
Studies in Computational Intelligence 529

Hardware for Soft
Computing and
Soft Computing
for Hardware

Nadia Nedjah
Luiza de Macedo Mourelle

Studies in Computational Intelligence

Volume 529

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:

http://www.springer.com/series/7092

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design meth-
ods of computational intelligence, as embedded in the fields of engineering, com-
puter science, physics and life sciences, as well as the methodologies behind them.
The series contains monographs, lecture notes and edited volumes in computational
intelligence spanning the areas of neural networks, connectionist systems, genetic
algorithms, evolutionary computation, artificial intelligence, cellular automata, self-
organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems.
Of particular value to both the contributors and the readership are the short publica-
tion timeframe and the world-wide distribution, which enable both wide and rapid
dissemination of research output.

Nadia Nedjah · Luiza de Macedo Mourelle

Hardware for Soft
Computing and Soft
Computing for Hardware

ABC

Nadia Nedjah
Department of Electronics Engineering

and Telecommunications
Faculty of Engineering
State University of Rio de Janeiro
Rio de Janeiro
Brazil

Luiza de Macedo Mourelle
Department of Systems Engineering

and Computation
Faculty of Engineering
State University of Rio de Janeiro
Rio de Janeiro
Brazil

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-03109-5 ISBN 978-3-319-03110-1 (eBook)
DOI 10.1007/978-3-319-03110-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951889

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Evolutionary and Genetic Algorithms, Artificial Neural Networks, Fuzzy Systems,
Particle Swarm and Ant colony Optimization are becoming omnipresent in almost
every intelligent system design. Just to name few, engineering, control, economics
and forecasting are some of the scientific fields that enjoy the use of these techniques
to solve real-world engineering problems. Unfortunately, the majority of the appli-
cations is complex and so requires a large computational effort to yield useful and
practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy
computation is becoming a key issue for designers. With the spread of reconfig-
urable hardware such as FPGAs, digital as well as analog hardware implementations
of such computation become cost-effective.

Nowadays, embedded systems are omnipresent in homes, cars, cell phones, med-
ical instruments etc. Embedded systems specifications usually impose very tight
constraints with respect to cost, response time and power consumption, among other
characteristics. They often include software, hardware and interfacing subsystems.
Furthermore, the design of these kind of systems often requires concurrent opti-
mization of several design objectives, which are conflicting in most of the cases.
Also, these project call for the resolution of NP-hard problems. Their diversity and
complexity require new design methodologies.

The idea behind this book is to offer a variety of hardware designs for soft com-
puting techniques that can be embedded in any final product. Also, to introduce
the successful application of soft computing technique to solve many hard problem
encountered during the design of embedded hardware designs.

Part I: Hardware for Soft Computing

In Chapter 1, which is entitled A Reconfigurable Hardware for Genetic Algorithms,
we propose a massively parallel architecture of a hardware implementation of ge-
netic algorithms. This design is quite innovative as it provides a viable solution to

VI Preface

the fitness computation problem, which depends heavily on the problem-specific
knowledge. The proposed architecture is completely independent of such specifics.
It implements the fitness computation using a neural network.

Chapter 2, which is entitled Genetic Algorithms on Network-on-Chip, presents
a parallel implementation on a network-on-chip platform of the genetic algorithm.
The implementation is based on the island model, in which serial isolated subpop-
ulations evolve in parallel and each one is controlled by a single processor. Rubem
Euzébio Ferreira, M.Sc. collaborated in the development of this chapter.

Chapter 3, which is entitled A Reconfigurable Hardware for Particle Swarm Op-
timization, reports on a novel massively parallel co-processor for PSO implemented
using reconfigurable hardware. The implementation results show that the proposed
architecture is very promising as it achieved superior performance in terms of execu-
tion time when compared to the direct software execution of the algorithm. Rogério
de Moraes Calazan, M.Sc. collaborated in the development of this chapter.

Chapter 4, which is entitled Particle Swarm Optimization on Crossbar based MP-
SoC, investigates the performance characteristics of a parallel application running
on this platform we based the interconnection network in the crossbar topology.
In this kind of interconnection, processors have full access to their own memory
module simultaneously. This chapter also details the specification and modeling of
an interconnection network based on crossbar topology. Fábio Gonçalves Pessanha,
M.Sc. collaborated in the development of this chapter.

Chapter 5, which is entitled A Reconfigurable Hardware for Artificial Neural
Networks, devises a hardware architecture for ANNs that takes advantage of the
dedicated adder blocks, commonly called MACs to compute both the weighted sum
and the activation function. The proposed architecture requires a reduced silicon
area considering the fact that the MACs come for free as these are FPGA’s built-in
cores. The hardware is as fast as existing ones as it is massively parallel. Besides,
the proposed hardware can adjust itself on-the-fly to the user-defined topology of
the neural network, with no extra configuration, which is a very nice characteris-
tic in robot-like systems considering the possibility of the same hardware may be
exploited in different tasks. Rodrigo Matins da Silva, M.Sc. collaborated in the de-
velopment of this chapter.

Chapter 6, which is entitled A Reconfigurable Hardware for Fuzzy Controllers,
elaborates on the development of a reconfigurable efficient architecture for fuzzy
controllers, suitable for embedding. The architecture is parameterizable so it allows
the setup and configuration of the controller so it can be used for various problem
applications. An application of fuzzy controllers was implemented and its cost and
performance are presented. Paulo Renato S. S. Sandres, M.Sc. collaborated in the
development of this chapter.

Chapter 7, which is entitled A Reconfigurable Hardware for Subtractive Clus-
tering, presents the development of a reconfigurable hardware for classification
system of radioactive elements with a fast and efficient response. To achieve this
goal, the hardware implementation of subtractive clustering algorithm is proposed.
The hardware is generic, so it can be used in many problems of data classification,

Preface VII

omnipresent in identification systems. Marcos Sanatana Farias, M.Sc. collaborated
in the development of this chapter.

Chapter 8, which is entitled A Reconfigurable Hardware for DNA Matching, pro-
poses a novel parallel hardware architecture for DNA matching based on the steps
of the BLAST algorithm. The design is scalable so that its structure can be adjusted
depending on size of the subject and query DNA sequences. Moreover, the number
of units used to perform in parallel can also be scaled depending some characteris-
tics of the algorithm. The design was synthesized and programmed into FPGA. The
trade-off between cost and performance were analyzed to evaluate different design
configuration. Edgar José Garcia Neto Segundo, M.Sc. collaborated in the develop-
ment of this chapter.

Part II: Soft Computing for Hardware

Chapter 9, which is entitled Synchronous Finite State Machines Design with
Quantum-inspired Evolutionary Computation, explores an evolutionary methodol-
ogy based on the principles of quantum computing to synthesize finite state ma-
chines. First, we optimally solve the state assignment NP-complete problem, which
is inherent to designing any synchronous finite state machines. This is motivated
by the fact that with an optimal state assignment, one can physically implement the
state machine in question using a minimal hardware area and response time. Second,
with the optimal state assignment provided, we propose to use the same evolution-
ary methodology to yield an optimal evolutionary hardware that implements the
state machine control component. The evolved hardware requires a minimal hard-
ware area and imposes a minimal propagation delay on the machine output signals.
Marcos Paulo Araujo Melo, M.Sc. collaborated in the development of this chapter.

Chapter 10, which is entitled Application Mapping in Network-on-Chip using
Evolutionary Multi-objective Optimization, uses multi-objective evolutionary op-
timization to address the problem of mapping topologically pre-selected sets IPs,
which constitute the set of optimal solutions that were found for the IP assignment
problem, on the tiles of a mesh-based NoC. The IP mapping optimization is driven
by the area occupied, execution time and power consumption. Marcus Vinı́cius Car-
valho da Silva, M.Sc. collaborated in the development of this chapter.

Chapter 11, which is entitled Application Routing in Network-on-Chip using Ant
Colony Optimization, takes advantage of ant colony algorithms to find and opti-
mize routes in a mesh-based NoC, where several randomly generated applications
have been mapped. The routing optimization is driven by the minimization of to-
tal latency in packets transmission between tasks. The simulation results show the
effectiveness of the ant colony inspired routing by comparing it with general pur-
pose algorithms for deadlock free routing. Luneque Del Rio de Souza e Silva Júnior,
M.Sc. collaborated in the development of this chapter.

VIII Preface

Acknowledgments

First o all, we would like to acknowledge the help of all the mentioned collaborators,
as mentioned before, in the elaboration of the chapters of this book. We are very
much grateful to the editors would also like to thank Prof. Janusz Kacprzyk, the
editor-in-chief of the Studies in Computational Intelligence Book Series and Dr.
Thomas Ditzinger from Springer-Verlag, Germany for their editorial assistance and
excellent collaboration to produce this scientific work. We hope that the reader will
share our excitement on this volume and will find it useful.

We are grateful to FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio
de Janeiro, www.faperj.br), CNPq (Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico, www.cnpq.br) and CAPES (Coordenação de Aperfei-
çoamento de Pessoal de Ensino Superior, www.capes.gov.br) for their contin-
uous financial support.

Rio de Janeiro, August 2013

Nadia Nedjah
Department of Electronics Engineering and Telecommunications
Faculty of Engineering
State University of Rio de Janeiro, Brazil

Luiza de Macedo Mourelle
Department of Systems Engineering and Computation
Faculty of Engineering
State University of Rio de Janeiro, Brazil

Contents

Part I: Hardware for Soft Computing

1 A Reconfigurable Hardware for Genetic Algorithms 3
1.1 Introduction . 3
1.2 Principles of Genetic Algorithms . 4
1.3 Overall Architecture for the Hardware Genetic Algorithm 5
1.4 Detailed Component Architectures . 6

1.4.1 Shared Memory for Generational Population 6
1.4.2 Random Number Generator . 6
1.4.3 Selection Component . 7
1.4.4 Genetic Operator’s Components . 9
1.4.5 Fitness Evaluation Component . 10

1.5 Performance Results . 11
1.6 Summary . 12
References . 13

2 Genetic Algorithms on Network-on-Chip . 15
2.1 Introduction . 15
2.2 Multi-processor System-on-Chip Platform . 16
2.3 Parallel Genetic Algorithm . 17

2.3.1 Topology Strategies . 18
2.4 Simulation Results . 20
2.5 Summary . 23
References . 27

3 A Reconfigurable Hardware for Particle Swarm Optimization 29
3.1 Introduction . 29
3.2 Related Works . 30
3.3 Particle Swarm Optimization . 31

3.3.1 Global Best PSO . 32
3.3.2 Parallel PSO . 33

X Contents

3.4 The MicroBlaze Embedded Processor . 35
3.5 Co-processor Architecture . 36
3.6 Performance Results . 38
3.7 Summary . 41
References . 42

4 Particle Swarm Optimization on Crossbar Based MPSoC 43
4.1 Introduction . 43
4.2 The Crossbar Topology . 44

4.2.1 Network Controller . 47
4.3 Experimental Results . 50

4.3.1 Particle Swarm Optimization . 50
4.3.2 Communication between Processes . 51
4.3.3 Performance Results . 51

4.4 Summary . 52
References . 56

5 A Reconfigurable Hardware for Artificial Neural Networks 59
5.1 Introduction . 59
5.2 ANNs Computational Model . 60
5.3 Approximation of the Output Function . 61
5.4 Implementation Issues . 62
5.5 ANN Hardware Architecture . 63
5.6 Summary . 69
References . 69

6 A Reconfigurable Hardware for Fuzzy Controllers 71
6.1 Introduction . 71
6.2 Fuzzy Controllers . 72
6.3 The Proposed Macro-architecture . 73
6.4 Micro-architecture of the Functional Units . 75

6.4.1 Membership Function Unit . 75
6.4.2 Membership Function Memory . 77
6.4.3 Fuzzification Unit . 78
6.4.4 Inference Unit . 80
6.4.5 Defuzzification Unit . 84

6.5 Performance Results . 86
6.6 Summary . 88
References . 89

7 A Reconfigurable Hardware for Subtractive Clustering 91
7.1 Introduction . 91
7.2 Radiation Detection . 92
7.3 Clustering Algorithms . 93
7.4 Proposed Architecture . 95
7.5 Performance Results . 100

Contents XI

7.6 Summary . 102
References . 102

8 Reconfigurable Hardware for DNA Matching . 103
8.1 Introduction . 103
8.2 BLAST Algorithm . 104
8.3 Proposed Architecture . 106

8.3.1 Seeding Unit . 108
8.3.2 Extension Unit . 110
8.3.3 The Controllers . 111

8.4 Performance Results . 112
8.5 Summary . 115
References . 115

Part II: Soft Computing for Hardware

9 Synchronous Finite State Machines Design with
Quantum-Inspired Evolutionary Computation 119
9.1 Introduction . 119
9.2 Design Methodology of Synchronous Finite State Machines 122
9.3 Impact of State Assignment . 125
9.4 Principles of Quantum Computation . 127

9.4.1 Quantum Bit . 128
9.4.2 Quantum Registers . 128
9.4.3 Quantum Gates . 129

9.5 Quantum-Inspired Genetic Algorithms . 129
9.5.1 Solution Representation . 129
9.5.2 Algorithm Description . 130

9.6 State Assignment with QIGA. 131
9.6.1 State Assignment Encoding . 132
9.6.2 Q-Gate for State Assignment . 132
9.6.3 State Assignment Fitness . 134

9.7 Logic Synthesis with QIGA . 135
9.7.1 Circuit Codification . 136
9.7.2 Logic Fitness . 138

9.8 Performance Results . 141
9.8.1 State Assignments Results and Discussion 141
9.8.2 Logic Synthesis Results and Discussion 147

9.9 Summary . 151
References . 153

10 Application Mapping in Network-on-Chip Using Evolutionary
Multi-objective Optimization . 155
10.1 Introduction . 155
10.2 Related Work . 156
10.3 NoC Internal Structure . 157

XII Contents

10.4 Task Graph and IP Repository Models . 157
10.5 Multi-objective Evolution . 159

10.5.1 The IP Mapping Problem . 159
10.5.2 EMO Algorithm . 160
10.5.3 Representation and Genetic Operators 161

10.6 Objective Functions . 161
10.6.1 Area . 161
10.6.2 Execution Time . 163
10.6.3 Power Consumption . 164

10.7 Results . 166
10.8 Summary . 170
References . 170

11 Routing in Network-on-Chips Using Ant Colony Optimization 173
11.1 Introduction . 173
11.2 Routing in Communication Networks . 176
11.3 Network Specification . 177
11.4 Ant Colony Optimization . 178
11.5 ACO-Based Routing . 179

11.5.1 REAS Algorithm . 180
11.5.2 RACS Algorithm . 181

11.6 Applications in NoC . 183
11.6.1 Task Graphs . 183
11.6.2 Random Mapping . 183

11.7 Evaluation Experiments and Results . 184
11.7.1 Tests with Synthetic Traffic Patterns 184
11.7.2 Simulation with Synthetic Task Graphs 189
11.7.3 Simulation with Real World Applications 194

11.8 Summary . 197
References . 197

Part I
Hardware for Soft Computing

Chapter 1
A Reconfigurable Hardware for Genetic
Algorithms

Abstract. In this chapter, we propose a massively parallel architecture of a hardware
implementation of genetic algorithms. This design is quite innovative as it provides
a viable solution to the fitness computation problem, which depends heavily on the
problem-specific knowledge. The proposed architecture is completely independent
of such specifics. It implements the fitness computation using a neural network. The
hardware implementation of the used neural network is stochastic and thus min-
imises the required hardware area without much increase in response time. Last but
not least, we demonstrate the characteristics of the proposed hardware and compare
it to existing ones.

1.1 Introduction

Generally speaking, a genetic algorithm is a process that evolves a set of individuals,
also called chromosomes, which constitutes the generational population, producing
a new population. The individuals represent a solution to the problem in consider-
ation. The freshly produced population is yield using some genetic operators such
as selection, crossover and mutation that attempt to simulate the natural breeding
process in the hope of generating new solutions that are fitter, i.e. adhere more the
problem constraints.

Previous work on hardware genetic algorithms can be found in [5, 10, 12].
Mainly, Earlier designs are hardware/software codesigns and they can be divided
into three distinct categories: (i) those that implement the fitness computation in
hardware and all the remaining steps including the genetic operators in software,
claiming that the bulk computation within genetic evolution is the fitness computa-
tion. The hardware is problem-dependent; (ii) and those that implement the fitness
computation in software and the rest in hardware, claiming that the ideal candidate
are the genetic operators as these exhibit regularity and generality [2, 7]. (iii) those
that implement the whole genetic algorithm in hardware [10]. We believe that both
approaches are worthwhile but a hardware-only implementation of both the fitness
calculation and genetic operators is also valuable. Furthermore, a hardware imple-
mentation that is problem-independent is yet more useful.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 3
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_1, c© Springer International Publishing Switzerland 2014

4 1 A Reconfigurable Hardware for Genetic Algorithms

The remainder of this chapter is divided into five sections. In Section 1.2, we
describe the principles of genetic algorithms. Subsequently, in Section 1.3, we pro-
pose and describe the overall hardware architecture of the problem-independent ge-
netic algorithm. Thereafter, in Section 1.4, we detail the architecture of each of the
component included in the hardware genetic algorithm proposed. Then, in Section
1.5, assess the performance of the proposed architecture. Finally, we draw some
conclusions 9.9.

1.2 Principles of Genetic Algorithms

Genetic algorithms maintain a population of individuals that evolve according to
selection rules and other genetic operators, such as mutation and crossover. Each
individual receives a measure of fitness. Selection focuses on high fitness individu-
als. Mutation and crossover provide general heuristics that simulate the reproduction
process. Those operators attempt to perturb the characteristics of the parent individ-
uals as to generate distinct offspring individuals.

Genetic algorithms are implemented through the procedure described by Algo-
rithm 1.1, wherein parameters ps, ef and gn are the population size, the expected
fitness of the returned solution and the maximum number of generation allowed
respectively.

Algorithm 1.1. GA – Genetic algorithms basic cycle
Require: population size ps, expected fitness ef, generation number gn
Ensure: the problem solution

generation := 0
population := initialPopulation()
fitness := evaluate(population)
repeat

parents := select(population)
population := mutate(crossover(parents))
fitness := evaluate(population)
generation := generation + 1

until (fitness[i] = ef, 1 ≤ i ≤ ps) OR (generation ≥ gn)

In Algorithm 1.1, function intialPopulation returns a valid random set of indi-
viduals that compose the population of first generation while function evaluate re-
turns the fitness of a given population storing the result into fitness. Function select
chooses according to some random criterion that privilege fitter individuals, the in-
dividuals that should be used to generate the population of the next generation and
function crossover and mutate implement the crossover and mutation process re-
spectively to actually yield the new population.

1.3 Overall Architecture for the Hardware Genetic Algorithm 5

Fig. 1.1 Overall architecture of the hardware genetic algorithm proposed

1.3 Overall Architecture for the Hardware Genetic Algorithm

Clearly, for hardware genetic algorithms, individuals are always represented using
their binary representation. Almost all aspects of genetic algorithms are very attrac-
tive for hardware implementation. The selection, crossover and mutation processes
are generic and so are problem-independent. The main issue in the hardware im-
plementation of genetic algorithms is the computation of individual’s fitness values.
This computation depends on problem-specific knowledge. The novel contribution
of the work consists of using neural network hardware to compute the fitness of
individuals. The software version of the neural network is trained with a variety of
individual examples. Using a hardware neural network to compute individual fitness
yields a hardware genetic algorithm that is fully problem-independent.

The overall architecture of the proposed hardware is given Fig. 1.1. It is massively
parallel. The selection process is performed in one clock cycle while the crossover
and mutation processes are completed within two clock cycles.

The fitness of individual in the generational population is evaluated using hard-
ware neural networks, which take advantage of stochastic representation of signals
to reduce the hardware area required [9]. Stochastic computing principles are well

6 1 A Reconfigurable Hardware for Genetic Algorithms

detailed in [4]. The motivation behind the use of stochastic arithmetic is its simplic-
ity. Designers are faced with hardware implementations that are very large due to
large digital multipliers, adders, etc.. Stochastic arithmetic provides a way of per-
forming complex computations with very simple hardware. Stochastic arithmetic
provides a very low computation hardware area and fault tolerance. Adders and
subtracters can be implemented by an ensemble of multiplexers and multipliers by
a series of XOR gates. (For formal proofs on stochastic arithmetic, see [3, 9].)

1.4 Detailed Component Architectures

In this section, we concentrate on the hardware architecture of the components in-
cluded in the overall architecture of Fig. 1.1.

1.4.1 Shared Memory for Generational Population

The generational population is kept in a synchronised bank of registers that can be
read and updated. The basic element of the shared memory is an individual. An
individual is a simply a bit stream of fixed size. The memory is initially filled up
with a fixed initial population. Each time the comparator’s output (i.e. component
COMP) is 0, the content of the registers changes with the individuals provided as
inputs. This happens whenever the fitness f of the best individual of the current
generation is not as expected (i.e., f > εFitness) and the current generation g is not
the last allowed one (i.e., g �= λ Gen). Note that εFitness and λ Gen are two registers
that store the expected fitness value and the maximum number of generation allowed
respectively.

1.4.2 Random Number Generator

A central component to the proposed hardware architecture of genetic algorithms is
a source of pseudorandom noise. A source of pseudorandom digital noise consists
of a linear feedback shift register or LFSR, described by first in [1] and by many
others, for instance [3], LFSRs are very practical as they can easily be constructed
using standard digital components.

Linear feedback shift registers can be implemented in two ways. The Fibonacci
implementation consists of a simple shift register in which a binary-weighted
modulo-2 sum of the taps is fed back to the input. Recall that modulo-2 sum of
two one-bit binary numbers yields 0 if the two numbers are identical and 1 if not.
The Galois implementation consists of a shift register, the content of which is mod-
ified at every step by a binary-weighted value of the output stage. The architecture
of the LFSR using these methods are shown in Fig. 1.2.

1.4 Detailed Component Architectures 7

(a) Fibonacci

(b) Galois

Fig. 1.2 Pseudorandom bitstream generators - Fibonacci vs. Galois implementation

Left feedback shift registers such as those of Fig. 1.2 can be used to generate mul-
tiple pseudorandom bit sequences. However, the taps from which these sequences
are yield as well as the length of the LFSR must be carefully chosen. (See [3, 4] for
possible length/tap position choices).

1.4.3 Selection Component

The selection component implements a variation of the roulette wheel selection. The
interface of this component consists of all the individuals, say i1, i2, . . . , in−1, in of
the generational population of size n together with the respective fitness, say f1, f2,
. . . , fn−1, fn and the overall sum of all these fitness values, say sum. The component
proceeds as described in the following steps:

1. A random number, say ρ is generated;
2. The sum of the individual’s fitness values is scaled down using ρ , i.e ssum :=

sum−ρ ;
3. Choose an individual, say i j from the selection pool and cumulate the corre-

sponding fitness f j, i.e. csum := csum+ f j;
4. Compare the scaled sum and the so far cumulated sum and select individual i j if

csum > ssum, otherwise go back to step 1;
5. When the first individual is selected, go back to step 1 and apply the same process

to select the second individual.

The architecture of the selection component is shown in Fig. 1.3. The above iter-
ative process is implemented using a state machine (CONTROLLER in Fig. 1.3). The
state machine has 6 states and the associated state transition function is described in
Fig. 1.4. The actions performed in each state of the controller machine are described

8 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.3 The architecture of the selection component

below. Signal compare is set when the either an individual having the expected fit-
ness is found or the last generation has passed.

S0: initialise counter;
load register CSUM with 0;

S1: stop the random number generator;
S2: load register SSUM;
S3: load register CSUM;
S4: if compare = 1 then

if step = 0 then
load register INDIVIDUAL1;

1.4 Detailed Component Architectures 9

start the random number generator;
else load register INDIVIDUAL2;
increment the counter;

S5: if step = 0 then set step;

Fig. 1.4 The state transition function of the selection component controller

1.4.4 Genetic Operator’s Components

The genetic operators are the crossover followed by the mutation. The crossover
component implements the double-point crossover. It uses a linear feedback shift
register which provides the random number that allows the component to decide
whether to actually perform the crossover or not. This depends on whether the ran-
domised number surpasses the informed crossover rate ξ Rate. In the case it does,
the bits of the less significant half of the randomised number is used as the first
crossover point and the most significant part as the second one.

The mutation component also uses a random number generator. The generated
number must be bigger that the given mutation rate μRate for the mutation to oc-
cur. The bits of the randomised number are also used as way to choose the mutation

10 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.5 The architecture of the crossover component

Fig. 1.6 The architecture of the crossover component

degree of the individual. Starting from the less significant bit of both the random
number and the individual, if the bit in the former is 1 then the corresponding bit in
the later is complemented and otherwise it is kept unchanged. The hardware archi-
tecture of the mutation component is given in Fig. 1.6.

1.4.5 Fitness Evaluation Component

The individual fitness measure is estimated using neural networks. In previous work,
the authors proposed and implemented a hardware for neural networks [9]. The
implementation uses stochastic signals and therefore reduces very significantly the
hardware area required for the network. The network topology used is the fully-
connected feed-forward. The neuron architecture is given in Fig. 1.7. (More details
can be found in [9].) For the hardware genetic implementation, the number of input
neurons is the same as the size of the individual. The output neuron are augmented
with a shift register to store the final result. The training phase is supposed to be
performed before the first use within the hardware genetic algorithm.

1.5 Performance Results 11

Fig. 1.7 Stochastic bipolar neuron architecture ([9])

1.5 Performance Results

The hardware genetic algorithm proposed was simulated then programmed into an
Spartan3 Xilinx FPGA [14]. In order to assess the performance of the proposed
hardware genetic algorithm, we maximise the function that was first used in [8]. It
was also used by Scott, Seth and Samal to evaluate their hardware implementation
for genetic algorithms [11]. The function is not easy to maximise, which is clear
from the function plot of Fig. 1.8. The training phase of the neural network was
done by software using toolbox offered in MatLab [6].

f (x,y) = 21.5+ xsin(4πx)+ ysin(20πy),

−3.0 ≤ x1 ≤ 12.1
4.1 ≤ x2 ≤ 5.8

(1.1)

The characteristics of the software and hardware implementations proposed in
[11] and those of the hardware genetic algorithm we proposed in this chapter are
compared in Table 1.1. It is clear that the hardware implementations are both much
faster than the software version. One can clearly note that our implementation
(PHGA) requires more than twice that required by Scott, Seth and Samal’s imple-
mentation (HEGA). Note, however, that the hardware area necessary to the compu-
tation of the fitness function is not included as it is not given in [11]. From another
perspective, PHGA is more than five time faster as it is massively parallel. We also
believe that the computation of the fitness function is much faster with the neural
network. Observe that PHGA evolved a better solution.

12 1 A Reconfigurable Hardware for Genetic Algorithms

Fig. 1.8 Plotting Michalewics’s function ([8])

Table 1.1 Comparison of the performance results: software genetic algorithms (SGA), hard-
ware engine for genetic algorithms (HEGA) and proposed hardware genetic algorithms
(PHGA). (The area is expressed in terms of CLBs and the time is in seconds.)

Implementation time area solution x y area× time

SGA 40600 0 38.5764 – – –
HEGA 972 870 38.8419 – – 845640
PHGA 189 1884 38.8483 11.6241 5.7252 356076

1.6 Summary

In this chapter, we proposed a novel hardware architecture for genetic algorithms.
It is novel in the sense that is massively parallel and problem-independent. It uses
neural networks to compute the fitness measure. Of course, for each type of prob-
lem, the neuron weights need to be updated with those obtained in the training phase.
Without any doubts, the proposed hardware is extremely faster than the software im-
plementation. Furthermore, it is much faster than the hardware engine proposed by
Scott, Seth and Samal in [11]. However, it seems that our implementation requires
almost twice the hardware are used to implement their architecture. Nevertheless,
we do not have an exact record of the hardware are consumed in [11] as the authors
did not provide nor include the hardware required to implement the fitness module
for Michalewics’s function [8].

References 13

References

1. Bade, S.L., Hutchings, B.L.: FPGA-Based Stochastic Neural Networks - Implementa-
tion. In: IEEE Workshop on FPGAs for Custom Computing Machines, Napa CA, April
10-13, pp. 189–198 (1994)

2. Bland, I.M., Megson, G.M.: Implementing a generic systolic array for genetic algo-
rithms. In: Proc. 1st. On-Line Workshop on Soft Computing, pp. 268–273 (1996)

3. Brown, B.D., Card, H.C.: Stochastic Neural Computation I: Computational Elements.
IEEE Transactions on Computers 50(9), 891–905 (2001)

4. Gaines, B.R.: Stochastic Computing Systems. Advances in Information Systems Sci-
ence (2), 37–172 (1969)

5. Liu, J.: A general purpose hardware implementation of genetic algorithms, MSc. Thesis,
University of North Carolina (1993)

6. MathWorks (2004), http://www.mathworks.com/
7. Megson, G.M., Bland, I.M.: Synthesis of a systolic array genetic algorithm. In: Proc.

12th. International Parallel Processing Symposium, pp. 316–320 (1998)
8. Michalewics, Z.: Genetic algorithms + data structures = evolution programs, 2nd edn.

Springer, Berlin (1994)
9. Nedjah, N., Mourelle, L.M.: Reconfigurable Hardware Architecture for Compact and

Efficient Stochastic Neuron. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS,
vol. 2687, pp. 17–24. Springer, Heidelberg (2003)

10. Scott, S.D., Samal, A., Seth, S.: HGA: a hardware-based genetic algorithm. In: Proc.
ACM/SIGDA 3rd International Symposium in Field-Programmable Gate Array, pp. 53–
59 (1995)

11. Scott, S.D., Seth, S., Samal, A.: A hardware engine for genetic algorithms. Technical
Report, UNL-CSE-97-001, University of Nebraska-Lincoln (July 1997)

12. Turton, B.H., Arslan, T.: A parallel genetic VLSI architecture for combinatorial real-time
applications – disc scheduling. In: Proc. IEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems, pp. 88–93 (1994)

13. Xilinx (2004), http://www.xilinx.com/

http://www.mathworks.com/
http://www.xilinx.com/

Chapter 2
Genetic Algorithms on Network-on-Chip�

Abstract. The aim of the work described in this chapter is to investigate migra-
tion strategies for the execution of parallel genetic algorithms in a Multi-Processor
System-on-Chip (MPSoC). Some multimedia and Internet applications for wireless
communications are using genetic algorithms and can benefit of the advantages pro-
vided by parallel processing on MPSoCs. In order to run such algorithms, we use
a Network-on-Chip platform, which provides the interconnection network required
for the communication between processors. Two migration strategies are employed,
in order to analyze the speedup and efficiency each one can provide, considering the
communication costs they require.

2.1 Introduction

The increasing demand of electronic systems, that require more and more processing
power, low energy consumption, reduced area and low cost, has lead to the develop-
ment of more complex embedded systems, also known as System-on-Chip (SoC),
in order to run multimedia, Internet and wireless communication applications [9].
These systems can be built of several independent subsystems, that work in parallel
and interchange data. When these systems have more than one processor, they are
called Multi-Processor System-on-Chip (MPSoC).

Currently, several products, such as cell phones, portable computers, digital tele-
visions and video games, are built using embedded systems. While in embedded sys-
tems the communication between Intellectual Property (IP) blocks is basically done
through a shared bus, in multiprocessor embedded systems this kind of interconnec-
tion compromises the expected performance [2]. In this case, the communication is
best implemented using an intrachip network, implemented by a Network-on-Chip
(NoC) [6] [5] [1] platform.

Some multimedia and Internet applications for wireless communications are us-
ing genetic algorithms and can benefit from the advantages provided by parallel
processing on MPSoCs. In this chapter, we present a parallel genetic algorithm that

� This chapter was developed in collaboration with Rubem Euzébio Ferreira.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 15
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_2, c© Springer International Publishing Switzerland 2014

16 2 Genetic Algorithms on Network-on-Chip

Fig. 2.1 HMPS architecture, with 9 RISC Plasma processors connected to a 3×3 mesh net-
work

runs on Hermes Multi-Processor System (HMPS) architecture and discuss the im-
pact of migration strategies on performance. In Section 2, we describe the HMPS
architecture. The parallel genetic algorithm, used in this chapter, is presented in
Section 3 and some simulation results are introduced in Section 4. Finally, we draw
some conclusions and future work in Section 5.

2.2 Multi-processor System-on-Chip Platform

Figure 2.1 shows the Multi-Processor System-on-Chip (MPSoC), called Hermes
Multiprocessor System (HMPS) [3]. MPSoC architectures may be represented as a
set of processing nodes that communicate via a communication network. Switches
compose the network and RISC processors the processing nodes (Plasma). Infor-
mation exchanged between resources are transfered as messages, which can be split
into smaller parts called packages [7]. The switch allows for retransmission of mes-
sages from one module to another and decides which path these messages should
take. Each switch has a set of bidirectional ports for the interconnection with a re-
source and the neighboring switches.

As the total number of tasks composing the target application may exceed the
MPSoC memory resources, one processor is dedicated to the management of the
system resources (MP - Manager Processor). The MP has access to the task reposi-
tory, from where tasks are allocated to some processors of the system.

2.3 Parallel Genetic Algorithm 17

The interconnection network is based on HERMES [4], that implements worm-
hole packet switching with a 2D-mesh topology. The HERMES switch employs
input buffers, centralized control logic, an internal crossbar and five bi-directional
ports. The Local port establishes the communication between the switch and its lo-
cal IP core. The other ports of the switch are connected to neighboring switches. A
centralized round-robin arbitration grants access to incoming packets and a deter-
ministic XY routing algorithm is used to select the output port.

The processor is based on the PLASMA processor [10], a RISC microprocessor.
It has a compact instruction set comparable to a MIPS-1, 3 pipeline stages, no cache,
no Memory Management Unit (MMU) and no memory protection support in order
to keep it as small as possible. A dedicated Direct Memory Access (DMA) unit
is also used for speeding up task mapping, but not for data communications. The
processor local memory (1024 Kbytes) is divided into four independent pages. Page
0 receives the microkernel and pages 1 to 3 the tasks. Each task can hold 256 Kbytes
(0x40000).

The HMPS communication primitives, WritePipe() and ReadPipe(), essentially
abstract communications, so that tasks can communicate with each other without
knowing their position on the system, either on the same processor or a remote one.
When HMPS starts, only the microkernel is loaded into the local memory. All tasks
are stored in the task repository. The manager processor is responsible for reading
the object codes from the task repository and transmit them to the other processors.
The DMA module is responsible for transferring the object code from the network
interfaces to the local memory.

2.3 Parallel Genetic Algorithm

The Parallel Genetic Algorithm (PGA) is based on the island model, in which serial
isolated subpopulations evolve in parallel and each one is controlled by a single pro-
cessor. This processor periodically sends its best individuals to neighboring subpop-
ulations and receives their best individuals. These individuals are used to substitute
the local worst ones. It is obvious that the GA time processing increases with popu-
lation size. Therefore, small subpopulations tend to converge quickly when isolated.

The PGA is executed by the HMPS platform. Each processor corresponds to an
island and its initial subpopulation is randomly generated, evolving independently
from the other subpopulations, until the migration operator is activated, as described
in Algorithm 2.1. Premature convergence occurs less in a multi-population GA and
can be ignored, when other islands produce better results. Each island can use a dif-
ferent set of GA operators, i.e. crossover and mutation rates, which causes different
convergence. Migration of the chromosomes among the islands prevents mono-race
populations, which converge prematurely. Periodic migration, which occurs after
some generations, prevents a common convergence among the islands.

18 2 Genetic Algorithms on Network-on-Chip

Algorithm 2.1. PGA
Initialize the evolutionary parameters
t ← 0
Initialize a random population p(t)
Evaluate p(t) in order to find th best solution
while (t < NumGenerations) do

t ← t +1
Select p(t) from p(t −1)
Crossover
Mutation
Evaluate p(t) in order to find th best solution
if (t mod MigrationRate = 0) then

Migrate local best[p(t)] to the next processor
Receive remote best[p(t)] from the previous processor
Replace worst[p(t)] by best[p(t)]

end if
end while

The PGA requires the definition of some parameters: number of processors, how
often the migration will take place, which individuals will migrate and which indi-
viduals will be replaced due to migration. The island model introduces a migration
operator in order to migrate the best individuals from one subpopulation to another.

2.3.1 Topology Strategies

In this work, we investigate two topology strategies to migrate individuals from one
subpopulation to another: ring and neighborhood. In the ring topology, the best in-
dividuals from one subpopulation can only migrate to an adjacent one. As seen in
Figure 2.2, the best individuals from subpopulation 6 can only migrate to subpopu-
lation 1 and the best individuals from subpopulation 1 can only migrate to subpop-
ulation 2. In Algorithm 2.2, migration is implemented using this kind of strategy.
In the neighborhood topology, the best individuals from one subpopulation can mi-
grate to a left and to a right neighbor, as seen in Figure 2.3. For this kind of strategy,
migration is implemented as in Algorithm 2.3.

Choosing the right time of migration and which individuals should migrate are
two critical decisions. Migrations should occur after a time long enough for allowing
the development of good characteristics in each subpopulation. Migration is a trig-
ger for evolutionary changes and should occur after a fixed number of generations
in each subpopulation. The migrant individuals are usually selected from the best
individuals in the origin subpopulation and they replace the worst ones in the des-
tination subpopulation. Since there are no fixed rules that would give good results,
intuition is still strongly recommended to fix the migration rate [11].

Sending an individual from one subpopulation to another increases the fitness of
the destination subpopulation and maintains the population diversity of the other
subpopulation. As in the sequential GA, issues of selection pressure and diversity

2.3 Parallel Genetic Algorithm 19

sub-population 5

sub-population 1

sub-population 3

sub-population
4

sub-population 6 sub-population 2

Fig. 2.2 Ring migration topology

sub-population 5

sub-population 1

sub-population 3

sub-population
4

sub-population 6 sub-population 2

Fig. 2.3 Neighborhood migration topology

arise. If a subpopulation receives frequently and consistently highly fit individuals,
these become predominant in the subpopulation and the GA will focus its search on
them at the expense of diversity loose. On the other hand, if random individuals are
received, the diversity may be maintained, but the fitness of the subpopulation may
not be improved as desired. As migration policy, the best individual is chosen as the
migrant, replacing the worst one in the receiving subpopulations. For the migration
frequency, an empirical value was adopted based on the number of generations.

20 2 Genetic Algorithms on Network-on-Chip

Algorithm 2.2. Migration function for the ring communication
local := get processid();
if local = 0 then

next := 1; previous := number of tasks −1;
end if
if local > 0 e local < number of tasks −1 then

next := local +1; previous := local −1;
end if
if local = number of tasks −1 then

next := 0; previous := local −1;
end if
Send the best individuals to the task, whose identifier is next;
Receive the best individuals from the task, whose identifier is previous.

Algorithm 2.3. Migration function for the neighborhood communication
local := get processid();
if local = 0 then

next := 1; previous := number of tasks −1;
end if
if local > 0 e local < number of tasks −1 then

next := local +1; previous := local −1;
end if
if local = number of tasks −1 then

next := 0; previous := local −1;
end if
Send the best individuals to the task, whose identifier is previous;
Send the best individuals to the task, whose identifier is next;
Receive the best individuals from the task, whose identifier is previous;
Receive the best individuals from the task, whose identifier is next.

2.4 Simulation Results

Three non-linear functions were used by the PGA for optimization. The definition
and main characteristics of these functions are listed below

• Function f1(x) is defined in (2.1). This function plots into the curve depicted in
Fig. 2.4. It presents 14 local maximum e one global maximum in the interval [-1,
2], with an approximate global maximum of 2.83917, at x = 1.84705.

max
x

f1(x) = sen(10πx)+ 1 (2.1)

• Function f2(x,y) is defined in (2.2). This function plots into the curve depicted
in Fig. 2.5. It has many local minimum and one global minimum in the interval
−3≤ x ≤ 3 and −3≤ y≤ 3, and an approximate global minimum of −12.92393,
at x = 2,36470 and y = 2.48235.

2.4 Simulation Results 21

Fig. 2.4 The graphical representation of f1(x)

Fig. 2.5 The graphical representation of f2(x,y)

min
x,y

f2(x,y) = cos(4x)+ 3sen(2y)+ (y− 2)2− (y+ 1) (2.2)

• Function f3(x,y) is defined in (2.3). This function plots into the curve depicted
in Fig. 2.6. It has 2 local maximum and one global minimum in the interval
−3 ≤ x ≤ 3 and −3 ≤ y ≤ 3, and an approximate global maximum of 8,11152,
at x = 0,01176 and y = 1,58823.

