
Chapter 10
Application Mapping in Network-on-Chip Using
Evolutionary Multi-objective Optimization�

Abstract. Network-on-chip (NoC) are considered the next generation of commu-
nication infrastructure, which will be omnipresent in most of industry, office and
personal electronic systems. In the platform-based methodology, an application is
implemented by a set of collaborating intellectual properties (IPs) blocks. In this
chapter, we use multi-objective evolutionary optimization to address the problem of
mapping topologically pre-selected sets IPs, which constitute the set of optimal so-
lutions that were found for the IP assignment problem, on the tiles of a mesh-based
NoC. The IP mapping optimization is driven by the area occupied, execution time
and power consumption.

10.1 Introduction

As the integration rate of semiconductors increases, more complex cores for system-
on-chip (SoC) are launched. A simple SoC is formed by homogeneous or heteroge-
neous independent components while a complex SoC is formed by interconnected
heterogeneous components. The interconnection and communication of these com-
ponents form a network-on-chip (NoC). A NoC is similar to a general network but
with limited resources, area and power. Each component of a NoC is designed as an
intellectual property (IP) block. An IP block can be of general or special purpose
such as processors, memories and DSPs [4].

Normally, a NoC is designed to run a specific application. This application, usu-
ally, consists of a limited number of tasks that are implemented by a set of IP blocks.
Different applications may have a similar, or even the same, set of tasks. An IP block
can implement more than a single task of the application. For instance, a processor
IP block can execute many tasks as a general processor does but a multiplier IP block
for floating point numbers can only multiply floating point numbers. The number of
IP blocks designers, as well as the number of available IP blocks, is growing up fast.

In order to yield an efficient NoC-based design for a given application, it is nec-
essary to choose the adequate minimal set of IP blocks. With the increase of IP

� This chapter was developed in collaboration with Marcus Vinı́cius Carvalho da Silva.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 155
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_10, c© Springer International Publishing Switzerland 2014

156 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

blocks available, this task is becoming harder and harder. Besides IP blocks care-
fully assignment, it is also necessary to map the blocks onto the NoC available
infra-structure, which consists of a set of cores communicating through switches.
A bad mapping can degrade the NoC performance. Different optimization criteria
can be pursued depending on how much information details is available about the
application and IP blocks.

Usually, the application is viewed as a graph of tasks called task graph (TG).
The IP blocks features can be obtained from their companion documentation. The
IP assignment and IP mapping are key research problems for efficient NoC-based
designs. These two problems are NP-hard problems and can be solved using multi-
objective optimizations.

In this chapter, we propose a multi-objective evolutionary-based decision sup-
port system to help NoC designers. For this purpose, we propose a structured rep-
resentation of the TG and an IP repository that will feed data into the system. We
use the data available in the Embedded Systems Synthesis benchmarks Suite (E3S)
[2] as our IP repository. The E3S is a collection of TGs, representing real appli-
cations based on embedded processors from the Embedded Microprocessor Bench-
mark Consortium (EEMBC). It was developed to be used in system-level allocation,
assignment, and scheduling research. We used the NSGA-II, which is an efficient
multiobjective algorithm that uses Pareto dominance as a selection criterion [1]. The
algorithm was modified according to some prescribed NoC design constraints.

The rest of the chapter is organized as follows: First, in Section 10.2, we present
briefly some related research work. Then, in Section 10.3, we introduce an overview
of NoC structure. Subsequently, in Section 10.4, we describe a structured TG and IP
repository model based on the E3S data. After that, in Section 10.5.1, we introduce
the mapping problem in NoC-based environments. Then, in Section 10.5, we sketch
the NSGA-II algorithm used in this work, individual representations and objective
functions for the optimization stage. Later, in Section 10.7, we show some experi-
mental result yield. Last but not least, in Section 10.8, we draw some conclusions
and outline new directions for future work.

