
Chapter 9
Synchronous Finite State Machines Design with
Quantum-Inspired Evolutionary Computation�

Abstract. Synchronous finite state machines are very important for digital se-
quential designs. Among other important aspects, they represent a powerful way
for synchronizing hardware components so that these components may cooperate
adequately in the fulfillment of the main objective of the hardware design. In this
chapter, we propose an evolutionary methodology based on the principles of quan-
tum computing to synthesize finite state machines. First, we optimally solve the state
assignment NP-complete problem, which is inherent to designing any synchronous
finite state machines. This is motivated by the fact that with an optimal state assign-
ment, one can physically implement the state machine in question using a minimal
hardware area and response time. Second, with the optimal state assignment pro-
vided, we propose to use the same evolutionary methodology to yield an optimal
evolutionary hardware that implements the state machine control component. The
evolved hardware requires a minimal hardware area and imposes a minimal propa-
gation delay on the machine output signals.

9.1 Introduction

Sequential digital systems or simply finite state machines (FSMs) have two main
characteristics: there is at least one feedback path from the system output signal to
the system input signals; and there is a memory capability that allows the system to
determine current and future output signal values based on the previous input and
output signal values [1].

Traditionally, the design process of a state machine passes through five main
steps, wherein the second and third steps may repeated several times as shown in
Figure 9.1.

1. the specification of the sequential system, which should determine the next states
and outputs of every present state of the machine. This is done using state tables
and state diagrams;

� This chapter was developed together with Marcos Paulo Mello Araujo.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 119
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_9, c© Springer International Publishing Switzerland 2014

120 9 Synchronous Finite State Machines Design

2. the state reduction, which should reduce the number of present states using equiv-
alence and output class grouping;

3. the state assignment, which should assign a distinct combination to every present
state. This may be done using Armstrong-Humphrey heuristics [1, 2, 3];

4. the minimization of the control combinational logic using K-maps and transition
maps;

5. finally, the implementation of the state machine, using gates and flip-flops.

Fig. 9.1 Design methodology for sequential circuits

In this chapter, we concentrate on the third and forth steps of the design process,
i.e. the state assignment and the control logic minimization problems. We present a
quantum-inspired genetic algorithm designed to find a state assignment of a given
synchronous finite state machine, which attempts to minimize the cost related to the
state transitions. Then, we adapt the same quantum-inspired evolutionary algorithm
to evolve the circuit that controls the machine current and next states.

The problems involved in state machine synthesis have been extensively studied
in the past [2, 3, 1, 4]. These studies can be applied to state machine with a limited
complexity, i.e. few state and transitions to control. Furthermore, the evolutionary

9.1 Introduction 121

principle in the form of genetic algorithms and genetic programming has been ex-
plored to solve these problems [5, 6, 7, 8]. The application of this principle allowed
designers to synthesize more complex, state machines, i.e. with a little more states
and transitions, and without much design effort. However, when the complexity of
the state machine at hand goes beyond a certain limit, this applications fails to yield
interesting synthesis results and also, the execution extends over hours of evolution
One of the attractive properties of quantum computing is the possibility of massive
parallelism, as it will be detailed later in the next sections of this chapter. This paral-
lelism is not explicit. Instead, it is embedded within the information representation.

The use of both the evolutionary principle combined with that of quantum com-
puting should allow us to improve further the synthesis process both in terms of
improving the quality of the yielded results and also in synthesizing more complex
state machine with no design effort and with shorter evolution time. The results
presented towards the end of this chapter prove that the use of the quantum-inspired
evolutionary process is very efficient. Using the proposed algorithm, we were able to
synthesize automatically and evolutionary very complex state machines in a record
time. In practical terms, our algorithm can be embedded in hardware synthesis tools
to improve the quality of the synthesis result and generate those result efficiently.

The remainder of this chapter is organized into six sections. In Section 9.2, we in-
troduce the problems that face the designer of finite state machine, which are mainly
the state assignment problem and the design of the required control logic. In Sec-
tion 9.3, we show that a well chosen assignment improves considerably the cost
of the control logic. In Section 9.4, we give a thorough overview on the principles
of quantum computing. In Section 9.5, we design a quantum-inspired genetic algo-
rithm, which we call QIGA for evolving innovative solutions to hard NP-complete
problems. In Section 9.6, we apply QIGA to the state assignment problem and we
describe the genetic operators used as well as the fitness function, which determines
whether a state assignment is better that another and how much. Subsequently, in
Section 9.7, we present a quantum-inspired synthesizer for evolving efficient control
logic circuit given the state assignment for the specification of the state machine in
question. Then, we describe the circuit encoding, quantum gates used as well as the
fitness function, which determines whether a control logic design is better than an-
other and how much. Towards the end of this chapter, in Section 9.8, we present the
results evolved by QIGA for some well-known FSM benchmarks. Then we compare
the obtained results with those obtained by another genetic algorithm described in
[7, 6] as well as with NOVATM, which uses well established but non-evolutionary
methods [9]. We also provide the area and time requirements of the designs evolved
through our evolutionary synthesizer for those benchmarks and compare the yielded
results with those obtained using the traditional method to design state machines [9].
Last but no least, in Section 9.9, we draw some conclusions about this study and give
some directions for future work.

122 9 Synchronous Finite State Machines Design

9.2 Design Methodology of Synchronous Finite State Machines

Digital systems can be classified as combinational systems or sequential systems. A
combinational system must obey the following restrictions [1]:

1. The values 0/1 of the output signals must depend on the actual values 0/1 of the
input signals only.

2. There should be no feedback of the output signals to the input signals.

The aforementioned two restrictions make the design and analysis of combi-
national systems a straightforward task. Each output signal can be expressed as a
Boolean function of the input signals. For a combinational system of n input signals
and m output signals, we can have:

o j = φ j(i1, i2, . . . , in), j = 1,2, . . . ,m (9.1)

wherein i1, i2, . . . , in area the input signals, o1,o2, . . . ,om are the output signals and
φ1, φ2, . . ., φm form the necessary m Boolean function that yield the output signals.

In many digital systems, the output signal behavior cannot be determined know-
ing only the actual behavior of the input signals. In this case, the history of the input
and output signals must be used to do so. Sequential systems are fundamentally
different from the combinational ones, in spite of the fact that the former also in-
clude a combinational part. The term sequential is commonly used to describe this
distinction. Sequential systems present two main characteristics:

1. There exists at least on path of feedback between the output and input signals of
the system;

2. The circuit has the ability of remember information about the system past, in
such a way that previous values of the output signals could be used to determine
their respective next values.

The removal of the combinational restrictions allows for a larger spectrum for the
application of digital systems. The use of memory elements and the feedback feature
allow for the consideration of the time element as a parameter in the definition of
the system behavior. Therefore, the information related to past events can be used to
determine the behavior of the output signals. Moreover, information about both the
past and the present can be captured as to plan and specify some future activities.

A clear advantage that can be observed through the comparison of sequential and
purely combinational systems is the reduction of the hardware required due to the
repetitive nature of sequential systems. However, a sequential system almost always
requires more time to execute tasks [1]. The generic architecture of a Mealy finite
state machine is given in Figure 9.2.

The input signals of a sequential system can be divided into two groups: primary
input signals (i1, i2, . . . , in) and secondary input signals (p1, p2, . . . , pk). The behav-
ior of the primary input signals define the actual value of the system input, which
can be one of the 2n different possible combinations. The behavior of the secondary
input signals reflects the past history of the sequential system. These signals are also
called current state signals and whose values are read from the system memory.

9.2 Design Methodology of Synchronous Finite State Machines 123

Fig. 9.2 A structural description of a Mealy state machine

The system ability to remember information about the past can be implemented
through the utilization of flip-flops or latches [10]. The set of flip-flops used is gen-
erally called the state register. The k signal values of the secondary input form what
is commonly known as the present state of the system. Therefore, the system may
have 2k distinct possible states. For this reason, sequential systems are also com-
monly called as finite state systems [10]. The total state of the system is defined as
the union of the two sets of primary and secondary input signals. So, there are 2n+k

different total states.
The output signals can also be divided into two groups: primary output signals

(o1, o2, . . ., om) and secondary output signals (n1,n2, . . . ,nk). The primary output
signals form the control signals that are sent to the environment in which the se-
quential system is embedded. The secondary output signals form the data for the
sequential system memory. These signals present the new value that will be saved
into the system memory as soon as the next cycle of operation starts. Therefore,
the secondary output signals are commonly called the next state of the system. In
the same moment that the next state signals are written into the state register, the
system passes to show this state as the present state. The primary and secondary
output signals of the system are yield by combinational operations on the total state
signals.