22 2 Genetic Algorithms on Network-on-Chip

Fig. 2.6 The graphical representation of f3(x,5)

max
x,y

f3(x,y)= 3(1−x)2e(−x2−(y+1)2)−10
(x

5
− x3 − y5

)
e(−x2−y2)− 1

3
e−(x+1)2−y2

(2.3)

The performance of the PGA can be evaluated based on its speedup and effi-
ciency. Speedup Sp [8] is defined according to Equation 2.4, where T1 is the execu-
tion time of the sequential version of the genetic algorithm and Tp is the execution
time of its parallel version.

Sp =
T1

Tp
(2.4)

Efficiency Ep [8] is defined according to Equation 2.5, where 1
p < Ep ≤ 1 and p is

the number of processors employed.

Ep =
Sp

p
(2.5)

Table 2.1, Table 2.2 and Table 2.3 show the simulation results for the optimiza-
tion of functions f1(x), f2(x,y) e f3(x,y) respectively using the ring topology for
migration of individuals. In those tables, Np is the number of used processors, Mr is
the migration rate, Mi is the migration interval in terms of generation number, Sp is
the speedup obtained and Ep is the efficiency yield for each used processor.

Table 2.4, Table 2.5 and Table 2.6 show the simulation results for the optimization
of functions f1(x), f2(x,y) e f3(x,y) respectively using the neighborhood topology
for migration of individuals. In those tables, Np is the number of used processors,
Mr is the migration rate, Mi is the migration interval in terms of generation number,
Sp is the speedup obtained and Ep is the efficiency yield for each used processor.

Based on simulation results for the optimization of f1(x), f2(x,y) and f3(x,y)
using the ring and neighborhood topologies, we obtained the graphics for speedup

2.5 Summary 23

Table 2.1 Simulation results for the optimization of function f1(x) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 1127,5724 1 1

6
1

1 168,57284 6,68893 1,67223
2 298,76094 3,77416 0,94354

2
1 650,70556 1,73284 0,43321
2 267,11808 4,22125 1,05531

9
1

1 112,10709 10,05799 1,25724
2 102,16839 11,03641 1,37955

2
1 381,15057 2,95834 0,36979
2 101,16498 11,14587 1,39323

16
1

1 83,86655 13,44484 0,89632
2 75,29244 14,97590 0,998393

2
1 73,95938 15,24583 1,01638
2 77,13687 14,61781 0,97452

Table 2.2 Simulation results for the optimization of function f2(x,y) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6024,11201 1 1

6
1

1 2569,06697 2,344863 0,586215
2 2616,76305 2,302123 0,575530

2
1 2507,48402 2,402452 0,600613
2 1448,84485 4,157872 1,039468

9
1

1 1968,24989 3,06064 0,38258
2 1250,55945 4,81713 0,60214

2
1 1352,18413 4,45509 0,55688
2 1112,49588 5,41495 0,67686

16
1

1 718,73197 8,38158 0,55877
2 797,31202 7,55552 0,50370

2
1 596,06991 10,10638 0,67375
2 866,79268 6,94988 0,46332

and efficiency shown in Figure 2.7, Figure 2.8 and Figure 2.9 respectively. The data
are presented as triples consisting of the number of slave processors used Np, the
migration rate Mr and the migration interval Mi.

2.5 Summary

For the ring topology, the behavior of the two functions shows that, keeping the
migration interval constant and varying the migration rate, if the increase in the
migration rate resulted in an increase in speedup and efficiency, the fitness of

24 2 Genetic Algorithms on Network-on-Chip

Table 2.3 Simulation results for the optimization of function f3(x,y) for ring migration
topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6209,50022 1 1

6
1

1 2778,47764 2,23485 0,55871
2 2927,64913 2,12098 0,53024

2
1 3143,09053 1,97560 0,49390
2 2925,58322 2,12248 0,53062

9
1

1 1037,66721 5,98409 0,74801
2 1832,88554 3,38782 0,42347

2
1 1799,06522 3,45151 0,43143
2 1433,94829 4,33035 0,54129

16
1

1 873,31097 7,11029 0,47401
2 723,58761 8,58154 0,57210

2
1 607,38299 10,22336 0,68155
2 942,71555 6,58682 0,43912

Table 2.4 Simulation results for the optimization of function f1(x) for neighborhood migra-
tion topology

Np Mr Mi Time (ms) Sp Ep

1 – – 1127,5724 1 1

6
1

1 645,36593 1,74718 0,43679
2 535,14461 2,10704 0,52676

2
1 172,29855 6,54429 1,63607
2 172,80265 6,52520 1,63130

9
1

1 217,88489 5,17508 0,64688
2 304,68098 3,70082 0,46260

2
1 104,90308 10,74870 1,34358
2 188,31056 5,98783 0,74847

16
1

1 80,62822 13,98483 0,93232
2 121,45834 9,28361 0,61890

2
1 71,09218 15,86070 1,05738
2 131,73707 8,55926 0,57061

the individuals, received by one or more populations during the migration phase,
accelerated the evolutionary process, decreasing the convergence time. On the other
hand, if the increase in the migration rate resulted in the decrease of speedup and
efficiency, then we can say that the fitness of these individuals did not influence
enough the evolutionary process of the populations that received them. In this case,
the convergence time increases.

In the future, we intend to investigate the impact of other migration strategies on
the performance of the parallel Network-on-chip based implementation of genetic
algorithms. One of the these topologies is broadcasting, which allows each processor

2.5 Summary 25

Table 2.5 Simulation results for the optimization of function f2(x,y) for neighborhood mi-
gration topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6024,11201 1 1

6
1

1 2970,49815 2,02798 0,50699
2 2241,80203 2,68717 0,67179

2
1 2977,43556 2,02325 0,50581
2 2635,64829 2,28562 0,57140

9
1

1 1560,87682 3,85944 0,48243
2 1370,53135 4,39545 0,54943

2
1 1772,67139 3,39832 0,42479
2 1161,60725 5,18601 0,64825

16
1

1 719,73603 8,36989 0,55799
2 951,55986 6,33077 0,42205

2
1 574,84260 10,47958 0,69863
2 700,59551 8,59855 0,57323

Table 2.6 Simulation results for the optimization of function f3(x,y) for neighborhood mi-
gration topology

Np Mr Mi Time (ms) Sp Ep

1 – – 6209,50022 1 1

6
1

1 2534,68066 2,44981 0,61245
2 2497,41481 2,48637 0,62159

2
1 3075,95908 2,01872 0,50468
2 2737,40887 2,26838 0,56709

9
1

1 1698,95341 3,65489 0,45686
2 1398,89571 4,43885 0,55485

2
1 830,546335 7,47640 0,93455
2 1296,38967 4,78984 0,59873

16
1

1 1235,58877 5,02553 0,33503
2 910,60102 6,81912 0,45460

2
1 777,34866 7,98805 0,53253
2 683,45716 9,08542 0,60569

to send the best solution found so far to all the other processors in the network. We
will assess the impact of heavy message send/receive workload on the overall system
performance.

26 2 Genetic Algorithms on Network-on-Chip

(a) Speedup of f1(x) (b) Efficiency of f1(x)

Fig. 2.7 Impact of the migration rate and migration interval on speedup and efficiency for
function f1(x), considering the used topology

(a) Speedup of f2(x,y) (b) Efficiency of f2(x,y)

Fig. 2.8 Impact of the migration rate and migration interval on speedup and efficiency for
function f2(x,y), considering the used topology

(a) Speedup of f3(x,y) (b) Efficiency of f3(x,y)

Fig. 2.9 Impact of the migration rate and migration interval on speedup and efficiency for
function f3(x,y), considering the used topology

References 27

References

1. Ivanov, A., De Micheli, G.: The network-on-chip paradigm in practice and research.
IEEE Design and Test of Computers 1(1), 399–403 (2005)

2. Mello, A.M.: Arquitetura multiprocessada em SoCs: estudo de diferentes topologias de
conexão (June 2003) (in Portuguese)

3. Woszezenki, C.: Alocação de tarefas e comunicação entre tarefas em mpsocs. M.Sc.,
Faculdade de Informática, PUCRS, Porto Alegre, RS, Brazil (June 2007) (in Portuguese)

4. Moraes, F., Calazans, N., Mello, A., Möller, L., Ost, L.: Hermes: an infrastructure for low
area overhead packet-switching networks on chip. Integration, The VLSI Journal 38(1),
69–93 (2004)

5. Öberg, J., Jantsch, A., Tenhunen, H.: Special issue on networks on chip. Journal of Sys-
tems Architecture 1(1), 61–63 (2004)

6. Beniniand, L., De Micheli, G.: Networks on chips: a new soc paradigm. IEEE Com-
puter 1(1), 70–78 (2002)

7. Benini, L., Ye, T.T., De Micheli, G.: Packetized on-chip interconnect communication
analysis for MPSoC. In: Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE 2003), pp. 344–349. IEEE Press (2003)

8. Chiwiacowsky, L.D., de Campos Velho, H.F., Preto, A.J., Stephany, S.: Identifying initial
conduction in heat conduction transfer by a genetic algorithm: a parallel approach 28,
180–195 (1980)

9. Ruiz, P.M., Antonio: Using genetic algorithms to optimize the behavior of adaptive mul-
timedia applications in wireless and mobile scenarios. In: IEEE Wireless Communica-
tions and Networking Conference (WCNC 2003), pp. 2064–2068. IEEE Press (2003)

10. Rhoads, S.: Plasma microprocessor (2009), http://www.opencores.org
11. Hue, X.: Genetic algorithms for optimization – background and applications. Technical

report. Edinburgh Parallel Computer Centre, The University of Edinburgh (1997)

http://www.opencores.org

Chapter 3
A Reconfigurable Hardware for Particle Swarm
Optimization�

Abstract. The Particle Swarm Optimization or PSO is a heuristic based on a popu-
lation of individuals, in which the candidates for a solution of the problem at hand
evolve through a simulation process of a social adaptation simplified model. Com-
bining robustness, efficiency and simplicity, PSO has gained great popularity as
many successful applications are reported. The algorithm has proven to have sev-
eral advantages over other algorithms that based on swarm intelligence principles.
The use of PSO solving problems that involve computationally demanding functions
often results in low performance. In order to accelerate the process, one can proceed
with the parallelization of the algorithm and/or mapping it directly onto hardware.
This chapter presents a novel massively parallel co-processor for PSO implemented
using reconfigurable hardware. The implementation results show that the proposed
architecture is very promising as it achieved superior performance in terms of exe-
cution time when compared to the direct software execution of the algorithm.

3.1 Introduction

Swarm Intelligence is a field of artificial intelligence wherein a decentralized collec-
tive behavior of individuals that interact with each other as well as with the environ-
ment is at the basis to infer an intelligent decision with respect to a given problem.

This is an innovative paradigm of distributed intelligence, inspired originally
from biological groups such as flocks, herds and schools of fish. There are several
models based on this concept, some describe swarm particles, others are based on
groups and social behavior of humans in general. In addition, there are also models
based on the social behavior of bacteria, spiders, bees and sharks, among others.

PSO was introduced by Kennedy and Eberhart [1] and is based on collective
behavior, social influence and learning. PSO seeks to imitate the behavior of so-
cial groups of animals, specifically flocks of birds. If one element of the group
discovers a way to get to get to the food source, the other group members tend
instantly, to follow the indicated way. Many successful applications of PSO are

� This chapter was developed in collaboration with Rogério de Moraes Calazan.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 29
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_3, c© Springer International Publishing Switzerland 2014

30 3 A Reconfigurable Hardware for Particle Swarm Optimization

reported, in which this algorithm has shown several advantages over other algo-
rithms that are based on swarm intelligence. It is robust, efficient and simple.
Moreover, it usually requires less computational effort when compared to other
evolutionary algorithms [2].

FPGAs (Field Programmable Gate Arrays) represent a class of integrated circuits
designed to be user-configured after manufacture. FPGAs present several advan-
tages over other alternatives for hardware implementation, such as reduced time-
to-market, use the synthesis of very flexible specification, allowing a very low
development cost. Programming these devices is done through hardware description
languages (HDL), such as Verilog [18] and VHDL (Very High Speed Integrated Cir-
cuits Hardware Description Language) [19]. The first commercial FPGA (XC2064
model) was developed by XILINX and marketed in 1985. Since then the number
of gates followed an exponential growth rate. These reconfigurable devices are suit-
able for applications that exploit the characteristics of the inherent massively paral-
lel structures by relocate computational-intensive parts of the implementation into
the FPGA and thus allowing parallel processing. In general, parallel computation in
FPGA allow for a considerable throughput performance at low clock rates, which
in turn occasion very low power consumption. With adequate development environ-
ments, the task of compiling a hardware specification, synthesis and downloading
the result to FPGA chip became relatively simple.

With the continuous advancement in FPGA technology, providing increased per-
formance and high-density devices, processor can be offered as an economic alter-

native. The MicroBlaze
TM

embedded processor [15] has a reduced instruction set
(RISC) and is optimized for Xilinx R©FPGAs implementations.

The purpose of this chapter is to present an efficient hardware architecture for
parallel PSO. The proposed implementation uses floating-point arithmetics. The ar-
chitecture is viewed as a co-processor that operates together with the MicroBlaze
processor in order to solve specific applications, optimize the performance and free
up the processor during execution of PSO steps. In order to evaluate the performance
of the proposed architecture, we compare the execution time of PSO with and with-
out the co-processor, and we test the impact of dynamic update of the inertia weight
parameter of the PSO algorithm.

This chapter is organized as follows: First, in Section 3.2, we present some
related works; Then, in Section 3.3, we sketch briefly the PSO process and the
algorithm; In Section 3.4 presents the architecture of the MicroBlaze embedded
processor and Thereafter, in Section 3.5, we describe the implementation of the pro-
posed co-processor and its architecture; Subsequently, in Section 3.6, we report and
evaluate the performance of the co-processor; Finally, in Section 8.5, we draw some
concluding remarks and point out directions for future work.

3.2 Related Works

In [5], the PSO algorithm together with some test functions are implemented in
an FPGA using Floating-point operations. The performance results show that the

3.3 Particle Swarm Optimization 31

proposed implementation can be up to 78 times faster than a MATLAB software
implementation. In[10] and [11], the authors present a Parallel architecture for the
PSO algorithm. The implementation was done using the High-Performance MPI
(Message Passing Interface). Both synchronous and asynchronous solutions were
investigated. The proposed implementation showed an improvement in processing
time for a bio-mechanical test problem. An hardware/software co-design architec-
ture to implement the PSO algorithm in an FPGA is reported in [7]. The particle
accelerator module was implemented in hardware while the fitness function was
kept in software. Whenever complex fitness functions, which impose high compu-
tational costs, this implementation showed poor performance as the critical point is
the fitness function and not in the rest of the PSO algorithm. An FPGA implemen-
tation of Simultaneous Perturbation PSO (SPPSO) is presented in [9]. The authors
were able to increase the operating speed using parallelism within the PSO pro-
cess. In [4], a performance comparison of the PSO algorithm implemented using a
16-bit microcontroller (Freescale MC9512DP256) and an direct implementation in
hardware is described.

3.3 Particle Swarm Optimization

The main steps of the PSO algorithm are desribed in Algorithm 3.1. Note that, in
this specification, the computations are executed sequentially. In this algorithm, each
particle has a velocity and an ıadaptive direction [1] that determines its next move-
ment within the search space. The particle is also endowed with a memory that
makes it able to remember the best previous position that it passed by.

Algorithm 3.1. PSO
for i = 1 to n particles do

Initialize the information of particle i
Randomly initialize position and velocity of particle i;

end for;
repeat

for i = 1 to n particles do
Compute the Fitnessi of particle i;
if Fitnessi ≤ Pbest then

Update Pbest using the position of particle i;
end if;
if Fitnessi ≤ Gbest then

Update Gbest using the position of particle i;
end if;
Update the velocity of particle i;
Update the position of particle i;

end for;
until Stopping condition is true
return Gbest and corresponding position;

32 3 A Reconfigurable Hardware for Particle Swarm Optimization

The PSO is formed by a set of particles, each of which represents a potential
solution to the problem, having position coordinates in a space of n-dimensional
search. Thus, each particle is represented by a current position vector, a vector of
best position found by the particle so far, one field to store the fitness and another for
best fitness. To update the position of each particle i, there is a set of velocities, one
for each dimension j of this position. The velocity is the element that promotes the
ability of movement of the particles, and can be calculated according to Equation
3.1 while the position is defined as in Equation 3.2.

3.3.1 Global Best PSO

In this variation of the PSO algorithm, the neighborhood of each particle is formed
by all the population particles. Thus, it can be viewed as the star topology, as shown
in Figure 3.1. Using this strategy, the social component of the particle velocity is
influenced by all other particles [2] [8]. The velocity is the element that promotes
the capacity of particle locomotion and can be computed as described in (3.1) [1]
[2], wherein w is called inertia weight, r1 and r2 are random numbers in [0,1], c1

and c2 are positive constants, yi j is the best position Pbest found by the particle i so
far w.r.t. dimension j and y j is the best position Gbest w.r.t. dimension j, found so
far, considering all the population particles. The position of each particle is updated
according as described in (3.2). Note that xi j(t +1) is the current position and xi j(t)
is the previous position.

vi j(t + 1) = wvi j(t)+ c1r1 (yi j − xi j(t))+ c2r2 (y j − xi j(t)) (3.1)

xi j(t + 1) = vi j(t + 1)+ xi j(t) (3.2)

Fig. 3.1 Star Social Structure

3.3 Particle Swarm Optimization 33

The velocity component drives the optimization process, reflecting both the ex-
perience of the particle, and the exchange of information between the particles. The
particle experimental knowledge is referred to the cognitive behavior, which is pro-
portional to the distance between the particle and its best position found w.r.t. its
first iteration [8]. The exchange of information between particles refers to the so-
cial behavior of the velocity definition. After upgrading the velocity and position of
each particle it checks the stopping criteria and then displays the result or perform
another operation.

The value of each parameter of the PSO algorithm is crucial in the search pro-
cess, and therefore the importance of defining appropriate values at the initializa-
tion step. The inertia weight w was introduced by [3] as a mechanism to control the
exploration and exploitation abilities of the swarm. Large values for w facilitate ex-
ploration, with increased diversity. A small values for w promotes local exploitation
[2]. Values greater than 1 tend to leave the particles with a very high acceleration,
while lower values, approximately 0, can decelerate too much the search. Dynamic
update of w has also been used to adapt the search velocity. Starting with a high
value which gradually decreases during the optimization process.

The cognitive coefficient c1 and the coefficient social c2 cause the algorithm to
perform better if they are balanced, i.e. c1 = c2 [2]. Also according to [2], recent
studies indicate that we should have c1+c2 = 4, and that good results were achieved
using c1 = c2 = 1.49. The factors r1 and r2 define the stochastic content of cognitive
and social contributions of the algorithm. Random values are selected in the range
[0,1] [2] for each of the factors.

The maximum velocity is defined for each dimension of the search space, and
can be formulated as a percentage of the domain, according to Equation 3.3, where
xmax and xmin are respectively the maximum and minimum value of the domain and
δ is a value in the interval [0,1].

vmax = δ (xmax − xmin) (3.3)

The amount of particles defines the possibility of covering a certain portion of the
search space in each iteration. A large number of particles allows for greater cov-
erage, but requires more computing effort. According to [2], empirical studies have
shown that the PSO can reach optimal solutions using a small number of particles,
between 10 and 30.

3.3.2 Parallel PSO

Aiming at improving the performance of the PSO, Algorithm 3.1 has been
parallelized as shown in Figure 3.2. Each particle performs its fitness velocity and
position calculations, independently and in parallel with the other particles until
the election of Gbest. In order to synchronize the process and prevent using incor-
rect values Gbest, the velocity and position computations can only commence once
Gbest have been chosen among Pbest of all particles.

34 3 A Reconfigurable Hardware for Particle Swarm Optimization

Yes

Start

Initialize a population of particles with random
positions and velocities

Evaluate
function

Evaluate
function

Evaluate
function

Update Gbest

Evaluate
function

Update
Vi and Xi

Update
Vi and Xi

Update
Vi and Xi

Update
Vi and Xi

Stopping
criterion

satisfied?

Output
Gbest

Stop

Update
Pbest

Update
Pbest

Update
Pbest

Update
Pbest

No

Fig. 3.2 Parallel PSO data flow

3.4 The MicroBlaze Embedded Processor 35

3.4 The MicroBlaze Embedded Processor

FPGAs are programmable logic devices, in which a matrix of Configurable Logic
Blocks or CLBs, connected by programmable channels can be configured to per-
form a set of logical functions and give rise to any type of digital system. They are
excellent means of prototyping [14].

The advantages of using an FPGA to implement a digital system goes beyond
the benefits of prototyping. Depending on the amount of resources (logical blocks)
available on a chip, you can replicate various components of the system architecture
and perform operations in parallel.

The MicroBlaze
TM

embedded processor soft core is a reduced instruction set

computer (RISC) optimized for implementation for Xilinx
TM

FPGAs. The fixed
feature set of the processor includes Thirty-two 32-bit general purpose registers, 32-
bit instruction word with three operands and two addressing modes, 32-bit address
bus, single issue pipeline and other features [15]. The Figure 3.3 shows a functional
block diagram of the MicroBlaze core.

Fig. 3.3 MicroBlaze Core Block Diagram

The result of the computation can be transmitted to a workstation via a UART
(Universal Assynchronous Receiver/Transmission) interface [17] and then, inter-
preted by the embedded software.

The XPS UART Lite is an example of component of Xilinx
TM

intellectual prop-
erty that connects to the PLB (Processor Local Bus) bus of MicroBlaze and performs
this communication interfacing between the processor and the workstation.

36 3 A Reconfigurable Hardware for Particle Swarm Optimization

The programming of the microprocessor can be done in ANSI C++ and compiled
by XPS (Xilinx Studio Plataform), which generates for each component included
the respective control data.

3.5 Co-processor Architecture

The main component of the co-processor architecture is depicted in Figure 3.5, and
termed the SWARM unit. It is responsible for the correct operation and synchroniza-
tion of the swarm. It starts by enabling the START unit that generates the initial
position and velocity of each particle in the population. The stochastic nature of the
PSO algorithm requires the use of random numbers generator. An LFSR (Linear
Feedback Shift Register) is responsible in generating random numbers for single
precision. This is done according to the maximum and minimum value of the do-
main as well as on number of particles allowed. As these values are loaded, the
unit enables the particles to start the fitness calculation. Whenever the particle is
ready to informs the value of the respective Pbest, the comparator checks, the val-
ues returned by the particles as to whether the Gbest register should be updated.
The SWARM unit synchronizes the work of the particles, allowing that the calcula-
tions of velocity and position are started only once Gbest has been correctly elected.
The state machine CTRL, among other controls enables registers NDIM, NRUN and
NPART to keep track of the dimension, number of iterations and number of parti-
cles respectively. Note that the PARTICLE includes as many particles as parameter
n particles indicates and that all of them perform in parallel.

The Figure 3.4 shows the finite state machine of the main controller of unit
Swarm. The description of the 14 required states is presented in the following:

• S00: Initialize the system; If EnablePSO is set then it go to S01;
• S01: Enable the signal StartEn of the Start Unit to calculate the initial positions

and velocities of each particle;
• S02: Enable the first particle and loads the value of the first position and velocity

in the first dimension of the particle when ReadStart is activated; go to S03;
• S03: Increment the particle dimension and go to S04;
• S04: Check the number of particle size, if smaller go to S01 else go to S05;
• S05: Increase the number of particles; go to S06; Particles start fitness calcula-

tion;
• S06: Check the number of particles. If less than the total returns to S01 else go

to S07;
• S07: Initialize the particle counter; go to S08;
• S08: Wait in S08 until the signal ReadyPart of the first particle is active (the

result of the particle fitness is ready); go to S09;
• S09: Compare the Fitness value of the particle with the value of Global Fitness;

if smaller write the new fitness values and the coordinates in registers Gbest1 and
Gbest2; go to S10;

• S10: Increment counter of particles; go to S11;
• S11: Check the number of particles; If less return to S09 else go to S12;

3.5 Co-processor Architecture 37

S00 S01 S02 S03 S04

S05

Enable_pso=0 Read_start=0

S06S07

S08

Part_ready=0

S09

S10S11S12S13S14

Fig. 3.4 Swarm FSM

• S12: Enable signal ”readgbest”; particles update velocity (Equation 3.1) and po-
sition (Equation 3.2);

• S13: Check the number of iterations, if less return to S07 else go to S14;
• S14: Display the final result; go to S00.

The PARTICLE unit of Figure 3.6 is equipped with an internal memory repre-
sented by a bank of registers: two for each dimension (velocity and position), an
execution module PSO CORE for computing the velocity and position of the par-
ticle, a module for calculating the fitness function and a single-precision floating-
point unit FPU (IEEE 754 standard) to actually perform the calculations. Note that
there are as many PARTICLE units as particles in the swarm, and thus enabling the
massively parallel execution of particle-related operations. After loading the initial
values and triggering, the FITNESS unit commences the calculation of the fitness
function value. The result of this operation is then compared with the initial value
and updated whenever necessary. At this point, the particle Pbest value is passed
to the SWARM unit that, after comparing it with the results of other particles, elects
the adequate Gbest, passes the new value through to all existing PARTICLE units,
hence triggering the respective PSO CORE modules. The latter performs the com-
putation of the new particle velocity and position in the search space. This done for

38 3 A Reconfigurable Hardware for Particle Swarm Optimization

PARTICLE
PARTICLE

PARTICLE

START

comparatorFitness EN

vi

CTRL

clk

wc1

Gbest xi wread c1 c2 vmaxnrun

Fitness X1 x2

Gbest2Gbest1EN EN

Fitness x1 x2

clk

c2 vmax

nrun

n_particles

xmax xmin

Start_en

Part_ready

Read_gbest

clk clk clk

clk

clk

g1

g2

Start_en

Addr_gbest

Enable pso

N_PARTN_DIM N_RUN

Fig. 3.5 The Swarm unit architecture

each dimension and according to (3.1) and (3.2). At this stage, the particle is ready
to either perform a new iteration or terminate the optimization process according to
the stopping criterion adopted.

3.6 Performance Results

The MicroBlaze
TM

and the co-processor PSO were synthesized in a Xilinx Virtex
5 FPGA xc5vfx70t. The MicroBlaze embedded processor soft core is a reduced

instruction set computer (RISC) optimized for implementation in Xilinx
TM

FPGAs.
Without the proposed PSO co-processor, the MicroBlaze processor performs

all computing. In this case, the PSO algorithm together with the fitness func-
tions used were implemented in ANSI/C++. The MicroBlaze has a communication
interface for point-to-point, called Fast Simplex Link (FSL), which allows for an ef-
ficient connection with an external component, termed as the co-processor. The co-
processor, besides the fact that is being used as a hardware accelerator, it increases
the CPU availablability to perform other critical activities while the co-processor
performs the PSO specific computation. Figure 3.7 shows the processor as it is con-
nected to the PSO co-processor hardware.

3.6 Performance Results 39

PSO CORE

FITNES

x+

comparator Fitness

v+

X0

X(n-1)

A B OP md st

EN

FPU

A B OP

R

md st

Ready

A

B

OP

round

start

EN Fpu R Ready

Fitnes

Fpu R

Ready

V0

V(n-1)

EN

Pbest
vi xi

x1 x2

w c1 c2 vmax Gbestclk

clk

CTRL

clk

w c1 c2 vmax Gbest

EN

ENR gbest

ReadG

ReadyF ReadyF

EN F

EN Fit

Gbest
Ready

Gbest
Ready

x1 x2

clk

EN

EN

Pbest X1

Pbest X2

EN

EN

x+

v+

xi

vi

EN

EN

x1 x2

EN Reg
Addr

Addr

x1x2Fitness

Part
Ready

Part
Ready

Dim

Dim

EN Tri

Ready
Start

Ready
Start

Fig. 3.6 Particle unit architecture

UART Timer

co-processor Fast Simplex Link
FSL

Peripheral Local Bus
PLB

Swarm Unit

CTRL

Fig. 3.7 PSO co-processor connected by FSL to the MicroBlaze

Four functions are implemented in order to assess the perfromance of the pro-
posed PSO co-processor architecture: The Sphere as defined in (3.4), Rosenbrock
Function (3.5), DeJong F2 Function (3.6) and F6 Function (3.7).

f1(x,y) = f (x,y) = x2 + y2 (3.4)

f2(x,y) = 100× (y− x2)2 +(x− 1)2 (3.5)

40 3 A Reconfigurable Hardware for Particle Swarm Optimization

f3(x) = 100× (x2− y)2 +(1− x)2 (3.6)

f4(x,y) = 0.5− (sin
√

x2 + y2)2 − 0.5
(1.0+ 0.001× (x2+ y2))2 (3.7)

(a) Sphere (b) Rosenbrock

(c) DeJong F2 (d) F6

Fig. 3.8 Fitness Function

The performance results obtained for the execution of the PSO and the fit-
ness functions by a MicroBlaze processor with and without the support of the co-
processor are described in Table 3.1.

Table 3.2 presents the synthesis results for the MicroBlaze processor using a
swarm with 4 particles in a 32-bit architecture to solve the optimization problems
of two dimensions. These results are viable for evaluating the efficiency of the ar-
chitecture, the performance of circuits implemented, in addition to showing the re-
source requirements in the FPGA. Table 3.3 shows the comparison of the execution
time for the conditions described in Table 3.1, as well as the performance obtained
by the co-processor compared to MicroBlaze processor. In this table, one can note
that the performance of PSO co-processor, specifically on a Xilinx Virtex 5 FPGA
(xc5vfx70t) operating at 50 MHz, is up to 20 times faster than the implementation
on MicroBlaze, which represents a very nice improvement indeed.

3.7 Summary 41

Table 3.1 Results for MicroBlaze processor vs. the PSO co-processor

Function Range Iterations
Co-processor MicroBlaze
(milliseconds) (milliseconds)

Sphere [−100 100] 200 3.15 30.48
DeJong [−5 5] 200 3.48 30.58
Rosenbrock [−16 16] 500 9.82 202.82
F6 [−100 100] 500 76.77 343.56

Table 3.2 Synthesis results for four particles in two dimensions optimization problems

Implementation
Registers Max % LuTs Max % Frequency

44800 44800 (MHz)

MicroBlaze∗ 2262 5 2627 5 100.00
Sphere† 15100 28 38498 85 86.55
DeJong† 15572 28 38670 86 93.08
Rosenbrock† 15168 29 38873 86 93.11
F6† 15168 33 38873 86 82.45
∗Area requirements for the MicroBlaze only.
†Area requirements for the MicroBlaze and the PSO co-processor.

Table 3.3 Co-processor performance

Fitness Function
MicroBlaze Co-processor Performance

(millisecond) (millisecond) Factor

Sphere 30.48 3.15 9.67
DeJong 30.58 3.48 8.78
Rosenbrock 202.82 9.82 20.65
F6 343.56 76.77 4.47

3.7 Summary

This chapter presents a parallel architecture of the PSO algorithm implemented as
a hardware co-processor to the MicroBlaze processor. The FPGA used is a Xilinx
Virtex 5 FPGA (xc5vfx70t). The architecture exploits the parallelism of updating
the particle positions and velocities and getting the result of the fitness function in-
dependently of the others particles of the swarm. The synthesis results show that the
scalability of the hardware depends on the number of particles used and the com-
plexity of the fitness function. The architecture of PSO was validated using four
particles operating in parallel to solve optimization problems of two dimensions.
The best acceleration was obtained for the Rosenbrock function, achieving a perfor-
mance of 20 times faster.

Further investigation of the impact of the co-processor will be carried out. For
instance, we intend to check out the impact of the use of several PSO co-processors,
each one searching in one voxel of a many-voxels search space.

42 3 A Reconfigurable Hardware for Particle Swarm Optimization

References

1. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Confer-
ence on Neural Network (1995)

2. Engelbrecht, A.P.: Computational Swarm Intelligence. In: Wiley Fundamentals of Com-
putational Swarm Intelligence (2005)

3. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69–73 (1998)

4. Tewolde, G.S., Hanna, D.M., Haskell, R.E.: Accelerating the Performance of Particle
Swarm Optimization for Embedded Applications. In: Congress on Evolutionary Com-
putation (2009)

5. Muoz, D.M., Llanos, C.H., dos Santos Coelho, L., Ayala-Rincn, M.: Hardware Architec-
ture for Particle Swarm Optimization using Floating-Point Aritmetic. In: Ninth Interna-
tional Conference on Intelligent Systems Design and Applications, pp. 243–248 (2009)

6. Sadhasivam, G.S., Meenakshi, D.K.: Load Balance, Efficient Scheduling Whit Parallel
Job Submission in Computational Grids Using Parallel Particle Swarm Optimization. In:
World Congress on Nature e Biologically Inspired Computing, pp. 175–180 (2009)

7. Li, S.-A., Wong, C.-C., Yu, C.-J., Hsu, C.-C.: Hardware/Software Co-design for Particle
Swarm. Jornal the National Science, 3762–3767 (2010)

8. Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L. (eds.): Multi-Objective
Swarm Intelligent Systems. SCI, vol. 261. Springer, Heidelberg (2010)

9. Maeda, Y., Matsushita, N.: Simultaneous Pertubation Particle Swarm Optimization Us-
ing FPGA. In: International Joint Conference on Neural Networks (August 2007)

10. Shutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global opti-
mization with the particle swarm algorithm. NIH Public Acsess, Int. J. Numer. Methods
Eng., 2296–2315 (December 2004)

11. B.-l. Koh, A.D., George, R.T., Haftka, B.J.: Fregly: Parallel asynchronous particle swarm
algorithm. NIH Public Acsess, Int. J. Numer. Methods Eng., 578–595 (July 2006)

12. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a func-
tion. The Computer Journal (1960)

13. Al-Eryani, J.: Floating Point Unit (2006)
14. XILINX Virtex-5 User Guide, Embedded Development Kit EDK 10.1i (2011),

http://www.xilinx.com/support/documentation/
user guides/ug190.pdf

15. XILINX MicroBlaze Processor Reference Guide, v5.3 (2011),
http://www.xilinx.com/support/documentation/
sw manuals/mb ref guide.pdf

16. XILINX Fast Simplex Link v2.11c (2011), http://www.xilinx.com/support/
documentation/ip documentation/fsl v20.pdf

17. XILINX XPS UART Lite v1.01a (2011), http://www.xilinx.com/support/
documentation/ip documentation/xps uartlite.pdf

18. Verilog Resources, Verilog Hardware Description Language (2011),
http://www.verilog.com

19. EDA Industry Working Groups, VHDL – Very High Speed Integrated Circuits Hardware
Description Language (2011), http://www.vhdl.org/

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf
http://www.verilog.com
http://www.vhdl.org/

Chapter 4
Particle Swarm Optimization on Crossbar
Based MPSoC�

Abstract. Multi-Processor System on Chip (MPSoC) offers a set of processors,
embedded in one single chip. A parallel application can, then, be scheduled to
each processor, in order to accelerate its execution. One problem in MPSoCs is the
communication between processors, necessary to run the application. The shared
memory provides the means to exchange data. In order to allow for non-blocking
parallelism, we based the interconnection network in the crossbar topology. In this
kind of interconnection, processors have full access to their own memory module
simultaneously. On the other hand, processors can address the whole memory. One
processor accesses the memory module of another processor only when it needs
to retrieve data generated by the latter. This chapter presents the specification and
modeling of an interconnection network based on crossbar topology. The aim of
this work is to investigate the performance characteristics of a parallel application
running on this platform.

4.1 Introduction

During the 80’s and 90’s, engineers were trying to improve the processing capabil-
ity of microprocessors by increasing clock frequency [11]. Afterwards, they tried to
explore parallelism at the instruction level with the concept of pipeline [1] [3]. How-
ever, the speedup required by software applications was gradually becoming higher
than the speedup provided by these techniques. Besides this, the increase in clock
frequency was leading to the increase in power required, to levels not acceptable.
The search for smaller devices with high processing capability and with less energy
consumption have turned solutions based on only one processor obsolete. This kind
of solution has been restricted to low performance applications. On the other hand,
there are few applications of this sort, for which microcontrollers are best employed.

In order to reach specific performance requirements, such as throughput, latency,
energy consumed, power dissipated, silicon area, design complexity, response time,
scalability, the concept of Multi-Processor System on Chip (MPSoC) was explored.

� This chapter was developed in collaboration with Fábio Gonçalves Pessanha.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 43
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_4, c© Springer International Publishing Switzerland 2014

44 4 Particle Swarm Optimization on Crossbar Based MPSoC

In this concept, several processors are implemented in only one chip to provide
the most of parallelism possible. MPSoCs require an interconnection network [7]
to connect the processors, as shown in Fig. 4.1. Interconnection networks, beyond
the context of MPSoCs, are implemented in different topologies, such as shared-
medium, direct, indirect and hybrid [6] [4].

Another example is the crossbar, which connects processor-memory nodes
through dedicated communication links, using a switch at each node [4], as depicted
in Fig. 4.2 for a 4x4 network.

P

Interconnection Network

P P P.......

P P P P.......

Fig. 4.1 Interconnection Network in a Multi-Processor System

4.2 The Crossbar Topology

The crossbar network allows for any processor to access any memory module simul-
taneously, as far as the memory module is free. Arbitration is required when at least
two processors attempt to access the same memory module. However, contention
is not an usual case, happening only when processors share the same memory re-
source, for example, in order to exchange information. In this work, we consider
a distributed arbitration control, shared among the switches connected to the same
memory module. In Fig. 4.3, the main components are introduced, labeled accord-
ing to their relative position in the network, where i identifies the row and j identifies
the column. For instance, component A(j) corresponds to the arbiter [5] for column
j. For the sake of legibility, we consider 4 processors (0 <

= i <= 3) and 4 memory
modules (0 <

= j <= 3).
The processor is based on the PLASMA CPU core, designated MLite CPU

(MIPS Lite Central Processor Unit) [8], shown in Fig. 4.4. In order to access a
memory module M(j), processor P(i) must request the corresponding bus B(j) and

4.2 The Crossbar Topology 45

S

Fig. 4.2 Crossbar Switches Interconnection

P(1)

P(2)

P(3)

M(0) M(1) M(2) M(3)

S(00) S(01) S(02) S(03)

S(13)S(12)S(11)S(10)

S(20) S(21) S(22) S(23)

S(30) S(31) S(32) S(33)

A(0) A(1) A(2) A(3)

P(0)

Fig. 4.3 Crossbar Components

46 4 Particle Swarm Optimization on Crossbar Based MPSoC

wait for the response from the arbiter A(j). A bus access control is, then, imple-
mented, as depicted in Fig. 4.5, which decodifies the two most significant bits of
the current address (ADDRESS(i)<29:28>), generating the corresponding mem-
ory module bus request REQ IN(i,j). If P(i) is requesting its primary bus B(j), for
which i = j, the arbiter sets signal PAUSE CONT(i), pausing the processor until
arbitration is complete, when, then, the arbiter resets this signal. On the other hand,
if P(i) is requesting a secondary bus B(j), for which i �= j, signal BUS REQ(i) is
set, pausing the processor until arbitration is complete, when, then, the arbiter sets
signal DIS EN(i), activating the processor.

CLK

RESET_IN

INTR_IN

MEM_PAUSE

DATA_R<31:0>

ADDRESS<29:0>

BYTE_WE<3:0>

DATA_W<31:0>

MLite_CPU

Fig. 4.4 MLite CPU Interface Signals

DECOD(i)

REQ_IN(i,0)

REQ_IN(i,1)

REQ_IN(i,2)

REQ_IN(i,3)

MEM_PAUSE(i)

ADDRESS(i)<29>

ADDRESS(i)<28>

DIS_EN(i)
PAUSE_CONT(i)

BUS_REQ(i)
'1' D Q

COMPARATOR
≠

i

CLEAR(i)

CK

CLR

^

Fig. 4.5 Bus Access Control

The croosbar switch is basically a set of tri-state gates, controlled by the arbiter,
as shown in Fig. 4.6. Signal COM DISC(i,j) is set by the arbiter, after arbitration
is complete, estabilishing the communication between processor P(i) and memory
module M(j).

4.2 The Crossbar Topology 47

COM_DISC(i,j)

ADDRESS(i)<27:0>

BYTE_WE(i)<3:0>

DATA_W(i)<31:0>

DATA_R(i)<31:0>

ADDR(i,j)<27:0>

WR_BYTE(i,j)<3:0>

DATA_OUT(i,j)<31:0>

DATA_IN(i,j)<31:0>

COM_DISC(i,j)

Fig. 4.6 Crossbar Switch

4.2.1 Network Controller

The network controller is composed of the arbiter A(j) and a set of controllers, one
for each processor, implemented by state machines SM(j)<0:N-1>, as shown in
Fig. 4.7. Upon receiving a bus request, through signals REQ IN(i,j)<0:N-1>, the
arbiter A(j) schedules a processor to be the next bus master, based on the round-robin
algorithm, by activating the corresponding signal GRANT(i,j). State machines are
used to control the necessary sequence of events to transition from the present bus
master to the next one.

