
Chapter 2
Genetic Algorithms on Network-on-Chip�

Abstract. The aim of the work described in this chapter is to investigate migra-
tion strategies for the execution of parallel genetic algorithms in a Multi-Processor
System-on-Chip (MPSoC). Some multimedia and Internet applications for wireless
communications are using genetic algorithms and can benefit of the advantages pro-
vided by parallel processing on MPSoCs. In order to run such algorithms, we use
a Network-on-Chip platform, which provides the interconnection network required
for the communication between processors. Two migration strategies are employed,
in order to analyze the speedup and efficiency each one can provide, considering the
communication costs they require.

2.1 Introduction

The increasing demand of electronic systems, that require more and more processing
power, low energy consumption, reduced area and low cost, has lead to the develop-
ment of more complex embedded systems, also known as System-on-Chip (SoC),
in order to run multimedia, Internet and wireless communication applications [9].
These systems can be built of several independent subsystems, that work in parallel
and interchange data. When these systems have more than one processor, they are
called Multi-Processor System-on-Chip (MPSoC).

Currently, several products, such as cell phones, portable computers, digital tele-
visions and video games, are built using embedded systems. While in embedded sys-
tems the communication between Intellectual Property (IP) blocks is basically done
through a shared bus, in multiprocessor embedded systems this kind of interconnec-
tion compromises the expected performance [2]. In this case, the communication is
best implemented using an intrachip network, implemented by a Network-on-Chip
(NoC) [6] [5] [1] platform.

Some multimedia and Internet applications for wireless communications are us-
ing genetic algorithms and can benefit from the advantages provided by parallel
processing on MPSoCs. In this chapter, we present a parallel genetic algorithm that
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Fig. 2.1 HMPS architecture, with 9 RISC Plasma processors connected to a 3×3 mesh net-
work

runs on Hermes Multi-Processor System (HMPS) architecture and discuss the im-
pact of migration strategies on performance. In Section 2, we describe the HMPS
architecture. The parallel genetic algorithm, used in this chapter, is presented in
Section 3 and some simulation results are introduced in Section 4. Finally, we draw
some conclusions and future work in Section 5.

2.2 Multi-processor System-on-Chip Platform

Figure 2.1 shows the Multi-Processor System-on-Chip (MPSoC), called Hermes
Multiprocessor System (HMPS) [3]. MPSoC architectures may be represented as a
set of processing nodes that communicate via a communication network. Switches
compose the network and RISC processors the processing nodes (Plasma). Infor-
mation exchanged between resources are transfered as messages, which can be split
into smaller parts called packages [7]. The switch allows for retransmission of mes-
sages from one module to another and decides which path these messages should
take. Each switch has a set of bidirectional ports for the interconnection with a re-
source and the neighboring switches.

As the total number of tasks composing the target application may exceed the
MPSoC memory resources, one processor is dedicated to the management of the
system resources (MP - Manager Processor). The MP has access to the task reposi-
tory, from where tasks are allocated to some processors of the system.
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The interconnection network is based on HERMES [4], that implements worm-
hole packet switching with a 2D-mesh topology. The HERMES switch employs
input buffers, centralized control logic, an internal crossbar and five bi-directional
ports. The Local port establishes the communication between the switch and its lo-
cal IP core. The other ports of the switch are connected to neighboring switches. A
centralized round-robin arbitration grants access to incoming packets and a deter-
ministic XY routing algorithm is used to select the output port.

The processor is based on the PLASMA processor [10], a RISC microprocessor.
It has a compact instruction set comparable to a MIPS-1, 3 pipeline stages, no cache,
no Memory Management Unit (MMU) and no memory protection support in order
to keep it as small as possible. A dedicated Direct Memory Access (DMA) unit
is also used for speeding up task mapping, but not for data communications. The
processor local memory (1024 Kbytes) is divided into four independent pages. Page
0 receives the microkernel and pages 1 to 3 the tasks. Each task can hold 256 Kbytes
(0x40000).

The HMPS communication primitives, WritePipe() and ReadPipe(), essentially
abstract communications, so that tasks can communicate with each other without
knowing their position on the system, either on the same processor or a remote one.
When HMPS starts, only the microkernel is loaded into the local memory. All tasks
are stored in the task repository. The manager processor is responsible for reading
the object codes from the task repository and transmit them to the other processors.
The DMA module is responsible for transferring the object code from the network
interfaces to the local memory.