10.2 Related Work

The problems of mapping IP blocks into a NoC physical structure have been ad-
dressed in some previous studies. Some of these works did not take into account
of the multi-objective nature of these problems and adopted a single objective opti-
mization approach. Hu and Marculescu [4] proposed a branch and bound algorithm
which automatically maps IPs/cores into a mesh based NoC architecture that mini-
mizes the total amount of consumed power by minimizing the total communication
among the used cores. Lei and Kumar [7] proposed a two step genetic algorithm for
mapping the TG into a mesh based NoC architecture that minimizes the execution
time. In the first step, they assumed that all communication delays are the same and
selected IP blocks based on the computation delay imposed by the IPs only. In the
second step, they used real communication delays.

10.4 Task Graph and IP Repository Models 157

Murali and De Micheli [8] addressed the problem under the bandwidth constraint
with the aim of minimizing communication delay by exploiting the possibility of
splitting traffic among various paths. Zhou et al. [10] proposed a multi-objective
exploration approach, treating the mapping problem as a two conflicting objective
optimization problem that attempts to minimize the average number of hops and
achieve a thermal balance. Jena and Sharma [5] addressed the problem of topologi-
cal mapping of IPs/cores into a mesh-based NoC in two systematic steps using the
NSGA-II [1]. The main objective was to obtain a solution that minimizes the en-
ergy consumption due to both computational and communicational activities and
also minimizes the link bandwidth requirement under some prescribed performance
constraints.

10.3 NoC Internal Structure

A NoC platform consisting of architecture and design methodology, which scales
from a few dozens to several hundreds or even thousands of resources [6]. As men-
tioned before, a resource may be a processor core, DSP core, an FPGA block, a
dedicated hardware block, mixed signal block, memory block of any kind such as
RAM, ROM or CAM or even a combination of these blocks.

A NoC consists of set of resources (R) and switches (S). Resources and switches
are connected by links. The pair (R,S) forms a tile. The simplest way to connect the
available resources and switches is arranging them as a mesh so these are able to
communicate with each other by sending messages via an available path. A switch
is able to buffer and route messages between resources. Each switch is connected to
up to four other neighboring switches through input and output channels. While a
channel is sending data another channel can buffer incoming data. Fig. 10.1 shows
the architecture of a mesh-based NoC where each resource contains one or more IP
blocks (RNI for resource network interface, D for DSP, M for memory, C for cache,
P for processor, FP for floating-point unit and Re for reconfigurable block). Besides
the mesh topology, there are more complex topologies like torus, hypercube, 3-
stage clos and butterfly. Note that every resource in the NoC must have an unique
identifier and is connected to the network via a switch. It communicates with the
switch through the available RNI. Thus, any set of IP blocks can be plugged into the
network if its footprint fits into an available resource and if this resource is equipped
with an adequate RNI.

10.4 Task Graph and IP Repository Models

In order to formulate the IP mapping problem, it is necessary to introduce a formal
definition of an application first. An application can be viewed as a set of tasks that
can be executed sequentially or in parallel. It can be represented by a directed graph
of tasks, called task graph. A Task Graph (TG) G = G(T,D) is a directed graph
where each node represents a computational module in the application referred to as
task ai ∈ T . Each directed arc di, j ∈ D, between tasks ai and a j, characterizes either

158 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Fig. 10.1 Mesh-based NoC with 9 resources

data or control dependencies. Each task ai is annotated with relevant information,
such as a unique identifier and type of processing element (PE) in the network. Each
di, j is associated with a value V (di, j), which represents the volume of bits exchanged
during the communication between tasks ai and a j. Once the IP assignment has been
completed, each task is associated with an IP identifier. The result of this stage is a
graph of IPs representing the PEs responsible of executing the application.

An Application Characterization Graph (APG) G = G(C,A) is a directed graph,
where each vertex ci ∈ C represents a selected IP/core and each directed arc ai, j

characterizes the communication process from core ci to core c j. Each ai, j can be
tagged with IP/application specific information, such as communication rate, com-
munication bandwidth or a weight representing communication cost. A TG is based
on application features only while an APG is based on application and IP features,
providing us with a much more realistic representation of the an application in run-
time on a NoC. In order to be able to bind application and IP features, at least one
common feature is required in both of the IP and TG models.