SM_S(3)SM_S(1)SM_P(0)

REQ_IN(00) REQ_IN(01) REQ_IN(03)

SM_S(2)

REQ_IN(02)

GRANT(00) GRANT(01) GRANT(02) GRANT(03)

ARBITER(0)

REQ_IN(00) REQ_IN(10) REQ_IN(30)REQ_IN(20)

CLK
RST

ACK

CLK

RST
CLK_X8

CON_DISC(00)

ACK(00)
CLEAR_ADDR(00)
PAUSE_CONT(00)

CLK
RST
CLK_X8
CON_DISC(03)

SET_ADDR(03)
INIB_COUNT(03)

DIS_EN(03)
ACK(03)

INIB_COUNT

Fig. 4.7 Network Controller

48 4 Particle Swarm Optimization on Crossbar Based MPSoC

There are two types of state machines: primary and secondary. A primary state
machine, designated SM P(j), controls processor P(i) bus accesses to its primary
bus B(j), for which i = j. A secondary state machine, designated SM S(i,j), controls
processor P(i) bus accesses to a secondary bus B(j), for which i �= j. Therefore,
for each arbiter, there will be one primary state machine and N − 1 secondary state
machines.

The primary state machine includes 10 states as described the following list. State
Reset is entered whenever signal RESET goes to 1, setting signal PAUSE CONT(i),
which suspends P(i), and resetting all the others. As RESET goes to 0, SM P(j)
enters state Con 1, establishing the connection of P(i) to B(j), for i = j, by setting
signal CON DISC(i,j), according to Fig. 4.6. Once in state Cont, P(i) starts the bus
access, as signal PAUSE CONT(i) goes to 0. While there are no requests from other
processors, so GRANT(i,j)=1 for i = j, and P(i) is not requesting any other B(j),
so REQ(i,j)=1 for i = j, the primary state machine stays in state Cont. If another
processor requests B(j), for i= j, then the arbiter resets signal GRANT(i,j), for i= j,
and the primary state machine enters state Pause, in order to suspend P(i), by setting
signal PAUSE CONT(i). Next, SM P(j) enters state P Disc, in order to disconnect
P(i) from B(j), by resetting signal CON DISC(i,j). It stays in this state until the
arbiter gives B(j) back to P(i), by setting signal GRANT(i,j), for i = j. SM P(j),
then, returns to state Con 1, where P(i) reestablishes its connection to B(j). On the
other hand, from state Cont, the other possibility is that P(i) requests another B(j),
for i �= j, resetting signal REQ(i,j), for i = j. In this case, SM P(j) enters state Wait,
in order to check if the arbiter has already granted the secondary bus to P(i), in
which case signal GRANT(i,j), for i = j, goes to 0, or not yet, in which case signal
GRANT(i,j), for i = j, remains in 1. In the first situation, SM P(j) enters state Disc,
in order to disconnect P(i) from B(j), for i = j, by resetting signal CON DISC(i,j).
In the second situation, SM P(j) enters state Ack, setting signal Ack(j), in order to
force the arbiter to reset signal GRANT(i,j), as shown in Fig. 4.7. Once in state
Disc, SM P(j) stays in this state until the arbiter grants once again B(j) to P(i),
for i = j, meaning that P(i) is now requesting access to its primary bus. As signal
GRANT(i,j) goes to 1, SM P(j) enters state Con 2, where P(i) is then connected
to its primary bus, as signal CON DISC(i,j) goes to 1. Then, SM P(j) enters state
Clear, in order to reset signal BUS REQ, according to Fig. 4.5, which was set when
P(i) was addressing a secondary memory module, for which i �= j. This signal, when
set, pauses P(i), until the secondary state machine sends the control for P(i) to access
the secondary bus.

1. Reset: PAUSE CONT ← 1; CON DISC ← 0; ACK ME ← 0; CLEAR ← 0
if RESET = 1 then goto Reset

2. Con 1: PAUSE CONT ← 1; CON DISC ← 1; ACK ME ← 0; CLEAR ← 0
if CLK = 0 then goto Con 1

3. Cont: PAUSE CONT ← 0; CON DISC ← 1; ACK ME ← 0; CLEAR ← 0
if GRANT = 1 and REQ = 0 then goto Wait
else if GRANT = 0 and REQ = 1 then goto Pause

4. Wait: PAUSE CONT ← 0; CON DISC ← 1; ACK ME ← 0; CLEAR ← 0
if GRANT = 1 then goto ACK ME else goto Disc

4.2 The Crossbar Topology 49

5. Ack: PAUSE CONT ← 0; CON DISC ← 1; ACK ME ← 1; CLEAR ← 0
6. Disc: PAUSE CONT ← 0; CON DISC ← 0; ACK ME ← 0; CLEAR ← 0

if GRANT = 0 then goto Disc
7. Con 2: PAUSE CONT ← 0; CON DISC ← 1; ACK ME ← 0; CLEAR ← 0

if CLK = 0 then goto Con 2
8. Clear: PAUSE CONT ← 0; CON DISC ← 1; ACK ME ← 1; CLEAR ← 1

goto Cont
9. Pause: PAUSE CONT ← 1; CON DISC ← 1; ACK ME ← 0; CLEAR ← 0

10. P Disc: PAUSE CONT ← 1; CON DISC ← 0; ACK ME ← 0; CLEAR ← 0
if GRANT = 0 then goto P Disc else goto CON 1

The secondary state machine includes 8 states as described by the following list.
During initialization, when signal Reset is 1, SM S(i,j) stays in state Reset until the
arbiter grants a secondary bus B(j) to processor P(i). When signal GRANT(i,j) goes
to 1, SM S(i,j) enters state Wait 1, followed by state Wait 2, in order to give time to
the corresponding primary state machine to pause P(i) and disconnect it from B(j),
for i = j. In this case, either P(i) is requesting a secondary bus or another processor
is requesting B(j) as secondary bus. In the first situation, SM P(i,j) enters state Wait
and in the second situation SM P(i,j) enters state Pause, as discribed above. Observe
that only the corresponding signal GRANT(i,j) is set, according to P(i) and B(j)
in question. Next, SM S(i,j) enters state Con, where signal CON DISC(i,j) is set,
connecting P(i) to B(j). Once in state Dis, signal DIS EN(i,j) goes to 1, activating
P(i), as shown in Fig. 4.5. Recall that P(i), for i = j, was paused by the primary
state machine, either because it requested a secondary bus or its primary bus is
being requested by another processor. Once P(i) finishes using B(j), for which i �=
j, SM S(i,j) enters state En, resetting signal DIS EN(i,j) and pausing P(i). Next,
SM S(i,j) enters state Disc, resetting signal CON DISC(i,j) and disconnecting P(i)
from B(j). Then, SM S(i,j) enters state Ack, in order to tell the arbiter it finished
using B(j), by setting signal ACK ME, which makes the arbiter select the next bus
master. Observe that signal INIB COUNT goes to 1 as soon as SM S(i,j) leaves
state Reset, stopping the counter that controls the time limit for P(i) to use B(j), for
i = j, since this processor is not using its primary bus.

1. Reset: CON DISC ← 0; DIS EN ← 0; INIB COUNT ← 0
ACK ME ← 0; if GRANT = 0 then goto Reset

2. Wait 1: CON DISC ← 0; DIS EN ← 0; INIB COUNT ← 1; ACK ME ← 0
3. Wait 2: CON DISC ← 0; DIS EN ← 0; INIB COUNT ←; ACK ME ← 0
4. Con: CON DISC ← 1; DIS EN ← 0; INIB COUNT ← 1; ACK ME ← 0

if CLK = 0 then goto Con
5. Dis: CON DISC ← 1; DIS EN ← 1; INIB COUNT ← 1; ACK ME ← 0

if CLK = 0 then goto Dis
6. En: CON DISC ← 1; DIS EN ← 0; INIB COUNT ← 1; ACK ME ← 0
7. Disc: CON DISC ← 0; DIS EN ← 0; INIB COUNT ← 1; ACK ME ← 0
8. Ack: CON DISC ← 0; DIS EN ← 0; INIB COUNT ← 1; ACK ME ← 1

goto Reset

50 4 Particle Swarm Optimization on Crossbar Based MPSoC

4.3 Experimental Results

In order to analyse the performance of the proposed architecture, we used the Par-
ticle Swarm Optimization (PSO) method [9][10] to optimize an objective function.
This method was chosen due to its intensive computation, being a strong candidate
for parallelization. In this method, particles of a swarm are distributed among the
processors and, at the end of each iteration, a processor accesses the memory module
of another one in order to obtain the best position found in the swarm. The commu-
nication between processors is based on three strategies: ring, neighbourhood and
broadcast.

4.3.1 Particle Swarm Optimization

The PSO method keeps a swarm of particles, where each one represents a potential
solution for a given problem. These particles transit in a search space, where solu-
tions for the problem can be found. Each particle tends to be attracted to the search
space, where the best solutions were found. The position of each particle is updated
by the velocity factor vi(t), according to Eq. 4.1:

xi(t + 1) = xi(t)+ vi(t + 1) (4.1)

Each particle has its own velocity, which drives the optimization process, lead-
ing the particle through the search space. This velocity depends on its performance,
called cognitive component, and on the exchange of information with its neighbour-
hood, called social component. The cognitive component quantifies the performance
of particle i, in relation to its performance in previous iterations. This component is
proportional to the distance between the best position found by the particle, called
Pbesti, and its actual position. The social component quantifies the performance of
particle i in relation to its neighbourhood. This component is proportional to the
distance between the best position found by the swarm, called Gbesti, and its actual
position. In Eq. 4.2, we have the definition of the actual velocity in terms of the
cognitive and social components of the particle:

vi(t + 1) = vi(t)×w(t)+ c1× r1(Pbesti − xi(t))+ c2 × r2(Gbesti − xi(t)) (4.2)

Components r1 and r2 control the randomness of the algorithm. Components
c1 and c2 are called the cognitive and social coeficients, controlling the trust of
the cognitive and social components of the particle. Most of the applications use
c1 = c2, making both components to coexist in harmony. If c1 � c2, then we have
an excessive movement of the particle, making difficul the convergence. If c2 � c1,
then we could have a premature convergence, making easy the convergence to a
local minimum.

Component w is called the inertia coeficient and defines how the previous veloc-
ity of the particle will influence the actual one. The value of this factor is important

4.3 Experimental Results 51

for the convergence of the PSO. A low value of w promotes a local exploration of the
particle. On the other side, a high value promotes a global exploration of the space.
In general, we use values near to one, but not too close to 0. Values of w greater than
1 provide a high acceleration to the particle, which can make convergence difficult.
Values of w near 0 can make the search slower, yielding an unnecessary computa-
tional cost. An alternative is to update the value of w at each iteration, according to
Eq. 4.3, where nite is the total number of iterations. At the beginning of the iterations,
we have w ≈ 1, increasing the exploratory characteristic of the algorithm. During it-
erations, we linearly decrease w, making the algorithm to implement a more refined
search.

w(t + 1) = w(t)− w(0)
nite

(4.3)

The size of the swarm and the number of iterations are other parameters of the
PSO. The first one is the number of existing particles. A high number of particles
allows for more parts of the search space to be verified at each iteration, which al-
lows for better solutions to be found, if compared with solutions found in smaller
swarms. However, this increases the computational cost, with the increase in exe-
cution time. The number of iterations depends on the problem. With few iterations,
the algorithm could finish too early, whithou providing an acceptable solution. On
the other hand, with a high number of iterations, the computational cost could be
unnecessarily high. Algorithm 3.1 describes the PSO method.

4.3.2 Communication between Processes

The parallel execution of the PSO method was done by allocating one instance of
the algorithm to each processor of the network. The swarm was then equally di-
vided among the processors. Each subswarm evolves independently and, periodi-
cally, Gbest is exchanged among the processors. This exchange of data was done
based on three strategies: ring, neighbourhood and broadcast.

Fig. 4.8 describes the ring strategy, while Alg. 4.1 describes the PSO using this
strategy for process communication. The neighbourhood strategy can be depicted
by Fig. 4.9 and the PSO algorithm that implements this strategy is described by
Alg. 4.2. Fig. 4.10 shows the broadcast strategy and Alg. 4.3 describes its use for
process communication by the PSO algorithm.

4.3.3 Performance Results

The PSO algorithm was used to minimize the Rosenbrock function, defined by
Eq. 4.4 and whose curve is shown in Fig. 4.11. We used 1, 2, 4, 8, 16 and 32 pro-
cessors for each simulation and considering each of the communication strategies,
64 particles, distributed among the processors, and the algorithm was run for 32
iterations. The speedup obtained is described by Fig. 4.12.

52 4 Particle Swarm Optimization on Crossbar Based MPSoC

Fig. 4.8 Ring Strategy

Fig. 4.9 Neighbourhood Strategy

Fig. 4.10 Broadcast Strategy

f (x,y) = 100(y− (x2))2 +(1− x)2 (4.4)

4.4 Summary

In order to evaluate the performance offered by the proposed architecture, we
executed the PSO method for the minimization of the Rosenbrock function, both
sequentially and in parallel. The simulation was done for 1, 2, 4, 8, 16 and 32 pro-
cessors, using a swarm of 64 particles and implementing 32 iterations. We exploited

4.4 Summary 53

Algorithm 4.1. PSO with Ring Strategy
Create and initialize a swarm with n particles
id := processoridenti f ication
tmpid := id−1
nproc := numbero f processorsinthenetwork
if id �= 0 then

end process(id) := 0
end if
tmpid := id−1
repeat

for j = 1 → n do
Calculate the fitness of particlei
Update Gbest(id) and Pbest(id)
Update the particle’s velocity
Update the particle’s position

end for
Copy Gbest(id) to share the memory
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Gbest(id) then

Gbest(id) := Gbest(tmpid)
end if

until Stop criteria = true
if id = 0 then

Best := Gbest(id)
tmpid := id+1
for k = 1 → nproc−1 do

Read end process(tmpid)
while end process(tmpid) = 0 do

Read end process(tmpid)
end while
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Best then

Best := Gbest(tmpid)
end if
tmpid := tmpid−1

end for
else

end process(id) := 1
end if

three communication strategies: ring, neighbourhood and broadcast. The speedup
obtained demonstrated that the performance offered by the network increases with
the number of processors. Another fact is that both ring and neighbourhood strate-
gies have similar impact on the performance of the network, while the broadcast
strategy decreases the performance. This decrease is due to the fact the the latter
imposes much more interprocess communication than the former ones.

54 4 Particle Swarm Optimization on Crossbar Based MPSoC

Algorithm 4.2. PSO with Neighborhood Strategy
Create and initialize a swarm with n particles
id := processoridenti f ication
tmpid := id−1
nproc := numbero f processorsinthenetwork
if id �= 0 then

end process(id) := 0
end if
repeat

for j = 1 → n do
Calculate the fitness of particlei
Update Gbest(id) and Pbest(id)
Update the particle’s velocity
Update the particle’s position

end for
Copy Gbest(id) to share the memory
tmpid := id+1
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Gbest(id) then

Gbest(id) := Gbest(tmpid)
end if
tmpid := id−1
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Gbest(id) then

Gbest(id) := Gbest(tmpid)
end if

until Stop criteria = true
if id = 0 then

Best := Gbest(id)
tmpid := id+1
for k = 1 → nproc−1 do

Read end process(tmpid)
while end process(tmpid) = 0 do

Read end process(tmpid)
end while
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Best then

Best := Gbest(tmpid)
end if
tmpid := tmpid+1

end for
else

end process(id) := 1
end if

4.4 Summary 55

Algorithm 4.3. PSO with Broadcast Strategy
Create and initialize a swarm with n particles
id := processoridenti f ication
nproc := numbero f processorsinthenetwork
if id �= 0 then

end process(id) := 0
end if
repeat

for j = 1 → n do
Calculate the fitness of particlei

Update Gbest(id) and Pbest(id)
Update the particle’s velocity
Update the particle’s position

end for
Copy Gbest(id) to share the memory
tmpid := id+1
for k = 1 → nproc−1 do

Read Gbest from processor(tmpid)
if tmpid = nproc−1 then

tmpid = 0
else

tmpid := tmpid+1
end if

end for
until Stop criteria = true
if id = 0 then

Best := Gbest(id)
tmpid := id+1
for k = 1 → nproc−1 do

Read end process(tmpid)
while end process(tmpid) = 0 do

Read end process(tmpid)
end while
Read Gbest from processor(tmpid)
if Gbest(tmpid)≤ Best then

Best := Gbest(tmpid)
end if
tmpid := tmpid+1

end for
else

end process(id) := 1
end if

56 4 Particle Swarm Optimization on Crossbar Based MPSoC

Fig. 4.11 Graphic of the Rosenbrock Function

ring strategy

neighbourhood strategy

broadcast strategy

Number of Processors

S
p

ee
d

u
p

Fig. 4.12 Speedup obtained for the Execution of the Rosenbrock Function

As for future work, we intend to explore other applications for parallelization, in
order to analyse the impact of their behaviour specially concerning the interprocess
communication; introduce cache memory, to improve performance; develop a mi-
crokernel, to implement task scheduling and explore multithread execution; explore
other arbitration schemes; sintezise the architecture, in order to analyse the cost x
performace relation.

References

1. Kongerita, P., et al.: Niagara: 32-way multithreaded Spark processor. IEEE MI-
CRO 25(2), 21–29 (2005)

2. Freitas, H.C.: NoC Architecture Design for Multi-Cluster Chips. In: IEEE International
Conference on Field Programmable Logic and Applications, pp. 53–58. IEEE Press,
New York (2008)

References 57

3. Patterson, D.A., Hennessy, J.L.: Computer Organization: The Hardware/Software Inter-
face, 3rd edn. Morgan Kaufmann, San Francisco (2005)

4. Pande, P.T., Michele, G., et al.: Design, Synthesis, and Test of Networks on Chips. IEEE
Design & Test of Computers (2005)

5. Matt, W.: Arbiters: Design Ideas and Coding Styles. Silicon Logic Engineering, Inc.
(2001)

6. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann, San Francisco (2003)

7. Ni, L.M.: Issues in Designing Truly Scalable Interconnection Networks. In: International
Conference on Parallel Processing Workshop, pp. 74–83. IEEE Press, New York (1996)

8. OpenCores, http://www.opencores.org
9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Confer-

ence on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, New York (1995)
10. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley &

Sons, Chichester (2006)
11. Tanenbaum, A.S.: Structured Computer Organization, 5th edn. PEARSON Prentice Hall,

New Jersey (2006)

http://www.opencores.org

Chapter 5
A Reconfigurable Hardware for Artificial Neural
Networks�

Abstract. Artificial Neural Networks (ANNs) is a well known bio-inspired model
that simulates human brain capabilities such as learning and generalization. ANNs
consist of a number of interconnected processing units, wherein each unit performs
a weighted sum followed by the evaluation of a given activation function. The in-
volved computation has a tremendous impact on the implementation efficiency. Ex-
isting hardware implementations of ANNs attempt to speed up the computational
process. However these implementations require a huge silicon area that makes it
almost impossible to fit within the resources available on a state-of-the-art FPGAs.
In this chapter, we devise a hardware architecture for ANNs that takes advantage of
the dedicated adder blocks, commonly called MACs to compute both the weighted
sum and the activation function. The proposed architecture requires a reduced sili-
con area considering the fact that the MACs come for free as these are FPGA’s built-
in cores. The hardware is as fast as existing ones as it is massively parallel. Besides,
the proposed hardware can adjust itself on-the-fly to the user-defined topology of
the neural network, with no extra configuration, which is a very nice characteris-
tic in robot-like systems considering the possibility of the same hardware may be
exploited in different tasks.

5.1 Introduction

Artificial Neural Networks (ANNs) are useful for learning, generalization, classi-
fication and forecasting problems [3]. They consists of a pool of relatively simple
processing units, usually called artificial neurons, which communicates with one
another through a large set of weighted connections. There are two main network
topologies, which are feed-forward topology [3], [4] where the data flows from input
to output units is strictly forward and recurrent topology, where feedback connec-
tions are allowed. Artificial neural networks offer an attractive model that allows
one to solve hard problems from examples or patterns. However, the computational
process behind this model is complex. It consists of massively parallel non-linear

� This chapter was developed in collaboration with Rodrigo Martins da Silva.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 59
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_5, c© Springer International Publishing Switzerland 2014

60 5 A Reconfigurable Hardware for Artificial Neural Networks

calculations. Software implementations of artificial neural networks are useful but
hardware implementations takes advantage of the inherent parallelism of ANNs and
so should answer faster.

Field Programmable Gate Arrays (FPGAs) [7] provide a re-programmable hard-
ware that allows one to implement ANNs very rapidly and at very low-cost. How-
ever, FPGAs lack the necessary circuit density as each artificial neuron of the net-
work needs to perform a large number of multiplications and additions, which con-
sume a lot of silicon area if implemented using standard digital techniques.

The proposed hardware architecture described throughout this chapter is de-
signed to process any fully connected feed-forward multi-layer perceptron neural
network (MLP). It is now a common knowledge that the computation performed
by the net is complex and consequently has a huge impact on the implementation
efficiency and practicality. Existing hardware implementations of ANNs have at-
tempted to speed up the computational process. However these designs require a
considerable silicon area that makes tem almost impossible to fit within the re-
sources available on a state-of-the-art FPGAs [1], [2], [6]. In this chapter, we devise
an original hardware architecture for ANNs that takes advantage of the dedicated
adder blocks, commonly called MACs (short for Multiply, Add and Accumulate
blocks) to compute both the weighted sum and the activation function. The lat-
ter is approximated by a quadratic polynomial using the least-square method. The
proposed architecture requires a reduced silicon area considering the fact that the
MACs come for free as these are FPGA’s built-in cores. The hardware is as fast as
existing ones as it is massively parallel. Besides, the proposed hardware can adjust
itself on-the-fly to the user-defined topology of the neural network, with no extra
configuration, which is a very nice characteristic in robot-like systems considering
the possibility of the same piece of hardware may be exploited in different tasks.

The remaining of this chapter is organized as follows: In Section 5.2, we give a
brief introduction to the computational model behind artificial neural networks; In
Section 5.3, we show how we approximate the sigmoid output function so we can
implement the inherent computation using digital hardware; In Section 5.4, we pro-
vide some hardware implementation issues about the proposed design, that makes it
original, efficient and compact; In Section 5.5, we present the detailed design of the
proposed ANN Hardware; Last but no least, In Section 5.6, we draw some useful
conclusions and announce some orientations for future work.

5.2 ANNs Computational Model

We now give a brief introduction to the computational model used in neural net-
works. Generally, is constituted of few layers, each of which includes several neu-
rons. The number of neurons in distinct layers may be different and consequently
the number of inputs and that of outputs may be different [3].

The model of an artificial neuron requires n inputs, say I1, I2, . . . , In and the synap-
tic weights associated with these inputs, say w1,w2, . . . ,wn. The weighted sum a,
which, also called activation of the neuron, is defined in (5.1). The model usually

5.3 Approximation of the Output Function 61

includes an output function nout(.) that is applied to the neuron activation before it
is fed forwardly as input to the next layer neurons.

a =
n

∑
j=1

wj × f j (5.1)

The non-linearity of the neuron is often achieved by the output function, which
may be the hyperbolic tangent or sigmoid [3]. In some cases, nout(a) may be linear.

A typical ANN operates in two necessary stages: learning and feed-forward com-
puting. The learning stage consists of supplying known patterns to the neural net-
work so that the network can adjust the involved weights. Once the network has
learned to recognize the provided patterns, the network is ready to operate, perform-
ing the feed-forward computing. In this stage, the network is supplied with an input
data or pattern, which may or not be one of those given in learning stage and verify
how the network responds with output results. This allows one to know whether the
neural network could recognize the input data. The precision of the net in recog-
nizing the new input patterns depends on the quality of its learning stage and on its
generalization. As we have previously mentioned, here we are only concerned with
the implementation of feed-forward computing stage.

5.3 Approximation of the Output Function

Unlike the activation function, which includes operations that can easily and effi-
ciently implemented in hardware, the out function requires a special care before the
computation involved can be modeled in hardware. Without loss of generality, we
chose to use the sigmoid output function. Note that the same treatment applies to the
hyperbolic function too. To allow an efficient implementation of the sigmoid func-
tion defined in (5.2), in hardware, we proceeded with a parabolic approximation of
this function using the least-square estimation method.

sigmoid(a) =
1

1+ e−a (5.2)

The approximation proceeds by defining nout(a) = C × a2 + B × a + A as a
parabolic approximation of the sigmoid of (5.2), just for a short range of the vari-
able a. We used the least-square parabola to make this approximation feasible. Many
attempts were performed to try to find out the best range of a for this approxi-
mation, so that the parabola curves fits best that of sigmoid(a). We obtained the
range [−3.3586,2.0106] for variable a, taking into account the calculated coeffi-
cients C = 0.0217, B = 0.2155 and A = 0.4790 for the parabolic approximation.
Thus, the approximation of the sigmoid function is as defined in (5.3):

nout(a) =

⎧
⎨
⎩

0 a <−3.3586
0.0217× a2+ 0.2155× a+0.4790 a ∈ [−3.3586,2.0106]
1 a > 2.0106

(5.3)

62 5 A Reconfigurable Hardware for Artificial Neural Networks

5.4 Implementation Issues

An Artificial Neural Network is a set of several interconnected neurons arranged in
layers. Let L be the number of layers. Each layer has its own number of neurons. Let
mi be the number of neurons in layer i. The neurons are connected by the synaptic
connections. Some neurons get the input data of the network, so they are called
input neurons and thus compose the input layer. Other neurons export their outputs
to the outside world, so these are called output neurons and thus compose the output
layer. Neurons placed on the layer 2 up to layer L− 1 are called the hidden neurons
because they belong to the hidden layers. In Fig. 5.1, we show a simple example of
an ANN. The output of each neuron, save output neurons, represents an input of all
neurons placed in the next layer.

The computation corresponding to a given layer starts only when that of the cor-
responding previous layer has finished. Our ANN hardware has just one real layer of
neurons, constitutes of k neurons, where k is maximum number of neurons per layer,
considering all layers of the net. For instance, for the net of Fig. 5.1, this parameter
is 3. This single real layer or physical layer is used to implement all layers of the
network. As only one layer operates at a time, this allows us to minimize drastically
the silicon area required without altering the response time of the net. For instance,
considering the net of Fig. 5.2, the first stage of the computation would use only 2
neurons, then in the second stage all three physical neurons would be exploited and
in the last stage, only one neuron would be useful. So instead of having 6 physically
implemented neurons, our hardware requires only half that number to operate. ANN
hardware treats the nets layers as virtual.

Besides reducing the number of neurons that are actually implemented in hard-
ware, our design takes advantage of some built-in cores that come for free in nowa-
days FPGAs. This blocks are called MACs (Multiply, add and Accumulate), which
are usually used in DSPs (Digital Signal Processing) and their architecture is shown
in Fig. 5.2. The MACs blocks are perfect to perform the weighted sum.

m0 = 2
2 inputs, or 2
input nodes

I1

I2

m1 = 2
2 neurons,
first layer m2 = 3

3 neurons,
second layer (hidden)

mL = m3 = 1
1 neuron,

third layer (output)

Fig. 5.1 Neural network with two inputs, three layers and one output Y

5.5 ANN Hardware Architecture 63

Recall that nout(a) of (5.3) is the actual neuron output function our ANN hard-
ware will perform. Observe that the computation involved in this function is sum of
products (quadratic polynomial) and so the MACs can be used in this purpose to.
Actually we use the same block of the neuron to compute the output function.

×
+

A
C
C

A

B

MAC

Y

Fig. 5.2 Built-in MACs blocks in FPGAs

5.5 ANN Hardware Architecture

The ANN hardware interface is illustrated in Fig. 5.3, wherein two other compo-
nents are included: LOAD CONTROLLER and CLOCK SYSTEM. The former may be
any outside system able to setup the neural network topology and to load all neces-
sary data in the ANN hardware. This include the number of inputs, the number of
layers, the number of neurons per layer and that of outputs, besides, the net inputs
and the definitive weights. Our ANN hardware is organized in a neural control unit
(UC) and Neural arithmetic and logic unit (ALU).

Neural UC encompasses all control components for computing all neural network
feed-forward computation. It also contains the memories for storing the net’s inputs
in the INPUT MEMORY, the weights in the WEIGHT MEMORY, the number of inputs
and neurons per layer in the LAYER MEMORY and the coefficients of the output
function in the OUTPUT FUNCTION MEMORY as described in (5.3). Fig. 5.4 and
Fig. 5.5 depict, respectively, two parts of the neural UC.

During the loading process, which commences when LCStart = 1, the LOAD

CONTROLLER sets signal DataLoad and selects the desired memory of the neural
UC by signals Load0 and Load1 (see Fig. 5.3, Fig. 5.4 and Fig. 5.5).

The counters that provide addresses for memories are entirely controlled by the
LOAD CONTROLLER. Signal JKClk is the clock signal (from CLOCK SYSTEM in Fig.
5.4) that synchronizes the actions of those Counters and of the LOAD CONTROLLER.
This one fills each memory through the 32-bit DATA in loading process.

When the loading process is finished (LCFinal = 1), in Fig. 5.3, signal DataLoad
can be turned off and the LOAD CONTROLLER can set signal Start for the com-
mencing of the feed-forward Neural Network computing. When Start = 1 (and
DataLoad = 0), the ANN hardware gets the whole control of its components; so
the LOAD CONTROLLER can no longer interfere in the neural UC. This one has a

64 5 A Reconfigurable Hardware for Artificial Neural Networks

Fig. 5.3 Interface of the ANN hardware

main controller called Network Controller (Fig. 5.3) that controls all components of
the neural UC (Fig. 5.4 and Fig. 5.5) and also the neural ALU, which is depicted in
Fig. 5.6.

During the ANN hardware operation, neural UC by the mean of the network
controller, controls the computation of each layer per stage. For each layer of the
neural network, all k hardware neurons of the neural ALU of Fig. 5.6 work in parallel
even though not necessarily all physical neurons are needed in the layer. Recall that
some layers in the ANN hardware may have fewer neurons than k. At this stage,
signal Clk is now the active clock of the ANN hardware, not signal JKClk anymore.

In Fig. 5.6, ADDER MUX decides the actual input for all hardware neurons and it
is exploited to multiplex a network input, from the INPUT MEMORY in Fig. 5.4 or the
output of a hardware neuron nOUTi, which is an output of a neuron placed in a layer
i of the net. While all physical neurons are in operation, the WEIGHT REGISTERS of
Fig. 5.6 are already being loaded using signal W (see Fig. 5.4). These are the new

5.5 ANN Hardware Architecture 65

INPUT COUNTER

INPUT MEMORY

I1
I2

In

...

M
U

X
IC

C
O

U
N

T

M
U

X
IC

C
L

R

JKClk

DataLoad

Clk

DataLoad

0

1

0

1

FirstData

ICClr

DataLoad

DataLoad

ICCount

WR

Count

Clr

Address

DATA

MEMI

DataLoad

FirstData

WR

MEMI

DataLoad

IMWR

IMRD

DataLoad

NEURON LAYER
REGISTER

JKClk nlrLoad

m

NEURON LAYER
COMPARATOR

EndSum

NEURON LAYER
ADDER

"11...111"
(−1)

LASTPROD
COMPARATOR

LastProd

Clock

WEIGHT COUNTER

WEIGHT MEMORY

w1

w2

wn

...

M
U

X
W

C
C

O
U

N
T

M
U

X
W

C
C

L
R

0

1

0

1

WCClr

DataLoad

WCCount

WR

Count

Clr

Address

DATA

MEMW

DataLoad

FirstData

WR

MEMW

DataLoad

WMWR

WMRD

DataLoad

Clock

DataLoad

Decoder

Load0

Load1

Load0

Load1

Load0

Load1

Load0

Load1

MEMI

MEMW

MEML

MEMO

NEURON
LAYER

DECODER

N1
N2
N3

Nk−1
Nk

SuperOR
FirstProd

WEIGHT
LAYER COUNTER

Clk
wlcClr

wlcCount

NEURON LAYER
COMPARATOR

m WEIGHT
LAYER

DECODER

wrLoad1
wrLoad2
wrLoad3

wrLoadk−1
wrLoadk

.

.

.

.

.

.

wlcFinal

I

W

Fig. 5.4 First part of the neural UC

weights, which are the weights of the next layer in the network. Furthermore, in Fig.
5.6, we see a set of tri-state buffers, each of which is controlled by signal Ni, issued
by the NEURON LAYER DECODER, in the neural UC of Fig. 5.4. Fig. 5.6 shows the
neuron architecture. Each hardware neuron performs the weighted sum followed by
the application of the output function nout(a).

66 5 A Reconfigurable Hardware for Artificial Neural Networks

LAYER COUNTER

LAYER MEMORY

m1

m2

mL

...

M
U
X

L
CC
OU
N
T

M
U
X

L
CC
LR

JKClk

DataLoad

Clk

DataLoad

0

1

0

1

lcClr

DataLoad

DataLoad

lcCount

WR

Count

Clr

Address

DATA

MEML

DataLoad

FirstData

WR

MEML

DataLoad

LMWR

LMRD

DataLoad

Clock

OUTPUT FUNCTION
COUNTER

OUTPUT FUNCTION
MEMORY

C*a^2+B*a+A

C

B

A

M
U
X

O
FC
C
O
U
N
T

M
U
X

O
FC
CL
R

0

1

0

1

ofcClr

DataLoad

ofcCount

WR

DATA

MEMO

DataLoad

FirstData

WR

MEMO

DataLoad

OFMWR

OFMRD

ofmAddress0

Clock

DataLoad

SuperNOR

LSB

SetInput

...

Count

Clr

D
ataLoad

2 1 0

ofmAddress1

fourFinal

00

01

10

LIMIT0 REGISTER LIMIT1 REGISTERJKClk JKClk

Limit1Limit0

RegLimit0 RegLimit1

ofmData

m

Fig. 5.5 Second part of the neural UC

Observing Fig. 5.4 (neural UC), the INPUT COUNTER, together with NEURON

LAYER REGISTER, NEURON LAYER COMPARATOR, NEURON LAYER ADDER and
LASTPROD COMPARATOR control the computation of the weighted sum: signal
FirstProd indicates the first product of the weighted sum and LastProd, the last

5.5 ANN Hardware Architecture 67

NEURON1

Fj

nOUT1

Clk
amClk

amStart

amFinal1

wj

ofmData

EndSum

ofmAddress1

m
rLoad

arLoad

arC
lr

ofrLoad

RegLimit0 RegLimit1

E
N0

E
N1

BeginOutFunction1
ResumeOutFunction1

A
D
D
ER

M
U
X

0
1

SetInput

WEIGHT REGISTER 1

wrLoad1

JKClk

W

NEURON2

Clk
amClk

amStart

amFinal2

wj

ofmData

EndSum

ofmAddress1

m
rLoad

arLoad

arC
lr

ofrLoad

RegLimit0 RegLimit1

E
N0

E
N1

BeginOutFunction2
ResumeOutFunction2

WEIGHT REGISTER 2

wrLoad2

JKClk

W

.

.

.

NEURON
K

Fj

Clk
amClk

amStart

amFinalk

wj

ofmData

EndSum

ofmAddress1

m
rLoad

arLoad

arC
lr

ofrLoad

RegLimit0 RegLimit1

E
N0

E
N1

BeginOutFunctionk
ResumeOutFunctionk

WEIGHT REGISTER
K

wrLoadk

JKClk

W

I

N1

nOUT2

N2

nOUTk

Nk

Fj

amFinal1

amFinal2

amFinalk

amFinal

S
up
er
A
N
D

Fig. 5.6 Overall hardware architecture of the Neural ALU

one. SuperOR component is an OR of all input bits. Signal EndSum (Fig. 5.4, Fig.
5.5 and Fig. 5.6) flags that the weighted sum has been completed. It also triggers the
start of the output function computation. During this stage, the OUTPUT FUNCTION

COUNTER (see Fig. 5.5) provides the address to the OUTPUT FUNCTION MEMORY

in order to release the coefficients (C = 0.0217, B = 0.2155 or A = 0.4790), through

68 5 A Reconfigurable Hardware for Artificial Neural Networks

FLOAT MULTIPLIER

A B
MULTIPLIER

REGISTER
FLOAT ADDERA B

MULTIPLIER
MUXA

0X 10 11EndSum

ofmAddress1
MULTIPLIER
MUXB

0 1EndSum

OUTPUT
MANAGER

Fj

OUTPUT FUNCTION

REGISTER

wj

ADDER
REGISTER

A
D
D
ER

M
U
X

0
1

DOWNEQUAL
COMPARATOR

UPEQUAL
COMPARATOR

RegLimit0 RegLimit1

nOUT

OUTZ OUTO

Clk ofrLoad

Clk
arClr

arLoad

Clk mrLoad
amClk amStart mFinal amClk amStart aFinal

EndSum

ofmData

mFinal
aFinal

amFinali

LATCH0

D

EN Q
EN0

LATCH1

D

EN Q

OUTZero

OUTOne

EN1

Fig. 5.7 Hardware architecture of the Neuron

o f mData, to the hardware neurons. Signal f ourFinal, in Fig. 5.5, indicates that the
computation of nout(a) has finished.

Each hardware neuron encloses a MAC block, which consists of a FLOAT MULTI-
PLIER and a FLOAT ADDER to perform products and sums, respectively. The MULTI-
PLIER REGISTER allows the LOAD ADDER to works in parallel with FLOAT MULTI-
PLIER. The ADDER REGISTER accumulates the weighted sum. Recall that all hard-
ware neurons work in parallel (see Fig. 5.6).

At an earlier stage, the LOAD CONTROLLER has loaded Limit0 = −3.3586 and
Limit1 = 2.0106 in neural UC so that RegLimit0 = −3.3586 and RegLimit1 = 2.0106
have been obtained. Those float numbers refer to (5.3), wherein nout(a) is 0 if a <
−3.3586 and 1 if a > 2.0106.

In Fig. 5.6, which shows the hardware neuron, DOWNEQUAL COMPARATOR

sets OUT Z = 1, if a < −3.3586 and UPEQUAL COMPARATOR sets OUTO = 1,
if a > 2.0106. These components, intermediated by two latches, control the OUT-
PUT MANAGER, which decides as to the output of the hardware neuron (nOUT):
(i) If a ∈ [−3.3586,2.0106], then nOUT is the result of the second degree polyno-
mial as described in (5.3), which is the content of the OUTPUT FUNCTION REG-
ISTER; (ii) If a < −3.3586, then the OUTPUT MANAGER provides nOUT = 0; (iii)
If a > 2.0106, then nOUT is 0. Components LATCH0 and LATCH1 are used to
maintain nOUT stable. Signal nOUT have to be kept during the computation of
the weighted sum of a next layer neuron. Furthermore, in Fig. 5.6, signal amFinali

References 69

indicates the end of both a product and sum performed by the neuron. The mul-
tiplier and the adder operate in parallel, i.e. when the adder is accumulating the
freshly computed product to the partial weighted sum obtained so far, the multiplier
is computing the next product. In Fig. 5.5, signal amFinal indicates the end of all
the computation in all neurons.

In Fig. 5.3, signal Final indicates that all computation required in all the layers
of the network are completed and the outputs of the network have been obtained.
These outputs are available signals nOUT1, nOUT2, . . . , nOUTh (see Fig. 5.3 and
5.7), where h is the number of neurons placed in the output layer of the Network,
with h ≤ k.

5.6 Summary

In this chapter, we presented novel hardware architecture for processing an artifi-
cial neural network, whose topology can be changed on-the-fly without any extra
reconfiguration effort. The design takes advantage of the built-in MACs block that
come for free in modern FPGAs. The model was specified in VHDL [5], simulated
to validate its functionality. We are now working on the synthesis process to eval-
uate time and area requirements. The comparison of the performance result of our
design will be then compared to both the binary-radix straight forward design and
the stochastic computing based design.

References

1. Bade, S.L., Hutchings, B.L.: FPGA-Based Stochastic Neural Networks Implementation.
In: IEEE Workshop on FPGAs for Custom Computing Machines, pp. 189–198. IEEE
Press, Napa (1994)

2. Brown, B.D., Card, H.C.: Stochastic Neural Computation II: Soft Competitive Learning.
IEEE Transactions on Computers 50(9), 906–920 (2001)

3. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge
(1995)

4. Moerland, P., Fiesler, E.: Neural Network Adaptation to Hardware Implementations. In:
Fiesler, E., Beale, R. (eds.) Handbook of Neural Computation, Oxford, New York (1996)

5. Navabi, Z.: VHDL: Analysis and Modeling of Digital Systems, 2nd edn. McGraw Hill
(1998)

6. Nedjah, N., Mourelle, L.M.: Reconfigurable Hardware for Neural Networks: Binary radix
vs. Stochastic. Journal of Neural Computing and Applications 16(3), 249–255 (2007)

7. Xilinx, Inc. Foundation Series Software, http://www.xilinx.com

http://www.xilinx.com

Chapter 6
A Reconfigurable Hardware for Fuzzy
Controllers�

Abstract. Computational system modeling is full of ambiguous situations, wherein
the designer cannot decide, with precision, what should be the outcome of the sys-
tem. Process control is one of the many applications that took advantage of the fuzzy
logic. Controller are usually embedded into the controller device. This chapter aims
at presenting the development of a reconfigurable efficient architecture for fuzzy
controllers, suitable for embedding. The architecture is parameterizable so it allows
the setup and configuration of the controller so it can be used for various problem
applications. An application of fuzzy controllers was implemented and its cost and
performance are presented.