2.3 Parallel Genetic Algorithm

The Parallel Genetic Algorithm (PGA) is based on the island model, in which serial
isolated subpopulations evolve in parallel and each one is controlled by a single pro-
cessor. This processor periodically sends its best individuals to neighboring subpop-
ulations and receives their best individuals. These individuals are used to substitute
the local worst ones. It is obvious that the GA time processing increases with popu-
lation size. Therefore, small subpopulations tend to converge quickly when isolated.

The PGA is executed by the HMPS platform. Each processor corresponds to an
island and its initial subpopulation is randomly generated, evolving independently
from the other subpopulations, until the migration operator is activated, as described
in Algorithm 2.1. Premature convergence occurs less in a multi-population GA and
can be ignored, when other islands produce better results. Each island can use a dif-
ferent set of GA operators, i.e. crossover and mutation rates, which causes different
convergence. Migration of the chromosomes among the islands prevents mono-race
populations, which converge prematurely. Periodic migration, which occurs after
some generations, prevents a common convergence among the islands.
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Algorithm 2.1. PGA
Initialize the evolutionary parameters
t ← 0
Initialize a random population p(t)
Evaluate p(t) in order to find th best solution
while (t < NumGenerations) do

t ← t +1
Select p(t) from p(t −1)
Crossover
Mutation
Evaluate p(t) in order to find th best solution
if (t mod MigrationRate = 0) then

Migrate local best[p(t)] to the next processor
Receive remote best[p(t)] from the previous processor
Replace worst[p(t)] by best[p(t)]

end if
end while

The PGA requires the definition of some parameters: number of processors, how
often the migration will take place, which individuals will migrate and which indi-
viduals will be replaced due to migration. The island model introduces a migration
operator in order to migrate the best individuals from one subpopulation to another.

2.3.1 Topology Strategies

In this work, we investigate two topology strategies to migrate individuals from one
subpopulation to another: ring and neighborhood. In the ring topology, the best in-
dividuals from one subpopulation can only migrate to an adjacent one. As seen in
Figure 2.2, the best individuals from subpopulation 6 can only migrate to subpopu-
lation 1 and the best individuals from subpopulation 1 can only migrate to subpop-
ulation 2. In Algorithm 2.2, migration is implemented using this kind of strategy.
In the neighborhood topology, the best individuals from one subpopulation can mi-
grate to a left and to a right neighbor, as seen in Figure 2.3. For this kind of strategy,
migration is implemented as in Algorithm 2.3.

Choosing the right time of migration and which individuals should migrate are
two critical decisions. Migrations should occur after a time long enough for allowing
the development of good characteristics in each subpopulation. Migration is a trig-
ger for evolutionary changes and should occur after a fixed number of generations
in each subpopulation. The migrant individuals are usually selected from the best
individuals in the origin subpopulation and they replace the worst ones in the des-
tination subpopulation. Since there are no fixed rules that would give good results,
intuition is still strongly recommended to fix the migration rate [11].

Sending an individual from one subpopulation to another increases the fitness of
the destination subpopulation and maintains the population diversity of the other
subpopulation. As in the sequential GA, issues of selection pressure and diversity



2.3 Parallel Genetic Algorithm 19

sub-population 5

sub-population 1

sub-population 3

sub-population
4

sub-population 6 sub-population 2

Fig. 2.2 Ring migration topology

sub-population 5

sub-population 1

sub-population 3

sub-population
4

sub-population 6 sub-population 2

Fig. 2.3 Neighborhood migration topology

arise. If a subpopulation receives frequently and consistently highly fit individuals,
these become predominant in the subpopulation and the GA will focus its search on
them at the expense of diversity loose. On the other hand, if random individuals are
received, the diversity may be maintained, but the fitness of the subpopulation may
not be improved as desired. As migration policy, the best individual is chosen as the
migrant, replacing the worst one in the receiving subpopulations. For the migration
frequency, an empirical value was adopted based on the number of generations.
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Algorithm 2.2. Migration function for the ring communication
local := get processid();
if local = 0 then

next := 1; previous := number of tasks −1;
end if
if local > 0 e local < number of tasks −1 then

next := local +1; previous := local −1;
end if
if local = number of tasks −1 then

next := 0; previous := local −1;
end if
Send the best individuals to the task, whose identifier is next;
Receive the best individuals from the task, whose identifier is previous.

Algorithm 2.3. Migration function for the neighborhood communication
local := get processid();
if local = 0 then

next := 1; previous := number of tasks −1;
end if
if local > 0 e local < number of tasks −1 then

next := local +1; previous := local −1;
end if
if local = number of tasks −1 then

next := 0; previous := local −1;
end if
Send the best individuals to the task, whose identifier is previous;
Send the best individuals to the task, whose identifier is next;
Receive the best individuals from the task, whose identifier is previous;
Receive the best individuals from the task, whose identifier is next.