The E3S (0.9) Benchmark Suite [2] contains the characteristics of 17 embedded
processors. These processors are characterized by the measured execution times of
47 different type of tasks, power consumption derived from processor data sheets,
and additional information, such as die size, price, clock frequency and power con-
sumption during idle state. In addition, E3S contains task graphs of common tasks
in auto-industry, networking, telecommunication and office automation. Each one

10.5 Multi-objective Evolution 159

of the nodes of these task graphs is associated with a task type. A task type is a
processor instruction or a set of instructions, e.g., FFT, inverse FFT, floating point
operation, OSPF/Dijkstra [3], etc. If a given processor is able to execute a given
type of instruction, so that processor is a candidate to receive a resource in the NoC
structure and would be responsible for the execution of one or more tasks.

Here, we represent TGs using XML code. A TG is divided in three major ele-
ments: taskGraph, nodes and edges. Each node has two main attributes: an unique
identifier (id) and a task type (type), chosen among the 47 different types of tasks
present in the E3S. Each edge has four main attributes: an unique identifier (id), the
id of its source node (src), the id of its target node (tgt) and an attribute representing
the communication cost imposed (cost).

The IP repository is divided into two major elements: the repository and the ips
elements. The repository is the IP repository itself. Recall that the repository con-
tains different non general purpose embedded processors and each processor imple-
ments up to 47 different types of operations. Not all 47 different types of operations
are available in all processors. Each type of operation available in each processor
is represented by an ip element. Each ip is identified by its attribute id, which is
unique, and by other attributes such as taskType, taskName, taskPower, taskTime,
processorID, processorName, processorWidth, processorHeight, processorClock,
processorIdlePower and cost. The common element in TG and IP repository rep-
resentations is the type attribute. Therefore, this element will be used to bind an ip
to a node. The repository contains IPs for digital signal processing, matrix opera-
tions, text processing and image manipulation.

These simplified and well-structured representations are easily intelligible, im-
prove information processing and can be universally shared among different NoC
design tools.

10.5 Multi-objective Evolution

Optimization problems with concurrent and collaborative objectives are called
Multi-objective Optimization Problems (MOPs). Objectives o1 and o2 are said to
be collaborative if the optimization of o1 leads implicitly to the optimization of o2

while these would be said to be concurrent if the optimization of o1 leads to the dete-
rioration of o2. In such problems, all collaborative objectives should be grouped and
a single objective among those should be used in the optimization process, which
achieves also the optimization of all the collaborative objectives in the group. How-
ever, concurrent objectives need all to be considered in the process. The best solution
for a MOP is the solution with the adequate trade-off between all objectives.

10.5.1 The IP Mapping Problem

The platform-based design methodology for SoC encourages the reuse of compo-
nents to increase reusability and to reduce the time-to-market of new designs. The
designer of NoC-based systems faces two main problems: selecting the adequate

160 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

set of IPs that optimize the execution of a given application and finding the best
physical mapping of these IPs into the NoC structure.

The main objective of the IP assignment stage is to select, from the IP repository,
a set of IPs that minimize the NoC consumption of power, area occupied and execu-
tion time. At this stage, no information about physical allocation of IPs is available
so optimization must be done based on TG and IP information only. So, the result
of this step is the set of IPs that maximizes the NoC performance. The TG is then
annotated and an APG is produced, wherein each node has an IP associated with it.

Given an application, described by its APG, the problem that we are concerned
with in this chapter is to determine how to topologically map the selected IPs onto
the network, such that the objectives of interest are optimized. Some of these ob-
jectives are: latency requirements, power consumption of communication, total area
occupied and thermal behavior. At this stage, a more accurate execution time can be
calculated taking into account of the distance between resources and the number of
switches and links crossed by a data package along a path. The result of this pro-
cess should be an optimal allocation of the one of the presecribed IP asssignments,
selected in an earlier stage, to execute the application, described by the TG, on the
NoC structure.

