ is translation
invariant one, i.e. √u ∗ K+, √h → 0 uh ∗ K+, where uh(s) = u(h + s), s → 0.
Let us consider Problem (15.1) on the entire time axis. A function u ∗ L⊂(R; H) is
called a complete trajectory of Problem (15.1) , if √h ∗ R Π+uh ∗ K+, where Π+
is the restriction operator to the interval [0,+⊂). LetK be a family of all complete
trajectories of Problem (15.1) . We note that

√h ∗ R, √u ∗ K uh ∗ K . (15.25)

Let {T (h)}h→0 be the translation semigroup acting on K+, i.e. T (h)u = u(· + h),
h → 0, u ∗ K+. On K+ we consider the topology induced from the Fréchet space
Cloc(R+; H). We note that

fn ⇐ f in Cloc(R+; H) ⇐⇒ √M > 0 ΠM fn ⇐ ΠM f in C([0, M]; H),

where ΠM is the restriction operator to the interval [0, M] [6, p. 18]. We denote the
restriction operator to the semi-infinite interval [0,+⊂) by Π+.

We recall that a setP ∃ Cloc(R+; H) ∀ L⊂(R+; H) is said to be the attracting
one for the trajectory spaceK+ of Problem (15.1) in the topology ofCloc(R+; H), if
for any bounded in L⊂(R+; H) set B ∃ K+ and any M → 0 the following relation
holds:

distC([0,M];H)(ΠMT(t)B,ΠMP) ⇐ 0, t ⇐ +⊂. (15.26)

A setU ∃ K+ is said to be the trajectory attractor in the trajectory spaceK+ with
respect to the topology of Cloc(R+; H) (cf. [6, Definition 1.2, p. 197]) if

(i) U is a compact set in Cloc(R+; H) and bounded in L⊂(R+; H);
(ii) U is strictly invariant with respect to {T (h)}h→0, i.e. T (h)U = U √h → 0;
(iii) U is an attracting set in the trajectory spaceK+ in the topologyofCloc(R+; H).

Theorem 15.4 cf. [31, Theorem 2.3, p. 65] Let A be the global attractor from
Theorem 15.2. Then in the space K+ there exists the trajectory attractor U ∃ K+.
Moreover, the next formula takes place

U = Π+K = {y ∗ K+ | y(t) ∗ A √t ∗ R+}. (15.27)

Theorem 15.5 LetA be the global attractor from Theorem 15.2,U be the trajectory
attractor from Theorem 15.4. Then

• A is a bounded subset of V ;
• U is a bounded subset of Cloc(R+; V );
• K is a bounded subset of Cloc(R; V ).
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Proof Theorems 15.2, 15.3, and 15.4 imply that A ∃ V , U ∃ Cloc(R+; V ),
and K ∃ Cloc(R; V ). To finish the proof we note that Theorem 15.3 provides
K ∃ Cloc(R; V )∀ Lloc

2 (R; H2(RN )∀ V ). There exists a constant C > 0, that does
not depend on u and t , such that d

dt

∫
RN

|∇u|2dx ≤ C for a.e. t ∗ R. Thus, K is a

bounded subset of Cloc(R; V ). Therefore, A is a bounded subset of V , and U is a
bounded subset of Cloc(R+; V ).

The theorem is proved.
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Chapter 16
On Global Attractors for Autonomous
Damped Wave Equation with Discontinuous
Nonlinearity

Nataliia V. Gorban, Oleksiy V. Kapustyan, Pavlo O. Kasyanov
and Liliia S. Paliichuk

Abstract We consider autonomous damped wave equation with discontinuous
nonlinearity. The long-term prognosis of the state functions when the conditions
on the parameters of the problem do not guarantee uniqueness of solution of the cor-
responding Cauchy problem are studied. We prove the existence of a global attractor
and investigate its structure. It is obtained that trajectory of every weak solution
defined on [0;+→) tends to a fixed point.

16.1 Introduction

This manuscript is devoted to the research of asymptotical behavior of the
autonomous damped wave equation with discontinuous nonlinearity. The investi-
gated problem is considered in a bounded domain Ω with a sufficiently regular
boundary ∂Ω . The interaction function f : R ⇐ R satisfies the standard growth and
sign conditions. Wave equation with a non-smooth nonlinearity f can be interpreted
as the mathematical model of the controlled piezoelectric fields or processes. The
asymptotic behavior of solutions for such problems were studied by Ball [1, 2], Sell
[11], Zgurovsky et al. [17–19] and many others. The case of the continuous function
f is well-known [2]. The case of the non-autonomous equation with continuous non-
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linearity was investigated by Kapustyan [6], Melnik [8, 10], Valero [13]. The case
when extension of f admits the maximal monotone graph was studied by Zgurovsky
and his scholars [6, 7, 15, 16].

Here we provide sufficient conditions for existence of compact in natural phase
space global attractor for the nonlinear damped equation with discontinuous non-
monotone in general case interaction function.

16.2 Setting of the Problem

Let β > 0 be a constant, Ω ≥ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − ∈u + f (u) = 0,
u|∂Ω = 0,

(16.1)

where u(x, t) is unknown state function defined on Ω × R+; f : R ⇐ R is an
interaction function such that

lim|u|⇐→
f (u)

u
> −λ1, (16.2)

where λ1 is the first eigenvalue for −∈ in H1
0 (Ω);

⊂ D ∗ 0 : | f (u)| ∼ D(1 + |u|), √u ≤ R. (16.3)

Further, we use such denotation

f (s) := lim
t⇐s

f (t), f (s) := lim
t⇐s

f (t), G(s) := [ f (s), f (s)], s ≤ R.

Let us set V = H1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (16.1). For the Hilbert space X as (·, ·)X and ⇔ ·⇔X denote the inner product
and the norm in X respectively.

Definition 16.1 Let T > 0, τ < T . The function ϕ(·) = (u(·), ut (·))T ≤
L→(τ, T ; X) is called a weak solution of Problem (16.1) on (τ, T ) if for a.e.
(x, t) ≤ Ω×(τ, T ), there exists l = l(x, t) ≤ L2(τ, T ; L2(Ω)) l(x, t) ≤ G(u(x, t)),
such that √ψ ≤ H1

0 (Ω), √η ≤ C→
0 (τ, T ),

−
T∫

τ

(ut , ψ)H ηt dt +
T∫

τ

(β(ut , ψ)H + (u, ψ)V + (l, ψ)H )ηdt = 0. (16.4)
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The main goal of the manuscript is to obtain the existence of the global attractor
generated by the weak solutions of Problem (16.1) in the phase space X .

16.3 Preliminaries

Lemma 16.1 Zgurovsky et al. [19] For any ϕτ = (u0, u1)
T ≤ X and τ < T there

exists a weak solution ϕ(·) of Problem (16.1) on (τ, T ) such that ϕ(τ) = ϕτ .

Show that in the general case, when the interaction function f is typically multi-
valued, the m-semiflow generated by all solutions of Problem (16.1) have no a com-
pact global attractor.

Example 16.1 Consider the problem




utt + βut − ∈u + [−ε, ε] ⊥ 0, (x, t) ≤ (0, π) × R+,

u(0, t) = u(π, t) = 0,
u(x, 0) = ε

β
ϕn(x), ut (x, 0) = 0, |ϕ′

n(x)| ∼ 1.
(16.5)

There exists a solution un(x, t) of Problem (16.5) such that {un(·, tn)}n∗1 is not pre-
compact set in H1

0 (0, π) for some {tn}n∗1, tn ⇐ →, and some bounded in H1
0 (0, π)

sequence {ϕn}.
D’Alembert’s formula implies that Problem (16.5) has the solution of the form

un(x, t) = ε

2β
(ϕn(x + t) − ϕn(t − x))

for any sufficiently smooth ϕn : R ⇐ R such that ϕn(x)=−ϕn(−x)=−ϕn(2π−x).
Indeed, untt − ∈un = 0 and

βunt (x, t) = β
ε

2π

(
ϕ′

n(x + t) − ϕ′
n(t − x)

) ≤ [−ε, ε].

Let ϕn(x) = 1
n sin nx , x ≤ (0, π). Then

un(x, t) = 1

n

ε

2β
(sin n(x + t) − sin n(t − x)) , (x, t) ≤ (0, π) × R+;

u′
nx

(x, t) = ε

2β
(cos n(x + t) + cos n(t − x)) , (x, t) ≤ (0, π) × R+.

Let {tn}n∗1 ≥ R+ be the sequence such that tn = 2π
n + 2πn, √n ∗ 1. Then

⇔un(·, tn) − um(·, tm)⇔2
H1
0 (0,π)

=
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= ε2

4β2

π∫

0

(cos n(x + tn) + cos n(tn − x) − cosm(x + tm) − cosm(tm − x))2 dx =

= ε2

β2

π∫

0

(cos nx − cosmx)2dx = πε2

β2 , √n, m ∗ 1.

Thus {un(·, tn)}n∗1 is not precompact set in H1
0 (0, π), n ⇐ +→.

Further, we assume that

f (s) = f1(s) − f2(s), s ≤ R,

where fi : R ⇐ R, i = 1, 2, are nondecreasing functions.
We remark that

[ f (s), f (s)] ∞ [ f1(s), f1(s)] − [ f2(s), f2(s)], s ≤ R.

Thus we consider more general evolution inclusion

{
utt + βut − ∈u + [ f1(u), f1(u)] − [ f2(u), f2(u)] ⊥ 0,
u|∂Ω = 0.

(16.6)

Let us set

Gi (s) :=
s∫

0

fi (ξ)dξ, Ji (u) :=
∫

Ω

Gi (u(x))dx, J (u) = J1(u)− J2(u), u ≤ H, i = 1, 2.

The functionals Gi and Ji are locally Lipschitz and regular; Clarke [3, Chap. I]. Thus
the next result holds.

Lemma 16.2 Kasyanov et al. [9] Let u ≤ C1([τ, T ]; H). Then for a.e. t ≤ (τ, T ),
the functions Ji ≈ u are classically differentiable at the point t . Moreover,

d

dt
(Ji ≈ u)(t) = (p, ut (t)) √p ≤ ∂ Ji (u(t)), i = 1, 2,

and d
dt (Ji ≈ u)(·) ≤ L1(τ, T ).

Consider W T
τ = C([τ, T ]; X). Lebourgue’s mean value theorem (see Clarke

[3, Chap. 2]) provides the existence of constants c1, c2 > 0 and μ ≤ (0, λ1) such
that

|J (u)| ∼ c1(1 + ⇔u⇔2H ), J (u) ∗ −μ

2
⇔u⇔2H − c2 √u ≤ H. (16.7)
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The weak solution of the Problem (16.1) with initial data

u(τ ) = a, u′(τ ) = b (16.8)

on the interval [τ, T ] exists for any a ≤ V, b ≤ H. It follows from Zadoianchuk and
Kasyanov [15, Theorem 1.4]. Thus the next lemma holds true (see Kasyanov et al.
[9, Lemma 3.2]).

Lemma 16.3 Kasyanov et al. [9, Lemma3.2]For any τ < T,a ≤ V,b ≤ H, Cauchy
Problem (16.1), (16.8) has the weak solution (u, ut )

T ≤ L→(τ, T ; X). Moreover,
each weak solution (u, ut )

T of Cauchy Problem (16.1), (16.8) on the interval [τ, T ]
belongs to the space C([τ, T ]; X) and utt ≤ L2(τ, T ; V ∀).

16.4 Properties of Solutions

For any ϕτ = (a, b)T ≤ X , denote

Dτ,T (ϕτ ) =
{
(u(·), ut (·))T

∣∣∣∣ (u, ut )
T is a weak solution of Problem (16.1) on [τ, T ],

u(τ ) = a, ut (τ ) = b

⎧
.

From Lemma 16.3 it follows that Dτ,T (ϕτ ) ≥ C([τ, T ]; X) = W T
τ . Let us check

that translation and concatenation of weak solutions are weak solutions too.

Lemma 16.4 If τ < T , ϕτ ≤ X, ϕ(·) ≤ Dτ,T (ϕτ ), then √s ψ(·) = ϕ(· + s) ≤
Dτ−s,T −s(ϕτ ). If τ < t < T , ϕτ ≤ X, ϕ(·) ≤ Dτ,t (ϕτ ) and ψ(·) ≤ Dt,T (ϕτ ), then

θ(s) =
{

ϕ(s), s ≤ [τ, t],
ψ(s), s ≤ [t, T ] ≤ Dτ,T (ϕτ ).

Proof The proof is trivial (see Kasyanov et al. [9, Lemma 4.1]).

Let ϕ = (a, b)T ≤ X and

V (ϕ) = 1

2
⇔ϕ⇔2X + J1(a) − J2(a). (16.9)

Lemma 16.5 Let τ < T , ϕτ ≤ X, ϕ(·) = (u(·), ut (·))T ≤ Dτ,T (ϕτ ). Then V ≈
ϕ : [τ, T ] ⇐ R is absolutely continuous and for a.e. t ≤ (τ, T ), d

dt V (ϕ(t)) =
−β⇔ut (t)⇔2H .

Proof Let −→ < τ < T < +→, ϕ(·) = (u(·), ut (·))T ≤ W T
τ be an arbitrary

weak solution of Problem (16.1) on (τ, T ). Since ∂ J (u(·)) ≥ L2(τ, T ; H), from
Temam [12] and Zgurovsky et al. [19, Chap.2] we obtain that the function t ⇐
⇔ut (t)⇔2H + ⇔u(t)⇔2V is absolutely continuous and for a.e. t ≤ (τ, T ),

http://dx.doi.org/10.1007/978-3-319-03146-0_2
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1
2

d
dt

⎪⇔ut (t)⇔2H + ⇔u(t)⇔2V
⎨ = (utt (t) − ∈u(t), ut (t))H =

= −β⇔ut (t)⇔2H − (d1(t), ut (t))H + (d2(t), ut (t))H,
(16.10)

where di (t) ≤ ∂ Ji (u(t)) for a.e. t ≤ (τ, T ) and di (·) ≤ L2(τ, T ; H), i = 1, 2. As
u(·) ≤ C1([τ, T ]; H) and Ji : H ⇐ R, i = 1, 2 is regular and locally Lipschitz, due
to Lemma 16.2 we obtain that for a.e. t ≤ (τ, T ), ⊂ d

dt (Ji ≈u)(t), i = 1, 2. Moreover,
d
dt (Ji ≈ u)(·) ≤ L1(τ, T ), i = 1, 2 and for a.e. t ≤ (τ, T ), √p ≤ ∂ Ji (u(t)),

d

dt
(Ji ≈ u)(t) = (p, ut (t))H , i = 1, 2.

In particular for a.e. t ≤ (τ, T ), d
dt (Ji ≈ u)(t) = (di (t), ut (t))H . Taking into account

(16.10) we finally obtain the necessary statement.
This completes the proof.

Lemma 16.6 Let T > 0. Then any weak solution of Problem (16.1) on [0, T ] can
be extended to a global one defined on [0,+→).

Proof The statement of this lemma follows from Lemmas 16.3–16.5, (16.7) and
from the next estimates

√τ < T, √t ≤ [τ, T ], √ϕτ ≤ X, √ϕ(·) = (u(·), ut (·))T ≤ Dτ,T (ϕτ ),

2c1 +
⎩
1 + 2c1

λ1

⎛
⇔u(τ )⇔2V + ⇔ut (τ )⇔2H ∗ 2V (ϕ(τ)) ∗ 2V (ϕ(t)) =

= ⇔u(t)⇔2V + ⇔ut (t)⇔2H + 2J (u(t)) ∗
⎩
1 − μ

λ1

⎛
⇔u(t)⇔2V + ⇔ut (t)⇔2H − 2c2.

The lemma is proved.

For an arbitrary ϕ0 ≤ X let D(ϕ0) be the set of all weak solutions (defined on
[0,+→)) of Problem (16.1) with initial data ϕ(0) = ϕ0. We remark that from the
proof of Lemma 16.6 we obtain the next corollary.

Corollary 16.1 For any ϕ0 ≤ X and ϕ ≤ D(ϕ0), the next inequality is fulfilled

⇔ϕ(t)⇔2X ∼ λ1 + 2c1
λ1 − μ

⇔ϕ(0)⇔2X + 2(c1 + c2)λ1
λ1 − μ

√t > 0. (16.11)

From Corollary 16.1 in a standard way we obtain such statement.

Theorem 16.1 Let τ < T, {ϕn(·)}n∗1 ≥ W T
τ be an arbitrary sequence of weak

solutions of Problem (16.1) on [τ, T ] such that ϕn(τ ) ⇐ ϕτ weakly in X, n ⇐ +→,
and let {tn}n∗1 ≥ [τ, T ] be a sequence such that tn ⇐ t0, n ⇐ +→. Then there
exists ϕ ≤ Dτ,T (ϕτ ) such that up to a subsequence ϕn(tn) ⇐ ϕ(t0) weakly in X ,
n ⇐ +→.
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Proof We prove this theorem in several steps.
Step 1. Let τ < T, {ϕn(·) = (un(·), u′

n(·))}n∗1 ≥ W T
τ be an arbitrary sequence

of weak solutions of Problem (16.1) on [τ, T ] and {tn}n∗1 ≥ [τ, T ] such that
ϕn(τ ) ⇐ ϕτ weakly in X, tn ⇐ t0, n ⇐ +→. (16.12)

In virtue of Corollary 16.1 we have that {ϕn(·)}n∗1 is bounded on W T
τ ≥

L→(τ, T ; X). Therefore up to a subsequence {ϕnk (·)}k∗1 ≥ {ϕn(·)}n∗1 we have

unk ⇐ u weakly star in L→(τ, T ; V ), k ⇐ +→,
u′

nk
⇐ u′ weakly star in L→(τ, T ; H), k ⇐ +→,

u′′
nk

⇐ u′′ weakly star in L→(τ, T ; V ∀), k ⇐ +→,

dnk ,i ⇐ di weakly star in L→(τ, T ; H), i = 1, 2, k ⇐ +→,
unk ⇐ u in L2(τ, T ; H), k ⇐ +→,

unk (t) ⇐ u(t) in H for a.e. t ≤ [τ, T ], k ⇐ +→,
u′

nk
(t) ⇐ u′(t) in V ∀ for a.e. t ≤ (τ, T ), k ⇐ +→,

∈unk ⇐ ∈u weakly in L2(τ, T ; V ∀), k ⇐ +→,

(16.13)

where √n ∗ 1 dn,i ≤ L2(τ, T ; H) and

u′′
n(t) + βu′

n(t) + dn,1(t) − dn,2(t) − ∈un(t) = 0̄,
dn,i (t) ≤ ∂ Ji (un(t)), i = 1, 2, for a.e. t ≤ (τ, T ).

(16.14)

Step 2. ∂ Ji , i = 1, 2 are demiclosed. So, by a standard way we get that di (·) ≤
∂ Ji (u(·)), i = 1, 2, ϕ := (u, u′) ≤ Dτ,T (ϕτ ) ≥ W T

τ .

Step 3. From (16.13) it follows that for arbitrary fixed h ≤ V the sequences
of real functions (unk (·), h)H , (u′

nk
(·), h)H : [τ, T ] ⇐ R are uniformly bounded

and equipotentionally continuous. Taking into account (16.13), (16.11) and density
of the embedding V ≥ H we obtain that u′

nk
(tnk ) ⇐ u′(t0) weakly in H and

unk (tnk ) ⇐ u(t0) weakly in V as k ⇐ +→.
The theorem is proved.

Theorem 16.2 Let τ < T, {ϕn(·)}n∗1 ≥ W T
τ be an arbitrary sequence of weak

solutions of Problem (16.1) on [τ, T ] such thatϕn(τ ) ⇐ ϕτ strongly in X, n ⇐ +→,
then up to a subsequence ϕn(·) ⇐ ϕ(·) in C([τ, T ]; X), n ⇐ +→.

Proof Let τ < T, {ϕn(·) = (un(·), u′
n(·))T }n∗1 ≥ W T

τ be an arbitrary sequence of
weak solutions of Problem (16.1) on [τ, T ] and {tn}n∗1 ≥ [τ, T ]:

ϕn(τ ) ⇐ ϕτ strongly in X, n ⇐ +→. (16.15)

From Theorem 16.1 we have that there exists ϕ ≤ Dτ,T (ϕτ ) such that up to the
subsequence {ϕnk (·)}k∗1 ≥ {ϕn(·)}n∗1 ϕn(·) ⇐ ϕ(·) weakly in X , uniformly on
[τ, T ], k ⇐ +→. Let us prove that

ϕnk ⇐ ϕ in W T
τ , k ⇐ +→. (16.16)
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By contradiction, suppose the existence of L > 0 and the subsequence {ϕk j } j∗1 ≥
{ϕnk }k∗1 such that √ j ∗ 1,

max
t≤[τ,T ] ⇔ϕk j (t) − ϕ(t)⇔X = ⇔ϕk j (t j ) − ϕ(t j )⇔X ∗ L .

Without loss of generality we suggest that t j ⇐ t0 ≤ [τ, T ], j ⇐ +→. Therefore
by virtue of a continuity of ϕ : [τ, T ] ⇐ X we have

lim
j⇐+→

⇔ϕk j (t j ) − ϕ(t0)⇔X ∗ L . (16.17)

On the other hand, we prove that

ϕk j (t j ) ⇐ ϕ(t0) in X, j ⇐ +→. (16.18)

First we remark that

ϕk j (t j ) ⇐ ϕ(t0) weakly in X, j ⇐ +→ (16.19)

(see Theorem 16.1 for details). Secondly let us prove that

lim
j⇐+→ ⇔ϕk j (t j )⇔X ∼ ⇔ϕ(t0)⇔X . (16.20)

Since J is sequentially weakly continuous, V is sequentially weakly lower semi-
continuous on X . Hence we obtain

V (ϕ(t0)) ∼ lim
j⇐+→

V (ϕk j (t j )),

t0⎝
τ

⇔u′(s)⇔2H ds ∼ lim
j⇐+→

t j⎝
τ

⇔u′
k j

(s)⇔2H ds
(16.21)

and

V (ϕ(t0)) + β

t0∫

τ

⇔u′(s)⇔2H ds ∼ lim
j⇐+→

⎞
⎠V (ϕk j (t j )) + β

t j∫

τ

⇔u′
k j

(s)⇔2Hds


 .

(16.22)
Since by the energy equation both sides of (16.22) equal V (ϕ(τ)) (see Lemma 16.5),
it follows from (16.21) thatV (ϕk j (t j )) ⇐ V (ϕ(t0)), j ⇐ +→ and (16.20). Conver-
gence (16.18) directly follows from (16.19), (16.20) and Gajewski et al. [5, Chap. I].
To finish the proof of the theorem we remark that (16.18) contradicts (16.17). There-
fore (16.16) holds.

The theorem is proved.
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Define the m-semiflow G as

G (t, ξ0) = {ξ(t) | ξ(·) ≤ D(ξ0)}, t ∗ 0.

Denote the set of all nonempty (nonempty bounded) subsets of X by P(X)(β(X)).
Note that the multivalued map G : R+ × X ⇐ P(X) is a strict m-semiflow, i.e., (see
Lemma 16.4)

1. G (0, ·) = Id (the identity map);
2. G (t + s, x) = G (t,G (s, x)) √x ≤ X, t, s ≤ R+.
Further, ϕ ≤ G means that ϕ ≤ D(ξ0) for some ξ0 ≤ X .

Definition 16.2 G is called an asymptotically compact m-semiflow if for any
sequence {ϕn}n∗1 ≥ G with {ϕn(0)}n∗1 bounded, and for any sequence {tn}n∗1:
tn ⇐ +→, n ⇐ →, the sequence {ϕn(tn)}n∗1 has a convergent subsequence Ball
[2, p. 35].

Theorem 16.3 G is an asymptotically compact m-semiflow.

Proof Let ξn ≤ G (tn, vn), vn ≤ B, B ≤ β(X), n ∗ 1, tn ⇐ +→, n ⇐ +→. Let us
check a precompactness of {ξn}n∗1 in X . Without loss of the generality, we extract a
convergent in X subsequence from {ξn}n∗1. FromCorollary 16.1 we obtain that there
exists {ξnk }k∗1 and ξ ≤ X such that ξnk ⇐ ξ weakly in X , ⇔ξnk ⇔X ⇐ a ∗ ⇔ξ⇔X ,
k ⇐ +→. Show that a ∼ ⇔ξ⇔X .

Let us fix an arbitrary T0 > 0. Then for rather big k ∗ 1, G (tnk , vnk ) ≥
G (T0,G (tnk − T0, vnk )). Hence ξnk ≤ G (T0, βnk ), where βnk ≤ G (tnk − T0, vnk )

and sup
k∗1

⇔βnk ⇔X < +→ (see Corollary 16.1). From Theorem 16.1 for some

{ξk j , βk j } j∗1 ≥ {ξnk , βnk }k∗1, βT0 ≤ X , we obtain

ξ ≤ G (T0, βT0), βk j ⇐ βT0 weakly in X, j ⇐ +→. (16.23)

From the definition of G we set √ j ∗ 1, ξk j = (u j (T0), u′
j (T0))

T , βk j =
(u j (0), u′

j (0))
T , ξ = (u0(T0), u′

0(T0))
T , βT0 = (u0(0), u′

0(0))
T , where ϕ j =

(u j , u′
j )

T ≤ C([0, T0]; X), u′′
j ≤ L2(0, T0; V ∀), d j ≤ L→(0, T0; H),

u′′
j (t) + βu′

j (t) − ∈u j (t) + d j,1(t) − d j,2(t) = 0̄,

d j,i (t) ≤ ∂ Ji (u j (t)), i = 1, 2 for a.e. t ≤ (0, T0).

Let for every t ≤ [0, T0],

I (ϕ j (t)) := 1

2
⇔ϕ j (t)⇔2X + J1(u j (t)) − J2(u j (t)) + β

2
(u′

j (t), u j (t))H .

Then in virtue of Lemma 16.2, Gajewski et al. [5, Chap. IV], Temam [12] and
Zgurovsky et al. [19]
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d I (ϕ j (t))

dt
= −β I (ϕ j (t)) + βH (ϕ j (t)), for a.e. t ≤ (0, T0),

where

H (ϕ j (t)) = J1(u j (t)) − 1

2
(d j,1(t), u j (t))H − J2(u j (t)) + 1

2
(d j,2(t), u j (t))H .

From (16.11), (16.23) we have ⊂R̄ > 0 : √ j ∗ 0, √t ≤ [0, T0],

⇔u′
j (t)⇔2H + ⇔u j (t)⇔2V ∼ R̄2.

Moreover,

u j ⇐ u0 weakly in L2(0, T0; V ), j ⇐ +→,

u′
j ⇐ u′

0 weakly in L2(0, T0; H), j ⇐ +→,

u j ⇐ u0 in L2(0, T0; H), j ⇐ +→,

d j,i ⇐ di weakly in L2(0, T0; H), i = 1, 2, j ⇐ +→,

u′′
j ⇐ u′′

0 weakly in L2(0, T0; V ∀), j ⇐ +→,

√t ≤ [0, T0] u j (t) ⇐ u0(t) in H, j ⇐ +→.

(16.24)

For every j ∗ 0 and t ≤ [0, T0],

I (ϕ j (t)) = I (ϕ j (0))e
−βt +

t∫

0

H (ϕ j (s))e
−β(t−s)ds.

In particular I (ϕ j (T0)) = I (ϕ j (0))e−βT0 +
T0⎝
0
H (ϕ j (s))e−β(T0−s)ds.

From (16.24) and Lemma 16.2 we have

T0∫

0

H (ϕ j (s))e
−β(T0−s)ds ⇐

T0∫

0

H (ϕ0(s))e
−β(T0−s)ds, j ⇐ +→.

Therefore

lim
j⇐+→ I (ϕ j (T0)) ∼ lim

j⇐+→ I (ϕ j (0))e−βT0 +
T0⎝
0
H (ϕ0(s))e−β(T0−s)ds =

= I (ϕ0(T0)) +
⎜

lim
j⇐+→ I (ϕ j (0)) − I (ϕ0(0))

⎟
e−βT0 ∼ I (ϕ0(T0)) + c3e−βT0 ,

where c3 does not depend on T0 > 0.
On the other hand, from (16.24) we have
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lim
j⇐+→ I (ϕ j (T0)) ∗ 1

2
lim

j⇐+→ ⇔ϕ j (T0)⇔2X + J (u0(T0)) + β

2
(u′

0(T0), u0(T0))H .

Therefore we obtain 1
2a2 ∼ 1

2⇔ξ⇔2X + c3e−βT0 √T0 > 0.
Thus, a ∼ ⇔ξ⇔X .

The Theorem is proved.

Let us consider the family K+ = ∃u0≤XD(u0) of all weak solutions of Problem
(16.1) defined on [0,+→). Note that K+ is translation invariant one, i.e., √u(·) ≤
K+, √h ∗ 0, uh(·) ≤ K+, where uh(s) = u(h + s), s ∗ 0. On K+ we set the
translation semigroup {T (h)}h∗0, T (h)u(·) = uh(·), h ∗ 0, u ≤ K+. In view of the
translation invariance of K+ we conclude that T (h)K+ ≥ K+ as h ∗ 0.

On K+ we consider a topology induced from the Fréchet space Cloc(R+; X).
Note that

fn(·) ⇐ f (·) in Cloc(R+; X) ∪∧ √M > 0, ΠM fn(·) ⇐ ΠM f (·) in C([0, M]; X),

where ΠM is the restriction operator to the interval [0, M]; Vishik and Chepyzhov
[14, p. 179]. We denote the restriction operator to [0,+→) by Π+.

