
Chapter 5
A Reconfigurable Hardware for Artificial Neural
Networks�

Abstract. Artificial Neural Networks (ANNs) is a well known bio-inspired model
that simulates human brain capabilities such as learning and generalization. ANNs
consist of a number of interconnected processing units, wherein each unit performs
a weighted sum followed by the evaluation of a given activation function. The in-
volved computation has a tremendous impact on the implementation efficiency. Ex-
isting hardware implementations of ANNs attempt to speed up the computational
process. However these implementations require a huge silicon area that makes it
almost impossible to fit within the resources available on a state-of-the-art FPGAs.
In this chapter, we devise a hardware architecture for ANNs that takes advantage of
the dedicated adder blocks, commonly called MACs to compute both the weighted
sum and the activation function. The proposed architecture requires a reduced sili-
con area considering the fact that the MACs come for free as these are FPGA’s built-
in cores. The hardware is as fast as existing ones as it is massively parallel. Besides,
the proposed hardware can adjust itself on-the-fly to the user-defined topology of
the neural network, with no extra configuration, which is a very nice characteris-
tic in robot-like systems considering the possibility of the same hardware may be
exploited in different tasks.

5.1 Introduction

Artificial Neural Networks (ANNs) are useful for learning, generalization, classi-
fication and forecasting problems [3]. They consists of a pool of relatively simple
processing units, usually called artificial neurons, which communicates with one
another through a large set of weighted connections. There are two main network
topologies, which are feed-forward topology [3], [4] where the data flows from input
to output units is strictly forward and recurrent topology, where feedback connec-
tions are allowed. Artificial neural networks offer an attractive model that allows
one to solve hard problems from examples or patterns. However, the computational
process behind this model is complex. It consists of massively parallel non-linear
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calculations. Software implementations of artificial neural networks are useful but
hardware implementations takes advantage of the inherent parallelism of ANNs and
so should answer faster.

Field Programmable Gate Arrays (FPGAs) [7] provide a re-programmable hard-
ware that allows one to implement ANNs very rapidly and at very low-cost. How-
ever, FPGAs lack the necessary circuit density as each artificial neuron of the net-
work needs to perform a large number of multiplications and additions, which con-
sume a lot of silicon area if implemented using standard digital techniques.

The proposed hardware architecture described throughout this chapter is de-
signed to process any fully connected feed-forward multi-layer perceptron neural
network (MLP). It is now a common knowledge that the computation performed
by the net is complex and consequently has a huge impact on the implementation
efficiency and practicality. Existing hardware implementations of ANNs have at-
tempted to speed up the computational process. However these designs require a
considerable silicon area that makes tem almost impossible to fit within the re-
sources available on a state-of-the-art FPGAs [1], [2], [6]. In this chapter, we devise
an original hardware architecture for ANNs that takes advantage of the dedicated
adder blocks, commonly called MACs (short for Multiply, Add and Accumulate
blocks) to compute both the weighted sum and the activation function. The lat-
ter is approximated by a quadratic polynomial using the least-square method. The
proposed architecture requires a reduced silicon area considering the fact that the
MACs come for free as these are FPGA’s built-in cores. The hardware is as fast as
existing ones as it is massively parallel. Besides, the proposed hardware can adjust
itself on-the-fly to the user-defined topology of the neural network, with no extra
configuration, which is a very nice characteristic in robot-like systems considering
the possibility of the same piece of hardware may be exploited in different tasks.

The remaining of this chapter is organized as follows: In Section 5.2, we give a
brief introduction to the computational model behind artificial neural networks; In
Section 5.3, we show how we approximate the sigmoid output function so we can
implement the inherent computation using digital hardware; In Section 5.4, we pro-
vide some hardware implementation issues about the proposed design, that makes it
original, efficient and compact; In Section 5.5, we present the detailed design of the
proposed ANN Hardware; Last but no least, In Section 5.6, we draw some useful
conclusions and announce some orientations for future work.