The search space for a “good” IP mapping for a given application is defined
by the possible combinations of IP/tile available in the NoC structure. Assuming
that the mesh-based NoC structure has N ×N titles and there are at most N2 IPs
to map, we have a domain size of N2!. Among the huge number of solutions, it is
possible to find many equally good solutions. In huge non-continuous search space,
deterministic approaches do not deal very well with MOPs. The domination concept
introduced by Pareto [9] is necessary to classify solutions. In order to deal with such
a big search space and trade-offs offered by different solutions in a reasonable time,
a multi-objective evolutionary approach is adopted.

10.5.2 EMO Algorithm

The core of the proposed tool offers the utilization of the well-known and well-
tested MOEA: NSGA-II [1]. It adopt the domination concept with a ranking schema
for solution classification. The ranking process separates solutions in Pareto fronts
where each front corresponds to a given rank. Solutions from rank one, which is
the Pareto-optimal front) are equally good and better than any other solution from
Pareto fronts of higher ranks.

NSGA-II features a fast and elitist ranking process that minimizes computational
complexity and provides a good spread of solutions. The elitist process consists
in joining parents and offspring populations and diversity is achieved using the
crowded-comparison operator [1].

The basic work flow of the algorithm starts with a random population of indi-
viduals, where each individual represents a solution. Each individual is associated

10.6 Objective Functions 161

with a rank. The selection operator is applied to select the parents. The parents pass
through crossover and mutation operators to generate an offspring. A new popula-
tion is created and the process is repeated until the stop criterion is satisfied.

10.5.3 Representation and Genetic Operators

The individual representation is shown in Fig. 10.2–(a). The tile indicates informa-
tion on the physical location on which a gene is mapped. On a N ×N regular mesh,
the tiles are numbered successively from top-left to bottom-right, row by row. The
row of the ith tile is given by �i/N�, and the corresponding column by i mod N.

The crossover and mutation operators were adapted to the fact that the set of
selected IPs can not be changed as we have to adhere to the set of prescribed IP
assignments. For this purpose, we propose a crossover operator that acts like a shift
register, shifting around a random crossover point and so generating a new solution,
but with the same set of IPs. This behavior does not contrast with the biological
inspiration of evolutionary algorithms, observing that certain species can reproduce
through parthenogenesis, a process in which only one individual is necessary to
generate an offspring.

The mutation operator performs an inner swap mutation, where each gene re-
ceives a random mutation probability, which is compared against the system muta-
tion probability. The genes with mutation probability higher than the system’s are
swapped with another random gene of the same individual, instead of selecting a
random IP from the repository. This way, it is possible to explore the allocation
space preserving any optimization done in the IP assignment stage. The crossover
and mutation strategies adopted in the IP mapping stage are represented in Fig.
10.2–(b) and Fig. 10.2–(c), respectively.

10.6 Objective Functions

During the evolutionary process, the fitness of the individuals with respect to each
one of the selected objectives (i.e. area, time, and power) must be efficiently com-
puted. After a through analysis of all possible design characteristics, we decided
that the adequate trade-off can be achieved using only minimization functions of
objectives area, execution time and power consumption.

10.6.1 Area

In order to compute the area required by a given mapping, it is necessary to know
the area needed for the selected processors and that required by the used links and
switches. As a processor can be responsible for more than one task, each APG node
must be visited in order to check the processor identification in the appropriate XML
element. Grouping the nodes with the same processorID attribute allows us to im-
plement this verification. The total number of links and switches can be obtained

162 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

(a) Chromosome

(b) Shift crossover

(c) Inner swap mutation

Fig. 10.2 Chromosome and application of the proposed shift crossover and inner swap
mutation

through the consideration of all communication paths between exploited tiles. Note
that a given IP mapping may not use all the available tiles, links and switches. Also,
observe that a portion of a path may be re-used in several communication paths.