6.1 Introduction

In [18], L. Zadeh introduced for the first time the concept of fuzziness as opposed to
crispiness in data sets. When he invented fuzzy sets together with the underlying the-
ory, Zadeh’s main concern was to reduce system complexity and provide designer
with a new computing paradigm that allow the to approximate results. Whenever
there is uncertainty, fuzzy logic together with approximate reasoning apply. Fuzzy
logic and approximate reasoning [17] can be used in system modeling and control
as well as data clustering and prediction, to name only few appropriate applications.
Furthermore, they can be applied to any discipline such as finance, image process-
ing, temperature and pressure control, robot control, among many others. The Fuzzy
Logic is a subject of great interest in scientific circles, but it is still not commonly
used in industry, as it should be. Eventually, we found some literature containing
practical applications that is being currently used in industry [11, 13].

Fuzzy logic has been used in many of applications, such as expert systems,
computing with words, approximate reasoning, natural language, process control,
robotics, modeling partially open systems, pattern recognition, decision making and
data clustering [12].

� This chapter was developed in collaboration with Paulo Renato de Souza e Silva Sandres.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 71
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_6, c© Springer International Publishing Switzerland 2014

72 6 A Reconfigurable Hardware for Fuzzy Controllers

There are many related works that implemented a fuzzy controller on a FPGA,
but most of them present controller designs that are only suitable for a specific ap-
plication [9] [13]. Mainly, the designs do not use 32-bit floating-point data. The
floating-point data representation is crucial for the sensibility of the controller de-
sign. In contrast, all the required computation in the proposed controller are per-
formed by a simple precision floating-point co-processor.

The purpose of the development of a reconfigurable hardware of a shell fuzzy
controller, that can include any number of inputs and outputs as well as any number
of rules, is the possibility of creating a device that can be used more widely and
perhaps spread the concept of fuzzy logic in the industrial final products.

This paper is divided into three sections. First, in Section 6.2, we introduce briefly
some concepts of fuzzy controller, which will be useful to follow the description of
the proposed architecture. Then, in Section 6.3, we describe thoroughly, the macro-
architecture of the fuzzy controller developed. After that, in Section 8.3, we give de-
tails about the main components included in the macro-architecture. Subsequently,
in Section 9.8, we show, via the project of two fuzzy controller, that the proposed
architecture is functionally operational and promising in terms of cost and perfor-
mance. Finally, in Section 8.5, we draw some conclusions and point out some new
direction for the work in progress.

6.2 Fuzzy Controllers

Fuzzy control, which directly uses fuzzy rules, is the most important and common
application of the fuzzy theory [16]. Using a procedure originated by E. Mamdani
[11], three steps are followed to design a fuzzy controlled machine:

1. fuzzification or encoding: This step in the fuzzy controller is responsible of en-
coding the crisp measured values of the system parameter into a fuzzy term using
the respective membership functions;

2. inference: This step consists of identifying the subset of fuzzy rules that can be
fired, i.e. those with antecedent propositions with truth degree not zero, and draw
the adequate fuzzy conclusions;

3. defuzzification or decoding: This is the reverse process of fuzzification. It is re-
sponsible of decoding a fuzzy variable and compute its crisp value.

The generic architecture of a fuzzy controller is given in Fig. 6.1. The main
components of a fuzzy controller consist of a knowledge repository, the encoder or
fuzzification unit, the decoder or defuzzification unit and the inference engine. The
knowledge base stores two kind of data: the fuzzy rules which are required by the
inference engine to reach the expected results and knowledge about the fuzzy terms
together with their respective membership functions as well as information about
the universe of discourse of each fuzzy variable manipulated within the controller.
The encoder implements the transformation from crisp to fuzzy and the decoder

6.3 The Proposed Macro-architecture 73

ENGINE

ENCODERS REPOSITORY DECODERS

DEVICE ACTUATORSSENSORS

Fig. 6.1 Generic architecture of fuzzy controllers

the transformation from fuzzy to crisp. Of course, the inference engine is the main
component of the controller architecture. It implements the approximate reasoning
process.

6.3 The Proposed Macro-architecture

The macro-architecture of the proposed fuzzy controller consists of three main units:
(i) the fuzzification unit (FU), which is responsible for translating the input values
of the system into fuzzy terms using the respective membership functions. This unit
has as many Fuzzy blocks as required in fuzzy system model that is being imple-
mented, i.e. one for each input variable; (ii) the inference unit Inference, which
checks all the included fuzzy rules, verifying which membership function applies,
and if any is so, generating its value and thus identifying the membership functions
to be used in the sequel; (iii) the defuzzification unit (DU), which is responsible
for translating the fuzzy terms back so as to compute the crisp value of the fuzzy
controller output. The defuzzification unit includes as many Defuzzy blocks as
required by the fuzzy system model that is being implemented, i.e. one for each
output variable. The block diagram of the proposed macro-architecture is shown in
the Fig. 6.2, wherein N and M represent the number of input and output variables,
respectively.

Note that, besides the main units, the macro-architecture also includes a com-
ponent that allows to compute the membership function characteristics, which are
used by both the fuzzification and defuzzification units. This component will be
called membership function unit (MFU). It includes as many MF blocks as required
input variable of the fuzzy model. Note that all the membership function-related
data are stored in the membership function memory, called MF MEM. This memory
is formed by as many memory segments as required input variables, i.e. one for
each membership function used. The rules used by the inference unit are stored in a
read-only memory block, called Rules. Component Controller, which in the

74 6 A Reconfigurable Hardware for Fuzzy Controllers

Fuzzy

2
1

…
N

MF MEM

2
1

…
N

MF

2

1

…
N

Defuzzy

2
1

…
M

Inference

Controller

Sensor N

Sensor 2
Sensor 1

Output M

Output 2
Output 1

Rules

Data MF N

Data MF 2
Data MF 1

…

……

…

…

…

Fig. 6.2 Macro-architecture of the designed fuzzy controller

sequel may be called main controller, imposes the necessary sequencing and/or the
simultaneity of the required steps of the fuzzy controller via a concurrent finite state
machine. More details on this are given subsequently.

The proposed fuzzy controller is designed to be generic and parametric, so it
allows configuring the number of input and output variables, the number of lin-
guistic terms used to model the membership functions and the number of inference
rules, so as the fuzzy system model that is being implemented can fit in. Allowing
the configuration of these parameters makes it possible, as well as easy, to adjust the
controller design to any desired problem. Summing up, the main parameters of the
controller are:

• N: The number of input variables and hence that of the included Fuzzy blocks;
• M: The number of output variables and hence that of Defuzzy blocks;
• P: The number of rules and thus the number of words in the rule base Rules;
• Q: The number of linguistic terms per membership functions used to model the

input and output variables of the fuzzy system.

As it can be seen in the Fig. 6.2, at configuration time, all the membership func-
tions used by the controller are computed and stored in the respective MF MEM
segment of the membership function memory. All the computed data will be readily
available to be used by the pertinent Fuzzy and/or Defuzzy block in the fuzzi-
fication and defuzzification unit, respectively. Note that this configuration step is
done only once. During the operation step, the fuzzy controller iterates the required
steps, triggering the Fuzzy blocks then Inference unit then Defuzzy blocks in

6.4 Micro-architecture of the Functional Units 75

sequence. After that, it waits for a new set of input data to be read by the system sen-
sors and thus arrive at the Fuzzy blocks input ports. The finite state machines that
control the Fuzzy blocks all run in parallel, so do those that control the Defuzzy
blocks.

In the following sections of this chapter, more light will be shed on the internal
micro-architecture of the proposed design as well as the control used therein.

6.4 Micro-architecture of the Functional Units

In this section, we describe the micro-architecture of the main components, included
in the macro-architecture of Fig. 6.2. These are the functional unit responsible for
the computation of the member function (MF), including the memory-based com-
ponent (MF MEM), the basic component responsible for the fuzzification process
(Fuzzy), the component that implements the inference process (Inference) us-
ing the available rule base (Rules) and the basic component that handles the de-
fuzzification process (Defuzzy). In general, all blocks that perform floating-point
computations include an FPU unit, which performs the main mathematical opera-
tions with simple precision (32 bits). The operations needed are addition, subtrac-
tion, multiplication and division.

6.4.1 Membership Function Unit

A membership function is viewed as a set of linguistic terms, each of which is
defined by two straight lines. In the proposed design, the triangular shape is used
to represent linguistic terms. Nevertheless, it is possible to adjust the design as to
accept other used shapes such as trapezes and sigmoid. Fig. 6.3 shows a generic
example of membership function with Q linguistic terms, wherein the horizontal
axis x represents the controller’s input, probably read from a sensor, and the vertical
axis y represents the truth degree associated with the linguistic terms. This is a real
value, between 0 and 1, handled as a simple precision floating-point number of 32
bits. Linguistic terms of triangular membership function are completely defined by
MaxPoint or mp and Range or r, as illustrated Fig. 6.3.

The MF block is designed to compute the values of any variable x, according to
y = ax+ b of the two straight lines, that represent the linguistic term of the mem-
bership function. The required basic data that completely define these shapes need
to be identified.

The input data of the MF block are MaxPoint and Range for each straight line
used to define the linguistic terms of the membership function. The block utilizes
them and pre-compute coefficients a and b accordingly and stored them in the mem-
bership function memory segments. Three cases are possible: the leftmost linguistic
term (see linguistic term 0 in Fig. 6.3); An in-between linguistic term (see linguistic
term 1 and 2 in Fig. 6.3); and finally, the rightmost linguistic term (see linguis-
tic term Q in Fig. 6.3). The computation of a and b of the straight lines of the

76 6 A Reconfigurable Hardware for Fuzzy Controllers

Linguistic
Term 0

Linguistic
Term 1

Linguistic
Term 2

Linguistic
Term Q

MaxPoint
Range

x

y
1

0

Fig. 6.3 Membership function of Q linguistic terms

leftmost, middle and rightmost linguistic terms are defined as in (6.1), (6.2) and
(6.3), respectively.

μl(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x ≤ mp

− 1
r x+ mp

r + 1, if mp > x ≥ mp+ r

0, otherwise

(6.1)

μm(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Range × x− mp−r

r , if mp− r < x ≤ mp

− x
r +

mp
r + 1, if mp > x ≥ mp+ r

0, otherwise

(6.2)

μr(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
r × x− mp−r

r , if mp− r < x ≤ mp

1, if x > mp

0, otherwise

(6.3)

The micro-architecture of the membership function blocks MF is shown in Fig.
6.4. It uses a floating-point unit to perform the required mathematical operations.
The obtained results are then stored in the MF MEM segments.

An MF block includes a controller that is implemented as a finite state machine.
It allows to synchronize the setting up of all the linguistic terms, necessary to the
complete definition of the membership function for each input variable.

In the following, we sketch how the membership function block works. When and
MF block receives the enable command from the main controller, the state machine
of Fig. 6.5 transits from state start to test step, where it checks whether this stage

6.4 Micro-architecture of the Functional Units 77

FPU

MaxPoint

-1

1

Range

Controller
S

ta
rt

O
P

Ready

Min

Max

a

b

write

3

address

MEM MF

Q

Fig. 6.4 The micro-architecture of the membership function block

is the first or the last straight line calculation of the membership function. If this
is the case, there is no need to do anything else, because the first and last straight
lines are constants, as it can be seen in Fig. 6.3. Therefore, the result of FPU block
is ignored and the FSM goes to state fpu result. Otherwise, i.e. if this is not the
first or last straight line, the FSM transits to state fpu load, wherein the values of
MaxPoint and Range to be used are loaded. After that, state fpu exec is entered,
wherein the MF block awaits the FPU block to reach the desired result. As soon as
it does, the FSM goes to state fpu result, where the result is registered. Note that for
each linguistic term, the MF block needs to compute four results as it will detailed
later on in Section 6.4.2. Hence, if the computed results is not the fourth, the FSM
enters state test step, and iterates the process once again. Whenever all the four
results are dully computed and stored, the state machine goes to state mf wr where
it issues the write command to MF MEM segment. The MF block iterates the same
process until the last line values are written into the respective MF MEM block. Once
this is done, the FSM transits to state result where it issues the finished signal and
goes back to state start and waits for a new configuration stage, if any.

6.4.2 Membership Function Memory

As explained earlier, this memory block responds to write commands received from
the MF block and read commands issued by the FU. Each word of this memory
holds four data that allows the complete computation of the truth degree of a given
linguistic term. The four-fold memory word contains min: minimum limit of the
straight line; max: maximum limit of the straight line; a: angular coefficient of the
straight line;b: linear coefficient of the straight line.

78 6 A Reconfigurable Hardware for Fuzzy Controllers

start

fpu_result

result

test_step

mf_wr

fpu_load fpu_exec

Enable = 1

fpu ready = 0

Last calc = 1

La
st

 c
al

c
=

 0

Enable = 0
First or last

calc = 0

Fig. 6.5 The transition diagram of MF block controller state machine

So, every time that the MF block requests a memory write, this memory block
register these values at an address, that represents the order number of the line within
all the line that need to be processed, starting from zero. This block also allows the
configuration of the number of lines that can be registered in the memory, which
will depend on parameter Q, which determines the number of linguistic terms per
membership function.

6.4.3 Fuzzification Unit

The main purpose of the fuzzification unit consists of translating the input values,
returned by some sensors, to linguistic terms and respective truth degrees. This is
done using the data that define the membership functions, which are stored in the
MF MEM segments. Recall that for each input variable of the fuzzy system, there is
a Fuzzy block associated with it.

The Fuzzy block performs the necessary computation to obtain the fuzzy ver-
sion the input value. The computation consists of a comparison that may, in most
cases, be followed by a multiplication then an addition, depending on the com-
parison result. This is repeated Q times for all the linguistic terms included in the
membership function of the input variable under consideration. The Fuzzy block
micro-architecture is shown in Fig. 6.6. It includes a Comparator that determines
in which linguistic term range the input value falls, 2 sets of Q flip-flops to hold
the result of the comparison. Their contents identify which linguistic terms are actu-
ally active. Note that more than one linguistic term may become active for the same
given input variable. There are 2 sets because every linguistic term is represented by
two straight lines. The Fuzzy block also includes an FPU block that is responsible
for both the multiplication and addition. The obtained results for the 2 straight lines
modeling the linguistic term are kept in two distinct 32-bit registers. These are the
truth degrees once it is delivered by the FPU. The block includes 2 sets of 32-bit

6.4 Micro-architecture of the Functional Units 79

…
Q

2

FPU

Controller

Comparator

MF MEM

min

max

address

read

Sensor input

CompEn

a

b

start

ready

OP

FF2
1

2
…

Q

EnF Q

EnF 2
EnF 1

TuFP 1

TuFP 2

uF Q

uF 2
uF 1

Q 3

…

…
FF1

1
2

…
Q

…

1
2

Q

Q

2
1

1

Sensor input in range

Fig. 6.6 Fuzzy block micro-architecture

registers, namely TuFP1 and TuFP2, one for each linguistic term modeling the
membership function of the input variable.

The inputs of a Fuzzy block are the characteristics of the linguistic terms of the
membership function associated with the input variable under consideration. These
characteristics are a, b, min and max stored in MF MEM segment corresponding
to the input variable, as explained in Section 6.4.2. The output of a Fuzzy block
are: signal EnFi, for i = 1 . . .Q bits, i.e. one for each included linguistic term and
signal uFi, for i = 1 . . .Q 32-bit floating-point values, each of which represents the
truth degree of the corresponding linguistic term. Note that linguistic terms that
do not apply have 0 as a truth degree. When bit EnFi is activated, this indicates
that linguistic term number i of the membership function is valid with truth degree
uFi �= 0. Recall that the truth degree is the product of a and input value augmented
by b.

In the following, we give an overview on how the Fuzzy block operates. When
this block receives the enable command from the main controller (see Fig. 6.2),
allowing it to run, the the block controlling FSM transits from state start to state
mf rd, and triggers the MF MEM read command. Once the memory word is received,
the FSM enters state mf comp, where, using the minimum and maximum values,
which represent the boundaries of the straight line associated with the linguistic
term, triggers Comparator to perform the required comparisons to check whether
the sensor input is within the boundaries of the linguistic term. Then, it shifts to state
mf comp result, where it checks the result of the comparison. As every linguistic
term has two lines, each result are stored in the flip-flops FF1 and FF2, as depicted
in Fig. 6.7. When the comparison fails, i.e. input value is out if the prescribed range,
the FSM goes directly to state fpu result, and otherwise it shifts to state fpu load

80 6 A Reconfigurable Hardware for Fuzzy Controllers

to load the values to the suite of multiply-and-add, according to a line equation
(y = ax+b, shifting to fpu exec. Then, the control goes to state fpu result to register
the obtained truth degree and after that returns to state fpu load. The FSM iterates
this process until there is no a calculation left to do. Whenever, the FSM enters state
fpu result and there still some truth degrees to be computed, it shifts to mf rd to wait
for a new memory word to be processed. Otherwise, i.e. the last straight line is being
handled, then the FSM goes to state result instead, and issues the end signal to the
main controller, returns to state start and waits for the next cycle.

start

fpu_result

result

mf_rd

fpu_load fpu_exec

Enable = 1

Fpu_ready = 0

EnMF = 0

mf_comp mf_comp_result

Last multiply
calc= 1

Enable = 0

add calc ended = 1

Fig. 6.7 The transition diagram of Fuzzy block controller state machine

Every EnFi, for i = 1 . . .Q output signal is or-disjunction of the bits, registered
by flip-flops FF1 and FF2. On the other hand, every truth degree uFi, for i = 1 . . .Q
is the content of one of registers TuFP 1 and TuFP 2 depending on the bit value
registered in flip-flops FF1 and FF2. Note that truth degree uFi will only be used in
the subsequent inference stage if and only if EnFi = 1.

6.4.4 Inference Unit

The inference unit main purpose is to identify, for each one of the output variables
of the fuzzy controller, the linguistic terms that are active as well as computing the
associated truth degrees. It does so using the result of the fuzzification unit and the
set of predefined rules that are stored in Rules. This is the most complicated unit
in the design due to the reconfigurability characteristics of the controller, as it is
explained in the remaining of this section.

Before describing the details of the inference unit, let us first introduce the struc-
ture used to format the rules of the fuzzy system. A rule R has two defining parts:

6.4 Micro-architecture of the Functional Units 81

a premise P and a consequent C as described in (6.4), wherein Ii, for i = 1 . . .N
are the input variables and T Ii

k for k = 1 . . .Q are the linguistic terms associated to

it, O j, for j = 1 . . .M are the output variables and T
O j

k for � = 1 . . .Q are the lin-
guistic terms associated with it. Note that in general the number of linguistic terms
is distinct from one variable to another. However, in this work, we assume, without
loss of generality, that all the variables, both of input and output, are modeled using
the same number of linguistic terms Q. A rule may check only few of of the N input
variables, and it may also, enable only few of the output variables.

R : P ⇒ C , where for j,k, � = 0 . . .Q :

P is I0 = T I0
j ∧I1 = T I1

k ∧·· ·∧IN−1 = T
IN−1
�

C is O0 = T O0
j ∧O1 = T O1

k ∧·· ·∧ON−1 = T
ON−1
�

(6.4)

The rule base memory Rules has a word size that allows to store one rule. All
the rules of the model have the same structure. They include all the input output
variables. When a variable is not checked or inferred, the all the linguistic terms are
checked off. The binary format of a rule includes Q bits for each input and output
variables, one bit for every allowed linguistic term. Hence, a rule occupies a total of
(N +M)×Q bits.

The rule base memory Rules has P rules and thus will have P× (N +M)×Q
bits. A request to read Rules at some address will deliver the whole rule. The bits of
the premise of are used, first of all, to check whether the rule under consideration can
be fired, and if so, to trigger the computation of the truth degrees of the associated
the consequent linguistic terms of the checked output variables.

A given rule fires when signal EnFi, as delivered by the FU, for every checked of
linguistic term of every input variable of the premise part of the rule under consider-
ation is set. Furthermore, every linguistic term of any output variable that is checked
in the consequent part of a fired rule need to be reported to the defuzzification unit
FU. Notes that there are at most M, one for each output variable. Besides this, FU
needs also to receive the truth degree for each of these checked terms.

The truth degree of an output variable linguistic term is the smallest truth de-
gree, considering all those associated with the input variable linguistic terms in the
premise part of the fired rule. When the same output variable linguistic term appears
on two or more fired rules, the highest truth degree is used. Thus this done consider-
ing all the rules that fires.Recall that the truth degree of the input variable linguistic
terms are provided by the FU.

Fig. 6.10 shows the micro-architecture of the Inference block. Its inputs con-
sist of the Q flags EnFi, for i = 1 . . .Q and the corresponding Q truth degrees uFi, for
i = 1 . . .Q, which are the resulting output of FU, as described in Section 6.4.3. Its
outputs are a set of M Q-bit signals EnDi, for i = 1 . . .M, that identify the linguistic
terms that were inferred and their respective truth degrees uDi, for i = 1 . . .M, which
are signals of Q× 32 bits. The AND gate determines wither the current rule can be

82 6 A Reconfigurable Hardware for Fuzzy Controllers

fired. The M ANDQbits components are simply na AND-arrays. In this design, the
process of min-max inference is used. So, components Minimum and Maximum
return the smallest of N floats and the highest of M floats, respectively. Their inter-
nal structure is omitted here for a loack of space. The Inference includes three
memory blocks: the rule base Rules, a truth degree memory MEM floats and a
bit memory MEM bits. given in Fig. 6.9(b) and Fig. 6.9(c), respectively. Note that
initially the input is compared with 1.0 and after that with the minimum selected so
far. Similarly, constant 0.0 is instead.

M
…

2

M
…

2

uF Q

uF 2
uF 1

EnF Q

EnF 2
EnF 1

…
…

…

AND
Q bits

1

RuleFired

Rules

…

…

…

M
…

2

Maximum

1

…

…

EnD M

EnD 2
EnD 1

…

uD M

uD 2
uD 1

M*Q

N*Q

Q*32

Q

N

N

M

M

RuleAddr

…

…

Q

1
2

…

MEM
bits

MEM
floats

Controller

…

…

MFAddr

…

Q

ShiftReg

Minimum M
…

2
ShiftReg

Fig. 6.8 Inference block micro-architecture

Their respective structure are shown in Fig. 6.10(a) and Fig. 6.10(b). A write
request of MEMbits or MEMfloats stores a row, i.e. M ×Q or M ×Q× 32 bits,
respectively, while a read request releases P×M and P×M× 32 bits. Assume that
the ith rule of Rules has fired. So, the data stored in ith row of MEMbits consists
of the consequent part of that rule, and otherwise, all the bits are reset. Similarly,
the data stored in ith row of MEMfloats consists of the obtained minimum truth
degree for that rule duplicated in all columns where a linguistic term is checked in
the rule consequent.

As we can see in the Fig. 6.11, the state machine was also optimized to have the
minimum number of states possible. This was done bearing in mind as to allow the
reconfiguration of the number of the linguistic terms of the membership functions,
rules, input output variables. Basically, there are two loops in the control imposed by
the FSM. The first loop allows reading the rules one after the other and identifying
the minimum of the associated truth degrees. The results of each iteration are stored
in a given row of MEMfloats. The second loop uses the content of MEMfloats
column after column to identify the maximize truth degree for all linguistic terms
that are associated with more than one.

6.4 Micro-architecture of the Functional Units 83

RuleFired

…

LTO 1
LT 1

LT 2

LT Q

LTO 2

LTO Q

(a) ANDQbits

uFV N

…

Comparator

Acc

Controller
Enable

1.0 Output

uFV 2
uFV 1

(b) Minimum

…

Comparator

Acc

Controller
Enable

0.0 Output

uFT P

uFT 2
uFT 1

(c) Maximum

Fig. 6.9 Internal structure of the auxiliary components: selection of the consequent part of
the fired rule, the minimum and maximum truth degrees

In the following we sketch how the operation of the inference block is controlled.
When the Inference block receives the enable command from the main con-
troller allowing it to run, the state machine transits from state start to state readrule,
where a specified rule to be executed is selected and read from memory Rules.
Then, the control shifts to state test emptyrule, where the rule loaded is checked
whether it is empty. If so, the FSM goes to state rule result. Otherwise, it enters
state rule exec. As shown in Fig. 6.10, the information of the rule premise is dis-
patched so as to control the operation of the two set of multiplexers. Note that there
is two multiplexer for each input variable: one the flags and the other for the truth de-
grees. In state rule exec, for each fired rule, the ANDQbits and Minimum operates
simultaneously and the obtained results are stored in MEMbits and MEMfloats
respectively. In the latter, before writing occurs, the results go through the set of M
demultiplexers in order to associate the selected smallest truth degree to each and
every one of the linguistic terms of the consequent part of the rule under consider-
ation. The so far described process is iterated for all existing rule in the rule base.
So, if the handled rule is not the last, state readrule is entered again and the pre-
cess is repeated. Otherwise, i.e., the last rule was processed, the FSM goes to state
mf load where the second loop initiates. In this state, the truth degrees of the same

84 6 A Reconfigurable Hardware for Fuzzy Controllers

… … ……

…

Q*32

M*Q*32

P*32

Outputs

P

Input

M*Q*32

…

(a) MEMfloats

… … ……

…

Q

M*Q

P

Outputs

P

Input

M*Q

…

(b) MEMbits

Fig. 6.10 Internal structure of the auxiliary memories for inferred linguistic terms and their
respective truth degrees

linguistic term of all rules are read from MEMfloats so as to provide the input to
the Maximum component, which operates as soon as the FSM enters state mf exec.
This process is iterated Q times, which allows for the processing of the content of
MEMfloats. After that, state mf result is entered to shift the result in the shift reg-
ister at the end of the chain in Fig. 6.11. IF there are still M columns to handle, the
FSM shifts back to state mf load. Otherwise, it enters to state result, generating the
end signal to the main controller and going back to state start to wait for the next
cycle.

6.4.5 Defuzzification Unit

The defuzzification unit main purpose is to compute the crisp value of the out-
put variables, given the fuzzy linguistic terms and their corresponding truth values,

6.4 Micro-architecture of the Functional Units 85

readrule test_emptyrule rule_exec

rule_result

mf_loadmf_exec

mf_result

start

Enable = 1

Enable = 0

result

Empty rule = 0

Fig. 6.11 The transition diagram of the inference controller state machine

as identified and computed by the inference unit. The centroid is used to perform
the defuzzification process. Recall that uDi for i = 1 . . .Q are the truth degrees of
the linguistic terms associated with the output variable O . This method computes the
geometric center of the output membership function, considering the activated lin-
guistic terms received from the inference block together with their respective truth
degrees. The computation is done according to the steps of Algorithm 6.1.

O =

(
∑Q

i=1 uDi ×mpi

)

∑Q
i=1 uDi

(6.5)

Algorithm 6.1. Computation of the centroid
Require: bits EnDi and floats uDi, i = 1 . . .Q for O

R0 ⇐ 0; R1 ⇐ 0; R2 ⇐ 0
if EnD �= 00 . . .0 then

for i := 1 to Q do
if EnDi = 1 then

R0 ⇐ uDi ×mpi
R1 ⇐ R1 +R0
R2 ⇐ R2 +uDi

end if
end for
R0 ⇐ R1/R2

end ifreturn R0

86 6 A Reconfigurable Hardware for Fuzzy Controllers

FPU

Controller

…
…

MaxPoint 1

… st
ar

t

re
ad

y

O
P

3

Output

uD Q

uD 2
uD 1

MaxPoint 2

MaxPoint Q

R1

R2

EnD
Q

3

R0

Fig. 6.12 Defuzzification block micro-architecture

Fig. 6.13 shows the state transition diagram of the FSM that controls the
Defuzzy block operation. Hereafter we sketch the main steps of this control. When
this block receives the enable command from the main controller allowing it to run,
the FSM goes from state start to state test empty, where the possibility of all possi-
ble linguistic terms are not enabled. If so, the FSM enters state result, which allows
the Defuzzy to return 0 as output result. Otherwise, i.e if at least one linguistic
term for the output variable that is being processed is set, in case of EnDi = 0 then
it goes immediately to state fpu result, because this linguistic term has nothing to
compute. Otherwise, in case EnDi = 1, then the FSM goes to fpu load, where the
control enables that the values of the specific computation to be loaded and there-
after goes to state fpu exec, where the computation described in Algorithm 6.1 is
executed. (For the sake of clarity, the details of the necessary three operations are
omitted in this description.) Once the computation performed one iteration is com-
pleted, the FSM shifts to state fpu result, where it checks whether all EnDi and
respective uDi for i = 1 . . .Q have been considered. If not, the FSM goes back to
state test empty and iterate repeats the same process. Otherwise, the result is readily
registered and available in register R0 and so, the FSM enters state result, generat-
ing the main controller’s output value and the issuing a done signal and the block
becomes ready again to operate from the start.

6.5 Performance Results

The hardware design was specified using VHDL and simulated to check its
functionality using ModelSim. Subsequently, it was synthesized with the Xilinx

6.5 Performance Results 87

start

fpu_result

result

test_empty fpu_load fpu_exec

EnDi = 1Enable = 1

fpu_ready = 0

A
ll

E
nD

i=
 0

Enable = 0

Fig. 6.13 Transition diagram for state machine that controls the defuzzification process

Plataform Studio software and implemented on the Xilinx Virtex 5 ML505-ML509-
XC5VFX70T board. The inverted pendulum application [12] is used as a bench-
mark. It has 2 input variables (angle and velocity, 25 rules and 1 output variable
(speed). The fuzzy model of the input and output variables include 5 linguistic terms
each. We can see in Fig. 6.14, the number of clock cycles that are required to ex-
ecute each of the design main blocks. Note that the Defuzzy block has different
number of clock transitions, depending on how many linguistic terms were activated
as result of the Inference block. Considering the inverted pendulum, at most 3
rules can fire at a time depending on the sensors input of the Fuzzy blocks.

����

���

���

���
���

��	

�

�

���

���

���

	��

����

����

� ��� ��������� ������� ������� ������� �������

Fig. 6.14 Number of clock transitions for each block being executed by the controller at the
FPGA

88 6 A Reconfigurable Hardware for Fuzzy Controllers

Using the clock frequency of 50 MHz at the FPGA, all the steps of the controller
are executed in 2,051 clock cycles, i.e. 41.02 microseconds. This is the minimum
clock frequency that can be selected on the Xilinx Virtex 5 board. However, the syn-
thesis results show that the maximum clock frequency permitted to use the hardware
design is 81.407 MHz.

Several tests were made to check the precision of the Fuzzy Controller. Table 6.1
shows the input values tested, the number of fired rules the number of cycles and
corresponding time required to get the crisp output of the controller.

Table 6.1 Synthesis result

Velocity Angle Rules fired Cycles Time Speed

−1 6
4 989 12.15

0.333
−6 6 −0.667

1 −3 −0.083
−1 −5

3 942 11.57
0.500

7 −3 0.667
−11 1 2 895 10.99 −2.000
−6 −11 0 703 8.64 0.000

�����

�����

��

��

	
 �	
 �	
 �	
 �	
 �		

������������������������

�������������������

��������� !�

���������"�#$%"�#$&����

���' ()*��*���

Fig. 6.15 Summary report of FPGA’s area usage

Fig. 6.16 shows the FPGA area used to implement the Fuzzy Controller. Note
that Virtex 5 FPGA has 11,200 Slices. Each slice includes 4 LuTS and 4 FFs, so the
total is 44,800 LuTS and as much FFs. For instance, 86.9% of the available LuTs
were used.

6.6 Summary

This paper proposes a massively parallel completely configurable design for fuzzy
controllers. It is applicable to almost any applications in the industry that do not have

References 89

�����

�����

��

��

	
 �	
 �	
 �	
 �	
 �		

������������������������

�������������������

��������� !�

���������"�#$%"�#$&����

���' ()*��*���

Fig. 6.16 Summary report of FPGA’s area usage

a prescribed solution. The proposed architecture is parametric so that any number
of inputs, outputs and rules can be accommodate with no extra effort. The design
was implemented on reconfigurable FPGA and the cost and performance require-
ments analyzed. The next steps in the design of this controller are to investigate the
generalization of the design so that to allow the use of trapezoidal and sigmoid the
membership functions.

References

1. Baldwin, J.F.: Fuzzy logic and fuzzy reasoning. In: Mamdani, E.H., Gaines, B.R. (eds.)
Fuzzy Reasoning and Its Applications. London Academic Press (1981)

2. Bandler, W., Kohout, L.J.: Semantics of implication operators and fuzzy relational prod-
ucts. In: Mamdani, E.H., Gaines, B.R. (eds.) Fuzzy Reasoning and Its Applications. Lon-
don Academic Press (1981)

3. Daijin, K.: An Implementation of Fuzzy Logic Controller on the Reconfigurable FPGA
System. IEEE Trans. on Industrial Electronics 47(3) (2000)

4. Diao, Y., Hellerstein, J., Parekh, S.: Using fuzzy control to maximize profits in service
level management. IBM Systems Journal 41(3), 403–420 (2002)

5. Esragh, F., Mamdani, E.H.: A general approach to linguistic approximation. In: Mam-
dani, E.H., Gaines, B.R. (eds.) Fuzzy Reasoning and Its Applications. London Academic
Press (1981)

6. Franke, K., Köppen, M., Nickolay, B.: Fuzzy image processing by using Dubois and
Prade fuzzy norm. In: Proceedings of 15th International Conference on Pattern Recog-
nition, Barcelona, Spain, pp. 518–521 (2000)

7. Fox, J.: Towards a reconciliation of fuzzy logic and standard logic. International Journal
of Man-Machine Studies 15, 213–220 (1981)

8. Ghidary, S., Hattori, M., Tadokoro, S., Takamori, T.: Multi-modal human robot interac-
tion for map generation. In: Proceedings of IEEE International Conference on Intelligent
Robots and Systems, pp. 2246–2251 (2001)

9. McKenna, M., Wilamowski, B.: Implementing a Fuzzy System on a Field Programmable
Gate Array Fuzzy Sets and Systems. University of Wyoming and University of Idaho

90 6 A Reconfigurable Hardware for Fuzzy Controllers

10. Magdalena, L., Velasco, J.R.: Fuzzy Rule-Based Controllers that Learn by Evolving
their Knowledge Base. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft
Computing, pp. 172–201. Physica-Verlag (1996)

11. Mamdani, E., Pappis, C.: A Fuzzy Logic Controller for a Traffic Intersection. IEEE
Trans. on Systems, Man and Cybernetics 22(6), 1414–1424 (1977)

12. Nedjah, N., Mourelle, L.M.: Fuzzy Systems Engineering. STUD FUZZ, vol. 181.
Springer, Heidelberg (2005)

13. Poorani, S., Urmila Priya, T.V.S., Udaya, K., Renganarayanan, S.: FPGA based Fuzzy
Logic Controllers for Electric Vehicle. Journal of the Institution of Engineers 45(5)
(2005)

14. Rachel, F.M.: Proposta de um controlador automático de trens utilizando lógica nebulosa
preditiva, M.Sc. Dissertation, University of São Paulo, Brazil (2006)

15. Radecki, T.: An evaluation of the fuzzy set theory approach to information retrieval. In:
Trappl, R., Findler, N.V., Horn, W. (eds.) Progress in Cybernetics and System Research,
Proceedings of a Symposium Organized by the Austrian Society for Cybernetic Studies,
vol. 11, Hemisphere Publishing Company, NY (1982)

16. Zadeh, L.A.: Fuzzy algorithms. Information and Control 12, 94–102 (1968)
17. Zadeh, L.A.: Making computers think like people. IEEE Spectrum (8), 26–32 (1984)
18. Zadeh, L.A.: Fuzzy Logic. IEEE Computer Journal 1(83), 18 (1988)
19. Zhang, J., Knoll, A.: Designing Fuzzy Controllers by Rapid Learning. Fuzzy Sets and

Systems 101, 287–301 (1999)

Chapter 7
A Reconfigurable Hardware for Subtractive
Clustering�

Abstract. This chapter presents the development of a reconfigurable hardware for
classification system of radioactive elements with a fast and efficient response. To
achieve this goal is proposed the hardware implementation of subtractive clustering
algorithm. The proposed hardware is generic, so it can be used in many problems of
data classification, omnipresent in identification systems.

7.1 Introduction

Radioactive sources have radionuclides. A radionuclide is an atom with an unstable
nucleus, i.e. a nucleus characterized by excess of energy, which is available to be
imparted. In this process, the radionuclide undergoes radioactive decay and emits
gamma rays and subatomic particles, constituting the ionizing radiation. Radionu-
clides may occur naturally but can also be artificially produced [1]. So, radioactivity
is the spontaneous emission of energy from unstable atoms.

Correct radionuclide identification can be crucial to planning protective mea-
sures, especially in emergency situations, by defining the type of radiation source
and its radiological hazard [2]. The gamma ray energy of a radionuclide is a charac-
teristic of the atomic structure of the material.

When these emissions are collected and analyzed with a gamma ray spectroscopy
system, a gamma ray energy spectrum can be produced. A detailed analysis of this
spectrum is typically used to determine the identity of gamma emitters present in the
source. The gamma spectrum is characteristic of the gamma-emitting radionuclides
contained in the source [3].

This chapter introduces the development of a reconfigurable hardware for a clas-
sification system of radioactive elements that allow a rapid and efficient to be im-
plemented in portable systems. our intention is to run the clustering algorithms
in a portable equipment to perform the radionuclides identification. The clustering
algorithms consume high processing time when implemented in software,
mainly on processors of portable use, such as micro-controllers. Thus, a custom

� This chapter was developed in collaboration with Marcos Santana Farias.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 91
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_7, c© Springer International Publishing Switzerland 2014

92 7 A Reconfigurable Hardware for Subtractive Clustering

implementation suitable for reconfigurable hardware is a good choice in embedded
systems, which require real-time execution as well as low power consumption.

The rest of this chapter is organized as follows: first, in Section 7.2, is demon-
strated the principles of nuclear radiation detection. Later, in Section 7.3, we review
briefly existing clustering algorithms and we concentrate on the subtractive clus-
tering algorithm. In Section 9.2, we describe the proposed architecture for cluster
centers calculator using the subtractive clustering algorithm. Thereafter, in Section
9.8, we present some performance figures to assess the efficiency of the proposed
implementation. Last but not least, in Section 7.6, we draw some conclusions and
point out some directions for future work.

7.2 Radiation Detection

The radioactivity and ionizing radiation are not naturally perceived by the sense
organs of human beings and can not be measured directly. Therefore, the detection
is performed by analysis of the effects produced by radiation as it interacts with a
material.

There are three main types of ionizing radiation emitted by radioactive atoms:
alpha, beta and gamma. The alpha and beta are particles that have mass and are
electrically charged, while the gamma rays and x-rays are electromagnetic waves.
The emission of alpha and beta radiation is always accompanied by the emission of
gamma radiation. So most of the detectors is to gamma radiation. Gamma energy
emitted by a radionuclide is a characteristic of the atomic structure of the material.
The energy is measured in electronvolts (eV). One electronvolt is an extremely small
amount of energy so it is common to use kiloelectronvolts (keV) and megaelectron-
volt (MeV).

Consider, for instance, Cesium-137 (Cs137) and Cobalt-60 (Co60), which are
two common gamma ray sources. These radionuclides emit radiation in one or two
discreet wavelengths. Cesium-137 emits 0.662 MeV gamma rays and Cobalt-60
1.33 and 1.17 MeV gamma rays. These energy are known as decay energy and define
the decay scheme of the radionuclide. Each radionuclide, among many others, has
a unique decay scheme by which it is identified [1].

When these emissions are collected and analyzed with a gamma ray spectroscopy
system, a gamma ray energy spectrum can be produced. A detailed analysis of this
spectrum is typically used to determine the identity of gamma emitters present in the
source. The gamma spectrum is characteristic of the gamma-emitting radionuclides
contained in the source [3].

A typical gamma-ray spectrometry system (fig. 7.1) consists of a scintillator de-
tector device and a measure system . The interaction of radiation with the system
occurs in the scintillator detector and the measurement system interprets this inter-
action. The scintillator detector is capable of emitting light when gamma radiation
transfers to him all or part of its energy. This light is detected by a photomulti-
plier optically coupled to the scintillator, which provides output to an electrical sig-
nal whose amplitude is proportional to energy deposited. For gamma radiation, the

7.3 Clustering Algorithms 93

most widely used scintillator is the Sodium Iodide crystal activated with thallium,
NaI (Tl).

