
Dimensionality Reduction Models in Density
Estimation and Classification

Alexander Samarov

Abstract In this paper we consider the problem of multivariate density estima-
tion assuming that the density allows some form of dimensionality reduction.
Estimation of high-dimensional densities and dimensionality reduction models are
important topics in nonparametric and semi-parametric econometrics.We start with
the Independent Component Analysis (ICA) model, which can be considered as
a form of dimensionality reduction of a multivariate density. We then consider
multiple index model, describing the situations where high-dimensional data has
a low-dimensional non-Gaussian component while in all other directions the data
are Gaussian, and the independent factor analysis (IFA) model, which generalizes
the ordinary factor analysis, principal component analysis, and ICA. For each of
these models, we review recent results, obtained in our joint work with Tsybakov,
Amato, and Antoniadis, on the accuracy of the corresponding density estimators,
which combine model selection with estimation. One of the main applications
of multivariate density estimators is in classification, where they can be used to
construct plug-in classifiers by estimating the densities of each labeled class. We
give a bound to the excess risk of nonparametric plug-in classifiers in terms of
the MISE of the density estimators of each class. Combining this bound with the
above results on the accuracy of density estimation, we show that the rate of the
excess Bayes risk of the corresponding plug-in classifiers does not depend on the
dimensionality of the data.

1 Introduction

Complex data sets lying in multidimensional spaces are a commonplace occurrence
in many parts of econometrics. The need for analyzing and modeling high-
dimensional data often arises in nonparametric and semi-parametric econometrics,
quantitative finance, and risk management, among other areas. One of the important
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challenges of the analysis of such data is to reduce its dimensionality in order to
identify and visualize its structure.

It is well known that common nonparametric density estimators are quite
unreliable even for moderately high-dimensional data. This motivates the use of
dimensionality reduction models. The literature on dimensionality reduction is very
extensive, and we mention here only some publications that are connected to our
context and contain further references (Roweis and Saul 2000; Tenenbaum et al.
2000; Cook and Li 2002; Blanchard et al. 2006; Samarov and Tsybakov 2007).

In this paper we review several dimensionality reduction models analyzed in
Samarov and Tsybakov (2004, 2007), and Amato et al. (2010).

In Sect. 2 we consider the ICA model for multivariate density where the distri-
bution of independent sources are not parametrically specified. Following results
of Samarov and Tsybakov (2004), we show that the density of this form can be
estimated at one-dimensional nonparametric rate, corresponding to the independent
component density with the worst smoothness.

In Sect. 3 we discuss multiple index model, describing the situations where
high-dimensional data has a low-dimensional non-Gaussian component while in
all other directions the data are Gaussian. In Samarov and Tsybakov (2007) we
show, using recently developed methods of aggregation of density estimators, that
one can estimate the density of this form, without knowing the directions of the
non-Gaussian component and its dimension, with the best rate attainable when both
non-Gaussian index space and its dimension are known.

In Sect. 4 we consider estimation of a multivariate density in the noisy inde-
pendent factor analysis (IFA) model with unknown number of latent independent
components observed in Gaussian noise. It turns out that the density generated
by this model can be estimated with a very fast rate. In Amato et al. (2010) we
show that, using recently developed methods of aggregation Juditsky et al. (2005,
2008), we can estimate the density of this form at a parametric root-n rate, up to a
logarithmic factor independent of the dimension d .

In Sect. 5 we give a bound to the excess risk of nonparametric plug-in classifiers
in terms of the integrated mean square error (MISE) of the density estimators of
each class. Combining this bound with the results of previous sections, we show
that if the data in each class are generated by one of the models discussed there,
the rate of the excess Bayes risk of the corresponding plug-in classifiers does not
depend on the dimensionality of the data.

2 Nonparametric Independent Component Analysis

Independent Component Analysis (ICA) is a statistical and computational technique
for identifying hidden factors that underlie sets of random variables, measurements,
or signals, blind source separation. In the ICA model the observed data variables are
assumed to be (linear or nonlinear) mixtures of some unknown latent variables, and
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the mixing system is also unknown. The latent variables are assumed non-Gaussian
and mutually independent; they are called the independent components of the data.