In this work, we adopted a fixed route strategy wherein data emanating from
tile i is sent first horizontally to the left or right side of the corresponding switch,
depending on the target tile position, say j, with respect to i in the NoC mesh, until
it reachs the column of tile j, then, it is sent up or down, also depending on the
position of tile j with respect to tile i until it reaches the row of the target tile. Each
communication path between tiles is stored in the routing table. The number of links
in the aforementioned route can be computed as described in Equation 10.1. This is
also represents the distance between tiles i and j and called the Manhattan distance
[7].

nLinks(i, j) = |�i/N�−� j/N�|+ |i mod N − j mod N| (10.1)

In the purpose of computing efficiently the area required by all used links and
switches, an APG can be associated with a so-called routing table whose entries
describe appropriately the links and switches necessary to reach a tile from another.
The number of hops between tiles along a given path leads to the number of links be-
tween those tiles, and incrementing that number by 1 yields the number of traversed

10.6 Objective Functions 163

switches. The area is computed summing up the areas required by the implementa-
tion of all distinct processors, switches and links.

Equation 10.2 describes the computation involved to obtain the total area for the
implementation a given IP mapping M, wherein function Proc(.) provides the set
of distinct processors used in APGM and areap is the required area for processor p,
function Links(.) gives the number of distinct links used in APGM , Al is the area of
any given link and As is the area of any given switch.

Area(M) = ∑p∈Proc(APGM) areap +(Al +As)×Links(APGM)+As (10.2)

10.6.2 Execution Time

To compute the execution time of a given mapping, we consider the execution time
of each task of the critical path, their schedule and the additional time due to data
transportation through links and switches along the communication path. The crit-
ical path can be found visiting all nodes of all possible paths in the task graph and
recording the largest execution time of the so-called critical path. The execution
time of each task is defined by the taskTime attribute in TG. Links and switches can
be counted using the routing table. We identified three situations that can degrade
the implementation performance, increasing the execution time of the application:

1. Parallel tasks mapped into the same tile: A TG can be viewed as a sequence of
horizontal levels, wherein tasks of the same level may be executed in parallel,
allowing for a reduction of the overall execution time. When parallel tasks are
assigned in the same processor, which also means that these occupy the same tile
of the NoC, they cannot be executed in parallel.

2. Parallel tasks with partially shared communication path: When a task in a tile
must send data to supposedly parallel tasks in different tiles through the same
initial link, data to both tiles cannot be sent at the same time.

3. Parallel tasks with common target using the same communication path: When
several tasks need to send data to a common target task, one or more shared links
along the partially shared path would be needed simultaneously. The data from
both tasks must then be pipelined and so will not arrive at the same time to the
target task.

Equation 10.3 is computed using a recursive function that implements a depth-
first search, wherein function Paths(.) provides all possible paths of a given APG
and t0(a) is the required time for task a. After finding the including the total exe-
cution time of the tasks that are traversed by the critical path, the time of parallel
tasks executed in the same processor need to be accumulated too. This is done by
function SameProcSameLevel(.). The delay due to data pipelining for tasks on the
same level is added by SameSourceCommonPath(.). Last but not least, the delay due
to pipelining data that are emanating at the same time from several distinct tasks yet
for the same target task is accounted for by function DiffSrcSameTgt(.).

164 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Time(M) = max
r∈Paths(APGM)

(
∑
a∈r

t0(a)+ ∑
i∈{1,2,3}

ti(r)

)
(10.3)

Function t1– SameProcSameLevel(.) compares tasks of a given same level that are
implemented by the same processor and returns the additional delay introduced in
the execution of those tasks. Algorithm 10.1 shows how function SameProcLevel(.),
that uses information from path r, application task graph and its corresponding char-
acterization graph to compute the delay in question.

Algorithm 10.1. SameProcSameLevel(r) – t1
1: time := 0
2: for all a ∈ r do
3: for all n ∈ T do
4: if T.level(a) = T G.level(n) then
5: if APG.processor(a) = APG.processor(n) then
6: time := time+n.taskTime
7: end if
8: end if
9: end for

10: end for
11: return time

Function t2– SameSourceCommonPath(.) computes the additional time due to
parallel tasks that have data dependencies on tasks mapped in the same source tile
and yet these share a common initial link in the communication path. Algorithm
10.2 shows the details of the delay computation using information from path r, ap-
plication task graph and its corresponding characterization graph. In that algorithm
T G.targets(a) yields the list of all possible target tasks of task a, APG.initPath(src,
tgt) returns the initial link of the communication path between tiles src and tgt and
penalty represents a time duration needed to data to cross safely from one switch to
one of its neighbors. This penalty is added every time the initial link is shared.