The design methodology of a state machine that controls the behavior of a given
digital system may be subdivided into the following main steps:

• Machine Specification: The relationship between the present state signals and
the primary input signals and that between the next state signals and the primary
output signals describes the behavior of the sequential system. This relationship

124 9 Synchronous Finite State Machines Design

can be represented in many different ways. The most commonly used represen-
tations are the state transition diagram and the state transition table.

• State Reduction: States that produce the same output signal and have the same
next state behavior are identified as equivalent and so are combined into a single
state that acts in substitution to all these equivalent states. Equation 9.2 suggests
that the total number of states that are necessary during the operation of the se-
quential system, say n, determine the minimal number of the state signals in that
system implementation. Therefore, reducing the number of the included states
yields a reduction in the state register size and also may lead to a reduction in the
complexity of the control logic required. Some techniques used for the identifi-
cation of equivalent states and the simplification of the state machine model can
be found in [4].

K = �log2(n)� (9.2)

• State Assignment: Once the specification and the state reduction steps have
been completed, the following step consists then of assigning a code to each
state present in the machine. It is clear that if the machine has N distinct states
then one needs N distinct combinations of 0s and 1s. So, one needs K flip-flops
to store the machine current state, wherein K is the smallest positive integer such
that 2K ≥ N. The state assignment problem consists of finding the best assign-
ment of the flip-flop combinations to the machine states. Since a machine state
is nothing but a counting device, a combinational control logic is necessary to
activate the flip-flops in the desired sequence. A generic architecture of a ma-
chine state is shown in Figure 9.2, wherein the feedback signals constitute the
machine state, the control logic is a combinational circuit that computes the state
machine primary output signals from the current state signals and the primary
input signals. It also produces the signals of the machine next state.

Let n be the number of states in a given machine and so b = �log2 n� flip-
flops are needed to store the machine state. A state assignment consists of iden-
tifying the 2b binary codes that should be used to identify the machine n states.
The number of possible distinct state assignments f (n,b) [11] is given in
Equation 9.3.

f (n,b) =
2b

(2b − n)
(9.3)

Table 9.2 shows the values obtained for f when applied to some specific values
of n and b. For instance, if the evaluation of an assignment as to its impact on the
state machine implementation lasts say 100 μs, then 66 years would be needed
to test all possible assignments, which cannot be done. Therefore, it is essential
to use heuristics to overcome this problem.

• Logic Synthesis: The control logic component in a state machine is responsible
for generating the primary output signals as well as the signal that form the next
state. It does so using the primary input signals and the signals that constitute the
current state (see Figure 9.2). Traditionally, the combinational circuit of the con-
trol logic is obtained using the transition maps of the flip-flops [1]. Given a state
transition function, it is expected that the complexity, in terms of area and time,

9.3 Impact of State Assignment 125

Table 9.1 Number of possible state assignments

n b f (n,b)

2 1 2
3 2 24
4 2 24
5 3 6720
6 3 20160
7 3 40320
8 3 40320
9 4 ≈ 4 ·109

10 4 ≈ 3 ·1010

11 4 ≈ 2 ·1011

12 4 ≈ 9 ·1011

13 4 ≈ 3 ·1012

14 4 ≈ 1 ·1013

15 4 ≈ 2 ·1013

and so the cost of the control logic will vary for different assignments of flip-flop
combinations to the allowed states. Consequently, the designer should seek the
assignment that minimizes the complexity and so the cost of the combinational
logic required to control the state transitions.

9.3 Impact of State Assignment

Given a state transition function, the requirements of area and time vary with respect
to the state assignment used. Therefore, the designer or the computer-aided design
tool for circuit synthesis needs always to select carefully the state assignment to be
used. Existing techniques for state assignment can be listed as follows:

• One-hot: This technique associates a bit in the state register to each one of the
existing state. This simplifies a great deal the synthesis flux as the control logic
circuit can be obtained on-the-fly. However, it requires a register state whose size
is defined by the number of states in the machine [10].

• Heuristics: These techniques attempt to identify a “good” assignment based on
some heuristics. For instance, in [2] and [3], a heuristic based on state code ad-
jacency, which attempts to assign adjacent codes to states that are “close” con-
sidering the state transition function. Two states are said to be close if one is the
next state to the other and two binary codes are said to be adjacent if these are
distinct in one single position. The idea behind this heuristic is the fact that adja-
cent binary codes will appear next to each other in Karnaugh maps and therefore
would allow larger grouping, when necessary.

126 9 Synchronous Finite State Machines Design

• Meta-heuristics: Evolutionary algorithms are used to evolve efficient
assignments, rendering the assignment problem to an optimization one [6, 12].
These algorithms have been proven very efficient, very robust and the results
obtained are far superior to those yield by the heuristic-based techniques

In order to demonstrate the impact of the chosen state assignment on the con-
trol logic complexity in terms of area and response time, let us consider the state
machine described in Table 9.2 and try two different state codifications, which
are assignment1 = {00,11,01,10} and assignment2 = {00,01,11,10}. The circuit
schematics for the state machine using assignment1 and assignment2 are shown in
Figure 9.3 and 9.4 respectively.

Table 9.2 Example of state transition table

present next state output (O)
state I = 0 I = 1 I = 0 I = 1

s0 s0 s1 0 0
s1 s2 s1 0 1
s2 s0 s3 1 0
s3 s2 s1 1 1

Fig. 9.3 Circuit schematics for the state machine using assignment1

This example proves that the appropriate state assignment can reduce the imple-
mentation cost of the machine. The cost is defined here as the number of gates NOT,
AND and OR of two one-bit inputs used. The inverted output signal of the flip-flops
are considered of cost zero for the circuit implementation as these are available as
output from the flip-flops. Assuming that the implementation cost of a given circuit
is defined as the number of logic gates included, then Table 9.3 summarizes this cost
for several possible state assignments, including assignment1 and assignment2. The
afore-described example is an illustration of the fact that the choice of state assign-
ment can reduce considerably the cost of state machine implementations, if chosen
carefully.

9.4 Principles of Quantum Computation 127

Fig. 9.4 Circuit schematics for the state machine using assignment1

Table 9.3 Comparison of the number of logic gates for several possible state assignments

assignment #AND #OR #NOT Total

[00,11,01,10] 4 3 1 8
[00,01,10,11] 5 2 1 8
[00,10,01,11] 5 2 1 8
[00,11,10,01] 5 3 1 9
[11,00,01,10] 5 3 1 9
[00,01,11,10] 10 7 1 18
[00,10,11,01] 11 6 1 18

In Section 9.6, we concentrate on the third step of the design process, i.e. the state
assignment problem. We present a quantum-inspired genetic algorithm, designed
for finding a state assignment of a given synchronous finite state machine, which
attempts to minimize the cost related to the state transitions. In Section 9.7, we focus
on evolving minimal control logics for state machines for a given state assignment
and using an adapted version of the quantum-inspired genetic algorithm. Before
getting to that, however, we first give an introduction to quantum computing and
then we sketch the proposed algorithm.

9.4 Principles of Quantum Computation

Quantum computing is based on the concepts of quantum mechanics and is ex-
pected to be one of the main pillars of next generation computers. Many researchers
are already using the principles of quantum computing to develop new techniques
and algorithms to take advantage of the underlaying benefits [13, 14]. The basic

128 9 Synchronous Finite State Machines Design

elements of quantum computing are: quantum bits, quantum registers, quantum
gates and quantum circuits. These concepts are defined in the remainder of this
section.

