
Chapter 1
A Reconfigurable Hardware for Genetic
Algorithms

Abstract. In this chapter, we propose a massively parallel architecture of a hardware
implementation of genetic algorithms. This design is quite innovative as it provides
a viable solution to the fitness computation problem, which depends heavily on the
problem-specific knowledge. The proposed architecture is completely independent
of such specifics. It implements the fitness computation using a neural network. The
hardware implementation of the used neural network is stochastic and thus min-
imises the required hardware area without much increase in response time. Last but
not least, we demonstrate the characteristics of the proposed hardware and compare
it to existing ones.

1.1 Introduction

Generally speaking, a genetic algorithm is a process that evolves a set of individuals,
also called chromosomes, which constitutes the generational population, producing
a new population. The individuals represent a solution to the problem in consider-
ation. The freshly produced population is yield using some genetic operators such
as selection, crossover and mutation that attempt to simulate the natural breeding
process in the hope of generating new solutions that are fitter, i.e. adhere more the
problem constraints.

Previous work on hardware genetic algorithms can be found in [5, 10, 12].
Mainly, Earlier designs are hardware/software codesigns and they can be divided
into three distinct categories: (i) those that implement the fitness computation in
hardware and all the remaining steps including the genetic operators in software,
claiming that the bulk computation within genetic evolution is the fitness computa-
tion. The hardware is problem-dependent; (ii) and those that implement the fitness
computation in software and the rest in hardware, claiming that the ideal candidate
are the genetic operators as these exhibit regularity and generality [2, 7]. (iii) those
that implement the whole genetic algorithm in hardware [10]. We believe that both
approaches are worthwhile but a hardware-only implementation of both the fitness
calculation and genetic operators is also valuable. Furthermore, a hardware imple-
mentation that is problem-independent is yet more useful.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 3
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_1, c© Springer International Publishing Switzerland 2014



4 1 A Reconfigurable Hardware for Genetic Algorithms

The remainder of this chapter is divided into five sections. In Section 1.2, we
describe the principles of genetic algorithms. Subsequently, in Section 1.3, we pro-
pose and describe the overall hardware architecture of the problem-independent ge-
netic algorithm. Thereafter, in Section 1.4, we detail the architecture of each of the
component included in the hardware genetic algorithm proposed. Then, in Section
1.5, assess the performance of the proposed architecture. Finally, we draw some
conclusions 9.9.

1.2 Principles of Genetic Algorithms

Genetic algorithms maintain a population of individuals that evolve according to
selection rules and other genetic operators, such as mutation and crossover. Each
individual receives a measure of fitness. Selection focuses on high fitness individu-
als. Mutation and crossover provide general heuristics that simulate the reproduction
process. Those operators attempt to perturb the characteristics of the parent individ-
uals as to generate distinct offspring individuals.

Genetic algorithms are implemented through the procedure described by Algo-
rithm 1.1, wherein parameters ps, ef and gn are the population size, the expected
fitness of the returned solution and the maximum number of generation allowed
respectively.

Algorithm 1.1. GA – Genetic algorithms basic cycle
Require: population size ps, expected fitness ef, generation number gn
Ensure: the problem solution

generation := 0
population := initialPopulation()
fitness := evaluate(population)
repeat

parents := select(population)
population := mutate(crossover(parents))
fitness := evaluate(population)
generation := generation + 1

until (fitness[i] = ef, 1 ≤ i ≤ ps) OR (generation ≥ gn)

In Algorithm 1.1, function intialPopulation returns a valid random set of indi-
viduals that compose the population of first generation while function evaluate re-
turns the fitness of a given population storing the result into fitness. Function select
chooses according to some random criterion that privilege fitter individuals, the in-
dividuals that should be used to generate the population of the next generation and
function crossover and mutate implement the crossover and mutation process re-
spectively to actually yield the new population.