Most of the existing ICA algorithms concentrate on recovering the mixing matrix
and either assume the known distribution of sources or allow for their limited,
parametric flexibility (Hyvarinen et al. 2001). Most ICA papers either use mixture of
Gaussian distributions as source models or assume that the number of independent
sources is known, or both. In our work, the ICA serves as a dimensionality reduction
model for multivariate nonparametric density estimation; we suppose that the
distribution of the sources (factors) and their number are unknown.

The standard (linear, noise-free, full rank) ICA model assumes that d -
dimensional observations X can be represented as

X D AU;

where A is an unknown nonsingular d � d -matrix, and U is an unobserved random
d -vector with independent components. The goal of ICA is to estimate the matrix
A, or its inverse B> D A�1, based on a sample X1; : : : ; Xn i.i.d. p.x/. When all
components of U, with a possible exception of one, are non-Gaussian, the mixing
matrix A is identifiable up to the scale and permutation of its columns.

The ICA model can be equivalently written in terms of the probability density of
the observed data:

p.x/ D jdet.B/j
dY

j D1

pj .x>ˇj /; x 2 Rd ; (1)

where ˇ1; : : : ; ˇd � unknown, linearly independent, unit-length d -vectors, det.B/

is the determinant of the matrix B D .ˇ1; : : : ; ˇd /; B> D A�1, and pj .�/; j D
1; : : : ; d; are probability densities of the independent sources.

Most known ICA methods specify the parametric form of the latent component
densities pj and estimate B together with parameters of pj using maximum
likelihood or minimization of the empirical versions of various divergence criteria
between densities, see, e.g., Hyvarinen et al. (2001) and the references therein. In
general, densities pj are unknown, and one can consider ICA as a semiparametric
model in which these densities are left unspecified.

In Samarov and Tsybakov (2004) we show that, even without knowing
ˇ1; : : : ; ˇd , p.x/ can be estimated at one-dimensional nonparametric rate,
corresponding to the independent component density with the worst smoothness.
Our method of estimating ˇ1; : : : ; ˇd is based on nonparametric estimation of the
average outer product of the density gradient

T .p/ D EŒrp.X/r>p.X/�;

where rp is the gradient of p, and simultaneous diagonalization of this estimated
matrix and the sample covariance matrix of the data. After the directions have been
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estimated at root-n rate, the density (1) can be estimated, e.g. using the kernel
estimators for marginal densities, at the usual one-dimensional nonparametric rate.

The method of Samarov and Tsybakov (2004) can be applied to a generalization
of ICA where the independent components are multivariate. Our method estimates
these statistically independent linear subspaces and reduces the original problem to
the fundamental problem of identifying independent subsets of variables.

3 Multi-Index Departure from Normality Model

We consider next another important dimensionality reduction model for density:

p.x/ D �d .x/g.B>x/; x 2 Rd ; (2)

where B—unknown d � m matrix with orthonormal columns, 1 � m � d , g W
Rm ! Œ0; 1/ unknown function, and �d .�/ is the density of the standard d -variate
normal distribution.

A density of this form models the situation where high-dimensional data has a
low-dimensional non-Gaussian component (m << d ) while all other components
are Gaussian. Model (2) can be viewed as an extension of the projection pursuit
density estimation (PPDE) model, e.g. Huber (1985), and of the ICA model. A
model similar to (2) was considered in Blanchard et al. (2006).

Note that the representation (2) is not unique. In particular, if Qm is an m � m

orthogonal matrix, the density p in (2) can be rewritten as p.x/ D �d .x/g1.B>
1 x/

with g1.y/ D g.Qmy/ and B1 D BQm. However, the linear subspace M spanned
by the columns of B is uniquely defined by (2).

By analogy with regression models, e.g. Li (1991), Hristache et al. (2001), we
will call M the index space. In particular, if the dimension of M is 1, model (2) can
be viewed as a density analog of the single index model in regression. In general, if
the dimension of M is arbitrary, we call (2) the multiple index model.

