
Chapter 8
Reconfigurable Hardware for DNA Matching�

Abstract. DNA sequence matching is used in the identification of a relationship
between a fragment of DNA and its owner by mean of a database of DNA regis-
ters. A DNA fragment could be a hair sample left at a crime scene by a suspect or
provided by a person for a paternity exam. The process of aligning and matching
DNA sequences is a computationally demanding process. In this chapter, we pro-
pose a novel parallel hardware architecture for DNA matching based on the steps
of the BLAST algorithm. The design is scalable so that its structure can be adjusted
depending on size of the subject and query DNA sequences. Moreover, the number
of units used to perform in parallel can also be scaled depending some characteris-
tics of the algorithm. The design was synthesized and programmed into FPGA. The
trade-off between cost and performance were analyzed to evaluate different design
configuration.

8.1 Introduction

Bioinformatics is a field of biological science which deals with the study of methods
for storing, retrieving and analyzing biological data such as DNA. It also involves
finding the genes in the DNA sequences of various organisms, developing methods
to predict the structure and/or function of newly discovered proteins and structural
RNA sequences, clustering protein sequences into related families. Specifically, it
includes solving the problem of aligning similar proteins in general and DNA in
particular 10.

One of the main challenges in bioinformatics consists of aligning DNA. DNA
stripes are long sequences of DNA bases, which are represented as A (Adenine),
C (Cytosine), G (Guanine) and T (Thymine). In this sense, algorithms are specifi-
cally developed to reduce time spent in DNA alignment and matching, evaluating
similarity degree between the subject and the query sequence. These algorithms are
usually based on dynamic programming, which work well providing a fair tradeoff

� This chapter was developed in collaboration with Edgar José Garcia Neto Segundo.
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between time and cost for short sequences. However, commonly these algorithm
take exponentially more time as DNA sequences get longer.

The major advantage of the methods based on dynamic programming are the
commitment to discover the best match. However, that commitment requires huge
computational resources [7, 4]. DNA matching algorithms based on heuristics [8]
emerged as an alternative to dynamic programming in order to reduce the required
high computational cost. Instead of aiming at the best alignment(s), heuristics-based
methods attempt to find a set of acceptable or pseudo-optimal matches. Ignoring un-
likely alignments, these techniques have improved the performance of DNA match-
ing [3, 5, 10]. Among heuristics-based methods, BLAST [1, 2] and FASTA [9, 7]
stand out. Both of these algorithms have well defined procedures for the three main
stages of aligning algorithms, which are seeding, extending and evaluating. BLAST
is the fastest algorithm known so far [1, 2, 6]. In this chapter, we focus of this al-
gorithm and propose a massively parallel architecture suited as an ASIC for DNA
matching using BLAST. The main objective of this work is the acceleration of the
aligning and matching procedures.

This chapter is organized as follows: First, in Section 8.2, we sketch briefly the
steps used in the BLAST algorithm; Thereafter, in Section 9.2, we detail the pro-
posed parallel architecture, pointing out specifically its scalability characteristics;
Subsequently, in Section 9.8, we describe the setup used to implement the proposed
architecture on FPGAs and evaluate the performance of the design; Finally, in Sec-
tion 8.5, we draw some concluding remarks and point out directions for future work.

8.2 BLAST Algorithm

The BLAST (Basic Local Alignment Search Tool) [1] algorithm is a heuristic search-
based method that seeks words in the subject sequence s of length w that score at
least T , called the alignment threshold, when aligned with the query sequence t.
The scoring process is performed according to predefined criteria that are usually
prescribed by geneticists. This task is called seeding, where BLAST attempts to find
regions of similarity to begin its matching procedure. This step has a very powerful
heuristic advantage, because it only keeps pairs whose matching score is larger than
the pre-defined threshold T . Of course, there is some risk of leaving out some worthy
alignments. Nonetheless, using this strategy, the search space decreases drastically,
and hence accelerating the convergence of the matching process.