Function t3– DiffSrcSameTgt(.) computes the additional time due to the fact that
parallel tasks producing data for the same target task need to use simultaneously at
least a common link along the communication path. Algorithm 10.3 shows the de-
tails of the delay computation using information from path r, application task graph
and its corresponding characterization graph. In that algorithm, APG.Path(src, tgt)
is the ordered list of all links crossed from task src to task tgt and penalty has the
same semantic as in the Algorithm 10.2.

10.6.3 Power Consumption

The total power consumption of an application NoC-based implementation con-
sists of the power consumption of the processors while processing the computation

10.6 Objective Functions 165

Algorithm 10.2. SameSrcCommonPath(r) – t2
1: penalty := 0
2: for all a ∈ r do
3: if T G.targets(a) > 1 then
4: for all n ∈ T G.targets(a) do
5: for all n′ ∈ T G.targets(a) | n′ �= n do
6: w = APG.initPath(a,n);
7: w′ = APG.initPath(a,n′);
8: if w = w′ then
9: penalty := penalty+1

10: end if
11: end for
12: end for
13: end if
14: end for
15: return penalty

Algorithm 10.3. DiffSrcSameTgt(r) – t3
1: penalty := 0
2: for all a ∈ r do
3: for all a′ ∈ r | a′ �= t do
4: if T G.level(a) = T G.level(a′) then
5: for all n ∈ T G.targets(a) do
6: for all n′ ∈ T G.targets(a′) do
7: if n = n′ then
8: w := APG.Path(a,n);
9: w′ := APG.Path(a′,n′);

10: for i = 0 to min(w.length,w′.length) do
11: if w(i) = w′(i) then
12: penalty := penalty+1
13: end if
14: end for
15: end if
16: end for
17: end for
18: end if
19: end for
20: end for
21: return penalty

performed by each IP and that due to the data transportation between the tiles. The
former can be computed summing up attribute taskPower of all nodes of the APG
and the latter is the power consumption due to communication between the applica-
tion tasks through links and switches. The power consumption due to the computa-
tional activity is simply obtained summing up atribute taskPower of all nodes in the
APG and is as described in Equation 10.4.

166 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Powerp(M) = ∑
a∈APGM

powera (10.4)

An energy model for one bit consumption is used to compute the total energy
consumption for the whole communication involved during the execution of an ap-
plication on the NoC platform. The bit energy (Ebit), energy consumed when a data
of one bit is transported from one tile to any of its neighboring tiles, can be obtained
as in Equation 10.5:

Ebit = ESbit +ELbit (10.5)

wherein ESbit and ELbit represent the energy consumed by the switch and link tying
the two neighboring tiles, respectively [4].

The total power consumption of sending one bit of data from tile i to tile j can be
calculated considering the number of switches and links the bit passes through on
its way along the path, as shown in Equation 10.6.

Ei, j
bit = nLinks(i, j)×ELbit +(nLinks(i, j)+ 1)×ESbit (10.6)

wherein function nLinks(.) provides the number of traversed links (and switches
too) considering the routing strategy used in this work and described earlier in this
section. The function is is defined in Equation 10.1.

Recall that the application TG gives the communication volume (V (a,a′)) in
terms of number of bits sent from the task a to task a′ passing through a direct
arc da,a′ . Assuming that the tasks a and a′ have been mapped onto tiles i and j re-
spectively, the communication volume of bits between tiles i and j is then V (i, j) =
V (dt,t′). The communication between tiles i and j may consist of a single link li, j or
by a sequence of m > 1 links li,x0 , lx0,x1 , lx1,x2 , . . . , lxm−1, j.