9.4.1 Quantum Bit

In quantum computing, the smallest unit of information stored in a two-state system
is called a quantum bit or qubit [15]. The 0 and 1 states of a classical bit, are replaced
by the state vectors |0〉 and |1〉 of a qubit. This vectors are usually written using the
bracket notation, introduced by Paul Dirac in [16]. The state vectors of a qubit are
represented as in Equation 9.4:

|0〉=
[

1
0

]
e |1〉=

[
0
1

]
. (9.4)

While the classical bit can be in only one of the two basic states that are mutually
exclusive, the generic state of one qubit can be represented by a linear combination
of the state vectors |0〉 and |1〉, as in Equation 9.5:

|ψ〉= α |0〉+β |1〉 , (9.5)

wherein α and β are complex numbers. The state vectors |0〉 and |1〉 form a canon-
ical base and the vector |ψ〉 represents the superposition of this vectors, with α and
β amplitudes. The unit normalization of the state of the qubit ensures that Equation
9.6 is true:

|α|2 + |β |2 = 1. (9.6)

The phase of a qubit is defined by an angle ζ , defined as in Equation 9.7:

ζ = arctan(β/α), (9.7)

and tthe quadrant of qubit phase ζ is defined as in (9.8). If d is positive, the phase ζ
lies in the first or third quadrant; otherwise, the phase ζ lies in the second or fourth
quadrant [17].

d = α ·β , (9.8)

The physical interpretation of the qubit is that it may be simultaneously in the
states |0〉 and |1〉, which allows for an infinite amount of information to be stored
in state |ψ〉. However, during the act of observing the state of a qubit, it collapses
to a single state, i.e. either |0〉 or |1〉 [18]. The qubit collapses to state |0〉, with
probability |α|2 or state |1〉, with probability |β |2.

9.4.2 Quantum Registers

A system with m qubits contains information on 2m states. The linear superposition
of possible states can be represented as in Equation 9.9:

9.5 Quantum-Inspired Genetic Algorithms 129

|ψ〉=
2m

∑
k=1

Ck |Sk〉 , (9.9)

wherein Ck specifies the probability amplitude of the corresponding states |Sk〉 and
subjects to the normalization condition of Equation 9.10.

|C1|2 + |C2|2 + ...+ |C2m |2 = 1 (9.10)

9.4.3 Quantum Gates

The state of a qubit can be changed by the operation of a quantum gate or q-gate. The
q-gates applies a unitary operation U on a qubit in the state |ψ〉, making it evolve to
the state U |ψ〉, maintaining the probabilities interpretation defined in Equation 9.6.
There are several q-gates, such as the NOT gate, Controlled-NOT gate, Hadamard
gate, rotation gate [15].

9.5 Quantum-Inspired Genetic Algorithms

Since the emerging of evolutionary computation field, many new hybridized algo-
rithms and technique based on the main concepts of evolution have been devel-
oped. Just to name few, we can cite multi-objective evolutionary algorithms [20, 21],
swarm-based techniques [19], differential evolution [22] and quantum-inspired evo-
lutionary algorithm [23]. As any evolutionary algorithms, the latter is based on a
population of solutions which is maintained through many generations. It seeks the
best fitted solution to the problem, by evaluating the characteristics of those included
in the current population. In the next section, we describe the quantum-inspired rep-
resentation of the individual and the underlaying computational process.

9.5.1 Solution Representation

Evolutionary algorithms, like genetic algorithms, for instance, can use several rep-
resentations that have been used with success: binary, integer, real or even symbolic
[24]. The quantum-inspired evolutionary algorithms use a new probabilistic repre-
sentation, that is based on the concept of qubits as defined in Equation 9.5 and q-
individuals, which consist of a string of qubits. A q-individual, say p, can be viewed
as in Equation 9.11, wherein |αi|2 + |βi|2 = 1, for i = 1,2,3, ...,m.

p =

⎡
⎣

α1 α2 α3 · · · αm

β1 β2 β3 · · · βm

⎤
⎦ (9.11)

The advantage of the representation of the individuals using qubits instead of the
classical representation of bits is the ability of representing the linear superpositions

130 9 Synchronous Finite State Machines Design

of all possible states. For instance, an individual represented with three qubits (m =
3) can be depicted as in Quation 9.12:

p =

⎡
⎢⎣

1√
2

1√
3

1
2

1√
2

√
2
3

√
3

2

⎤
⎥⎦ , (9.12)

or viewed in the alternative way of Equation 9.13,

p = 1
2
√

6
|000〉+ 1

2
√

2
|001〉+ 1

2
√

3
|010〉+ 1

2 |011〉+ 1
2
√

6
|100〉+ 1

2
√

2
|101〉+

1
2
√

3
|110〉+ 1

2 |111〉
(9.13)

The numbers in Equation 9.13 represent the amplitudes whose square-roots in-
dicate the probabilities of observing states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉,
|110〉 and |111〉, which are 1

24 , 1
8 , 1

24 , 1
12 , 1

24 , 1
8 , 1

24 and 1
12 , respectively.

The evolutionary algorithms with the quantum-inspired representation of indi-
viduals should permit a population diversity better than other representations, since
the included individuals can represent linear superpositions of all possible states
[25, 23]. For instance, the single q-individual of Equation 9.12 is enough to repre-
sent eight states. When using the classical representation of bits, eight individuals
would be necessary to encode the same information.

9.5.2 Algorithm Description

The basic structure of the quantum-inspired evolutionary algorithm used in this
chapter is described by Algorithm 9.1 [26].

The quantum-inspired evolutionary algorithm maintains a population of
q-individuals, P(g) =

{
pg

1,p
g
2, ...,p

g
n
}

at generation g, where n is the size of pop-
ulation, and pg

j is a q-individual defined as in Equation 9.14:

pg
j =

⎡
⎣

αg
j1

αg
j2

αg
j3

· · · αg
jm

β g
j1

β g
j2

β g
j3

· · · β g
jm

⎤
⎦ , (9.14)

where m is the number of qubits, which defines the string length of the q-individual,
and j = 1,2, ...,n.

The initial population of n individuals is generated setting α0
i = β 0

i = 1/
√

2 (i =
1,2, ...,m) of all p0

j = pg
j |g=0 for j = 1,2, ...,n. This allows each q-individual to be

the superposition of all possible states with the same probability.
The binary solutions in Sg are obtained by an observation process of the states of

every q-individual in Pg. Let Sg =
{
sg

1,s
g
2, ...,s

g
n
}

at generation g. Each solution, sg
i

for i = 1,2, ...,n, is a binary string with the length m, that is, sg
i = s1s2...sm, where

s j is either 0 or 1.

9.6 State Assignment with QIGA 131

Algorithm 9.1. Quantum-Inspired Genetic Algorithm – QIGA
g := 0;
generate P0 with n individuals
observe P0 into S0
evaluate the fitness of every solution in S0
store S0 into B0
while (not termination condition) do

g := g+1;
observe Pg−1 into Sg

evaluate the fitness of every solution in Sg

update Pg using a q-gate and apply probability constraints
store best solutions of Bg−1, Sg in Bg

store the best solution in Bg into b
if (no improvement for many generation) then

replace all the solution of Bg by b
end if

end while
return b

The observation process is implemented using random probability: for each pair
of amplitudes [αk,βk]

T for k = 1,2, ...,n×m of every qubit in the population Pg, a
random number r in the range [0,1] is generated. If r < |βk|2, the observed qubit is
1; otherwise, it is 0.

The q-individuals in Pg are updated using a q-gate, which is detailed later in
the next section. We impose some probability constraints such that the variation
operation performed by the q-gate avoid a premature convergence of a qubit to either
to 0 or 1. This is done by allowing neither of |α|2 nor |β |2 to reach 0 or 1. For this
purpose, the probability |α|2 and |β |2 are constrained to 0.02 as a minimum and 0.98
as a maximum. Such constraints allowed the algorithm to escape local minimum.
This variation is one of the contribution of the chapter and has not been introduced
in the original version of the algorithm [23].

After a given number of generations, if the best solution b does not improve, all
the solutions stored into Bg are replaced by b. This step can induce a variation of the
probabilities of the qubits within the q-individuals. This operation is also performed
in order to escape local minimum and avoid the stagnant state.