1.3 Overall Architecture for the Hardware Genetic Algorithm 5

Fig. 1.1 Overall architecture of the hardware genetic algorithm proposed

1.3 Overall Architecture for the Hardware Genetic Algorithm

Clearly, for hardware genetic algorithms, individuals are always represented using
their binary representation. Almost all aspects of genetic algorithms are very attrac-
tive for hardware implementation. The selection, crossover and mutation processes
are generic and so are problem-independent. The main issue in the hardware im-
plementation of genetic algorithms is the computation of individual’s fitness values.
This computation depends on problem-specific knowledge. The novel contribution
of the work consists of using neural network hardware to compute the fitness of
individuals. The software version of the neural network is trained with a variety of
individual examples. Using a hardware neural network to compute individual fitness
yields a hardware genetic algorithm that is fully problem-independent.

The overall architecture of the proposed hardware is given Fig. 1.1. It is massively
parallel. The selection process is performed in one clock cycle while the crossover
and mutation processes are completed within two clock cycles.

The fitness of individual in the generational population is evaluated using hard-
ware neural networks, which take advantage of stochastic representation of signals
to reduce the hardware area required [9]. Stochastic computing principles are well



6 1 A Reconfigurable Hardware for Genetic Algorithms

detailed in [4]. The motivation behind the use of stochastic arithmetic is its simplic-
ity. Designers are faced with hardware implementations that are very large due to
large digital multipliers, adders, etc.. Stochastic arithmetic provides a way of per-
forming complex computations with very simple hardware. Stochastic arithmetic
provides a very low computation hardware area and fault tolerance. Adders and
subtracters can be implemented by an ensemble of multiplexers and multipliers by
a series of XOR gates. (For formal proofs on stochastic arithmetic, see [3, 9].)

1.4 Detailed Component Architectures

In this section, we concentrate on the hardware architecture of the components in-
cluded in the overall architecture of Fig. 1.1.

1.4.1 Shared Memory for Generational Population

The generational population is kept in a synchronised bank of registers that can be
read and updated. The basic element of the shared memory is an individual. An
individual is a simply a bit stream of fixed size. The memory is initially filled up
with a fixed initial population. Each time the comparator’s output (i.e. component
COMP) is 0, the content of the registers changes with the individuals provided as
inputs. This happens whenever the fitness f of the best individual of the current
generation is not as expected (i.e., f > εFitness) and the current generation g is not
the last allowed one (i.e., g �= λ Gen). Note that εFitness and λ Gen are two registers
that store the expected fitness value and the maximum number of generation allowed
respectively.

1.4.2 Random Number Generator

A central component to the proposed hardware architecture of genetic algorithms is
a source of pseudorandom noise. A source of pseudorandom digital noise consists
of a linear feedback shift register or LFSR, described by first in [1] and by many
others, for instance [3], LFSRs are very practical as they can easily be constructed
using standard digital components.

Linear feedback shift registers can be implemented in two ways. The Fibonacci
implementation consists of a simple shift register in which a binary-weighted
modulo-2 sum of the taps is fed back to the input. Recall that modulo-2 sum of
two one-bit binary numbers yields 0 if the two numbers are identical and 1 if not.
The Galois implementation consists of a shift register, the content of which is mod-
ified at every step by a binary-weighted value of the output stage. The architecture
of the LFSR using these methods are shown in Fig. 1.2.



1.4 Detailed Component Architectures 7

(a) Fibonacci

(b) Galois

Fig. 1.2 Pseudorandom bitstream generators - Fibonacci vs. Galois implementation

Left feedback shift registers such as those of Fig. 1.2 can be used to generate mul-
tiple pseudorandom bit sequences. However, the taps from which these sequences
are yield as well as the length of the LFSR must be carefully chosen. (See [3, 4] for
possible length/tap position choices).

1.4.3 Selection Component

The selection component implements a variation of the roulette wheel selection. The
interface of this component consists of all the individuals, say i1, i2, . . . , in−1, in of
the generational population of size n together with the respective fitness, say f1, f2,
. . . , fn−1, fn and the overall sum of all these fitness values, say sum. The component
proceeds as described in the following steps:

1. A random number, say ρ is generated;
2. The sum of the individual’s fitness values is scaled down using ρ , i.e ssum :=

sum−ρ ;
3. Choose an individual, say i j from the selection pool and cumulate the corre-

sponding fitness f j, i.e. csum := csum+ f j;
4. Compare the scaled sum and the so far cumulated sum and select individual i j if

csum > ssum, otherwise go back to step 1;
5. When the first individual is selected, go back to step 1 and apply the same process

to select the second individual.