Let us consider Problem (16.1) on the entire time axis. Similarly to the space
Cloc(R+; X) the space Cloc(R; X) is endowed with the topology of a local uniform
convergence on each interval [−M, M] ≥ R (cf. Vishik andChepyzhov [14, p. 180]).
A functionu ≤ Cloc(R; X)∅L→(R; X) is said to bea complete trajectory of Problem
(16.1) if √h ≤ R, Π+uh(·) ≤ K+; Vishik and Chepyzhov [14, p. 180].

Let K be a family of all complete trajectories of Problem (16.1). Note that
√h ≤ R, √u(·) ≤ K uh(·) ≤ K . We say that the complete trajectory ϕ ≤ K is
stationary if ϕ(t) = z for all t ≤ R for some z ≤ X. Following Ball [1, p. 486] we
denote by Z(G ) the set of all rest points of G . Note that

Z(G ) = {(0̄, u) | u ≤ V, −∈(u) + ∂ J (u) ⊥ 0̄}.

Lemma 16.7 Z(G ) is an bounded set in X.

The existence of a Lyapunov function for G follows from Lemma 16.5 (see Ball
[1, p. 486]).

Lemma 16.8 A functional V : X ⇐ R defined by (16.9) is a Lyapunov function
for G .

16.5 The Existence of a Global Attractor

At first we consider constructions presented in Ball [1], Mel’nik and Valero [10]. We
recall that the set A is said to be a global attractor G if

(1) A is negatively semiinvariant (i.e., A ≥ G (t,A ) √t ∗ 0);
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(2) A is attracting set, i.e.,

dist(G (t, B),A ) ⇐ 0, t ⇐ +→, √B ≤ β(X), (16.25)

where dist(C, D) = sup
c≤C

inf
d≤D

⇔c − d⇔X is the Hausdorff semidistance;

(3) for any closed set Y ≥ H satisfying (16.25), we have A ≥ Y (minimality).
The global attractor is said to be invariant if A = G (t,A ), √t ∗ 0.
Note that by definition a global attractor is unique.
We prove the existence of an invariant compact global attractor.

Theorem 16.4 The m-semiflow G has an invariant compact in the phase space X
global attractor A . For each ψ ≤ K the limit sets

α(ψ) = {z ≤ X| ψ(t j ) ⇐ z for some sequence t j ⇐ −→},

ω(ψ) = {z ≤ X| ψ(t j ) ⇐ z for some sequence t j ⇐ +→}

are connected subsets of Z(G ) on whichV is constant. If Z(G ) is totally disconnected
(in particular if Z(G ) is countable) the limits

z− = lim
t⇐−→ ψ(t), z+ = lim

t⇐+→ ψ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point as t ⇐ +→
for every solution ϕ ≤ K+.

Proof The existence of a global attractor for Second Order Evolution Inclusions
directly follows from Lemmas 16.3, 16.4, 16.7, 16.8, Theorems 16.1–16.3 and Ball
[2, Theorem 2.7].

16.6 Global Attractors for Typically Discontinuous Interaction
Functions

Let β > 0 be a constant, Ω ≤ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − ∈u ≤ − f (u) + G(u) + h,

u|∂Ω = 0,
(16.26)

where u(x, t) is unknown state function defined onΩ×R+, h ≤ L2(Ω), f : R ⇐ R

is an interaction function such that

f ≤ C(R), G = [g1, g2], gi ≤ C(R), i = 1, 2. (16.27)
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There exist a small constant C ∗ 0 (C < min{β, λ1}), and Di ∗ 0, i = 1, 2 such
that

lim
|u|⇐→

f (u)

u
> −λ1, (16.28)

where λ1 is the first eigenvalue for −∈ in H1
0 (Ω),

|gi (u)| ∼ C |u| + D1, √u ≤ R, i = 1, 2, (16.29)

| f (u)| ∼ D2(1 + |u| n
n−2 ), √u ≤ R. (16.30)

Remark 16.1 The case of ε–neighborhood of f (u) satisfies conditions (16.27)–
(16.30), i.e., if lim

|u|⇐→
f (u)

u > −λ1, G(u) = [−ε, ε].

Let us set V = H1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (16.26).

Definition 16.3 Let T > 0. The function ϕ(·) = (u(·), ut (·))T ≤ L→(0, T, X) is
called a weak solution of Problem (16.26) on (0, T ) if for a.e. (x, t) ≤ Ω × (0, T ),
there exists l = l(x, t) ≤ L2(0, T : L2(Ω)), l(x, t) ≤ G(u(x, t)) such that √ψ ≤
H1
0 (Ω), η ≤ C→

0 (0, T )

−
∫ T

0
(ut , ψ)H ηt dt +

∫ T

0
[(β(ut , ψ)H +

+(u, ψ)V + ( f (u), ψ)H − (l, ψ)H − (h, ψ)H )η] dt = 0.

Lemma 16.9 For all ϕ0 = (u0, u1)
T ≤ X, T > 0, there exists a weak solution

ϕ(·) of Problem (16.26) such that ϕ(0) = ϕ0. Moreover, if ϕ(·) = (u(·), ut (·))T

is a weak solution of Problem (16.26) with respective l ≤ L2(0, T ; L2(Ω)), then
ϕ ≤ C([0, T ]; X), functions

t �⇐ ⇔ut (t)⇔2H + ⇔u(t)⇔2V , t �⇐ (F(u(t)), 1)H

are absolutely continuous on [0, T ], and for t, s ≤ [0, T ], s ∼ t ,

1

2

d

dt
(⇔ut (t)⇔2H + ⇔u(t)⇔2V + (F(u(t)), 1)H ) =

= −β⇔ut (t)⇔2H + (l(t), ut (t))H + (h, ut (t))H , (16.31)

⇔ut (t)⇔2H + ⇔u(t)⇔2V ∼ e−δ(t−s)
(

⇔ut (s)⇔2H + ⇔u(s)⇔
2n−2
n−2

V

)
+ D3, (16.32)
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where F(u) = ⎝ u
0 f (s)ds, u ≤ R and constants δ > 0, D3 > 0 do not depend on ϕ.

Proof Let us deduce condition (16.32). Consider

Y (t) = 1

2
⇔ut (t)⇔2H + 1

2
⇔u(t)⇔2V + (F(u(t)), 1)H + α(ut (t), u(t))H , t ≤ [0, T ],

where α > 0. Then for sufficiently small C > 0 and δ > 0

dY (t)
dt = (utt (t), ut (t))H − (∈u, ut (t))H + ( f (u(t)), ut (t))H +

+ α(utt (t), u(t))H + α⇔ut (t)⇔2H =
= (−βut (t) + l(t) + h, ut (t))H + α⇔ut (t)⇔2H +
+ α(−βut (t) + ∈u − f (u(t)) + l(t) + h, u(t))H =
= −(β − α)⇔ut (t)⇔2H + (l(t), ut (t))H + (h, ut (t))H −
− αβ(ut (t), u(t))H − α⇔u(t)⇔2V −
− α( f (u(t)), u(t))H + α(l(t) + h, u(t))H ∼
∼ −(β − α − ε)⇔ut (t)⇔2H + C⇔u(t)⇔H ⇔ut (t)⇔H

∼ −α⇔u(t)⇔2V − α(−λ1 + C + ε)⇔u(t)⇔2H +
+ αC⇔u(t)⇔2H + K ∼ −δY (t) + K̃ .

Therefore the inequalities

F(u) ∗
(

−λ1

2
+ ε

)
u2 + L , F(u) ∼ M

⎩
1 + |u| 2u−2

u−2

⎛
, √u ≤ R, (16.33)

imply (16.32). All the other statements follow from Ball [2], Temam [12]. The exis-
tence of a solution follows from the existence of a continuous selector for G.

Remark 16.2 The set of solutions of Problem (16.26) is not covered by all continuous
selectors of G : R �⇐ 2R.

Indeed, let f ≡ 0, G(u) ≡ [−ε, ε], h ≡ 0. Consider solutions of the problem

{∈u ≤ [−ε, ε], in Ω = (0, π),

u(0) = u(π) = 0,

i.e., consider stationary solutions of Problem (16.26). Then the function

u(x) = ε

2
sin x + ε

8
sin 2x, x ≤ (0, π),

is a solution of the given problem but there is no g ≤ C(R) such that g(u) ≤ [−ε, ε],
√u ≤ R, and ∈u(x) = g(u(x)), x ≤ (0, π). Indeed, assume the converse. Suppose
that such function exists. The equation

ε

2
sin x + ε

8
sin 2x = ε

2
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has two solutions
x = π

2
and x = x∀ �= π

2
≤ (0, π).

If x = π
2 , then

g(
ε

2
) = u′′(π

2
) = −ε

2
.

If x = x∀, then

g(
ε

2
) = −ε

2
sin x∀ − ε

2
sin 2x∀ = −ε

2
− 3ε

8
sin 2x∀ �= −ε

2
.

This contradiction concludes the example.

Remark 16.3 If G(u) ≡ g(u) is a single-valued function, then the existence of a
global attractor was proved in Ball [2].

Select the class of solutions for which there exists a global attractor. For this purpose
we use the notion of “energy” equation Ball [2], which describes the conservation
laws of energy.

Let ϕ ≤ C ([0,+→); X) is a solution of Problem (16.26). Denote

I (ϕ) = 1

2
⇔ut (t)⇔2H + 1

2
⇔u(t)⇔2V + (F(u(t)), 1)H + β

2
(ut (t), u(t))H ,

gλ(u) = λg1(u) + (1 − λg2(u)), Gλ(u) =
u∫

0

gλ(s)ds, λ ≤ [0, 1],

H(ϕ) = β(F(u), 1)H − β

2
( f (u), u)H + β

2
(h, u)H + (h, ut )H .

Definition 16.4 Aweak solution ϕ of Problem (16.26) with the corresponding func-
tion l is called an energy solution if there exists λ ≤ [0, 1] (λ = λ(ϕ)) such that
√t ∗ 0,

d

dt
I (ϕ(t))+β I (ϕ(t))− d

dt
(Gλ(u(t)), 1)H = β

2
(l(t), u(t))H + H(ϕ(t)). (16.34)

Remark 16.4 Any solution satisfies the equation

d

dt
I (ϕ(t)) + β I (ϕ(t)) − (l(t), ut (t))H = β

2
(l(t), u(t))H + H(ϕ(t)).

Any ”selector” solution satisfies the equation
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d

dt
I (ϕ(t)) + β I (ϕ(t)) − (g(u(t)), ut (t))H = β

2
(g(u(t)), u(t))H + H(ϕ(t)).

Remark 16.5 Any stationary solution u(t) obviously satisfies (16.34). So, the set
of all “selector” solutions (solutions of Problem (16.26) with l(x, t) = g(u(x, t)),
g ≤ G) does not include the set of energy solutions. Moreover, the set of all energy
solutions is wider than the set of all solutions of (16.26) with l(x, t) = gλ(u(x, t)).

Let us set

G (t, ϕ0) = {ϕ(t) | ϕ(·) is an energy solution of(16.26), ϕ(0) = ϕ0} (16.35)

Theorem 16.5 The m-semiflow G has an invariant compact in the phase space X
global attractor.

Proof G is the m-semiflow (but not strict; it will be strict if in the definition 16.4
[0,+→) is divided into intervals with different λ). Note that G is dissipative; G has
a closed graph (it is necessary to pass to the limit in (16.34)); G is asymptotically
semicompact m-semiflow. Indeed, similarly to Ball [2] we obtain the equation

I (ϕ j (t j )) − (Gλ j (u j (t j )), 1)H =
= (

I (ϕ j (t j − M)) − (Gλ j (ϕ j (t j − M)), 1)H
)

e−βM +
M⎝
0

eβ(t−M)·
·
⎩

H(ϕ j (t)) + β
2 (l j (t), u j (t))H − β(Gλ j (ϕ j (t)), 1)H

⎛
dt.

(16.36)

Since up to a subsequence λ j ⇐ λ, ϕ j (t j ) ⇐ χ weakly in H1
0 (Ω), we obtain

(
Gλ j (ϕ j (t j )), 1

)
H

⇐ (Gλ(χ), 1)H

and similarly Ball [2] we have

I (ϕ j (t j )) ⇐ I (χ).

Remark 16.6 It is possible to build another multivalued semiflow generated by
selector solutions, i.e.,

G (t, ϕ0) =

ϕ(t)

∣∣∣∣∣∣
ϕ(·) is a solution of (16.26),
ϕ(0) = ϕ0,

⊂g ≤ G : ϕ(·) is a solution of the resp. equation with g

⎫⎬
⎭ .

However in this case, for the sequence {ϕ j }→j=1, we have {g j }→j=1, g j (u) ≤ G(u),
√u ≤ R. In order to g j (u) ⇐ g(u) √u ≤ R, g ≤ G, it is necessary to strengthen the
conditions for G. But in this case, the question about solvability of Problem (16.26)
arises.
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Chapter 17
On the Regularities of Mass Random
Phenomena

Victor I. Ivanenko and Valery A. Labkovsky

Abstract This note presents a not very well known result concerning the frequentist
origins of probability. This result provides a positive answer to the question of exis-
tence of statistical regularities of so called random in a broad sensemass phenomena,
using the terminology of A. N. Kolmogorov [20]. It turns out, that some closed in
weak-→ topology family of finitely-additive probabilities plays the role of the sta-
tistical regularity of any such phenomenon. If the mass phenomenon is stochastic,
then this family degenerates into a usual countably-additive probability measure.
The note provides precise definitions, the formulation and the proof of the theorem
of existence of statistical regularities, as well as the examples of their application.

17.1 Introduction

This presentation conveys the main result of our study of the regularities of mass
random phenomena (MRP). This study started in the 60s of the twentieth century
and was stimulated, first of all, by the necessity to stabilize a generator of random
processes [11], extremely sensible to influence of external factors and, hence, statis-
tically unstable. In the 70s, Valery A. Labkovsky, who graduated from theMechanics
andMathematicsDepartment of theMoscowStateUniversity andwas recommended
to me by A. M Yaglom, joined our team. In a way, my participation in this seminar
has a supplementary historical justification. Unfortunately, V. A. Labkovsky got ill
and died at the end of the very difficult 90s. What I am about to present is the result
of our joint work with Valery Labkovsky.

Valery A. Labkovsky—deceased.
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In the 60s of the twentieth century, there were a lot of reasons to study the MRP,
beside the aforementioned technical problem. So in [2, 17] the authors pointed out the
difficulties arising in the process of modeling of the social MRP. In particular, in [2]
one reads: “Some contemporary theoreticians considered the law of large numbers
as a simple tautology, since they thought that the probability could be defined as
frequency for a very large number of trials. If for a very big number of trials this
frequency does not tend to a limit, but fluctuatesmore or less between different limits,
one needs to affirm that probability p does not remain constant and changes in the
process of trials. This concerns, for example, human mortality rate in the course of
centuries, since the progress of medicine and hygiene leads to the increase of life
duration.” The problem of establishing of the regularities ofMRP becomes more and
more important, especially in relation to the instability of financial markets and other
economic objects [21, 23, 26], that makes forecasting in this area very unreliable.

It is relevant to mention here the following remark by A.N. Kolmogorov [20]:
“Speaking of randomness in the ordinary sense of this word, we mean those phe-
nomena in which we do not find regularities allowing us to predict their behavior.
Generally speaking, there are no reasons to assume that random in this sense phe-
nomena are subject to some probabilistic laws. Hence, it is necessary to distinguish
between randomness in this broad sense and stochastic randomness (which is the
subject of probability theory)”.

However, what do the words “do not find regularities allowing us to predict their
behavior” mean? Hardly these words should be understood in the sense that such
regularities do not exist at all. More likely, these words point out to the problem
of finding of the statistical regularities of random in a broad sens mass phenomena
(RBSMP), that is the regularities of asymptotic behavior of different average values
that characterize these phenomena. For instance, it can be frequencies of hitting in
given subsets, arithmetic averages of some functionals, and so on. Recall that MRP
are called statistically stable or stochastic, if with the increase of the number of
“trials” all these averages tend to limits (and if some other conditions are verified
as well, see details in [20]). Unlike this, it is natural to consider as RBSMP those
MRP, whose behavior is studied to within statistical regularities. In other words,
this definition combines in RBSMP stochastic as well as nonstochastic1 random
phenomena.

In [19] the question was risen whether the MRP (or, as we say now, RBSMP)
posses the properties that are necessary in order to apply the probability theory to
their description. It turns out that the answer to this question is positive, but, as we
shall see later, under some complementary conditions.

There are several approaches to modeling of the MRP. So, there is the algo-
rithmic approach to randomness [27, 28] as well as the game-theoretic approach
to randomness in finance [24]. An alternative approach was studied in [12], where
sequences were constructed only with the requirement of the so called Γl indepen-

1 Remark that the term “nonstochastic” appeared in [27] in the context of Kolmogorov’s complexity,
meaning “more complex than stochastic”. In this chapter the meaning of this term is “more random
than stochastic”.
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dence. In mathematical finance diverse extensions of stochastic models have been
popular [1, 3, 6].

At the same time, when modelling the possible properties of the RBSMP it
is natural to consider families of probability distributions. In scientific literature,
the families of probability distributions appear more and more often. So, they
were considered in game theory [25] in order to study non-additive set functions.
In the so called subjective decision theory these families appear as consequence of
the axioms of rational choice [5, 8, 13], where, similarily to robust statistics [7], they
were interpreted as families of a priori distributions.

It turned out that specifically families of probability distributions are necessary
for the description of statistical (frequentist) regularities of a rather wide class of
RBSMP. The theorem of existence of such statistical regularities was proven and
published a quarter of a century ago [14, 15].

Let me pass to precise formulations.

17.2 Theorem of Existence of Statistical Regularities

An ordinary sequence is the simplest mathematical model of a mass phenomenon.
In order to construct, on the basis of a sequence, a model of a random phenomenon,
it is necessary to identify sequences that have identical statistical properties.

Definition 17.1 Let X be an arbitrary set. Two sequences x (1) and x (2) of elements
of the set X are called statistically equivalent (S-equivalent) if and only if for any
natural number m and any bounded mapping γ ⇐ (X ≥ R

m) the set of limit points
of the sequence

{
y(k)

n ; n ⇐ N

}
, y(k)

n = 1

n

n∑
i=1

γ
(
x (k)

i

)

does not depend on k ⇐ {1, 2}.
The class of S-equivalence of the sequence x ⇐ XN will be denoted as S(x). Our

nearest goal is to find the invariant of the relation of S-equivalence. Introduce several
notions.

Let M be a Banach space of bounded real functions, defined on the set X , M→
be the dual space of the space M , and τ—is a weak-→ topology in M→. Let, further,
P F(X) be the subspace of the topological space (M→, τ ) defined by the formula

P F(X) = {
p ⇐ M→ : p( f ) ∈ 0 if f ∈ 0, p(1X ) = 1

}
,

where 1A(·) is the characteristic function of the set A.
In what follows, instead of p(1A) we shall often write p(A) identifying, by the

same token, the elements of the set P F(X)with the finitely additive and normedmea-
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sures on2X . Obviously, p( f ) in this case is simply the integral p( f ) = ∫
f (x)p(dx),

defined naturally due to boundedness of function f .
Associate to an arbitrary sequence x = {xn; n ⇐ N} ⇐ XN the sequence of

measures from P F(X) defined as

{
p(n)

x (·); n ⇐ N

}
, p(n)

x (A) = 1

n

n∑
i=1

1A(xi ),⊂A ∗ X.

Due to compactness of the set P F(X) (as of a bounded closed set in (M→, τ )), the

sequence
{

p(n)
x (·); n ⇐ N

}
will have a non-empty closed set of limit points, which

we denote as Px and call the regularity of this sequence. Therefore introduce the
following definition.

Definition 17.2 Any non-empty closed subset of the space (P F(X), τ ) is called a
regularity on X. Denote the set of all regularities on X as P(X) and associate to
any sequence x ⇐ XN its regularity Px . Finally, for m ⇐ N, γ = (γ1, γ2, . . . , γm)

⇐ (X ≥ R
m) and P ⇐ P(X), the symbol P(γ ) denotes the set{

(r1, r2, . . . , rm) ⇐ R
m : ∼p ⇐ P⊂i ⇐ 1, m, ri = p(γi )

}
,

and, in particular, p(γ ) = (p(γ1), p(γ2), . . . , p(γm)) for p ⇐ P F(X).

Consider the following proposition.

Proposition 17.1 The mapping x √≥ Px is the invariant of the relation of
S-equivalence on XN.

This statement will be proved below in a more general form. So far, however,
let us agree to call the classes of S-equivalence of sequences the simplest random
phenomena, and their regularities—statistical regularities of the corresponding phe-
nomena. Any sequence x ⇐ XN is considered as a realization of a simplest random
phenomenon S(x).

Connection of the notions introduced above with the probabilistic notions follows
directly from the enforced law of large numbers.

Proposition 17.2 Let X be a finite set, μ—a probability distribution on X, and
ξ = {

ξn; n ⇐ N
}
—a sequence of independent (in the usual sense) random elements,

taking values in X with distribution μ. Then with probability 1 the sequence x of the
values of the sequence ξ will be a realization of the simplest random phenomenon
with statistical regularity Px = {μ}, i.e. consisting of the single distribution μ.

However, when the set X is infinite everything becomes considerably more diffi-
cult. In this case, the capabilities of sequences, generally speaking, are insufficient
in order to guarantee that the frequencies of hitting in all measurable sets would
tend to their limits simultaneously. Moreover, it is easy to see that the regularities
of sequences, since they are concentrated only on a countable subset of the set X ,
constitute only a small part of the set of all regularities on X . This seems to reflect
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the fact that sequences constitute only a small part of all mass phenomena. A more
general notion of sampling net is, as we shall see further, already sufficient for our
goals.

Definition 17.3 A sampling net (s.n.) in X is any net ϕ = {ϕλ, λ ⇐ Λ, ∈} taking
values in the sampling space

X≤ =
≤⋃

n=1

Xn, Xn = X × · · · × X︸ ︷︷ ︸
n

.

Moreover, if λ ⇐ Λ,ϕλ ⇐ Xn then we denote n = nλ, ϕλ = (ϕλ1, ϕλ2, . . . , ϕλnλ)

and associate to this λ the measure p(λ)
ϕ ⇐ P F(X) defined as

p(λ)
ϕ (A) = 1

nλ

nλ∑
i=1

1A(ϕλi ), A ∗ X.

The set Pϕ of limit points of the net pϕ = {
pλ
ϕ, λ ⇐ Λ, ∈}

will be called the
regularity of the s.n. ϕ. The class of all s.n. in X will be denoted as Φ(X).

Extend now the relation of S-equivalence on the whole Φ(X).

Definition 17.4 Sampling nets ϕ(k) ⇐ Φ(X), k = 1, 2 are considered as S-
equivalent if and only if for any m ⇐ N and any bounded mapping γ ⇐ (X ≥ R

m)

the set of limit points of the net of averages

{
y(k)
λ , λ ⇐ Λ,∈

}
, y(k)

λ = 1

nλ

nλ∑
i=1

γ
(
ϕ

(k)
λi

)
(17.1)

does not depend on k ⇐ {1, 2}.
We can now formulate the main theorem in the following way.

Theorem 17.1 (i) For any s.n. ϕ ⇐ Φ(X), any m ⇐ N and any bounded mapping
γ ⇐ (X ≥ R

m), the set of limit points of the net (17.1) can be written as Pϕ(γ ).
(ii) The mapping ϕ √≥ Pϕ , defined on Φ(X), is the invariant of the relation of

S-equivalence.
(iii) This mapping is a mapping on the whole set P(X), i.e. the set Φ(X)/S of classes

of S-equivalence and the set P(X) of regularities are put by this mapping into
one-to-one correspondence.

This theorem justifies the following definition.

Definition 17.5 Any class of S-equivalence of sampling nets in X is called random
in a broad sense mass phenomenon in X. The regularity Pϕ is called the statis-
tical regularity of the random phenomenon S(ϕ). Any s.n. ϕ

⇔ ⇐ S(ϕ) is called a
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realization of the random phenomenon S(ϕ). The random phenomenon, having sta-
tistical regularity P, is called μ-stochastic if and only if there exists a non-trivial
σ -algebra A ∗ 2X , on which μ is a σ -additive probability, and p(A) = μ(A) for
all p ⇐ P, A ⇐ A .

17.3 The Proof

Denote the set of limit points of an arbitrary net g = {gα, α ⇐ A, �} with values in
X as L I M(g) or L I M {gα, α ⇐ A, �}. Denote the set of bounded mappings from
X into Rm as Mm . We need to establish the three following facts:

(i) The relation L I M {yλ, λ ⇐ Λ, �} = Pϕ(γ ) is true for all m ⇐ N, γ ⇐ Mm ,
ϕ ⇐ Φ(X).

(ii) If P1, P2 ⇐ P(X), P1 ⊥= P2, then there exist such m ⇐ N and such γ ⇐ Mm ,
that P1(γ ) ⊥= P2(γ ).

(iii) For any regularity P ⇐ P(X) there exist such s.d. ϕ ⇐ Φ(X), that P = Pϕ .

Begin with the proof of the proposition (i). Let r ⇐ L I M(y), where y =
{yλ, λ ⇐ Λ, �}. Then there exists a subnet of the net y converging to r , i.e. there
exists (see [18]) a directed set (A,�) and a function f : A ≥ Λ such that the net
y = y ◦ f converges to r , and, in addition, for any λ ⇐ Λ there exists such α1 ⇐ A
that f (α) � λ for all α � α1.

Consider now the net of measures pϕ = pϕ ◦ f , where pϕ =
{

p(λ)
ϕ , λ ⇐ Λ,�

}
.

By virtue of compactness of the space (P F(X), τ ) this has at least one limit point.
Denote it as p0 and consider a subnet pϕ of the net pϕ , converging to p0. Let it be

pϕ = pϕ ◦ g = pϕ ◦ f ◦ g, g : B ≥ A. Then the net y = y ◦ f ◦ g, on the one

hand, converges to r , and, on the other hand, yβ = p
(β)

ϕ (γ ), β ⇐ B, so that

r = lim
β

p
(β)

ϕ (γ ) = p0(γ ) ⇐ Pϕ(γ ).

By the same token, it is proved that L I M(y) ∗ Pϕ(γ ).
Conversely, if p0 ⇐ Pϕ, r = p0(γ ), then there exists a subnet p̃ϕ = { p̃α

ϕ , α ⇐
A, �} of the net pϕ , converging to p0. But in this case limα p̃(α)

ϕ (γi ) = p0(γi ) for

all i ⇐ 1, m. It means that limα p̃(α)
ϕ (γ ) = p0(γ ). And, since p̃(α)

ϕ (γ ) = yλ for
λ = f (α), this proves (i).

In order to prove (i i) assume that there exists p1 ⇐ P1 \ P2. Since the set P2 is
closed, there exists a vicinity of the point p1 that does not cross with P2 and it means
that there exist such ε > 0, γ1, γ2, . . . , γm ⇐ M that

⊂p2 ⇐ P2, ∼i ⇐ 1, m, |p1(γi ) − p2(γi )| > ε.

So that if γ = (γ1, γ2, . . . , γm), then p1(γ ) /⇐ P2(γ ).
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The complete proof of (i i i) can be found in [10, 15, 16]. Here we shall outline
the main ideas of the proof. Let Q be the set of all such measures q ⇐ P F(X) that
each one of them is concentrated on a finite set Xq ∗ X , and in addition all numbers
q(x), x ⇐ Xq are rational. One can show that the set Q is everywhere dense in
(P F(X), τ ).

Now, to an arbitrary regularity P ⇐ P(X)we put into correspondence the directed
set (Λ, �) such that

Λ = R
+ × M≤ × P, R

+ = [0,≤], M≤ =
≤⋃

m=1

Mm,

and the relation (�) is given by the formula

(ε1, γ11, γ12, . . . , γ1n1, p1) � (ε2, γ21, γ22, . . . , γ2n2 , p2) ∞
(ε1 ≈ ε2,

{
γ11, γ12, . . . , γ1n1

} ∀ {
γ21, γ22, . . . , γ2n2

}
),

where no condition is imposed on p1 and p2.
Finally, to any λ = (ε, γ1, γ2, . . . , γm, p) ⇐ Λ we put into correspondence

some

qλ ⇐ Q
⋂ {

p
⇔ ⇐ P F(X) : ⊂i ⇐ 1, m,

∣∣∣p(γi ) − p
⇔
(γi )

∣∣∣ < ε
}

.

It is proven further that with any λ ⇐ Λ one can associate simultaneously a
sequence of points x (λ)

1 , x (λ)
2 , . . . , x (λ)

nλ
⇐ Xq satisfying the condition

qλ(A) = 1

nλ

nλ∑
i=1

1A(x (λ)
i ), ⊂A ∗ X.

It remains to chose ϕλ = (x (λ)
1 , x (λ)

2 , . . . , x (λ)
nλ

) and we obtain a s.n. ϕ : λ √≥ ϕλ

that has the regularity Pϕ = P .

17.4 Applications in Decision Theory

Statistical regularities of the general form find their application in decision theory
[5, 8, 10, 13, 15, 16, 22] and its applications [9].

Considering decision problems, assume that we need to make a decision u from
the setU of possible decisions, knowing that the result of making a decision depends
on some uncontrolled parameter θ from the setΘ of possible values of this parameter
and is described by the bounded real loss function L : Θ × U ≥ R. If nothing is
known about the behavior of the parameter, thenwe cannot, strictly speaking, exclude
that scenario, where the value of θ is chosen in the worst possible for us way. In this
case, the quality of decision u is evaluated by means of the loss function
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L→
1(u) = sup

θ⇐Θ

L(θ, u), u ⇐ U,

a so called “minmax” criterion.
If it is known, that parameter θ is stochastic with the given distribution μ, then,

trying to minimize the average losses, one makes use of the Bayes criterion

L→
2(u) =

∫
L(θ, u)μ(dθ), u ⇐ U.