The property of these detectors provide an electrical signal proportional to the
deposited energy spectrum allows the creation of the gamma energy spectrum by
a radioactive element (histogram). To obtain this spectrum is used a multichannel
analyzer or MCA. The MCA consists of an ADC (Analog to Digital Converter)
which converts the amplitude of analog input in a number or channel. Each channel
is associated with a counter that accumulates the number of pulses with a given
amplitude, forming a histogram. These data form the energy spectrum of gamma
radiation. As said, since different radionuclides emit radiation at different energy
distributions, analyzing the spectrum can provide information on the composition
of the radioactive source found and allow the identification.

Fig. 7.1 Gama Spectrometry System - main components

Figure 7.2 shows a spectrum generated by simulation, to a radioactive source with
of Cs137 and Co60. The x-axis represents the channels for a 12-bit ADC. In such
a representation, 4096 channels correspond to 2.048 MeV in the energy spectrum.
The first peak in channel 1324 is characteristic of Cs137 (0.662 MeV). The second
and third peaks are energies of Co60.

The components and characteristics of a gamma spectrometry system (the type of
detector, the time of detection , the noise of the high-voltage source, the number
of channels, the stability of the ADC, temperature changes) can affect the formation
of spectrum and quality of the result. For this reason it is difficult to establish a
system for automatic identification of radionuclides, especially for a wide variety of
these. Equipment that are in the market, using different algorithms of identification
and number of radionuclides identifiable, do not have a good performance [2].

7.3 Clustering Algorithms

Clustering algorithms partition a collection of data into a certain number of clusters,
groups or subsets. The aim of the clustering task is to group these data into clusters

94 7 A Reconfigurable Hardware for Subtractive Clustering

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

45

50

Channels

C
ou

nt
s

Fig. 7.2 Energy spectrum simulated by a source with Cs137 and Co60

in such a way that similarity between members of the same cluster is higher than
that between members of different clusters. Clustering of numerical data forms the
basis of many classification algorithms.

Various clustering algorithms have been developed. One of the first and most
commonly used clustering algorithms is based on the Fuzzy C-means method (FCM).
Fuzzy C-means is a method of clustering which allows one piece of data to belong
to two or more clusters. This method was developed by Dunn [4] and improved by
Hathaway [5]. It is commonly used in pattern recognition.

Yager and Filev [6] introduced the so-called mountain function as a measure of
spatial density around vertices of a grid, showed in the function (7.1)

M(vi) =
n

∑
j=1

e−α‖x j−xi‖2
, (7.1)

where α > 0, M is the mountain function, calculated for the ith vertex vi during
the first step, N is the total number of data, which may be simple points or samples,
that is assumed to be available before the algorithm is initiated. Norm ‖×|‖ denotes
the Euclidean distance between the points used as arguments and x j is the current
data point or sample. It is ensured that a vertex surrounded by many data points
or samples will have a high value for this function and, conversely, a vertex with
no neighboring data point or sample will have a low value for the same function.
It should be noted that this is the function used only during the first step with all
the set of available data. During the subsequent steps, the function is defined by
subtracting a value proportional to the peak value of the mountain function. A very
similar approach is the subtractive clustering (SC) proposed in [7]. It uses the so-
called potential value defined as in (7.2).

7.4 Proposed Architecture 95

Pi =
n

∑
j=1

e−α‖x j−xi‖2
, where α =

4
ra

(7.2)

wherein, Pi is the potential-value i-data as a cluster center, xi the data point and ra a
positive constant, called cluster radius.

The potential value associated with each data depends on its distance to all its
neighborhoods. Considering (7.2), a data point or sample that has many points or
samples in its neighborhood will have a high value of potential, while a remote data
point or sample will have a low value of potential. After calculating potential for
each point or sample, the one, say x∗i , with the highest potential value, say P∗

i , will
be selected as the first cluster center. Then the potential of each point is reduced
as defined in (7.3). This is to avoid closely spaced clusters. Until the stopping cri-
teria is satisfied, the algorithm continues selecting centers and revising potentials
iteratively.

Pi = Pi −P∗
i e−β‖xi−x∗i ‖2

, (7.3)

In (7.3), β = 4/r2
b represents the radius of the neighborhood for which significant

potential revision will occur. The data points or samples, that are near the first cluster
center, say x∗i , will have a significantly reduced density measures. Thereby, making
the points or samples unlikely to be selected as the next cluster center.

The subtractive clustering algorithm can be briefly described by the following 4
main steps:

• Step 1: Using (7.2), compute the potential Pi for each point or sample, 1 ≤ i ≤ n;
• Step 2: Select the data point or sample, x∗i , considering the highest potential

value, P∗
i ;

• Step 3: Revise the potential value of each data point or sample, according to
(7.3);

• Step 4: If maxPi ≤ εP∗
i , wherein ε is the reject ratio, terminate the algorithm

computation; otherwise, find the next data point or sample that has the highest
potential value and return to Step 3.

The main advantage of this method is that the number of clusters or groups is
not predefined, as it is in the fuzzy C-means method, for instance. Therefore, this
method becomes suitable for applications where one does not know or does not want
to assign an expected number of clusters á priori. The cluster estimates obtained
by the subtractive clustering can be used to initialize iterative optimization-based
clustering methods and as well as the set of rules used in fuzzy clustering methods.

7.4 Proposed Architecture

This section provides an overview of the macro-architecture and contains informa-
tion on the broad objectives of the proposed hardware. The hardware implements
the subtractive clustering algorithm. The subtractive clustering algorithm was briefly
explained in the previous section.

96 7 A Reconfigurable Hardware for Subtractive Clustering

The implementation of this algorithm in hardware is the main point is to develop
a classification system of radioactive elements. For referencing, this hardware it
will call HSC, hardware to subtractive clustering. This hardware processes all the
arithmetic computation, described in the section above, to calculate the potential of
each point in the subtractive clustering algorithm.

The other component of this macro-architecture will be called SLC, component
to storage, loading and control, which provides to the HSC the set of samples for the
selection of cluster centers and stores the results of the calculated potential of each
sample. This component also has the controller of the HSC. Figure 7.3 shows the
components of the described macro-architecture.

Fig. 7.3 Macro-architecture components - SLC e HSC

The SLC is a controller based on state machine. It includes a dual port memory
MD that provides the data that has to be clustered and memory MP that allows for
the bookkeeping of the potential associated with each clustered data. The registers
Xmax, Xi and XIndex maintain the required data until component EXP1 and EXP2 have
completed the related computation. We assume the Xmax value is available in mem-
ory MD at address 0. The Xmax is the biggest value found within the data stored in
MD. This register is used to the data normalization.

The two EXP components, inside HSC, receive, at the same time, different x j

values from the dual port memory MD. So the two modules start at the same time

7.4 Proposed Architecture 97

and thus, run in parallel. After the computation of e−α‖xi−x j‖2
by EXP1 and EXP2,

component ADDER sums and accumulates the values provided at its input ports. This
process is repeated until all data x j, 1 ≤ j ≤ N, are handled. So, this computation
yileds the first Pi value to be stored in memory MP. After that, the process is repeated
to compute the potential values of all data points in memory MD. At this point, the
first cluster center has been found.

The SLC component works as a main controller of the process. Thus, the trig-
ger for initiating the processing components EXP1 and EXP2 occurs from the signal
StartExp sent by SLC. The component SLC has a dual-port memory MD which
stores the samples / points to be processed. Memory MD allows the two compo-
nents (EXP1 and EXP 2) receiving a sample to calculate the exponential value and
thus can operate in parallel . This sample for each component EXP are two distinct
values x j from two subsequent memory addresses.

The proposed architecture allows the hardware to subtractive clustering HSC can
be scaled by adding more of these components in parallel to the computation of
the factors e−α ||x j−xi||2 . This provides greater flexibility to implement the hardware.
Figure 7.4 shows how new components HSC are assembled in parallel.

Each component HSC calculates in parallel the potential of a point i, the value Pi

of the function 7.3. For this reason each module (HSC) must to receive and record
a value of xi to work during the calculation of the potential of a point. Since these
values are in different adrress of the memory, this registry value xi has to be done
at different time because the memory can not have your number of ports increased
as the number of components HSC is increased. To be not necessary to increase the
number of control signals provided by the component SLC when new components
HSC are added, the component HSC itself has to send some control signals for the
thereafter.

These signs are to load the value xi (LEXi) and start the reduction potential of
each point (StartPot), as showed in 7.3. Moreover, each component HSC should re-
ceive the signal EndAdd which indicates the end of the operation on the component

Fig. 7.4 Macro-architecture with HSC components in parallel

98 7 A Reconfigurable Hardware for Subtractive Clustering

Fig. 7.5 Control signals with scaled architecture

ADDER of the thereafter component HSC. This ensures that the main control (SLC)
only receive these signals after all the components of the HSC in parallel complete
their transactions at each stage, allowing the hardware can be reconfigured without
change in the main control. Figure 7.5 shows the effect of this scaling, simulating
different processing times between the HSC.

The n components HSC, implemented in parallel, compute the potential of n
points of the set of samples. As explained earlier, the record value of xi, to be used
in the calculation of the potential it has to be done in time different. It is shown in
figure 7.5 that the first component HSC receives the signal LEXi from SLC control
and after registering it xi, it sends the signal LEXi for HSC thereafter. Only after
all of the HSC to have recorded its value xi, the signal to start the components EXP

(StartExp) is sent with the first pair of values x j in the dual bus BD.
Fig. 7.7 shows the architecture of the module EXP1 and EXP2 that permits the

calculation of the exponential value e−α‖xi−x j‖2
. The exponential value was approx-

imated by a second-order polynomial using the least-squares method [8] . Moreover,
this architecture computes these polynomials and all values were represented using
fractions, as in (7.4).

e−α‖x‖ =
Na

Da

(
Nv

Dv

)2

+
Nb

Db

(
Nv

Dv

)
+

Nc

Dc
(7.4)

wherein, factors Na
Da

, Nb
Db

and Nc
Dc

are some pre-determined coefficients. Nv
Dv

is equiva-
lent to variable (αx) in the FPP representation. For high precision, the coefficients
were calculated within the range [0, 1[, [1, 2[, [2, 4[and [4, 8]. These coefficients
are shown respectively in the quadratic polynomials of (7.5).

7.4 Proposed Architecture 99

e−(αx) ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P[0,1[(
Nv
Dv
) = 773

2500

(
Nv
Dv

)2 − 372
400

(
Nv
Dv

)
+ 9953

10000

P[1,2[(
Nv
Dv
) = 569

5000

(
Nv
Dv

)2 − 2853
5000

(
Nv
Dv

)
+ 823

1000

P[2,4[(
Nv
Dv
) = 67

2500

(
Nv
Dv

)2 − 2161
10000

(
Nv
Dv

)
+ 4565

10000

P[4,8[(
Nv
Dv
) = 16

10000

(
Nv
Dv

)2 − 234
10000

(
Nv
Dv

)
+ 835

10000

P[8,∞[(
Nv
Dv
) = 0

(7.5)

The accuracy of these calculated values, i.e. the introduced error is no more
0.005, is adequate to properly obtain the potential values among the data provided
during the process of subtractive clustering. The absolute error introduced is shown
in Fig. 7.6. Depending on the data, this requires that the number of bits to represent
the numerator and denominator have to be at least twice the maximum found in the
data points provided.

0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

−3

X

A
bs

ol
ut

e
E

rr
or

Fig. 7.6 Absolute error introduced by the approximation computation

The architecture of the Fig. 7.7 presents the micro-architecture of components
EXP1 and EXP1. It uses four multipliers, one adder/subtracter and some registers.
These registers are all right-shifters. The controller makes the adjustment of the bi-
nary numbers with shifts to the right in these registers in order to maintain the frame

100 7 A Reconfigurable Hardware for Subtractive Clustering

Fig. 7.7 Architecture of EXP Modules to compute the exponential e−α‖xi−x j‖2

of binary numbers after each operation. This is necessary to keep the results of mul-
tiplication with the frame of bits used without much loss of precision. The closest
fraction is used instead of a simple truncation of the higher bits of the product.

In this architecture, multipliers MULT1, MULT2, MULT3 and MULT4 operate in
parallel to accelerate the computation. The state machine in the controller triggers
these operations and controls the various multiplexers of the architecture. The com-
putation defined in (7.4) is performed as described hereafter.

• Step 1: Compute NV ×NV , NB×NV , DV ×DV and DB×DV ;
• Step 2: Right-shift registers to render the frame of bits to the original size and

in parallel with that, compute A = NA×NV ×NV , C = NB×NV ×DC, D =
DB×DV ×NC and E = DB×DV ×DC;

• Step 3: Add of C+D and, in parallel with that, compute B = DA×DV ×DV ;
• Step 4: Add A

B + C+D
E .

7.5 Performance Results

The data shown in figure 7.2 were obtained using a simulation program called Real
Gamma-Spectrum Emulator. These data are in spreadsheet format of two columns,
where the first column corresponds to the channel and the second is the number
of counts accumulated in each channel. To validate the method chosen (subtrac-
tive clustering), the algorithm was implemented with Matlab, using the simulated
data. As seen in the introduction, these data simulate a radioactive source consists
of Cs137 and Co60. To apply the subtractive clustering algorithm in Matlab data
provided by the simulation program needed to be converted into one-dimensional
data in one column. For example, if channel 1324 to accumulate 100 counts, means
that the value 1324 should appear 100 times as input. only in this way the clustering
algorithm is able to split the data into subgroups by frequency of appearance. In a

7.5 Performance Results 101

real application this data would be equivalent to the output of AD converter of a
gamma spectrometry system, as shown in the introduction.

In the spectrum of Fig. 7.2, one can see three peaks. The first one in the channel
1324 is characteristic of Cs137 (0.662 MeV). The second and third peaks correspond
the energy of Co60. The circular marks near the first and second peaks show the
result of applying the subtractive clustering algorithm on the available data with
Matlab software. These circular marks are center of the found clusters. These found
clusters are very near (one channel to the left) of the signal peaks, the expected
result. With the configuration to the algorithm in Matlab, the third peak was not
found. This result can change with an adjust of the radius ra in 7.2. This is enough
to conclude that the data provided belongs to a radioactive source with Cs137 and
Co60 and the subtractive cluster method can be used to identify these radionuclides.

As the proposed architecture is based on the same algorithm, is expected to find
the same result. The initial results show that the expected cluster center can be iden-
tified as in Matlab specification. The hardware takes about 12660 clock cycles to
yield one sum of exponential values (∑n

j=1 e−α‖xi−x j‖2
). Considering the one hun-

dred points in the avaiable data set of the case study, the identification of the first
cluster center would take ten times that amount, i.e. about 126600 clock cycles.
However, finding the center of the second cluster is faster. It should take about 13000
clock cycles. This result can change with the data and depends of the amount of ad-
justment required to the right in the shift registers during the process. The simulation
results of an instance of this process is shown in Fig. 7.8.

Fig. 7.8 Simulao de forma de onda de deslocamentos a direita para ajuste no nmero de bits
do resultado

102 7 A Reconfigurable Hardware for Subtractive Clustering

7.6 Summary

This chapter describes the implementation of subtractive clustering algorithm in
hardware. The results shows the expected cluster center can be identified with a
good efficiency. In data from the simulation of signals of radioactive sources, after
conformation of the signal and its conversion into digital , the cluster center repre-
sents the points that characterize the energy provided by a simulated radionuclides.
The identification of these points can sort the radioactive elements present in a sam-
ple. With this hardware it was possible to identify more than one cluster center,
which would recognize more than one radionuclide in radioactive sources.

These results reveal that the proposed hardware can be used to develop a portable
system for radionuclides identification. This system can be developed and enhanced
integrating the proposed hardware with a software to be executed by a processor in-
side the FPGA, bringing reliability and faster identification, an important character-
istics for these systems. Following this work, we intend to develop a software-only
implementation using an embedded processor or a micro-controller to compare it
with the hardware-only solution.

References

1. Knoll, G.F.: Radiation Detection and Measurement. John Wiley and Sons, New York
(1989)

2. Performance Criteria for Hand-held Instruments for the Detection and Identification of
Radionuclides. ANSI Standard N42.34 (2003)

3. Gilmore, G., Hemingway, J.: Practical Gamma Ray Spectrometry. John Wiley and Sons
(1995)

4. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact
Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)

5. Hathaway, R., Bezdek, J., Hu, Y.: Generalized fuzzy C-means clustering strategies using
Lp norm distances. IEEE Transactions on Fuzzy Systems, Proc. of SPIE Conf. on Appli-
cation of Fuzzy Logic Technology, pp. 246–254 (1993)

6. Yager, R.R., Filev, D.: Learning of Fuzzy Rules by Mountain-Clustering. In: Proc. IEEE
Internat. Conf. on Fuzzy Systems, pp. 1240–1245 (1994)

7. Chiu, S.L.: A Cluster Estimation Method with Extension to Fuzzy Model Identification.
In: Proc. IEEE Internat. Conf. on Fuzzy Systems, pp. 1240–1245 (1994)

8. Rao, C., Toutenburg, H., Fieger, A., Heumann, C., Nittner, T., Scheid, S.: Linear Models:
Least Squares and Alternatives, New York. Springer Series in Statistics (1999)

Chapter 8
Reconfigurable Hardware for DNA Matching�

Abstract. DNA sequence matching is used in the identification of a relationship
between a fragment of DNA and its owner by mean of a database of DNA regis-
ters. A DNA fragment could be a hair sample left at a crime scene by a suspect or
provided by a person for a paternity exam. The process of aligning and matching
DNA sequences is a computationally demanding process. In this chapter, we pro-
pose a novel parallel hardware architecture for DNA matching based on the steps
of the BLAST algorithm. The design is scalable so that its structure can be adjusted
depending on size of the subject and query DNA sequences. Moreover, the number
of units used to perform in parallel can also be scaled depending some characteris-
tics of the algorithm. The design was synthesized and programmed into FPGA. The
trade-off between cost and performance were analyzed to evaluate different design
configuration.

8.1 Introduction

Bioinformatics is a field of biological science which deals with the study of methods
for storing, retrieving and analyzing biological data such as DNA. It also involves
finding the genes in the DNA sequences of various organisms, developing methods
to predict the structure and/or function of newly discovered proteins and structural
RNA sequences, clustering protein sequences into related families. Specifically, it
includes solving the problem of aligning similar proteins in general and DNA in
particular 10.

One of the main challenges in bioinformatics consists of aligning DNA. DNA
stripes are long sequences of DNA bases, which are represented as A (Adenine),
C (Cytosine), G (Guanine) and T (Thymine). In this sense, algorithms are specifi-
cally developed to reduce time spent in DNA alignment and matching, evaluating
similarity degree between the subject and the query sequence. These algorithms are
usually based on dynamic programming, which work well providing a fair tradeoff

� This chapter was developed in collaboration with Edgar José Garcia Neto Segundo.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 103
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_8, c© Springer International Publishing Switzerland 2014

104 8 A Reconfigurable Hardware for DNA Matching

between time and cost for short sequences. However, commonly these algorithm
take exponentially more time as DNA sequences get longer.

The major advantage of the methods based on dynamic programming are the
commitment to discover the best match. However, that commitment requires huge
computational resources [7, 4]. DNA matching algorithms based on heuristics [8]
emerged as an alternative to dynamic programming in order to reduce the required
high computational cost. Instead of aiming at the best alignment(s), heuristics-based
methods attempt to find a set of acceptable or pseudo-optimal matches. Ignoring un-
likely alignments, these techniques have improved the performance of DNA match-
ing [3, 5, 10]. Among heuristics-based methods, BLAST [1, 2] and FASTA [9, 7]
stand out. Both of these algorithms have well defined procedures for the three main
stages of aligning algorithms, which are seeding, extending and evaluating. BLAST
is the fastest algorithm known so far [1, 2, 6]. In this chapter, we focus of this al-
gorithm and propose a massively parallel architecture suited as an ASIC for DNA
matching using BLAST. The main objective of this work is the acceleration of the
aligning and matching procedures.

This chapter is organized as follows: First, in Section 8.2, we sketch briefly the
steps used in the BLAST algorithm; Thereafter, in Section 9.2, we detail the pro-
posed parallel architecture, pointing out specifically its scalability characteristics;
Subsequently, in Section 9.8, we describe the setup used to implement the proposed
architecture on FPGAs and evaluate the performance of the design; Finally, in Sec-
tion 8.5, we draw some concluding remarks and point out directions for future work.

8.2 BLAST Algorithm

The BLAST (Basic Local Alignment Search Tool) [1] algorithm is a heuristic search-
based method that seeks words in the subject sequence s of length w that score at
least T , called the alignment threshold, when aligned with the query sequence t.
The scoring process is performed according to predefined criteria that are usually
prescribed by geneticists. This task is called seeding, where BLAST attempts to find
regions of similarity to begin its matching procedure. This step has a very powerful
heuristic advantage, because it only keeps pairs whose matching score is larger than
the pre-defined threshold T . Of course, there is some risk of leaving out some worthy
alignments. Nonetheless, using this strategy, the search space decreases drastically,
and hence accelerating the convergence of the matching process.

After identifying all possible alignments locations or seeds, the algorithm pro-
ceeds with the extension stage. It consists of extending the found alignments to the
right and left within both the subject and query sequences, in an attempt to find a
locally optimal alignment. Some versions of BLAST introduce the use of a wild-
card symbol (), called the gap, which can be used to replace any mismatch [7, 10].
Here, we do not allow gaps. Finally, BLAST try to improve score of high scoring
pairs, HSP, through a second extension process and the dismissal of a pair is done
when the corresponding score does not reach a new pre-defined threshold. HSPs that
meet this criterion will be reported by BLAST as final results, provided that they do

8.2 BLAST Algorithm 105

not exceed the cutoff prescribed value, which specifies for number of descriptions
and/or alignments that should be reported. This last step is called evaluation. In the
implementation presented in this chapter, we do not assess the results provided by
the extension stage. We simply provide all of them as a final result of the alignment
process.

BLAST employs a measure based on a well-defined mutation scores. It directly
approximates the results that would be obtained by any dynamic programming al-
gorithm for optimizing this measure. The method allows for the detection of weak
but biologically significant similarities. The algorithm is more than one order of
magnitude faster than existing heuristic algorithms. Compared to other heuristics-
based methods, such as FASTA [7], BLAST performs DNA and protein sequence
similarity alignment much faster but it is considered to be equally sensitive.

The BLAST algorithm proceeds through three main steps: (i) seeding, which
allows to find and mark all seeds. These are subsequences of size w that can be
considered as alignment points. Algorithm 8.4 describe the work as it should be
done during this step; (ii) extension, which extends at most, i.e. with respect to
the limits of the subject and query sequences, all the marked seeds and marks all
those extensions that scored more that the prescribed threshold T . The extension is
done in both directions, i.e. to the right of the seed location in the subject and query
sequences as well as to the its left; Algorithm 8.2 describes the extension done to the
right of the seed. Note that the algorithm does the extension to the left (Algorithm
8.4) is similar to the one presented with the exception that sequence counters i and j
are decremented and the base are appended to the left; (iii) assessment, which selects
some of the alignments, as found by the extension stage, and applies some biological
parameters to extract some few promising alignment to be considered further in the
DNA matching biological process. This last step, as described in Algorithm 8.3, is
not treated any further in this chapter.

Algorithm 8.1. Seeding procedure
Require: Subject and query sequences s and t respectively
Ensure: Matrix of seed location hits
1: let s = [s0,s1, . . . ,si, . . . ,sm−1]
2: let t = [t0, t1, . . . , t j, . . . , tn−1]
3: sws ← [sw0,sw1, . . . ,swi, . . . ,swm−w], wherein swi = [si,si+1, . . . ,si+w−1]
4: tws ← [tw0, tw1, . . . , tw j, . . . , twn−w], wherein tw j = [t j, t j+1, . . . , t j+w−1]
5: for i = 0 → (m−w) do
6: for j = 0 → (n−w) do
7: if twi = sw j then
8: hits[i, j]← 1
9: else

10: hits[i, j]← 0
11: end if
12: end for
13: end for

106 8 A Reconfigurable Hardware for DNA Matching

Algorithm 8.2. Extension procedure (right)
Require: Sequences s and t, seed offsets i and j respectively
Ensure: Extension score σ
1: Es ← swi � si+w; k ← i
2: Et ← tw j � t j+w; �← j
3: repeat
4: k ← k+1; E ′

s ← Es; Es ← Es � sk+w+1
5: �← �+1; E ′

t ← Et ; Et ← Et � t�+w+1
6: until (sk+w+1 �= t�+w+1) or (k > m−1) or (� > n−1)
7: if sk+w+1 = t�+w+1 then
8: σ ← Scores(Es,Et)
9: else

10: σ ← Scores(E ′
s,E

′
t)

11: end if

Algorithm 8.3. Assessment procedure
Require: Offsets i, j, threshold T and extension score σ
Ensure: Matrix hits updated
1: if σ ≥ T then
2: hits[i, j]← σ
3: else
4: hits[i, j]← 0
5: end if

Algorithm 8.4. Extension procedure to the let
Require: s, t and hits as a results of seeding;
Ensure: hits updated
1: Es ← si+w � swi; k ← i
2: Et ← t j+w � tw j; �← j
3: repeat
4: k ← k−1; E ′

s ← Es; Es ← sk+w+1 �Es

5: �← �−1; E ′
t ← Et ; Et ← t�+w+1 �Et

6: until (sk+w+1 �= t�+w+1) or (k < 0) or (� < 0)
7: if sk+w+1 = t�+w+1 then
8: σ ← Scores(Es,Et)
9: else

10: σ ← Scores(E ′
s,E

′
t)

11: end if

8.3 Proposed Architecture

The overview of the proposed architecture is depicted in Fig. 8.1. The Hardware
HBLAST implements the BLAST algorithm, as described in Section 8.2. Besides
the clock signal, it receives as input the subject and query sequences of m and n

8.3 Proposed Architecture 107

bases respectively. Note that, in general, we have m � n. HBLAST also expects the
configuration of three parameters: w, which determine the seed size, T , which sets
up the required threshold value for alignment acceptance during extension, and p,
which dictates the number of extension processor that will be used in parallel as it
will be show later.

HBLAST

M
em
or
ys

t
clk

T w

i
j
d

p

Fig. 8.1 Interface of the proposed design

As there are 4 DNA bases (A, C, G, and T), we need 2 bits to represent each
base distinctively (00, 01, 10, 11). Instead of representing the subject and query
sequences 2 registers of 2×m and 2×m bits respectively, we opted to use 2 reg-
isters of m bits to store subject sequence and 2 registers of n bits to hold the query
sequence: one register of the pair holds the MSB of the DNA bases that form the
sequence and the other the LSB. These two ways of storing the DNA sequences
require the same number of flip-flops, but the second way improves the matching
time as the two bits of a base can be compared in parallel without much increase
in control, as they are provide by two distinct registers. The macro-architecture of
HBLAST is given in Fig. 8.2. It includes a Seeding Unit that takes care of finding
and bookkeeping all the seeds, with respect to s and t, and an Extension Unit that
extends the seeds found.

A Global Controller synchronizes the work in pipeline of the seeding and ex-
tension units: seeds are handled by the Extension Unit as they come. There is no
need to complete the seeding step before starting the extension work. A Scheduler
arbitrates the use of the shared data and control buses between the Seeding and Ex-
tension Units. This is necessary because the Seeding Unit is, in turn, structurally
formed by q = n−w + 1 concurrent sub-units and the Extension Unit is formed
by p extension processors that act in parallel to accelerate the alignment process.
The structural parallelism within the Seeding and Extension Unit is depicted in Fig.
8.3. The work of the q seeding components (Seedingi) and the p extension compo-
nents (Extension Processor j) is harmonized by a respective stage controller, i.e. the
Seeding Controller and the Extension Controller respectively.

108 8 A Reconfigurable Hardware for DNA Matching

Seeding Unit Extension Unit

Global Controller

Scheduler
Data Bus

Control Bus

s[m]

t[n]

Result Memory

Fig. 8.2 Proposed macro-architecture

...

...

Data Bus

Seeding2

Seedingi

...

Seedingq

Seeding1 Extension Processor1

Extension Processor2

Extension Processorj

Extension Processorp

Scheduler

...

Seeding Unit Extension Unit

Se
ed

in
g

C
on

tro
lle

r

Ex
te

ns
io

n
C

on
tro

lle
r

Fig. 8.3 Structural parallelism in the seeding and extension units

8.3.1 Seeding Unit

The design uses q = n−w+ 1 concurrent Seeding components. Fig. 8.4 describes
the corresponding micro-architecture along with the interface withe the Scheduler
and the Seeding Controller. Each of these Seeding components includes 2 Matching
Units: one for the comparison of the MSBs of subject and query DNA sequences
and the other for the LSBs. The Matching Unit is a mere array of w XNOR gates
whose results are summarized by an AND gate, as shown in the circuit of Fig. 8.5(a).

8.3 Proposed Architecture 109

When a match of a target (w consecutive bits of s) and a word (w consecutive bits
of t) is declared, i.e. the result of the both Matching units (MSB and LSB) are
both 1, the stamp formed by the offset of the target and word is pushed down the
FIFO. Note that there is one FIFO per Seeding Unit. The stamps are later popped
to be considered for extension. Once a FIFO (or a Seeding Unit) is selected by the
Scheduler to feed a requesting Extension Processor, the Write Logic of Fig. 8.5(b)
allows the output stamp of the FIFO to be written into the Data Bus so as to be
forwarded to the Extension Processor.

Write
logic

Matching
Unit

FIFO

Se
ed

in
g

C
on

tro
lle

r

of
fs

et
s

of
fs

et
t

tw

Scheduler

 fu
ll

 av
ai

la
bl

e

 pr
io

ri
ty

 re
qu

es
t

pu
sh

incrs

sett

sets

s t

 D
at

a
B

us

sw

Fig. 8.4 Seeding unit micro-architecture

sw0

sw1

sww-1

tw0

tw1

tww-1

.

.

.

(a) Matching logic

Comparator
 priority

 in out

=

id

 request

FIFO fu
ll

 a
va

ila
bl

e

Seed
Stamp

(b) Write logic

Fig. 8.5 Matching and write logic micro-architectures

110 8 A Reconfigurable Hardware for DNA Matching

8.3.2 Extension Unit

The Extension Unit includes p Extension Processors as shown in Fig. 8.6. The num-
ber of included processor is defined as external parameter. This number does not
necessarily coincide with that of Seeding components as many seeds do not require
much extension work. Some seeds are discarded in the first base extension. Note
that it is intended that p � q. For this purpose, among others, a Scheduler is used to
distributed the identified seeds (in the FIFOs) as soon as a processors becomes idle.
When a processor completes the extension of a given seed and requests a new one
to work with, the Scheduler that is made aware of the request, selects the FIFO that
is already full, if any. Otherwise, it selects the FIFO that has less available space. In
the case there two or more FIFOS with the same available space, the one with the
smallest identifier is given precedence. Note that the work of a Seeding component
is suspended when its respective FIFO becomes full. Thus the strategy adopted by
the Scheduler in selecting the FIFO that is to serve the requesting extension proces-
sor aims at minimizing the number of halted Seeding components. As soon as an
interruption is received by the

Register s

Register t

Register sMSB

Adderi Adderi

Register tMSB

Adderj Adderj

Counteri

Counterj

Counterd

j =
 n

 -1

i

j

St
am

p
fr

om
 F

IF
O

Extension
Controller

w

+ + + - -

+ - -+ +
1

1

Int2 Int1

j =
 0

Comparator

i

Comparator
j

Int3 Int4

i =
 m

 -1

i =
 0

Int6

Int5 en

set

en

set

en

set

ni

nj

pi

pj

i

j

d

idle

Fig. 8.6 Micro-architecture of the Extension Processor

8.3 Proposed Architecture 111

Extension to the right and left are done parallel. The extension processor in-
cludes 4 adders that compute the new offset as well as the length of the matched
subsequence. During the extension to the right, 2 adders compute ni ← i+ 1 and
n j ← j + 1 while during the extension to the left, the other 2 adders compute
pi← i−d−1 and p j ← j−d−1. These new indices allow the processor to have ac-
cess to the new bases at the immediate left and right to the d bases already matched.
At first, we have d = w, then d is incremented at every successful match. The ac-
tual update of indices i, j and d is done, by the counters, only once the match is
declared. When a mismatch occurs, an interrupt (Int6 or Int5) is triggered to aban-
don the current seed. Two other interrupts can occur when the either all bases to
seed’s right or left on t (Int1 or Int2) or t those to the seed’s right or left on s were
treated. When interruption occurs, the Extension Controllers enables the writing of
the triplet (i, j,d) into the Result Memory and signals to the Global Controller that
the Extension Processor in question is idle and thus generates s request for a new
seed to work pass it through to the processor.

8.3.3 The Controllers

The design includes 4 controllers: the Global Controller, the Seeding Controller and
the Extension Controller and the Scheduler. Controllers are implemented as finite
state machines.

The Global Controller is responsible mainly for the synchronization of the pipeline
between the seeding and extension stages. Besides, it allows for the initialization of
all components, the load of the DNA subject and query sequences into the corre-
sponding registers and enabling the writing operation of the final results into the
Result Memory.

The actions imposed by the seeding Controller guarantee the logic distribution of
the DNA sequences into targets words son as to allow for the matching process to
perform correctly. The main task of this controller consist of maintaining the con-
tent of register s and t coherent all the time by synchronizing the required shifting
operations.

The Extension Controller is responsible for the correct performance of the p Ex-
tension Processors. It handles the interruption signals send by the Extension Pro-
cessors and controls the injection of the bits that represent the bases that need to be
considered during extension to the right and/or left, depending on the status of the
triggered interruptions.

The Scheduler is responsible for controlling the use of the Data Bus as to forward
an give seed stamp to an identified Extension Processor. It also selects the FIFO that
needs to provide the seed stamp to be treated next when the Extension Controller
signals that one of the Extension Processor became idle.

112 8 A Reconfigurable Hardware for DNA Matching

8.4 Performance Results

The MicroBlaze
TM

and the co-processor HBLAST were synthesized in a Xilinx Vir-
tex 5 FPGA xc5vfx70t. The MicroBlaze is an embedded processor soft core, which

is a reduced instruction set computer optimized for implementation on Xilinx
TM

FPGAs.
Without the proposed HBLAST co-processor, the MicroBlaze processor

performs all the alignment process. In this case, the BLAST algorithm were im-
plemented in ANSI/C++. The MicroBlaze has a communication interface for point-
to-point, called Fast Simplex Link (FSL), which allows for an efficient connection
with an external co-processor. In the remainder of this section, we will first intro-
duce the performance figures of the HBLAST proposed design in terms of area and
time requirements, then we compare the performance of the Microblaze-based im-
plementation (software implementation) and that occasioned by the use of HBLAST
as a co-processor (hardware implementation).

Table 8.1 shows the impact of varying the number of bases in the subject and
query sequences on both area and time requirements. Note that in case 4, wherein
m = 100 and n = 25, the hardware resources available on the used FPGA were
exhausted and thus no time figure is given in this case. Fig. 8.7 illustrates graphically
this impact.

Table 8.1 Hardware area and time requirements for diffrent configuration of m and n

m n FFs % LuTs % Slices % Time

1 20 10 7887 18 7811 17 3300 29 12.59
2 60 20 33418 75 33124 74 10900 97 14.91
3 100 10 27767 62 28307 63 9547 85 19.57
4 100 25 49907 111 50952 114 12411 111 —

FFs LuTs Slices Time
0

50

100

Case 1 Case 2 Case 3 Case 4

Fig. 8.7 Impact of the number of seed bases on the area and time requirements

8.4 Performance Results 113

Table 8.2 shows the impact of the value chosen for the seed size w. It is possible
to note that adjusting the setting of this parameter can be a way to remedy to the
case when the hardware are required is slightly above the available resources. Note
that in this case, we set m = 20, n = 10 and p = 2. A graphical illustration of this
effect is shown in Fig. 8.8.

Table 8.2 Hardware area and time requirements as w increases

w FFs % LuTs % Slices % Time

3 7887 18 7811 17 3300 29 12.59
4 7205 16 7278 16 3258 29 7.64
5 6523 15 6689 15 2963 26 5.71
6 5841 13 4553 10 2631 23 4.86

FFs LuTs Slices Time

10

20

30

40 w=3 w=24 w=5 w=6

Fig. 8.8 Impact of the number of seed bases on the area and time requirements

In order to verify the improvement in terms of performance, if any, vs. the in-
crease in terms of hardware area requirements occasioned by the use of more ex-
tension processors, we set m = 20, n = 10 and w = 3 and varied the number of
processors p. Table 8.3 shows the impact as p increases. Fig. 8.9 illustrates graphi-
cally this impact.

Table 8.3 Hardware area and time requirements as p increases

p FFs % LuTs % Slices % Time

1 6435 14 6622 15 3109 28 17.63
2 7887 18 7811 17 3300 29 12.59
3 7887 18 7804 17 3438 31 10.08
4 8004 18 7989 18 3672 33 8.50

114 8 A Reconfigurable Hardware for DNA Matching

FFs LuTs Slices Time

10

20

30

p=1 p=2 p=3 p=4

Fig. 8.9 Impact of the number of processor on the area and time requirements

Table 8.4 shows the time requirements of the MicroBlaze software implementa-
tion and the HBLAST hardware implementation. The operation frequency of pro-
cessor MicroBlaze is 50 MHz while HBLAST runs at different frequencies as shown
the penultimate column of Table 8.4. Fig. 8.10 illustrates, in a logarithmic scale, the
comparison of the MicroBlaze and HBLAST performances, as well as the speedup
achieved by using HBLAST. The average speedup is about 60×.

Table 8.4 Microblaze vs HBLAST time comparison

Case m n
Microblaze HBLAST

#Cycles Time #Cycles Freq. Times

1 20 10 32411 528.59 772 61.3 12.59
2 60 20 54393 996.21 814 54.6 14.91
3 100 10 54919 1065.04 1009 51.5 19.58
4 100 25 255454 5109.08 3206 50.0 64.12

Case1 Case 2 Case3 Case 4

0

2,000

4,000

MicroBlaze HBLAST Speedup

Fig. 8.10 Impact of the number of processor on the area and time requirements

References 115

8.5 Summary

This chapter presents a parallel architecture of the BLAST algorithm implemented
as a hardware co-processor to the MicroBlaze processor. BLAST is used to align
DNA sequences. The FPGA used is a Xilinx Virtex 5 FPGA (xc5vfx70t). The pro-
posed architecture exploits the parallelism of identifying the seeds using a strategic
partitioning of the subject and query sequences into words of a configurable size
in terms of bases. It also explores further parallelism as it includes many extension
processors to investigates the seeds found. The seeding and extension processes are
carried on in a pipelined fashion.

Moreover, the design is easily scalable to new configuration parameter, which
consist of the seed size w in terms of number of bases and the number of extension
processors p. This adjustment cab be done according to speed vs. cost constraints.

A thorough analysis of the impact of each of the algorithm parameters has been
done to evaluate the impact in terms of hardware are and time requirements. A
comparison of the software-based and the proposed hardware design showed that a
speedup of 60× is achieved in average.

Future work will be directed at completing the assessment step and analyzing the
impact on the whole design, as well as the use of real-world cases DNA alignment
and matching.

References

1. Altschul, S., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. Journal of Molecular Biology 215(3), 403–413 (1990)

2. Mount, D.W.: Steps used by the BLAST algorithm. Cold Spring Harbor Protocols:
Molecular Biology (2007), doi:10.1101/pdb.ip41

3. Needlman, S., Wunsh, S.: A general method applicable to the search of similarities in
Amino-Acid sequence of two protein. Journal of Molecular Biology 1(48), 443–453
(1970)

4. Garcia Neto Segundo, E.J., Nedjah, N., de Macedo Mourelle, L.: A parallel architecture
for DNA matching. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP
2011, Part II. LNCS, vol. 7017, pp. 399–407. Springer, Heidelberg (2011)

5. Giegerich, R.A.: Systematic approach to dynamic programming in bioinformatics.
Bioinformatics 8(16), 665–677 (2000)

6. Kasap, S., Benkrid, K.: High performance phylogenetic analysis with maximum parsi-
mony on reconfigurable hardware. IEEE Transactions on Very Large Scale Integration
VLSI Systems 99(5), 796–808 (2011)

7. Pearson, W.: Searching protein sequence libraries: comparison of the sensitivity and
selectivity of the Smith-Waterman and FASTA algorithms. Genomics 3(11), 635–650
(1991)

8. Rubin, E., Pietrokovski, S.: Heuristic methods for sequence alignment. Advanced Topics
in Bioinformatics, Weizmann Institute of Science (2003)

9. Shaper, E.G., et al.: Sensitivity and selectivity in protein similarity searches: a compari-
son of Smith-Waterman in hardware to BLAST and FASTA. Genomics 2(38), 179–191
(1996)

10. Waterman, M.S.: Introduction to Computational Biology. CRC Press (1995)

Part II
Soft Computing for Hardware

Chapter 9
Synchronous Finite State Machines Design with
Quantum-Inspired Evolutionary Computation�

Abstract. Synchronous finite state machines are very important for digital se-
quential designs. Among other important aspects, they represent a powerful way
for synchronizing hardware components so that these components may cooperate
adequately in the fulfillment of the main objective of the hardware design. In this
chapter, we propose an evolutionary methodology based on the principles of quan-
tum computing to synthesize finite state machines. First, we optimally solve the state
assignment NP-complete problem, which is inherent to designing any synchronous
finite state machines. This is motivated by the fact that with an optimal state assign-
ment, one can physically implement the state machine in question using a minimal
hardware area and response time. Second, with the optimal state assignment pro-
vided, we propose to use the same evolutionary methodology to yield an optimal
evolutionary hardware that implements the state machine control component. The
evolved hardware requires a minimal hardware area and imposes a minimal propa-
gation delay on the machine output signals.