9.6 State Assignment with QIGA

The identification of a good state assignment has been thoroughly studied over the
years. In particular, Armstrong [2] and Humphrey [3] have pointed out that an as-
signment is good if it respects three rules, which consist of the following:

• two or more machine states that have the same next state should be given adjacent
binary codes;

132 9 Synchronous Finite State Machines Design

• two or more states that are the next states of the same state should be given
adjacent binary codes.

• the first rule should have precedence over the second.

State adjacency means that the states appear next to each other in the mapped
representation. In other terms, the combination assigned to the states should differ
in only one position;

Now we concentrate on the assignment encoding and the fitness function. Given
two different state assignments, the fitness function allows us to decide which is
fitter.

9.6.1 State Assignment Encoding

In this case, a q-individual represents a state assignment. Each q-individual consists
of an array of 2×N �(log2 N)� entries, wherein each set of 2×�log2 N� entries are
the qubits associated to a single machine state. For instance, Figure 9.5 represents
a q-individual and a possible assignment for a machine with 4 states obtained after
the observation of the qubits.

S0 S1 S2 S3

α0
1 α0

2 α1
1 α1

2 α2
1 α2

2 α3
1 α3

2

β 0
1 β 0

2 β 1
1 β 1

2 β 2
1 β 2

2 β 3
1 β 3

2

1 1 0 1 0 0 1 0

Fig. 9.5 Example of state assignment encoding

Note that when an observation occurs, one code might be used to represent two or
more distinct states. Such a state assignment is not possible. In order to discourage
the selection of such an assignment, we apply a penalty every time a code is used
more than once within the considered assignment. This will be further discussed in
the next section where the fitness function is described.

9.6.2 Q-Gate for State Assignment

To drive the individuals towards better solutions, a q-gate is used as a variation
operator of the quantum-inspired evolutionary algorithm presented at this chapter.
After an update operation, the qubit must always satisfy the normalization condition
|α ′|2 + |β ′|2 = 1, where α ′ and β ′ are the amplitudes of the updated qubit.

9.6 State Assignment with QIGA 133

Initially, each q-individual represents all possible states with the same probability.
As the probability of every qubit approaches either 1 or 0 as a result of many appli-
cations of the q-gate, the q-individual converges to a single state and the diversity
property disappears gradually. By this mechanism, the quantum-inspired evolution-
ary algorithm can treat the balance between exploration and exploitation [23]. The
q-gate used is inspired by a quantum rotation gate. This is defined in Equation 9.15.

⎡
⎣

α ′

β ′

⎤
⎦=

⎡
⎣

cos(Δθ) −sin(Δθ)

sin(Δθ) cos(Δθ)

⎤
⎦
⎡
⎣

α

β

⎤
⎦ , (9.15)

where Δθ is the rotation angle of each qubit towards either of the states 0 or 1,
depending on the amplitude signs. The angle Δθ should be adjusted according to
problem at hand.

The value of the angle Δθ can be selected from the Table 9.4, where f (sg
i) and

f (bg
i) are the fitness values of sg

i and bg
i , and s j and b j are the jth bits of the ob-

served solutions sg
i and the best solutions bg

i , respectively. The rotation gate allows
changing the amplitudes of the considered qubit, as follows:

1. If s j and b j are 0 and 1, respectively, and if f (sg
i)≥ f (bg

i) is false then:

• if the qubit is located in the first or third quadrant as defined in Equation 9.8,
Δθ = θ3 is set to a positive value to increase the probability of the state |1〉;

• if the qubit is located in the second or fourth quadrant, Δθ = −θ3 should be
used to increase the probability of the state |1〉.

2. If s j and b j are 1 and 0, respectively, and if f (sg
i)≥ f (bg

i) is false:

• if the qubit is located in the first or third quadrant, Δθ = θ5 is set to a negative
value to increase the probability of the state |0〉;

• if the qubit is located in the second or fourth quadrant, Δθ = −θ5 should be
used to increase the probability of the state |0〉.

Table 9.4 Look-up table of Δθ

s j b j f (sg
i)≥ f (bg

i) Δθ
0 0 false θ1
0 0 true θ2
0 1 false θ3
0 1 true θ4
1 0 false θ5
1 0 true θ6
1 1 false θ7
1 1 true θ8

134 9 Synchronous Finite State Machines Design

When it is ambiguous to select a positive or negative number for the angle pa-
rameter, we set its value to zero as recommended in [23]. The magnitude of Δθ
has an effect on the speed of convergence. If it is too big, the search grid of the
algorithm would be large and the solutions may diverge or converge prematurely
to a local optimum. If it is too small, the search grid of the algorithm would be
small and the algorithm may stagnate. Hence, the magnitude of Δθ varies and the
corresponding values depend on the application problem. In the state assignment
problem, we experimentally discovered that these values should be set as follows:
θ1 = θ2 = θ4 = θ6 = θ7 = θ8 = 0, θ3 = 0.05π , and θ5 =−0.05π .

9.6.3 State Assignment Fitness

This step of the quantum-inspired evolutionary algorithm evaluates the fitness of
each binary solutions obtained from the observation of the states of the q-individuals.
The fitness evaluation of state assignments is performed with respect to the rules of
Armstrong [2] and Humphrey [3]:

• how much a given state assignment adheres to the first rule, i.e. how many states
in the assignment, which have the same next state but have no adjacent state
codes;

• how much a given state in the assignment adheres to the second rule, i.e. how
many states in the assignment, which are the next states of the same state but
have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment, we use
an N ×N adjacency matrix, wherein N is the number of the machine states. The
triangular bottom part of the matrix holds the expected adjacency of the states with
respect to the first rule while the triangular top part of it holds the expected adjacency
of the states with respect to the second rule. The matrix entries are calculated as
described in Equation 9.16, wherein AM stands for the Adjacency Matrix, functions
next(σ) and prev(σ) yield the set of states that are next and previous to state σ ,
respectively. For instance, the 4×4 adjacency matrix for the state machine presented
in Table tab:estados is shown in Figure 9.6.

Fig. 9.6 Example of adjacency matrix

9.7 Logic Synthesis with QIGA 135

AMi, j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#(next(qi)∪next(q j)) If i > j

#(prev(qi)∪ prev(q j)) If i < j

0 If i = j

(9.16)

Using the adjacency matrix AM as defined in Equation 9.16, the fitness function ap-
plies a penalty of 2 or 1, every time the first or second rule are broken, respectively.
The penalty of breaking first rule is higher than that associated with the second rule
to maintain the higher priority of the former over the latter. Equation 9.17 shows
the details of the fitness function applied to a state assignment σ , wherein func-
tion na(q, p) returns 0 if the codes representing states q and p are adjacent and
1 otherwise. Note that if assignment σ associates two distinct states to the same
binary code, the σ is penalized by adding the constant ψ to the corresponding
fitness value.

f (σ) = ∑
i�= j & σi=σ j

ψ +
N−2

∑
i=0

N−1

∑
j=i+1

(AMi, j + 2×AMj,i)× na(σi,σ j) (9.17)

For instance, considering the state machine whose adjacency matrix is described in
Figure 9.6, the state assignment {s0 ≡ 00, s1 ≡ 10, s2 ≡ 01, s3 ≡ 11} has a fitness
of 5 as the codes of states s0 and s3 are not adjacent but AM0,3 = AM3,0 = 1 and
the codes of states s1 and s2 are not adjacent but AM1,2 = 2 while the assignments
{s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10} has a fitness of 3 as the codes of states s0 and
s1 are not adjacent but AM0,1 = AM1,0 = 1.

The objective of the quantum-inspired evolutionary algorithm is to find the
assignment that minimizes the fitness function as described in Equation 9.17. As-
signments with fitness 0 satisfy all the adjacency constraints. Note that such an
assignment may not exist for some state machines.

9.7 Logic Synthesis with QIGA

Exploiting the quantum-inspired evolutionary algorithm, we can automatically gen-
erate novel control logic circuits that are reduced with respect to area and time re-
quirements. The allowed gates are NOT, AND, OR, XOR, NAND, XNOR and WIRE, as
shown in Table 9.5. The last row represents a physical wire and thus, the absence of
a gate.