2.4 Simulation Results

Three non-linear functions were used by the PGA for optimization. The definition
and main characteristics of these functions are listed below

• Function f1(x) is defined in (2.1). This function plots into the curve depicted in
Fig. 2.4. It presents 14 local maximum e one global maximum in the interval [-1,
2], with an approximate global maximum of 2.83917, at x = 1.84705.

max
x

f1(x) = sen(10πx)+ 1 (2.1)

• Function f2(x,y) is defined in (2.2). This function plots into the curve depicted
in Fig. 2.5. It has many local minimum and one global minimum in the interval
−3≤ x ≤ 3 and −3≤ y≤ 3, and an approximate global minimum of −12.92393,
at x = 2,36470 and y = 2.48235.
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Fig. 2.4 The graphical representation of f1(x)

Fig. 2.5 The graphical representation of f2(x,y)

min
x,y

f2(x,y) = cos(4x)+ 3sen(2y)+ (y− 2)2− (y+ 1) (2.2)

• Function f3(x,y) is defined in (2.3). This function plots into the curve depicted
in Fig. 2.6. It has 2 local maximum and one global minimum in the interval
−3 ≤ x ≤ 3 and −3 ≤ y ≤ 3, and an approximate global maximum of 8,11152,
at x = 0,01176 and y = 1,58823.
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Fig. 2.6 The graphical representation of f3(x,5)

max
x,y

f3(x,y)= 3(1−x)2e(−x2−(y+1)2)−10
(x

5
− x3 − y5

)
e(−x2−y2)− 1

3
e−(x+1)2−y2

(2.3)

The performance of the PGA can be evaluated based on its speedup and effi-
ciency. Speedup Sp [8] is defined according to Equation 2.4, where T1 is the execu-
tion time of the sequential version of the genetic algorithm and Tp is the execution
time of its parallel version.

Sp =
T1

Tp
(2.4)

Efficiency Ep [8] is defined according to Equation 2.5, where 1
p < Ep ≤ 1 and p is

the number of processors employed.

Ep =
Sp

p
(2.5)

Table 2.1, Table 2.2 and Table 2.3 show the simulation results for the optimiza-
tion of functions f1(x), f2(x,y) e f3(x,y) respectively using the ring topology for
migration of individuals. In those tables, Np is the number of used processors, Mr is
the migration rate, Mi is the migration interval in terms of generation number, Sp is
the speedup obtained and Ep is the efficiency yield for each used processor.

Table 2.4, Table 2.5 and Table 2.6 show the simulation results for the optimization
of functions f1(x), f2(x,y) e f3(x,y) respectively using the neighborhood topology
for migration of individuals. In those tables, Np is the number of used processors,
Mr is the migration rate, Mi is the migration interval in terms of generation number,
Sp is the speedup obtained and Ep is the efficiency yield for each used processor.

Based on simulation results for the optimization of f1(x), f2(x,y) and f3(x,y)
using the ring and neighborhood topologies, we obtained the graphics for speedup
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Table 2.1 Simulation results for the optimization of function f1(x) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 1127,5724 1 1

6
1

1 168,57284 6,68893 1,67223
2 298,76094 3,77416 0,94354

2
1 650,70556 1,73284 0,43321
2 267,11808 4,22125 1,05531

9
1

1 112,10709 10,05799 1,25724
2 102,16839 11,03641 1,37955

2
1 381,15057 2,95834 0,36979
2 101,16498 11,14587 1,39323

16
1

1 83,86655 13,44484 0,89632
2 75,29244 14,97590 0,998393

2
1 73,95938 15,24583 1,01638
2 77,13687 14,61781 0,97452

Table 2.2 Simulation results for the optimization of function f2(x,y) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6024,11201 1 1

6
1

1 2569,06697 2,344863 0,586215
2 2616,76305 2,302123 0,575530

2
1 2507,48402 2,402452 0,600613
2 1448,84485 4,157872 1,039468

9
1

1 1968,24989 3,06064 0,38258
2 1250,55945 4,81713 0,60214

2
1 1352,18413 4,45509 0,55688
2 1112,49588 5,41495 0,67686

16
1

1 718,73197 8,38158 0,55877
2 797,31202 7,55552 0,50370

2
1 596,06991 10,10638 0,67375
2 866,79268 6,94988 0,46332

and efficiency shown in Figure 2.7, Figure 2.8 and Figure 2.9 respectively. The data
are presented as triples consisting of the number of slave processors used Np, the
migration rate Mr and the migration interval Mi.