The architecture of the selection component is shown in Fig. 1.3. The above iter-
ative process is implemented using a state machine (CONTROLLER in Fig. 1.3). The
state machine has 6 states and the associated state transition function is described in
Fig. 1.4. The actions performed in each state of the controller machine are described



8 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.3 The architecture of the selection component

below. Signal compare is set when the either an individual having the expected fit-
ness is found or the last generation has passed.

S0: initialise counter;
load register CSUM with 0;

S1: stop the random number generator;
S2: load register SSUM;
S3: load register CSUM;
S4: if compare = 1 then

if step = 0 then
load register INDIVIDUAL1;



1.4 Detailed Component Architectures 9

start the random number generator;
else load register INDIVIDUAL2;
increment the counter;

S5: if step = 0 then set step;

Fig. 1.4 The state transition function of the selection component controller

1.4.4 Genetic Operator’s Components

The genetic operators are the crossover followed by the mutation. The crossover
component implements the double-point crossover. It uses a linear feedback shift
register which provides the random number that allows the component to decide
whether to actually perform the crossover or not. This depends on whether the ran-
domised number surpasses the informed crossover rate ξ Rate. In the case it does,
the bits of the less significant half of the randomised number is used as the first
crossover point and the most significant part as the second one.

The mutation component also uses a random number generator. The generated
number must be bigger that the given mutation rate μRate for the mutation to oc-
cur. The bits of the randomised number are also used as way to choose the mutation



10 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.5 The architecture of the crossover component

Fig. 1.6 The architecture of the crossover component

degree of the individual. Starting from the less significant bit of both the random
number and the individual, if the bit in the former is 1 then the corresponding bit in
the later is complemented and otherwise it is kept unchanged. The hardware archi-
tecture of the mutation component is given in Fig. 1.6.

1.4.5 Fitness Evaluation Component

The individual fitness measure is estimated using neural networks. In previous work,
the authors proposed and implemented a hardware for neural networks [9]. The
implementation uses stochastic signals and therefore reduces very significantly the
hardware area required for the network. The network topology used is the fully-
connected feed-forward. The neuron architecture is given in Fig. 1.7. (More details
can be found in [9].) For the hardware genetic implementation, the number of input
neurons is the same as the size of the individual. The output neuron are augmented
with a shift register to store the final result. The training phase is supposed to be
performed before the first use within the hardware genetic algorithm.



1.5 Performance Results 11

Fig. 1.7 Stochastic bipolar neuron architecture ([9])

1.5 Performance Results

The hardware genetic algorithm proposed was simulated then programmed into an
Spartan3 Xilinx FPGA [14]. In order to assess the performance of the proposed
hardware genetic algorithm, we maximise the function that was first used in [8]. It
was also used by Scott, Seth and Samal to evaluate their hardware implementation
for genetic algorithms [11]. The function is not easy to maximise, which is clear
from the function plot of Fig. 1.8. The training phase of the neural network was
done by software using toolbox offered in MatLab [6].

f (x,y) = 21.5+ xsin(4πx)+ ysin(20πy),

−3.0 ≤ x1 ≤ 12.1
4.1 ≤ x2 ≤ 5.8

(1.1)

The characteristics of the software and hardware implementations proposed in
[11] and those of the hardware genetic algorithm we proposed in this chapter are
compared in Table 1.1. It is clear that the hardware implementations are both much
faster than the software version. One can clearly note that our implementation
(PHGA) requires more than twice that required by Scott, Seth and Samal’s imple-
mentation (HEGA). Note, however, that the hardware area necessary to the compu-
tation of the fitness function is not included as it is not given in [11]. From another
perspective, PHGA is more than five time faster as it is massively parallel. We also
believe that the computation of the fitness function is much faster with the neural
network. Observe that PHGA evolved a better solution.