136 9 Synchronous Finite State Machines Design

Table 9.5 Gate name, gate code, gate-equivalent and average propagation delay (ns)

Name Code Area Delay

NOT 000 1 0.0625
AND 001 2 0.2090
OR 010 2 0.2160
XOR 011 3 0.2120
NAND 100 1 0.1300
NOR 101 1 0.1560
XNOR 110 3 0.2110
WIRE 111 0 0.0000

9.7.1 Circuit Codification

We encode circuit designs using a matrix of cells that may be interconnected. A cell
may or may not be involved in the circuit schematics and consists of two inputs, a
logical gate and a single output. A cell draws its input signals from the outputs of the
gates of the previous column. The cells located in the first column draw their inputs
from the circuit global input signals. Each cell is encoded with a number of qubits,
enough to represent the allowed gates and the signals that may be connected in each
input of the cell gate. Note that the total number of qubits may vary depending on
the number of outputs of the previous column and the number of primary inputs in
the case of the first column [27]. An example of a matrix of cells with respect to this
encoding is given in Figure 9.7.

For instance, the first part of Figure 9.8 represents a cell encoding and a possible
observation of the qubits states while the second part indicates the correspondent
circuit encoded by this cell, that is composed by an AND gate with its input A and
B connected to the first and third element of its previous column.

Fig. 9.7 Circuit representation

9.7 Logic Synthesis with QIGA 137

Gate Input A Input B

Cell
α1 α2 α3 α4 α5 α6 α7
β1 β2 β3 β4 β5 β6 β7

Observation 0 0 1 0 0 1 0

AND

Partial
Output

A

B

Cell 1,jFrom
Cell 1,j-1

From
Cell 3,j-1

Fig. 9.8 Example of a cell considering that it has 4 outputs

When the observation of the qubits that define the gate yields 111, i.e. WIRE,
then the signal connected to the cell’s A input appears in the partial output of the
cell. When the number of partial outputs of a column or the global inputs are not a
power of 2, some of them are repeated in order to avoid that a cell be mapped to an
inexistent input signal. The circuit primary output signals are the output signals of
the cells in the last column of the matrix. If the number of global outputs are less
than the number of cells in the last column, then some of the output signal are not
used in the evolutionary process.

The power of the quantum-inspired representation can be evidenced in the draw-
ing of Figure 9.9, which shows that all possible circuits can be represented with only
one q-individual in a probabilistic way, as explained in the Section 9.5.1.

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O

u

t
p

u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O

u
t

p
u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O
u
t

p
u

t
s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

I

n
p

u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Possible observation 1

O
u

t
p

u

t
s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Possible observation 2

Possible observation 3

Possible observation n

Fig. 9.9 Power of the quantum-inspired representation of an encoded circuit

138 9 Synchronous Finite State Machines Design

The number of q-individual included in the population (population size) as well
as the number of cells per q-individual are the parameters that should be adjusted
considering the state machine complexity. The complexity depends on the number
of inputs, outputs, states and number of states transitions of the machine.

9.7.2 Logic Fitness

This step of the quantum-inspired evolutionary algorithm evaluates the fitness of
each binary solutions obtained from the observation of the states of the q-individuals.
To evaluate the fitness of each solution, some constraints were considered: First of
all, the evolved specification must obey the input/output behavior, which is given
in a tabular form of the expected results given the inputs. This is the truth table of
the expected circuit. Secondly, the circuit must have a reduced size. This constraint
allows us to yield compact digital circuits. Finally, the circuit must also reduce the
signal propagation delay. This allows us to reduce the response time and so discover
efficient circuits.

We estimate the necessary area for a given circuit using the concept of gate-
equivalent. This is the basic unit of measure for digital circuit complexity [10]. It is
based upon the number of logic gates that should be interconnected to perform the
same input/output behavior. This measure is more accurate that the simple number
of gates [10].

When the input to an electronic gate changes, there is a finite time delay before
the change in input is seen at the output terminal. This is called the propagation delay
of the gate and it differs from one gate to another. We estimate the performance of
a given circuit using the worst-case delay path from input to output. The number of
gate-equivalent and an average propagation delay for each kind of gate were taken
from [10].

Let C be a digital circuit that uses a subset or the complete set of allowed gates.
The fitness function, which allows us to determine how much an evolved circuit
adheres to the specified constraints, is given in Equation 9.18, wherein function
Soundness(C) returns the Hamming distance to evaluate the functionality of cir-
cuit C with respect to the input/output expected behavior, Gates(C) returns the
circuit gates equivalent and function Delay(C) returns the propagation delay of the
circuit C based. Parameters Ω1 and Ω2 are the weighting coefficients that allow us to
consider both area and response time to evaluate the performance of an evolved cir-
cuit. For implementation issue, we minimize the fitness function of Equation 9.18,
considering the normalized values of Area(C) and Delay(C) functions. The values
of Ω1 and Ω2 are set to 0.6 and 0.4, respectively.

Fitness(C) = Soundness(C)+Ω1×Area(C)+Ω2×Delay(C), (9.18)

where the objective of QIGA is the minimization of this function.
The Hamming distance is an non-negative integer that is proportional to the num-

ber of errors that result from the comparison between the output of the evolved cir-
cuit and those expected for each of the possible combination of the input

9.7 Logic Synthesis with QIGA 139

signals. Function Soundness(C) is in Equation 9.19. Note that this definition sums
up a penalty ψ for each error and so the total value is proportional to the number of
output signal that are different from the expected ones.

Soundness(C) =
p

∑
i=1

∣∣y j − x j
∣∣×ψ (9.19)

wherein p is the number of possible combinations of the input signals,
∣∣y j − x j

∣∣ is
the difference between the output signals of the evolved circuit and the expected
ones, i.e. x j e y j respectively and ψ is a constant penalty for a single error. Note
that if Soundness(C)> 0 then the circuit does not implement the desired behavior
correctly and therefore, this is considered as a penalty for the individuals that encode
circuit C.

Function Area(C) returns the necessary hardware area to implement circuit C,
which is evaluated using the number of gate-equivalent used. Let C be a circuit
whose geometry is represented by a matrix n×m. Recall that each cell ci, j of the
circuit is formed by the gate type p together with the two inputs ea e eb. Function
Area(C) is defined in Equation 9.20. This definition is expressed using a recursive
function Areai, j, which allows us to compute the required area by the portion of
circuit C that produces the output of the gate at cell ci, j. This function is defined in
Equation 9.21. Note that the area corresponding to the shared gates must only be
counted once. For this purpose, a Boolean matrix V : n×m whose entry Vi, j is up-
dated when the gate of cell ci, j has been visited. In Equation 9.21, GEcp

i, j
represents

the number of gate-equivalent for gate p at cell ci, j and cex
i, j represents one of the

inputs of that gate.

Area(C) =
s

∑
i=1

Areai,m, (9.20)

wherein s is the number of output signals of C with s ≤ m.

Areai, j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

GEcp
i, j

If j = 1

GEcp
i, j
+ ∑

x∈{a,b}e¬Vcex
i, j, j−1

(
Areacex

i, j , j−1

)
If j ∈ [2,m]

(9.21)

When the input of a given gate switches from 0 to 1 or 1 to 0, there exists a finite
delay before the change is perceived at the output terminal of that gate. This delay is
called propagation delay and it depends on the type of the gate, the technology used
to implement it and the load factor that is put on the output terminal of this gate. The
values of the gate propagation delays for CMOS technology are given in Table 9.6,
where L represents the total load on the gate output. This delay does also depend on
the signal transition, i.e. the propagation delay of a gate are different when a positive
(tpLH) or negative (tpHL) transition occurs. The total load for a given gate is based
on a basic load unit defined for each gate family. The total load is then a sum of all

140 9 Synchronous Finite State Machines Design

Table 9.6 Gates, respective delays, load factor and area

Gate Type Propagation Delay Load factor Area
tpLH (ns) tpHL(ns) (load unit) (gate-equivalent)

NOT 0.02+0.038L 0.05+0.017L 1.0 1
AND 0.15+0.037L 0.16+0.017L 1.0 2
OR 0.12+0.037L 0.20+0.019L 1.0 2
XOR 0.30+0.036L 0.30+0.021L 1.1 3
NAND 0.05+0.038L 0.08+0.027L 1.0 1
NOR 0.06+0.075L 0.07+0.016L 1.0 1
XNOR 0.30+0.036L 0.30+0.021L 1.1 3

the load factor of every gate whose input signals is drawn from the output signal of
the considered gate.