When the dimension m and an index matrix B (i.e., any of the matrices,
equivalent up to an orthogonal transformation, that define the index space M ) are
specified, the density (2) can be estimated using a kernel estimator

Opm;B.x/ D �d .x/

�m.B>x/

1

nhm

nX

iD1

K

�
B>.Xi � x/

h

�
;

with appropriately chosen bandwidth h > 0 and kernel K W Rm ! R1. One
can show, see Samarov and Tsybakov (2007), that, if the function g is twice
differentiable, the mean integrated mean squared error (MISE) of the estimator Opm;B

satisfies:

MISE. Opm;B; p/ WD Ejj Opm;B � pjj2 D O.n�4=.mC4//; (3)
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if the bandwidth h is chosen of the order h
P� n�1=.mC4/. Using the standard

techniques of the minimax lower bounds, it is easy to show that the rate n�4=.mC4/

is the optimal MISE rate for this model and thus the estimator Opm;B with h
P�

n�1=.mC4/ has the optimal rate for this class of densities.
In Samarov and Tsybakov (2007) we show, using recently developed methods

of aggregation of density estimators, that one can estimate this density, without
knowing B and m, with the same rate O.n�4=.mC4// as the optimal rate attainable
when B and m are known. The aggregate estimator of Samarov and Tsybakov
(2007) automatically accomplishes dimension reduction because, if the unknown
true dimension m is small, the rate O.n�4=.mC4// is much faster than the best
attainable rate O.n�4=.dC4// for a model of full dimension. This estimator can
be interpreted as an adaptive estimator, but in contrast to adaptation to unknown
smoothness usually considered in nonparametrics, here we deal with adaptation to
unknown dimension m and to the index space M determined by a matrix B .

4 IFA Model

In this section we consider an IFA model with unknown number and distribution of
latent factors:

X D AS C "; (4)

where A is d �m unknown deterministic matrix, m < d , with orthonormal columns;
S is an m-dimensional random vector of independent components with unknown
distributions, and " is a normal Nd .0; �2Id / random vector of noise independent
of S.

By independence between the noise and the vector of factors S, the target density
pX can be written as a convolution:

pX.x/ D
Z

Rm

�d;�2.x � As/FS.d s/; (5)

where �d;�2 denotes the density of a d -dimensional Gaussian distribution
Nd .0; �2Id / and FS is the distribution of S.

Note that (5) can be viewed as a variation of the Gaussian mixture model which is
widely used in classification, image analysis, mathematical finance, and other areas,
cf., e.g., Titterington et al. (1985) and McLachlan and Peel (2000). In Gaussian
mixture models, the matrix A is the identity matrix, FS is typically a discrete
distribution with finite support, and variances of the Gaussian terms are usually
different.

Since in (5) we have a convolution with a Gaussian distribution, the density pX

has very strong smoothness properties, no matter how irregular the distribution FS
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of the factors is, whether or not the factors are independent, and whether or not the
mixing matrix A is known. In Amato et al. (2010), we construct a kernel estimator
Op�
n of pX such that

Ejj Op�
n � pXjj22 � C

.log n/d=2

n
; (6)

where C is a constant and jj � jj2 is the L2.Rd / norm. As in Artiles (2001) and
Belitser and Levit (2001), it is not hard to show that the rate given in (6) is optimal
for the class of densities pX defined by (5) with arbitrary probability distribution FS.

Though this rate appears to be very fast asymptotically, it does not guarantee
good accuracy for most practical values of n, even if d is moderately large. For
example, if d D 10, we have .log n/d=2 > n for all n � 105.

In order to construct our estimator, we first consider the estimation of pX when
the dimension m, the mixing matrix A, and the level of noise �2 are specified.
Because of the orthonormality of columns of A, A> is the demixing matrix:
A>X D S C A>", and the density of X can be written as

pX.x/ D
�

1

2��2

�.d�m/=2

exp

�
� 1

2�2
x>.Id � AA>/x

� mY

kD1

gk.a>
k x/;

where ak denotes the kth column of A and gk.u/ D .pSk
��1/.u/ D R

R
pSk

.s/�1.u�
s/ds:

In Amato et al. (2010) we show that, using kernel estimators for gk , one can
construct an estimator for the density pX which has the mean integrated square
error (MISE) of the order .log n/1=2=n. Note that neither m nor d affect the rate.