12 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.8 Plotting Michalewics’s function ([8])

Table 1.1 Comparison of the performance results: software genetic algorithms (SGA), hard-
ware engine for genetic algorithms (HEGA) and proposed hardware genetic algorithms
(PHGA). (The area is expressed in terms of CLBs and the time is in seconds.)

Implementation time area solution x y area× time

SGA 40600 0 38.5764 – – –
HEGA 972 870 38.8419 – – 845640
PHGA 189 1884 38.8483 11.6241 5.7252 356076

1.6 Summary

In this chapter, we proposed a novel hardware architecture for genetic algorithms.
It is novel in the sense that is massively parallel and problem-independent. It uses
neural networks to compute the fitness measure. Of course, for each type of prob-
lem, the neuron weights need to be updated with those obtained in the training phase.
Without any doubts, the proposed hardware is extremely faster than the software im-
plementation. Furthermore, it is much faster than the hardware engine proposed by
Scott, Seth and Samal in [11]. However, it seems that our implementation requires
almost twice the hardware are used to implement their architecture. Nevertheless,
we do not have an exact record of the hardware are consumed in [11] as the authors
did not provide nor include the hardware required to implement the fitness module
for Michalewics’s function [8].



References 13

References

1. Bade, S.L., Hutchings, B.L.: FPGA-Based Stochastic Neural Networks - Implementa-
tion. In: IEEE Workshop on FPGAs for Custom Computing Machines, Napa CA, April
10-13, pp. 189–198 (1994)

2. Bland, I.M., Megson, G.M.: Implementing a generic systolic array for genetic algo-
rithms. In: Proc. 1st. On-Line Workshop on Soft Computing, pp. 268–273 (1996)

3. Brown, B.D., Card, H.C.: Stochastic Neural Computation I: Computational Elements.
IEEE Transactions on Computers 50(9), 891–905 (2001)

4. Gaines, B.R.: Stochastic Computing Systems. Advances in Information Systems Sci-
ence (2), 37–172 (1969)

5. Liu, J.: A general purpose hardware implementation of genetic algorithms, MSc. Thesis,
University of North Carolina (1993)

6. MathWorks (2004), http://www.mathworks.com/
7. Megson, G.M., Bland, I.M.: Synthesis of a systolic array genetic algorithm. In: Proc.

12th. International Parallel Processing Symposium, pp. 316–320 (1998)
8. Michalewics, Z.: Genetic algorithms + data structures = evolution programs, 2nd edn.

Springer, Berlin (1994)
9. Nedjah, N., Mourelle, L.M.: Reconfigurable Hardware Architecture for Compact and

Efficient Stochastic Neuron. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS,
vol. 2687, pp. 17–24. Springer, Heidelberg (2003)

10. Scott, S.D., Samal, A., Seth, S.: HGA: a hardware-based genetic algorithm. In: Proc.
ACM/SIGDA 3rd International Symposium in Field-Programmable Gate Array, pp. 53–
59 (1995)

11. Scott, S.D., Seth, S., Samal, A.: A hardware engine for genetic algorithms. Technical
Report, UNL-CSE-97-001, University of Nebraska-Lincoln (July 1997)

12. Turton, B.H., Arslan, T.: A parallel genetic VLSI architecture for combinatorial real-time
applications – disc scheduling. In: Proc. IEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems, pp. 88–93 (1994)

13. Xilinx (2004), http://www.xilinx.com/

http://www.mathworks.com/
http://www.xilinx.com/

	A Reconfigurable Hardware for Genetic Algorithms
	1.1 Introduction
	1.2 Principles of Genetic Algorithms
	1.3 Overall Architecture for the Hardware Genetic Algorithm
	1.4 Detailed Component Architectures
	1.4.1 Shared Memory for Generational Population
	1.4.2 Random Number Generator
	1.4.3 Selection Component
	1.4.4 Genetic Operator’s Components
	1.4.5 Fitness Evaluation Component

	1.5 Performance Results
	1.6 Summary
	References