Let C be a circuit whose geometry is represented by a matrix n×m. The delay
introduced by cell ci, j is defined as in Equation 9.22, wherein αcp

i, j
represents the

average of the intrinsic delay of gate p at cell ci, j. The average delay of the gate
when the total load is 0 and βcp

i, j
the average delay due to the fanout of output signal

of gate p of that cell. Table 9.7 shows the values of α and β for each of the used
gates.

τgatei, j = αcp
i, j
+βcp

i, j
×

⎛
⎜⎜⎜⎝ ∑

k ∈ [1,n],x ∈ {a,b}|
cex

k, j+1 = i

f actor(cp
k, j+1)

⎞
⎟⎟⎟⎠ (9.22)

Table 9.7 Values of α and β for the gates used by QIGA

Gate Type α β
NOT 0.035 0.0465
AND 0.155 0.0270
OR 0.160 0.0280
XOR 0.300 0.0285
NAND 0.065 0.0325
NOR 0.065 0.0455
XNOR 0.300 0.0285

The propagation delay of a circuit is defined by the delay of its critical path.
Considering all possible paths in a circuit, the critical path is the one that yields
the largest delay. The propagation delay of a given path of a circuit is defined by the

9.8 Performance Results 141

sum of delay of each of the gates that is traversed by the signal from the input until
the output of the circuit, as defined formally in Equation 9.23.

τ pathi, j =

⎧
⎪⎨
⎪⎩

τgatei, j If j = 1

τgatei, j + max
x∈{a,b}

(
τ pathcex

i, j , j−1

)
If j ∈ [2,m]

(9.23)

For a circuit of s ≤ n output signals, the propagation delay is determined by the
largest delay among those imposed by all the paths of the circuit that reach the
s gates located at the last column of the matrix representing the circuit. Function
Delay(C) is then defined as in Equation 9.24.

Delay(C) = max
i∈[1,s]

τ pathi,m (9.24)

9.8 Performance Results

This section is divided into two main parts: the result evolved by QIGA for the state
assignment problem and those obtained for the synthesis of the control logic. The
FSMs used are well-known benchmarks for testing finite state machines [28].

9.8.1 State Assignments Results and Discussion

In this section, we compare the assignment evolved by the quantum-inspired evo-
lutionary algorithm presented in this chapter to those yield by the genetic algo-
rithms [12, 6] and to those obtained using the non-evolutionary assignment system
called NOVA. Table 9.8 shows the best state assignments generated by the compared
systems.

The graphs presented in Figure 9.10 – Figure 9.14 show the progress of the evo-
lutionary process of the best assignment fitness together with the average fitness
with respect to all individuals of the population for some of the state machines used
in the comparison.

The results introduced in Table 9.8 are depicted in the charts of Figure 9.15 for
the comparison of the gate number, Figure 9.16 for the comparison of the hardware
area and Figure 9.17 for the comparison of the propagation delays.

In order to determine whether the results obtained by QIGA are significantly
better than those obtained by the genetic algorithm and the NOVATM synthesis tool,
we performed a statistical test of significance. The most commonly used method of
comparing proportions uses the χ2-test [29]. This test makes it possible to determine
whether the difference existing between two groups of data is significant or just a
chance occurrence.

142 9 Synchronous Finite State Machines Design

Table 9.8 Best state assignments found by the compared methods

FSM Method State Assignments

bbara AG1 [0,6,2,14,4,5,13,7,3,1]
AG2 [0,6,2,14,4,5,13,7,3,1]
NOVATM [9,0,2,13,3,8,15,5,4,1]
QIGA [4,5,1,9,13,12,14,15,7,6]

bbsse AG2 [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]
NOVATM [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14]
QIGA [5,3,11,7,9,6,14,10,8,12,4,1,0,2,13,15]

dk14 AG1 [5,7,1,3,6,0,4]
AG2 [0,4,2,1,5,7,3]
NOVATM [1,4,0,2,7,5,3]
QIGA [5,7,4,0,6,3,1]

dk16 AG1 [12,8,1,27,13,28,14,29,0,16,26,9,2,4,3,10,11,17,24,5,18,7,21,25,6,20,19]
NOVATM [12,7,1,3,4,10,23,24,5,27,15,16,11,6,0,20,31,2,13,25,21,14,18,19,30,17,22]
QIGA [14,30,22,6,4,5,13,25,18,20,31,9,10,26,23,28,29,7,15,3,16,8,21,17,1,11,24]

donfile AG1 [0,12,9,1,6,7,2,14,11,,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]
NOVATM [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1]
QIGA [7,6,23,31,26,27,15,14,13,5,10,4,22,30,12,8,11,9,18,19,2,0,3,1]

lion9 AG2 [0,4,12,13,15,1,3,7,5]
NOVATM [2,0,4,6,7,5,3,1,11]
QIGA [11,9,3,1,2,0,8,10,14]

mod12 AG1 [0,8,1,2,3,9,10,4,11,12,5,6]
NOVATM [0,15,1,14,2,13,3,12,4,11,5,10]
QIGA [15,7,6,14,10,2,3,1,5,13,9,11]

shiftreg AG1 [0,2,5,7,4,6,1,3]
AG2 [0,2,5,7,4,6,1,3]
NOVATM [0,4,2,6,3,7,1,5]
QIGA [4,0,2,6,5,1,3,7]

train11 AG2 [0,8,2,9,13,12,4,7,5,3,1]
NOVATM [0,8,2,9,1,10,4,6,5,3,7]
QIGA [9,11,13,3,1,2,0,12,8,5,4]

For the sake of completeness, we explain briefly how the test works. χ2-test de-
termines the differences between the observed and expected measures. The observed
values are the actual experimental results, whereas the expected ones refer to the hy-
pothetical distribution based on the overall proportions between the two compared

algorithms if these are alike. Let λ (a,m,q)
o and λ (a,m,q)

e be respectively the observed
and expected value of objective q obtained when using algorithm a with machine

state m. Note that λ (a,m,q)
e is computed as described in Equation 9.25.

λ (a,m,q)
e =

∑
(x,z)∈A×Q

λ (x,m)
o × ∑

y∈M
λ (a,y)

o

∑
(x,y,z)∈A×M×Q

λ (x,y,x)
o

, (9.25)

9.8 Performance Results 143

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
120

140

160

180

200

220

240

260

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

250

300

350

400

450

500

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.10 Progress of the best solution fitness together with the average fitness for state ma-
chines bbara e bbsse

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
350

400

450

500

550

600

650

700

750

800

850

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.11 Progress of the best solution fitness together with the average fitness for state ma-
chines dk14 e dk16

wherein A={QIGA, NOVATM}, A={QIGA, AG2} or A={QIGA, AG3}, M ⊆{bbara,
bbsse, dk14, dk16, don f ile, lion9, modulo12, shi f treg, train11} and Q={#gate,
area, time}. The χ2-test is based on the value of χ2 computed as in Equation 9.26,
wherein set a = {QIGA × NOVATM, QIGA × AG1 e QIGA × AG2} and q = {#gate,
area, time}.

χ2 = ∑
(a,m,q)∈A×M×Q

(
λ (a,m,q)

o −λ (a,m,q)
e

)2

λ (a,m,q)
e

. (9.26)

The computed values for χ2 for each of the comparisons are given in Table 9.9.
The use of the χ2-test is recommended when the proportions are small. Therefore,
the time quantities were converted to 0.1 ns instead of 1 ns, thus avoiding the limi-
tation imposed for the usage of the test.