9.1 Introduction

Sequential digital systems or simply finite state machines (FSMs) have two main
characteristics: there is at least one feedback path from the system output signal to
the system input signals; and there is a memory capability that allows the system to
determine current and future output signal values based on the previous input and
output signal values [1].

Traditionally, the design process of a state machine passes through five main
steps, wherein the second and third steps may repeated several times as shown in
Figure 9.1.

1. the specification of the sequential system, which should determine the next states
and outputs of every present state of the machine. This is done using state tables
and state diagrams;

� This chapter was developed together with Marcos Paulo Mello Araujo.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 119
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_9, c© Springer International Publishing Switzerland 2014

120 9 Synchronous Finite State Machines Design

2. the state reduction, which should reduce the number of present states using equiv-
alence and output class grouping;

3. the state assignment, which should assign a distinct combination to every present
state. This may be done using Armstrong-Humphrey heuristics [1, 2, 3];

4. the minimization of the control combinational logic using K-maps and transition
maps;

5. finally, the implementation of the state machine, using gates and flip-flops.

Fig. 9.1 Design methodology for sequential circuits

In this chapter, we concentrate on the third and forth steps of the design process,
i.e. the state assignment and the control logic minimization problems. We present a
quantum-inspired genetic algorithm designed to find a state assignment of a given
synchronous finite state machine, which attempts to minimize the cost related to the
state transitions. Then, we adapt the same quantum-inspired evolutionary algorithm
to evolve the circuit that controls the machine current and next states.

The problems involved in state machine synthesis have been extensively studied
in the past [2, 3, 1, 4]. These studies can be applied to state machine with a limited
complexity, i.e. few state and transitions to control. Furthermore, the evolutionary

9.1 Introduction 121

principle in the form of genetic algorithms and genetic programming has been ex-
plored to solve these problems [5, 6, 7, 8]. The application of this principle allowed
designers to synthesize more complex, state machines, i.e. with a little more states
and transitions, and without much design effort. However, when the complexity of
the state machine at hand goes beyond a certain limit, this applications fails to yield
interesting synthesis results and also, the execution extends over hours of evolution
One of the attractive properties of quantum computing is the possibility of massive
parallelism, as it will be detailed later in the next sections of this chapter. This paral-
lelism is not explicit. Instead, it is embedded within the information representation.

The use of both the evolutionary principle combined with that of quantum com-
puting should allow us to improve further the synthesis process both in terms of
improving the quality of the yielded results and also in synthesizing more complex
state machine with no design effort and with shorter evolution time. The results
presented towards the end of this chapter prove that the use of the quantum-inspired
evolutionary process is very efficient. Using the proposed algorithm, we were able to
synthesize automatically and evolutionary very complex state machines in a record
time. In practical terms, our algorithm can be embedded in hardware synthesis tools
to improve the quality of the synthesis result and generate those result efficiently.

The remainder of this chapter is organized into six sections. In Section 9.2, we in-
troduce the problems that face the designer of finite state machine, which are mainly
the state assignment problem and the design of the required control logic. In Sec-
tion 9.3, we show that a well chosen assignment improves considerably the cost
of the control logic. In Section 9.4, we give a thorough overview on the principles
of quantum computing. In Section 9.5, we design a quantum-inspired genetic algo-
rithm, which we call QIGA for evolving innovative solutions to hard NP-complete
problems. In Section 9.6, we apply QIGA to the state assignment problem and we
describe the genetic operators used as well as the fitness function, which determines
whether a state assignment is better that another and how much. Subsequently, in
Section 9.7, we present a quantum-inspired synthesizer for evolving efficient control
logic circuit given the state assignment for the specification of the state machine in
question. Then, we describe the circuit encoding, quantum gates used as well as the
fitness function, which determines whether a control logic design is better than an-
other and how much. Towards the end of this chapter, in Section 9.8, we present the
results evolved by QIGA for some well-known FSM benchmarks. Then we compare
the obtained results with those obtained by another genetic algorithm described in
[7, 6] as well as with NOVATM, which uses well established but non-evolutionary
methods [9]. We also provide the area and time requirements of the designs evolved
through our evolutionary synthesizer for those benchmarks and compare the yielded
results with those obtained using the traditional method to design state machines [9].
Last but no least, in Section 9.9, we draw some conclusions about this study and give
some directions for future work.

122 9 Synchronous Finite State Machines Design

9.2 Design Methodology of Synchronous Finite State Machines

Digital systems can be classified as combinational systems or sequential systems. A
combinational system must obey the following restrictions [1]:

1. The values 0/1 of the output signals must depend on the actual values 0/1 of the
input signals only.

2. There should be no feedback of the output signals to the input signals.

The aforementioned two restrictions make the design and analysis of combi-
national systems a straightforward task. Each output signal can be expressed as a
Boolean function of the input signals. For a combinational system of n input signals
and m output signals, we can have:

o j = φ j(i1, i2, . . . , in), j = 1,2, . . . ,m (9.1)

wherein i1, i2, . . . , in area the input signals, o1,o2, . . . ,om are the output signals and
φ1, φ2, . . ., φm form the necessary m Boolean function that yield the output signals.

In many digital systems, the output signal behavior cannot be determined know-
ing only the actual behavior of the input signals. In this case, the history of the input
and output signals must be used to do so. Sequential systems are fundamentally
different from the combinational ones, in spite of the fact that the former also in-
clude a combinational part. The term sequential is commonly used to describe this
distinction. Sequential systems present two main characteristics:

1. There exists at least on path of feedback between the output and input signals of
the system;

2. The circuit has the ability of remember information about the system past, in
such a way that previous values of the output signals could be used to determine
their respective next values.

The removal of the combinational restrictions allows for a larger spectrum for the
application of digital systems. The use of memory elements and the feedback feature
allow for the consideration of the time element as a parameter in the definition of
the system behavior. Therefore, the information related to past events can be used to
determine the behavior of the output signals. Moreover, information about both the
past and the present can be captured as to plan and specify some future activities.

A clear advantage that can be observed through the comparison of sequential and
purely combinational systems is the reduction of the hardware required due to the
repetitive nature of sequential systems. However, a sequential system almost always
requires more time to execute tasks [1]. The generic architecture of a Mealy finite
state machine is given in Figure 9.2.

The input signals of a sequential system can be divided into two groups: primary
input signals (i1, i2, . . . , in) and secondary input signals (p1, p2, . . . , pk). The behav-
ior of the primary input signals define the actual value of the system input, which
can be one of the 2n different possible combinations. The behavior of the secondary
input signals reflects the past history of the sequential system. These signals are also
called current state signals and whose values are read from the system memory.

9.2 Design Methodology of Synchronous Finite State Machines 123

Fig. 9.2 A structural description of a Mealy state machine

The system ability to remember information about the past can be implemented
through the utilization of flip-flops or latches [10]. The set of flip-flops used is gen-
erally called the state register. The k signal values of the secondary input form what
is commonly known as the present state of the system. Therefore, the system may
have 2k distinct possible states. For this reason, sequential systems are also com-
monly called as finite state systems [10]. The total state of the system is defined as
the union of the two sets of primary and secondary input signals. So, there are 2n+k

different total states.
The output signals can also be divided into two groups: primary output signals

(o1, o2, . . ., om) and secondary output signals (n1,n2, . . . ,nk). The primary output
signals form the control signals that are sent to the environment in which the se-
quential system is embedded. The secondary output signals form the data for the
sequential system memory. These signals present the new value that will be saved
into the system memory as soon as the next cycle of operation starts. Therefore,
the secondary output signals are commonly called the next state of the system. In
the same moment that the next state signals are written into the state register, the
system passes to show this state as the present state. The primary and secondary
output signals of the system are yield by combinational operations on the total state
signals.

The design methodology of a state machine that controls the behavior of a given
digital system may be subdivided into the following main steps:

• Machine Specification: The relationship between the present state signals and
the primary input signals and that between the next state signals and the primary
output signals describes the behavior of the sequential system. This relationship

124 9 Synchronous Finite State Machines Design

can be represented in many different ways. The most commonly used represen-
tations are the state transition diagram and the state transition table.

• State Reduction: States that produce the same output signal and have the same
next state behavior are identified as equivalent and so are combined into a single
state that acts in substitution to all these equivalent states. Equation 9.2 suggests
that the total number of states that are necessary during the operation of the se-
quential system, say n, determine the minimal number of the state signals in that
system implementation. Therefore, reducing the number of the included states
yields a reduction in the state register size and also may lead to a reduction in the
complexity of the control logic required. Some techniques used for the identifi-
cation of equivalent states and the simplification of the state machine model can
be found in [4].

K = �log2(n)� (9.2)

• State Assignment: Once the specification and the state reduction steps have
been completed, the following step consists then of assigning a code to each
state present in the machine. It is clear that if the machine has N distinct states
then one needs N distinct combinations of 0s and 1s. So, one needs K flip-flops
to store the machine current state, wherein K is the smallest positive integer such
that 2K ≥ N. The state assignment problem consists of finding the best assign-
ment of the flip-flop combinations to the machine states. Since a machine state
is nothing but a counting device, a combinational control logic is necessary to
activate the flip-flops in the desired sequence. A generic architecture of a ma-
chine state is shown in Figure 9.2, wherein the feedback signals constitute the
machine state, the control logic is a combinational circuit that computes the state
machine primary output signals from the current state signals and the primary
input signals. It also produces the signals of the machine next state.

Let n be the number of states in a given machine and so b = �log2 n� flip-
flops are needed to store the machine state. A state assignment consists of iden-
tifying the 2b binary codes that should be used to identify the machine n states.
The number of possible distinct state assignments f (n,b) [11] is given in
Equation 9.3.

f (n,b) =
2b

(2b − n)
(9.3)

Table 9.2 shows the values obtained for f when applied to some specific values
of n and b. For instance, if the evaluation of an assignment as to its impact on the
state machine implementation lasts say 100 μs, then 66 years would be needed
to test all possible assignments, which cannot be done. Therefore, it is essential
to use heuristics to overcome this problem.

• Logic Synthesis: The control logic component in a state machine is responsible
for generating the primary output signals as well as the signal that form the next
state. It does so using the primary input signals and the signals that constitute the
current state (see Figure 9.2). Traditionally, the combinational circuit of the con-
trol logic is obtained using the transition maps of the flip-flops [1]. Given a state
transition function, it is expected that the complexity, in terms of area and time,

9.3 Impact of State Assignment 125

Table 9.1 Number of possible state assignments

n b f (n,b)

2 1 2
3 2 24
4 2 24
5 3 6720
6 3 20160
7 3 40320
8 3 40320
9 4 ≈ 4 ·109

10 4 ≈ 3 ·1010

11 4 ≈ 2 ·1011

12 4 ≈ 9 ·1011

13 4 ≈ 3 ·1012

14 4 ≈ 1 ·1013

15 4 ≈ 2 ·1013

and so the cost of the control logic will vary for different assignments of flip-flop
combinations to the allowed states. Consequently, the designer should seek the
assignment that minimizes the complexity and so the cost of the combinational
logic required to control the state transitions.

9.3 Impact of State Assignment

Given a state transition function, the requirements of area and time vary with respect
to the state assignment used. Therefore, the designer or the computer-aided design
tool for circuit synthesis needs always to select carefully the state assignment to be
used. Existing techniques for state assignment can be listed as follows:

• One-hot: This technique associates a bit in the state register to each one of the
existing state. This simplifies a great deal the synthesis flux as the control logic
circuit can be obtained on-the-fly. However, it requires a register state whose size
is defined by the number of states in the machine [10].

• Heuristics: These techniques attempt to identify a “good” assignment based on
some heuristics. For instance, in [2] and [3], a heuristic based on state code ad-
jacency, which attempts to assign adjacent codes to states that are “close” con-
sidering the state transition function. Two states are said to be close if one is the
next state to the other and two binary codes are said to be adjacent if these are
distinct in one single position. The idea behind this heuristic is the fact that adja-
cent binary codes will appear next to each other in Karnaugh maps and therefore
would allow larger grouping, when necessary.

126 9 Synchronous Finite State Machines Design

• Meta-heuristics: Evolutionary algorithms are used to evolve efficient
assignments, rendering the assignment problem to an optimization one [6, 12].
These algorithms have been proven very efficient, very robust and the results
obtained are far superior to those yield by the heuristic-based techniques

In order to demonstrate the impact of the chosen state assignment on the con-
trol logic complexity in terms of area and response time, let us consider the state
machine described in Table 9.2 and try two different state codifications, which
are assignment1 = {00,11,01,10} and assignment2 = {00,01,11,10}. The circuit
schematics for the state machine using assignment1 and assignment2 are shown in
Figure 9.3 and 9.4 respectively.

Table 9.2 Example of state transition table

present next state output (O)
state I = 0 I = 1 I = 0 I = 1

s0 s0 s1 0 0
s1 s2 s1 0 1
s2 s0 s3 1 0
s3 s2 s1 1 1

Fig. 9.3 Circuit schematics for the state machine using assignment1

This example proves that the appropriate state assignment can reduce the imple-
mentation cost of the machine. The cost is defined here as the number of gates NOT,
AND and OR of two one-bit inputs used. The inverted output signal of the flip-flops
are considered of cost zero for the circuit implementation as these are available as
output from the flip-flops. Assuming that the implementation cost of a given circuit
is defined as the number of logic gates included, then Table 9.3 summarizes this cost
for several possible state assignments, including assignment1 and assignment2. The
afore-described example is an illustration of the fact that the choice of state assign-
ment can reduce considerably the cost of state machine implementations, if chosen
carefully.

9.4 Principles of Quantum Computation 127

Fig. 9.4 Circuit schematics for the state machine using assignment1

Table 9.3 Comparison of the number of logic gates for several possible state assignments

assignment #AND #OR #NOT Total

[00,11,01,10] 4 3 1 8
[00,01,10,11] 5 2 1 8
[00,10,01,11] 5 2 1 8
[00,11,10,01] 5 3 1 9
[11,00,01,10] 5 3 1 9
[00,01,11,10] 10 7 1 18
[00,10,11,01] 11 6 1 18

In Section 9.6, we concentrate on the third step of the design process, i.e. the state
assignment problem. We present a quantum-inspired genetic algorithm, designed
for finding a state assignment of a given synchronous finite state machine, which
attempts to minimize the cost related to the state transitions. In Section 9.7, we focus
on evolving minimal control logics for state machines for a given state assignment
and using an adapted version of the quantum-inspired genetic algorithm. Before
getting to that, however, we first give an introduction to quantum computing and
then we sketch the proposed algorithm.

9.4 Principles of Quantum Computation

Quantum computing is based on the concepts of quantum mechanics and is ex-
pected to be one of the main pillars of next generation computers. Many researchers
are already using the principles of quantum computing to develop new techniques
and algorithms to take advantage of the underlaying benefits [13, 14]. The basic

128 9 Synchronous Finite State Machines Design

elements of quantum computing are: quantum bits, quantum registers, quantum
gates and quantum circuits. These concepts are defined in the remainder of this
section.

9.4.1 Quantum Bit

In quantum computing, the smallest unit of information stored in a two-state system
is called a quantum bit or qubit [15]. The 0 and 1 states of a classical bit, are replaced
by the state vectors |0〉 and |1〉 of a qubit. This vectors are usually written using the
bracket notation, introduced by Paul Dirac in [16]. The state vectors of a qubit are
represented as in Equation 9.4:

|0〉=
[

1
0

]
e |1〉=

[
0
1

]
. (9.4)

While the classical bit can be in only one of the two basic states that are mutually
exclusive, the generic state of one qubit can be represented by a linear combination
of the state vectors |0〉 and |1〉, as in Equation 9.5:

|ψ〉= α |0〉+β |1〉 , (9.5)

wherein α and β are complex numbers. The state vectors |0〉 and |1〉 form a canon-
ical base and the vector |ψ〉 represents the superposition of this vectors, with α and
β amplitudes. The unit normalization of the state of the qubit ensures that Equation
9.6 is true:

|α|2 + |β |2 = 1. (9.6)

The phase of a qubit is defined by an angle ζ , defined as in Equation 9.7:

ζ = arctan(β/α), (9.7)

and tthe quadrant of qubit phase ζ is defined as in (9.8). If d is positive, the phase ζ
lies in the first or third quadrant; otherwise, the phase ζ lies in the second or fourth
quadrant [17].

d = α ·β , (9.8)

The physical interpretation of the qubit is that it may be simultaneously in the
states |0〉 and |1〉, which allows for an infinite amount of information to be stored
in state |ψ〉. However, during the act of observing the state of a qubit, it collapses
to a single state, i.e. either |0〉 or |1〉 [18]. The qubit collapses to state |0〉, with
probability |α|2 or state |1〉, with probability |β |2.

9.4.2 Quantum Registers

A system with m qubits contains information on 2m states. The linear superposition
of possible states can be represented as in Equation 9.9:

9.5 Quantum-Inspired Genetic Algorithms 129

|ψ〉=
2m

∑
k=1

Ck |Sk〉 , (9.9)

wherein Ck specifies the probability amplitude of the corresponding states |Sk〉 and
subjects to the normalization condition of Equation 9.10.

|C1|2 + |C2|2 + ...+ |C2m |2 = 1 (9.10)

9.4.3 Quantum Gates

The state of a qubit can be changed by the operation of a quantum gate or q-gate. The
q-gates applies a unitary operation U on a qubit in the state |ψ〉, making it evolve to
the state U |ψ〉, maintaining the probabilities interpretation defined in Equation 9.6.
There are several q-gates, such as the NOT gate, Controlled-NOT gate, Hadamard
gate, rotation gate [15].

9.5 Quantum-Inspired Genetic Algorithms

Since the emerging of evolutionary computation field, many new hybridized algo-
rithms and technique based on the main concepts of evolution have been devel-
oped. Just to name few, we can cite multi-objective evolutionary algorithms [20, 21],
swarm-based techniques [19], differential evolution [22] and quantum-inspired evo-
lutionary algorithm [23]. As any evolutionary algorithms, the latter is based on a
population of solutions which is maintained through many generations. It seeks the
best fitted solution to the problem, by evaluating the characteristics of those included
in the current population. In the next section, we describe the quantum-inspired rep-
resentation of the individual and the underlaying computational process.

9.5.1 Solution Representation

Evolutionary algorithms, like genetic algorithms, for instance, can use several rep-
resentations that have been used with success: binary, integer, real or even symbolic
[24]. The quantum-inspired evolutionary algorithms use a new probabilistic repre-
sentation, that is based on the concept of qubits as defined in Equation 9.5 and q-
individuals, which consist of a string of qubits. A q-individual, say p, can be viewed
as in Equation 9.11, wherein |αi|2 + |βi|2 = 1, for i = 1,2,3, ...,m.

p =

⎡
⎣

α1 α2 α3 · · · αm

β1 β2 β3 · · · βm

⎤
⎦ (9.11)

The advantage of the representation of the individuals using qubits instead of the
classical representation of bits is the ability of representing the linear superpositions

130 9 Synchronous Finite State Machines Design

of all possible states. For instance, an individual represented with three qubits (m =
3) can be depicted as in Quation 9.12:

p =

⎡
⎢⎣

1√
2

1√
3

1
2

1√
2

√
2
3

√
3

2

⎤
⎥⎦ , (9.12)

or viewed in the alternative way of Equation 9.13,

p = 1
2
√

6
|000〉+ 1

2
√

2
|001〉+ 1

2
√

3
|010〉+ 1

2 |011〉+ 1
2
√

6
|100〉+ 1

2
√

2
|101〉+

1
2
√

3
|110〉+ 1

2 |111〉
(9.13)

The numbers in Equation 9.13 represent the amplitudes whose square-roots in-
dicate the probabilities of observing states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉,
|110〉 and |111〉, which are 1

24 , 1
8 , 1

24 , 1
12 , 1

24 , 1
8 , 1

24 and 1
12 , respectively.

The evolutionary algorithms with the quantum-inspired representation of indi-
viduals should permit a population diversity better than other representations, since
the included individuals can represent linear superpositions of all possible states
[25, 23]. For instance, the single q-individual of Equation 9.12 is enough to repre-
sent eight states. When using the classical representation of bits, eight individuals
would be necessary to encode the same information.

9.5.2 Algorithm Description

The basic structure of the quantum-inspired evolutionary algorithm used in this
chapter is described by Algorithm 9.1 [26].

The quantum-inspired evolutionary algorithm maintains a population of
q-individuals, P(g) =

{
pg

1,p
g
2, ...,p

g
n
}

at generation g, where n is the size of pop-
ulation, and pg

j is a q-individual defined as in Equation 9.14:

pg
j =

⎡
⎣

αg
j1

αg
j2

αg
j3

· · · αg
jm

β g
j1

β g
j2

β g
j3

· · · β g
jm

⎤
⎦ , (9.14)

where m is the number of qubits, which defines the string length of the q-individual,
and j = 1,2, ...,n.

The initial population of n individuals is generated setting α0
i = β 0

i = 1/
√

2 (i =
1,2, ...,m) of all p0

j = pg
j |g=0 for j = 1,2, ...,n. This allows each q-individual to be

the superposition of all possible states with the same probability.
The binary solutions in Sg are obtained by an observation process of the states of

every q-individual in Pg. Let Sg =
{
sg

1,s
g
2, ...,s

g
n
}

at generation g. Each solution, sg
i

for i = 1,2, ...,n, is a binary string with the length m, that is, sg
i = s1s2...sm, where

s j is either 0 or 1.

9.6 State Assignment with QIGA 131

Algorithm 9.1. Quantum-Inspired Genetic Algorithm – QIGA
g := 0;
generate P0 with n individuals
observe P0 into S0
evaluate the fitness of every solution in S0
store S0 into B0
while (not termination condition) do

g := g+1;
observe Pg−1 into Sg

evaluate the fitness of every solution in Sg

update Pg using a q-gate and apply probability constraints
store best solutions of Bg−1, Sg in Bg

store the best solution in Bg into b
if (no improvement for many generation) then

replace all the solution of Bg by b
end if

end while
return b

The observation process is implemented using random probability: for each pair
of amplitudes [αk,βk]

T for k = 1,2, ...,n×m of every qubit in the population Pg, a
random number r in the range [0,1] is generated. If r < |βk|2, the observed qubit is
1; otherwise, it is 0.

The q-individuals in Pg are updated using a q-gate, which is detailed later in
the next section. We impose some probability constraints such that the variation
operation performed by the q-gate avoid a premature convergence of a qubit to either
to 0 or 1. This is done by allowing neither of |α|2 nor |β |2 to reach 0 or 1. For this
purpose, the probability |α|2 and |β |2 are constrained to 0.02 as a minimum and 0.98
as a maximum. Such constraints allowed the algorithm to escape local minimum.
This variation is one of the contribution of the chapter and has not been introduced
in the original version of the algorithm [23].

After a given number of generations, if the best solution b does not improve, all
the solutions stored into Bg are replaced by b. This step can induce a variation of the
probabilities of the qubits within the q-individuals. This operation is also performed
in order to escape local minimum and avoid the stagnant state.

9.6 State Assignment with QIGA

The identification of a good state assignment has been thoroughly studied over the
years. In particular, Armstrong [2] and Humphrey [3] have pointed out that an as-
signment is good if it respects three rules, which consist of the following:

• two or more machine states that have the same next state should be given adjacent
binary codes;

132 9 Synchronous Finite State Machines Design

• two or more states that are the next states of the same state should be given
adjacent binary codes.

• the first rule should have precedence over the second.

State adjacency means that the states appear next to each other in the mapped
representation. In other terms, the combination assigned to the states should differ
in only one position;

Now we concentrate on the assignment encoding and the fitness function. Given
two different state assignments, the fitness function allows us to decide which is
fitter.

9.6.1 State Assignment Encoding

In this case, a q-individual represents a state assignment. Each q-individual consists
of an array of 2×N �(log2 N)� entries, wherein each set of 2×�log2 N� entries are
the qubits associated to a single machine state. For instance, Figure 9.5 represents
a q-individual and a possible assignment for a machine with 4 states obtained after
the observation of the qubits.

S0 S1 S2 S3

α0
1 α0

2 α1
1 α1

2 α2
1 α2

2 α3
1 α3

2

β 0
1 β 0

2 β 1
1 β 1

2 β 2
1 β 2

2 β 3
1 β 3

2

1 1 0 1 0 0 1 0

Fig. 9.5 Example of state assignment encoding

Note that when an observation occurs, one code might be used to represent two or
more distinct states. Such a state assignment is not possible. In order to discourage
the selection of such an assignment, we apply a penalty every time a code is used
more than once within the considered assignment. This will be further discussed in
the next section where the fitness function is described.

9.6.2 Q-Gate for State Assignment

To drive the individuals towards better solutions, a q-gate is used as a variation
operator of the quantum-inspired evolutionary algorithm presented at this chapter.
After an update operation, the qubit must always satisfy the normalization condition
|α ′|2 + |β ′|2 = 1, where α ′ and β ′ are the amplitudes of the updated qubit.

9.6 State Assignment with QIGA 133

Initially, each q-individual represents all possible states with the same probability.
As the probability of every qubit approaches either 1 or 0 as a result of many appli-
cations of the q-gate, the q-individual converges to a single state and the diversity
property disappears gradually. By this mechanism, the quantum-inspired evolution-
ary algorithm can treat the balance between exploration and exploitation [23]. The
q-gate used is inspired by a quantum rotation gate. This is defined in Equation 9.15.

⎡
⎣

α ′

β ′

⎤
⎦=

⎡
⎣

cos(Δθ) −sin(Δθ)

sin(Δθ) cos(Δθ)

⎤
⎦
⎡
⎣

α

β

⎤
⎦ , (9.15)

where Δθ is the rotation angle of each qubit towards either of the states 0 or 1,
depending on the amplitude signs. The angle Δθ should be adjusted according to
problem at hand.

The value of the angle Δθ can be selected from the Table 9.4, where f (sg
i) and

f (bg
i) are the fitness values of sg

i and bg
i , and s j and b j are the jth bits of the ob-

served solutions sg
i and the best solutions bg

i , respectively. The rotation gate allows
changing the amplitudes of the considered qubit, as follows:

1. If s j and b j are 0 and 1, respectively, and if f (sg
i)≥ f (bg

i) is false then:

• if the qubit is located in the first or third quadrant as defined in Equation 9.8,
Δθ = θ3 is set to a positive value to increase the probability of the state |1〉;

• if the qubit is located in the second or fourth quadrant, Δθ = −θ3 should be
used to increase the probability of the state |1〉.

2. If s j and b j are 1 and 0, respectively, and if f (sg
i)≥ f (bg

i) is false:

• if the qubit is located in the first or third quadrant, Δθ = θ5 is set to a negative
value to increase the probability of the state |0〉;

• if the qubit is located in the second or fourth quadrant, Δθ = −θ5 should be
used to increase the probability of the state |0〉.

Table 9.4 Look-up table of Δθ

s j b j f (sg
i)≥ f (bg

i) Δθ
0 0 false θ1
0 0 true θ2
0 1 false θ3
0 1 true θ4
1 0 false θ5
1 0 true θ6
1 1 false θ7
1 1 true θ8

134 9 Synchronous Finite State Machines Design

When it is ambiguous to select a positive or negative number for the angle pa-
rameter, we set its value to zero as recommended in [23]. The magnitude of Δθ
has an effect on the speed of convergence. If it is too big, the search grid of the
algorithm would be large and the solutions may diverge or converge prematurely
to a local optimum. If it is too small, the search grid of the algorithm would be
small and the algorithm may stagnate. Hence, the magnitude of Δθ varies and the
corresponding values depend on the application problem. In the state assignment
problem, we experimentally discovered that these values should be set as follows:
θ1 = θ2 = θ4 = θ6 = θ7 = θ8 = 0, θ3 = 0.05π , and θ5 =−0.05π .

9.6.3 State Assignment Fitness

This step of the quantum-inspired evolutionary algorithm evaluates the fitness of
each binary solutions obtained from the observation of the states of the q-individuals.
The fitness evaluation of state assignments is performed with respect to the rules of
Armstrong [2] and Humphrey [3]:

• how much a given state assignment adheres to the first rule, i.e. how many states
in the assignment, which have the same next state but have no adjacent state
codes;

• how much a given state in the assignment adheres to the second rule, i.e. how
many states in the assignment, which are the next states of the same state but
have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment, we use
an N ×N adjacency matrix, wherein N is the number of the machine states. The
triangular bottom part of the matrix holds the expected adjacency of the states with
respect to the first rule while the triangular top part of it holds the expected adjacency
of the states with respect to the second rule. The matrix entries are calculated as
described in Equation 9.16, wherein AM stands for the Adjacency Matrix, functions
next(σ) and prev(σ) yield the set of states that are next and previous to state σ ,
respectively. For instance, the 4×4 adjacency matrix for the state machine presented
in Table tab:estados is shown in Figure 9.6.

Fig. 9.6 Example of adjacency matrix

9.7 Logic Synthesis with QIGA 135

AMi, j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#(next(qi)∪next(q j)) If i > j

#(prev(qi)∪ prev(q j)) If i < j

0 If i = j

(9.16)

Using the adjacency matrix AM as defined in Equation 9.16, the fitness function ap-
plies a penalty of 2 or 1, every time the first or second rule are broken, respectively.
The penalty of breaking first rule is higher than that associated with the second rule
to maintain the higher priority of the former over the latter. Equation 9.17 shows
the details of the fitness function applied to a state assignment σ , wherein func-
tion na(q, p) returns 0 if the codes representing states q and p are adjacent and
1 otherwise. Note that if assignment σ associates two distinct states to the same
binary code, the σ is penalized by adding the constant ψ to the corresponding
fitness value.

f (σ) = ∑
i�= j & σi=σ j

ψ +
N−2

∑
i=0

N−1

∑
j=i+1

(AMi, j + 2×AMj,i)× na(σi,σ j) (9.17)

For instance, considering the state machine whose adjacency matrix is described in
Figure 9.6, the state assignment {s0 ≡ 00, s1 ≡ 10, s2 ≡ 01, s3 ≡ 11} has a fitness
of 5 as the codes of states s0 and s3 are not adjacent but AM0,3 = AM3,0 = 1 and
the codes of states s1 and s2 are not adjacent but AM1,2 = 2 while the assignments
{s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10} has a fitness of 3 as the codes of states s0 and
s1 are not adjacent but AM0,1 = AM1,0 = 1.

The objective of the quantum-inspired evolutionary algorithm is to find the
assignment that minimizes the fitness function as described in Equation 9.17. As-
signments with fitness 0 satisfy all the adjacency constraints. Note that such an
assignment may not exist for some state machines.

9.7 Logic Synthesis with QIGA

Exploiting the quantum-inspired evolutionary algorithm, we can automatically gen-
erate novel control logic circuits that are reduced with respect to area and time re-
quirements. The allowed gates are NOT, AND, OR, XOR, NAND, XNOR and WIRE, as
shown in Table 9.5. The last row represents a physical wire and thus, the absence of
a gate.

136 9 Synchronous Finite State Machines Design

Table 9.5 Gate name, gate code, gate-equivalent and average propagation delay (ns)

Name Code Area Delay

NOT 000 1 0.0625
AND 001 2 0.2090
OR 010 2 0.2160
XOR 011 3 0.2120
NAND 100 1 0.1300
NOR 101 1 0.1560
XNOR 110 3 0.2110
WIRE 111 0 0.0000

9.7.1 Circuit Codification

We encode circuit designs using a matrix of cells that may be interconnected. A cell
may or may not be involved in the circuit schematics and consists of two inputs, a
logical gate and a single output. A cell draws its input signals from the outputs of the
gates of the previous column. The cells located in the first column draw their inputs
from the circuit global input signals. Each cell is encoded with a number of qubits,
enough to represent the allowed gates and the signals that may be connected in each
input of the cell gate. Note that the total number of qubits may vary depending on
the number of outputs of the previous column and the number of primary inputs in
the case of the first column [27]. An example of a matrix of cells with respect to this
encoding is given in Figure 9.7.

For instance, the first part of Figure 9.8 represents a cell encoding and a possible
observation of the qubits states while the second part indicates the correspondent
circuit encoded by this cell, that is composed by an AND gate with its input A and
B connected to the first and third element of its previous column.

Fig. 9.7 Circuit representation

9.7 Logic Synthesis with QIGA 137

Gate Input A Input B

Cell
α1 α2 α3 α4 α5 α6 α7
β1 β2 β3 β4 β5 β6 β7

Observation 0 0 1 0 0 1 0

AND

Partial
Output

A

B

Cell 1,jFrom
Cell 1,j-1

From
Cell 3,j-1

Fig. 9.8 Example of a cell considering that it has 4 outputs

When the observation of the qubits that define the gate yields 111, i.e. WIRE,
then the signal connected to the cell’s A input appears in the partial output of the
cell. When the number of partial outputs of a column or the global inputs are not a
power of 2, some of them are repeated in order to avoid that a cell be mapped to an
inexistent input signal. The circuit primary output signals are the output signals of
the cells in the last column of the matrix. If the number of global outputs are less
than the number of cells in the last column, then some of the output signal are not
used in the evolutionary process.

The power of the quantum-inspired representation can be evidenced in the draw-
ing of Figure 9.9, which shows that all possible circuits can be represented with only
one q-individual in a probabilistic way, as explained in the Section 9.5.1.

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O

u

t
p

u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O

u
t

p
u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

O
u
t

p
u

t
s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

I

n
p

u
t

s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Possible observation 1

O
u

t
p

u

t
s

Gate P
a
r
t.

o
u
t
p
u
t

Gate

Gate

P
a
r
t.

o
u
t
p
u
t

Gate

Gate

Gate

Possible observation 2

Possible observation 3

Possible observation n

Fig. 9.9 Power of the quantum-inspired representation of an encoded circuit

138 9 Synchronous Finite State Machines Design

The number of q-individual included in the population (population size) as well
as the number of cells per q-individual are the parameters that should be adjusted
considering the state machine complexity. The complexity depends on the number
of inputs, outputs, states and number of states transitions of the machine.

9.7.2 Logic Fitness

This step of the quantum-inspired evolutionary algorithm evaluates the fitness of
each binary solutions obtained from the observation of the states of the q-individuals.
To evaluate the fitness of each solution, some constraints were considered: First of
all, the evolved specification must obey the input/output behavior, which is given
in a tabular form of the expected results given the inputs. This is the truth table of
the expected circuit. Secondly, the circuit must have a reduced size. This constraint
allows us to yield compact digital circuits. Finally, the circuit must also reduce the
signal propagation delay. This allows us to reduce the response time and so discover
efficient circuits.

We estimate the necessary area for a given circuit using the concept of gate-
equivalent. This is the basic unit of measure for digital circuit complexity [10]. It is
based upon the number of logic gates that should be interconnected to perform the
same input/output behavior. This measure is more accurate that the simple number
of gates [10].

When the input to an electronic gate changes, there is a finite time delay before
the change in input is seen at the output terminal. This is called the propagation delay
of the gate and it differs from one gate to another. We estimate the performance of
a given circuit using the worst-case delay path from input to output. The number of
gate-equivalent and an average propagation delay for each kind of gate were taken
from [10].

Let C be a digital circuit that uses a subset or the complete set of allowed gates.
The fitness function, which allows us to determine how much an evolved circuit
adheres to the specified constraints, is given in Equation 9.18, wherein function
Soundness(C) returns the Hamming distance to evaluate the functionality of cir-
cuit C with respect to the input/output expected behavior, Gates(C) returns the
circuit gates equivalent and function Delay(C) returns the propagation delay of the
circuit C based. Parameters Ω1 and Ω2 are the weighting coefficients that allow us to
consider both area and response time to evaluate the performance of an evolved cir-
cuit. For implementation issue, we minimize the fitness function of Equation 9.18,
considering the normalized values of Area(C) and Delay(C) functions. The values
of Ω1 and Ω2 are set to 0.6 and 0.4, respectively.

Fitness(C) = Soundness(C)+Ω1×Area(C)+Ω2×Delay(C), (9.18)

where the objective of QIGA is the minimization of this function.
The Hamming distance is an non-negative integer that is proportional to the num-

ber of errors that result from the comparison between the output of the evolved cir-
cuit and those expected for each of the possible combination of the input

9.7 Logic Synthesis with QIGA 139

signals. Function Soundness(C) is in Equation 9.19. Note that this definition sums
up a penalty ψ for each error and so the total value is proportional to the number of
output signal that are different from the expected ones.

Soundness(C) =
p

∑
i=1

∣∣y j − x j
∣∣×ψ (9.19)

wherein p is the number of possible combinations of the input signals,
∣∣y j − x j

∣∣ is
the difference between the output signals of the evolved circuit and the expected
ones, i.e. x j e y j respectively and ψ is a constant penalty for a single error. Note
that if Soundness(C)> 0 then the circuit does not implement the desired behavior
correctly and therefore, this is considered as a penalty for the individuals that encode
circuit C.

Function Area(C) returns the necessary hardware area to implement circuit C,
which is evaluated using the number of gate-equivalent used. Let C be a circuit
whose geometry is represented by a matrix n×m. Recall that each cell ci, j of the
circuit is formed by the gate type p together with the two inputs ea e eb. Function
Area(C) is defined in Equation 9.20. This definition is expressed using a recursive
function Areai, j, which allows us to compute the required area by the portion of
circuit C that produces the output of the gate at cell ci, j. This function is defined in
Equation 9.21. Note that the area corresponding to the shared gates must only be
counted once. For this purpose, a Boolean matrix V : n×m whose entry Vi, j is up-
dated when the gate of cell ci, j has been visited. In Equation 9.21, GEcp

i, j
represents

the number of gate-equivalent for gate p at cell ci, j and cex
i, j represents one of the

inputs of that gate.

Area(C) =
s

∑
i=1

Areai,m, (9.20)

wherein s is the number of output signals of C with s ≤ m.

Areai, j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

GEcp
i, j

If j = 1

GEcp
i, j
+ ∑

x∈{a,b}e¬Vcex
i, j, j−1

(
Areacex

i, j , j−1

)
If j ∈ [2,m]

(9.21)

When the input of a given gate switches from 0 to 1 or 1 to 0, there exists a finite
delay before the change is perceived at the output terminal of that gate. This delay is
called propagation delay and it depends on the type of the gate, the technology used
to implement it and the load factor that is put on the output terminal of this gate. The
values of the gate propagation delays for CMOS technology are given in Table 9.6,
where L represents the total load on the gate output. This delay does also depend on
the signal transition, i.e. the propagation delay of a gate are different when a positive
(tpLH) or negative (tpHL) transition occurs. The total load for a given gate is based
on a basic load unit defined for each gate family. The total load is then a sum of all

140 9 Synchronous Finite State Machines Design

Table 9.6 Gates, respective delays, load factor and area

Gate Type Propagation Delay Load factor Area
tpLH (ns) tpHL(ns) (load unit) (gate-equivalent)

NOT 0.02+0.038L 0.05+0.017L 1.0 1
AND 0.15+0.037L 0.16+0.017L 1.0 2
OR 0.12+0.037L 0.20+0.019L 1.0 2
XOR 0.30+0.036L 0.30+0.021L 1.1 3
NAND 0.05+0.038L 0.08+0.027L 1.0 1
NOR 0.06+0.075L 0.07+0.016L 1.0 1
XNOR 0.30+0.036L 0.30+0.021L 1.1 3

the load factor of every gate whose input signals is drawn from the output signal of
the considered gate.

Let C be a circuit whose geometry is represented by a matrix n×m. The delay
introduced by cell ci, j is defined as in Equation 9.22, wherein αcp

i, j
represents the

average of the intrinsic delay of gate p at cell ci, j. The average delay of the gate
when the total load is 0 and βcp

i, j
the average delay due to the fanout of output signal

of gate p of that cell. Table 9.7 shows the values of α and β for each of the used
gates.