After identifying all possible alignments locations or seeds, the algorithm pro-
ceeds with the extension stage. It consists of extending the found alignments to the
right and left within both the subject and query sequences, in an attempt to find a
locally optimal alignment. Some versions of BLAST introduce the use of a wild-
card symbol ( ), called the gap, which can be used to replace any mismatch [7, 10].
Here, we do not allow gaps. Finally, BLAST try to improve score of high scoring
pairs, HSP, through a second extension process and the dismissal of a pair is done
when the corresponding score does not reach a new pre-defined threshold. HSPs that
meet this criterion will be reported by BLAST as final results, provided that they do
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not exceed the cutoff prescribed value, which specifies for number of descriptions
and/or alignments that should be reported. This last step is called evaluation. In the
implementation presented in this chapter, we do not assess the results provided by
the extension stage. We simply provide all of them as a final result of the alignment
process.

BLAST employs a measure based on a well-defined mutation scores. It directly
approximates the results that would be obtained by any dynamic programming al-
gorithm for optimizing this measure. The method allows for the detection of weak
but biologically significant similarities. The algorithm is more than one order of
magnitude faster than existing heuristic algorithms. Compared to other heuristics-
based methods, such as FASTA [7], BLAST performs DNA and protein sequence
similarity alignment much faster but it is considered to be equally sensitive.

The BLAST algorithm proceeds through three main steps: (i) seeding, which
allows to find and mark all seeds. These are subsequences of size w that can be
considered as alignment points. Algorithm 8.4 describe the work as it should be
done during this step; (ii) extension, which extends at most, i.e. with respect to
the limits of the subject and query sequences, all the marked seeds and marks all
those extensions that scored more that the prescribed threshold T . The extension is
done in both directions, i.e. to the right of the seed location in the subject and query
sequences as well as to the its left; Algorithm 8.2 describes the extension done to the
right of the seed. Note that the algorithm does the extension to the left (Algorithm
8.4) is similar to the one presented with the exception that sequence counters i and j
are decremented and the base are appended to the left; (iii) assessment, which selects
some of the alignments, as found by the extension stage, and applies some biological
parameters to extract some few promising alignment to be considered further in the
DNA matching biological process. This last step, as described in Algorithm 8.3, is
not treated any further in this chapter.

Algorithm 8.1. Seeding procedure
Require: Subject and query sequences s and t respectively
Ensure: Matrix of seed location hits
1: let s = [s0,s1, . . . ,si, . . . ,sm−1]
2: let t = [t0, t1, . . . , t j, . . . , tn−1]
3: sws ← [sw0,sw1, . . . ,swi, . . . ,swm−w], wherein swi = [si,si+1, . . . ,si+w−1]
4: tws ← [tw0, tw1, . . . , tw j, . . . , twn−w], wherein tw j = [t j, t j+1, . . . , t j+w−1]
5: for i = 0 → (m−w) do
6: for j = 0 → (n−w) do
7: if twi = sw j then
8: hits[i, j]← 1
9: else

10: hits[i, j]← 0
11: end if
12: end for
13: end for
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Algorithm 8.2. Extension procedure (right)
Require: Sequences s and t, seed offsets i and j respectively
Ensure: Extension score σ
1: Es ← swi � si+w; k ← i
2: Et ← tw j � t j+w; �← j
3: repeat
4: k ← k+1; E ′

s ← Es; Es ← Es � sk+w+1
5: �← �+1; E ′

t ← Et ; Et ← Et � t�+w+1
6: until (sk+w+1 �= t�+w+1) or (k > m−1) or (� > n−1)
7: if sk+w+1 = t�+w+1 then
8: σ ← Scores(Es,Et)
9: else

10: σ ← Scores(E ′
s,E

′
t )

11: end if

Algorithm 8.3. Assessment procedure
Require: Offsets i, j, threshold T and extension score σ
Ensure: Matrix hits updated
1: if σ ≥ T then
2: hits[i, j]← σ
3: else
4: hits[i, j]← 0
5: end if

Algorithm 8.4. Extension procedure to the let
Require: s, t and hits as a results of seeding;
Ensure: hits updated
1: Es ← si+w � swi; k ← i
2: Et ← t j+w � tw j; �← j
3: repeat
4: k ← k−1; E ′

s ← Es; Es ← sk+w+1 �Es

5: �← �−1; E ′
t ← Et ; Et ← t�+w+1 �Et

6: until (sk+w+1 �= t�+w+1) or (k < 0) or (� < 0)
7: if sk+w+1 = t�+w+1 then
8: σ ← Scores(Es,Et)
9: else