When the index matrix A, its rank m, and the variance of the noise �2 are
all unknown, we use a model selection type aggregation procedure called the
mirror averaging algorithm of Juditsky et al. (2008) to obtain fully adaptive density
estimator. We make a few additional assumptions.

Assumption 1 At most one component of the vector of factors S in (4) has a
Gaussian distribution.

Assumption 2 The columns of the matrix A are orthonormal.

Assumption 3 The number of factors m does not exceed an upper bound M ,
M < d .

Assumption 4 The M largest eigenvalues of the covariance matrix ˙X of the
observations X are distinct and the 4th moments of the components of X are finite.

Assumption 1, needed for the identifiability of A, is standard in the ICA
literature, see, e.g., Hyvarinen et al. (2001) Assumption 2 is rather restrictive but,
as we show below, together with the assumed independence of the factors, it allows
us to eliminate dependence of the rate in (6) on the dimension d . Assumption 3
means that model (4) indeed provides the dimensionality reduction. The assumption
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M < d is only needed to estimate the variance �2 of the noise; if �2 is known, we
can allow M D d . Assumption 4 is needed to establish root-n consistency of the
eigenvectors of the sample covariance matrix of X.

Under these assumptions, in Amato et al. (2010) we construct an estimator for the
density of the form (5) that adapts to the unknown m and A, i.e., has the same MISE
rate O..log n/1=2=n/, independent of m and d , as in the case when the dimension
m, the matrix A, and the variance of the noise �2 are known.

5 Application to Nonparametric Classification

One of the main applications of multivariate density estimators is in classification,
which is one of the important econometric techniques. These estimators can be used
to construct nonparametric classifiers based on estimated densities from labeled data
for each class.

The difficulty with such density-based plug-in classifiers is that, even for
moderately large dimensions d , standard density estimators have poor accuracy
in the tails, i.e., in the region which is important for classification purposes.
In this section we consider the nonparametric classification problem and bound
the excess misclassification error of a plug-in classifier in terms of the MISE
of class-conditional density estimators. This bound implies that, for the class-
conditional densities obeying the dimensionality reduction models discussed above,
the resulting plug-in classifier has nearly optimal excess error.

Assume that we have J independent training samples fXj1; : : : ; XjNj
g of sizes

Nj , j D 1; : : : ; J , from J populations with densities f1; : : : ; fJ on Rd . We will
denote by D the union of training samples. Assume that we also have an observation
X 2 Rd independent of these samples and distributed according to one of the fj .
The classification problem consists in predicting the corresponding value of the
class label j 2 f1; : : : ; J g. We define a classifier or prediction rule as a measurable
function T .�/ which assigns a class membership based on the explanatory variable,
i.e., T W Rd ! f1; : : : ; J g: The misclassification error associated with a classifier T

is usually defined as

R.T / D
JX

j D1

�j Pj .T .X/ 6D j / D
JX

j D1

�j

Z

Rd

I.T .x/ 6D j /fj .x/dx;

where Pj denotes the class-conditional population probability distribution with
density fj , and �j is the prior probability of class j . We will consider a slightly
more general definition:

RC .T / D
JX

j D1

�j

Z

C

I.T .x/ 6D j /fj .x/dx;
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where C is a Borel subset of Rd . The Bayes classifier T � is the one with the smallest
misclassification error:

RC .T �/ D min
T

RC .T /:

In general, the Bayes classifier is not unique. It is easy to see that there exists a
Bayes classifier T � which does not depend on C and which is defined by

�T �.x/fT �.x/.x/ D min
1�j �J

�j fj .x/; 8 x 2 Rd :

A classifier trained on the sample D will be denoted by TD.x/. A key characteristic
of such a classifier is the misclassification error RC .TD/. One of the main goals in
statistical learning is to construct a classifier with the smallest possible excess risk

E .TD/ D ERC .TD/ � RC .T �/:

We consider plug-in classifiers OT .x/ defined by:

� OT .x/
Of OT .x/.x/ D min

1�j �J
�j

Ofj .x/; 8 x 2 Rd

where Ofj is an estimator of density fj based on the training sample fXj1; : : : ; XjNj
g.