τgatei, j = αcp
i, j
+βcp

i, j
×

⎛
⎜⎜⎜⎝ ∑

k ∈ [1,n],x ∈ {a,b}|
cex

k, j+1 = i

f actor(cp
k, j+1)

⎞
⎟⎟⎟⎠ (9.22)

Table 9.7 Values of α and β for the gates used by QIGA

Gate Type α β
NOT 0.035 0.0465
AND 0.155 0.0270
OR 0.160 0.0280
XOR 0.300 0.0285
NAND 0.065 0.0325
NOR 0.065 0.0455
XNOR 0.300 0.0285

The propagation delay of a circuit is defined by the delay of its critical path.
Considering all possible paths in a circuit, the critical path is the one that yields
the largest delay. The propagation delay of a given path of a circuit is defined by the

9.8 Performance Results 141

sum of delay of each of the gates that is traversed by the signal from the input until
the output of the circuit, as defined formally in Equation 9.23.

τ pathi, j =

⎧
⎪⎨
⎪⎩

τgatei, j If j = 1

τgatei, j + max
x∈{a,b}

(
τ pathcex

i, j , j−1

)
If j ∈ [2,m]

(9.23)

For a circuit of s ≤ n output signals, the propagation delay is determined by the
largest delay among those imposed by all the paths of the circuit that reach the
s gates located at the last column of the matrix representing the circuit. Function
Delay(C) is then defined as in Equation 9.24.

Delay(C) = max
i∈[1,s]

τ pathi,m (9.24)

9.8 Performance Results

This section is divided into two main parts: the result evolved by QIGA for the state
assignment problem and those obtained for the synthesis of the control logic. The
FSMs used are well-known benchmarks for testing finite state machines [28].

9.8.1 State Assignments Results and Discussion

In this section, we compare the assignment evolved by the quantum-inspired evo-
lutionary algorithm presented in this chapter to those yield by the genetic algo-
rithms [12, 6] and to those obtained using the non-evolutionary assignment system
called NOVA. Table 9.8 shows the best state assignments generated by the compared
systems.

The graphs presented in Figure 9.10 – Figure 9.14 show the progress of the evo-
lutionary process of the best assignment fitness together with the average fitness
with respect to all individuals of the population for some of the state machines used
in the comparison.

The results introduced in Table 9.8 are depicted in the charts of Figure 9.15 for
the comparison of the gate number, Figure 9.16 for the comparison of the hardware
area and Figure 9.17 for the comparison of the propagation delays.

In order to determine whether the results obtained by QIGA are significantly
better than those obtained by the genetic algorithm and the NOVATM synthesis tool,
we performed a statistical test of significance. The most commonly used method of
comparing proportions uses the χ2-test [29]. This test makes it possible to determine
whether the difference existing between two groups of data is significant or just a
chance occurrence.

142 9 Synchronous Finite State Machines Design

Table 9.8 Best state assignments found by the compared methods

FSM Method State Assignments

bbara AG1 [0,6,2,14,4,5,13,7,3,1]
AG2 [0,6,2,14,4,5,13,7,3,1]
NOVATM [9,0,2,13,3,8,15,5,4,1]
QIGA [4,5,1,9,13,12,14,15,7,6]

bbsse AG2 [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]
NOVATM [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14]
QIGA [5,3,11,7,9,6,14,10,8,12,4,1,0,2,13,15]

dk14 AG1 [5,7,1,3,6,0,4]
AG2 [0,4,2,1,5,7,3]
NOVATM [1,4,0,2,7,5,3]
QIGA [5,7,4,0,6,3,1]

dk16 AG1 [12,8,1,27,13,28,14,29,0,16,26,9,2,4,3,10,11,17,24,5,18,7,21,25,6,20,19]
NOVATM [12,7,1,3,4,10,23,24,5,27,15,16,11,6,0,20,31,2,13,25,21,14,18,19,30,17,22]
QIGA [14,30,22,6,4,5,13,25,18,20,31,9,10,26,23,28,29,7,15,3,16,8,21,17,1,11,24]

donfile AG1 [0,12,9,1,6,7,2,14,11,,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]
NOVATM [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1]
QIGA [7,6,23,31,26,27,15,14,13,5,10,4,22,30,12,8,11,9,18,19,2,0,3,1]

lion9 AG2 [0,4,12,13,15,1,3,7,5]
NOVATM [2,0,4,6,7,5,3,1,11]
QIGA [11,9,3,1,2,0,8,10,14]

mod12 AG1 [0,8,1,2,3,9,10,4,11,12,5,6]
NOVATM [0,15,1,14,2,13,3,12,4,11,5,10]
QIGA [15,7,6,14,10,2,3,1,5,13,9,11]

shiftreg AG1 [0,2,5,7,4,6,1,3]
AG2 [0,2,5,7,4,6,1,3]
NOVATM [0,4,2,6,3,7,1,5]
QIGA [4,0,2,6,5,1,3,7]

train11 AG2 [0,8,2,9,13,12,4,7,5,3,1]
NOVATM [0,8,2,9,1,10,4,6,5,3,7]
QIGA [9,11,13,3,1,2,0,12,8,5,4]

For the sake of completeness, we explain briefly how the test works. χ2-test de-
termines the differences between the observed and expected measures. The observed
values are the actual experimental results, whereas the expected ones refer to the hy-
pothetical distribution based on the overall proportions between the two compared

algorithms if these are alike. Let λ (a,m,q)
o and λ (a,m,q)

e be respectively the observed
and expected value of objective q obtained when using algorithm a with machine

state m. Note that λ (a,m,q)
e is computed as described in Equation 9.25.

λ (a,m,q)
e =

∑
(x,z)∈A×Q

λ (x,m)
o × ∑

y∈M
λ (a,y)

o

∑
(x,y,z)∈A×M×Q

λ (x,y,x)
o

, (9.25)

9.8 Performance Results 143

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
120

140

160

180

200

220

240

260

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

250

300

350

400

450

500

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.10 Progress of the best solution fitness together with the average fitness for state ma-
chines bbara e bbsse

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
350

400

450

500

550

600

650

700

750

800

850

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.11 Progress of the best solution fitness together with the average fitness for state ma-
chines dk14 e dk16

wherein A={QIGA, NOVATM}, A={QIGA, AG2} or A={QIGA, AG3}, M ⊆{bbara,
bbsse, dk14, dk16, don f ile, lion9, modulo12, shi f treg, train11} and Q={#gate,
area, time}. The χ2-test is based on the value of χ2 computed as in Equation 9.26,
wherein set a = {QIGA × NOVATM, QIGA × AG1 e QIGA × AG2} and q = {#gate,
area, time}.

χ2 = ∑
(a,m,q)∈A×M×Q

(
λ (a,m,q)

o −λ (a,m,q)
e

)2

λ (a,m,q)
e

. (9.26)

The computed values for χ2 for each of the comparisons are given in Table 9.9.
The use of the χ2-test is recommended when the proportions are small. Therefore,
the time quantities were converted to 0.1 ns instead of 1 ns, thus avoiding the limi-
tation imposed for the usage of the test.

The critical value of χ2 is 0.05 (i.e. 95% of confidence) and considered the limit
to assume the tested hypothesis. The degree of freedom depends on the amount

144 9 Synchronous Finite State Machines Design

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200

250

300

350

400

450

500

550

600

650

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.12 Progress of the best solution fitness together with the average fitness for state ma-
chines donfile e lion9

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.13 Progress of the best solution fitness together with the average fitness for state ma-
chines modulo12 e shiftreg

Table 9.9 Degree of freedom, computed χ2, critical χ2 for the confidence level of 99,5% e
the degree of confidence obtained for the considered comparisons

Comparison Degree of freedom χ2 Critical value Confidence level
QIGA × NOVATM 40 73,302 66,766 >99,5%
QIGA × AG1 25 68,281 46,928 >99,5%
QIGA × AG2 30 64,740 53,672 >99,5%

of results used to compute χ2. Assuming that the results are organized in a two-
dimensional array of r rows and c columns, the degree of freedom is defined by
(r−1)×(c−1). In this comparison, the number of rows coincides with that of state
machines used as benchmarks and the number of columns is 6: one for each pair
of objective/algorithm (we are considering 3 objectives and 2 algorithms in each
comparison).

9.8 Performance Results 145

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.14 Progress of the best solution fitness together with the average fitness for state ma-
chines train11

Fig. 9.15 Logic control comparison in terms of gates used

In the case of the comparison QIGA × NOVATM, all 9 state machines listed in
Table 9.8 are considered, while in the case of the other two comparisons, i.e. QIGA
× AG1 and QIGA × AG2, only some of the machines, 6 and 7 respectively, are used
taking into account the results availability. At the light of the statistical analysis, we
can conclude that QIGA performs significantly better than NOVATM, AG1 e AG2.

For all the simulations, we used a population of 50 q-individuals. However, we
observed that for some state machines, such as shiftreg and lion9, the best solution
was obtainable with a population of a single q-individual. Nevertheless, in this last
case, the number of runs that reached the best result shrunk considerably. For in-
stance, during the evolution of shiftreg, the global optimum was reached em all the
runs when the population size was of 50 q-individuals while with a population of 1
q-individuals, this was the case for only in 50% of the runs. During the performed
simulations, it was also possible to observe that QIGA was very robust with re-
spect to the choice of the angle magnitudes θ3 and θ5 within the spectrum suggested
in [23].

146 9 Synchronous Finite State Machines Design

Fig. 9.16 Logic control comparison in terms of hardware area required

Fig. 9.17 Logic control comparison in terms of propagation delay imposed

The impact of the control phase of the probability amplitudes of the qubits, first
contributed in QIGA, can be depicted in Figure 9.18. Figure 9.18–(a) shows that
when the control is not imposed and the quantum-inspired algorithm does not evolve
any new better solution, the average fitness of the population at hand gets very close
to the fitness of the best q-individual, which has been yield so far. This happens
due to the fact that the probabilities of the quantum states would practically be
100%, which would, in consequence lead to the measurement of the same solution
in all generations. In contrast with this, Figure 9.18–(b) shows that the average of
the probabilities is kept clear from the best solution. This is, actually, due to the
control of the probability amplitudes of the qubits, which thus allows new solutions
to be yield by the evolutionary process. This control step allows us to maintain a
better diversity within the population individual and hopefully would accelerate the
convergence of the optimization process.

9.8 Performance Results 147

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

(a) without control of the probability ampli-
tudes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
20

40

60

80

100

120

140

Geração

A
pt

id
ão

Melhor solução

Média da população

(b) with control of the probability amplitudes

Fig. 9.18 Impact of the control phase of the probability amplitudes of the qubits

The impact of the global migration step can be viewed in Figure 9.19. In this step,
the best solutions in B(g), which are used in the update operation of the qubits, are
all replaced by the best solution b. This substitution introduces a change in the pop-
ulation in the attempt to further improve its diversity. The picks, highlighted in the
graphics of Figure 9.19, indicate three moments that allow for a clear observation of
the effect caused by the global migration step on the average fitness of the popula-
tion. The showed picks appear whenever 400 generations pass by without yielding
a new better solution. Hence, as the control phase of the probability amplitudes of
the qubits, this operation of global migration permits an remarkable improvement
of the population diversity and thus leading to avoiding local minimums.

9.8.2 Logic Synthesis Results and Discussion

Table 9.10 shows the characteristics of the circuits that were synthesized using ge-
netic programming (GP) [7, 8], genetic algorithms (GA) [6] and the ABC synthesis
tool [9]. Table 9.11 shows the characteristics of the best circuit evolved by QIGA
for each of the used machines.

The results listed in Table 9.11 and Table 9.10 are depicted as charts in Figure
9.20 for gate number comparison, Figure 9.21 for area comparison and Figure 9.22
for delay comparison.

The graphs presented in Figure 9.23 – Figure 9.27 show the progress of the evo-
lutionary process of the best circuit fitness together with the average fitness with
respect to all individuals in the population for some of the state machines used in
the comparison.

As before, and in order to determine whether the results obtained by QIGA are
significantly better than those obtained by GP [7, 8] and ABC [9]. The computed χ2

for these comparisons are presented in Table 9.12.

148 9 Synchronous Finite State Machines Design

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

250

300

350

400

450

500

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.19 Impact of the global migration

Table 9.10 Characteristics of evolved circuits by GP, GA, ABC

State GP GA ABC
machine #Gates Area Delay #Gates Area Delay #Gates Area Delay

bbara – – – 60 – – 62 63 0,67
bbsse – – – – – – 128 128 0,70
bbtas – – – 19 – – 24 24 0,32
dk14 – – – – – – 109 110 0,53
dk15 – – – 53 – – 92 92 0,46
dk16
dk27 – – – 16 – – 25 25 0,32
dk512 – – – 47 – – 63 63 0,46
donfile – – – – – – 174 174 0,60
lion9 21 39 0,70 50 – – 62 63 0,53
modulo12 – – – – – – 38 38 0,42
shiftreg 5 14 0,60 8 – – 2 6 0,30
tav – – – 26 – – 31 31 0,46
train11 22 43 0,56 – – – 85 85 0,53

The property of scalability is of paramount importance for any kind of project
and in electronic circuits projects, in particular [30, 31]. According to [32], scala-
bility in evolutionary electronics can be approached in two different ways that are
somehow related. The first focuses on the scalability of the individuals that represent
electronic circuits. It was established that if no restriction on how basic components
are connected is imposed then the size of the individuals will grow in the order of

9.8 Performance Results 149

Table 9.11 QIGA experimental results

State machine #Gates Area Delay

bbara 54 78 0.88
bbtas 21 27 0.73
dk15 65 109 0.92
dk27 15 26 0.43
dk512 47 78 0.84
lion9 20 29 0.52
modulo12 19 34 0.56
shiftreg 2 2 0.04
tav 26 24 0.32
train11 25 37 0.52

Fig. 9.20 Comparison of control logic for number of gates

Table 9.12 Degree of freedom, computed χ2, critical χ2 for the confidence level of 99,5% e
the degree of confidence obtained for the considered comparisons

Comparison Degree of freedom χ2 Critical value Confidence level

QIGA × PG 10 18,898 18,31 >95,0%
QIGA × ABC 45 97,823 69,96 >99,5%

O(n2), wherein n is the number of functional components. However, if the connec-
tivity is restricted to a local neighborhood in the proximity of the component, the
order of O(n) can be achieved. Note that the latter restricts the circuit that can be
evolved. The second way to handle scalability in evolutionary circuits is to reduce,
to a minimum, the complexity of the evolutionary process. Nowadays, scalability is
the main problem that faces the extensive use of evolutionary electronics.

The problem of scalability was noted in many other works that used the evolu-
tionary process to yield circuits [6, 33] and this was also the case for this work. For
a sate machine of reduced complexity such as shiftreg, it is possible to encode the
circuit with a 4× 3 geometry composed of 108 qubits. In this case, the population

150 9 Synchronous Finite State Machines Design

Fig. 9.21 Comparison of control logic for required area

Fig. 9.22 Comparison of control logic for imposed delay

of 20 q-individuals is enough to yield optimal circuits. However, for more complex
state machines, such as bbara, it is necessary to use a geometry of 32×5, composed
of 2080 qubits. In this case, the search space becomes extremely large, dictating im-
peratively an increase of the population size, which in turn leads to a considerable
increase of the average execution time. This time is about 3 minutes in the case of
the shiftreg state machine and around 5 hours in the case of bbara.

The increase of required time of the evolution of circuits brings together an extra
difficulty, which is the adjustment of the parameters needed in QIGA. This makes
it inviable to refine the parameters considering the characteristics of the state ma-
chine at hand. To overcome this obstacle, we adjusted the parameter setup based
on the state machines lion9 and train11 and these parameters were used during the
evolution of the control logic of the remaining state machines. Even so, the results
obtained for these machines are satisfactory, proving once again the robustness of
QIGA.

9.9 Summary 151

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.23 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines bbara e bbtas

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.24 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines dk15 e dk27

The results shown in this section suggest that QIGA is a tool of great potential
to be used in automatic synthesis of electronic circuits. The evolved circuits show
similar and some time better characteristics than those obtained by ABC, which is a
well-known as a powerful tool for logic synthesis.

9.9 Summary

In this chapter we studied the application of quantum-inspired evolutionary method-
ology to solve two hard problems: the state assignment and the automatic synthe-
sis of the control logic in the design process of synchronous finite state machines.
We compared both the state assignment and the circuits evolved by the proposed
algorithm QIGA for machines of different sizes and complexity with the results ob-
tained by other method. QIGA almost always obtains better results. This proves that
quantum-inspired evolutionary computation is very robust and leads to good results

152 9 Synchronous Finite State Machines Design

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.25 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines dk512 e lion9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

900

1000

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.26 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines modulo12 e shiftreg

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Geração

A
pt

id
ão

Melhor solução

Média da população

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

Geração

A
pt

id
ão

Melhor solução

Média da população

Fig. 9.27 Progress of the best solution fitness together with the average fitness for logic
synthesis of state machines tav e train11

References 153

and therefore can be very profitable when embedded in automatic synthesis tools
used in the design of digital systems.

Two main directions for future work emerges from this study. Regarding the state
assignment problem, one can investigate the use of other heuristics other than or
combined with Armstrong and Humphrey’s [2, 3]. Regarding the logic synthesis,
one can study the adaptation of QIGA so that it can evolve circuits at function level,
instead of gate level as it is the case in this chapter. Another interesting investigation
is the use of co-evolution technique in QIGA to accelerate further the evolutionary
process. This allows one to catch up with the scalability problem.

References

1. Rhyne, V.T.: Fundamentals of digital systems design. In: Computer Applications in Elec-
trical Engineering Series. Prentice-Hall (1973)

2. Armstrong, D.B.: A programmed algorithm for assigning internal codes to sequential
machines. IRE Transactions on Electronic Computers EC-11(4), 466–472 (1962)

3. Humphrey, W.S.: Switching circuits with computer applications. McGraw-Hill, New
York (1958)

4. Booth, T.L.: Sequential machines and automata theory. John Wiley & Sons, New York
(1967)

5. Ali, B., Kalganova, T., Almaini, A.E.: Extrinsic evolution of finite state machine. In:
Proc. of International Conference on Adaptive Computing in Design and Manufacture,
pp. 157–168. Springer (2002)

6. Ali, B.: Evolutionary algorithms for synthesis and optimization of sequential logic cir-
cuits. Ph.D. Thesis, School of Engineering of Napier University, Edinburgh, UK (2003)

7. Nedjah, N., Mourelle, L.M.: Evolvable machines: theory and practice. STUD FUZZ,
vol. 161. Springer, Heidelberg (2005)

8. Nedjah, N., Mourelle, L.M.: Mealy finite state machines: an evolutionary approach. In-
ternational Journal of of Innovative Computing, Information and Control 2(4), 789–806
(2006)

9. ABC, A system for sequential synthesis and verification, Release 70930. In: Logic Syn-
thesis and Verification Group, Berkeley (2005)

10. Ercegovac, M., Lang, T., Moreno, J.H.: Introduction to Digital Systems. John Wiley,
USA (1998)

11. Hartmanis, J.: On the state assignment problem for sequential machines. IRE Transac-
tions on Electronic Computers EC-10(2), 157–165 (1961)

12. Amaral, J.N., Tumer, K., Glosh, J.: Designing genetic algorithms for the state assignment
problem. IEEE Transactions on Systems, Man, and Cybernetics 25(4), 686–694 (1995)

13. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In:
Proc. the Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE
Computer Society Press (1994)

14. Lin, F.T.: An enhancement of quantum key distribution protocol with noise problem.
International Journal of of Innovative Computing, Information and Control 4(5), 1043–
1054 (2008)

15. Hey, T.: Quantum computing. Computing Control Engineering Journal 10(3), 105–112
(1999)

16. Dirac, P.A.M.: The principles of quantum mechanics, 4th edn. Oxford University Press
(1958)

154 9 Synchronous Finite State Machines Design

17. Zhang, G.: Novel quantum genetic algorithm and its applications. Frontiers of Electrical
and Electronic Engineering in China 1(1), 31–36 (2006)

18. Narayanan, A.: Quantum computing for beginners. In: Proc. of the Congress on Evolu-
tionary Computation, vol. 3, pp. 2231–2238. IEEE Press, Piscataway (1999)

19. Nedjah, N., Mourelle, L.M. (eds.): Swarm Intelligent Systems. SCI, vol. 26. Springer,
Heidelberg (2006)

20. Uno, T., Katagiri, H., Kato, K.: An evolutionary multi-agent based search method for
stackelberg solutions of bi-level facility location problems. International Journal of of
Innovative Computing, Information and Control 4(5), 1033–1042 (2008)

21. Liu, C., Wang, Y.: A new evolutionary algorithm for multi-objective optimization prob-
lems. ICIC Express Letters 1(1), 93–98 (2007)

22. Zhang, X., Lu, Q., Wen, S., Wu, M., Wang, X.: A modified differential evolution for
constrained optimization. ICIC Express Letters 2(2), 181–186 (2008)

23. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combi-
natorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593
(2002)

24. Hinterding, R.: Representation, constraint satisfaction and the knapsack problem. In:
Proc. of the Congress on Evolutionary Computation, vol. 2, pp. 1286–1292. IEEE Press,
Piscataway (1999)

25. Akbarzadeh, M.R., Khorsand, A.R.: Quantum gate optimization in a meta-level genetic
quantum algorithm. In: Proc. of IEEE International Conference on Systems, Man and
Cybernetics, vol. 4, pp. 3055–3062. IEEE Press, Piscataway (2005)

26. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Optimised state assignment for
fSMs using quantum inspired evolutionary algorithm. In: Hornby, G.S., Sekanina, L.,
Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 332–341. Springer, Heidelberg
(2008)

27. Araujo, M.P.M., Nedjah, N., de Macedo Mourelle, L.: Logic synthesis for fSMs using
quantum inspired evolution. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL
2008. LNCS, vol. 5326, pp. 32–39. Springer, Heidelberg (2008)

28. ACM/SIGDA, Collaborative Benchmarking and Experimental Algorithmic, North Car-
olina State University (2009), http://www.cbl.ncsu.edu

29. Diaconis, P., Efron, B.: Testing for independence in a two-way table: new interpretations
of the chi-square statistic (with discussion). The Annals of Statistics 13, 845–913 (1985)

30. Higuchi, T.: Evolving hardware with genetic learning. In: Proc. of International Confer-
ence on Simulation Adaptive Behavior: A First Step Toward Building a Darwin Machine,
pp. 417–424. MIT Press (1992)

31. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware be-
haviors. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS,
vol. 1062, pp. 250–265. Springer, Heidelberg (1996)

32. Yao, X., Higuchi, T.: Promises and challenges of cvolvable hardware. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29(1), 87–97
(1999)

33. Zebulum, R.S., Pacheco, M.A., Vellasco, M.M.: Evolutionary electronics: automatic de-
sign of electronic circuits and systems by genetic algorithms. CRC Press (2001)

http://www.cbl.ncsu.edu

Chapter 10
Application Mapping in Network-on-Chip Using
Evolutionary Multi-objective Optimization�

Abstract. Network-on-chip (NoC) are considered the next generation of commu-
nication infrastructure, which will be omnipresent in most of industry, office and
personal electronic systems. In the platform-based methodology, an application is
implemented by a set of collaborating intellectual properties (IPs) blocks. In this
chapter, we use multi-objective evolutionary optimization to address the problem of
mapping topologically pre-selected sets IPs, which constitute the set of optimal so-
lutions that were found for the IP assignment problem, on the tiles of a mesh-based
NoC. The IP mapping optimization is driven by the area occupied, execution time
and power consumption.

10.1 Introduction

As the integration rate of semiconductors increases, more complex cores for system-
on-chip (SoC) are launched. A simple SoC is formed by homogeneous or heteroge-
neous independent components while a complex SoC is formed by interconnected
heterogeneous components. The interconnection and communication of these com-
ponents form a network-on-chip (NoC). A NoC is similar to a general network but
with limited resources, area and power. Each component of a NoC is designed as an
intellectual property (IP) block. An IP block can be of general or special purpose
such as processors, memories and DSPs [4].

Normally, a NoC is designed to run a specific application. This application, usu-
ally, consists of a limited number of tasks that are implemented by a set of IP blocks.
Different applications may have a similar, or even the same, set of tasks. An IP block
can implement more than a single task of the application. For instance, a processor
IP block can execute many tasks as a general processor does but a multiplier IP block
for floating point numbers can only multiply floating point numbers. The number of
IP blocks designers, as well as the number of available IP blocks, is growing up fast.

In order to yield an efficient NoC-based design for a given application, it is nec-
essary to choose the adequate minimal set of IP blocks. With the increase of IP

� This chapter was developed in collaboration with Marcus Vinı́cius Carvalho da Silva.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 155
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_10, c© Springer International Publishing Switzerland 2014

156 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

blocks available, this task is becoming harder and harder. Besides IP blocks care-
fully assignment, it is also necessary to map the blocks onto the NoC available
infra-structure, which consists of a set of cores communicating through switches.
A bad mapping can degrade the NoC performance. Different optimization criteria
can be pursued depending on how much information details is available about the
application and IP blocks.

Usually, the application is viewed as a graph of tasks called task graph (TG).
The IP blocks features can be obtained from their companion documentation. The
IP assignment and IP mapping are key research problems for efficient NoC-based
designs. These two problems are NP-hard problems and can be solved using multi-
objective optimizations.

In this chapter, we propose a multi-objective evolutionary-based decision sup-
port system to help NoC designers. For this purpose, we propose a structured rep-
resentation of the TG and an IP repository that will feed data into the system. We
use the data available in the Embedded Systems Synthesis benchmarks Suite (E3S)
[2] as our IP repository. The E3S is a collection of TGs, representing real appli-
cations based on embedded processors from the Embedded Microprocessor Bench-
mark Consortium (EEMBC). It was developed to be used in system-level allocation,
assignment, and scheduling research. We used the NSGA-II, which is an efficient
multiobjective algorithm that uses Pareto dominance as a selection criterion [1]. The
algorithm was modified according to some prescribed NoC design constraints.

The rest of the chapter is organized as follows: First, in Section 10.2, we present
briefly some related research work. Then, in Section 10.3, we introduce an overview
of NoC structure. Subsequently, in Section 10.4, we describe a structured TG and IP
repository model based on the E3S data. After that, in Section 10.5.1, we introduce
the mapping problem in NoC-based environments. Then, in Section 10.5, we sketch
the NSGA-II algorithm used in this work, individual representations and objective
functions for the optimization stage. Later, in Section 10.7, we show some experi-
mental result yield. Last but not least, in Section 10.8, we draw some conclusions
and outline new directions for future work.

10.2 Related Work

The problems of mapping IP blocks into a NoC physical structure have been ad-
dressed in some previous studies. Some of these works did not take into account
of the multi-objective nature of these problems and adopted a single objective opti-
mization approach. Hu and Marculescu [4] proposed a branch and bound algorithm
which automatically maps IPs/cores into a mesh based NoC architecture that mini-
mizes the total amount of consumed power by minimizing the total communication
among the used cores. Lei and Kumar [7] proposed a two step genetic algorithm for
mapping the TG into a mesh based NoC architecture that minimizes the execution
time. In the first step, they assumed that all communication delays are the same and
selected IP blocks based on the computation delay imposed by the IPs only. In the
second step, they used real communication delays.

10.4 Task Graph and IP Repository Models 157

Murali and De Micheli [8] addressed the problem under the bandwidth constraint
with the aim of minimizing communication delay by exploiting the possibility of
splitting traffic among various paths. Zhou et al. [10] proposed a multi-objective
exploration approach, treating the mapping problem as a two conflicting objective
optimization problem that attempts to minimize the average number of hops and
achieve a thermal balance. Jena and Sharma [5] addressed the problem of topologi-
cal mapping of IPs/cores into a mesh-based NoC in two systematic steps using the
NSGA-II [1]. The main objective was to obtain a solution that minimizes the en-
ergy consumption due to both computational and communicational activities and
also minimizes the link bandwidth requirement under some prescribed performance
constraints.

10.3 NoC Internal Structure

A NoC platform consisting of architecture and design methodology, which scales
from a few dozens to several hundreds or even thousands of resources [6]. As men-
tioned before, a resource may be a processor core, DSP core, an FPGA block, a
dedicated hardware block, mixed signal block, memory block of any kind such as
RAM, ROM or CAM or even a combination of these blocks.

A NoC consists of set of resources (R) and switches (S). Resources and switches
are connected by links. The pair (R,S) forms a tile. The simplest way to connect the
available resources and switches is arranging them as a mesh so these are able to
communicate with each other by sending messages via an available path. A switch
is able to buffer and route messages between resources. Each switch is connected to
up to four other neighboring switches through input and output channels. While a
channel is sending data another channel can buffer incoming data. Fig. 10.1 shows
the architecture of a mesh-based NoC where each resource contains one or more IP
blocks (RNI for resource network interface, D for DSP, M for memory, C for cache,
P for processor, FP for floating-point unit and Re for reconfigurable block). Besides
the mesh topology, there are more complex topologies like torus, hypercube, 3-
stage clos and butterfly. Note that every resource in the NoC must have an unique
identifier and is connected to the network via a switch. It communicates with the
switch through the available RNI. Thus, any set of IP blocks can be plugged into the
network if its footprint fits into an available resource and if this resource is equipped
with an adequate RNI.

10.4 Task Graph and IP Repository Models

In order to formulate the IP mapping problem, it is necessary to introduce a formal
definition of an application first. An application can be viewed as a set of tasks that
can be executed sequentially or in parallel. It can be represented by a directed graph
of tasks, called task graph. A Task Graph (TG) G = G(T,D) is a directed graph
where each node represents a computational module in the application referred to as
task ai ∈ T . Each directed arc di, j ∈ D, between tasks ai and a j, characterizes either

158 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Fig. 10.1 Mesh-based NoC with 9 resources

data or control dependencies. Each task ai is annotated with relevant information,
such as a unique identifier and type of processing element (PE) in the network. Each
di, j is associated with a value V (di, j), which represents the volume of bits exchanged
during the communication between tasks ai and a j. Once the IP assignment has been
completed, each task is associated with an IP identifier. The result of this stage is a
graph of IPs representing the PEs responsible of executing the application.

An Application Characterization Graph (APG) G = G(C,A) is a directed graph,
where each vertex ci ∈ C represents a selected IP/core and each directed arc ai, j

characterizes the communication process from core ci to core c j. Each ai, j can be
tagged with IP/application specific information, such as communication rate, com-
munication bandwidth or a weight representing communication cost. A TG is based
on application features only while an APG is based on application and IP features,
providing us with a much more realistic representation of the an application in run-
time on a NoC. In order to be able to bind application and IP features, at least one
common feature is required in both of the IP and TG models.

The E3S (0.9) Benchmark Suite [2] contains the characteristics of 17 embedded
processors. These processors are characterized by the measured execution times of
47 different type of tasks, power consumption derived from processor data sheets,
and additional information, such as die size, price, clock frequency and power con-
sumption during idle state. In addition, E3S contains task graphs of common tasks
in auto-industry, networking, telecommunication and office automation. Each one

10.5 Multi-objective Evolution 159

of the nodes of these task graphs is associated with a task type. A task type is a
processor instruction or a set of instructions, e.g., FFT, inverse FFT, floating point
operation, OSPF/Dijkstra [3], etc. If a given processor is able to execute a given
type of instruction, so that processor is a candidate to receive a resource in the NoC
structure and would be responsible for the execution of one or more tasks.

Here, we represent TGs using XML code. A TG is divided in three major ele-
ments: taskGraph, nodes and edges. Each node has two main attributes: an unique
identifier (id) and a task type (type), chosen among the 47 different types of tasks
present in the E3S. Each edge has four main attributes: an unique identifier (id), the
id of its source node (src), the id of its target node (tgt) and an attribute representing
the communication cost imposed (cost).

The IP repository is divided into two major elements: the repository and the ips
elements. The repository is the IP repository itself. Recall that the repository con-
tains different non general purpose embedded processors and each processor imple-
ments up to 47 different types of operations. Not all 47 different types of operations
are available in all processors. Each type of operation available in each processor
is represented by an ip element. Each ip is identified by its attribute id, which is
unique, and by other attributes such as taskType, taskName, taskPower, taskTime,
processorID, processorName, processorWidth, processorHeight, processorClock,
processorIdlePower and cost. The common element in TG and IP repository rep-
resentations is the type attribute. Therefore, this element will be used to bind an ip
to a node. The repository contains IPs for digital signal processing, matrix opera-
tions, text processing and image manipulation.

These simplified and well-structured representations are easily intelligible, im-
prove information processing and can be universally shared among different NoC
design tools.

10.5 Multi-objective Evolution

Optimization problems with concurrent and collaborative objectives are called
Multi-objective Optimization Problems (MOPs). Objectives o1 and o2 are said to
be collaborative if the optimization of o1 leads implicitly to the optimization of o2

while these would be said to be concurrent if the optimization of o1 leads to the dete-
rioration of o2. In such problems, all collaborative objectives should be grouped and
a single objective among those should be used in the optimization process, which
achieves also the optimization of all the collaborative objectives in the group. How-
ever, concurrent objectives need all to be considered in the process. The best solution
for a MOP is the solution with the adequate trade-off between all objectives.

10.5.1 The IP Mapping Problem

The platform-based design methodology for SoC encourages the reuse of compo-
nents to increase reusability and to reduce the time-to-market of new designs. The
designer of NoC-based systems faces two main problems: selecting the adequate

160 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

set of IPs that optimize the execution of a given application and finding the best
physical mapping of these IPs into the NoC structure.

The main objective of the IP assignment stage is to select, from the IP repository,
a set of IPs that minimize the NoC consumption of power, area occupied and execu-
tion time. At this stage, no information about physical allocation of IPs is available
so optimization must be done based on TG and IP information only. So, the result
of this step is the set of IPs that maximizes the NoC performance. The TG is then
annotated and an APG is produced, wherein each node has an IP associated with it.

Given an application, described by its APG, the problem that we are concerned
with in this chapter is to determine how to topologically map the selected IPs onto
the network, such that the objectives of interest are optimized. Some of these ob-
jectives are: latency requirements, power consumption of communication, total area
occupied and thermal behavior. At this stage, a more accurate execution time can be
calculated taking into account of the distance between resources and the number of
switches and links crossed by a data package along a path. The result of this pro-
cess should be an optimal allocation of the one of the presecribed IP asssignments,
selected in an earlier stage, to execute the application, described by the TG, on the
NoC structure.

The search space for a “good” IP mapping for a given application is defined
by the possible combinations of IP/tile available in the NoC structure. Assuming
that the mesh-based NoC structure has N ×N titles and there are at most N2 IPs
to map, we have a domain size of N2!. Among the huge number of solutions, it is
possible to find many equally good solutions. In huge non-continuous search space,
deterministic approaches do not deal very well with MOPs. The domination concept
introduced by Pareto [9] is necessary to classify solutions. In order to deal with such
a big search space and trade-offs offered by different solutions in a reasonable time,
a multi-objective evolutionary approach is adopted.

10.5.2 EMO Algorithm

The core of the proposed tool offers the utilization of the well-known and well-
tested MOEA: NSGA-II [1]. It adopt the domination concept with a ranking schema
for solution classification. The ranking process separates solutions in Pareto fronts
where each front corresponds to a given rank. Solutions from rank one, which is
the Pareto-optimal front) are equally good and better than any other solution from
Pareto fronts of higher ranks.

NSGA-II features a fast and elitist ranking process that minimizes computational
complexity and provides a good spread of solutions. The elitist process consists
in joining parents and offspring populations and diversity is achieved using the
crowded-comparison operator [1].

The basic work flow of the algorithm starts with a random population of indi-
viduals, where each individual represents a solution. Each individual is associated

10.6 Objective Functions 161

with a rank. The selection operator is applied to select the parents. The parents pass
through crossover and mutation operators to generate an offspring. A new popula-
tion is created and the process is repeated until the stop criterion is satisfied.

10.5.3 Representation and Genetic Operators

The individual representation is shown in Fig. 10.2–(a). The tile indicates informa-
tion on the physical location on which a gene is mapped. On a N ×N regular mesh,
the tiles are numbered successively from top-left to bottom-right, row by row. The
row of the ith tile is given by �i/N�, and the corresponding column by i mod N.

The crossover and mutation operators were adapted to the fact that the set of
selected IPs can not be changed as we have to adhere to the set of prescribed IP
assignments. For this purpose, we propose a crossover operator that acts like a shift
register, shifting around a random crossover point and so generating a new solution,
but with the same set of IPs. This behavior does not contrast with the biological
inspiration of evolutionary algorithms, observing that certain species can reproduce
through parthenogenesis, a process in which only one individual is necessary to
generate an offspring.

The mutation operator performs an inner swap mutation, where each gene re-
ceives a random mutation probability, which is compared against the system muta-
tion probability. The genes with mutation probability higher than the system’s are
swapped with another random gene of the same individual, instead of selecting a
random IP from the repository. This way, it is possible to explore the allocation
space preserving any optimization done in the IP assignment stage. The crossover
and mutation strategies adopted in the IP mapping stage are represented in Fig.
10.2–(b) and Fig. 10.2–(c), respectively.

10.6 Objective Functions

During the evolutionary process, the fitness of the individuals with respect to each
one of the selected objectives (i.e. area, time, and power) must be efficiently com-
puted. After a through analysis of all possible design characteristics, we decided
that the adequate trade-off can be achieved using only minimization functions of
objectives area, execution time and power consumption.

10.6.1 Area

In order to compute the area required by a given mapping, it is necessary to know
the area needed for the selected processors and that required by the used links and
switches. As a processor can be responsible for more than one task, each APG node
must be visited in order to check the processor identification in the appropriate XML
element. Grouping the nodes with the same processorID attribute allows us to im-
plement this verification. The total number of links and switches can be obtained

162 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

(a) Chromosome

(b) Shift crossover

(c) Inner swap mutation

Fig. 10.2 Chromosome and application of the proposed shift crossover and inner swap
mutation

through the consideration of all communication paths between exploited tiles. Note
that a given IP mapping may not use all the available tiles, links and switches. Also,
observe that a portion of a path may be re-used in several communication paths.

In this work, we adopted a fixed route strategy wherein data emanating from
tile i is sent first horizontally to the left or right side of the corresponding switch,
depending on the target tile position, say j, with respect to i in the NoC mesh, until
it reachs the column of tile j, then, it is sent up or down, also depending on the
position of tile j with respect to tile i until it reaches the row of the target tile. Each
communication path between tiles is stored in the routing table. The number of links
in the aforementioned route can be computed as described in Equation 10.1. This is
also represents the distance between tiles i and j and called the Manhattan distance
[7].

nLinks(i, j) = |�i/N�−� j/N�|+ |i mod N − j mod N| (10.1)

In the purpose of computing efficiently the area required by all used links and
switches, an APG can be associated with a so-called routing table whose entries
describe appropriately the links and switches necessary to reach a tile from another.
The number of hops between tiles along a given path leads to the number of links be-
tween those tiles, and incrementing that number by 1 yields the number of traversed

10.6 Objective Functions 163

switches. The area is computed summing up the areas required by the implementa-
tion of all distinct processors, switches and links.

Equation 10.2 describes the computation involved to obtain the total area for the
implementation a given IP mapping M, wherein function Proc(.) provides the set
of distinct processors used in APGM and areap is the required area for processor p,
function Links(.) gives the number of distinct links used in APGM , Al is the area of
any given link and As is the area of any given switch.

Area(M) = ∑p∈Proc(APGM) areap +(Al +As)×Links(APGM)+As (10.2)

10.6.2 Execution Time

To compute the execution time of a given mapping, we consider the execution time
of each task of the critical path, their schedule and the additional time due to data
transportation through links and switches along the communication path. The crit-
ical path can be found visiting all nodes of all possible paths in the task graph and
recording the largest execution time of the so-called critical path. The execution
time of each task is defined by the taskTime attribute in TG. Links and switches can
be counted using the routing table. We identified three situations that can degrade
the implementation performance, increasing the execution time of the application:

1. Parallel tasks mapped into the same tile: A TG can be viewed as a sequence of
horizontal levels, wherein tasks of the same level may be executed in parallel,
allowing for a reduction of the overall execution time. When parallel tasks are
assigned in the same processor, which also means that these occupy the same tile
of the NoC, they cannot be executed in parallel.

2. Parallel tasks with partially shared communication path: When a task in a tile
must send data to supposedly parallel tasks in different tiles through the same
initial link, data to both tiles cannot be sent at the same time.

3. Parallel tasks with common target using the same communication path: When
several tasks need to send data to a common target task, one or more shared links
along the partially shared path would be needed simultaneously. The data from
both tasks must then be pipelined and so will not arrive at the same time to the
target task.

Equation 10.3 is computed using a recursive function that implements a depth-
first search, wherein function Paths(.) provides all possible paths of a given APG
and t0(a) is the required time for task a. After finding the including the total exe-
cution time of the tasks that are traversed by the critical path, the time of parallel
tasks executed in the same processor need to be accumulated too. This is done by
function SameProcSameLevel(.). The delay due to data pipelining for tasks on the
same level is added by SameSourceCommonPath(.). Last but not least, the delay due
to pipelining data that are emanating at the same time from several distinct tasks yet
for the same target task is accounted for by function DiffSrcSameTgt(.).