5.2 ANNs Computational Model

We now give a brief introduction to the computational model used in neural net-
works. Generally, is constituted of few layers, each of which includes several neu-
rons. The number of neurons in distinct layers may be different and consequently
the number of inputs and that of outputs may be different [3].

The model of an artificial neuron requires n inputs, say I1, I2, . . . , In and the synap-
tic weights associated with these inputs, say w1,w2, . . . ,wn. The weighted sum a,
which, also called activation of the neuron, is defined in (5.1). The model usually
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includes an output function nout(.) that is applied to the neuron activation before it
is fed forwardly as input to the next layer neurons.

a =
n

∑
j=1

wj × f j (5.1)

The non-linearity of the neuron is often achieved by the output function, which
may be the hyperbolic tangent or sigmoid [3]. In some cases, nout(a) may be linear.

A typical ANN operates in two necessary stages: learning and feed-forward com-
puting. The learning stage consists of supplying known patterns to the neural net-
work so that the network can adjust the involved weights. Once the network has
learned to recognize the provided patterns, the network is ready to operate, perform-
ing the feed-forward computing. In this stage, the network is supplied with an input
data or pattern, which may or not be one of those given in learning stage and verify
how the network responds with output results. This allows one to know whether the
neural network could recognize the input data. The precision of the net in recog-
nizing the new input patterns depends on the quality of its learning stage and on its
generalization. As we have previously mentioned, here we are only concerned with
the implementation of feed-forward computing stage.

5.3 Approximation of the Output Function

Unlike the activation function, which includes operations that can easily and effi-
ciently implemented in hardware, the out function requires a special care before the
computation involved can be modeled in hardware. Without loss of generality, we
chose to use the sigmoid output function. Note that the same treatment applies to the
hyperbolic function too. To allow an efficient implementation of the sigmoid func-
tion defined in (5.2), in hardware, we proceeded with a parabolic approximation of
this function using the least-square estimation method.

sigmoid(a) =
1

1+ e−a (5.2)

The approximation proceeds by defining nout(a) = C × a2 + B × a + A as a
parabolic approximation of the sigmoid of (5.2), just for a short range of the vari-
able a. We used the least-square parabola to make this approximation feasible. Many
attempts were performed to try to find out the best range of a for this approxi-
mation, so that the parabola curves fits best that of sigmoid(a). We obtained the
range [−3.3586,2.0106] for variable a, taking into account the calculated coeffi-
cients C = 0.0217, B = 0.2155 and A = 0.4790 for the parabolic approximation.
Thus, the approximation of the sigmoid function is as defined in (5.3):

nout(a) =

⎧
⎨
⎩

0 a <−3.3586
0.0217× a2+ 0.2155× a+0.4790 a ∈ [−3.3586,2.0106]
1 a > 2.0106

(5.3)
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5.4 Implementation Issues

An Artificial Neural Network is a set of several interconnected neurons arranged in
layers. Let L be the number of layers. Each layer has its own number of neurons. Let
mi be the number of neurons in layer i. The neurons are connected by the synaptic
connections. Some neurons get the input data of the network, so they are called
input neurons and thus compose the input layer. Other neurons export their outputs
to the outside world, so these are called output neurons and thus compose the output
layer. Neurons placed on the layer 2 up to layer L− 1 are called the hidden neurons
because they belong to the hidden layers. In Fig. 5.1, we show a simple example of
an ANN. The output of each neuron, save output neurons, represents an input of all
neurons placed in the next layer.

The computation corresponding to a given layer starts only when that of the cor-
responding previous layer has finished. Our ANN hardware has just one real layer of
neurons, constitutes of k neurons, where k is maximum number of neurons per layer,
considering all layers of the net. For instance, for the net of Fig. 5.1, this parameter
is 3. This single real layer or physical layer is used to implement all layers of the
network. As only one layer operates at a time, this allows us to minimize drastically
the silicon area required without altering the response time of the net. For instance,
considering the net of Fig. 5.2, the first stage of the computation would use only 2
neurons, then in the second stage all three physical neurons would be exploited and
in the last stage, only one neuron would be useful. So instead of having 6 physically
implemented neurons, our hardware requires only half that number to operate. ANN
hardware treats the nets layers as virtual.