The critical value of χ2 is 0.05 (i.e. 95% of confidence) and considered the limit
to assume the tested hypothesis. The degree of freedom depends on the amount

144 9 Synchronous Finite State Machines Design

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200

250

300

350

400

450

500

550

600

650

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.12 Progress of the best solution fitness together with the average fitness for state ma-
chines donfile e lion9

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.13 Progress of the best solution fitness together with the average fitness for state ma-
chines modulo12 e shiftreg

Table 9.9 Degree of freedom, computed χ2, critical χ2 for the confidence level of 99,5% e
the degree of confidence obtained for the considered comparisons

Comparison Degree of freedom χ2 Critical value Confidence level
QIGA × NOVATM 40 73,302 66,766 >99,5%
QIGA × AG1 25 68,281 46,928 >99,5%
QIGA × AG2 30 64,740 53,672 >99,5%

of results used to compute χ2. Assuming that the results are organized in a two-
dimensional array of r rows and c columns, the degree of freedom is defined by
(r−1)×(c−1). In this comparison, the number of rows coincides with that of state
machines used as benchmarks and the number of columns is 6: one for each pair
of objective/algorithm (we are considering 3 objectives and 2 algorithms in each
comparison).

9.8 Performance Results 145

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.14 Progress of the best solution fitness together with the average fitness for state ma-
chines train11

Fig. 9.15 Logic control comparison in terms of gates used

In the case of the comparison QIGA × NOVATM, all 9 state machines listed in
Table 9.8 are considered, while in the case of the other two comparisons, i.e. QIGA
× AG1 and QIGA × AG2, only some of the machines, 6 and 7 respectively, are used
taking into account the results availability. At the light of the statistical analysis, we
can conclude that QIGA performs significantly better than NOVATM, AG1 e AG2.

For all the simulations, we used a population of 50 q-individuals. However, we
observed that for some state machines, such as shiftreg and lion9, the best solution
was obtainable with a population of a single q-individual. Nevertheless, in this last
case, the number of runs that reached the best result shrunk considerably. For in-
stance, during the evolution of shiftreg, the global optimum was reached em all the
runs when the population size was of 50 q-individuals while with a population of 1
q-individuals, this was the case for only in 50% of the runs. During the performed
simulations, it was also possible to observe that QIGA was very robust with re-
spect to the choice of the angle magnitudes θ3 and θ5 within the spectrum suggested
in [23].

146 9 Synchronous Finite State Machines Design

Fig. 9.16 Logic control comparison in terms of hardware area required

Fig. 9.17 Logic control comparison in terms of propagation delay imposed

The impact of the control phase of the probability amplitudes of the qubits, first
contributed in QIGA, can be depicted in Figure 9.18. Figure 9.18–(a) shows that
when the control is not imposed and the quantum-inspired algorithm does not evolve
any new better solution, the average fitness of the population at hand gets very close
to the fitness of the best q-individual, which has been yield so far. This happens
due to the fact that the probabilities of the quantum states would practically be
100%, which would, in consequence lead to the measurement of the same solution
in all generations. In contrast with this, Figure 9.18–(b) shows that the average of
the probabilities is kept clear from the best solution. This is, actually, due to the
control of the probability amplitudes of the qubits, which thus allows new solutions
to be yield by the evolutionary process. This control step allows us to maintain a
better diversity within the population individual and hopefully would accelerate the
convergence of the optimization process.

9.8 Performance Results 147

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

(a) without control of the probability ampli-
tudes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

(b) with control of the probability amplitudes

Fig. 9.18 Impact of the control phase of the probability amplitudes of the qubits

The impact of the global migration step can be viewed in Figure 9.19. In this step,
the best solutions in B(g), which are used in the update operation of the qubits, are
all replaced by the best solution b. This substitution introduces a change in the pop-
ulation in the attempt to further improve its diversity. The picks, highlighted in the
graphics of Figure 9.19, indicate three moments that allow for a clear observation of
the effect caused by the global migration step on the average fitness of the popula-
tion. The showed picks appear whenever 400 generations pass by without yielding
a new better solution. Hence, as the control phase of the probability amplitudes of
the qubits, this operation of global migration permits an remarkable improvement
of the population diversity and thus leading to avoiding local minimums.

9.8.2 Logic Synthesis Results and Discussion

Table 9.10 shows the characteristics of the circuits that were synthesized using ge-
netic programming (GP) [7, 8], genetic algorithms (GA) [6] and the ABC synthesis
tool [9]. Table 9.11 shows the characteristics of the best circuit evolved by QIGA
for each of the used machines.

The results listed in Table 9.11 and Table 9.10 are depicted as charts in Figure
9.20 for gate number comparison, Figure 9.21 for area comparison and Figure 9.22
for delay comparison.

The graphs presented in Figure 9.23 – Figure 9.27 show the progress of the evo-
lutionary process of the best circuit fitness together with the average fitness with
respect to all individuals in the population for some of the state machines used in
the comparison.

As before, and in order to determine whether the results obtained by QIGA are
significantly better than those obtained by GP [7, 8] and ABC [9]. The computed χ2

for these comparisons are presented in Table 9.12.

148 9 Synchronous Finite State Machines Design

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

250

300

350

400

450

500

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.19 Impact of the global migration

Table 9.10 Characteristics of evolved circuits by GP, GA, ABC

State GP GA ABC
machine #Gates Area Delay #Gates Area Delay #Gates Area Delay

bbara – – – 60 – – 62 63 0,67
bbsse – – – – – – 128 128 0,70
bbtas – – – 19 – – 24 24 0,32
dk14 – – – – – – 109 110 0,53
dk15 – – – 53 – – 92 92 0,46
dk16
dk27 – – – 16 – – 25 25 0,32
dk512 – – – 47 – – 63 63 0,46
donfile – – – – – – 174 174 0,60
lion9 21 39 0,70 50 – – 62 63 0,53
modulo12 – – – – – – 38 38 0,42
shiftreg 5 14 0,60 8 – – 2 6 0,30
tav – – – 26 – – 31 31 0,46
train11 22 43 0,56 – – – 85 85 0,53

The property of scalability is of paramount importance for any kind of project
and in electronic circuits projects, in particular [30, 31]. According to [32], scala-
bility in evolutionary electronics can be approached in two different ways that are
somehow related. The first focuses on the scalability of the individuals that represent
electronic circuits. It was established that if no restriction on how basic components
are connected is imposed then the size of the individuals will grow in the order of

9.8 Performance Results 149

Table 9.11 QIGA experimental results

State machine #Gates Area Delay

bbara 54 78 0.88
bbtas 21 27 0.73
dk15 65 109 0.92
dk27 15 26 0.43
dk512 47 78 0.84
lion9 20 29 0.52
modulo12 19 34 0.56
shiftreg 2 2 0.04
tav 26 24 0.32
train11 25 37 0.52

Fig. 9.20 Comparison of control logic for number of gates

Table 9.12 Degree of freedom, computed χ2, critical χ2 for the confidence level of 99,5% e
the degree of confidence obtained for the considered comparisons

Comparison Degree of freedom χ2 Critical value Confidence level

QIGA × PG 10 18,898 18,31 >95,0%
QIGA × ABC 45 97,823 69,96 >99,5%

O(n2), wherein n is the number of functional components. However, if the connec-
tivity is restricted to a local neighborhood in the proximity of the component, the
order of O(n) can be achieved. Note that the latter restricts the circuit that can be
evolved. The second way to handle scalability in evolutionary circuits is to reduce,
to a minimum, the complexity of the evolutionary process. Nowadays, scalability is
the main problem that faces the extensive use of evolutionary electronics.

The problem of scalability was noted in many other works that used the evolu-
tionary process to yield circuits [6, 33] and this was also the case for this work. For
a sate machine of reduced complexity such as shiftreg, it is possible to encode the
circuit with a 4× 3 geometry composed of 108 qubits. In this case, the population

150 9 Synchronous Finite State Machines Design

Fig. 9.21 Comparison of control logic for required area

Fig. 9.22 Comparison of control logic for imposed delay

of 20 q-individuals is enough to yield optimal circuits. However, for more complex
state machines, such as bbara, it is necessary to use a geometry of 32×5, composed
of 2080 qubits. In this case, the search space becomes extremely large, dictating im-
peratively an increase of the population size, which in turn leads to a considerable
increase of the average execution time. This time is about 3 minutes in the case of
the shiftreg state machine and around 5 hours in the case of bbara.

The increase of required time of the evolution of circuits brings together an extra
difficulty, which is the adjustment of the parameters needed in QIGA. This makes
it inviable to refine the parameters considering the characteristics of the state ma-
chine at hand. To overcome this obstacle, we adjusted the parameter setup based
on the state machines lion9 and train11 and these parameters were used during the
evolution of the control logic of the remaining state machines. Even so, the results
obtained for these machines are satisfactory, proving once again the robustness of
QIGA.