10: σ ← Scores(E ′
s,E

′
t )

11: end if

8.3 Proposed Architecture

The overview of the proposed architecture is depicted in Fig. 8.1. The Hardware
HBLAST implements the BLAST algorithm, as described in Section 8.2. Besides
the clock signal, it receives as input the subject and query sequences of m and n



8.3 Proposed Architecture 107

bases respectively. Note that, in general, we have m � n. HBLAST also expects the
configuration of three parameters: w, which determine the seed size, T , which sets
up the required threshold value for alignment acceptance during extension, and p,
which dictates the number of extension processor that will be used in parallel as it
will be show later.

HBLAST
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Fig. 8.1 Interface of the proposed design

As there are 4 DNA bases (A, C, G, and T), we need 2 bits to represent each
base distinctively (00, 01, 10, 11). Instead of representing the subject and query
sequences 2 registers of 2×m and 2×m bits respectively, we opted to use 2 reg-
isters of m bits to store subject sequence and 2 registers of n bits to hold the query
sequence: one register of the pair holds the MSB of the DNA bases that form the
sequence and the other the LSB. These two ways of storing the DNA sequences
require the same number of flip-flops, but the second way improves the matching
time as the two bits of a base can be compared in parallel without much increase
in control, as they are provide by two distinct registers. The macro-architecture of
HBLAST is given in Fig. 8.2. It includes a Seeding Unit that takes care of finding
and bookkeeping all the seeds, with respect to s and t, and an Extension Unit that
extends the seeds found.

A Global Controller synchronizes the work in pipeline of the seeding and ex-
tension units: seeds are handled by the Extension Unit as they come. There is no
need to complete the seeding step before starting the extension work. A Scheduler
arbitrates the use of the shared data and control buses between the Seeding and Ex-
tension Units. This is necessary because the Seeding Unit is, in turn, structurally
formed by q = n−w + 1 concurrent sub-units and the Extension Unit is formed
by p extension processors that act in parallel to accelerate the alignment process.
The structural parallelism within the Seeding and Extension Unit is depicted in Fig.
8.3. The work of the q seeding components (Seedingi) and the p extension compo-
nents (Extension Processor j) is harmonized by a respective stage controller, i.e. the
Seeding Controller and the Extension Controller respectively.
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Fig. 8.2 Proposed macro-architecture
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Fig. 8.3 Structural parallelism in the seeding and extension units

8.3.1 Seeding Unit

The design uses q = n−w+ 1 concurrent Seeding components. Fig. 8.4 describes
the corresponding micro-architecture along with the interface withe the Scheduler
and the Seeding Controller. Each of these Seeding components includes 2 Matching
Units: one for the comparison of the MSBs of subject and query DNA sequences
and the other for the LSBs. The Matching Unit is a mere array of w XNOR gates
whose results are summarized by an AND gate, as shown in the circuit of Fig. 8.5(a).
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When a match of a target (w consecutive bits of s) and a word (w consecutive bits
of t) is declared, i.e. the result of the both Matching units (MSB and LSB) are
both 1, the stamp formed by the offset of the target and word is pushed down the
FIFO. Note that there is one FIFO per Seeding Unit. The stamps are later popped
to be considered for extension. Once a FIFO (or a Seeding Unit) is selected by the
Scheduler to feed a requesting Extension Processor, the Write Logic of Fig. 8.5(b)
allows the output stamp of the FIFO to be written into the Data Bus so as to be
forwarded to the Extension Processor.
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Fig. 8.4 Seeding unit micro-architecture
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Fig. 8.5 Matching and write logic micro-architectures