Suppose now that parameter θ is random in a broad sensewith the statistical regularity
P ⇐ P(Θ). Let us show that in this case it is natural to chose the criterion in the form
of

L→
3(u) = sup

p⇐P

∫
L(θ, u)p(dθ), u ⇐ U, (17.2)

Indeed, let r1 < L→
3(u) < r2. The following statement is straightforward.

Proposition 17.3 Let {ϕλ, λ ⇐ Λ,�}—be a sampling net in Θ with the regularity
P. Then for any λ1 ⇐ Λ there is such λ � λ1 that

1

nλ

nλ∑
i=1

L(ϕλi , u) > r1

and, at the same time, there is such λ2, that for all λ � λ2 there will be

1

nλ

nλ∑
i=1

L(ϕλi , u) < r2.

In other words, L→
3(u)—is that natural border, that separates the average losses, that

can happen for a given u for an arbitrary “large” λ, from those average losses that
are not “dangerous” to us, when λ is sufficiently “large”.

It is easy to see that L→
3(u) becomes L→

1(u), when P = P F(Θ) (strictly nothing
is known about θ , save the set Θ where it takes values), and that it becomes L→

2(u),
when P = μ is stochastic regularity and function L(θ, u) is measurable relatively
to the corresponding σ -algebra.

The inverse result appears as somewhat surprising. It turns out that if one sub-
ordinates a criterion choice rule to some natural conditions of consistency with the
triplet (Θ, U, L), then any rule, satisfying these conditions, leads to the criterion
of the form (17.2), where P—is some (not known beforehand) regularity on Θ . In
particular, this result justifies the heuristic definition of random in a road sense phe-
nomena introduced above. Therefore, one can conclude that regularity on Θ is, in
a certain sense, the most general form of information about the behavior of θ . One
can find details in [8, 10, 13, 15, 16].
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17.5 Concluding Remarks

In conclusion, let me note that statistical regularities in the form of families of
probability distributions attract all themore attention. In particular, in [4]2 one already
finds : “We present methods... to estimate the model from finite time series data. The
estimation of the set of probability measures is based on the analysis of a set of
relative frequencies of events taken along subsequences selected by a collection of
rules. In particular, we provide a universal methodology for finding a family of sub-
sequence selection rules that can estimate any set of probability measures with high
probability.”

In view of the informal character of our seminar, let me note that I have been
surprised by reluctance of Westren researchers, who work in similar areas, to make
themselves familiar either with the English translations or with the original journal
publications of the Soviet scientific school.
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Chapter 18
Optimality Conditions for Partially Observable
Markov Decision Processes

Eugene A. Feinberg, Pavlo O. Kasyanov and Mikhail Z. Zgurovsky

Abstract This note describes sufficient conditions for the existence of optimal
policies for Partially Observable Markov Decision Processes (POMDPs). The
objective criterion is either minimization of total discounted costs or minimization
of total nonnegative costs. It is well-known that a POMDP can be reduced to a Com-
pletely Observable Markov Decision Process (COMDP) with the state space being
the sets of believe probabilities for the POMDP. Thus, a policy is optimal in POMDP
if and only if it corresponds to an optimal policy in the COMDP. Here we provide
sufficient conditions for the existence of optimal policies for COMDP and therefore
for POMDP.

18.1 Introduction

Partially Observable Markov Decision Processes (POMDPs) play an important role
in electrical engineering, computer science, and operations research. They have a
broad range of applications including sensor networks, artificial intelligence, control
and maintenance of complex systems, and medical decision making. In principle, by
ignoring complexity issues, it is known how to solve POMDPs. A POMDP can be
reduced to a Completely Observable Markov Decision Process (COMDP) with the
state space being the sets of believe probabilities for the POMDP [2, 6, 9, 10]. After
an optimal policy for the COMDP is found, it can be used to compute an optimal
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policy for the POMDP. However, except the case of problems with finite state and
action sets and a large variety of particular problems considered in the literature, little
is known regarding the existence and properties of optimal policies for COMDPs in
terms of the original POMDP.

This problem is studied in Hernández-Lerma [6, Chap. 4],where sufficient condi-
tions for the existence of optimal policies for discounted POMDPs with Borel state
spaces, compact action sets, weakly continuous transition and observation prob-
abilities, and bounded continuous cost functions are provided. It is shown there
that the weak continuity of the transition kernel in the filtration equation is suffi-
cient for the existence of optimal policies for COMDPs and therefore for COMDPs.
A sufficient condition for the case of a countable observation case is also provided
in Hernández-Lerma [6, p. 92]. This condition is that the probability of observations
depend continuously on the state-action pairs. Since this is the condition for a count-
able observation space, in the case of general Borel observation spaces, there are three
continuity conditions on the observation probabilities that are equivalent to this con-
dition, when the observation space becomes countable. These conditions are weak
continuity, setwise continuity, and continuity in the total variation of observation
probabilities (also called kernels or stochastic kernel).

In this paper,we awe study eitherminimizationof expected total nonnegative costs
or discounted costswith the one-step cost functions boundedbelow for POMDPswith
Borel state spaces. The goal is to obtain sufficient conditions for the existence and
characterization of optimal policies for COMDPs with possibly non-compact action
sets, unbounded cost functions (they are assumed bounded below), and uncount-
able observation sets. The one-step cost functions are K-infcompact. The notion of
K-infcompactness was introduced recently in Feinberg, Kasyanov, and Zadoianchuk
[3]. As shown in Feinberg, Kasyanov, and Zadoianchuk [4], this mild condition and
weak continuity of transition probabilities are sufficient for the existence of optimal
policies and their characterization for fully observable Markov Decision Processes
(MDPs) with the expected total costs.

Of course, for the existence of optimal policies for a POMDP, additional condi-
tions are required for the transition observation probability. Here we show that the
sufficient condition is its continuity in the total variation of the observation transition
probability. We also provide a general criterion for the existence optimal policies for
weakly continuous transition observation probabilities, which is different from the
weak continuity of the filtration kernel considered in Hernández-Lerma [6, p. 90,
Assumption 4.1(d)].

18.2 Model Description

For a metric space S, let B(S) be its Borel σ -field, that is, the σ -field generated by
all open sets of the metric space S. For a Borel subset E → S, we denote by B(E)

the σ -field whose elements are intersections of E with elements of B(S). Observe
that E is a metric space with the same metric as on S, andB(E) is its Borel σ -field.
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The space E is a Borel space, if E is a Borel subset of a Polish (complete separable
metric) space S. On E consider the induced metrizable topology. For a metric space
S, we denote by P(S) the set of probability measures on (S,B(S)). A sequence of
probability measures {μn} from P(S) converges weakly (setwise) to μ ⇐ P(S) if for
any bounded continuous (bounded Borel-measurable) function f on S

∫
S

f (s)μn(ds) ≥
∫
S

f (s)μ(ds) as n ≥ ∈.

A sequence of probability measures {μn} from P(S) converges in the total variation
to μ ⇐ P(S) if

sup
f ⇐F1(S)

{∫
S

f (s)μn(ds) −
∫
S

f (s)μ(ds)

}
,

where F1(S) is the set of Borel-measurable functions on S such that |f (s)| ⊂ 1 for
all s ⇐ S.

Note that P(S) is a Polish space with respect to the weak convergence topology
for probability measures; Parthasarathy [8, Chap. 2]. For Borel spaces S1 and S2, a
(Borel-measurable) transition kernel R(ds1|s2) on S1 given S2 is a mapping R( · | · ) :
B(S1)×S2 ≥ [0, 1], such thatR( · |s2) is a probabilitymeasure onS1 for any s2 ⇐ S2,
and R(B| · ) is a Borel-measurable function on S2 for any Borel set B ⇐ B(S1).
A transition kernel R(ds1|s2) on S1 given S2 defines a Borel measurable mapping
s2 ≥ R(·|s1) of S2 to the metric space P(S1) endowed with the topology of weak
convergence.A transition kernelR(ds1|s2)onS1 givenS2 is called weakly continuous
(setwise continuous, continuous in the total variation), if R( · |xn) converges weakly
(setwise, in the total variation) to R( · |x) whenever xn converges to x in S2.

LetX,Y, andA beBorel spaces,P(dx∗|x, a) is a transition kernel onX givenX×A,
Q(dy|a, x) is a transition kernel on Y given A × X, Q0(dy|x) is a transition kernel
on Y given X, p0 is a probability distribution on X, c : X×A ≥ R = R∼ {+∈} is
a bounded from below Borel function on X × A.

Partially observable Markov decision process (POMDP) is specified by (X,Y,A,

P, Q, c), where X is the state space, Y is the observation set, A is the action set,
P(dx∗|x, a) is the state transition law, Q(dy|a, x) is the observation kernel, c : X ×
A ≥ R is the one-step cost.

The partially observable Markov decision process evolves as follows:

• at time t = 0, the initial unobservable state x0 has a given prior distribution p0;
• the initial observation y0 is generated according to the initial observation kernel

Q0( · |x0);
• at each time epoch n = 0, 1, 2, . . . , if the state of the system is xn ⇐ X and the
decision-maker chooses an action an ⇐ A, then the cost c(xn, an) is incurred;

• the system moves to state xn+1 according to the transition law P( · |xn, an);
• the observation yn+1 ⇐ Y is generated by the observation kernels Q( · |an, xn+1),

n = 0, 1, . . . , and Q0( · |x0).
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Define the observable histories: h0 := (p, y0) ⇐ H0 and hn := (p, y0, a0, . . . ,
yn−1, an−1, yn) ⇐ Hn for all n = 1, 2, . . . , where H0 := P(X) × Y and Hn :=
Hn−1 × A × Y if n = 1, 2, . . . . Then a policy for the POMDP is defined as a
sequence π = {πn} such that, for each n = 0, 1, . . . , πn is a transition kernel
on A given Hn. Moreover, π is called nonrandomized, if each probability measure
πn(·|hn) is concentrated at one point. A nonrandomized policy is called Markov, if
all of the decisions depend on the current state and time only. A Markov policy is
called stationary, if all the decisions depend on the current state only. The set of
all policies is denoted by Π . The Ionescu Tulcea theorem (Bertsekas and Shreve
[1, pp. 140–141] or Hernández-Lerma and Lassere [7, p. 178]) implies that a policy
π ⇐ Π and an initial distribution p0 ⇐ P(X), together with the transition kernels P,
Q and Q0 determine a unique probability measure Pπ

p0 on the set of all trajectories
H∈ = P(X) × (Y × A)∈ endowed with the product of σ -field defined by Borel
σ -field ofP(X),Y, andA respectively. The expectationwith respect to this probability
measure is denoted by Eπ

p0 .
Let us specify a performance criterion. For a finite horizon N = 0, 1, . . . , and for

a policy π ⇐ Π , let us define the expected total discounted costs

vπ
N,α(p) := E

π
p

N−1∑
n=0

αnc(xn, an), p ⇐ P(X), (18.1)

where α √ 0 is the discount factor, vπ
0,α(p) = 0. When N = ∈, we always assume

that at least one of the following two assumptions holds:

Assumption (D) c is bounded below on X × A and α ⇐ [0, 1].
Assumption (P) c is nonnegative on X × A and α ⇐ [0, 1].

In the both cases (18.1) defines an infinite horizon expected total discounted cost,
and we denote it by vπ

α (p). By using notations (D) and (P), we follow Bertsekas and
Shreve [1, p. 214]. However, our Assumption (D) is weaker than the corresponding
assumption in [1], because c was assumed to be bounded under Assumption (D)
in [1].

Since the function c is bounded below on X×A, a discounted model can be con-
verted into a positive model by shifting the cost function. In particular, let c(x, a) √
−K for any (x, a) ⇐ X×A. Consider a new cost function ĉ(x, a) := c(x, a) + K for
any (x, a) ⇐ X × A. Then the corresponding total discounted reward is equal to

v̂π
α (p) := vπ

α (p) + K

1 − α
, π ⇐ Π, p ⇐ P(X).

Thus, optimizing vπ
α and v̂π

α are equivalent problems, but v̂π
α is the objective function

for the positive model. Though positive models are more general, discounted models
are met in lager classes of applications. Thus we formulate the results for either of
these models.
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For any function gπ (p), including gπ (p) = vπ
N,α(p) and gπ (p) = vπ

α (p) define the
optimal cost

g(p) := inf
π⇐Π

gπ (p), p ⇐ P(X),

where Π is the set of all policies. A policy π is called optimal for the respective
criterion, if gπ (p) = g(p) for all p ⇐ P(X). For gπ = vπ

n,α , the optimal policy is
called n-horizon discount-optimal; for gπ = vπ

α , it is called discount-optimal.
We recall that a function c defined on X × A is inf-compact (or lower semi-

compact) if the set {(x, a) ⇐ X × A : c(x, a) ⊂ λ} is compact for any finite number
λ. A function c defined on X×A is called K-inf-compact on X×A, if for any com-
pact subset K ofX, the function c is inf-compact on K ×A; Feinberg, Kasyanov, and
Zadoianchuk [3, Definition 11]. K-inf-inf-compactness is a mild assumption that
is weaker than inf-compactness. Essentially, K-inf-compactness of the cost func-
tion c is almost equivalent to lower-semicontinuity of c in the state variable x and
lower semi-continuity in the action variable a. This property holds for many appli-
cations including inventory control and various problems with least square criteria.
According to Feinberg, Kasyanov, and Zadoianchuk [3, Lemma 2.5], a bounded
below function c is K-inf-compact on the product of metric spaces X and A if and
only if it satisfies the following two conditions:

(a) c is lower semi-continuous;
(b) if a sequence {xn}n=1,2,... with values in X converges and its limit x belongs

to X then any sequence {an}n=1,2,... with an ⇐ A, n = 1, 2, . . . , satisfying the
condition that the sequence {c(xn, an)}n=1,2,... is bounded above, has a limit point
a ⇐ A.

As an POMDP (X,Y,A, P, Q, c), consider the classical MDP (X,A, P, c), when
all the states are observable. An MDP can be viewed as a particular POMDPs with
Y = X and Q(B|a, x) = Q(B|x) = I{x ⇐ B} for all x ⇐ X, a ⇐ A, and ⇐ B(X).
In fact, this POMP possesses a special property that action sets at all the states are
equal. For MDPs, Feinberg, Kasyanov, and Zadoianchuk [4] the following general
general conditions for the existence of optimal policies, validity of optimality equa-
tions, and convergence of value iterations. Here we formulate these conditions for
an MDP whose action sets at different states are equal.
Assumption (W≤) (cf. Feinberg, Kasyanov, and Zadoianchuk [4] and Lemma 2.5
in [3]).

(i) c is K-inf-compact on X × A;
(ii) the transition probability P( · |x, a) is weakly continuous in (x, a) ⇐ X × A.

Theorem 18.1 (cf. Feinberg,Kasyanov, andZadoianchuk [4,Theorem2]). Let MDP
(X,A, P, c) satisfies Assumption (W≤). Consider either positive or discounted model.
Then:

(i) the functions vn,α , n = 0, 1, 2, . . ., and vα are lower semi-continuous on X, and
vn,α(x) ≥ vα(x) as n ≥ ∈ for all x ⇐ X;
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(ii) for any x ⇐ X, and n = 0, 1, . . . ,

vn+1,α(x)

= min
a⇐A(x)

{
c(x, a) + α

∫
X

vn,α(y)P(dy|x, a)

}
,

(18.2)

where v0,α(x) = 0 for all x ⇐ X, and the nonempty sets

An,α(x) :={a ⇐ A : vn+1,α(x) = c(x, a)

+ α

∫
X

vn,α(y)P(dy|x, a)}

satisfy the following properties: (a) the graph Gr(An,α) = {(x, a) : x ⇐ X, a ⇐
An,α(x)}, n = 0, 1, . . . , is a Borel subset of X × A, and (b) if vn+1,α(x) = ∈,
then An,α(x) = A(x) and, if vn+1,α(x) < ∈, then An,α(x) is compact;

(iii) for any N = 1, 2, . . ., there exists a Markov optimal N-horizon policy (φ0, . . . , φN−1)

and if, for an N-horizon Markov policy (φ0, . . . , φN−1) the inclusionsφN−1−n(x) ⇐
An,α(x), x ⇐ X, n = 0, . . . , N − 1, hold then this policy is N-horizon optimal;

(iv) for α ⇐ [0, 1]
vα(x) = min

a⇐A(x)
{c(x, a)

+ α

∫
X

vα(y)P(dy|x, a)}, x ⇐ X,
(18.3)

and the nonempty sets

Aα(x) :={a ⇐ A : vα(x) = c(x, a)

+ α

∫
X

vα(y)P(dy|x, a)}, x ⇐ X,

satisfy the following properties: (a) the graph Gr(Aα) = {(x, a) : x ⇐ X, a ⇐
Aα(x)} is a Borel subset of X × A, and (b) if vα(x) = ∈, then Aα(x) = A(x)
and, if vα(x) < ∈, then Aα(x) is compact;

(v) for an infinite-horizon there exists a stationary discount-optimal policy φα , and
a stationary policy is optimal if and only if φα(x) ⇐ Aα(x) for all x ⇐ X;

(vi) (Feinberg and Lewis [5, Proposition 3.1(iv)]) if c is inf-compact on X×A, then
the functions vn,α , n = 1, 2, . . ., and vα are inf-compact on X.

18.3 Reduction of POMDPs to COMDPs and Optimality Results

In this section, we formulate the known reduction of a POMDP to the completely
observable Markov decision process (COMDP). Based on general results for MDPs
(Feinberg, Kasyanov, Zadoianchuk [4, Theorem 4.1], Theorem 18.2 states sufficient
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conditions for the validity of the following results for the COMDP: the existence of
stationary optimal policies, the validity of optimality equations, the characterization
of optimal policies via optimality equations, and the convergence of value iterations.
Then, we formulate the main result of this paper, Theorem 18.3, that states sufficient
conditions of these properties in terms of the parameters of the original POMDP.

First, we formulate the well-known reduction of a POMDP to the COMDP
([1, 2, 6, 9, 11]). To simplify notations, we drop sometimes the time parameter.
Given a posterior distribution z of the state x at time epoch n = 0, 1, . . . and given
an action a selected at epoch n, denote by R(B × C|z, a) the joint probability that
the state at time (n + 1) belongs to the set B ⇐ B(X) and the observation at time n
belongs to the set C ⇐ B(Y),

R(B × C|z, a) :=
∫

X

∫

B

Q(C|a, x∗)P(dx∗|x, a)z(dx), (18.4)

where R is a transition kernel on X × Y given P(X) × A; see Bertsekas and Shreve
[1]; or Dynkin and Yushkevich [2]; or Hernández-Lerma [6]; or Yushkevich [11] for
details. Therefore, the probability R∗(C|z, a) that the observation y at time n belongs
to the set C ⇐ B is

R∗(C|z, a) =
∫

X

∫

X

Q(C|a, x∗)P(dx∗|x, a)z(dx), (18.5)

where R∗ is a transition kernel on Y given P(X) × A. By Bertsekas and Shreve
[1, Proposition 7.27], there exist a transition kernel H on X given P(X) × A × Y

such that

R(B × C|z, a) =
∫

C

H(B|z, a, y)R∗(dy|z, a), (18.6)

The transition kernel H( · |z, a, y) defines a measurable mapping H : P(X) × A ×
Y ≥ P(X), whereH(z, a, y)[ · ] = H( · |z, a, y). For each pair (z, a) ⇐ P(X)×A, the
mapping H(z, a, ·) : Y ≥ P(Y) is defined R∗( · |z, a)-a.s. uniquely in y; Dynkin and
Yushkevich [2, p. 309]. It is known that for a posterior distribution zn ⇐ P(X), action
an ⇐ A(x), and an observation yn+1 ⇐ Y, the posterior distribution zn+1 ⇐ P(X) is

zn+1 = H(zn, an, yn+1). (18.7)

However, the observation yn+1 is not available in the COMDP model, and therefore
yn+1 is a random variable with the distribution R∗( · |zn, an), and (18.7) is a stochastic
equation that maps (zn, an) ⇐ P(X) × A to P(P(X)). The stochastic kernel that
defines the distribution of zn+1 on P(X) given P(X) × X is defined uniquely as
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q(D|z, a) :=
∫

Y

1D[H(z, a, y)]R∗(dy|z, a), (18.8)

where

1D[u] =
{
1, u ⇐ D ⇐ B(P(X)),

0, u /⇐ D ⇐ B(P(X));

Hernández-Lerma [7, p. 87]. The measurable particular choice of stochastic kernel
H from (18.6) does not effect on the definition of q from (18.8), since for each pair
(z, a) ⇐ P(X) × A, the mapping H(z, a, ·) : Y ≥ P(Y) is defined R∗( · |z, a)-a.s.
uniquely in y; Dynkin and Yushkevich [2, p. 309].

The COMDP is defined as an MDP with parameters (P(X), A, q, c), where

(i) P(X) is the state space;
(ii) A is the action set available at all state z ⇐ P(X);
(iii) the one-step cost function c : P(X) × A ≥ R, defined as

c(z, a) :=
∫

X

c(x, a)z(dx), z ⇐ P(X), a ⇐ A; (18.9)

(iv) transition probabilities q on P(X) given P(X) × A defined in (18.8).

see Bertsekas and Shreve [1, Corollary 7.27.1, p. 139] or Dynkin and Yushkevich
[2, p. 215], or Hernández-Lerma [6] for details.

If a stationary optimal policy for the COMDP exists and found, it allows the
decision maker to compute an optimal policy for the COMDP. First, we recall how
the initial state distribution z0 ⇐ P(P(X)) can be computed for the COMDP. Similarly
to transition kernels R, R∗, and H, consider a transition kernel

R0(B × C|p) :=
∫

B

Q0(C|x)p(dx), B ⇐ B(X)

on X × Y given P(X). It can be decomposed as

R0(B × C|p) =
∫

C

H0(B|p, y)R∗
0(dy|p), (18.10)

where

R∗
0(C|p) =

∫

X

Q0(C|x)p(dx), C ⇐ B(Y), p ⇐ P(X),

is a transition kernel on Y given P(X) and H0(·|·, ·) is a transition kernel on P(X)

given P(X) × Y that for any initial prior distribution p0 ⇐ P(X) and the inital
observation y0 sets the initial posteriori distribution z0 = H0(p0, y0). Similarly to
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(18.7), the observation y0 is not available in the COMDP, and this equation is a
stochastic equation. In addition, H0(p, y) is defined R∗

0(dy|p)-a.s. uniquely in y for
each p ⇐ P(X).

Similarly to (18.8), the transition kernel

q0(D|p) :=
∫

Y

1D[H0(p, y)]R∗
0(dy|p), (18.11)

on P(X) given P(X) defines the initial posterior distribution. In particular,

z0 := q0(D|p0), D ⇐ P(X). (18.12)

Define a sequence of information vectors

in := (z0, a0, . . . , zn−1, an−1, zn) ⇐ In, n = 0, 1, . . . ,

where z0 ⇐ P(X) is defined in (18.12), zn ⇐ P(X) is recursively defined by Eq. (18.7),
In := P(X) × (A × P(X))n for all n = 0, 1, . . ., with I0 := P(X). An information
policy (I-policy) is a policy in a new COMDP, i.e. I-policy is a sequence δ = {δn :
n = 0, 1, . . . } such that, for each n = 0, 1, . . . , δn( · |in) is a transition kernel on A

given In; Hernández-Lerma [6, p. 88]. Denote by ⇔ the set of all I-policies. Identify
the set of all Markov I-policies with a subset of Δ.

Consider Δ as a subset of Π ; Hernández-Lerma [6, p. 89]. The correspondence
of policies in a new COMDP (I-policies) δ = {δn : n = 0, 1, . . . } in ⇔ with
respective policies πδ = {πδ

n : n = 0, 1, . . . } inΠ is given; Dynkin and Yushkevich
[2, pp. 251, 238] and references therein. Moreover, for all n = 0, 1, . . . ,

πδ
n ( · |hn) := δn( · |in(hn)) for all hn ⇐ Hn. (18.13)

where in(hn) ⇐ In is the information vector determined by the observable history hn

via (18.7). Thus δ and πδ are equivalent in the sense that, for every n = 0, 1, . . . ,
πδ

n assigns the same conditional probability on A as that assigned by δn for any
observable history hn; Dynkin and Yushkevich [2, pp. 251, 238]; Hernández-Lerma
[6, p. 89]. Equality (18.13) yields that I-policy in COMDP is optimal, then the
respective policy in initial POMDP is optimal too. For optimality of policy π ⇐ Π

with initial distribution p necessary and sufficient the optimality of respective δπ ⇐ ⇔
with respective initial distribution zp from (18.12). If δ is stationary, then respective
π is stationary too. Therefore, consider an I-policy δ ⇐ ⇔ as a policy π ⇐ Π ; see, for
example, Dynkin andYushkevich [2, p. 251], Sawaragi and Yoshikawa [10], Rhenius
[9], Yushkevich [11]. The set of policies for the COMDP (P(X),A, q, q0, c) is the
set ⇔ of I-policies; Sawaragi and Yoshikawa [10], Rhenius [9], Yushkevich [11].

This reduction holds formeasurable transition kernelsP,Q,Q0. Themeasurability
of these kernels and cost function c lead to themeasurability of transition probabilities
for the corresponding COMDP. However, it is well known that, except the case of
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finite action sets, measurability of transition probabilities is not sufficient for the
existence of optimal policies in COMDPs. In spite of this certain properties hold
if COMDP satisfies stronger measurability conditions. These properties are provide
the validity of optimality equations

vα(z) = inf
a⇐A

{
c(z, a) + α

∫
P(X)

vα(s)q(ds|z, a)

}
,

where z ⇐ P(X), and the property that vα is a minimal solution of this equation. In
addition if the function c is boundedonP(X)×A, andα ⇐ [0, 1], vα is uniquebounded
solution of the optimality equation and can be found by value iterations. However, if
c is just bounded below on X×A, value iterations cannot be applied; Bertsekas [1].
For COMDPs there are sufficient conditions for the existence of stationary optimal
policies. If the equivalent COMDP satisfies these conditions, then the optimal policy
exists, the value function can be computed by value iterations, the infimum can be
substituted with minimum in the optimality equations, and the optimal policy can
be derived from the optimality equations. We show below that, if POMDP satisfies
these conditions then the COMDP also satisfies them.

For the COMDP, Assumption (W≤) can be rewritten in the following form:

(i) c is K-inf-compact on P(X) × A;
(ii) the transition probability q(·|z, a) is weakly continuous in (z, a) ⇐ P(X) × A.

Theorem 18.1 has the following form for the COMDP (P(X),A, q, c):

Theorem 18.2 (cf. Feinberg, Kasyanov, and Zadoianchuk [4, Theorem 2]). Let
COMDP (P(X),A, q, c) satisfy Assumption (W≤) and, in addition, either Assump-
tion (D) or Assumption (P) holds. Then:

(i) the functions vn, α , n = 0, 1, 2, . . ., and vα are lower semi-continuous on P(X),
and vn,α(z) ≥ vα(z) as n ≥ ∈ for all z ⇐ P(X);

(ii) for any z ⇐ P(X), and n = 0, 1, . . . ,

vn+1, α(z) = min
a⇐A

{c(z, a) + α

∫
P(X)

vn,α(z∗)q(dz∗|z, a)}

= min
a⇐A

{ ∫

X

c(x, a)z(dx) +
∫

X

∫

X

∫

Y

vn,α(H(z, a, y))

× αQ(dy|a, x∗)P(dx∗|x, a)z(dx)
}
,

(18.14)

where v0, α(z) = 0 for all z ⇐ P(X), and the nonempty sets

An,α(z) :=
{

a ⇐ A : vn+1,α(z)

= c(z, a) + α

∫
P(X)

vn,α(z∗)q(dz∗|z, a)
}
,
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where z ⇐ P(X) , satisfy the following properties: (a) the graph Gr(An,α) =
{(z, a) : z ⇐ P(X), a ⇐ An,α(z)}, n = 0, 1, . . . , is a Borel subset of P(X) × A,
and (b) if vn+1,α(z) = ∈, then An,α(z) = A and, if vn+1,α(z) < ∈, then
An,α(z) is compact;

(iii) for any N = 1, 2, . . . , there exists a Markov optimal N-horizon I-policy
(φ0, . . . , φN−1) and if, for an N-horizon Markov I-policy (φ0, . . . , φN−1) the
inclusions φN−1−n(z) ⇐ An,α(z), z ⇐ P(X), n = 0, . . . , N − 1, hold then this
I-policy is N-horizon optimal;

(iv) for α ⇐ [0, 1]

vα(z) = min
a⇐A

{
c(z, a) + α

∫
P(X)

vα(z∗)q(dz∗|z, a)
}

= min
a⇐A

{ ∫

X

c(x, a)z(dx) + α

∫

X

∫

X

∫

Y

vα(H(z, a, y))

× Q(dy|a, x∗)P(dx∗|x, a)z(dx)
}
, z ⇐ P(X),

and the nonempty sets

Aα(z) :={a ⇐ A : vα(z) = c(z, a)

+ α

∫
P(X)

vα(z∗)q(dz∗|z, a)}, z ⇐ P(X),

satisfy the following properties: (a) the graphGr(Aα) = {(z, a) : z ⇐ P(X), a ⇐
Aα(z)} is a Borel subset of P(X) × A, and (b) if vα(z) = ∈, then Aα(z) = A

and, if vα(z) < ∈, then Aα(z) is compact.
(v) for an infinite horizon there exists a stationary discount-optimal I-policy φα ,

and a stationary I-policy is optimal if and only if φα(z) ⇐ Aα(z) for all z ⇐ P(X).

(vi) if the function c is inf-compact, the functions vn,α , n = 1, 2, . . ., and vα are
inf-compact on P(X).

Note that statement (vi) of Theorem 18.2 follows from Feinberg and Lewis [5,
Proposition 3.1(iv)].