The following proposition relates the excess risk E . OT / of plug-in classifiers to
the rate of convergence of the estimators Ofj , see Amato et al. (2010).

Proposition 1

E . OT / �
JX

j D1

�j E
Z

C

j Ofj .x/ � fj .x/jdx

Assume now that the class-conditional densities follow, for example, the noisy

IFA model (5) with different unknown mixing matrices and that Nj
P� n for all

j . Let C be a Euclidean ball in Rd and define each of the estimators Ofj using the
mirror averaging procedure as in the previous section. Then, using results of that
section, we have

E
Z

C

j Ofj .x/ � fj .x/jdx �
p

jC j Ek Ofj � fj k2;C D O

�
.log n/1=4

p
n

�

as n ! 1, where jC j denotes the volume of the ball C and the norm k � k2;C is
defined as kf k2

2;C D R
C

f 2.x/dx. Thus, the excess risk E . OT / converges to 0 at the
rate .log n/1=4=

p
n independently of the dimension d .
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Similarly, we can show, using the above proposition, that, if the class densities
follow other dimensionality reduction models considered in this paper, the rate of
the excess Bayes risk of the corresponding plug-in classifiers does not depend on
the dimensionality of the data.

Acknowledgements Partial support provided by the Singapore-MIT Alliance in Computation and
Systems Biology.

References

Amato, U., Antoniadis, A., Samarov, A., & Tsybakov, A. (2010). Noisy independent factor analysis
model for density estimation and classification. Electronic Journal of Statistics, 4, 707–736.

Artiles, L. M. (2001). Adaptive Minimax Estimation in Classes of Smooth Functions (Ph.D. thesis).
University of Utrecht.

Belitser, E., & Levit, B. (2001). Asymptotically local minimax estimation of infinitely smooth
density with censored data. Annals of the Institute of Statistical Mathematics, 53, 289–306.

Blanchard, B., Kawanabe, G. M., Sugiyama, M., Spokoiny, V., & Müller, K. R. (2006). In search
of non-gaussian components of a high-dimensional distribution. Journal of Machine Learning
Research, 7, 247–282.

Cook, R. D., & Li, B. (2002). Dimension reduction for conditional mean in regression. Annals of
Statistics, 32, 455–474.

Hristache, M., Juditsky, A., Polzehl J., & Spokoiny, V. (2001). Structure adaptive approach for
dimension reduction. Annals of Statistics, 29, 1537–1566.

Huber, P. (1985). Projection pursuit. Annals of Statistics, 13, 435–475.
Hyvarinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley.
Juditsky, A., Rigollet, P., & Tsybakov, A. B. (2008). Learning by mirror averaging. Annals of

Statistics, 36, 2183–2206.
Juditsky, A. B., Nazin, A. V., Tsybakov, A. B., & Vayatis, N. (2005). Recursive aggregation

of estimators by the mirror descent algorithm with averaging. Problems of Information
Transmission, 41, 368–384.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86, 316–342.

McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding.

Science, 290, 2323–2326.
Samarov, A., & Tsybakov, A. B. (2004). Nonparametric independent component analysis.

Bernoulli, 10, 565–582.
Samarov, A., & Tsybakov, A. B. (2007). Aggregation of density estimators and dimension

reduction. In V. Nair (Ed.), Advances in statistical modeling and inference, essays in honor
of K. Doksum. Series in Biostatistics (Vol. 3, pp. 233–251). London: World Scientific.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290, 2319–2323.

Titterington, D., Smith, A., & Makov, U. (1985). Statistical analysis of finite mixture distributions.
New York: Wiley.


	Dimensionality Reduction Models in Density Estimation and Classification
	1 Introduction
	2 Nonparametric Independent Component Analysis
	3 Multi-Index Departure from Normality Model
	4 IFA Model
	5 Application to Nonparametric Classification
	References