110 8 A Reconfigurable Hardware for DNA Matching

8.3.2 Extension Unit

The Extension Unit includes p Extension Processors as shown in Fig. 8.6. The num-
ber of included processor is defined as external parameter. This number does not
necessarily coincide with that of Seeding components as many seeds do not require
much extension work. Some seeds are discarded in the first base extension. Note
that it is intended that p � q. For this purpose, among others, a Scheduler is used to
distributed the identified seeds ( in the FIFOs) as soon as a processors becomes idle.
When a processor completes the extension of a given seed and requests a new one
to work with, the Scheduler that is made aware of the request, selects the FIFO that
is already full, if any. Otherwise, it selects the FIFO that has less available space. In
the case there two or more FIFOS with the same available space, the one with the
smallest identifier is given precedence. Note that the work of a Seeding component
is suspended when its respective FIFO becomes full. Thus the strategy adopted by
the Scheduler in selecting the FIFO that is to serve the requesting extension proces-
sor aims at minimizing the number of halted Seeding components. As soon as an
interruption is received by the
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Extension to the right and left are done parallel. The extension processor in-
cludes 4 adders that compute the new offset as well as the length of the matched
subsequence. During the extension to the right, 2 adders compute ni ← i+ 1 and
n j ← j + 1 while during the extension to the left, the other 2 adders compute
pi← i−d−1 and p j ← j−d−1. These new indices allow the processor to have ac-
cess to the new bases at the immediate left and right to the d bases already matched.
At first, we have d = w, then d is incremented at every successful match. The ac-
tual update of indices i, j and d is done, by the counters, only once the match is
declared. When a mismatch occurs, an interrupt (Int6 or Int5) is triggered to aban-
don the current seed. Two other interrupts can occur when the either all bases to
seed’s right or left on t (Int1 or Int2) or t those to the seed’s right or left on s were
treated. When interruption occurs, the Extension Controllers enables the writing of
the triplet (i, j,d) into the Result Memory and signals to the Global Controller that
the Extension Processor in question is idle and thus generates s request for a new
seed to work pass it through to the processor.

8.3.3 The Controllers

The design includes 4 controllers: the Global Controller, the Seeding Controller and
the Extension Controller and the Scheduler. Controllers are implemented as finite
state machines.

The Global Controller is responsible mainly for the synchronization of the pipeline
between the seeding and extension stages. Besides, it allows for the initialization of
all components, the load of the DNA subject and query sequences into the corre-
sponding registers and enabling the writing operation of the final results into the
Result Memory.

The actions imposed by the seeding Controller guarantee the logic distribution of
the DNA sequences into targets words son as to allow for the matching process to
perform correctly. The main task of this controller consist of maintaining the con-
tent of register s and t coherent all the time by synchronizing the required shifting
operations.

The Extension Controller is responsible for the correct performance of the p Ex-
tension Processors. It handles the interruption signals send by the Extension Pro-
cessors and controls the injection of the bits that represent the bases that need to be
considered during extension to the right and/or left, depending on the status of the
triggered interruptions.

The Scheduler is responsible for controlling the use of the Data Bus as to forward
an give seed stamp to an identified Extension Processor. It also selects the FIFO that
needs to provide the seed stamp to be treated next when the Extension Controller
signals that one of the Extension Processor became idle.
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8.4 Performance Results

The MicroBlaze
TM

and the co-processor HBLAST were synthesized in a Xilinx Vir-
tex 5 FPGA xc5vfx70t. The MicroBlaze is an embedded processor soft core, which

is a reduced instruction set computer optimized for implementation on Xilinx
TM

FPGAs.
Without the proposed HBLAST co-processor, the MicroBlaze processor

performs all the alignment process. In this case, the BLAST algorithm were im-
plemented in ANSI/C++. The MicroBlaze has a communication interface for point-
to-point, called Fast Simplex Link (FSL), which allows for an efficient connection
with an external co-processor. In the remainder of this section, we will first intro-
duce the performance figures of the HBLAST proposed design in terms of area and
time requirements, then we compare the performance of the Microblaze-based im-
plementation (software implementation) and that occasioned by the use of HBLAST
as a co-processor (hardware implementation).

Table 8.1 shows the impact of varying the number of bases in the subject and
query sequences on both area and time requirements. Note that in case 4, wherein
m = 100 and n = 25, the hardware resources available on the used FPGA were
exhausted and thus no time figure is given in this case. Fig. 8.7 illustrates graphically
this impact.