The total network communication power consumption for a given mapping M
is given in Equation 10.7, wherein Targetsa provides all tasks that have a direct
dependency on data resulted from task a and Tilea yields the tile number into which
task a is mapped.

Powerc(M) = ∑
a ∈ APGM,
∀a′ ∈ Targetsa

V (da,a′)×E
Tilea,Tilea′
bit (10.7)

10.7 Results

First of all, the implementation of the algorithm was validated using mathemati-
cal known MOPs and the results were compared with the original results that were
obtained by Deb to validate NSGA-II [1]. The simulation converged to the true
Pareto-front. For NoC optimization, only the individual representation and the ob-
jective functions were changed, keeping the ranking, selection, crossover and mu-
tation operators unchanged. Different TGs generated with TGFF [2] and from E3S,
with sequential and parallel tasks, were used.

10.7 Results 167

Many simulations were performed to find out the setting up of the parameters
used in NSGA-II for solving the IP mapping problem. The results of these simu-
lation allowed us to set the population size to 600, mutation probability to 0.01,
crossover probability to 0.8 and tournament size to 50 and run the algorithm of 100
generations. The application, represented as a TG in Fig. 10.3, was generated with
TGFF [2]. Note that this TG presents four levels of parallelism.

Fig. 10.3 Task graph of 5 levels of parallelism

Analyzing the results obtained from the first simulations, we observed that in
order to achieve the best trade-off, the system allocated many tasks for the same
processor, which reduces area and execution time but generates hot spots [10]. A
hot spot is an area of high activity within a silicon chip. Hot spots can damage
a silicon chip and increases power consumption because of Avalanche Effect. In
order to avoid the formation of hot spots, a maximum tasks per processor constraint
was imposed in the evolutionary process. This parameter is decided by the NoC
designer based on some extra physical characteristics. We adopted a maximum of 2
tasks per processor. Figure 10.4–(a) shows the Pareto-front discrete points. Figure
10.4–(b) shows the Pareto-front formed by the Pareto-optimal solutions. Note that
many solutions have very close objectives values. The IP assignment of the TG
represented in Fig. 10.3 was able to discover 97 distinct optimal IP assignments.
From those 97 distinct of IP assignments, 142 optimal mappings were generated.

Fig. 10.5–(a) represents the time × area trade-off, Fig. 10.5–(b) depicts the
power × time trade-off and Fig. 10.5–(c) plots the power × area trade-off. As we

168 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

15
20

25
30

35
40

45
50

55

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Area (m2)Power (W)

T
im

e
(s

)

(a) Pareto-optimal solutions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

15
20

25
30

35
40

45
50

55

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Area (m2)Power (W)

T
im

e
(s

)

(b) Pareto-front

Fig. 10.4 Pareto-optimal solutions and Pareto-front of the 142 optimal IP mappings obtained
for the task graph of Fig. 10.3

can observe, comparing the dots against the line of interpolation, the trade-off be-
tween time and area and between power and time is not so linear as the trade-off
between power and area. Fig. 10.5–(a) shows that solutions that require more area
tend to spend less execution time because of the better distribution of the tasks al-
lowing for more parallelism to occur. Fig. 10.5–(b) shows that solutions that spend
less time of execution tend to consume more power because of IP’s features, such as
higher clock frequency, and physical effects like intensive inner-electrons activity.

10.7 Results 169

0.12 0.14 0.16 0.18 0.2 0.22
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

time (s)

ar
ea

 (
m

2)
time x area

(a) time×area

10 20 30 40 50 60
0.12

0.14

0.16

0.18

0.2

0.22

power (W)

tim
e

(s
)

power x time

(b) power× time

10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

power (W)

ar
ea

 (
m

2)

power x area

(c) power×area

Fig. 10.5 Trade-offs representation of the 142 IP mappings for the task graph of Fig. 10.3

Fig. 10.5–(c) shows a linear relation between power consumption and area. Those
values and units are based on E3S Benchmark Suite [2].