Besides reducing the number of neurons that are actually implemented in hard-
ware, our design takes advantage of some built-in cores that come for free in nowa-
days FPGAs. This blocks are called MACs (Multiply, add and Accumulate), which
are usually used in DSPs (Digital Signal Processing) and their architecture is shown
in Fig. 5.2. The MACs blocks are perfect to perform the weighted sum.
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Recall that nout(a) of (5.3) is the actual neuron output function our ANN hard-
ware will perform. Observe that the computation involved in this function is sum of
products (quadratic polynomial) and so the MACs can be used in this purpose to.
Actually we use the same block of the neuron to compute the output function.

× 
+ 
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C 
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MAC 

Y 

Fig. 5.2 Built-in MACs blocks in FPGAs

5.5 ANN Hardware Architecture

The ANN hardware interface is illustrated in Fig. 5.3, wherein two other compo-
nents are included: LOAD CONTROLLER and CLOCK SYSTEM. The former may be
any outside system able to setup the neural network topology and to load all neces-
sary data in the ANN hardware. This include the number of inputs, the number of
layers, the number of neurons per layer and that of outputs, besides, the net inputs
and the definitive weights. Our ANN hardware is organized in a neural control unit
(UC) and Neural arithmetic and logic unit (ALU).

Neural UC encompasses all control components for computing all neural network
feed-forward computation. It also contains the memories for storing the net’s inputs
in the INPUT MEMORY, the weights in the WEIGHT MEMORY, the number of inputs
and neurons per layer in the LAYER MEMORY and the coefficients of the output
function in the OUTPUT FUNCTION MEMORY as described in (5.3). Fig. 5.4 and
Fig. 5.5 depict, respectively, two parts of the neural UC.

During the loading process, which commences when LCStart = 1, the LOAD

CONTROLLER sets signal DataLoad and selects the desired memory of the neural
UC by signals Load0 and Load1 (see Fig. 5.3, Fig. 5.4 and Fig. 5.5).

The counters that provide addresses for memories are entirely controlled by the
LOAD CONTROLLER. Signal JKClk is the clock signal (from CLOCK SYSTEM in Fig.
5.4) that synchronizes the actions of those Counters and of the LOAD CONTROLLER.
This one fills each memory through the 32-bit DATA in loading process.

When the loading process is finished (LCFinal = 1), in Fig. 5.3, signal DataLoad
can be turned off and the LOAD CONTROLLER can set signal Start for the com-
mencing of the feed-forward Neural Network computing. When Start = 1 (and
DataLoad = 0), the ANN hardware gets the whole control of its components; so
the LOAD CONTROLLER can no longer interfere in the neural UC. This one has a
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Fig. 5.3 Interface of the ANN hardware

main controller called Network Controller (Fig. 5.3) that controls all components of
the neural UC (Fig. 5.4 and Fig. 5.5) and also the neural ALU, which is depicted in
Fig. 5.6.

During the ANN hardware operation, neural UC by the mean of the network
controller, controls the computation of each layer per stage. For each layer of the
neural network, all k hardware neurons of the neural ALU of Fig. 5.6 work in parallel
even though not necessarily all physical neurons are needed in the layer. Recall that
some layers in the ANN hardware may have fewer neurons than k. At this stage,
signal Clk is now the active clock of the ANN hardware, not signal JKClk anymore.