Hernández-Lerma [6, Sect. 4.4] provided the following conditions for the exis-
tence of optimal policies for the COMDP: (a)A is compact, (b) the cost function c is
bounded and continuous, (c) the transition probability P(·|x, a) and the observation
kernel Q(·|a, x) are weakly continuous transition kernels; (d) there exists a weakly
continuous H : P(X) × A × Y ≥ P(X) satisfying (18.6). Consider the following
relaxed version of Assumption (d).
Assumption (H) There exists a transition kernel H on X given P(X) × A × Y

satisfying (18.6) such that: if a sequence {zn} ⊥ P(X) converges weakly to z ⇐
P(X), and {an} ⊥ A converges to a ⇐ A, n ≥ ∈, then there exists a subsequence
{(znk , ank )}k√1 ⊥ {(zn, an)}n√1 such that
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H(znk , ank , y) converges weakly to H(z, a, y), n ≥ ∈,

and this convergence takes place R∗( · |z, a) almost surely for all y ⇐ Y.
The following theorem relaxes assumptions (a), (b), and (d) in Hernández-

Lerma [6, Sect. 4.4].

Theorem 18.3 Under the following four conditions:

(a) either Assumption (D) or Assumption (P) holds;
(b) Assumption (W≤) holds for the MDP (X,A, P, c);
(c) either the stochastic kernel R∗(dy|z, a) onY givenP(X)×A is setwise continuous

and Assumption (H) holds, or the stochastic kernel Q(dy|a, x) on Y given A×X

is weakly continuous and there exists a weakly continuous H : P(X)×A×Y ≥
P(X) satisfying (18.6);

the COMDP (P(X),A, q, c) satisfies Assumption (W≤) and therefore statements
(i)–(vi) of Theorem 18.2 hold.

If transition kernelQ(dy|a, x) onY givenA×X is continuous in the total variation,
then Assumption (H) holds, and this leads to the following theorem.

Theorem 18.4 Let the transition kernel P(dx∗|x, a) on X given X × A be weakly
continuous and let the transition kernel Q(dy|a, x) on Y given A×X be continuous
in the total variation. Then: (i) the transition kernel R∗(dy|z, a) on Y given P(X)×A

is setwise continuous, Assumption (H) holds, and (iii) the transition kernel q on P(X)

given P(X) × A is setwise continuous.

Theorems 18.3 and 18.4 imply the following result.

Theorem 18.5 Let assumptions of (a) and (b) from Theorem 18.3 hold and let the
transition kernel Q(dy|a, x) on Y given A × X be continuous in the total variation.
Then statements (i)–(vi) of Theorem 18.2 hold.

18.4 Example

LetX,A andY are nonemptyBorel subsets ofR, {ξn}n√1 is a sequence of independent
and identically distributed random vectors with values in some Borel subset S of a
Polish space. Assume that the generic disturbance ξ has a distributionμ onS. Let also
{ηn}n√1 is a sequence of independent and identically distributed random variables,
that uniformly distributed on [0, 1]. The goal is to minimize the expected discounted
total costs over the infinite time horizon.

Consider a stochastic partially observable control system of the form

xn+1 = F(xn, an, ξn), n = 0, 1, . . . , (18.15)
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yn+1 = G(an, xn+1, ηn), n = 0, 1, . . . , (18.16)

where F and G are given measurable function from X × A × S to X and from
A × X × [0, 1] to Y respectively. The states xn are not observable, while the states
yn are observable.

The transition law of the system can be written as

P(B|x, a) =
∫
S

1{F(x, a, s) ⇐ B}μ(ds).

The observation kernel is given by

Q(C|a, x) =
∫

[0,1]
1{G(a, x, s) ⇐ C}λ(ds),

where λ ⇐ P([0, 1]) is a Lebesgue measure on [0, 1].
It is clear that, if (x, a) ≥ F(x, a, s) is continuous mapping on X × A for every

s ⇐ S, then stochastic kernel P(dx∗|x, a) on X given X × A is weakly continuous.
Assume that G is a continuous mapping on A × X × [0, 1], its derivative by the

last variable exists (we denote it by g) is a continuous mapping on A × X × [0, 1]
and it has a fixed sign, i.e. for some constant β > 0 we have |g(a, x, s)| √ β for any
a ⇐ A, x ⇐ X, s ⇐ G(a, x, [0, 1]), where G(a, x, [0, 1]) = {G(a, x, s∗) : s∗ ⇐ [0, 1]}.
Then it is possible to show that that the observation transition kernel Q on Y given
A × X is continuous in the total variation.

Finally, we assume that one-period cost c : X × A ≥ R is K-inf-compact
function (see for details Feinberg, Kasyanov, and Zadoianchuk [3]), it is bounded
from below. Then the MDP satisfies Assumption (W≤), that is, K-inf-compactness
of the cost function c and weak continuity of the transition kernel P that describes
transition probabilities for the MDP. In addition, the observation transition kernel Q
is continuous in the total variation. Therefore, the corresponding COMDP satisfies
Assumption (W≤). Thus, in view of Theorems 18.3–18.5 for the COMDP there exist
a stationary optimal, they satisfy optimality equations, and the value function can be
computed via value iterations. By using the standard known procedures [6, Chap. 4],
an optimal policy for the COMDP can be used to construct an optimal policy for the
initial problem, which is typically nonstationary.

18.5 Conclusions

This presentation studies POMDPs with Borel state, action, and observation spaces
satisfying mild continuity assumptions that guarantee the following properties for
the underlying fully observableMDP: (i) the existence of stationary optimal policies,
(ii) validity of optimality equations, and (iii) convergence of value iterations for the
expected total discounted costs as well as for the expected total costs, when the one-
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step cost function is nonnegative. This presentation provides additional sufficient
conditions under which the COMDP possesses the same continuity assumptions
as the underlying MDP and, therefore, properties (i)–(iii) are also satisfied for the
COMDP. One of such sufficient conditions is the continuity of the observation transi-
tion kernel in the total probability; see Theorem 18.5. Therefore, this paper provides
theoretical foundations to analyze POMDPs with general state and action spaces and
with expected total cost criteria.
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Chapter 19
On Existence of Optimal Solutions to Boundary
Control Problem for an Elastic Body
with Quasistatic Evolution of Damage

Peter I. Kogut and Günter Leugering

Abstract We study an optimal control problem for the mixed boundary value
problem for an elastic body with quasistatic evolution of an internal damage vari-
able. We use the damage field ε = ε(t, x) as an internal variable which measures
the fractional decrease in the stress-strain response. When ε = 1 the material is
damage-free, when ε = 0 the material is completely damaged, and for 0 < ε < 1
it is partially damaged. We suppose that the evolution of microscopic cracks and
cavities responsible for the damage is described by a nonlinear parabolic equation,
whereas the model for the stress in elastic body is given as σ = ε(t, x)Ae(u). The
optimal control problem we consider in this paper is to minimize the appearance of
micro-cracks and micro-cavities as a result of the tensile or compressive stresses in
the elastic body.

19.1 Introduction

The damage modeling in the context of industrial applications is in its infancy—
corrosion, multi-micro cracking etc. This makes this problem extremely complex.
The main idea of a novel approach to modeling material damage is to use the
so-called damage field ε = ε(t, x) as an internal variable which measures the frac-
tional decrease in the stress-strain response. The evolution of the damage field is
derived from the principle of virtual work under appropriate assumptions on the
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system’s free energy, the dissipation pseudopotential, and the spatial interactions of
the microcracks. In this approach the damage field ε varies between one and zero at
each point in the body. When ε = 1 the material is damage-free, when ε = 0 the
material is completely damaged, and for 0 < ε < 1 it is partially damaged. The evo-
lution of the damage field is usually described by a parabolic inclusion or equation
with a damage source function φ which depends on the mechanical compression or
tension [7]. At the same time, the model for the stress is given as σ = ε(t, x)Ae(u).
Without the damage parameter ε , this is the classical model of elastic material. How-
ever, if parameter ε varies in the interval [0, 1], the corresponding elasticity system

−div (ε Ae(u)) = f

becomes degenerate.
In this paper we assume that the elastic body under consideration occupies the

domain ω and is clamped on the part S of its boundary, and the rest part of the
boundary Φ = ξω \ S is the influence zone of a Neumann control. Therefore, the
control variable is the density of a surface traction p acting onΦ . The optimal control
problem we consider in this paper aims at two objectives. On the one hand we try
to minimize the discrepancy between a given displacement field ud and the solution
of the initial-boundary value problem by choosing an appropriate surface traction
p → Pad . On the other hand, we wish to minimize the appearance of micro-cracks
and micro-cavities as a result of the tensile or compressive stresses in the elastic
body. To the best knowledge of authors the existence of optimal solutions for the
above problem is an open question. Moreover, only few papers deal with optimal
control problems for degenerate partial differential equations (see for example [1–3,
5, 6]).

19.2 Notation and Preliminaries

Letω be a bounded open connected subset ofRN (N ⇐ 2) with Lipschitz boundary.
We assume that ω is occupied by some elastic body and its outer surface ξω is
divided into two disjoint measurable parts ξω = Φ ≥ S. Let the sets S and Φ have
positive (N − 1)-dimensional measures and let S be closed.

For any subset E ∈ R
N we denote by |E | its N -dimensional Lebesgue measure

L N (E). Let ϕE be the characteristic function of a subset E ∈ R
N , i.e. ϕE (x) = 1

if x → E , and ϕE (x) = 0 if x ⊂→ E .
We will often use the Lebesgue spaces of vector-value functions. For example,

for the L2-space of vector-valued functions u(x) = (u1(x), . . . , nN (x))t → R
N

we use the notation L2(ω)N = L2(ω,RN ). At the same time, L2(ω)
N (N−1)

2 =
L2

(
ω;R N (N−1)

2
)
is the space of square-summable functions whose values are sym-

metric matrices. We denote by S
N := R

N (N−1)
2 the set of all symmetric matrices

π = [πi j ]N
i, j=1, (πi j = π j i ). We suppose that SN is endowed with the euclidian
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scalar product ξ · η = tr(ξ η) = πi jγi j and with the corresponding euclidian norm
∗ξ∗SN = (π · π)1/2. Hereinafter, we adopt the convention regarding summation with
respect to repeating indices. In particular, ξ2 = πi jπi j .

We denote by A(x) = [
Akl(x)

]N
k, l=1 =

{
akl

i j (x)
}
an elasticity tensor at a material

point x → ω . The action of the elasticity tensor A(x) on the matrix ξ → S
N is defined

by A(x)ξ =
{

akl
i j (x)πkl

}
. Then, A(x)ξ ·ξ = akl

i j (x)πklπi j is the elastic energy density.

It is assumed that A(x) satisfies the usual symmetry conditions:

akl
i j (x) = alk

ji (x) = akj
il (x), ∼ i, j, k, l = 1, 2, . . . , N . (19.1)

Let α1 and α2 be two fixed constants such that α2 > α1. We define A α2
α1 (ω) as

the set of all symmetric elasticity tensors A(x) =
{

akl
i j (x)

}
such that the positive

definiteness condition holds:

α1ξ
2 √ A (x)ξ · ξ √ α2ξ

2 a.e. in ω ∼ ξ → S
N . (19.2)

In order to describe a quasistatic evolution of damage in the elastic body ω , we
denote by u(x) = (u1(x), . . . , uN (x)) the displacement field, β(x) = {

βi j (x)
}
the

stress tensor, and e(u) = {
ei j (u)

}
the strain tensor. We assume that for every smooth

vectoru(x) = (u1(x), . . . , uN (x)) the formula for the strain tensor ei j (u) is provided
by the Cauchy law of small deformations

ei j (u) = 1

2

(
ξui

ξx j
+ ξu j

ξxi

)
, ∼ i, j = 1, . . . , N . (19.3)

It is clear that e(u) → S
N and e(u) is the symmetric part of the gradient of a dis-

placement u. Thus e(u) = 1
2

(≤u + (≤u)t
)
, where the gradient of a displacement

u → R
N is the (N × N )matrix≤u the entries of which are defined by (≤u)i j := ξui

ξx j
.

Hence, for any symmetric tensor A → A α2
α1 (ω), we have Ae(u) = A≤u. There-

fore, we will use indifferently both expressions. Note also that the divergence of a
smooth matrix σ (x) is the vector div (σ ) → R

N the components of which are defined
by (div (σ ))i := ∑N

j=1
ξβi j
ξx j

.
Let ωT = (0, T ) × ω for some T > 0. Let ε denote a damage field in ωT

and measures the fractional decrease in the strength of the material. Usually, for an
isotropic material, the damage field ε = ε(t, x) is defined as the ratio ε = ε(t, x) =
Eef f

E between the effective modulus of elasticity Eef f and that of the damage-free
material E . It follows from this definition that the damage field should only have
values between 0 and 1. Since every damage ε : ωT ⇔ [0, 1] gives rise to a measure
on the measurable subsets of ωT through integration, we will denote this measure
by ε . Thus ε(E) = ∫

E ε dz for measurable sets E ∈ ωT . We will use the standard
notation L2(ωT , ε dz) for the set of measurable functions f on ωT such that
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∗ f ∗L2(ωT , ε dz) =
(∫

ωT

f 2 ε dz

)1/2

=
(∫ T

0

∫
ω

f 2 ε dxdt

)1/2

< +⊥.

Let C⊥
0 (RN ; S) = {

θ → C⊥
0 (RN ) : θ = 0 on S

}
be the set of smooth damages in

ω . We define the space H1(ω; S) as the closure of C⊥
0 (RN ; S) with respect to the

norm (∫
ω

[
y2 + |≤ y|2

RN

]
dx

)1/2

.

Let Z = L2(0, T ; H1(ω)), V = L2(0, T ; H1(ω; S)). Let Z ′ = L2(0, T ;
H1(ω)′) and V ′ = L2(0, T ; H1(ω; S)′) be their dual. The following theorem
plays an important role in the study of an quasistatic evolution of damage in an
elastic bodies (see Simon [10]).

Theorem 19.1 Let us define the Banach space

W =
{
ε : ε → Z ,

ξε

ξt
→ Z ′

}
,

equipped with the norm of the graph. Then, the following properties hold true:

1. the embedding W Ω⇔ L2(0, T ; L2(ω)) is compact;
2. one has the embedding

W Ω⇔ C([0, T ]; L2(ω)), (19.4)

where, C([0, T ]; L2(ω)) denotes the space of measurable functions on [0, T ]×
ω such that ε(t, ·) → L2(ω) for any t → [0, T ] and such that the map t →
[0, T ] ∞⇔ ε(t, ·) → L2(ω) is continuous;

3. for any ε, Λ → W

d

dt

∫
ω

ε(t, x)Λ(t, x) dx = 〈
ε ′(t, ·), Λ(t, ·)〉Z ′,Z + 〈

Λ′(t, ·), ε(t, ·)〉Z ′,Z .

(19.5)

Definition 19.1 We say that a damage ε : ωT ⇔ [0, 1] is substantial in ω , if

ε−1 ⊂→ L⊥(ωT ) and ε−1 → L1(ωT ). (19.6)

Note that in this case the functions in L2(ωT , ε dxdt) are Lebesgue integrable on
ωT .

Let W be the closure of the set of pairs
{
(u, e(u)) : u → C⊥

0 (RN ; S)N
}
in the

product of spaces L1(ω)N × L1(ω)
N (N+1)

2 . Thus the elements of W are pairs (u, z),
where u is a vector and z = e(u) is the symmetric gradient of the vector u. In what
follows, we define the space W 1,1(ω; S) as the union of the first components u of
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W . Following standard technique, it is easy to show that W 1,1(ω; S) is a Banach
space with respect to the norm ∗u∗W 1,1(ω;S) = ∫

ω

[|u|RN + ∗e(u)∗SN

]
dx . To each

damage field ε(t, x) we may associate two weighted spaces

Wε (ω × (0, T ); S) and Hε (ω × (0, T ); S),

where Wε (ω × (0, T ); S) is the set of vector-functions u → L1(0, T ;W 1,1(ω; S))

for which the norm

∗u∗ε =
( ∫ T

0

∫
ω

(
u2 + e2(u)ε

)
dxdt

)1/2
(19.7)

is finite, and Hε (ω × (0, T ); S) is the closure of the set

{
∂(t)ϕ(x) : ∂ → C⊥

0 (0, T ), ϕ → C⊥
0 (RN ; S)N

}
(19.8)

in the Wε (ω × (0, T ); S)-norm. Note that due to the estimates

∫ T

0

∫
ω

|u|RN dxdt √
( ∫ T

0

∫
ω

u2 dxdt
)1/2√

T |ω| √ C∗u∗ε , (19.9)

∫ T

0

∫
ω

∗e(u)∗ dxdt :=
∫ T

0

∫
ω

(e(u) · e(u))1/2 dxdt

√
( ∫ T

0

∫
ω

e2(u)ε dxdt
)1/2( ∫ T

0

∫
ω

ε−1 dxdt
)1/2 √ C∗u∗ε ,

(19.10)

the space Wε (ω × (0, T ); S) is complete with respect to the norm ∗ · ∗ε . Moreover,
it is clear that Hε (ω × (0, T ); S) ≈ Wε (ω × (0, T ); S), and Wε (ω × (0, T ); S),
Hε (ω × (0, T ); S) are Hilbert spaces endowed with the scalar product

(u, v)ε =
∫ T

0

∫
ω

[u · v + e(u) · e(v)ε ] dxdt. (19.11)

If the damage field ε = ε(t, x) is bounded between two positive constants, then it is
easy to verify that

Wε (ω × (0, T ); S) = Hε (ω × (0, T ); S). (19.12)

However, for a “substantial” damage ε in the sense of Definition 19.1, the set of
smooth functions (19.8) is not dense in Wε (ω × (0, T ); S). Hence the identity
(19.12) is not always valid.
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19.3 Radon Measures and Convergence in Variable Spaces

By a nonnegative Radon measure on ωT we mean a nonnegative Borel measure
which is finite on every compact subset of ωT . The space of all nonnegative Radon
measures onωT will be denoted byM+(ωT ). According to theRieszRepresentation
Theorem, each Radon measure μ → M+(ωT ) can be interpreted as element of the
dual of the space C0(ωT ) of all continuous functions vanishing at infinity. If μ is a
nonnegative Radon measure onωT , we will use Lr (ωT , dμ), 1 √ r √ ⊥, to denote
the usual Lebesgue space with respect to the measureμwith the corresponding norm

∗ f ∗Lr (ωT , dμ) =
(∫

ωT
| f (x)|r dμ

)1/r
.

Let {μk}k→N , μ be Radon measures such that μk
∀
Δ μ inM+(ωT ), i.e.,

lim
k⇔⊥

∫
ωT

∂θ dμk =
∫

ωT

∂θ dμ ∼∂ → C0(R), ∼θ → C0(R
N ), (19.13)

where C0(R
N ) is the space of all compactly supported continuous functions.

A typical example of such measures is

dμk = εk(t, x) dxdt, dμ = ε(t, x) dxdt, where 0 √ εk Δ ε in L1(ωT ).

(19.14)
Let us recall the definition and main properties of convergence in the variable L2-
space.

1. A sequence
{
vk → L2(ωT , dμk)

N
}

k→N is called bounded if

lim sup
k⇔⊥

∫
ωT

|vk |2RN dμk < +⊥.

2. A bounded sequence
{
vk → L2(ωT , dμk)

N
}

k→N converges weakly to
v → L2(ωT , dμ)N if limk⇔⊥

∫
ωT

vk · ϕ dμk = ∫
ωT

v · ϕ dμ for any ϕ →
C⊥
0 (ωT )N , which is denoted as vk Δ v in L2(ωT , dμk)

N .
3. The strong convergence vk ⇔ v in L2(ωT , dμk)

N means that v → L2(ωT , dμ)N

and

lim
k⇔⊥

∫
ωT

vk · zk dμk =
∫

ωT

v · z dμ as zk Δ z in L2(ωT , dμk)
N . (19.15)

The following convergence properties in variable spaces hold:

(a) Compactness: if a sequence is bounded in L2(ωT , dμk)
N , then this sequence is

compact in the sense of the weak convergence in L2(ω, dμk)
N ;

(b) Lower semicontinuity: if vk Δ v in L2(ωT , dμk)
N , then
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lim inf
k⇔⊥

∫
ωT

|vk |2RN dμk ⇐
∫

ωT

|v|2
RN dμ; (19.16)

(c) Strong convergence: vk ⇔ v if and only if vk Δ v in L2(ωT , dμk)
N and

lim
k⇔⊥

∫
ωT

|vk |2RN dμk =
∫

ωT

|v|2
RN dμ. (19.17)

For our further analysis we make use the following concept.

Definition 19.2 We say that a bounded sequence

{
(εn, un) → L2(ωT ) × Wεn (ω × (0, T ); S)

}
n→N (19.18)

w-converges to (ε, u) → L2(ωT ) × L1(0, T ;W 1,1(ω; S)) as n ⇔ ⊥, if

εn Δ ε in L2(ωT ), (19.19)

un Δ u in L2(ωT )N , (19.20)

e(un) Δ e(u) in the variable space L2(0, T ; L2(ω, εn dx)
N (N+1)

2
)
, (19.21)

that is,

lim
n⇔⊥

∫ T

0

∫
ω

εnγ dxdt =
∫ T

0

∫
ω

εγ dxdt ∼ γ → L2(ωT ), (19.22)

lim
n⇔⊥

∫ T

0

∫
ω

un · λ dxdt =
∫ T

0

∫
ω

u · λ dxdt ∼λ → L2(ωT )N , (19.23)

and

lim
n⇔⊥

∫ T

0

∫
ω

εne(un) · ξ(x)φ(t) dxdt =
∫ T

0

∫
ω

εe(u) · ξ(x)φ(t) dxdt

∼ ∂ → C⊥
0 (0, T ), ∼ ξ → C⊥

0 (ω; SN ).

(19.24)

In order to verify the correctness of this definition, we give the following result.

Lemma 19.1 Let
{
(εn, un) → L2(ωT ) × Wεn (ω × (0, T ); S)

}
n→N be a sequence

such that

(i) this sequence is bounded, i.e.
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sup
n→N

[∫ T

0

∫
ω

(
ε 2

n + u2
n + e2(un)εn

)
dxdt

]
< +⊥; (19.25)

(ii) there exists an element ε → L1(ωT ) such that

εn ⇔ ε and ε−1
n ⇔ ε−1 in L1(ωT ) as n ⇔ ⊥, (19.26)

(iii) εn : ωT ⇔ [0, 1] for all n → N.

Then, this sequence is relatively compact with respect to w-convergence. Moreover,
each w-limit pair (ε, u) belongs to the corresponding space L2(ωT ) × Wε (ω ×
(0, T ); S).

Proof To begin with, we note that the condition (19.25) and estimates (19.9)–
(19.10) immediately imply the boundedness of the sequence in L2(ωT ) × L1(0, T ;
W 1,1(ω; S)). The uniform boundedness of {εn}n→N in L2(ωT ) and property (19.26)
ensure that the limit damage field ε belongs to L2(ωT ) as well. Moreover, we have

(see the property (19.14)): dεn := εn dxdt
∀
Δ ε dxdt =: dε in M+(ωT ).

Then, the compactness criterium of the weak convergence in variable spaces
(see property (a)) and condition (19.25) leads us to the existence of a pair (u, v) →
L2

(
0, T ; L2(ω)N

)× L2
(
0, T ; L2(ω, ε dx)

N (N+1)
2

)
such that, within a subsequence

of {un}n→N,
un Δ u in L2(ωT )N , (19.27)

e(un) Δ v in variable space L2(0, T ; L2(ω, εn dx)
N (N+1)

2
)
. (19.28)

Our aim is to show that v = e(u) and u → Wε (ω × (0, T ); S). Indeed, for any
θ → C⊥

0 (ω) and ∂ → C⊥
0 (0, T ), we have

∫ T

0

∫
ω

ε−1
n θ∂εn dxdt =

∫ T

0

∫
ω

θ∂ dxdt =
∫ T

0

∫
ω

ε−1θ∂ε dxdt,

i.e. ε−1
n Δ ε−1 in L2(ωT , dεn). Moreover, the strong convergence in (19.26)2

implies the relation

lim
n⇔⊥

∫ T

0

∫
ω

ε−2
n εn dxdt = lim

n⇔⊥

∫ T

0

∫
ω

ε−1
n dxdt =

∫ T

0

∫
ω

ε−2ε dxdt.

Hence, ε−1
n ⇔ ε−1 strongly in L2(ωT , dεn) (see property (c)), and therefore,

∂ξε−1
n ⇔ ∂ξε−1 strongly in L2(0, T ; L2(ω, εn dx)

N (N+1)
2

)
(19.29)

for each ∂ → C⊥
0 (0, T ) and ξ → C⊥

0 (ω;SN ). Further, we note that for every
measurable subset K ∈ ωT , the estimate
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∫
K

∗e(un)∗
SN dz √

(∫
K

ε−1
n dz

)1/2 (∫
K

∗e(un)∗2
SN εn dz

)1/2

√ C

(∫
K

ε−1
n dz

)1/2

implies the equi-integrability of the family
{∗e(un)∗SN

}
n→N. Hence, the sequence{∗e(un)∗SN

}
n→N is weakly compact in L1(ωT ), whichmeans the weak compactness

of the matrix-valued sequence {e(un)}n→N in L1(0, T ; L1(ω;SN )). As a result, by
the properties of the strong convergence in variable spaces, we obtain

∫ T

0

∫
ω

e(un) · ξ(x)φ(t) dxdt =
∫ T

0

∫
ω

e(un) · (
ξ(x)φ(t)ε−1

n

)
εn dxdt

by (19.15), (19.28), and (19.29)−⇔
∫ T

0

∫
ω

v · (
ξ(x)φ(t)ε−1) ε dxdt

=
∫ T

0

∫
ω

v · ξ(x)φ(t) dxdt ∼ ∂ → C⊥
0 (0, T ), ∼ ξ → C⊥

0 (ω; SN ).

Thus, in view of the weak compactness property of the sequence {e(un)}n→N in
L1(0, T ; L1(ω;SN )), we conclude

e(un) Δ v in L1(0, T ; L1(ω;SN )) as n ⇔ ⊥. (19.30)

Sinceun → L1(0, T ;W 1,1(ω; S)) for all n → N and the space L1(0, T ;W 1,1(ω; S))

is complete, the conditions (19.27) and (19.30) imply e(u) = v, and consequently
u → L1(0, T ;W 1,1(ω; S)). To end the proof, it remains to observe that the conditions
(19.27)–(19.28) guarantee the finiteness of the norm ∗u∗ε (see (19.7)). Hence u →
Wε (ω × (0, T ); S) and this concludes the proof.

As an obvious consequence of this lemma, we have the following result.

Corollary 19.1 The main statement of Lemma 19.1 remains true if we replace the
condition (ii) by the following one: there exists an element ε → L1(ωT ) such that

εn ⇔ ε in L1(ωT ), and ε−1
n ⇔ ε−1 in L2(ωT , dεn).

19.4 The Model of Quasistatic Evolution of Damage in an Elastic
Material

In this sectionwe describe themodel for the control process in an elastic body, present
its variational formulation, and discuss the questions on existence and uniqueness of
weak solution.

We consider an elastic body which occupies the domain ω . We assume that the
body is clamped on the surface S and so the displacement field vanishes there. We
suppose that the remaining part of the boundary Φ = ξω \ S is the influence zone
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of a Neumann control. So, the control variable is the density of surface traction p
acting on Φ . Let f be a given density of volume forces acting in ωT = (0, T ) × ω

for some T > 0.
For a simplicity, we assume that an initial displacement (when t = 0) and an

initial stress tensor are equal to zero. Then, having assumed that the Hooke law
σ i j = ai jklekl , ∼ i, j = 1, . . . , N holds true for the elastic body ω , we adopt the
following relation for the stress σ : ωT ⇔ S

N in the body with damage (see [4, 9]
for the details):

σ (t, x) = ε(t, x)Ae(u(t, x)) a.e. in ωT , (19.31)

where ε = ε(t, x) is a damage field in ωT .
Following the motivation in Kuttler [7], the evolution of the microscopic cracks

and cavities responsible for the damage can be described by the equation

ε ′ − αρε = φ(x, e(u), ε ).

Here the prime denotes the time derivative, ρ is the Laplace operator, α > 0 is a
damage diffusion constant, φ is the damage source function. Usually, it is assumed
that the damage source term φ : ω × S

N × R satisfies some Lipschitz continuity
property and is such that whenever ε > 1, φ(e(u), ε ) √ 0. This assumption makes
sense because there should be no way that the source term for the damage produces
damage greater than 1.

Let εad : ω ⇔ [0, 1] be a given L1(ω)-function satisfying the properties

ε−1
ad → L1(ω), ε−1

ad ⊂→ L⊥(ω).

Let λ∀ be a nonempty compact subset of L1(ω) such that the conditions

εad √ ε √ 1 a.e. in ω, (19.32)

ε : ω ⇔ [0, 1] is smooth function on the surface Φ, (19.33)

ε = 1 on Φ. (19.34)

hold true for every ε → λ∀. So, each element ε : ω ⇔ [0, 1] ofλ∀ can be interpreted
as a substantial time-independent damage field in the sense of Definition 19.1.

The characteristic feature of this set is the following property.

Proposition 19.1 Let
{
ε∀,n

}
n→N and ε∀ be such that ε∀,n ⇔ ε∀ in L1(ωT ) as n ⇔

⊥, and
{
ε∀,n(t, ·)}n→N ∈ λ∀ and ε∀(t, ·) → λ∀ for all t → [0, T ]. Then

ε−1∀,n ⇔ ε−1∀ in L1(ωT ), and ε−1∀,n ⇔ ε−1∀ in L2(ωT , dε∀,n). (19.35)
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Proof In view of the initial assumptions, we may assume that ε−1∀,n ⇔ ε−1∀ almost

everywhere in ωT . Since ε∀,n ⇔ ε∀ in L1(ωT ) and ε−1∀ √ ε−1
ad → L1(ω), it follows

that the sequence
{
ε−1∀,n

}
n→N is equi-integrable on ωT . Hence the property (19.35)1

is a direct consequence of Lebesgue’s Theorem. As for the property (19.35)2, it was
proved in Lemma 19.1. The proof is complete.

