
Chapter 7
A Reconfigurable Hardware for Subtractive
Clustering�

Abstract. This chapter presents the development of a reconfigurable hardware for
classification system of radioactive elements with a fast and efficient response. To
achieve this goal is proposed the hardware implementation of subtractive clustering
algorithm. The proposed hardware is generic, so it can be used in many problems of
data classification, omnipresent in identification systems.

7.1 Introduction

Radioactive sources have radionuclides. A radionuclide is an atom with an unstable
nucleus, i.e. a nucleus characterized by excess of energy, which is available to be
imparted. In this process, the radionuclide undergoes radioactive decay and emits
gamma rays and subatomic particles, constituting the ionizing radiation. Radionu-
clides may occur naturally but can also be artificially produced [1]. So, radioactivity
is the spontaneous emission of energy from unstable atoms.

Correct radionuclide identification can be crucial to planning protective mea-
sures, especially in emergency situations, by defining the type of radiation source
and its radiological hazard [2]. The gamma ray energy of a radionuclide is a charac-
teristic of the atomic structure of the material.

When these emissions are collected and analyzed with a gamma ray spectroscopy
system, a gamma ray energy spectrum can be produced. A detailed analysis of this
spectrum is typically used to determine the identity of gamma emitters present in the
source. The gamma spectrum is characteristic of the gamma-emitting radionuclides
contained in the source [3].

This chapter introduces the development of a reconfigurable hardware for a clas-
sification system of radioactive elements that allow a rapid and efficient to be im-
plemented in portable systems. our intention is to run the clustering algorithms
in a portable equipment to perform the radionuclides identification. The clustering
algorithms consume high processing time when implemented in software,
mainly on processors of portable use, such as micro-controllers. Thus, a custom
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implementation suitable for reconfigurable hardware is a good choice in embedded
systems, which require real-time execution as well as low power consumption.

The rest of this chapter is organized as follows: first, in Section 7.2, is demon-
strated the principles of nuclear radiation detection. Later, in Section 7.3, we review
briefly existing clustering algorithms and we concentrate on the subtractive clus-
tering algorithm. In Section 9.2, we describe the proposed architecture for cluster
centers calculator using the subtractive clustering algorithm. Thereafter, in Section
9.8, we present some performance figures to assess the efficiency of the proposed
implementation. Last but not least, in Section 7.6, we draw some conclusions and
point out some directions for future work.

7.2 Radiation Detection

The radioactivity and ionizing radiation are not naturally perceived by the sense
organs of human beings and can not be measured directly. Therefore, the detection
is performed by analysis of the effects produced by radiation as it interacts with a
material.

There are three main types of ionizing radiation emitted by radioactive atoms:
alpha, beta and gamma. The alpha and beta are particles that have mass and are
electrically charged, while the gamma rays and x-rays are electromagnetic waves.
The emission of alpha and beta radiation is always accompanied by the emission of
gamma radiation. So most of the detectors is to gamma radiation. Gamma energy
emitted by a radionuclide is a characteristic of the atomic structure of the material.
The energy is measured in electronvolts (eV). One electronvolt is an extremely small
amount of energy so it is common to use kiloelectronvolts (keV) and megaelectron-
volt (MeV).

Consider, for instance, Cesium-137 (Cs137) and Cobalt-60 (Co60), which are
two common gamma ray sources. These radionuclides emit radiation in one or two
discreet wavelengths. Cesium-137 emits 0.662 MeV gamma rays and Cobalt-60
1.33 and 1.17 MeV gamma rays. These energy are known as decay energy and define
the decay scheme of the radionuclide. Each radionuclide, among many others, has
a unique decay scheme by which it is identified [1].

When these emissions are collected and analyzed with a gamma ray spectroscopy
system, a gamma ray energy spectrum can be produced. A detailed analysis of this
spectrum is typically used to determine the identity of gamma emitters present in the
source. The gamma spectrum is characteristic of the gamma-emitting radionuclides
contained in the source [3].