In Fig. 5.6, ADDER MUX decides the actual input for all hardware neurons and it
is exploited to multiplex a network input, from the INPUT MEMORY in Fig. 5.4 or the
output of a hardware neuron nOUTi, which is an output of a neuron placed in a layer
i of the net. While all physical neurons are in operation, the WEIGHT REGISTERS of
Fig. 5.6 are already being loaded using signal W (see Fig. 5.4). These are the new
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Fig. 5.4 First part of the neural UC

weights, which are the weights of the next layer in the network. Furthermore, in Fig.
5.6, we see a set of tri-state buffers, each of which is controlled by signal Ni, issued
by the NEURON LAYER DECODER, in the neural UC of Fig. 5.4. Fig. 5.6 shows the
neuron architecture. Each hardware neuron performs the weighted sum followed by
the application of the output function nout(a).
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Observing Fig. 5.4 (neural UC), the INPUT COUNTER, together with NEURON

LAYER REGISTER, NEURON LAYER COMPARATOR, NEURON LAYER ADDER and
LASTPROD COMPARATOR control the computation of the weighted sum: signal
FirstProd indicates the first product of the weighted sum and LastProd, the last
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Fig. 5.6 Overall hardware architecture of the Neural ALU

one. SuperOR component is an OR of all input bits. Signal EndSum (Fig. 5.4, Fig.
5.5 and Fig. 5.6) flags that the weighted sum has been completed. It also triggers the
start of the output function computation. During this stage, the OUTPUT FUNCTION

COUNTER (see Fig. 5.5) provides the address to the OUTPUT FUNCTION MEMORY

in order to release the coefficients (C = 0.0217, B = 0.2155 or A = 0.4790), through
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o f mData, to the hardware neurons. Signal f ourFinal, in Fig. 5.5, indicates that the
computation of nout(a) has finished.

Each hardware neuron encloses a MAC block, which consists of a FLOAT MULTI-
PLIER and a FLOAT ADDER to perform products and sums, respectively. The MULTI-
PLIER REGISTER allows the LOAD ADDER to works in parallel with FLOAT MULTI-
PLIER. The ADDER REGISTER accumulates the weighted sum. Recall that all hard-
ware neurons work in parallel (see Fig. 5.6).

At an earlier stage, the LOAD CONTROLLER has loaded Limit0 = −3.3586 and
Limit1 = 2.0106 in neural UC so that RegLimit0 = −3.3586 and RegLimit1 = 2.0106
have been obtained. Those float numbers refer to (5.3), wherein nout(a) is 0 if a <
−3.3586 and 1 if a > 2.0106.

In Fig. 5.6, which shows the hardware neuron, DOWNEQUAL COMPARATOR

sets OUT Z = 1, if a < −3.3586 and UPEQUAL COMPARATOR sets OUTO = 1,
if a > 2.0106. These components, intermediated by two latches, control the OUT-
PUT MANAGER, which decides as to the output of the hardware neuron (nOUT ):
(i) If a ∈ [−3.3586,2.0106], then nOUT is the result of the second degree polyno-
mial as described in (5.3), which is the content of the OUTPUT FUNCTION REG-
ISTER; (ii) If a < −3.3586, then the OUTPUT MANAGER provides nOUT = 0; (iii)
If a > 2.0106, then nOUT is 0. Components LATCH0 and LATCH1 are used to
maintain nOUT stable. Signal nOUT have to be kept during the computation of
the weighted sum of a next layer neuron. Furthermore, in Fig. 5.6, signal amFinali
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indicates the end of both a product and sum performed by the neuron. The mul-
tiplier and the adder operate in parallel, i.e. when the adder is accumulating the
freshly computed product to the partial weighted sum obtained so far, the multiplier
is computing the next product. In Fig. 5.5, signal amFinal indicates the end of all
the computation in all neurons.

In Fig. 5.3, signal Final indicates that all computation required in all the layers
of the network are completed and the outputs of the network have been obtained.
These outputs are available signals nOUT1, nOUT2, . . . , nOUTh (see Fig. 5.3 and
5.7), where h is the number of neurons placed in the output layer of the Network,
with h ≤ k.

5.6 Summary

In this chapter, we presented novel hardware architecture for processing an artifi-
cial neural network, whose topology can be changed on-the-fly without any extra
reconfiguration effort. The design takes advantage of the built-in MACs block that
come for free in modern FPGAs. The model was specified in VHDL [5], simulated
to validate its functionality. We are now working on the synthesis process to eval-
uate time and area requirements. The comparison of the performance result of our
design will be then compared to both the binary-radix straight forward design and
the stochastic computing based design.
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