As a result, we adopt the following model for the controlled process in ω: for a
given body force f → L2

(
0, T ; L2(ω)N

)
, a surface traction p → Pad , the set λ∀,

and an initial damage field ε0 → L2(ω) for which

∃ ε 0∀ → λ∀ such that ε 0∀ √ ε0 √ 1 a.e. in ω, (19.36)

a displacement field u : ωT ⇔ R
N , a stress field σ : ωT ⇔ S

N , and a damage field
ε : ωT ⇔ R satisfy the relations

− div σ = f in ωT , (19.37)

σ = ε Ae(u) in ωT , (19.38)

σ = 0 on (0, T ) × S, (19.39)

σν = p on (0, T ) × Φ, p → Pad , (19.40)

ε ′ − αρε = φ(e(u), ε ) in ωT , (19.41)

ε(0, ·) = ε0 in ω, (19.42)

ε = 1 on (0, T ) × Φ, ξε/ξn = 0 on (0, T ) × S, (19.43)

∃ ε∀ → λ∀ such that ε∀ √ ε(t, x) √ 1 a.e. in ωT . (19.44)

Here ν is the outward unit normal to Φ , ξ/ξn = niξ/ξxi , ni denotes i th-component
of the unit outward normal vector to S, and Pad is the set of admissible controls to
the process (19.37)–(19.44). For simplicity, we suppose that Pad is defined as

Pad =
{

p → L2(0, T ; L2(Φ )N ) : ∗p∗
L2

(
0,T ;L2(Φ )N

) √ Cp

}
. (19.45)

To begin with, we note that, to the best knowledge of the authors, the existence of
a global weak solution to the initial-boundary value problem (19.37)–(19.44) in an
open question. There are several reasons for this. First, this problem is restricted by
the state constraints (19.44). It means that without the implication of the truncation
operators in the model, the initial conditions (19.42) with properties (19.36) and
parabolic equation (19.41) with boundary conditions (19.43), do not guarantee the
fulfilment of the inequality (19.44). Secondly, even if a damage field is admissible,
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i.e. ε remains between some ε∀ → λ∀ and 1, the properties (19.32)–(19.34), and
(19.44) imply that the original problem (19.37)–(19.40) is a mixed boundary value
problem for the degenerate elasticity system

−div (ε Ae(u)) = f in ωT ,

This means that for some damage field ε(t, x) this problem can exhibit non-
uniqueness of weak solutions [11], the Lavrentieff phenomenon, and other surprising
consequences.

In view of this, we adopt the following concept:

Definition 19.3 We say that a vector-valued function u = u(p, f, ε ) is a weak
solution to the boundary value problem (19.37)–(19.40) for a fixed control p → Pad ,
a given body force f → L2

(
0, T ; L2(ω)N

)
, and a given damagefield ε : ωT ⇔ [0, 1]

satisfying the condition (19.44), if u → Wε (ω × (0, T ); S) and the integral identity

∫ T

0

∫
ω

[
ε(t, x)A(x)e(u) · e(ϕ)

]
∂ dxdt

=
∫ T

0

∫
ω

f · ϕ∂ dxdt +
∫ T

0

∫
Φ

p · ϕ∂ dH N−1dt

(19.46)

holds for any ϕ → C⊥
0 (RN ; S)N and ∂ → C⊥

0 (0, T ).

As was mentioned in Sect. 19.2, the set of smooth functions (19.8) is not dense in
the weighted space Wε (ω×(0, T ); S). Hence, we can not assert that a weak solution
to the degenerate elasticity problem (19.37)–(19.40) is unique. Further, we make use
the following result:

Proposition 19.2 Let Φ be a Lipschitz continuous part of the boundary ξω . Let
ε : ωT ⇔ [0, 1] be a damage field satisfying the estimate (19.44). Then there exists
a bounded linear operator

γΦ : Wε (ω × (0, T ); S) ⇔ L2(0, T ; H1/2(Φ )N )
(19.47)

such that

(i) γΦ (u) = u|Φ if u → Wε (ω × (0, T ); S) ∪ C
([0, T ]; C(ω)N

)
,

(ii) ∗γΦ (u)∗L2(0,T ;H1/2(Φ )N ) √ C∗u∗Wε (ω×(0,T );S) for each vector-valued func-
tion u → Wε (ω × (0, T ); S) with the constant C independent of Φ .

Corollary 19.2 Under the assumptions of Proposition 19.2, the space Wε (ω ×
(0, T ); S) does not contain rigid displacements. In other words, if û ⊂= 0 is
a vector-valued function for which there exists a sequence of smooth functions{
ϕ → C⊥

0

(
0, T ; C⊥

0 (RN )N
)}

n→N such that
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ϕn ⇔ û in L2(ωT )N , e(ϕn) ⇔ 0 in L2(0, T ; L2(ω, ε dx)
N (N+1)

2
)
,

then û ⊂→ Wε (ω × (0, T ); S).

We now give the variational formulation of the initial boundary value problem
(19.41)–(19.43).

Definition 19.4 Let p → Pad , f → L2
(
0, T ; L2(ω)N

)
, and ε0 → L2(ω) be given

functions. We say that a pair (ε, u) → Z × Wε (ω × (0, T ); S) is a corresponding
weak variational solution to the initial-boundary value problem (19.37)–(19.44) with
a nonlinear source for the damage φ : L1(0, T ;W 1,1(ω; S)) × Z ⇔ L2(ωT ), if

ξε

ξt
→ Z ′, ε − 1 → V , (19.48)

and there is an element ε∀ → λ∀ such that the following relations hold true

∫ T

0

∫
ω

[
ε(t, x)A(x)e(u) · e(ϕ)

]
∂ dxdt =

∫ T

0

∫
ω

f · ϕ∂ dxdt

+
∫ T

0

∫
Φ

p · ϕ∂ dH N−1dt ∼ϕ → C⊥
0 (RN ; S)N , ∼∂ → C⊥

0 (0, T ),

(19.49)

〈
ε ′, θ∂

〉
Z ′,Z + α

∫ T

0

∫
ω

≤ε · ≤θ ∂ dxdt

=
∫ T

0

∫
ω

φ(ε, e(u))θ∂ dxdt ∼θ → C⊥
0 (RN ;Φ ), ∼∂ → C⊥

0 (0, T ),

(19.50)

ε(0, ·) = ε0(·) in ω, (19.51)

ε∀ √ ε(t, x) √ 1 for all t → [0, T ] and a.e. x → ω. (19.52)

Remark 19.1 As follows from Theorem 19.1, the condition (19.52) is reasonable.
It means that the initial damage field ε0 → L2(ω) must also be restricted by this
inequality.

Remark 19.2 It is worth to notice that the original initial-boundary value problem
(19.37)–(19.44) is ill-possed, in general. This means that there are no reasons to
suppose that for every admissible initial data p → Pad , f → L2

(
0, T ; L2(ω)N

)
, ε0 →

L2(ω), and ε∀ → λ∀ this system admits at least oneweak variational solution (ε, u) →
Z ×Wε (ω ×(0, T ); S) in the sense of Definition 19.4. At the same time, by analogy
with [5, 6] it canbe shown that this systemmayhave an infinitelymanyweak solutions
(ε, u) for some fixed admissible control p → Pad .
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19.5 Setting of the Optimal Control Problems and Existence
Theorem for Optimal Traction

The optimal control problem we consider in this paper is twofold. On the one
hand we try to minimize the discrepancy between a given displacement field
ud → L2

(
0, T ; L2(ω;RN )

)
and the solution of the problem (19.37)–(19.44) by

choosing an appropriate surface traction p → Pad . On the other hand, we wish to
minimize the appearance of micro-cracks and micro-cavities as a result of the tensile
or compressive stresses in the elastic body. More precisely, we are concerned with
the following optimal control problem

Minimize

{
I (p, u, ε ) =

∫ T

0

∫
ω

|u − ud |2
RN dxdt

+
∫ T

0

∫
ω

|ε − 1| dxdt +
∫ T

0

∫
ω

∗e(u)∗2
SN ε dxdt

}

(19.53)

subject to the constraints (19.37)–(19.45).
We introduce the set of admissible solutions to the original optimal control prob-

lem as follows:

Ξ := {
(p, ε, u)

∣∣ p → Pad , ε → Z , u → Wε (ω × (0, T ); S),

(ε, u) is a weak variational solution to 19.37–19.44

in the sense of Definition 19.4} . (19.54)

We say that a triplet (p0, ε 0, u0) → L2
(
0, T ; L2(Φ )N

) × Z × Wε 0(ω × (0, T ); S)

is optimal for problem (19.53), (19.37)–(19.45) if

(p0, ε 0, u0) → Ξ and I (p0, ε 0, u0) = inf
(p,ε,u)→Ξ

I (p, ε, u). (19.55)

Remark 19.3 Note that due to the estimates (19.9) and (19.10),we have the following
obvious inclusion for the set of admissible solutions

Ξ ∈ L2(0, T ; L2(Φ )N ) × L2(0, T ; H1(ω)) × L1(0, T ;W 1,1(ω; S)
)
.

However, the characteristic feature of this set is the fact that for different admis-
sible controls p → Pad and, therefore, for different admissible damage fields
ε : ωT ⇔ [0, 1] with properties prescribed above, the corresponding admissible
solutions (p, ε, u) of optimal control problem (19.53), (19.37)–(19.45) belong to
different weighted spaces. It is a non-typical situation from the point of view of the
classical optimal control theory.
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Definition 19.5 We say that the mapping

φ : L1(0, T ;W 1,1(ω; S)) × Z ⇔ L2(ωT ) (19.56)

possesses the property (M) on Ξ , if

(M1) for any open bounded domain Q ∈ R
N with a Lipschitz boundary such that

ω ≈ Q and S ∈ ξ Q, this mapping can be extended to the following one

φ̃ : L1(0, T ;W 1,1(Q; S)) × L2(0, T ; H1(Q)) ⇔ L2(0, T ; L2(Q))

which is weakly-∀ continuous with respect to the w-convergence, i.e. for any
sequence

{
(p, ε̃n, ũn)

}
n→N∈Ξ ∈ L2(0, T ; H1(Q))× L1(0, T ;W 1,1(Q; S))

such that
ũn → Wε̃n

(Q × (0, T ); S) ∼ n → N, (19.57)

(̃εn, ũn)
w⇔ (̃ε , ũ) as n ⇔ ⊥ in the sense of Definition 19.2 (19.58)

(where instead of ω we have to put Q), the equality

lim
n⇔⊥

(
φ̃
(
e(̃un), ε̃n

)
, θ∂

)
L2(0,T ;L2(Q))

= (
φ̃
(
e(̃u), ε̃

)
, θ∂

)
L2(0,T ;L2(Q))

holds ∼θ → C⊥
0 (RN ;Φ ) and ∼∂ → C⊥

0 (0, T );
(M2) the mapping (19.56) is locally bounded in the following sense: for any con-

stants C1, C2 > 0 there is a constant C3 = C3(C1, C2) > 0 such that

∣∣∣ (φ(e(u), ε ), ε − 1)L2(ωT )

∣∣∣ √ C3 (19.59)

provided (u, ε ) → Wε (ω × (0, T ); S) × Z , ε − 1 → V , and

(∗e(u)∗
L2

(
0,T ;L2(ω,ε dx)

N (N+1)
2

) √ C1, ∗ε∗L2(ωT ) √ C2. (19.60)

Remark 19.4 Note that for any admissible initial damage field ε0 → L2(ω), the
verification of the regularity propertyΞ ⊂= ∧ for the original optimal control problem
(19.53), (19.37)–(19.45) is a non-trivial problem, in general. In the particular case,
when the damagefield ε(t, x) is assumed to be strictly separated from0, the regularity
property follows from results of Kuttler & Shillor, where the solvability of a similar
initial-boundary value problem with a fixed surface traction p is studied).

Since our prime interest in this section deals with the solvability of optimal con-
trol problem (19.53), (19.37)–(19.45), we begin with the study of the topological
properties of the set of admissible solutions Ξ .
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Definition 19.6 A sequence {(pn, εn, un) → Ξ}n→N is called bounded if

sup
n→N

[
∗pn∗L2(0,T ;L2(Φ )N ) + ∗εn∗Z + ∗un∗εn

]
< +⊥.

Definition 19.7 We say that a bounded sequence {(pn, εn, un) → Ξ}n→N of admis-
sible solutions τ -converges to a triplet (p, ε, u) → L2

(
0, T ; L2(Φ )N

) × L2(0, T ;
H1(ω)) × L1

(
0, T ;W 1,1(ω; S)

)
if

(S1) pn Δ p in L2
(
0, T ; L2(Φ )N

)
,

(S2) εn Δ ε in Z := L2(0, T ; H1(ω)),
(S3) un Δ u in L2

(
0, T ; L2(ω)N

)
,

(S4) e(un) Δ e(u) in the variable space L2
(
0, T ; L2(ω, εn dx)

N (N+1)
2

)
.

Due to the estimates like (19.9)–(19.10), the inclusion u → L1
(
0, T ;W 1,1(ω; S)

)
is obvious.

Remark 19.5 As immediately follows fromDefinition 19.2 and Rellich-Kondrashov
Theorem (see also Theorem 19.1), if (pn, εn, un)

τ−⇔ (p, ε, u) then (εn, un)
w−⇔

(ε, u).

Lemma 19.2 Let {(pn, εn, un) → Ξ}n→N be a bounded sequence. Then there exists
a triplet

(p, ε, u) → L2(0, T ; L2(Φ )N ) × L2(0, T ; H1(ω)) × L1(0, T ;W 1,1(ω; S)
)

such that, up to a subsequence, (pn, εn, un)
τ−⇔ (p, ε, u) and u → Wε (ω ×

(0, T ); S).

Proof To begin with, we note that by the compactness criterium of the weak con-
vergence in Banach reflexive spaces, there exist a subsequence of {(pn, εn)}n→N, still
denoted by the same indices, and p → L2

(
0, T ; L2(Φ )N

)
, ε → L2(0, T ; H1(ω)) are

such that the conditions (S1)–(S2) hold true. In order to check the rest conditions
(S3)–(S4) of Definition 19.7, we make use the following observation.

Since (pn, εn, un) → Ξ for all n → N, it follows that there is a sequence
{
ε∀,n

}
n→N

in λ∀ such that (see Definition 19.4)

ε∀,n(x) √ εn(t, x) √ 1 for all t → [0, T ] and a.e. x → ω. (19.61)

Moreover, by L1-compactness property of the setλ∀, there exists an element ε̂∀ → λ∀
such that ε∀,n ⇔ ε̂∀ in L1(ωT ) as n ⇔ ⊥. Then Proposition 19.1 implies the strong
convergence

ε−1∀,n ⇔ ε̂−1∀ in L1(ωT ). (19.62)
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Hence, in view of (19.61), we have: εn ⇔ ε, ε−1
n ⇔ ε−1 in L1(ωT ) as n ⇔ ⊥, and

the inequality ε̂∀ √ ε √ 1 holds a.e. inωT . Thus, by Remark 19.5, all suppositions of
Lemma 19.1 are fulfilled. As a result, the fulfilment of the rest conditions (S3)–(S4)
and the inclusion u → Wε (ω × (0, T ); S) for w-limiting component of the sequence
{(εn, un)}n→N, are ensured by Lemma 19.1. The proof is complete.

Our next step deals with the study of topological properties of the set of admissible
solutions Ξ to the problem (19.53), (19.37)–(19.45).

Theorem 19.2 Assume that Ξ ⊂= ∧ and the damage source term φ : SN × R ⇔ R

possesses the property (M). Then for every force f → L2
(
0, T ; L2(ω)N

)
and every

initial damage field ε0 : ω ⇔ [0, 1] satisfying the condition (19.44), the set of
admissible solutions Ξ is sequentially closed with respect to the τ -convergence.

Proof Let {(pn, εn, un) → Ξ}n→N be a bounded τ -convergent sequence of admissi-
ble solutions to the optimal control problem (19.53), (19.37)–(19.45). Let (̂p, ε̂ , û)

be its τ -limit. Our aim is to prove that (̂p, ε̂ , û) → Ξ .
By the definition of the set of admissible controls Pad , we have p̂ → Pad , i.e.

the limit function p̂ is an admissible control. Closely following the proof arguments
of Lemma 19.2, it can be shown there exists a compact in L1(ωT ) sequence of
separating functions

{
ε∀,n

}
n→N ∈ λ∀ with properties (19.61)–(19.62). By Theorem

19.1 we have

εn ⇔ ε̂ strongly in L2(0, T ; L2(ω)) and ε̂ → C([0, T ]; L2(ω)). (19.63)

Hence, εn(t, x) ⇔ ε̂ (t, x) for all t → [0, T ] and a.e. x → ω . Then passing to the
limit in (19.61) and in the relation εn(0, ·) = ε0(·), we deduce: ε̂ (0, ·) = ε0(·) in ω ,
and the inequality ε̂∀(x) √ ε̂ (t, x) √ 1 holds for all t → [0, T ] and a.e. x → ω . Thus
the limit damage field ε̂ = ε̂ (t, x) satisfies the conditions (19.50)–(19.51).

In what follows, we note that in view of the boundedness of the sequence
{(pn, εn, un) → Ξ}n→N there exist constants C1 > 0 and C2 > 0 such that the esti-
mates (19.60) hold true for each pair (εn, un) with n → N. Hence, the (M2)-property
implies

sup
n→N

∣∣∣ (φ(e(un), εn), εn − 1)L2(ωT )

∣∣∣ √ C3.

Since the set
{
θ(x)∂(t)

∣∣ ∼θ → C⊥
0 (RN ;Φ ), ∼∂ → C⊥

0 (0, T )
}
is dense in V

∈ Z , by the completeness arguments and formula (19.5), we come to the energy
identity

∗εn(t) − 1∗2L2(ω)
+ α

∫ t

0
∗≤(εn(s) − 1)∗2L2;RN )

ds

= ∗ε0 − 1∗2L2(ω)
+

∫ t

0

∫
ω

φ(εn, e(un))(εn(s) − 1) dxds ∼ t → [0, T ].
(19.64)
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As a result, following a standard technique (see, for instance, Lions [8]) it can

be shown that the sequence {εn}n→N is bounded inW =
{
ε : ε → Z ,

ξε
ξt → Z ′

}
.

Thus, without lost of generality, we may suppose that for the Z -weak limiting
damage field ε the conditions (19.48) are valid, and

ε ′
n Δ ε̂ ′ in Z ′. (19.65)

It remains to show that the triple (̂p, ε̂ , û) is related by the integral identities (19.49)
and (19.50) for all ϕ → C⊥

0 (RN ; S)N , ∂ → C⊥
0 (0, T ), and θ → C⊥

0 (RN ;Φ ). To do
so, we note that for every n → N the integral identities (19.50) and (19.51) (with pn ,
εn , and un instead of p, ε , and u, respectively), have to fulfil for the test functions

ϕ → C⊥
0 (RN ; S)N and θ → C⊥

0 (RN ;Φ ). In this case e(ϕ) → C⊥
0

(
R

N ; S
) N (N+1)

2

and ξθ → C⊥
0 (RN ;Φ )

N (N+1)
2 for any ξ → S

N . However, these classes are essentially

wider than the space C⊥
0 (ω)

N (N+1)
2 in the definition of the weak convergence in

variable space L2(ω, εn dx)
N (N+1)

2 (see (19.24)). Therefore, in order to pass to the
limit in that integral identities as n ⇔ ⊥, we make use the following trick (see
Buttazzo and Kogut [3]).

Let (̃εn, ũn) → L2(0, T ; H1
loc(R

N ))× L1
(
0, T ;W 1,1

loc (RN ; S)
)
be an extension of

the functions (εn, un) to the whole of spaceRN such that the sequence {(̃εn, ũn)}n→N
satisfies the properties:

ε̃n → L2(0, T ; H1(Q)), ε̃ ′
n → L2(0, T ; (H1(Q))′) (19.66)

π∀ √ ε̃n √ 1 a.e. in QT := (0, T ) × Q, (19.67)

sup
n→N

[
∗̃εn∗L2(0,T ;H1(Q)) + ∗̃un∗L2(0,T ;L2(Q)N )

+ ∗e(̃un)∗
L2

(
0,T ;L2(Q ,̃εn dx)

N (N+1)
2

)] < +⊥
(19.68)

for any bounded domain Q in R
N . Here π∀ → L1(QT ) is a non negative function

such that π−1∀ → L1(QT ) and π∀|ωT
→ λ∀.

Then by analogy with Lemma 19.2 (see also the property (19.63)) it can be proved
that for every bounded domain Q ∈ R

N there exist functions ε̃ → L2(0, T ; H1(Q))

and ũ → Wε̃ (Q × (0, T ); S) such that

ε̃n Δ ε̃ in L2(0, T ; H1(Q)), ũn Δ ũ in L2(0, T ; L2(Q)N )
, (19.69)

εn ⇔ ε̂ strongly in L2(0, T ; L2
loc(R

N )), (19.70)

e(̃un) Δ e(̃u) → L2(0, T ; L2(Q, ε̃ dx)
N (N+1)

2
)

(19.71)
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in the variable space L2
(
0, T ; L2(Q, ε̃n dx)

N (N+1)
2

)
.

It is important to note that in this case we have

ũ = û and ε̃ = ε̂ a.e. in ωT . (19.72)

Taking this fact and (M1)-property of the source term φ into account, we can rewrite
the integral identities (19.49)–(19.50) in the equivalent form

∫ T

0

∫
RN

[̃
εn(t, x)A(x)e(̃un) · e(ϕ)

]
∂ϕω(x) dxdt =

∫ T

0

∫
RN

f · ϕ∂ϕω(x) dxdt

+
∫ T

0

∫
Φ

p · ϕ∂ dH N−1dt ∼ϕ → C⊥
0 (RN ; S)N , ∼∂ → C⊥

0 (0, T ), (19.73)

〈
ε ′

n, θ∂
〉
Z ′,Z + α

∫ T

0

∫
RN

≤ ε̃n · ≤θ ∂ϕω(x) dxdt

=
∫ T

0

∫
RN

φ̃(̃εn, e(̃un))θ∂ϕω dxdt ∼θ → C⊥
0 (RN ;Φ ), ∼∂ → C⊥

0 (0, T ).

(19.74)

In what follows, we note that due to the property (19.70) and the continuity of the
embedding L2(QT ) Ω⇔ L1(QT ) for every bounded Q ∈ R

N , we have ε̃n ⇔ ε̃

strongly in L1(0, T ; L1
loc(R

N )). Hence

∫ T

0

∫
RN

ϕ2
ωε̃n dxdt =

∫ T

0

∫
RN

ϕωε̃n dxdt

−⇔
∫ T

0

∫
RN

ϕωε̃ dxdt =
∫ T

0

∫
RN

ϕ2
ωε̃ dxdt. (19.75)

As follows from convergence properties (19.15) and (19.17), the equality (19.75)
implies the strong convergence ϕω ⇔ ϕω in the variable space L2(0, T ; L2(RN ,

ε̃n dx)). Taking this fact, properties (19.65), (19.69) and (19.71), (M1), and Remark
19.5 into account, we can pass to the limit in (19.73) and (19.74) as n ⇔ ⊥. As a
result, we obtain

∫ T

0

∫
RN

[̃
ε (t, x)A(x)e(̃u) · e(ϕ)

]
∂ϕω(x) dxdt =

∫ T

0

∫
RN

f · ϕ∂ϕω(x) dxdt

+
∫ T

0

∫
Φ

p · ϕ∂ dH N−1dt ∼ϕ → C⊥
0 (RN ; S)N , ∼∂ → C⊥

0 (0, T ),
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〈̂
ε ′, θ∂

〉
Z ′,Z + α

∫ T

0

∫
RN

≤ ε̃ · ≤θ ∂ϕω(x) dxdt

=
∫ T

0

∫
RN

φ̃(̃ε , e(̃u))θ∂ϕω dxdt ∼θ → C⊥
0 (RN ;Φ ), ∼∂ → C⊥

0 (0, T )

which, due to the equalities (19.72), are equivalent to

∫ T

0

∫
ω

[̂
ε (t, x)A(x)e(̂u) · e(ϕ)

]
∂ dxdt =

∫ T

0

∫
ω

f · ϕ∂ dxdt

+
∫ T

0

∫
Φ

p · ϕ∂ dH N−1dt ∼ϕ → C⊥
0 (RN ; S)N , ∼∂ → C⊥

0 (0, T ),

〈̂
ε ′, θ∂

〉
Z ′,Z + α

∫ T

0

∫
ω

≤ ε̂ · ≤θ ∂ dxdt

=
∫ T

0

∫
ω

φ(̂ε , e(̂u))θ∂ dxdt ∼θ → C⊥
0 (RN ;Φ ), ∼∂ → C⊥

0 (0, T ).

Hence, the pair (̂ε , û) → Z × Wε̂ (ω × (0, T ); S) is a weak solution to the initial-
boundary value problem (19.37)–(19.44) under p = p̂ in the sense of Definition ??.
Thus, the τ -limit triplet (̂p, ε̂ , û) belongs to set Ξ , and this concludes the proof.

We are now in a position to state the existence of weak optimal solution to the
problem (19.53), (19.37)–(19.45).

Theorem 19.3 Let ud → L2
(
0, T ; L2(ω;RN )

)
, f → L2

(
0, T ; L2(ω)N

)
, and ε0 →

L2(ω) be given functions. Assume that Ξ ⊂= ∧, the damage source term φ : SN ×
R ⇔ R possesses the property (M), and the initial damage field ε0 : ω ⇔ [0, 1]
satisfies the condition (19.44). Then the optimal control problem (19.53), (19.37)–
(19.45)admits at least one solution (p0, ε 0, u0) → L2(0, T ; H1(ω))×W ×Wε 0(ω×
(0, T ); S).

Proof Since the cost functional I = I (p, u, ε ) is bounded below and Ξ ⊂= ∧,
it provides the existence of a minimizing sequence {(pn, εn, un) → Ξ}n→N to the
problem (19.53). From the inequality

inf
(p,ε,u)→Ξ

I (p, ε, u) = lim
n⇔⊥

[ ∫ T

0

∫
ω

|un − ud |2
RN dxdt

+
∫ T

0

∫
ω

|εn − 1| dxdt +
∫ T

0

∫
ω

∗e(un)∗2
SN ε dxdt

]
< +⊥, (19.76)

there is a constant C > 0 such that
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sup
n→N

∗e(un)∗
L2

(
0,T ;L2(ω,εndx)

N (N+1)
2

) √ C, (19.77)

sup
n→N

∗un∗L2(0,T ;L2(ω)N ) √ C, sup
n→N

∗εn∗L1(0,T ;L1(ω)) √ C. (19.78)

Since the sequence {εn}n→N is restricted by inequalities (19.61), the estimate (19.78)2
implies

sup
n→N

∗εn∗2L2(0,T ;L2(ω))
√ sup

n→N
∗εn∗L1(0,T ;L1(ω)) √ C. (19.79)

Then, by energy equality (19.64) and (M2)-property of the source term φ, we arrive
at the estimate

α∗≤εn∗2L2(0,T ;L2(ω)N )
√ 2α

∫ T

0
∗≤(εn − 1)∗2L2;RN )

dt + 2αT |ω∗

= 2∗ε0 − 1∗2L2(ω)
+ 2

∫ T

0

∫
ω

φ(εn, e(un))(εn − 1) dxdt + 2αT |ω∗
(by (19.77), (19.79), and property (M2))

√ 2∗ε0 − 1∗2L2(ω)
+ 2C3 + 2αT |ω| < +⊥.

Hence, supn→N ∗εn∗Z < +⊥, and in view of the definition of the class of admis-
sible controls Rad , the minimizing sequence {(pn, εn, un) → Ξ}n→N is bounded
in the sense of Definition 19.6. Hence, by Lemma 19.2 there exist functions
p0 → L2

(
0, T ; L2(Φ )N

)
, ε 0 → L2(0, T ; H1(ω)), and u0 → Wε 0(ω × (0, T ); S)

such that, up to a subsequence, (pn, εn, un)
τ−⇔ (p0, ε 0, u0). Moreover, by Theo-

rem 19.1 we have εn ⇔ ε 0 strongly in L2(0, T ; L2(ω)). Hence

εn ⇔ ε̂ strongly in L1(0, T ; L1(ω)). (19.80)

Since the setΞ is sequentially closedwith respect to the τ -convergence (see Theorem
19.2), it follows that the τ -limit triplet (p0, ε 0, u0) is an admissible solution to
the optimal control problem (19.53), (19.37)–(19.45) (i.e. (p0, ε 0, u0) → Ξ ). To
conclude the proof it is enough to observe that by properties (19.16) and (19.80), the
cost functional I is sequentially lower τ -semicontinuous. Thus

I (p0, ε 0, u0) √ lim inf
n⇔⊥ I (pn, εn, un) = inf

(p,ε,u)→Ξ
I (p, ε, u).

Hence (p0, ε 0, u0) is an optimal solution, and we come to the required conclusion.
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Chapter 20
On Existence and Attainability of Solutions
to Optimal Control Problems in Coefficients
for Degenerate Variational Inequalities
of Monotone Type

Olga P. Kupenko

Abstract In this chapter we study an optimal control problem for a nonlinear
monotone variational inequality with degenerate weight function and with the coef-
ficients which we adopt as controls in L→(ε). Since these types of variational
inequalities can exhibit the Lavrentieff phenomenon, we consider the optimal control
problem in coefficients in the so-called class of H -admissible solutions. Using a spe-
cial version of celebrated Compensated Compactness Lemma and the direct method
of Calculus of Variations we discuss the solvability of the above optimal control
problem and prove attainability of H -optimal pairs via optimal solutions of some
non-degenerate perturbed optimal control problems.