A typical gamma-ray spectrometry system (fig. 7.1) consists of a scintillator de-
tector device and a measure system . The interaction of radiation with the system
occurs in the scintillator detector and the measurement system interprets this inter-
action. The scintillator detector is capable of emitting light when gamma radiation
transfers to him all or part of its energy. This light is detected by a photomulti-
plier optically coupled to the scintillator, which provides output to an electrical sig-
nal whose amplitude is proportional to energy deposited. For gamma radiation, the
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most widely used scintillator is the Sodium Iodide crystal activated with thallium,
NaI (Tl).

The property of these detectors provide an electrical signal proportional to the
deposited energy spectrum allows the creation of the gamma energy spectrum by
a radioactive element (histogram). To obtain this spectrum is used a multichannel
analyzer or MCA. The MCA consists of an ADC (Analog to Digital Converter)
which converts the amplitude of analog input in a number or channel. Each channel
is associated with a counter that accumulates the number of pulses with a given
amplitude, forming a histogram. These data form the energy spectrum of gamma
radiation. As said, since different radionuclides emit radiation at different energy
distributions, analyzing the spectrum can provide information on the composition
of the radioactive source found and allow the identification.

Fig. 7.1 Gama Spectrometry System - main components

Figure 7.2 shows a spectrum generated by simulation, to a radioactive source with
of Cs137 and Co60. The x-axis represents the channels for a 12-bit ADC. In such
a representation, 4096 channels correspond to 2.048 MeV in the energy spectrum.
The first peak in channel 1324 is characteristic of Cs137 (0.662 MeV). The second
and third peaks are energies of Co60.

The components and characteristics of a gamma spectrometry system (the type of
detector, the time of detection , the noise of the high-voltage source, the number
of channels, the stability of the ADC, temperature changes) can affect the formation
of spectrum and quality of the result. For this reason it is difficult to establish a
system for automatic identification of radionuclides, especially for a wide variety of
these. Equipment that are in the market, using different algorithms of identification
and number of radionuclides identifiable, do not have a good performance [2].

7.3 Clustering Algorithms

Clustering algorithms partition a collection of data into a certain number of clusters,
groups or subsets. The aim of the clustering task is to group these data into clusters
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Fig. 7.2 Energy spectrum simulated by a source with Cs137 and Co60

in such a way that similarity between members of the same cluster is higher than
that between members of different clusters. Clustering of numerical data forms the
basis of many classification algorithms.

Various clustering algorithms have been developed. One of the first and most
commonly used clustering algorithms is based on the Fuzzy C-means method (FCM).
Fuzzy C-means is a method of clustering which allows one piece of data to belong
to two or more clusters. This method was developed by Dunn [4] and improved by
Hathaway [5]. It is commonly used in pattern recognition.

Yager and Filev [6] introduced the so-called mountain function as a measure of
spatial density around vertices of a grid, showed in the function (7.1)

M(vi) =
n

∑
j=1

e−α‖x j−xi‖2
, (7.1)

where α > 0, M is the mountain function, calculated for the ith vertex vi during
the first step, N is the total number of data, which may be simple points or samples,
that is assumed to be available before the algorithm is initiated. Norm ‖×|‖ denotes
the Euclidean distance between the points used as arguments and x j is the current
data point or sample. It is ensured that a vertex surrounded by many data points
or samples will have a high value for this function and, conversely, a vertex with
no neighboring data point or sample will have a low value for the same function.
It should be noted that this is the function used only during the first step with all
the set of available data. During the subsequent steps, the function is defined by
subtracting a value proportional to the peak value of the mountain function. A very
similar approach is the subtractive clustering (SC) proposed in [7]. It uses the so-
called potential value defined as in (7.2).
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Pi =
n

∑
j=1

e−α‖x j−xi‖2
, where α =

4
ra

(7.2)

wherein, Pi is the potential-value i-data as a cluster center, xi the data point and ra a
positive constant, called cluster radius.