2.5 Summary

For the ring topology, the behavior of the two functions shows that, keeping the
migration interval constant and varying the migration rate, if the increase in the
migration rate resulted in an increase in speedup and efficiency, the fitness of



24 2 Genetic Algorithms on Network-on-Chip

Table 2.3 Simulation results for the optimization of function f3(x,y) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6209,50022 1 1

6
1

1 2778,47764 2,23485 0,55871
2 2927,64913 2,12098 0,53024

2
1 3143,09053 1,97560 0,49390
2 2925,58322 2,12248 0,53062

9
1

1 1037,66721 5,98409 0,74801
2 1832,88554 3,38782 0,42347

2
1 1799,06522 3,45151 0,43143
2 1433,94829 4,33035 0,54129

16
1

1 873,31097 7,11029 0,47401
2 723,58761 8,58154 0,57210

2
1 607,38299 10,22336 0,68155
2 942,71555 6,58682 0,43912

Table 2.4 Simulation results for the optimization of function f1(x) for neighborhood migra-
tion topology

Np Mr Mi Time (ms) Sp Ep

1 – – 1127,5724 1 1

6
1

1 645,36593 1,74718 0,43679
2 535,14461 2,10704 0,52676

2
1 172,29855 6,54429 1,63607
2 172,80265 6,52520 1,63130

9
1

1 217,88489 5,17508 0,64688
2 304,68098 3,70082 0,46260

2
1 104,90308 10,74870 1,34358
2 188,31056 5,98783 0,74847

16
1

1 80,62822 13,98483 0,93232
2 121,45834 9,28361 0,61890

2
1 71,09218 15,86070 1,05738
2 131,73707 8,55926 0,57061

the individuals, received by one or more populations during the migration phase,
accelerated the evolutionary process, decreasing the convergence time. On the other
hand, if the increase in the migration rate resulted in the decrease of speedup and
efficiency, then we can say that the fitness of these individuals did not influence
enough the evolutionary process of the populations that received them. In this case,
the convergence time increases.

In the future, we intend to investigate the impact of other migration strategies on
the performance of the parallel Network-on-chip based implementation of genetic
algorithms. One of the these topologies is broadcasting, which allows each processor
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Table 2.5 Simulation results for the optimization of function f2(x,y) for neighborhood mi-
gration topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6024,11201 1 1

6
1

1 2970,49815 2,02798 0,50699
2 2241,80203 2,68717 0,67179

2
1 2977,43556 2,02325 0,50581
2 2635,64829 2,28562 0,57140

9
1

1 1560,87682 3,85944 0,48243
2 1370,53135 4,39545 0,54943

2
1 1772,67139 3,39832 0,42479
2 1161,60725 5,18601 0,64825

16
1

1 719,73603 8,36989 0,55799
2 951,55986 6,33077 0,42205

2
1 574,84260 10,47958 0,69863
2 700,59551 8,59855 0,57323

Table 2.6 Simulation results for the optimization of function f3(x,y) for neighborhood mi-
gration topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6209,50022 1 1

6
1

1 2534,68066 2,44981 0,61245
2 2497,41481 2,48637 0,62159

2
1 3075,95908 2,01872 0,50468
2 2737,40887 2,26838 0,56709

9
1

1 1698,95341 3,65489 0,45686
2 1398,89571 4,43885 0,55485

2
1 830,546335 7,47640 0,93455
2 1296,38967 4,78984 0,59873

16
1

1 1235,58877 5,02553 0,33503
2 910,60102 6,81912 0,45460

2
1 777,34866 7,98805 0,53253
2 683,45716 9,08542 0,60569

to send the best solution found so far to all the other processors in the network. We
will assess the impact of heavy message send/receive workload on the overall system
performance.
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(a) Speedup of f1(x) (b) Efficiency of f1(x)

Fig. 2.7 Impact of the migration rate and migration interval on speedup and efficiency for
function f1(x), considering the used topology

(a) Speedup of f2(x,y) (b) Efficiency of f2(x,y)

Fig. 2.8 Impact of the migration rate and migration interval on speedup and efficiency for
function f2(x,y), considering the used topology

(a) Speedup of f3(x,y) (b) Efficiency of f3(x,y)

Fig. 2.9 Impact of the migration rate and migration interval on speedup and efficiency for
function f3(x,y), considering the used topology
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