20.1 Introduction

The aim of this chapter is to study optimal control problems (OCPs) associated to
nonlinear degenerate elliptic variational inequalities. The control is a matrix of coef-
ficients in themain part of nonlinear elliptic operator. Mainly, we are interested about
solvability of degenerate optimal control problems of this type and attainability of
H -optimal solutions to degenerate problems via optimal solutions of non-degenerate
problems. In particular, since considered degenerate inequalities may exhibit the
Lavrentieff phenomena, which leads to non-uniqueness of weak solutions for such
objects, wewill mostly focus on existence and attainability properties of the so-called
H -optimal solutions to the initial OCP.
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More precisely, we consider the following OCP

I (U , y) =
∫

ε

|y(x) − z∂ (x)|p dx ⇐ inf, (20.1)

U ≥ Mω,Φ
p (ε), y ≥ K , (20.2)

∈−div
(
U (x)ξ(x) [(⊂ y)p−2]⊂ y

)
+ |y|p−2y, v − y∗W ∼ ∈ f, v − y∗W , √v ≥ K

(20.3)
where [ϕp−2] = diag{|ϕ1|p−2, |ϕ2|p−2, . . . , |ϕN |p−2} √ϕ ≥ R

N .
Here, ε is a bounded open subset of RN (N ∼ 1) with Lipschitz boundary,

ξ > 0 is a weight function, z∂ ≥ L p(ε) and f ≥ Lq(ε) are fixed elements,
Mω,Φ

p (ε) ≤ L→(ε;RN×N ) is a class of admissible controls, K is a closed convex
subset of W , where W = W (ε, ξ dx) is a set of functions y ≥ W 1,1

0 (ε) for which
the norm

⇔y⇔ξ =
(∫

ε

(
|y|p + ξ

N∑
i=1

∣∣∣∣ ∂y

∂xi

∣∣∣∣
p
)

dx

)1/p

(20.4)

is finite.
Let p be a real number such that 2 ⊥ p < → and let q be its conjugate, namely

p−1 + q−1 = 1. We say that a weight function ξ = ξ(x) is degenerate in RN if

ξ(x) > 0 a.e. in R
N and ξ + ξ−1/(p−1) ≥ L1

loc(R
N ), (20.5)

and the sum ξ + ξ−1/(p−1) does not belong to L→(ε), in general.
Dealing with degenerate problems leads us to the concept of weighted Sobolev

spaces such as W (ε, ξ dx). In general, these spaces are not new in the literature (see
[5, 6]). They allow to enlarge the class of boundary value problems and variational
inequalities which are solvable by functional-analyticalmethods. In fact, we consider
variational inequality (20.3) with degenerate weight ξ which is not bounded away
from zero and infinity but only satisfying local integrability conditions (20.5). Under
these assumptions the nonlinear differential operator in (20.3) is not coercive in the
classical sense. Here we encounter non-uniqueness of a particular kind: the smooth
functions are, in general, not dense in the weighted Sobolev space W (ε, ξ dx);
that is, if H(ε, ξ dx) is the closure of C→

0 (ε) with respect to the norm (20.4)
then H(ε, ξ dx) = W (ε, ξ dx). In literature this fact is called the Lavrentieff
phenomenon and it leads to surprising consequences like non-uniqueness of solutions
to problem (20.2)–(20.3) (see [14]) and, hence, to several possible alternative settings
of OCPs, depending on the choice of solution space.

As François Murat [12] showed for OCPs in coefficients for elliptic equations,
even if the weight function ξ is non-degenerate, such problems have no solution, in
general. Themain reason of non-existence of optimal solutions is a lack of continuous
dependence of solutions for such elliptic equations on controlswith respect to the cor-
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responding weak topologies in the state and control spaces. To provide solvability for
OCPs in coefficients one should either impose certain additional control restrictions
(see [4]) or relax the initial optimal control problem (see, for instance, [2]). The same
phenomena takes place for variational elliptic inequalities (see [8]).

In view of this we propose to restrict problem (20.1)–(20.3) by introducing some
additional control constraints (see, for instance, [7]).

The chapter is organized as follows. Section20.2 contains some notation and
preliminaries. In Sect. 20.3 we introduce additional control constrains like div-
conditions of a certain type. After that we discuss the classification of admissible
solutions to problem (20.1)–(20.3). In particular, we define the class of W -admissible
solutions and the class of so-called H -admissible solutions. However, we restrict our
analysis with the later one. Section20.4 contains a refinement of celebrated div-curl
lemma of Murat and Tartar for the case of variable Lebesgue and Sobolev spaces.
In Sect. 20.5 using the direct method of Calculus of Variations, we prove the exis-
tence of H -optimal solutions to the problem (20.1)–(20.3). In Sect. 20.6, we deal
with attainability of H -optimal solutions via the optimal solutions to the special
perturbed problems for non-degenerate variational inequalities. In applications a
degenerate weight ξ occurs as the limit of a sequence of non-degenerate weights ξπ

for which the corresponding approximate OCP is solvable (see [8]). The results of
this section answer the following question: if limit points of the family of admissible
solutions (Uπ, yπ) to the perturbed problems appear to be H -admissible solutions to
the original problem (20.1)–(20.3), whether all H -optimal solutions are attainable in
this sense? Note that for the above OCP the attainability and approximability ques-
tions remain in the focus of attention. In particular, similar questions were raised
by Zhikov and Pastukhova in [13, 15] for the degenerate boundary value problems
without controls.

The paper contains a brief review of results obtained by the author in [9, 10] with
correspondent citations.

20.2 Notation and Preliminaries

Weighted Sobolev spaces. For any subset E ≤ ε we denote by |E | its N -dimensional
Lebesgue measure L N (E). The space W 1, 1

0 (ε) is the closure of C→
0 (ε) in the

classical Sobolev space W 1, 1(ε). Let ξ be a degenerate weight in the sense of
(20.5). For a given ε ≤ R

N we associate to this function two weighted Sobolev
spaces W = W (ε, ξ dx) and H = H(ε, ξ dx), where H is the closure of C→

0 (ε)

in W .
Note that the spaces W and H are reflexive Banach spaces with respect to the

norm ⇔ · ⇔ξ due to the estimate

∫
ε

|⊂ y| dx ⊥
(∫

ε

ξ|⊂ y|p
p dx

)1/p (∫
ε

ξ−1/(p−1) dx

)p/p−1

⊥ C⇔y⇔ξ,
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where |ϕ|p =
(

N∑
k=1

|ϕk |p
)1/p

is a Hölder norm of order p in R
N . It is clear that

H ∞ W .
Since the smooth functions are in general not dense in the weight Sobolev space

W , it follows that H = W ; that is, for a “typical” degenerate weight ξ the identity
W = H is not always valid (for the corresponding examples we refer to [14]).
However, if ξ is a non-degenerate weight function, that is, ξ is bounded between
two positive constants, then it is easy to verify that W = H = W 1,p

0 (ε). We recall
that the dual space of H is H≈ = W −1,−p/(p−1)(ε, ξ−1/(p−1) dx) (for more details
see [5]).

Remark 20.1 Assume that there exists a value γ ≥
(

N

p
,+→

)
∀

[
1

p − 1
,+→

)

such that ξ−γ ≥ L1(ε). Then the following result takes place (see [5, pp.

46]): condition (20.5)2 implies that |||y|||ξ,ε =
[∫

ε

∑N
i=1

∣∣∣∣ ∂y

∂xi

∣∣∣∣
p

ξ dx

]1/p

is a

norm of the space H(ε, ξ dx) which is equivalent to (20.4) and he embedding
H(ε, ξ dx) α⇐ L p(ε) is compact and dense.

Monotone operators. Let ω and Φ be constants such that 0 < ω ⊥ Φ < +→.
We define Mω,Φ

p (ε) as a set of all symmetric matrices U (x) = {ai j (x)}1⊥i, j⊥N

in L→(ε;RN×N ) such that the following conditions of growth, monotonicity, and
strong coercivity are fulfilled:

|ai j (x)| ⊥ Φ a.e. in ε √ i, j ≥ {1, . . . , N }, (20.6)(
U (x)([β p−2]β − [ϕp−2]ϕ), β − ϕ

)
RN

∼ 0 a.e. in ε √ β, ϕ ≥ R
N , (20.7)

(
U (x)[β p−2]β, β

)
RN

=
N∑

i, j=1

ai j (x)|β j |p−2 β j βi ∼ ω |β |p
p a.e. in ε. (20.8)

Remark 20.2 It is easy to see that Mω,Φ
p (ε) is a nonempty subset of the space

L→(ε;RN×N ) and its typical representatives are diagonal matrices of the form
U (x) = diag{θ1(x), θ2(x), . . . , θN (x)}, where ω ⊥ θi (x) ⊥ Φ a.e. in ε √ i ≥
{1, . . . , N }.

Considered properties of matrices from Mω, Φ
p (ε) imply the following result.

Lemma 20.1 [9] For every fixed control U ≥ Mω,Φ
p (ε), the operator AU : H ⇐

H≈ defined as

∈AU (y), v∗H =
N∑

i, j=1

∫
ε

(
ai j (x)

∣∣∣∣ ∂y

∂x j

∣∣∣∣
p−2

∂y

∂x j

)
∂v

∂xi
ξ dx +

∫
ε

|y|p−2y v dx,
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is strictly monotone, coercive and semicontinuous (here by the semicontinuity
property we mean that the scalar function t ⇐ ∈AU (y + tv), w∗H is continuous for
all y, v, w ≥ H).

Elliptic Variational Inequalities.FollowingLions [11], let us cite somewell known
results concerning solvability, solution uniqueness and smoothness for
non-degenerate nonlinear variational inequalities which will be useful in the sequel.

Theorem 20.1 [11, Theorem 8.2] Let V be a Banach space and K ≤ V be a closed
convex subset. Suppose also that A : K ⇐ V ≈ is a nonlinear operator and f ≥ V ≈
is a given element of the dual space. The following variational problem: to find an
element y ≥ K such that

∈Ay, v − y∗V ∼ ∈ f, v − y∗V , √v ≥ K , (20.9)

admits at least one solution provided the following conditions:

1. operator A is pseudomonotone, i.e. it is bounded and if yk ⇐ y weakly in V ,
yk, y ≥ K and lim supk⇐→∈A(yk), yk − y∗V ⊥ 0, then

lim inf
k⇐→ ∈A(yk), yk − v∗V ∼ ∈Ay, y − v∗V , √v ≥ V .

2. operator A is coercive, i.e. there exists an element v0 ≥ K such that

∈Ay, y − v0∗V

⇔y⇔V
⇐ +→ as ⇔y⇔V ⇐ →, y ≥ K

Theorem 20.2 [11, Theorem 8.3] If the operator A : K ⇐ V ≈ in Theorem 20.1 is
strictly monotone on K then variational inequality (20.9) admits a unique solution.

The pseudomonotony property plays the key role in solvability of the problem
(20.9). The following result concerns conditions sufficient for fulfillment of this
property.

Proposition 20.1 [11, Proposition 2.5] For a nonlinear operator A : V ⇐ V ≈
the following implication takes place: A is a bounded monotone semicontinuous
operator ∃ A is a pseudomonotone operator.

Referring to Lions [11], we make use of the following assumptions, necessary for
obtaining the main results of the paper.

Hypothesis 1. There exists a reflexive Banach space X such that X ≤ V ≈, the
imbedding X α⇐ V ≈ is continuous, and X is dense in V ≈.

Hypothesis 2. There can be found a duality mapping J : X ⇐ X≈ such that
√ y ≥ K , √ π > 0 there exists an yπ ≥ K such that A(yπ) ≥ X and

yπ + πJ (A(yπ)) = y.
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Theorem 20.3 [11, Theorem 8.7] Assume that Hypotheses 1 and 2 hold true1. Let
operator A : V ⇐ V ≈ be monotone, semicontinuous, bounded and satisfy assump-
tion 2 of theorem 20.1. Then for any solution y of variational inequality (20.9) the
inclusion Ay ≥ X takes place provided f ≥ X.

Smoothing.Throughout the paper π denotes a small parameter which varies within
a strictly decreasing sequence of positive numbers converging to 0. When we write
π > 0, we consider only the elements of this sequence, while writing π ∼ 0, we also
consider its limit π = 0.

Definition 20.1 We say that a weight function ξ with properties (20.5) is approxi-
mated by non-degenerate weight functions {ξπ}π>0 on ε if:

ξπ(x) > 0 a.e. in ε, ξπ + (
ξπ

)−1 ≥ L→(ε), √ π > 0, (20.10)

ξπ ⇐ ξ,
(
ξπ

)−1/(p−1) ⇐ ξ−1/(p−1) in L1(ε) as π ⇐ 0. (20.11)

Remark 20.3 The family {ξπ}π>0 satisfying properties (20.10)–(20.11) is called the
non-degenerate perturbation of the weight function ξ.

Examples of such perturbations can be constructed using the classical smoothing.
For instance, let Q be some positive compactly supported function such that Q ≥
L→(RN ),

∫
RN Q(x) dx = 1, and Q(x) = Q(−x). Then, for a given weight function

ξ ≥ L1
loc(R

N ), we can take ξπ = (ξ)π, where

(ξ)π(x) = 1

πN

∫
RN

Q

(
x − z

π

)
ξ(z) dz =

∫
RN

Q(z)ξ(x + πz) dz. (20.12)

In this case, we say that the perturbation {ξπ = (ξ)π}π>0 of the original degenerate
weight function ξ is constructed by the “direct” smoothing scheme.

Lemma 20.2 ([13]) If ξ, ξ−1/(p−1) ≥ L1
loc(R

N ) then the “direct” smoothing
{ξπ = (ξ)π}π>0 possesses properties (20.10)–(20.11).

Radon measures and convergence in variable spaces. By a nonnegative Radon
measure onε wemean a nonnegativeBorelmeasurewhich is finite on every compact
subset of ε . The space of all nonnegative Radon measures on ε will be denoted
by M+(ε). If μ is a nonnegative Radone measure on ε , we will use Lr (ε, dμ),
1 ⊥ r ⊥ →, to denote the usual Lebesgue space with respect to the measure μ with
the corresponding norm ⇔ f ⇔Lr (ε,dμ) = (∫

ε
| f (x)|r dμ

)1/r .

Let {μπ}π>0, μ be Radon measures such that μπ
≈
Ω μ inM+(ε); that is,

lim
π⇐0

∫
ε

Λ dμπ =
∫

ε

Λ dμ √Λ ≥ C0(R
N ), (20.13)

1 (see the example for V = H1
0 (ε) and X = L2(ε) in [11, Theorem 8.8.])
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whereC0(R
N ) is the spaceof all compactly supported continuous functions.A typical

example of such measures is dμπ = ξπ(x) dx , dμ = ξ(x) dx , where 0 ⊥ ξπ Ω ξ

in L1(ε). Let us recall the definition and main properties of convergence in the
variable L p-space [14].

1. A sequence {vπ ≥ L p(ε, dμπ)} is called bounded if lim sup
π⇐0

∫
ε

|vπ|p dμπ < +→.

2. A bounded sequence {vπ ≥ L p(ε, dμπ)} converges weakly to v ≥ L p(ε, dμ) if
limπ⇐0

∫
ε

vπΛ dμπ = ∫
ε

vΛ dμ for any Λ ≥ C→
0 (ε) and we write vπ Ω v in

L p(ε, dμπ).
3. The strong convergence vπ ⇐ v in L p(ε, dμπ) means that v ≥ L p(ε, dμ) and

lim
π⇐0

∫
ε

vπzπ dμπ =
∫

ε

vz dμ as zπ Ω z in Lq(ε, dμπ). (20.14)

The following convergence properties in variable spaces hold:

(a) Compactness criterium: if a sequence is bounded in L p(ε, dμπ), then this
sequence is compact with respect to the weak convergence.

(b) Property of lower semicontinuity : if vπ Ω v in L p(ε, dμπ), then

lim inf
π⇐0

∫
ε

|vπ|p dμπ ∼
∫

ε

vp dμ. (20.15)

(c) Criterium of strong convergence : vπ ⇐ v if and only if vπ Ω v in L p(ε, dμπ)

and

lim
π⇐0

∫
ε

|vπ|p dμπ =
∫

ε

vp dμ. (20.16)

Concluding this section, we recall some well-known results concerning the
convergence in the variable space L p(ε, ξπdx).

Lemma 20.3 ([14]) If {ξπ}π>0 is a non-degenerate perturbation of the weight func-
tion ξ(x) ∼ 0, then: (A1) (ξπ)−1 ⇐ ξ−1 in Lq(ε, ξπdx). (A2) [ vπ Ω v in
L p(ε, ξπdx)

] =∃ [ vπ Ω v in L1(ε)
]
. (A3) If a sequence {vπ ≥ L p

(ε, ξπdx)}π>0 is bounded, then the weak convergence vπ Ω v in L p(ε, ξπdx)

is equivalent to the weak convergence ξπvπ Ω ξv in L1(ε). (A4) If a ≥ L→(ε)

and vπ Ω v in L p(ε, ξπdx), then avπ Ω av in L p(ε, ξπdx).

Variable Sobolev spaces. Let ξ(x) be a degenerate weight function and let {ξπ}π>0
be a non-degenerate perturbation of the function ξ in the sense of Definition 20.1.We
denote by H(ε, ξπ dx) the closure of C→

0 (ε)with respect to the norm ⇔·⇔ξπ . Since
for every π the function ξπ is non-degenerate, the space H(ε, ξπ dx) coincides with
the classical Sobolev space W 1,p

0 (ε).

Definition 20.2 We say that a sequence {yπ ≥ H(ε, ξπdx)}π>0 converges weakly
to an element y ≥ W as π ⇐ 0, if the following hold: (i) This sequence is bounded.
(ii) yπ Ω y in L p(ε). (iii) ⊂ yπ Ω ⊂ y in L p(ε, ξπdx)N .
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The following result plays an important role in results concerning attainability
properties of optimal solutions.

Theorem 20.4 Let ξπ = (ξ)π be a direct smoothing of a degenerate weight
ξ ≥ L1

loc(R
N ) and let yπ ≥ H(ε, ξπ dx), yπ Ω y in L p(ε), ⊂ yπ Ω v in

L p(ε, ξπ dx)N . Then y ≥ H and v = ⊂ y.

20.3 Setting of the Optimal Control Problem

The OCP, we consider in this paper, is to minimize the discrepancy between a given
distribution z∂ ≥ L p(ε) and the solution y = yU , f of the degenerate variational
inequality by choosing an appropriate matrixU ≥ L→(ε;RN×N ). In fact, we deal
with the minimization problem in the form (20.1)–(20.3).

Definition 20.3 We say that a matrix U = [ai j ] is an admissible control to degen-
erate problem (20.2)–(20.3) if U ≥ Uad , where the set Uad is defined as follows

Uad =
{
U = [a1, . . . , aN ] ≥ Mω,Φ

p (ε)

∣∣∣ (20.17)

|div (ξ ai )| ⊥ ∂i , a.e. in ε, √ i = 1, . . . , N } .

Here, ∂ = (∂1, . . . , ∂N ) ≥ R
N is a strictly positive vector.

In what follows, depending on the choice of solution space, we introduce the main
types of solutions to the above elliptic variational inequality.

Definition 20.4 We say that a function y = y(U , f ) ≥ K is a W -solution to
degenerate variational inequality (20.2)–(20.3) if

∈−div
(
U (x)ξ(x) [(⊂ y)p−2]⊂ y

)
+ |y|p−2y, v − y∗W ∼ ∈ f, v − y∗W , (20.18)

holds for any v ≥ K .

Definition 20.5 Let K̃ be a closure in the space C→
0 (ε) of the set K

⋂
C→
0 (ε),

supposing this intersection nonempty. We say that a function y = y(U , f ) ≥ K̃ is
an H -solution to variational inequality (20.2)–(20.3) if

∈−div
(
U (x)ξ(x) [(⊂ y)p−2]⊂ y

)
+ |y|p−2y, v − y∗H ∼ ∈ f, v − y∗H , (20.19)

holds for any v ≥ K̃ .

Remark 20.4 It is easy to see that the set K̃ ≤ H is closed and convex.

Proposition 20.2 [9] For every control U ≥ Mω,Φ
p (ε) and every f ≥ Lq(ε) there

exists a unique H-solution to degenerate elliptic variational inequality (20.2)–(20.3).
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Remark 20.5 Note that the uniqueness property in Proposition 20.2 immediately
follows from strict monotonicity of the operator AU : H ⇐ H≈ (see Lemma 20.1).

Remark 20.6 In a similar manner we can show the existence and uniqueness of
W -solution to problem (20.2)–(20.3).

Taking this fact into account we can introduce two sets of admissible pairs to the
optimal control problem (20.1)–(20.3), (20.17):

ΔW = {(U , y) ≥ Uad × W | y ≥ K , (U , y) are related by (20.18) } (20.20)

ΔH = {
(U , y) ≥ Uad × H

∣∣ y ≥ K̃ , (U , y) are related by (20.19)
}
. (20.21)

Hence for the given control object described by relations (20.2)–(20.3) with both
fixed control constraints (U ≥ Uad ) and fixed cost functional (20.1), we have two
different statements of the original optimal control problem, namely

〈
inf

(U ,y)≥ΔW

I (U , y)

〉
and

〈
inf

(U ,y)≥ΔH

I (U , y)

〉
.

As a matter of fact, there is no comparison between these problems, in general.
Indeed, having assumed that W = H for a given degenerate weight function ξ ∼ 0,
we can come to the effect which is usually called the Lavrentieff phenomenon. It
means that for someU ≥ Uad and f ≥ Lq(ε) an H -solution yH (U , f ) to problem
(20.2)–(20.3) does not coincide with its W -solution yW (U , f ) [14]. In this paper
we deal with H -solutions to problem (20.2)–(20.3).

Remark 20.7 In view of proposition 20.2, the set ΔH is always nonempty.

Taking this observation into account, we adopt the following concept.

Definition 20.6 We say that a pair (U 0, y0) ≥ L→(ε;RN×N )×H is an H -optimal
solution to problem (20.1)–(20.3), (20.17) if (U 0, y0) ≥ ΔH and I (U 0, y0) =
inf(U ,y)≥ΔH I (U , y).

20.4 Compensated Compactness Lemma in Variable Lebesgue
and Sobolev Spaces

Let {ξπ}π>0 be a non-degenerate perturbation of a weight function ξ. We associate
to every ξπ the space

X (ε, ξπdx) =
{

f ≥ Lq(ε, ξπdx)N | div (
ξπ f

) ≥ Lq(ε)
}

√ π > 0 (20.22)

and endow it with the norm
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⇔f⇔X (ε,ξπdx) =
(
⇔f ⇔q

Lq (ε, ξπdx)N + ⇔div (
ξπf

) ⇔q
Lq (ε)

)1/q
.

Wecall a sequence {fπ ≥ X (ε, ξπdx)}π>0 bounded if lim sup
π⇐0

⇔fπ⇔X (ε,ξπdx) < +→.

In order to discuss the existence and attainability of H -optimal solutions to the
problem (20.1)–(20.3), (20.17), we use the following result (for comparison, we refer
the reader to the Compensated Compactness Lemma in [1, 12]).

Lemma 20.4 [9] Let {ξπ}π>0 be a non-degenerate perturbation of a weight function
ξ(x) > 0. Let

{
fπ ≥ Lq(ε, ξπdx)N

}
π>0 and {gπ ≥ H(ε, ξπdx)}π>0 be such that{

fπ
}
π>0 is bounded in the variable space X (ε, ξπdx), fπ Ω f in Lq(ε, ξπdx)N ,

{gπ}π>0 is bounded in the variable space H(ε, ξπdx), gπ Ω g in L p(ε), and
⊂gπ Ω ⊂g in L p(ε, ξπdx)N . Then

lim
π⇐0

∫
ε

Λ
(
fπ,⊂gπ

)
RN ξπdx =

∫
ε

Λ (f,⊂g)RN ξ dx, √Λ ≥ C→
0 (ε). (20.23)

Remark 20.8 As follows from the arguments given above, we can replace the
supposition of Lemma 20.4 “let {ξπ}π>0 be a non-degenerate perturbation of aweight
function ξ(x) > 0” by the following one: “Let {ξπ}π>0 be a sequence with proper-
ties: (1) ξπ(x) > 0, √ π > 0; (2) ξπ ⇐ ξ, (ξπ)−1/(p−1) ⇐ ξ−1/(p−1) in L1(ε)

as π ⇐ 0; (3) for every π > 0 the subspace C→
0 (ε) is dense in H(ε, ξπ dx) with

respect to the norm ⇔ · ⇔ξπ”.

20.5 Existence of H-Optimal Solutions

Our prime interest of the paper deals with the solvability of OCP (20.1)–(20.3),
(20.17) in the class of H -optimal solutions. To this end, we will use the so-called
“direct method” in the Calculus of Variations which, roughly speaking, intends to
construct a minimizing sequence {(Uk, yk) ≥ ΔH }k≥N.

First we prove the result concerning topological properties of the set of
H -admissible solutions ΔH ≤ L→(ε;RN×N ) × H . Let ρ be the topology on
L→(ε;RN×N ) × H(ε, ξ dx) which we define as the product of the weak-≈ topol-
ogy of the space L→(ε;RN×N ) and the weak topology of H(ε, ξ dx).

Additional div-constrains put on admissible controls and Compensated Compact-
ness Lemma play the key role in obtaining this result.

Theorem 20.5 [9] Let ξ(x) > 0 be a degenerate weight function and let K̃ be such
that Hypothesis 2 holds true for X = Lq(ε). Then for every f ≥ Lq(ε) the set ΔH

is sequentially ρ -closed.

Theorem 20.6 Let ξ(x) be a degenerate weight function. Then the set of H-optimal
solutions to the problem (20.1)–(20.3), (20.17) is non-empty for every f ≥ Lq(ε).
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Proof First, we note that the cost functional Iε is lower ρ -semicontinuous on ΔH .
Let {(Uk, yk) ≥ ΔH }k≥N be an H -minimizing sequence to the problem (20.1)–(20.3),
(20.17); that is, limk⇐→ Iε(Uk, yk) = inf(U ,y)≥ΔH Iε(U , y) < +→. Hence (see
(20.1), (20.17)), this sequence is bounded in L→(ε;RN×N ) × H and we may sup-
pose that, within a subsequence, there exists (U ≈, y≈) ≥ L→(ε;RN×N ) × H such
that Uk Ω U ≈ weakly-≈ in L→(ε;RN×N ), yk Ω y≈ in H . Since ΔH is sequen-
tially ρ -closed, the pair (U ≈, y≈) is H -admissible to the problem (20.1)–(20.3),
(20.17). In view of lower ρ -semicontinuity of the cost functional Iε we obtain
that Iε(U ≈, y≈) ⊥ lim infk⇐→ Iε(Uk, yk) = inf(U , y)≥ΔH Iε(U , y). Hence,
(U ≈, y≈) is an H -optimal pair. The proof is complete.

Therefore, considered optimal control problem (20.1)–(20.3) for degenerate ellip-
tic monotone variational inequality is regular in the class of H -admissible solutions.
Imposing additional control constrains (20.17) and using the special version of com-
pensated compactness lemma we proved that the set of H -admissible solutions for
problem (20.1)–(20.3) is sequentially closed.Andusing the directmethodofCalculus
of Variations we proved existence of H -optimal solutions for considered problem.

20.6 Attainability of H-Optimal Solutions

The aim of this section is to propose an appropriate non-degenerate perturbation
for the original degenerate OCP (20.1)–(20.3), (20.17) and to show that H -optimal
solutions of (20.1)–(20.3), (20.17) can be attained by optimal solutions of perturbed
problems. Hereinafter in this section we assume that the set of H -optimal solutions
to the problem (20.1)–(20.3), (20.17) is non-empty.

Let ξ be a degenerate weight function with properties (20.5), and let {ξπ}π>0 be
a non-degenerate perturbation of ξ in the sense of Definition 20.1.

Definition 20.7 We say that a bounded sequence

{
(Uπ, yπ) ≥ Y(ε, ξπdx) = L→(ε;RN×N ) × H(ε, ξπdx)

}
π>0

w-converges to (U , y) ≥ L→(ε;RN×N )× W in the variable space Y(ε, ξπdx) as

π ⇐ 0 (in symbols, (Uπ, yπ)
w
Ω (U , y)), if Uπ

≈
Ω U in L→(ε;RN×N ), yπ Ω y

in L p(ε), and ⊂ yπ Ω ⊂ y in L p(ε, ξπdx)N .

Definition 20.8 We say that a minimization problem

〈
inf

(U ,y)≥ΔH

I (U , y)

〉
(20.24)

is a weak variational limit (or variational w-limit) of the sequence
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{〈
inf

(Uπ,yπ) ≥Δπ

Iπ(Uπ, yπ)

〉
; Δπ ≤ Y(ε, ξπdx), π > 0

}
, (20.25)

with respect to w-convergence in the variable space Y(ε, ξπdx), if the following
conditions are satisfied:

(1) if {πk} is a subsequence of {π} such that πk ⇐ 0 as k ⇐ →, and a sequence{
(Uk, yk) ≥ Δπk

}
π>0 w-converges to a pair (U , y), then

(U , y) ≥ ΔH ; I (U , y) ⊥ lim inf
k⇐→ Iπk (Uk, yk); (20.26)

(2) for every pair (U , y) ≥ ΔH and anyvalue θ > 0 there exists a realizing sequence{
(Ûπ, ŷπ) ≥ Y(ε, ξπdx)

}
π>0 such that

(Ûπ, ŷπ) ≥ Δπ √ π > 0, (Ûπ, ŷπ)
w⇐ (Û , ŷ), (20.27)

⇔U − Û ⇔L→(ε;RN×N ) + ⇔y − ŷ⇔ξ ⊥ θ, and I (U , y) ∼ lim sup
π⇐0

Iπ(Ûπ, ŷπ) − θ.