9.9 Summary 151

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.23 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines bbara e bbtas

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.24 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines dk15 e dk27

The results shown in this section suggest that QIGA is a tool of great potential
to be used in automatic synthesis of electronic circuits. The evolved circuits show
similar and some time better characteristics than those obtained by ABC, which is a
well-known as a powerful tool for logic synthesis.

9.9 Summary

In this chapter we studied the application of quantum-inspired evolutionary method-
ology to solve two hard problems: the state assignment and the automatic synthe-
sis of the control logic in the design process of synchronous finite state machines.
We compared both the state assignment and the circuits evolved by the proposed
algorithm QIGA for machines of different sizes and complexity with the results ob-
tained by other method. QIGA almost always obtains better results. This proves that
quantum-inspired evolutionary computation is very robust and leads to good results

152 9 Synchronous Finite State Machines Design

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.25 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines dk512 e lion9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

900

1000

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.26 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines modulo12 e shiftreg

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.27 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines tav e train11

References 153

and therefore can be very profitable when embedded in automatic synthesis tools
used in the design of digital systems.

Two main directions for future work emerges from this study. Regarding the state
assignment problem, one can investigate the use of other heuristics other than or
combined with Armstrong and Humphrey’s [2, 3]. Regarding the logic synthesis,
one can study the adaptation of QIGA so that it can evolve circuits at function level,
instead of gate level as it is the case in this chapter. Another interesting investigation
is the use of co-evolution technique in QIGA to accelerate further the evolutionary
process. This allows one to catch up with the scalability problem.

References

1. Rhyne, V.T.: Fundamentals of digital systems design. In: Computer Applications in Elec-
trical Engineering Series. Prentice-Hall (1973)

2. Armstrong, D.B.: A programmed algorithm for assigning internal codes to sequential
machines. IRE Transactions on Electronic Computers EC-11(4), 466–472 (1962)

3. Humphrey, W.S.: Switching circuits with computer applications. McGraw-Hill, New
York (1958)

4. Booth, T.L.: Sequential machines and automata theory. John Wiley & Sons, New York
(1967)

5. Ali, B., Kalganova, T., Almaini, A.E.: Extrinsic evolution of finite state machine. In:
Proc. of International Conference on Adaptive Computing in Design and Manufacture,
pp. 157–168. Springer (2002)

6. Ali, B.: Evolutionary algorithms for synthesis and optimization of sequential logic cir-
cuits. Ph.D. Thesis, School of Engineering of Napier University, Edinburgh, UK (2003)

7. Nedjah, N., Mourelle, L.M.: Evolvable machines: theory and practice. STUD FUZZ,
vol. 161. Springer, Heidelberg (2005)

8. Nedjah, N., Mourelle, L.M.: Mealy finite state machines: an evolutionary approach. In-
ternational Journal of of Innovative Computing, Information and Control 2(4), 789–806
(2006)

9. ABC, A system for sequential synthesis and verification, Release 70930. In: Logic Syn-
thesis and Verification Group, Berkeley (2005)

10. Ercegovac, M., Lang, T., Moreno, J.H.: Introduction to Digital Systems. John Wiley,
USA (1998)

11. Hartmanis, J.: On the state assignment problem for sequential machines. IRE Transac-
tions on Electronic Computers EC-10(2), 157–165 (1961)

12. Amaral, J.N., Tumer, K., Glosh, J.: Designing genetic algorithms for the state assignment
problem. IEEE Transactions on Systems, Man, and Cybernetics 25(4), 686–694 (1995)

13. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In:
Proc. the Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE
Computer Society Press (1994)

14. Lin, F.T.: An enhancement of quantum key distribution protocol with noise problem.
International Journal of of Innovative Computing, Information and Control 4(5), 1043–
1054 (2008)

15. Hey, T.: Quantum computing. Computing Control Engineering Journal 10(3), 105–112
(1999)

16. Dirac, P.A.M.: The principles of quantum mechanics, 4th edn. Oxford University Press
(1958)

154 9 Synchronous Finite State Machines Design

17. Zhang, G.: Novel quantum genetic algorithm and its applications. Frontiers of Electrical
and Electronic Engineering in China 1(1), 31–36 (2006)

18. Narayanan, A.: Quantum computing for beginners. In: Proc. of the Congress on Evolu-
tionary Computation, vol. 3, pp. 2231–2238. IEEE Press, Piscataway (1999)

19. Nedjah, N., Mourelle, L.M. (eds.): Swarm Intelligent Systems. SCI, vol. 26. Springer,
Heidelberg (2006)

20. Uno, T., Katagiri, H., Kato, K.: An evolutionary multi-agent based search method for
stackelberg solutions of bi-level facility location problems. International Journal of of
Innovative Computing, Information and Control 4(5), 1033–1042 (2008)

21. Liu, C., Wang, Y.: A new evolutionary algorithm for multi-objective optimization prob-
lems. ICIC Express Letters 1(1), 93–98 (2007)

22. Zhang, X., Lu, Q., Wen, S., Wu, M., Wang, X.: A modified differential evolution for
constrained optimization. ICIC Express Letters 2(2), 181–186 (2008)

23. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combi-
natorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593
(2002)

24. Hinterding, R.: Representation, constraint satisfaction and the knapsack problem. In:
Proc. of the Congress on Evolutionary Computation, vol. 2, pp. 1286–1292. IEEE Press,
Piscataway (1999)

25. Akbarzadeh, M.R., Khorsand, A.R.: Quantum gate optimization in a meta-level genetic
quantum algorithm. In: Proc. of IEEE International Conference on Systems, Man and
Cybernetics, vol. 4, pp. 3055–3062. IEEE Press, Piscataway (2005)

26. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Optimised state assignment for
fSMs using quantum inspired evolutionary algorithm. In: Hornby, G.S., Sekanina, L.,
Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 332–341. Springer, Heidelberg
(2008)

27. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Logic synthesis for fSMs using
quantum inspired evolution. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL
2008. LNCS, vol. 5326, pp. 32–39. Springer, Heidelberg (2008)

28. ACM/SIGDA, Collaborative Benchmarking and Experimental Algorithmic, North Car-
olina State University (2009), http://www.cbl.ncsu.edu

29. Diaconis, P., Efron, B.: Testing for independence in a two-way table: new interpretations
of the chi-square statistic (with discussion). The Annals of Statistics 13, 845–913 (1985)

30. Higuchi, T.: Evolving hardware with genetic learning. In: Proc. of International Confer-
ence on Simulation Adaptive Behavior: A First Step Toward Building a Darwin Machine,
pp. 417–424. MIT Press (1992)

31. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware be-
haviors. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS,
vol. 1062, pp. 250–265. Springer, Heidelberg (1996)

32. Yao, X., Higuchi, T.: Promises and challenges of cvolvable hardware. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29(1), 87–97
(1999)

33. Zebulum, R.S., Pacheco, M.A., Vellasco, M.M.: Evolutionary electronics: automatic de-
sign of electronic circuits and systems by genetic algorithms. CRC Press (2001)

http://www.cbl.ncsu.edu

	Synchronous Finite State Machines Design with Quantum-Inspired Evolutionary Computation
	9.1 Introduction
	9.2 Design Methodology of Synchronous Finite State Machines
	9.3 Impact of State Assignment
	9.4 Principles of Quantum Computation
	9.4.1 Quantum Bit
	9.4.2 Quantum Registers
	9.4.3 Quantum Gates

	9.5 Quantum-Inspired Genetic Algorithms
	9.5.1 Solution Representation
	9.5.2 Algorithm Description

	9.6 State Assignment with QIGA
	9.6.1 State Assignment Encoding
	9.6.2 Q-Gate for State Assignment
	9.6.3 State Assignment Fitness

	9.7 Logic Synthesis with QIGA
	9.7.1 Circuit Codification
	9.7.2 Logic Fitness

	9.8 Performance Results
	9.8.1 State Assignments Results and Discussion
	9.8.2 Logic Synthesis Results and Discussion

	9.9 Summary
	References