The potential value associated with each data depends on its distance to all its
neighborhoods. Considering (7.2), a data point or sample that has many points or
samples in its neighborhood will have a high value of potential, while a remote data
point or sample will have a low value of potential. After calculating potential for
each point or sample, the one, say x∗i , with the highest potential value, say P∗

i , will
be selected as the first cluster center. Then the potential of each point is reduced
as defined in (7.3). This is to avoid closely spaced clusters. Until the stopping cri-
teria is satisfied, the algorithm continues selecting centers and revising potentials
iteratively.

Pi = Pi −P∗
i e−β‖xi−x∗i ‖2

, (7.3)

In (7.3), β = 4/r2
b represents the radius of the neighborhood for which significant

potential revision will occur. The data points or samples, that are near the first cluster
center, say x∗i , will have a significantly reduced density measures. Thereby, making
the points or samples unlikely to be selected as the next cluster center.

The subtractive clustering algorithm can be briefly described by the following 4
main steps:

• Step 1: Using (7.2), compute the potential Pi for each point or sample, 1 ≤ i ≤ n;
• Step 2: Select the data point or sample, x∗i , considering the highest potential

value, P∗
i ;

• Step 3: Revise the potential value of each data point or sample, according to
(7.3);

• Step 4: If maxPi ≤ εP∗
i , wherein ε is the reject ratio, terminate the algorithm

computation; otherwise, find the next data point or sample that has the highest
potential value and return to Step 3.

The main advantage of this method is that the number of clusters or groups is
not predefined, as it is in the fuzzy C-means method, for instance. Therefore, this
method becomes suitable for applications where one does not know or does not want
to assign an expected number of clusters á priori. The cluster estimates obtained
by the subtractive clustering can be used to initialize iterative optimization-based
clustering methods and as well as the set of rules used in fuzzy clustering methods.

7.4 Proposed Architecture

This section provides an overview of the macro-architecture and contains informa-
tion on the broad objectives of the proposed hardware. The hardware implements
the subtractive clustering algorithm. The subtractive clustering algorithm was briefly
explained in the previous section.
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The implementation of this algorithm in hardware is the main point is to develop
a classification system of radioactive elements. For referencing, this hardware it
will call HSC, hardware to subtractive clustering. This hardware processes all the
arithmetic computation, described in the section above, to calculate the potential of
each point in the subtractive clustering algorithm.

The other component of this macro-architecture will be called SLC, component
to storage, loading and control, which provides to the HSC the set of samples for the
selection of cluster centers and stores the results of the calculated potential of each
sample. This component also has the controller of the HSC. Figure 7.3 shows the
components of the described macro-architecture.

Fig. 7.3 Macro-architecture components - SLC e HSC

The SLC is a controller based on state machine. It includes a dual port memory
MD that provides the data that has to be clustered and memory MP that allows for
the bookkeeping of the potential associated with each clustered data. The registers
Xmax, Xi and XIndex maintain the required data until component EXP1 and EXP2 have
completed the related computation. We assume the Xmax value is available in mem-
ory MD at address 0. The Xmax is the biggest value found within the data stored in
MD. This register is used to the data normalization.

The two EXP components, inside HSC, receive, at the same time, different x j

values from the dual port memory MD. So the two modules start at the same time
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and thus, run in parallel. After the computation of e−α‖xi−x j‖2
by EXP1 and EXP2,

component ADDER sums and accumulates the values provided at its input ports. This
process is repeated until all data x j, 1 ≤ j ≤ N, are handled. So, this computation
yileds the first Pi value to be stored in memory MP. After that, the process is repeated
to compute the potential values of all data points in memory MD. At this point, the
first cluster center has been found.

The SLC component works as a main controller of the process. Thus, the trig-
ger for initiating the processing components EXP1 and EXP2 occurs from the signal
StartExp sent by SLC. The component SLC has a dual-port memory MD which
stores the samples / points to be processed. Memory MD allows the two compo-
nents (EXP1 and EXP 2) receiving a sample to calculate the exponential value and
thus can operate in parallel . This sample for each component EXP are two distinct
values x j from two subsequent memory addresses.