(20.28)

Definition 20.8 is motivated by the following property of variational w-limits (for
the details we refer to [3]).

Theorem 20.7 Assume that (20.24) is a weak variational limit of the sequence
(20.25), and the constrained minimization problem (20.24) has a solution. Suppose{
(U 0

π , y0π ) ≥ Δπ

}
π>0 is a sequence of optimal pairs to (20.25). Then there exists a

pair (U 0, y0) ≥ ΔH such that (U 0
π , y0π )

w−⇐ (U 0, y0), and

inf
(U , y)≥ΔH

I (A, y) = I
(
U 0, y0

)
= lim

π⇐0
inf

(Uπ, yπ)≥Δπ

Iπ(Uπ, yπ).

Let us consider the sequence {Kπ}π>0 of non-empty closed and convex subsets,
which sequentially converges to the set K̃ in the sense of Kuratovski as π ⇐ 0 with
respect to weak topology of the space H(ε, ξπdx) and let Hypothesis 2 hold true
for X = Lq(ε) and V = H(ε, ξπdx) √ π > 0. Taking into account Theorem
20.7, we consider the following collection of perturbed OCPs in coefficients for
non-degenerate elliptic variational inequalities:

Minimize

{
Iπ(U , y) =

∫
ε

|y(x) − z∂ (x)|p dx

}
, (20.29)

U ≥ U π
ad , y ≥ Kπ (20.30)

∈−div
(
ξπU [(⊂ y)p−2] ⊂ y

)
+ |y|p−2y, v − y∗H(ε,ξπdx) ∼

∈ f, v − y∗H(ε,ξπdx) √v ≥ Ke,

(20.31)
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U π
ad =

{
U = [a1, . . . , aN ] ≥ Mω,Φ

p (ε)

∣∣∣∣∣div (
ξπ ai

)∣∣ ⊥ ∂i , a.e. in ε, √ i = 1, . . . , N
}
,

(20.32)

where the elements z∂ ≥ L p(ε), f ≥ Lq(ε) and ∂ = (∂1, . . . , ∂N ) ≥ R
N are

the same as for the original problem (20.1)–(20.3), (20.17). For every π > 0 we
define Δπ as a set of all admissible pairs to the problem (20.29)–(20.32), namely
(U , y) ≥ Δπ if and only if the pair (U , y) satisfies (20.30)–(20.32).

Note that each of perturbed OCPs (20.29)–(20.32) is solvable provided {ξπ}π>0
is a non-degenerate perturbation of ξ ∼ 0 (see [8]).

Remark 20.9 Let us recall that sequential K -upper and K -lower limits of a sequence
of sets {Ek}k≥N are defined as follows, respectively:

Ks- lim Ek = {y ≥ X : ∪λ(k) ⇐ →, ∪yk ⇐ y, √k ≥ N : yk ≥ Eλ(k)}
Ks- lim Ek = {y ≥ X : ∪yk ⇐ y, ∪k ∼ k0 ≥ N : yk ≥ Ek}.

The sequence {Ek}k≥N sequentially converges in the sense of Kuratovski to the set
E (shortly, Ks-converges), if E = Ks- lim Ek = Ks- lim Ek .

Two following results give the attainability property of optimal solutions to
considered degenerate problem via optimal solutions of perturbed non-degenerate
problems. For details see [10].

Lemma 20.5 Let {ξπ = (ξ)π}π>0 be a “direct” smoothing of a degenerate weight
function ξ(x) ∼ 0. Let {(Uπ, yπ) ≥ Δπ}π>0 be a sequence of admissible pairs to
the problem (20.29)–(20.32). Then there exist a pair (U ≈, y≈) and a subsequence{
(Uπk , yπk )

}
k≥N of {(Uπ, yπ) ≥ Δπ}π>0 such that (Uπk , yπk )

w⇐ (U ≈, y≈) as k ⇐ →
and (U ≈, y≈) ≥ ΔH .

As an evident consequence of this lemma and the lower semicontinuity proper-
ty of the cost functional (20.29) with respect to w-convergence in variable space
Y(ε, ξπdx), we have the following conclusion.

Corollary 20.1 Let {πk} be a subsequence of indices {π} such that πk ⇐ 0 as
k ⇐ →, and let

{
(Uk, yk) ≥ Δπk

}
k≥N be a sequence of admissible solutions to

corresponding perturbed problems (20.29)–(20.32) such that (Uk, yk)
w
Ω (U , y).

Then properties (20.26) are valid.

To discuss properties (20.27)–(20.28), we give a result which is reciprocal in some
sense to Lemma 20.5.

Lemma 20.6 Let {ξπ = (ξ)π}π>0 be a “direct” smoothing of a degenerate weight
function ξ(x) ∼ 0 and let (U , y) ≥ ΔH be any admissible pair. Then there exists a
realizing sequence

{
(Ûπ, ŷπ) ≥ Y(ε, ξπdx)

}
π>0 such that
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(Ûπ, ŷπ) ≥ Δπ √ π > 0, Ûπ
≈
Ω U in L→(ε;RN×N ); (20.33)

div
(
ξπ âi π

)
Ω div (ξ ai ) in Lq(ε) √ i ≥ {1, . . . , N } , (20.34)

ŷπ ⇐ y strongly in L p(ε), ⊂ yπ Ω ⊂ y in L p(ε, ξπ dx)N . (20.35)

Corollary 20.2 Lemma 20.6 implies the equality I (U , y) = limπ⇐0 Iπ(Ûπ, ŷπ).

As an obvious consequence of Definition 20.8, and Lemmas 20.5–20.6 with their
Corollaries, we can give the following conclusion.

Theorem 20.8 Let {ξπ = (ξ)π}π>0 be a “direct ”smoothing of a degenerate weight
function ξ(x) > 0. Then the minimization problem (20.1)–(20.3), (20.17) is a weak
variational limit of the sequence (20.29)–(20.32) as π ⇐ 0 with respect to the
w-convergence in the variable space Y(ε, ξπdx).

As follows from results given above, by Lemma 20.6 each optimal solution to
the problem (20.1)–(20.3), (20.17) can be attained by admissible solutions to per-
turbed problems (20.29)–(20.32), however there exists at least one optimal solution
(U0, y0) ≥ ΔH which can be attained by optimal solutions to perturbed problems
(20.29)–(20.32).
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Chapter 21
Distributed Optimal Control in One
Non-Self-Adjoint Boundary Value Problem

V. O. Kapustyan, O. A. Kapustian and O. K. Mazur

Abstract We prove the solvability of the optimal control problem for elliptic
equation with nonlocal boundary conditions in a circular sector with terminal
quadratic cost functional in the class of distributed controls.

21.1 Introduction

The theory of linear-quadratic optimal control problems for distributed systems is
well researched [1, 2]. In many cases the original problem can be decomposed with
the help of Fourier method [3–5]. In this chapter we consider the control prob-
lem for elliptic equation with non-local boundary conditions in circular sector [6]
with terminal quadratic cost functional. This problem does not allow total decom-
position and using of L2-theory. To resolve this problem in the class of distributed
controls we use apparatus of specially constructed biorthonormal basis systems of
functions [7] and then we analyze the solutions of Fredholm matrix equations.
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21.2 Setting of the Problem

In a circular sector Q = {(r, θ)|r → (0, 1), θ → (0, π)} we consider the optimal
control problem




Δy := 1
r

∂
∂r (r

∂y
∂r ) + 1

r2
∂2y
∂θ2

= u(r, θ), (r, θ) → Q,

y(1, θ) = p(θ), p(0) = 0,
y(r, 0) = 0, r → (0, 1),
∂y
∂θ

(r, 0) = ∂y
∂θ

(r, π), r → (0, 1),

(21.1)

J(y, u) = ⇐y(α)⇐2Ddr +
1∫
0

⇐u2(r)⇐dr ≥ inf, (21.2)

where p → C1([0, π ]) is given function, α → (0, 1) is fixed number, ⇐ · ⇐D is a norm
in L2(0, π), which is equivalent to standard one and is given by the equality

⇐v⇐D =
( ∈∑

n=1

v2n

)1/2

,

where ⊂n ∗ 1, vn =
π∫
0

v(θ)ψn(θ)dθ , ψ0(θ) = 2
π2 , ψ2n(θ) = 4

π2 (π − θ) sin 2nθ ,

ψ2n−1(θ) = 4
π2 cos 2nθ .

The aim of this paper is to establish classical solvability of the problem
(21.1)–(21.2), that is to find optimal one among admissible processes {u, y} →
C(Q̄) × ⎧

C(Q̄)
⎪

C2(Q)
⎨
. For the application of the spectral method we use

biorthonormal and complete in L2(0, π) well-known Samarsky-Ionkin systems of
functions [7]

Ψ = {ψn}∈n=1 and

Φ = {ϕ0(θ) = θ, ϕ2n(θ) = sin 2nθ, ϕ2n−1(θ) = θ cos 2nθ}∈n=1. (21.3)

Then ⊂u → L2(Q)

u(r, θ) =
∈∑

n=0

un(r) · ϕn(θ), (21.4)

where un(r) = ∫ π

0 u(r, θ)ψn(θ)dθ . So, we will seek for the solution of the problem
(21.1) in form

y(r, θ) = y0(r)θ +
∈∑

n=1

(y2n−1(r)θ cos 2nθ + y2n(r) sin 2nθ) , (21.5)
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where the functions {yk(r)}∈k=0 are solutions of the system of ordinary differential
equations

d

dr
(r

dy0
dr

) = r · u0(r), y0(1) = p0, (21.6)

r · d

dr

⎩
r · dy2k−1

dr

⎛
− (2k)2y2k−1 = r2 · u2k−1(r), y2k−1(1) = p2k−1,

(21.7)

r
d

dr

⎩
r · dy2k

dr

⎛
− (2k)2y2k − 4k · y2k−1 = r2 · u2k(r), y2k(1) = p2k, (21.8)

where pk = ∫ π

0 p(θ) · ψk(θ)dθ .
Thus the original problem (21.1)–(21.2) is reduced to the following one: among

admissible pairs {un(r), yn(r)}∈n=0 of the problem (21.6)–(21.8) one shouldminimize
the cost functional

J(y, u) = y20(α) +
⎝ 1

0
u20(r)dr +

∈∑
k=1

(y22k−1(α) + y22k(α)+

+
⎝ 1

0
(u22k−1(r) + u22k(r))dr) = J0 +

∈∑
k=1

Jk . (21.9)

Herewith the optimal process {ũn(r), ỹn(r)}∈n=0 should be such that the formula
(21.4) defines function from C(Q̄), and the formula (21.5) defines function from
C(Q̄)

⎪
C2(Q).

21.3 Main Results

A structure of the problem (21.6)–(21.8) allows to reduce it to sequence of the
following problems:

On the solutions of (21.6) one should minimize the cost functional

J0 = J0(u0), (21.10)

on the solutions of (21.7), (21.8) one should minimize the cost functional

Jk = Jk(u2k−1, u2k), k ∗ 1. (21.11)

For fixed {uk(r)}∈k=0 ∼ C([0, 1]) solutions of the problem (21.6)–(21.8) have
form
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y0(r) = p0 −
⎝ 1

r

⎩
1

s

⎝ s

0
ξu0(ξ)dξ

⎛
ds = p0 +

⎝ 1

0
G0(r, s)u0(s)ds, (21.12)

where

G0(r, s) =
⎞

s ln r, s → [0, r],
s ln s, s → [r, 1],

y2k−1(r) = p2k−1 · r2k + 1

4k

⎝ 1

0
s · Gk(r, s)u2k−1(s)ds, (21.13)

where

Gk(r, s) =
⎞

s2k(r2k − r−2k), s → [0, r],
r2k(s2k − s−2k), s → [r, 1],

y2k(r) = p2k · r2k + p2k−1 · r2k · ln r + 1

4k

⎝ 1

0
s · Gk(r, s)u2k(s)ds +

+ 1

4k

⎝ 1

0
s · Ḡk(r, s)u2k−1(s)ds, (21.14)

where

Ḡk(r, s) =
⎝ 1

0
p−1 · Gk(r, p)Gk(p, s)ds

=
⎠

1
2k

⎧
( s

r )
2k − (rs)−2k

⎨ + r2ks2k ln(rs) − ( s
r )

2k ln( s
r ), s → [0, r],

1
2k

⎧
( r

s )
2k − (rs)−2k

⎨ + r2ks2k ln(rs) − ( r
s )

2k ln( r
s ), s → [r, 1].

Lemma 21.1 For any k ∗ 0 the formulas (21.12)–(21.14) define the solutions of
the problem (21.6)–(21.8) yk → C([0, 1])⎪C2(0, 1).

Proof Since yk are the solutions of the problem (21.6)–(21.8), then it suffices to
show that ⊂k ∗ 0 yk → C([0, 1]). We denote

∏ = [0, 1]× [0, 1]. Then G0 → C(
∏

),
max∏ |G0(r, s)| = e−1, so, y0 → C([0, 1]).

For k ∗ 1 Gk → C(
∏ \{0, 0}), max∏ |Gk(r, s)| √ 1, so, y2k−1 → C([0, 1]). Since

xk ln x → C([0, 1]), max
x→[0,1] |x

k ln x| = e−1 · k−1, then for Ḡk → C(
∏ \{0, 0}) we

have: max∏ |Ḡk(r, s)| √ 1
k , so, y2k → C([0, 1]). Lemma is proved.

Theorem 21.1 The problems (21.10), (21.11) have the unique solution {ũk}∈k=0,
moreover ⊂k ∗ 0 ũk → C([0, 1]).
Proof From the formulas (21.12)–(21.14) it follows that the functionals J0 :
L2(0, 1) ≤≥ R, Jk : L2(0, 1) × L2(0, 1) ≤≥ R are strictly convex, continuous
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and coercive, which means under [1] that the problems (21.10), (21.11) have the
unique solution in the spaces L2(0, 1) and L2(0, 1) × L2(0, 1) correspondingly.

Equating to zero Frechet derivatives of J0, Jk , we obtain the following Fredholm
integral equations:

u0(s) = −
⎝ 1

0
G0(α, s)G0(α, p)u0(p)dp − p0 · G0(α, s), (21.15)

u2k−1(s) = − 1

2
· 1

(4k)2

⎝ 1

0
[⎧s · Gk(α, s)p · Gk(α, p) + s · Ḡk(α, s)p · Ḡk(α, p)

⎨
u2k−1(p) +

+ 2s · Ḡk(α, s)p · Gk(α, p)u2k(p)]dp − p2kα
2k 1

4k
s · Gk(α, s) −

−
(

p2kα
2k + p2k−1α

2k ln α
) 1

4k
· s · Ḡk(α, s), (21.16)

u2k(s) = − 1

2
· 1

(4k)2

⎝ 1

0
[⎧2s · Gk(α, s)p · Ḡk(α, p)

⎨
u2k−1(p) +

+ s · Gk(α, s)p · Ḡk(α, p)u2k(p)]dp −
−
(

p2kα
2k + p2k−1α

2k ln α
) 1

4k
· s · Gk(α, s). (21.17)

Since max
(p,s)→∏ |G0(α, p)G0(α, s)| √ e−2 < 1, then the Eq. (21.15) has the unique

solution ũ0 → C([0, 1]).
Put

Ak(p, s) =
⎩

s · Gk(α, s)p · Gk(α, p) + s · Ḡk(α, s)p · Ḡk(α, p) 2s · Ḡk(α, s)p · Gk(α, p)

2s · Gk(α, s)p · Ḡk(α, p) s · Gk(α, s)p · Ḡk(α, p)

⎛
,

fk(s) =
⎩−p2kα

2k 1
4k s · Gk(α, s) − ⎧

p2kα
2k + p2k−1α

2k ln α
⎨ 1
4k · s · Ḡk(α, s)

− ⎧
p2kα

2k + p2k−1α
2k ln α

⎨ 1
4k · s · Gk(α, s)

⎛
.

Then from the Eqs. (21.16), (21.17) we have that vector

zk(s) =
⎩

u2k−1(s)
u2k(s)

⎛

satisfies the equation

zk(s) = −1

2
· 1

(4k)2

⎝ 1

0
Ak(p, s)zk(p)dp + fk(s). (21.18)

Under estimates from Lemma 21.1 we obtain
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max∏ ⇐Ak(p, s)⇐ √ 4, max
s→[0,1] ⇐fk(s)⇐ √ α2k−1

2k

⎧|p2k| + |p2k−1|
⎨
.

Then ⊂k ∗ 1 the equation (21.18) has the unique solution

z̃k(s) =
⎩

u2k−1(s)
u2k(s)

⎛
→ C([0, 1]),

herewith ⊂r → [0, 1]

|u2k−1(r)| √ α2k−1

k

⎧|p2k−1| + |p2k|
⎨
, |u2k(r)| √ α2k−1

k

⎧|p2k−1| + |p2k |
⎨
. (21.19)

The theorem is proved.

From the estimates (21.19) it follows that the series
∈∑

n=0
ũn(r)ϕn(θ) converges

uniformly on Q̄ and it defines the function ũ(r, θ) → C(Q̄) by the formula (21.4).

Theorem 21.2 Series

ỹ0(r)θ +
∈∑

n=1

⎧
ỹ2n−1(r)θ · cos 2nθ + ỹ2n(r) sin 2nθ

⎨
,

defines the function ỹ(r, θ) → C(Q̄)
⎪

C2(Q) by the formula (21.5), where {ỹn}∈n=0
are the solutions of the system (21.6)–(21.8) with controls {ũn}∈n=1.

Proof By the formulas (21.12)–(21.14) desired series has the form

p0 · θ + θ ·
1⎝

0

G0(r, s)u0(s)ds +
∈∑

n=1

(
p2k−1 · r2k · θ cos 2nθ +

+ ⎧
p2k · r2k + p2k−1 · r2k · ln r

⎨
sin 2nθ

)
+

∈∑
n=1

θ cos 2nθ · 1

4n

1⎝

0

sGn(r, s)ũ2n−1(s)ds +

+
∈∑

n=1

sin 2nθ
( 1

4n

1⎝

0

sGn(r, s)ũ2n(s)ds + 1

4n

1⎝

0

sḠn(r, s)ũ2n−1(s)ds
)
. (21.20)

The functions r2n sin 2nθ and r2n(ln r · sin 2nθ + θ cos 2nθ) are harmonic, p →
C1([0, π ]), p(0) = 0, so, from [6] the first series in 21.20) is the function from the
class C(Q̄)

⎪
C2(Q).

From Lemma 21.1 and the estimates (21.19) we have under Weierstrass theorem
that ỹ → C(Q̄).
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On ⊂[a, b] × [c, d] ∼ (0, 1) × (0, π) it remains to investigate the uniform
convergence of the series from the first and second-order derivatives on r, θ of func-
tions

Bn(r, θ) = 1

4n

1⎝

0

sGn(r, s)ũ2n−1(s)ds · θ cos 2nθ = bn(r) · θ cos 2nθ,

Cn(r, θ) = 1

4n

1⎝

0

sGn(r, s)ũ2n(s)ds · sin 2nθ = cn · sin 2nθ,

Dn(r, θ) = 1

4n

1⎝

0

sḠn(r, s)ũ2n−1(s)ds · sin 2nθ = dn · sin 2nθ.

From the estimates (21.19) we obtain that the series from derivatives ∂
∂θ
, ∂2

∂θ2

converge on Q̄ uniformly under Weierstrass theorem.
For ⊂r → [a, b], ⊂n > 1

bn(r)= 1

4n

(
(r2n − r−2n)

r⎝

0

s2n+1ũ2n−1(s)ds + r2n
1⎝

r

(s2n+1 − s1−2n)ũ2n−1(s)ds
)
,

b⇔
n(r)= 1

2
(r2n−1 + r−2n−1)

r⎝

0

s2n+1ũ2n−1(s)ds + (21.21)

+ 1

2
r2n−1

1⎝

r

(s2n+1 − s1−2n)ũ2n−1(s)ds,

(summands which do not contain integrals are mutually canceled)

b⇔⇔
n(r)= 1

2

(
(2n − 1)r2n−2 + (−2n − 2)r−2n−2

) r⎝

0

s2n+1ũ2n−1(s)ds +

+ 1

2
(2n − 1)r2n−2

1⎝

r

(s2n+1 − s1−2n)ũ2n−1(s)ds + ũ2n−1(r). (21.22)

Since
r∫
0

s2n+1ds = r2n+1

2n+2 ,
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1⎝

r

(s2n+1 − s1−2n)ds = − n

1 − n2
− r2n+1

2n + 2
+ r2−2n

2 − 2n
,

then ⊥C1 > 0 such that

|b⇔
n(r)| √ C

n
· α2n−1

n
(|p2n−1| + |p2n|),

so, the series
∈∑

n=2

∂
∂r Bn(r, θ),

∈∑
n=2

∂
∂r Cn(r, θ),

∈∑
n=2

∂2

∂r∂θ
Bn(r, θ),

∈∑
n=2

∂2

∂r∂θ
Cn(r, θ)

converge uniformly on [a, b] × [c, d].
From the same estimates |b⇔⇔

n(r)| √ C2 · α2n−1

n (|p2n−1| + |p2n|) and, thereby the

series
∈∑

n=2

∂2

∂r2
Bn(r, θ),

∈∑
n=2

∂2

∂r2
Cn(r, θ) converge uniformly on [a, b] × [c, d].

For the function dn(r) we have ⊂r → [a, b]:

dn(r) = 1

8n2
r−2n ·

r⎝

0

s2n+1ũ2n−1(s)ds − 1

8n2
· r2n

r⎝

0

s2n+1ũ2n−1(s)ds +

+ 1

4n
r2n

r⎝

0

s2n+1 ln sũ2n−1(s)ds + 1

4n
r2n ln r

r⎝

0

s2n+1ũ2n−1(s)ds −

− r−2n

4n

r⎝

0

s2n+1 ln sũ2n−1(s)ds + r−2n ln r

4n

r⎝

0

s2n+1ũ2n−1(s)ds +

+ 1

8n2
r2n

1⎝

r

s−2n+1ũ2n−1(s)ds − 1

8n2
r2n

1⎝

r

s2n+1ũ2n−1(s)ds +

+ 1

4n
r2n

1⎝

r

s2n+1 ln sũ2n−1(s)ds + 1

4n
r2n ln s

1⎝

r

s2n+1ũ2n−1(s)ds −

− 1

4n
r2n ln s

1⎝

r

s−2n+1ũ2n−1(s)ds + 1

4n
r2n

1⎝

r

s−2n+1 ln sũ2n−1(s)ds,

d⇔
n(r) = − 1

4

1

n
r−2n−1

r⎝

0

s2n+1ũ2n−1(s)ds − 1

4n
r2n−1

r⎝

0

s2n+1ũ2n−1(s)ds +

+ 1

2
r2n−1

r⎝

0

s2n+1 ln sũ2n−1(s)ds + 1

4n

⎧
2nr2n−1 ln r + r2n−1⎨

r⎝

0

s2n+1ũ2n−1(s)ds +

+ 1

2
r−2n−1

r⎝

0

s2n+1 ln sũ2n−1(s)ds + 1

4n

⎧−2nr−2n−1 ln r + r−2n−1⎨
r⎝

0

s2n+1ũ2n−1(s)ds +
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+ 1

4n
r2n−1

1⎝

r

s−2n+1ũ2n−1(s)ds − 1

4n
r2n−1

1⎝

r

s2n+1ũ2n−1(s)ds +

+ 1

2
r2n−1

1⎝

r

s2n+1 ln sũ2n−1(s)ds + 1

4n

⎧
2nr2n−1 ln r + r2n−1⎨

1⎝

r

s2n+1ũ2n−1(s)ds −

− 1

4n

⎧
2nr2n−1 ln r + r2n−1⎨

1⎝

r

s−2n+1ũ2n−1(s)ds + 1

2
r2n−1

1⎝

r

s−2n+1 ln sũ2n−1(s)ds.

Since
r⎝

0

s2n+1 ln sds = 1

2n + 1
r2n+1 ln r − r2n+1

(2n + 1)2
,

then ⊥C2 > 0 such that

|d⇔
n(r)| √ C2

n
· α2n−1

n
(|p2n−1| + |p2n|),

so, the series
∈∑

n=2

∂
∂r Dn(r, θ),

∈∑
n=2

∂2

∂r∂θ
Dn(r, θ) converge uniformly on [a, b]×[c, d].

It is easy to see that ⊥C3 > 0 such that

|d⇔⇔
n (r)| √ C3 · α2n−1

n
(|p2n−1| + |p2n|).

Hence, the series
∈∑

n=2

∂2

∂r2
Dn(r, θ) converges uniformly on [a, b] × [c, d].

Thereby, ỹ → C(Q̄)
⎪

C2(Q) and Theorem is proved.

Remark 21.1 If u(r, θ) → C(Q̄) and for some constant C > 0 ⊂n ∗ 1 |un(r)| √ C
n2
,

then the control u is admissible in the problem (21.1)–(21.2), that is the corresponding
function y(r, θ) from (21.5) defines classical solution of (21.1).

21.4 Conclusions

In this paper we proved a solvability of the optimal control problem on the classical
solutions of elliptic boundary value problem in a circular sector with equality of
flows on radiuses and equality of the solution on the one from radiuses to zero in
distributed control class for quadratic cost functional.
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Chapter 22
Guaranteed Safety Operation of Complex
Engineering Systems

Nataliya D. Pankratova and Andrii M. Raduk

Abstract A system strategy to estimation of guaranteed survivability and safety
operation of complex engineering systems (CES) is proposed. The strategy is based
on timely and reliable detection, estimation, and forecast of risk factors and, on
this basis, on timely elimination of the causes of abnormal situations before failures
and other undesirable consequences occur. The principles that underlie the strategy
of the guaranteed safety operation of CES provide a flexible approach to timely
detection, recognition, forecast, and system diagnostic of risk factors and situations,
to formulation and implementation of a rational decision in a practicable time within
an irremovable timeconstraint. The systemcontrol of complexobjects is realized.The
essence of such control is a systemically coordinated evaluation and adjustment of
the operational survivability and safety during the functioning process of an object.
The diagnostic unit, which is the basis of a safety control algorithm for complex
objects in abnormal situations, is developed as an informationplatformof engineering
diagnostics. By force of systematic and continuous evaluation of critical parameters
of object’s functioning in the real time mode, the reasons, which could potentially
cause the object’ tolerance failure of the functioning in the normal mode, are timely
revealed.

The practice of the last decades of the last century suggests that the risks of man-
made and natural disasters with the consequences of regional, national and global
scale are continuously increasing [1], that is due to various objective and subjec-
tive conditions and factors [2]. Analysis of accidents and catastrophes can identify
the most important causes and weaknesses of control principles for survivability
and safety of complex engineering objects (CEO). One of such reasons is the pecu-
liarities of the functioning of the diagnostic systems aimed to identify failures and
malfunctions. This approach to security precludes a possibility of a priori prevention
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of abnormal modes and as a consequence, there is the possibility of its subsequent
transition into an accident and catastrophe. Therefore, it is necessary to develop a
new strategy to solve security problems of modern CEO for various purposes. Here
we propose a strategy that is based on the conceptual foundations of systems analy-
sis, multicriteria estimation and forecasting of risk [3]. The essence of the proposed
concept is the replacement of a standard principle of identifying the transition from
operational state of the object into inoperable one on the basis of detection of failures,
malfunctions, defects, and forecasting the reliability of an object by a qualitatively
new principle. The essence of this principle is the timely detection and elimination of
the causes of an eventual transition from operational state of the object into inopera-
ble one on the basis of systems analysis of multifactorial risk of abnormal situations,
a reliable estimation of margin of permissible risk of different modes of operation of
complex technical objects, and forecast the key indicators of the object survivability
in a given period of its operation.

22.1 Introduction

The processes of CEO functioning and processes of ensuring their safety are princi-
pally different. The first is focused on achieving the main production target of CES,
so they are focused on all stages of a product’s life cycle. The second is regarded as
secondary by the defined category of specialists, because in their view, all the major
issues of efficiency and reliability and, consequently, the security of the products are
resolved at the stages of its development, refinement, handling, testing. As a result,
there are precedents when the developments of goals, objectives and requirements
for security and, above all, for a technical diagnostics system have not proper justi-
fication. As a consequence, it turns out that the figures and properties of the created
security system do not correspond to real necessities of complex objects, which they
must satisfy.

Thus, there is a practical necessity to qualitatively change the principles and the
structure of operational-capability controls and the safety of modern engineering
systems in real conditions of multifactor risk influence. First of all, the control of
complex objects should be systemizedwhichmeans that there should be system coor-
dination of operability control and safety control not merely by the corresponding
goals, tasks, resources, and expected results but also, importantly, by the immediacy
and effectiveness of interaction in real conditions of abnormal situations. Such coor-
dination should provide immediate and effective interaction between the mentioned
control systems. On the one hand, the effectiveness of the safety system should be
provided for timely detection of abnormal situations, evaluation of risk degree and
level, and the definition of an permissible risk margin during the process of forming
recommendations about immediate actions given to the decision maker. On the other
hand, the systemof operational capability control after receiving a signal about abnor-
mal situations should, in an effective and operative manner, make a complex object
ready for an emergency transition to an offline state and should make it possible to
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effect this transition within the limits of permissible risk. This can be achieved only
under the condition when the system of technical diagnostics fully complies with
the timeliness and efficiency of personnel actions in case of emergencies. Namely:
Diagnosis should provide such level of completeness, accuracy and timeliness of
information about the state and changing of technologically hazardous processes,
which will allow staff to prevent the transition of abnormal situation to an accident
and catastrophe in time.