Table 8.1 Hardware area and time requirements for diffrent configuration of m and n

# m n FFs % LuTs % Slices % Time

1 20 10 7887 18 7811 17 3300 29 12.59
2 60 20 33418 75 33124 74 10900 97 14.91
3 100 10 27767 62 28307 63 9547 85 19.57
4 100 25 49907 111 50952 114 12411 111 —

FFs LuTs Slices Time
0

50

100

Case 1 Case 2 Case 3 Case 4

Fig. 8.7 Impact of the number of seed bases on the area and time requirements
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Table 8.2 shows the impact of the value chosen for the seed size w. It is possible
to note that adjusting the setting of this parameter can be a way to remedy to the
case when the hardware are required is slightly above the available resources. Note
that in this case, we set m = 20, n = 10 and p = 2. A graphical illustration of this
effect is shown in Fig. 8.8.

Table 8.2 Hardware area and time requirements as w increases

w FFs % LuTs % Slices % Time

3 7887 18 7811 17 3300 29 12.59
4 7205 16 7278 16 3258 29 7.64
5 6523 15 6689 15 2963 26 5.71
6 5841 13 4553 10 2631 23 4.86

FFs LuTs Slices Time

10

20

30

40 w=3 w=24 w=5 w=6

Fig. 8.8 Impact of the number of seed bases on the area and time requirements

In order to verify the improvement in terms of performance, if any, vs. the in-
crease in terms of hardware area requirements occasioned by the use of more ex-
tension processors, we set m = 20, n = 10 and w = 3 and varied the number of
processors p. Table 8.3 shows the impact as p increases. Fig. 8.9 illustrates graphi-
cally this impact.

Table 8.3 Hardware area and time requirements as p increases

p FFs % LuTs % Slices % Time

1 6435 14 6622 15 3109 28 17.63
2 7887 18 7811 17 3300 29 12.59
3 7887 18 7804 17 3438 31 10.08
4 8004 18 7989 18 3672 33 8.50
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Fig. 8.9 Impact of the number of processor on the area and time requirements

Table 8.4 shows the time requirements of the MicroBlaze software implementa-
tion and the HBLAST hardware implementation. The operation frequency of pro-
cessor MicroBlaze is 50 MHz while HBLAST runs at different frequencies as shown
the penultimate column of Table 8.4. Fig. 8.10 illustrates, in a logarithmic scale, the
comparison of the MicroBlaze and HBLAST performances, as well as the speedup
achieved by using HBLAST. The average speedup is about 60×.

Table 8.4 Microblaze vs HBLAST time comparison

Case m n
Microblaze HBLAST

#Cycles Time #Cycles Freq. Times

1 20 10 32411 528.59 772 61.3 12.59
2 60 20 54393 996.21 814 54.6 14.91
3 100 10 54919 1065.04 1009 51.5 19.58
4 100 25 255454 5109.08 3206 50.0 64.12

Case1 Case 2 Case3 Case 4

0

2,000

4,000

MicroBlaze HBLAST Speedup

Fig. 8.10 Impact of the number of processor on the area and time requirements
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8.5 Summary

This chapter presents a parallel architecture of the BLAST algorithm implemented
as a hardware co-processor to the MicroBlaze processor. BLAST is used to align
DNA sequences. The FPGA used is a Xilinx Virtex 5 FPGA (xc5vfx70t). The pro-
posed architecture exploits the parallelism of identifying the seeds using a strategic
partitioning of the subject and query sequences into words of a configurable size
in terms of bases. It also explores further parallelism as it includes many extension
processors to investigates the seeds found. The seeding and extension processes are
carried on in a pipelined fashion.

Moreover, the design is easily scalable to new configuration parameter, which
consist of the seed size w in terms of number of bases and the number of extension
processors p. This adjustment cab be done according to speed vs. cost constraints.

A thorough analysis of the impact of each of the algorithm parameters has been
done to evaluate the impact in terms of hardware are and time requirements. A
comparison of the software-based and the proposed hardware design showed that a
speedup of 60× is achieved in average.

Future work will be directed at completing the assessment step and analyzing the
impact on the whole design, as well as the use of real-world cases DNA alignment
and matching.
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