The proposed architecture allows the hardware to subtractive clustering HSC can
be scaled by adding more of these components in parallel to the computation of
the factors e−α ||x j−xi||2 . This provides greater flexibility to implement the hardware.
Figure 7.4 shows how new components HSC are assembled in parallel.

Each component HSC calculates in parallel the potential of a point i, the value Pi

of the function 7.3. For this reason each module (HSC) must to receive and record
a value of xi to work during the calculation of the potential of a point. Since these
values are in different adrress of the memory, this registry value xi has to be done
at different time because the memory can not have your number of ports increased
as the number of components HSC is increased. To be not necessary to increase the
number of control signals provided by the component SLC when new components
HSC are added, the component HSC itself has to send some control signals for the
thereafter.

These signs are to load the value xi (LEXi) and start the reduction potential of
each point (StartPot), as showed in 7.3. Moreover, each component HSC should re-
ceive the signal EndAdd which indicates the end of the operation on the component

Fig. 7.4 Macro-architecture with HSC components in parallel
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Fig. 7.5 Control signals with scaled architecture

ADDER of the thereafter component HSC. This ensures that the main control (SLC)
only receive these signals after all the components of the HSC in parallel complete
their transactions at each stage, allowing the hardware can be reconfigured without
change in the main control. Figure 7.5 shows the effect of this scaling, simulating
different processing times between the HSC.

The n components HSC, implemented in parallel, compute the potential of n
points of the set of samples. As explained earlier, the record value of xi, to be used
in the calculation of the potential it has to be done in time different. It is shown in
figure 7.5 that the first component HSC receives the signal LEXi from SLC control
and after registering it xi, it sends the signal LEXi for HSC thereafter. Only after
all of the HSC to have recorded its value xi, the signal to start the components EXP

(StartExp) is sent with the first pair of values x j in the dual bus BD.
Fig. 7.7 shows the architecture of the module EXP1 and EXP2 that permits the

calculation of the exponential value e−α‖xi−x j‖2
. The exponential value was approx-

imated by a second-order polynomial using the least-squares method [8] . Moreover,
this architecture computes these polynomials and all values were represented using
fractions, as in (7.4).

e−α‖x‖ =
Na

Da

(
Nv

Dv

)2

+
Nb

Db

(
Nv

Dv

)
+

Nc

Dc
(7.4)

wherein, factors Na
Da

, Nb
Db

and Nc
Dc

are some pre-determined coefficients. Nv
Dv

is equiva-
lent to variable (αx) in the FPP representation. For high precision, the coefficients
were calculated within the range [0, 1[, [1, 2[, [2, 4[ and [4, 8]. These coefficients
are shown respectively in the quadratic polynomials of (7.5).
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e−(αx) ∼=
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(7.5)

The accuracy of these calculated values, i.e. the introduced error is no more
0.005, is adequate to properly obtain the potential values among the data provided
during the process of subtractive clustering. The absolute error introduced is shown
in Fig. 7.6. Depending on the data, this requires that the number of bits to represent
the numerator and denominator have to be at least twice the maximum found in the
data points provided.
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Fig. 7.6 Absolute error introduced by the approximation computation

The architecture of the Fig. 7.7 presents the micro-architecture of components
EXP1 and EXP1. It uses four multipliers, one adder/subtracter and some registers.
These registers are all right-shifters. The controller makes the adjustment of the bi-
nary numbers with shifts to the right in these registers in order to maintain the frame
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Fig. 7.7 Architecture of EXP Modules to compute the exponential e−α‖xi−x j‖2

of binary numbers after each operation. This is necessary to keep the results of mul-
tiplication with the frame of bits used without much loss of precision. The closest
fraction is used instead of a simple truncation of the higher bits of the product.