It must be noted that the requirement of timeliness is a priority, as the most
accurate, most reliable information becomes unnecessary when it comes to staff
after an accident or catastrophe. So there is a practical need of systemic coherence
of diagnostic rates with the pace of work processes in different modes of complex
engineering systems operation. Such coherence can be one of the most important
conditions for ensuring the guaranteed security for the objects with increasing the
risk [4].

22.2 Information Platform of Engineering Diagnostics
of the Complex Object Operation

The strategy of system control of complex objects survivability and safety is realized
as an information platform of engineering diagnostics (IPED) of the complex objects
The diagnostic unit, which is the basis of a safety control algorithm for complex

Fig. 22.1 Structural diagram of information platform for engineering diagnostics
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objects in abnormal situations, is developed as an IPED (Fig. 22.1). Let us detail
some of these modules of the IPED.

Data accessing of the Initial Information during CEO operation. By a CEO we
mean an engineering object consisting of several multi-type subsystems that are
system-consistent in tasks, problems, resources, and expected results. Each subsys-
tem has functionally interdependent parameters, measured with sensors. With this
purpose, groups of sensors are connected to each subsystem, which different para-
meters (time sampling, resolution, etc.), depending on what there nature is.

The engineering diagnostics during the CEO operation requires samples of size
N01 and N02, where N01(N01 >> 200) is the total sample size during the CEO real-
mode operation; N02(N02 << N01; N02 = 40 ÷ 70) is the size of the basic sample
required to estimate the functional dependences (FD’s). The initial information is
reduced to a standard form, which makes it possible to form FD’s from discrete
samples. In view of the proposed methodology, Chebyshev polynomials are taken
as basic approximating functions, which normalize all the initial information to the
interval [0, 1].

Recovery of Functional Dependences based on Discrete Samples. In the general
case, the initial information is specified as a discrete array [5].

M0 = →Y0, X1, X2, X3⇐,
Y0 = (Yi |i = 1, m), Yi = (Yi [q0]|q0 = 1, k0),

X1 = (X1 j1 | j1 = 1, n1), X1 j1 = (X1 j1[q1]|q1 = 1, k1),

X2 = (X2 j2 | j2 = 1, n2), X2 j2 = (X2 j2 [q2]|q2 = 1, k2),

X3 = (X3 j3 | j3 = 1, n3), X3 j3 = (X3 j3[q3]|q3 = 1, k3)

where the set Y0 determines the numerical values

Yi [q0] ≥ →X1 j1[q1], X2 j2 [q2], X3 j3 [q3]⇐

of the unknown continuous functions yi = fi (x1, x2, x3), i = 1, m, x1 =
(x1 j1 | j1 = 1, n1), x2 = (x2 j2 | j2 = 1, n2), x3 = (x3 j3 | j3 = 1, n3). To
each value of q0 ∈ [1, k0] corresponds a certain set q0 ⊂ (q1, q2, q3) of values
q1 ∈ [1, k1] , q2 ∈ [1, k2] , q3 ∈ [1, k3]. The set Y0 consists of k0 different values
Yi [q0]. In the sets X1, X2, X3 a certain part of values X1 j1 [q1] , X2 j2 [q2] , X3 j3 [q3],
for some values q1 = q̂1 ∈ Q̂1 ∗ [1, k1], q2 = q̂2 ∈ Q̂2 ∗ [1, k2], q3 =
q̂3 ∈ Q̂3 ∗ [1, k3], repeats each, but there are no completely coinciding sets〈
X1 j1 [q1] , X2 j2 [q2] , X3 j3 [q3]

〉
for different q0 ∈ [1, k0]. We have also n1 + n2 +

n3 = n0, n0 ∼ k0. It is known that x1 ∈ D1, x2 ∈ D2, x3 ∈ D3, X1 ∈ D̂1, X2 ∈
D̂2, X3 ∈ D̂3, where

Ds = →xs js |d−
s js

∼ xs js ∼ d+
s js

, js = 1, ns⇐, s = 1, 3;
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D̂s = →Xsjs |d̂−
s js

∼ Xsjs ∼ d̂+
s js

, js = 1, ns⇐, s = 1, 3;

d−
s js

∼ d̂−
s js

, d+
s js

√ d̂+
s js

.

It is required to find approximating functions Φi (x1, x2, x3), i = 1, m, that char-
acterize the true functional dependences yi = fi (x1, x2, x3), i = 1, m, on the set
Ds with a practicable error.

Since the initial information is heterogeneous as well as the properties of the
groups of factors under study, which are determined, respectively, by the vectors
x1, x2, x3, the degree of the influence of each group of factors on the properties
of approximating functions should be evaluated independently. With this purpose,
the approximating functions are formed as a hierarchical multilevel system of mod-
els. At the upper level, the model of determination of the approximating functions
dependence on the variables x1, x2, x3 is realized. Such a model in the class of addi-
tive functions, where the vectors x1, x2, x3 are independent, is represented as the
superposition of functions of the variables x1, x2, x3:

Φi (x1, x2, x3) = ci1Φi1(x1) + ci2Φi2(x2) + ci3Φi3(x3), i = 1, m. (22.1)

At the second hierarchical level, models that determine the dependence Φis(s =
1, 2, 3) on the components of the variables x1, x2, x3, respectively, and represented as

Φi1(x1) = ∑n1
j1=1 a(1)

i j1
Ψ1 j1(x1 j1), Φi2(x2) = ∑n2

j2=1 a(2)
i j2

Ψ2 j2(x2 j2),

Φi3(x3) = ∑n3
j3=1 a(3)

i j3
Ψ3 j3(x3 j3).

(22.2)

are formed.
At the third hierarchical level,models that determine the functionsΨ1 j1 , Ψ2 j2 , Ψ3 j3

are formed, choosing the structure and components of the functions Ψ1 j1 , Ψ2 j2 , Ψ3 j3
being the major problem. The structures of these functions are similar to (22.2) and
can be represented as the following generalized polynomials:

Ψs js (x js ) =
Pjs∑
p=0

λ js pϕ js p(xs js ), s = 1, 2, 3. (22.3)

In some cases, forming the structure of the models, it should be taken into account
that the properties of the unknown functionsΦi (x1, x2, x3), i = 1, m, are influenced
not only by a group of components of each vector x1, x2, x3 but also by the interac-
tion of their components. In such a case, it is expedient to form the dependence of the
approximating functions on the variables x1, x2, x3 in a class of multiplicative func-
tions, where the approximating functions are formed by analogy with (22.1)–(22.3)
as a hierarchical multilevel system of models
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[1 + Φi (x)] = ∏S0
s=1[1 + Φis(xs)]cis ; [1 + Φis(xs)] = ∏ns

js=1[1 + Ψs js (xs js )]as
i js ;

[1 + Ψs js (xs js )] = ∏Pjs
p=1[1 + ϕ js p(xs js )]λ js p .

(22.4)
The Chebyshev criterion will be used and for the functions ϕ js p, biased Cheby-

shev polynomials Tjs p(x js p) ∈ [0, 1]will be used. Then the approximating functions
based on the sequence Ψ1, Ψ2, Ψ3 ≤ Φi1, Φi2, Φi3 ≤ Φi which will allow obtain-
ing the final result by aggregating the corresponding solutions are found. Such an
approach reduces the procedure of forming the approximating functions to a sequence
of Chebyshev approximation problems for inconsistent systems of linear equations.

Due to the properties of Chebyshev polynomials, the approach to forming the
functional dependences makes it possible to extrapolate the approximating functions
set up for the intervals [d̂−

js
, d̂+

js
] to wider intervals [d̂−

js
, d̂+

js
], which allow forecasting

the analyzed properties of a product outside the test intervals.
Quantization of Discrete Numerical Values. The quantization is applied in order to

reduce the influence of themeasurement error of various parameters on the reliability
of the formed solution. The procedure of quantization of discrete numerical values
is implemented as follows.

As the base reference statistic for each variable x1, . . . , xn, y1, . . . , ym , the sta-
tistic of random samples in these variables of size N01 √ 200 is taken.

As the base dynamic statistic in the same variables, the statistic of the sample of the
dynamics of the object for the last N02 measurements is taken. Therefore, the veryfirst
measurement of the original sample should be rejected and measurements should be
renumbered in the next measurement N02 + N2. Figure22.2 schematizes the sample
for the instant of time t = t0, N02 = 40 and t = t0+Δt (t = 1, 2, 3, . . . , tk, . . . , T ).

For the current dynamic parameters, we take the statistics of samples of size
N02 + N2 biased by N2 with respect to the statistics of samples of size N02.

Forecasting Nonstationary Processes. The models for forecasting nonstationary
processes are based on the original sample of the time series for the initial interval
D0 and base dynamic model of processes (22.1)–(22.3). To this end, we will use
the well-known property of Chebyshev polynomials that functions are uniformly
approximated on the interval [0, 1]. The essence of the approach is as follows. The
initial data are normalized for the interval D = {t |t−0 ∼ t ∼ t+}, D = D0 ⇔ D+

0 ,
which includes the initial observation interval D0 = {t |t−0 ∼ t ∼ t+} and the
prediction interval D+

0 = {t |t+0 < t ∼ t+}. Then, to determine the dynamic model
of the processes as the estimated approximating functions (22.1) or (22.4), based on
the initial data, the system of equations is formed for the interval D0. The dynamic

Fig. 22.2 Sample at t = t0
and t = t0 + Δt
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forecasting model is based on the extrapolation of approximating functions for the
interval D0 to the interval D+

0 [5].
Setting up the Process of Engineering Diagnostics. We will use the system of

CES operation models to describe the normal operation mode of the object under the
following assumptions and statements.

• Each stage of CEO operation is characterized by the duration and by the initial
and final values of each parameter yi determined at the beginning and the end of
the stage, respectively. The variations of yi within the stage are determined by the
corresponding model.

• All the parameters yi are dynamically synchronous and in phase in the sense that
they simultaneously (without a time delay) increase or decrease under risk factors.

• The control U = (U j | j = 1, m) is inertialless, i.e., there is no time delay between
the control action and the object’s response.

• The risk factors ρτ
qk

|qk = 1, nτ
k change the effect on the object in time; the risk

increases or decreases with time.
• The control can slow down the influences of risk factors or stop their negative
influence on the controlled object if the rate of control exceeds the rate of increase
in the influence of risk factors. The negative influence of risk factors is terminated
provides the decision making prior implementation to the critical time Tcr . At this
moment the risk factors cause negative consequences such as an accident or a
catastrophe.

To analyze an abnormal mode, let us introduce additional assumptions according
to the formation of the model and conditions of recognition of an abnormal situation.

• The risk factors ρτ
qk

|qk = 1, nτ
k are independent and randomly vary in time with a

priori unknown distribution.
• The risk factors can influence on several or all of the parameters yi simultaneously.
A situation of the influence of risk factors is abnormal if at least two parameters yi

are simultaneously changed, without a control, their values are synchronous and
are in phase during several measurements (in time).

• The influence of risk factors will be described as a relative change of the level of
control. The values of each risk factor are varied discretely and randomly.

Based on acceptable assumptions, let us present additional models and conditions
to detect an abnormal situation. Denote by ỹi the value of the parameter yi is influ-
enced by the risk factors; Fi (ρqk ) is the function that takes into account the level
of influence of the risk factors on the i parameter yi ; ρqk is the value of the q risk
factor at the instant of time tk .

According to item 8, it is assumed that the value of ỹi [tk] at the instant of time tk
is determined by

ỹi [tk] = 1

m

m∑
j=1

b̃i j

R j∑
r=0

a jr T ⊥
r (U j ); b̃i j = bi j · Fi (ρqk ), (22.5)
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where the function Fi (ρqk ) should correspond to the condition where ỹi = yi in
the absence of the influence of risk factors (i.e., for ρqk = 0). Therefore, one of the
elementary forms of the function Fi (ρqk ) is

Fi (ρqk ) = 1 −
nqk∏

qk=1

(1 − ciqk ρqk ).

Note that risk factors can vary in time continuously (for example, pressure con-
tinuously changes as an aircraft lifts) or abruptly (for example, during cruise flight
at a certain height, pressure may be changed abruptly at the cyclone-anticyclone
interface). The most complex is the case where one risk factor varies continuously
and others vary abruptly.

We will recognize risk situations by successively comparing ỹi [tk] for ỹi [tk] sev-
eral successive values of tk, k = 1, k0, where k0 = 3 ÷ 7. As follows from item 2
of the assumptions, the condition of a normal situation is synchronous and in phase
changes of ỹi for several (in the general case, for all) parameters, whence follows
a formula for different instants of time tk for all of the values of i and for the same
instants of time tk for different values of i (different parameters):

signΔỹi [t1, t2] = . . . = signΔỹi [tk, tk+1] = . . . = signΔỹi [tk0−1, tk0 ],
(22.6)

signΔỹ1[tk, tk+1] = . . . = signΔỹi [tk, tk+1] = . . . = signΔỹn[tk, tk+1], i = 1, n.

(22.7)

As follows from (22.6) and (22.7), given an abnormal situation on the interval
[t1, tk0 ], the following inequalities hold simultaneously:

• the inequality of the signs of increment Δỹi for all the adjacent intervals [tk, tk+1]
for k = 1, k0 for each parameter ỹi , i = 1, n;

• the inequality of the signs of increment ỹi , i = 1, n, for all of the parameters ỹi

for each interval [tk, tk+1], k = 1, k0.

Conditions (22.6) and (22.7) are rigid; for practical purposes, it will enough to
satisfy the conditions for the representative number (22.3)–(22.5), which determine
the parameters ỹi but not for all parameters i . The corresponding quantities in (22.6)
and (22.7) are defined by

Δỹi [tk, tk+1] = ỹi [tk+1] − ỹi [tk], (22.8)

where ỹi [tk] are defined by (22.5); it is assumed that ρqk [tk+1] > ρqk [tk] i.e., the
dependence of each risk factor is a function of time, which increases, or ρqk [tk+1] <

ρqk [tk] i.e., the dependence is a decreasing function.
The practical importance of recognizing an abnormal situation based on (22.6)

and (22.7) is in the minor alteration of ỹi [tk] subject to risk factors since the “indi-
cator” of the change is the sign of the difference in (22.6) and (22.7) rather than the
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value defined by (22.8). In other words, such an approach is much more sensitive
than typical approaches used in diagnostics. Moreover, it allows “filtering” random
changes and random measurement errors ỹi for separate i according to (22.8) or for
individual [tk, tk+1] according to (22.7).

22.3 Diagnostic of Reanimobile’s Functioning

Contensive statement of a problem. The work of reanimobile, which moves in the
operational mode, i.e. with the patient on board, is considered. Patient’s life is pro-
vided with medical equipment, which is powered from the reanimobile’s onboard
electrical [6].

Basic equipment includes:

• ICE1—basic internal combustion engine (ICE), which causes the car to move and
rotate the main generator of G1;

• G1—the main generator, with the capacity of 1.1kW that generates electricity
when the angular velocity of crankshaft rotation is above 220 rad/s (when the
speed is above 220 rad/s generator is switched on, when falls down 210 rad/s is
off);

• TGB—transmission—gearbox (gear ratio: 1—4.05; 2—2.34; 3—1.39; 4—1; 5—
0.85; main transmission—5.125);

• ICE2 and T2—auxiliary engine with a generator power of 1.1kW, which is used in
emergency situations to provide power (standby ICE2 consumes fuel ICE2 0.5 l/h);

• RB—rechargeable battery that provides power to the equipment when the gener-
ators do not generate electricity;

• PD—power distribution unit, which provides: battery charge, users’ power from
one of the generators, or from the battery, or the combination mode.

Tension in the on-board network depends on the generators and the level of battery
charge. In the normal mode all equipment power is provided from the main generator
and RB.

The main consumers, which are considered during the simulation:

• medical equipment, which consumes about 500W;
• illumination of the main cabin—120W;
• outdoor lighting (lights)—110W;
• car’s own needs—100W.

Charge current is limited at the level that corresponds to the power extracted from
the generator, equal to 200W. Reanimobile must travel a distance of 70km with a
specific schedule of speed, which is formed by road situation.

It is required to ensure electric power for medical equipment, which is located
in the main cabin. Since the motion is carried out at night, it is needed to provide
additional coverage of the inner and outer. Kinematics parameters approximately
correspond to the ambulances, based on GAZ.



322 N. D. Pankratova and A. M. Raduk

Depending on the speed transmission, ratio is changed, therefore, the frequency
of crankshaft rotation of the main internal combustion engine is changed (ICE1). At
the beginning of the way there are 47 l of fuel in the tank. Nutrition ICE1 and ICE2
are from the same tank. In normal situation, the car safely drives patient for 11,700s
(3h and 15min). In this case, the battery voltage does not decrease less than 11.85V.
At the end of the way there are 4.1 l of fuel in the tank.

Transition into abnormal mode is caused by malfunction of the charger, voltage
sensor RB. It is assumed that the sensor gives out false information that the battery is
fully charged. Since recharging RB is not done, then with the lapse of time the battery
is discharged, and, consequently, the voltage on-board network on the intervals of
generator outages (while switching gears, ICE1 is idling) will also be decreased. Due
to deep discharge the mode is occurred when the output voltage RB is not enough to
maintain the medical equipment operability and this is an emergency situation.

The recognition of an abnormal situation. The recognition of an abnormal situa-
tion occurs in accordance with prescribed critical values.

1) For stress in the on-board network: abnormal is 11.7V, emergency is 10.5V
2) For the amount of fuel: abnormal is 21, and emergency is 11.
3) For the voltage at the rechargeable battery: an abnormal situation −11.5V.

Thus, while reducing the value of the function below one of the set values, the
operation of reanomobile goes to an abnormal mode of functioning.

In other words, if Yt < H critical exists, at the moment of time t CES functioning
goes to an abnormal mode.Where Yt is a predicted value for the recovered functional
dependence. On the diagrams, this process can be observed in the form of decreasing
a prediction level (pink curve) below the threshold of the abnormal mode (blue line).

Critical variables:

• Board voltage (depending on the parameters of the RB, the generators condition,
the load current). This option could lead directly to an emergency, if the board
voltage drops below trip level of medical equipment

• Fuel level depends on the power, which is taken off from the main engine (made in
proportion to rotation speed). Decline below a certain point can lead to abnormal
(when you can call another car or refueling, and catering equipment from RB) or
emergency mode (when the car made a stop for a long time without charging).

• Voltage RB (depending on the generators condition, the total electricity
consumption).

Real-time monitoring of the technical diagnostics is conducted in the reanimobile
operation process with the purpose of timely exposure of potentially possible abnor-
mal situations and guaranteeing the survivability of the system’s functioning. In com-
pliancewith the developedmethodology of the guaranteed CTO functioning safety at
the starting phase t = t0, functional recovery yi = fi (x1, . . . , x j , . . .) is performed
using N02 = 50 given discrete samples of values y1, y2, y3 and their arguments. Here
y1 = Y1(x11, x12, x13, x14), y2 = Y2(x21, x22), and y3 = Y3(x31, x32, x33), where
x11 is the measured voltage RB; x12 is the velocity of crankshaft rotation; x13 is
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power, which is provided by auxiliary generator; x14 is the total power consumption;
x21 is the velocity of crankshaft rotation; x22 is power, which is provided by auxiliary
generator; x31 is the velocity of crankshaft rotation; x32 is power, which is provided
by auxiliary generator; x33 is the total power consumption. All data on the variables
Yi , i = 1, 2, 3 and their arguments xi , i = 1, 2, 3 are given as samples during the
reanimobile’s motion within 50,000s.

In this case, the voltage sensor gives false information about the voltage RB.
When the voltage drops below 11.7V the diagnostic system provides a driver with
the signal about an abnormal situation which can be developed into an emergency.
The driver stops the car (t = 7,323s), switches on a standby generator (t = 7,414s)
and eliminates the failure (t = 7,863s). Having recharged the battery from a standby
generator when t = 8,533s, the driver turns off the standby generator and resumes
themotion (t = 8,623s). Due to low battery, voltage at its terminals starts to decrease
rapidly. The diagnostic system warns about abnormal situation again, to solve the
problem the driver forcefully supports ICE1 speed at 250 rad/s, thus ensuring con-
tinued operation of the main generator.

As a result, fuel consumption is increased, which leads to the abnormal situation
(t = 13,000 s) when the amount of fuel is reduced to 1 l. At this moment of time the
car is forcibly stopped by the signal of the diagnostics system (before reaching their
destination) and a standby generator is switched on to provide the electric power
supply (one liter of fuel is enough for 2h operation of standby generator that allows
refuel the car or call for help).

The Risk Detection Procedure. Taking into account the specifics of operation of
the system, following risk detection procedures were constructed.

When reanimobile is functioning, possibility of abnormal situation is calculated
with the formula

F(ρk) = 1 − (1 − ρGv)(1 − ρAv)(1 − ρF ),

where ρGv is the probability that the board voltage drops below the emergency level;
ρAv is the probability that the battery voltage drops below the emergency level; ρF

is a probability that the fuel level drops below the emergency level. ρGv, ρAv and ρF

are calculated in the following way:

ρGv = 1 − ∣∣(H1es − y1pr )
∣∣ / |1, 75 ⊥ (H1es − H1a)| ; H1es = H1a;

ρAv = 1 − ∣∣(H3es − y3pr )
∣∣ / |1, 75 ⊥ (H3es − H3a)| ; H3es = H3a;

ρF = 1 − ∣∣(H2es − y2pr )
∣∣ / |1, 75 ⊥ (H2es − H2a)| ; H2es = H2a,

where H1es is board voltage in emergency situations (Y1r ∞ 11.7V); y1pr is the
current board voltage (recovery functional dependence using forecast); H1a is board
voltage in an emergency (Y1r ∞ 10.5V); H2es is the level of fuel in emergency
situations (Y2r ∞ 1L); y2pr is the current value of the fuel (recovery functional
dependence using forecast); H2a is the level of fuel in an emergency (Y2r = 0); H3es

is a battery voltage in the abnormal mode (Y3r ∞ 11.7B); y3pr is the current battery
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voltage ((recovery functional dependence using forecast); H3a is a board voltage in
an emergency (Y3r ∞ 10.5V).

This structure of risk was taken on the basis of the normalization behavior of
the process in the interval (0,1). Create the formula repelled by conditions: the risk
during the emergency must be equal to 1, the risk at the border of abnormal mode
should be equal to 0.4. In the result, the risks on all fronts are taken into account.
The overall risk is 1 during the damage 0.5–0.6 at the border of the abnormal mode.

Some results of reanimobile’s functioning during the first 7,000s. are shown in
Fig. 22.3 as the diagrams of stress distribution of the on-board network, the amount of
fuel in the tank, the rechargeable battery voltage. The transition into abnormal mode
happens due to failure of the sensor battery voltage. So far as the battery recharging
is not conducted, the battery is discharged with the lapse of time and, consequently,
the voltage in the on-board network in the period of 6,500–7,400s is also decreased
and transits into abnormal mode. The fuel level, which depends on the capacity of
the ICE, is also reduced.

At any time of the program operation user has the ability to look at the operator
scoreboard (Fig. 22.4), which displays a series of indicators that reflects the character
of the state of CEO of the reanimobile functioning. These are such indicators as:
indicators of sensors accumulator battery voltage, fuel quantity in the tank, the voltage
on-board network, the state of the system, the risk of the damage, the causes of the
abnormal or emergency mode, as well as the indicator of the danger level of the
system operation and possible failure of sensors.

Fig. 22.3 Distribution of the on-board network, the amount of fuel in the tank, the rechargeable
battery voltage in accordance of time t
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Fig. 22.3 (continued)

Fig. 22.4 Scoreboard of diagnostic process

22.4 Conclusion

System coordination of survivability and safety control on the goals, objectives,
resources and expected results, as well as by efficiency and effectiveness of inter-
action in the real conditions of abnormal situations allows to provide the effective
and efficient interaction of these control systems. On the one hand, it is ensured
the efficiency and effectiveness of security systems according to timely detection of
abnormal situations, estimation of its degree and level of risk, definition of themargin
of permissible risk in the process of forming the recommendations for the prompt
actions of the DM. On the other hand, the survivability control system must effec-
tively and efficiently operate after receiving a signal about the abnormal situation to
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ensure the availability of a complex object for the emergency transition into abnormal
mode and provide its realization within a margin of permissible risk.

The proposed strategy of system coordination of survivability and safety engineer-
ing objects operation, implemented as a tool of information platform of engineering
diagnostics of the complex objects, ensures the prevention of inoperability and the
danger of object’s functioning. By force of systematic and continuous evaluation of
critical parameters of object’s functioning in the real time mode, the reasons, which
could potentially cause the object’ tolerance failure of the functioning in the normal
mode, are timely revealed. For situations, development of which leads to possible
deviations of parameters from the normal mode of the object’s functioning, it is pos-
sible to make a timely decision about the change of the operation mode of the object,
or an artificial correction of the parameters to prevent the transition from the normal
mode into the abnormal one, accident and catastrophe.

The principles, which are included in the implementation of the guaranteed safety
of CES operation strategy, provide a flexible approach to timely detection, identifi-
cation, forecasting and system diagnosis of factors and risk situations, formation and
implementation of sustainable solutions during the acceptable time within the fatal
time limit.

References

1. Frolov, K.V.: Catastrophe Mechanics [in Russian]. Internship Institute for Safety of Complex
Engineering System, Moscow (1995)

2. Troshchenko, V.T.: Resistance of Materials to Deformation and Fracture: A Reference Book.
Pts. 1, 2 [in Russian]. Naukova Dumka, Kyiv (1993, 1994)

3. Pankratova, N., Kurilin, B.: Conceptual foundations of the system analysis of risks in dynamics
of control of complex system safety. P. 1: basic statements and substantiation of approach.
Autom. Inform. Sci. 33(2), 15–31 (2001)

4. Zgurovsky,M.Z., Pankratova,N.D.: SystemAnalysis: Theory andApplications. Springer, Berlin
(2007)

5. Pankratova, N.D.: System strategy for guaranteed safety of complex engineering systems.
Cybern. Syst. Anal. 46(2), 243–251 (2010)

6. Raduk, A.M.: System evaluation of the complex technical systems functioning. Syst. Res. Inf.
Technol. 1, 81–94 (2010)



Appendix A
To the Arithmetics of the Bose–Maslov
Condensate Statistics

G. I. Arkhipov and V. N. Chubarikov

Abstract The Bose–Maslov condensate statistics is connected with partitions of
natural numbers on natural summands. The arithmetics of this phenomenon is dis-
cussed. Authors proved that the asymptotical formulae of P. Erdös and J. Lehner for
pk(n) of a form

pk(n) → 1

k!
(

n − 1

k − 1

)

is valid uniformly on k for k ⇐ n1/3.
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Appendix B
Numerical Algorithms for Multiphase
Flows and Applications

Roman Samulyak

Abstract Newmathematical models, numerical algorithms, and computational soft-
ware for the study of multiphase/free surface hydrodynamic and magnetohydrody-
namic flows of conducting liquids and partially ionized gases in the presence of
phase transitions and external energy sources have been developed. The governing
system of equations include a coupled hyperbolic–elliptic system in geometrically
complex, evolving domains and equations for phase transitions and external sources.
Numerical algorithms use the method of front tracking for material interfaces, high
resolution hyperbolic solvers, the embedded boundary method for the elliptic prob-
lem in evolving domains, new EOS models, and kinetic models for external sources.
They have been implemented as anMHDextension of Frontier, a hydrodynamic code
with free interface support. Development of a new MHD code based on smoothed
particle hydrodynamics will also be briefly discussed. The software has been applied
to a variety of problems including liquid mercury jet targets for future accelerators,
pellet fueling of tokamaks, and plasma jet induced magneto inertial fusion (PJMIF).
Our main results for the pellet fueling include first calculation of pellet ablation
rates in magnetic fields, and studies of the channeling of weakly ionized gases in
fusion plasmas by the toroidal magnetic field. 3D simulations of the formation and
implosion of plasma liners for the plasma jet induced magneto inertial fusion have
been performed. In the PJMIF concept, a plasma liner, formed by merging of a large
number of radial, highly supersonic plasma jets, implodes on the target in the form
of two compact plasma toroids, and compresses it to conditions of the nuclear fusion
ignition. Simulations of accelerator targets explore free surface liquid mercury jets
interactingwith powerful proton beams in 15Tmagnetic fieldswithin theDOEMuon
Acceleration Program.
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Appendix C
Singular Trajectories of the First Order
in Problems with Multidimensional
Control Lying in a Polyhedron

Lion Lokutsievskiy

Abstract In this article control hamiltonian systems are studied. Control is assumed
to belong to a polyhedron Ω . Usually, singular trajectories and geometry of their
neighbourhoods play the main role in the investigation of global behaviour of tra-
jectories of the system. Theorem about structure of entering (and leaving) the first
order singular trajectory in its neighbourhood is proved for holonomic case. In this
case the LaGrange surface is woven in a special manner from singular trajectories on
facets of the polyhedron Ω . Also a clear method of constructing first order singular
trajectories on some facet of Ω is described.
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Appendix D
The Guaranteed Result Principle in Decision
Problems

V. M. Mikhalevich

Abstract The solution of the uncertainty issue for choice problems in Bayesian form
requiring a utility function preserving decision and consequence preferences extends
to decision problems in generalized neo-Bayesian form allowing randomness to a
wide extent for consequences, on the assumption of the utility function’s linearity.
This solution is based on the transition to multiple choice problems. As a result
for multiple decision-making systems, the following models were obtained: non-
reducible multi-prior SEU models for choice problems in generalized neo-Bayesian
form, which axiomatize the guaranteed and best result principles in statistical form,
correspondingly; non-reducible SEU, CEU models and a multi-prior SEU model,
all introduced by behaviorist traditions and generalizing the corresponding models
by Anscombe–Aumann, Schmeidler and Gilboa–Schmeidler. The indicated models
have proof of their corresponding necessary and sufficient criterion replacement
conditions.
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