For a TG of 16 tasks, a 4× 4 mesh-based NoC is the maximal physical structure
necessary to accommodate the corresponding application. The obtained solutions
showed that no solution used more than ten resources to map all tasks. The unused
6 tiles may denote a waste of hardware resources, which consequently lead to the
conclusion that either the geometry of the NoC is not suitable for this application or
the mesh-based NoC is not the ideal topology for its implementation.

As a specific mapping example, we detail one of the solutions, which seems
to be a moderate solution with respect to every considered objectives. Table 10.1
specifies the processors used in the solution. We can observe that all parallel tasks
were allocated in the distinct processors, which reduces execution time. The number
of processors were minimized based on the optimization of the objectives of interest
and this minimization was controlled by the maximum tasks per processor constraint
to avoid hot spots [10]. The processors were allocated in such way to avoid delay of
communication due to links and switches disputed by more than one resource at the
same time.

170 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Table 10.1 Processors of an illustrative solution of the mapping problem

TG Node 0 1 2 3 4 5 6 7
Proc ID 32 32 15 13 17 0 6 17
IP ID 942 937 458 378 490 43 240 480
Tile 0 0 4 5 10 6 1 10

TG Node 8 9 10 11 12 13 14 15
Proc ID 30 6 13 0 30 15 23 23
IP ID 855 216 379 13 862 456 724 719
Tile 9 1 5 6 9 4 8 8

10.8 Summary

In this chapter, we propose a decision support system based on MOEA to help NoC
designers allocate a prescribed set of IPs into a NoC physical structure. The use of
NSGA-II, which is one of the most efficient such an algorithm for 100 vezes allowed
us to consolidate the obtained results. Structured and intelligible representations of
a NoC, a TG and of a repository of IPs were used and these can be easily extended
to different NoC applications. Despite of the fact that we have adopted E3S Bench-
mark Suite [2] as our repository of IPs, any other repository could be used and
modeled using XML, making this tool compatible with different repositories. The
proposed shift crossover and inner swap mutation genetic operators can be used
in any optimization problem where no lost of data from a individual is accepted.
Future work can be two-fold: adopting a dynamic topology strategy to attempt to
evolve the most adequate topology for a given application and exploring the use of
different objectives based on different repositories.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE-EC 6, 182–197 (2002)

2. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: Task Graphs For Free. In: Proceedings of the
6th International Workshop on Hardware/Software Co-design, pp. 97–101. IEEE Com-
puter Society, Seattle (1998)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

4. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NoC architectures under
performance constraints. In: ASPDAC: Proceedings of the 2003 Conference on Asia
South Pacific Design Automation, pp. 233–239. ACM, New York (2003)

5. Jena, R.K., Sharma, G.K.: A multi-objective evolutionary algorithm based optimization
model for network-on-chip synthesis. In: ITNG, pp. 977–982. IEEE Computer Society
(2007)

6. Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J.-P., Forsell, M., Tiensyrjä,
K., Hemani, A.: A network on chip architecture and design methodology. In: ISVLSI,
pp. 117–124. IEEE Computer Society (2002)

References 171

7. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network
on chip architecture. In: DSD, pp. 180–189. IEEE Computer Society (2003)

8. Murali, S., Micheli, G.D.: Bandwidth-constrained mapping of cores onto NoC architec-
tures. In: DATE, pp. 896–903. IEEE Computer Society (2004)

9. Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)
10. Zhou, W., Zhang, Y., Mao, Z.: Pareto based multi-objective mapping IP cores onto NoC

architectures. In: APCCAS, pp. 331–334. IEEE (2006)

	Application Mapping in Network-on-Chip Using Evolutionary Multi-objective Optimization
	10.1 Introduction
	10.2 RelatedWork
	10.3 NoC Internal Structure
	10.4 Task Graph and IP Repository Models
	10.5 Multi-objective Evolution
	10.5.1 The IP Mapping Problem
	10.5.2 EMO Algorithm
	10.5.3 Representation and Genetic Operators

	10.6 Objective Functions
	10.6.1 Area
	10.6.2 Execution Time
	10.6.3 Power Consumption

	10.7 Results
	10.8 Summary
	References