In this architecture, multipliers MULT1, MULT2, MULT3 and MULT4 operate in
parallel to accelerate the computation. The state machine in the controller triggers
these operations and controls the various multiplexers of the architecture. The com-
putation defined in (7.4) is performed as described hereafter.

• Step 1: Compute NV ×NV , NB×NV , DV ×DV and DB×DV ;
• Step 2: Right-shift registers to render the frame of bits to the original size and

in parallel with that, compute A = NA×NV ×NV , C = NB×NV ×DC, D =
DB×DV ×NC and E = DB×DV ×DC;

• Step 3: Add of C+D and, in parallel with that, compute B = DA×DV ×DV ;
• Step 4: Add A

B + C+D
E .

7.5 Performance Results

The data shown in figure 7.2 were obtained using a simulation program called Real
Gamma-Spectrum Emulator. These data are in spreadsheet format of two columns,
where the first column corresponds to the channel and the second is the number
of counts accumulated in each channel. To validate the method chosen (subtrac-
tive clustering), the algorithm was implemented with Matlab, using the simulated
data. As seen in the introduction, these data simulate a radioactive source consists
of Cs137 and Co60. To apply the subtractive clustering algorithm in Matlab data
provided by the simulation program needed to be converted into one-dimensional
data in one column. For example, if channel 1324 to accumulate 100 counts, means
that the value 1324 should appear 100 times as input. only in this way the clustering
algorithm is able to split the data into subgroups by frequency of appearance. In a
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real application this data would be equivalent to the output of AD converter of a
gamma spectrometry system, as shown in the introduction.

In the spectrum of Fig. 7.2, one can see three peaks. The first one in the channel
1324 is characteristic of Cs137 (0.662 MeV). The second and third peaks correspond
the energy of Co60. The circular marks near the first and second peaks show the
result of applying the subtractive clustering algorithm on the available data with
Matlab software. These circular marks are center of the found clusters. These found
clusters are very near (one channel to the left) of the signal peaks, the expected
result. With the configuration to the algorithm in Matlab, the third peak was not
found. This result can change with an adjust of the radius ra in 7.2. This is enough
to conclude that the data provided belongs to a radioactive source with Cs137 and
Co60 and the subtractive cluster method can be used to identify these radionuclides.

As the proposed architecture is based on the same algorithm, is expected to find
the same result. The initial results show that the expected cluster center can be iden-
tified as in Matlab specification. The hardware takes about 12660 clock cycles to
yield one sum of exponential values (∑n

j=1 e−α‖xi−x j‖2
). Considering the one hun-

dred points in the avaiable data set of the case study, the identification of the first
cluster center would take ten times that amount, i.e. about 126600 clock cycles.
However, finding the center of the second cluster is faster. It should take about 13000
clock cycles. This result can change with the data and depends of the amount of ad-
justment required to the right in the shift registers during the process. The simulation
results of an instance of this process is shown in Fig. 7.8.

Fig. 7.8 Simulao de forma de onda de deslocamentos a direita para ajuste no nmero de bits
do resultado
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7.6 Summary

This chapter describes the implementation of subtractive clustering algorithm in
hardware. The results shows the expected cluster center can be identified with a
good efficiency. In data from the simulation of signals of radioactive sources, after
conformation of the signal and its conversion into digital , the cluster center repre-
sents the points that characterize the energy provided by a simulated radionuclides.
The identification of these points can sort the radioactive elements present in a sam-
ple. With this hardware it was possible to identify more than one cluster center,
which would recognize more than one radionuclide in radioactive sources.

These results reveal that the proposed hardware can be used to develop a portable
system for radionuclides identification. This system can be developed and enhanced
integrating the proposed hardware with a software to be executed by a processor in-
side the FPGA, bringing reliability and faster identification, an important character-
istics for these systems. Following this work, we intend to develop a software-only
implementation using an embedded processor or a micro-controller to compare it
with the hardware-only solution.
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