164 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Time(M) = max
r∈Paths(APGM)

(
∑
a∈r

t0(a)+ ∑
i∈{1,2,3}

ti(r)

)
(10.3)

Function t1– SameProcSameLevel(.) compares tasks of a given same level that are
implemented by the same processor and returns the additional delay introduced in
the execution of those tasks. Algorithm 10.1 shows how function SameProcLevel(.),
that uses information from path r, application task graph and its corresponding char-
acterization graph to compute the delay in question.

Algorithm 10.1. SameProcSameLevel(r) – t1
1: time := 0
2: for all a ∈ r do
3: for all n ∈ T do
4: if T.level(a) = T G.level(n) then
5: if APG.processor(a) = APG.processor(n) then
6: time := time+n.taskTime
7: end if
8: end if
9: end for

10: end for
11: return time

Function t2– SameSourceCommonPath(.) computes the additional time due to
parallel tasks that have data dependencies on tasks mapped in the same source tile
and yet these share a common initial link in the communication path. Algorithm
10.2 shows the details of the delay computation using information from path r, ap-
plication task graph and its corresponding characterization graph. In that algorithm
T G.targets(a) yields the list of all possible target tasks of task a, APG.initPath(src,
tgt) returns the initial link of the communication path between tiles src and tgt and
penalty represents a time duration needed to data to cross safely from one switch to
one of its neighbors. This penalty is added every time the initial link is shared.

Function t3– DiffSrcSameTgt(.) computes the additional time due to the fact that
parallel tasks producing data for the same target task need to use simultaneously at
least a common link along the communication path. Algorithm 10.3 shows the de-
tails of the delay computation using information from path r, application task graph
and its corresponding characterization graph. In that algorithm, APG.Path(src, tgt)
is the ordered list of all links crossed from task src to task tgt and penalty has the
same semantic as in the Algorithm 10.2.

10.6.3 Power Consumption

The total power consumption of an application NoC-based implementation con-
sists of the power consumption of the processors while processing the computation

10.6 Objective Functions 165

Algorithm 10.2. SameSrcCommonPath(r) – t2
1: penalty := 0
2: for all a ∈ r do
3: if T G.targets(a) > 1 then
4: for all n ∈ T G.targets(a) do
5: for all n′ ∈ T G.targets(a) | n′ �= n do
6: w = APG.initPath(a,n);
7: w′ = APG.initPath(a,n′);
8: if w = w′ then
9: penalty := penalty+1

10: end if
11: end for
12: end for
13: end if
14: end for
15: return penalty

Algorithm 10.3. DiffSrcSameTgt(r) – t3
1: penalty := 0
2: for all a ∈ r do
3: for all a′ ∈ r | a′ �= t do
4: if T G.level(a) = T G.level(a′) then
5: for all n ∈ T G.targets(a) do
6: for all n′ ∈ T G.targets(a′) do
7: if n = n′ then
8: w := APG.Path(a,n);
9: w′ := APG.Path(a′,n′);

10: for i = 0 to min(w.length,w′.length) do
11: if w(i) = w′(i) then
12: penalty := penalty+1
13: end if
14: end for
15: end if
16: end for
17: end for
18: end if
19: end for
20: end for
21: return penalty

performed by each IP and that due to the data transportation between the tiles. The
former can be computed summing up attribute taskPower of all nodes of the APG
and the latter is the power consumption due to communication between the applica-
tion tasks through links and switches. The power consumption due to the computa-
tional activity is simply obtained summing up atribute taskPower of all nodes in the
APG and is as described in Equation 10.4.

166 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Powerp(M) = ∑
a∈APGM

powera (10.4)

An energy model for one bit consumption is used to compute the total energy
consumption for the whole communication involved during the execution of an ap-
plication on the NoC platform. The bit energy (Ebit), energy consumed when a data
of one bit is transported from one tile to any of its neighboring tiles, can be obtained
as in Equation 10.5:

Ebit = ESbit +ELbit (10.5)

wherein ESbit and ELbit represent the energy consumed by the switch and link tying
the two neighboring tiles, respectively [4].

The total power consumption of sending one bit of data from tile i to tile j can be
calculated considering the number of switches and links the bit passes through on
its way along the path, as shown in Equation 10.6.

Ei, j
bit = nLinks(i, j)×ELbit +(nLinks(i, j)+ 1)×ESbit (10.6)

wherein function nLinks(.) provides the number of traversed links (and switches
too) considering the routing strategy used in this work and described earlier in this
section. The function is is defined in Equation 10.1.

Recall that the application TG gives the communication volume (V (a,a′)) in
terms of number of bits sent from the task a to task a′ passing through a direct
arc da,a′ . Assuming that the tasks a and a′ have been mapped onto tiles i and j re-
spectively, the communication volume of bits between tiles i and j is then V (i, j) =
V (dt,t′). The communication between tiles i and j may consist of a single link li, j or
by a sequence of m > 1 links li,x0 , lx0,x1 , lx1,x2 , . . . , lxm−1, j.

The total network communication power consumption for a given mapping M
is given in Equation 10.7, wherein Targetsa provides all tasks that have a direct
dependency on data resulted from task a and Tilea yields the tile number into which
task a is mapped.

Powerc(M) = ∑
a ∈ APGM,
∀a′ ∈ Targetsa

V (da,a′)×E
Tilea,Tilea′
bit (10.7)

10.7 Results

First of all, the implementation of the algorithm was validated using mathemati-
cal known MOPs and the results were compared with the original results that were
obtained by Deb to validate NSGA-II [1]. The simulation converged to the true
Pareto-front. For NoC optimization, only the individual representation and the ob-
jective functions were changed, keeping the ranking, selection, crossover and mu-
tation operators unchanged. Different TGs generated with TGFF [2] and from E3S,
with sequential and parallel tasks, were used.

10.7 Results 167

Many simulations were performed to find out the setting up of the parameters
used in NSGA-II for solving the IP mapping problem. The results of these simu-
lation allowed us to set the population size to 600, mutation probability to 0.01,
crossover probability to 0.8 and tournament size to 50 and run the algorithm of 100
generations. The application, represented as a TG in Fig. 10.3, was generated with
TGFF [2]. Note that this TG presents four levels of parallelism.

Fig. 10.3 Task graph of 5 levels of parallelism

Analyzing the results obtained from the first simulations, we observed that in
order to achieve the best trade-off, the system allocated many tasks for the same
processor, which reduces area and execution time but generates hot spots [10]. A
hot spot is an area of high activity within a silicon chip. Hot spots can damage
a silicon chip and increases power consumption because of Avalanche Effect. In
order to avoid the formation of hot spots, a maximum tasks per processor constraint
was imposed in the evolutionary process. This parameter is decided by the NoC
designer based on some extra physical characteristics. We adopted a maximum of 2
tasks per processor. Figure 10.4–(a) shows the Pareto-front discrete points. Figure
10.4–(b) shows the Pareto-front formed by the Pareto-optimal solutions. Note that
many solutions have very close objectives values. The IP assignment of the TG
represented in Fig. 10.3 was able to discover 97 distinct optimal IP assignments.
From those 97 distinct of IP assignments, 142 optimal mappings were generated.

Fig. 10.5–(a) represents the time × area trade-off, Fig. 10.5–(b) depicts the
power × time trade-off and Fig. 10.5–(c) plots the power × area trade-off. As we

168 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

15
20

25
30

35
40

45
50

55

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Area (m2)Power (W)

T
im

e
(s

)

(a) Pareto-optimal solutions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

15
20

25
30

35
40

45
50

55

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Area (m2)Power (W)

T
im

e
(s

)

(b) Pareto-front

Fig. 10.4 Pareto-optimal solutions and Pareto-front of the 142 optimal IP mappings obtained
for the task graph of Fig. 10.3

can observe, comparing the dots against the line of interpolation, the trade-off be-
tween time and area and between power and time is not so linear as the trade-off
between power and area. Fig. 10.5–(a) shows that solutions that require more area
tend to spend less execution time because of the better distribution of the tasks al-
lowing for more parallelism to occur. Fig. 10.5–(b) shows that solutions that spend
less time of execution tend to consume more power because of IP’s features, such as
higher clock frequency, and physical effects like intensive inner-electrons activity.

10.7 Results 169

0.12 0.14 0.16 0.18 0.2 0.22
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

time (s)

ar
ea

 (
m

2)
time x area

(a) time×area

10 20 30 40 50 60
0.12

0.14

0.16

0.18

0.2

0.22

power (W)

tim
e

(s
)

power x time

(b) power× time

10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

power (W)

ar
ea

 (
m

2)

power x area

(c) power×area

Fig. 10.5 Trade-offs representation of the 142 IP mappings for the task graph of Fig. 10.3

Fig. 10.5–(c) shows a linear relation between power consumption and area. Those
values and units are based on E3S Benchmark Suite [2].

For a TG of 16 tasks, a 4× 4 mesh-based NoC is the maximal physical structure
necessary to accommodate the corresponding application. The obtained solutions
showed that no solution used more than ten resources to map all tasks. The unused
6 tiles may denote a waste of hardware resources, which consequently lead to the
conclusion that either the geometry of the NoC is not suitable for this application or
the mesh-based NoC is not the ideal topology for its implementation.

As a specific mapping example, we detail one of the solutions, which seems
to be a moderate solution with respect to every considered objectives. Table 10.1
specifies the processors used in the solution. We can observe that all parallel tasks
were allocated in the distinct processors, which reduces execution time. The number
of processors were minimized based on the optimization of the objectives of interest
and this minimization was controlled by the maximum tasks per processor constraint
to avoid hot spots [10]. The processors were allocated in such way to avoid delay of
communication due to links and switches disputed by more than one resource at the
same time.

170 10 Application Mapping in NoC Using Evolutionary Multi-objective Optimization

Table 10.1 Processors of an illustrative solution of the mapping problem

TG Node 0 1 2 3 4 5 6 7
Proc ID 32 32 15 13 17 0 6 17
IP ID 942 937 458 378 490 43 240 480
Tile 0 0 4 5 10 6 1 10

TG Node 8 9 10 11 12 13 14 15
Proc ID 30 6 13 0 30 15 23 23
IP ID 855 216 379 13 862 456 724 719
Tile 9 1 5 6 9 4 8 8

10.8 Summary

In this chapter, we propose a decision support system based on MOEA to help NoC
designers allocate a prescribed set of IPs into a NoC physical structure. The use of
NSGA-II, which is one of the most efficient such an algorithm for 100 vezes allowed
us to consolidate the obtained results. Structured and intelligible representations of
a NoC, a TG and of a repository of IPs were used and these can be easily extended
to different NoC applications. Despite of the fact that we have adopted E3S Bench-
mark Suite [2] as our repository of IPs, any other repository could be used and
modeled using XML, making this tool compatible with different repositories. The
proposed shift crossover and inner swap mutation genetic operators can be used
in any optimization problem where no lost of data from a individual is accepted.
Future work can be two-fold: adopting a dynamic topology strategy to attempt to
evolve the most adequate topology for a given application and exploring the use of
different objectives based on different repositories.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE-EC 6, 182–197 (2002)

2. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: Task Graphs For Free. In: Proceedings of the
6th International Workshop on Hardware/Software Co-design, pp. 97–101. IEEE Com-
puter Society, Seattle (1998)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

4. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NoC architectures under
performance constraints. In: ASPDAC: Proceedings of the 2003 Conference on Asia
South Pacific Design Automation, pp. 233–239. ACM, New York (2003)

5. Jena, R.K., Sharma, G.K.: A multi-objective evolutionary algorithm based optimization
model for network-on-chip synthesis. In: ITNG, pp. 977–982. IEEE Computer Society
(2007)

6. Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J.-P., Forsell, M., Tiensyrjä,
K., Hemani, A.: A network on chip architecture and design methodology. In: ISVLSI,
pp. 117–124. IEEE Computer Society (2002)

References 171

7. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a network
on chip architecture. In: DSD, pp. 180–189. IEEE Computer Society (2003)

8. Murali, S., Micheli, G.D.: Bandwidth-constrained mapping of cores onto NoC architec-
tures. In: DATE, pp. 896–903. IEEE Computer Society (2004)

9. Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)
10. Zhou, W., Zhang, Y., Mao, Z.: Pareto based multi-objective mapping IP cores onto NoC

architectures. In: APCCAS, pp. 331–334. IEEE (2006)

Chapter 11
Routing in Network-on-Chips Using Ant Colony
Optimization�

Abstract. Networks-on-Chip (NoC) have been used as an interesting option in de-
sign of communication infrastructures for embedded systems, providing a scalable
structure and balancing the communication between cores. Because several data
packets can be transmitted simultaneously through the network, an efficient routing
strategy must be used in order to avoid congestion delays. In this chapter, ant colony
algorithms were used to find and optimize routes in a mesh-based NoC, where sev-
eral randomly generated applications have been mapped. The routing optimization
is driven by the minimization of total latency in packets transmission between tasks.
The simulation results show the effectiveness of the ant colony inspired routing by
comparing it with general purpose algorithms for deadlock free routing.

11.1 Introduction

A System-on-Chip (SoC) is an integrated circuit composed by a full computer sys-
tem. SoCs contains, within the same package, processors, memory, input-output
controllers and specific application devices. This block structure follows a design
methodology based on intellectual property (IP) cores. Components designed for a
specific project can be reused in other SoCs, reducing design time. Thus, under an
extremely simplified view, to increase the number of tasks performed by the SoC,
just add more IP cores with different features.

The increase of SoCs scale raises new design challenges. Among them is com-
munication between IP cores. The blocks of a SoC are interconnected by a commu-
nication infrastructure, such as buses or point-to-point links. However, each of these
models have their limitations. Shared buses can cause high delays if multiple blocks
need to transmit data simultaneously. This does not happen in point-to-point archi-
tectures. In turn, the communication structure need to be redesigned for each new
system. For many SoC designs, it is desirable to use a framework scalable as buses
and fast as point-to-point links. An architecture that includes these two features are
the NoCs, Networks-on-Chip [1].

� This chapter was developed in collaboration with Luneque Del Rio de Souza e Silva Júnior.

N. Nedjah and L. de Macedo Mourelle, Hardware for Soft Computing and Soft Computing 173
for Hardware, Studies in Computational Intelligence 529,
DOI: 10.1007/978-3-319-03110-1_11, c© Springer International Publishing Switzerland 2014

174 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

In an NoC architecture, switches are interconnected by point-to-point links, thus
describing a network topology. An example of network topology is the mesh shown
in Fig. 11.1. The switches are also connected to the IP cores that constitute the sys-
tem, also called resources. Switches exchange information in the form of messages
and packages. The information generated by a resource is divided into smaller parts
and sent over the network. These packages are organized in the destination switch
and then delivered to resource. This operation is similar to that performed by com-
puter networks. The structure formed by a switch and a resource is called a network
node. NoCs can be used in the implementation of multi-processors systems-on-chip
(MPSoCs) for running applications with high level of parallelism [23].

North

South

West East

 Resource

Switch

(a) Switch

R

S

R

S

R

S

R

S

Resource

Switch Link

R

S

R

S

R

S

R

S

R

S

(b) Mesh topology

Fig. 11.1 Network-on-chip architecture

In the design of NoC-based systems, the communication infrastructure can be
imported as a single configurable IP block. However, many are the ways to connect
network and resources, in order to achieve the desired application. To assist the
designer, computational tools for project assistance, or EDAs (Electronic Design
Automation), are used [20]. The purpose of EDAs is to optimize intermediate stages
of SoC and NoCs project, in order to obtain a more efficient design implementation
[15].

In general, NoCs are developed to perform a specific application. This application
can be described initially as a software that must be embedded in hardware. The
EDA tool must be able to use information about the desired application (at a high
level of abstraction) and, through successive stages of optimization, implement a
solution that meets the design specifications, which may include hardware area,
power consumption and time of execution. This optimization may include several
steps, such as task allocation [5], IP mapping [24] and static routing. The Fig. 11.2
shows in a simplified way the flowchart of a SoC design based on network-on-chip.

The process of IP allocation consists in associating each task (or set of tasks) to
an appropriate IP block within a set of IPs or repository capable of performing such

11.1 Introduction 175

D
es

ig
n

co
ns

tr
ai

nt
s

no
t a

ch
ie

ve
d

System specification

Task allocation

Routing

Avaliation

System implementation

Design constraints

IP mapping

Optimization steps

IP repository

Fig. 11.2 Typical embedded system design flow for NoC platform

a task. The mapping of an application consists in associating the set of IPs resulting
from the allocation to each node in communication infrastructure - in this case, the
NoC. In other words, is spatially defined where each feature will be implemented,
i.e., where in network each IP core is connected. Routing, in turn, defines which
switches will be used for communication between cores.

Delays in communication may occur in congestion situations, when multiple
packets could be transmitted using the same switch at the same time. If the routing
algorithm adopted in the NoCs design is deterministic, the selection of the packet
path from the source to the destination switch will not consider the load of interme-
diate switches - those between the source and destination switch. If these switches
are under a heavy traffic, a given packet can only be transmitted after the end of
congestion. This occurs even if other switches, not selected for routing, are free for
transmission. On the other hand, adaptive routing algorithms can be used in order to
avoid network congestion. These algorithms use not only the position of origin and
destination nodes, but also the actual load condition of the network to calculate the
route. When you find a region of network in use, the routing can set the package to
follow another path. This congestion-free path may, however, be not minimal. These
two situations are shown in Fig. 11.3.

In order to overcome the congestion problem, this chapter proposes a route op-
timization step in the design of NoCs, or more precisely, an adaptive and static
routing. In this routing, a network model provides the communication patterns re-
quired for application execution. The calculation of routes is accomplished by an
optimization algorithm to minimize the communication time. The search is always
for a shortest path between origin and destination. If the intermediate switches of

176 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

B

D

A C

(a) Problematic situation.

B

D

CA

(b) Blocked packets in de-
terministic routing.

B

D

A C

(c) Non-minimal paths in
adaptive routing.

Fig. 11.3 Routing in a 3×3 mesh

this path are in use, the algorithm should be able to find another route, so that the
contention effects does not affect the transmission.

In this chapter, the algorithm used in the search for routes is the ant colony op-
timization (ACO) [12]. This is an example of swarm intelligence, where a group of
individuals work together to find a solution to a given problem. We compared the
results of the network using the proposed routing algorithms and literature widely
adopted routing algorithms.

The reminder of this chapter is organized as follows. In Section 11.2 we review
the related work in routing algorithms. The specification of the simulated network is
shown in Section 11.3. In Section 11.4, we do an overview on ACO meta-heuristic.
The proposed routing is presented in Section 11.5. A brief description of applica-
tions and mapping is shown in Section 11.6. Simulation results are presented in Sec-
tion 11.7. The chapter closes with a conclusion and the description of future work in
Section 11.8.

11.2 Routing in Communication Networks

There are several works that study the efficient routing in parallel and distributed
computing. For a broader reference, [26] presents a survey of routing techniques for
direct networks.

Many of the techniques used for routing in NoCs, such as the XY algorithm, were
originally developed for computer networks and multiprocessor systems. The XY
algorithm is a routing technique widely used in 2D mesh networks with wormhole
switching, such as the Intel Touchstone DELTA [19], the Intel Paragon [16], the
Symult 2010 [27] and the Caltech MOASIC [28]. It works by sending packets over
the network first horizontally (X dimension), then vertically (Y dimension). This
idea can be expanded to a larger number of dimensions, being known as such DOR
(dimension order routing) [26]. In the context of NoCs, XY routing proves efficient
due to its simplicity of implementation and because it is deadlock-free. Works that

11.3 Network Specification 177

made use of this algorithm include the HERMES network [22] and the SoCIN net-
work [29].

Glass and Ni have proposed the so-called Turn Model for adaptive, livelock and
deadlock free algorithms [17]. A turn is a change of 90◦ in the direction of packet
transmission. The main idea of this model is to restrict the amount of turns that
a packet route can go through in order to avoid the formation of cycles that cause
deadlocks. Following this concept, three routing algorithms were proposed by Glass
and Ni: the West-First, the North-last and Negative-First. A related approach is the
Odd-Even turn model [3] for designing partially adaptive deadlock-free routing al-
gorithms. Unlike the turn model, which relies on prohibiting certain turns in order
to avoid deadlock, this model restricts the locations where some types of turns can
be taken. As a result, the degree of routing adaptiveness provided is more even for
different source-destination pairs.

The work of Jose Duato has addressed the mathematical foundations of routing
algorithms. His main interests have been in the area of adaptive routing algorithms
for multicomputer networks. Most of the concepts are directly applicable to NoC.
In [13], the theoretical foundation for deadlock-free adaptive routing in wormhole
networks is given.

11.3 Network Specification

The network model in this work uses switches with five communication ports. Four
ports are responsible for communication with neighboring switches and one is for
local communication with the resource. The switches are considered bufferless us-
ing no virtual channels. The network topology is a two dimension mesh, as shown in
Fig 11.1. The switching technique adopted was the wormhole. In this method, pack-
ets are divided into smaller units called flits (flow-units). It is assumed that each
communication channel has a width of a flit. The transmission of flits is performed
in a pipeline way, as seen in Fig. 11.4.

f0 f2

1 3 4 52 6 7 8

Destination node

Source node

0

f1 f2

f1

f0

f2

f1

f0

f2

f1

f0

f2

f1 f2

f0

Intermediary
nodes

Time (cycles)

Fig. 11.4 Transmission of 3 flits in wormhole switching

178 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

The latency of a packet sent trough the network in wormhole switching is given
by Equation 11.1, where t f lit is the transmission time of a flit in a channel, D is the
number of switches in a path, L is the total length of a packet (in bits), W is the length
of a channel, and Ldelay is the number of bits that would have been transmitted in a
period of congestion.

Tpacket = t f lit ·
(

D+

[
L
W

]
+

[
Ldelay

W

])
(11.1)

11.4 Ant Colony Optimization

Ant algorithms, also known as Ant Colony Optimization (ACO) [12], are a class of
heuristics search algorithms, that have been successfully applied to solving NP hard
problems [2]. Ant algorithms are biologically inspired in the behavior of colonies
of ants, and in particular how they forage for food. One of the main ideas behind
this approach is that the ants can communicate with one another through indirect
means by making modifications to the concentration of highly volatile chemicals
called pheromones in their neighbor environment. As it has been shown [18], indi-
rect communication among ants via pheromone trails enables them to find shortest
paths between their nest and food sources. The most emphatic and best known ex-
ample of the use of pheromones by ants is the double bridge experiment. An ant nest
is connected to a food source by two bridges with different lengths. This configura-
tion is shown in Fig. 11.5. Initially, ants choose equally both ways. However, opting
ants for shorter path are able to go back to the food supply before the ants that follow
the long way. Thus, also the concentration of pheromone on the shortest path will be
greater from the moment the ants complete the round trip. Consequently, next ants
will be more attracted by bridge with more pheromone, i.e., the shorter path.

Food Food Food

T = 1 T = 2 T = 3

Fig. 11.5 Pheromone concentration in the double bridge experiment

11.5 ACO-Based Routing 179

This capability of real ant colonies has inspired the definition of artificial colonies,
that can find approximate solutions to hard combinatorial optimization problems.
The main ideas of ACO are the use of:

• repeated simulations carried out by a population of artificial agents called “ants”
to generate new solutions to the problem;

• stochastic local search to build the solutions in an incremental way;
• information collected during past simulations (artificial pheromones) to direct

future search for better solutions.

Several ant algorithms make use of the structure shown in the Algorithm 11.1,
the ACO meta-heuristics [10].

Algorithm 11.1. ACO meta-heuristics
1: initialize parameters and pheromone trails;
2: while termination condition not met do
3: construct ant solutions;
4: local search (optional);
5: update pheromone trails;
6: end while;

In the artificial ant colony approach, each ant builds a solution by using two
types of information locally accessible: problem-specific information, and informa-
tion added by ants during previous iterations of the algorithm. In fact, while building
a solution, each ant collects information on the problem characteristics and on its
own performance, and uses this information to modify the representation of prob-
lem, as seen locally by the other ants. The representation of the problem is modified
in such a way that information contained in past good solutions can be exploited to
build new and hopefully better ones. This form of indirect communication mediated
by the environment is called stigmergy, and is typical in social insects.

11.5 ACO-Based Routing

The Ant Colony Optimization, with the ability to search for paths, emerging as
a powerful solution for routing problems. Thus, this chapter presents the use of
the ACO meta-heuristic in the construction of routing algorithms. Two models of
static routing for NoCs are proposed. These algorithms were called REAS (routing
based on EAS [12]) and RACS (routing based on ACS [11]). Both algorithms search
paths in an architecture characterization graph that represents the network 2D mesh
topology. These algorithms make use of multiple ant colonies, where each colony
is responsible for searching the route of a package. In this approach, each colony
has its own pheromone and ants. However, the colonies must exchange information
in order to minimize the latency of their respective packages. Thus, the route found
by an ant from a given colony is visible to the ants from other colonies, because

180 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

these packets are being transmitted simultaneously and in the same network. In the
proposed algorithms, ants in a network node knows only two things. The first is
the pheromone concentration in the surrounding nodes. The second is the load on a
node, the waiting time in each of the four possible transmission directions.

11.5.1 REAS Algorithm

The Elitist Ant System is directly inspired by the Ant System, the first or ant algo-
rithms [12]. The EAS is characterized mainly by the use of elitism, in order to dif-
ferentiate the best ants. A simplified pseudo-code of REAS is shown in Algorithm
11.2.

Algorithm 11.2. REAS algorithm
Require: network parameters;
Require: EAS parameters;
Require: packets parameters;
1: while total of cycles do
2: for k = 1 → number o f ants do
3: for g = 1 → number o f packets do
4: while nodeactual �= nodedestination do
5: Antk,g select the nodenext ;
6: calculates the load of Antk,g in nodeactual ;
7: nodeactual ← nodenext

8: end while
9: calculates Antk,g pheromone;

10: end for
11: calculates the elitist pheromone;
12: accumulate the pheromone of ants in k iteration;
13: end for
14: update the global pheromone;
15: end while
16: return best solution;

In the REAS algorithm, ants build paths through the network selecting the next
node with base in Equation 11.2, where pk

i j is the probability of the ant k go from
the node i to the node j.

pk
i j(t) =

⎧
⎨
⎩

τ j(t)
α ·ηi j

β

∑
k∈allowedk

τk(t)
α ·ηik

β if j ∈ allowedk

0 otherwise
(11.2)

The probability of selecting a particular direction is a function of pheromone
concentration and network load in this direction. These two parameters are weighted
by their importance constant α and β . The network load is used indirectly by ηi j,
defined by:

11.5 ACO-Based Routing 181

ηi j =
1

Ci j
(11.3)

where Ci j is the load in transmission from i to j.
At the end of each iterative cycle, the pheromone of all colonies is updated ac-

cording to Equation 11.4. Part of the pheromone of the previous iteration is reduced
by evaporation rate ρ , and then reinforced by the contribution of all m ants in the
current cycle. The pheromone also receives the reinforcement of elitist ants: those
that achieve the best solutions deposit their pheromone in every cycle, directing the
search in subsequent cycles.

τt+1 = (1−ρ) · τt +
m

∑
k=1

Δτk + τelite (11.4)

The pheromone in the path find by a single ant k is defined by:

Δτk =
Q
Lk

(11.5)

where Q is a constant and Lk represents the total latency of the solution. It is easy to
see that the ants with the worst results provide a smaller amount of pheromone.

11.5.2 RACS Algorithm

The second ant algorithm used in this work is described below. The RACS is very
similar to REAS, with the same structure of multiple colonies being used. The algo-
rithm on which the RACS was inspired, called Ant Colony System [11], differs from
others ant algorithms by:

• the selection method of next nodes in solutions building;
• the use of a different pheromone update.

Because these two mechanisms, ACS improves over AS by increasing the im-
portance of exploitation of information collected by previous ants with respect to
exploration of the search space. The pseudo-code of RACS algorithm is shown in
Algorithm 11.3.

Thus, the RACS uses the so-called pseudo-random proportional rule.

j =

{
argmax j∈[1,4]

{
τ j ·ηβ

i j

}
if q ≤ q0,

S otherwise
(11.6)

As shown in Equation 11.6, the probability for an ant to move from node i to node
j depends on a random variable q, uniformly distributed over [0,1], and a parameter

q0. If q ≤ q0, then the next node is directly selected by argmax j∈[1,4]{τ j ·ηβ
i j}, i.e.,

the direction with the largest value of τ j ·ηβ
i j . Otherwise, the next node is defined by

S, that uses a selection method similar to that employed by EAS (Equation 11.2).

182 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

Algorithm 11.3. RACS algorithm
Require: network parameters;
Require: ACS parameters;
Require: packets parameters;
1: while total of cycles do
2: for k = 1 → number o f ants do
3: for g = 1 → number o f packets do
4: while nodeactual �= nodedestination do
5: Antk,g select the nodenext ;
6: calculates the load of Antk,g in nodeactual ;
7: update the local pheromone in nodeactual ;
8: nodeactual ← nodenext

9: end while
10: calculates Antk,g pheromone;
11: end for
12: if solution of ants in k iteration is the best then
13: τbest ← pheromone of ants in k iteration;
14: end if
15: end for
16: update the global pheromone with τbest ;
17: end while
18: return best solution;

The RACS algorithm also uses a double pheromone update. The offline update is
applied at the end of each iteration only by the best-so-far ant.

τ j
t+1 =

{
(1−ρ) · τ j

t +ρ ·Δτ j if j belongs to best path
τ j

t otherwise
(11.7)

The offline update is given by Equation 11.7, where Δτ j is the reinforcement of
the best ant pheromone. As said, the offline update perform a strong elitist strategy.
The best ant can be the iteration-best ant, that is, the best in the current iteration, or
the global-best ant, that is, the ant that made the best tour from the start of the trial.

The local update is performed by all ants in each step of construction of a solu-
tion.

τt+1 = (1−ρ) · τt +ρ · τ0 (11.8)

This local update is defined by Equation 11.8, where ρ is the evaporation con-
stant, and τ0 is the initial pheromone at each node. In practice, ACS ants consume
some of the pheromone trail on the nodes they visit. This has the effect of decreas-
ing the probability that a same path is used by all the ants (i.e., it favors exploration,
counterbalancing this way the above-mentioned modifications that strongly favor
exploitation of the collected knowledge about the problem).

11.6 Applications in NoC 183

11.6 Applications in NoC

In general, NoCs are developed to perform a specific application. This application
can be described initially as a software that must be embedded in hardware. The
EDA tool must adjust characteristics of NoC and application so that the execution
is more efficient.

11.6.1 Task Graphs

Every application, in any type of computer system, can be described by a task graph.
This is a data structure in which the application is divided into blocks responsible for
specific tasks. These blocks, in turn, exchange information in order to complete the
application execution. The number of blocks may be higher or lower depending on
the level of abstraction adopted. Thus, the task graph is denoted by GT = G(T,D),
an acyclic and weighted directed graph. Each node of T is a task, or an application
processing module. In general, an operation is a well defined task, as a mathematical
calculation or a data encoding. Each arc of D characterizes the data dependencies
between two tasks.

11.6.2 Random Mapping

As mentioned in Section 11.1, an EDA tool can perform certain processes, such as
allocation, mapping and routing of applications in NoCs. In the allocation process,
cores are selected in an IP repository, and then associated with each application task.
In turn, the mapping deals with how the IPs are spatially distributed in the NoC
topology. Both processes are intended to optimize some characteristic of system,
like execution time, silicon area and power consumption [25, 6].

In this chapter, the routing is emphasized. Thus, it is considered that an allocation
step was previously performed, and the resource specifications are already available
for use. In the mapping step, we employed a simple random mapping process. In
the random mapping, each node of the application characterization graph is asso-
ciated to a node of the architecture characterization graph. The way in which this
association is made is random: a node of the application graph selects from a list of
a node of the architecture graph; the chosen position is removed from the list and
the process repeats until all nodes of the application graph have a defined position
in the architecture graph.

The mapping also defines the number of nodes in NoC. The number N of nodes
in a mesh must be sufficient to map an application with P tasks. Thus, because it’s a
2D mesh, the relationship between N and P is defined by (11.9).

N =
⌈√

P
⌉2

(11.9)

The Fig. 11.6 illustrates the mapping process. The tasks of the graph are associ-
ated with five nodes in a 3× 3 network.

184 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

A

D

CB

E

Random
Mapping

C

E

BD

A

Fig. 11.6 Application task graph mapped randomly in a NoC

11.7 Evaluation Experiments and Results

A cycle-accurate network simulator was implemented in Matlab. It supports 2D
mesh networks with wormhole switching. To evaluate the performance of the pro-
posed methods, networks were simulated with four different routing algorithms:
REAS, RACS, XY and Odd-Even (OE). The time unit adopted is the simulator
cycle, where one cycle is the transmission time of one flit.

All algorithms were executed with Matlab Version 7.7.0.471 (R008b). The sim-
ulations were performed on PCs with Intel Core i7 950 3GHz, 8Gb RAM and Mi-
crosoft Windows 7 Home Premium operating system.

11.7.1 Tests with Synthetic Traffic Patterns

The network was simulated with size of 5×5, a square of 25 nodes. The set of sim-
ulation tests were performed varying the network routing algorithm, the pattern of
traffic generation, the rate of injection and the number of packets. These parameters
are shown in Table 11.1.

Table 11.1 Simulation parameters

Routing algorithms REAS, RACS, XY, OE
Traffic pattern Uniform, Hots-pot, Local, Complement, Trans. 1, Trans. 2
Injection rate 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%
Number of packets 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

According to [14], the evaluation of interconnection networks requires the defini-
tion of representative workload models. This is a difficult task because the behavior
of the network may differ considerably from one architecture to another and from

11.7 Evaluation Experiments and Results 185

one application to another. Moreover, in general, performance is more heavily af-
fected by traffic conditions than by design parameters. Up to now, there has been
no agreement on a set of standard traces that could be used for network evaluation.
Most performance analysis used synthetic workloads with different characteristics.
These models can be used in the absence of more detailed information about the ap-
plications. Workload models are basically defined by three parameters: distribution
of destinations, injection rate, and message length.

11.7.1.1 Packet Distribution

The source-destination pairs are generated following six different distribution pat-
terns, as shown in Fig. 11.7. These patterns are based on models widely used in the
evaluation of communication in multiprocessor and distributed systems [14]. The
uniform, hot-spot and local were called random patterns, because both the source
and destination nodes are chosen in a randomly way. In the uniform pattern, all
nodes have the same probability of being selected. The hot-spot pattern is similar to
uniform. However, for the destination nodes, a particular node has a higher probabil-
ity of selection. In local pattern, only nodes around the source node can be selected
as a destination.

The complement, matrix transpose 1 and matrix transpose 2 were called deter-
ministic patterns. Although the selection of source nodes is random (following the
uniform distribution), the destination nodes are selected according to the position of
the source nodes. In the complement pattern, for a source node in the position (x,y),
the destination node is in the position (size− x+ 1,size− y+ 1), where size is the
number of nodes in a column or row of the mesh. For patterns matrix transpose 1 and
2, the destination nodes are respectively in the positions (size− y+ 1,size− x+ 1)
and (y,x).

11.7.1.2 Injection Rate

The packet injection rate relates the transmission time of flits (from resource to
switch) and idle time between the end of the transmission of a packet and the be-
ginning of the transmission of next packet. The injection rate is a fraction of the
network channel total bandwidth.

Two different injection rates are shown in Fig. 11.8. It is assumed that each flit is
transmitted in one cycle, and that the period between the start of transmission of two
consecutive packets is fixed. At the rate of 50%, a 5 flit size packet is injected into
the network; only after a idle time of 5 cycles, the next packet starts to be injected.
In this situation, only half of the total transmission capacity is used. At the rate of
100%, there is no idle time between packets. The use of injection rates lower than
100% is interesting in situations of network congestion, since the late flits can be
sent during idle time between packets.

186 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

(2,3)

(3,1) (3,2) (3,3)

(1,1) (3,1)(2,1)

(2,2)(2,1)

(a) Uniform

(2,3)

(3,1) (3,2) (3,3)

(1,1) (3,1)(2,1)

(2,2)(2,1)

(b) Hot-spot

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(c) Local

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(d) Complement

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(e) Matrix Transpose 1

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(f) Matrix Transpose 2

Fig. 11.7 Possible communication pairs in a 3×3 mesh

f0 f1 f2 f3 f4

Packet 1 Packet 2idle time idle time

f0 f1 f2 f3 f4

(a) 50 %

f6f5 f7 f8 f9f0 f1 f2 f3 f4

Packet 1 Packet 2

f6f5 f7 f8 f9f0 f1 f2 f3 f4

(b) 100 %

1 3 4 5

Time (cycles)

2 6 8 9 107 11 13 14 1512 16 18 19 2017

Fig. 11.8 Two different injection rates

11.7.1.3 Packet Size

The packet size can also be shaped in various ways. Two values must be distin-
guished: the size of a packet and its amount of flits. The size L of a package is the
value of its total length in bits. In turn, the amount of flits defined by Equation 11.10
is the largest integer value obtained by dividing the packet size by W , the size of a
phit (physical unit, width of channel bits).

f lits =

⌈
L
W

⌉
(11.10)

11.7 Evaluation Experiments and Results 187

Generally, packet length is defined as a constant in simulations [14]. Alterna-
tively, the length may be made variable in simulations, when studying the effects of
different packet sizes on network. In this situation, the size can be chosen at random
according to a specific probability distribution, such as the spatial distribution of
packets.

In this work, the amount of flits is associated with the injection rate. The number
of cycles from the start of transmission of a packet and the start of the next is defined
as the fixed value of 20 cycles. Thus, the amount of flits varies according to desired
injection rate as seen in Table 11.2.

Table 11.2 Amount of flits in each injection rate

Injection rate Flits Idle cycles

10% 02 18
20% 04 16
30% 06 14
40% 08 12
50% 10 10
60% 12 08
70% 14 06
80% 16 04
90% 18 02

100% 20 00

11.7.1.4 Simulation Results

For each simulation, we obtained the total latency and the average latency per
packet. The total latency is the sum of the individual latency of all packets being
transmitted on the network. The individual latency is the amount of simulation cy-
cles that have elapsed since the injection of the first flit of a packet until the begin-
ning of injection of the next packet of the same message. The average latency is the
latency value obtained divided by the total number of packets.

Results are shown in the Fig. 11.9. The general purpose of these tests is
to verify the variation of latency under different injection rates. The curves of
latency/packet× in jection rate are, in fact, a mean of the values obtained for dif-
ferent quantity of packets. Each graph illustrates these curves for the four routing
algorithms adopted.

The latency values (obtained in simulations) can be also arranged as function of
number of packets. In Fig. 11.10, for each traffic pattern, latency/packet ×
number o f packets curves are shown. For these curves, the value latency/packet is
the average (of obtained values for a same number of packets), for different injection
rates.

For all traffic patterns, the latency curve of REAS is located below the curves of
the other methods, indicating its ability to search for routes that provide a shorter
transmission time. This performance is slightly better than the others at low injection

188 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(a) Uniform

0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(b) Hot-spot

0% 20% 40% 60% 80% 100%
20

22

24

26

28

30

32

34

36

38

40

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(c) Local

0% 20% 40% 60% 80% 100%
20

30

40

50

60

70

80

90

100

110

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(d) Complement

0% 20% 40% 60% 80% 100%
20

30

40

50

60

70

80

90

100

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
e)

(e) Matrix Transpose 1

0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

60

65

70

REAS
OE
XY
RACS

Injection rate

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
e)

(f) Matrix Transpose 2

Fig. 11.9 Results for the network under six different traffic patterns

0 20 40 60 80 100
20

25

30

35

40

45

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(a) Uniform

0 20 40 60 80 100
20

25

30

35

40

45

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(b) Hot-spot

0 20 40 60 80 100
20

22

24

26

28

30

32

34

36

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(c) Local

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

110

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
es

)

(d) Complement

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

110

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
e)

(e) Matrix Transpose 1

0 20 40 60 80 100
20

30

40

50

60

70

80

REAS
OE
XY
RACS

Number of packets

L
at

en
cy

 /
pa

ck
et

 (
cy

cl
e)

(f) Matrix Transpose 2

Fig. 11.10 Results for the network under six different traffic patterns

11.7 Evaluation Experiments and Results 189

rates, becoming more evident in rates above 50%. The RACS has a latency curve
similar to the obtained by XY and OE algorithms for the uniform and hot-spot traffic
patterns. For Local and Complement patterns these curves differ, with RACS getting
lower latency values compared to the XY and OE. In matrix transpose patterns, the
RACS achieved similar results to those obtained by REAS.

11.7.2 Simulation with Synthetic Task Graphs

In these simulations, we used five sets of graphs of synthetic applications. These
graphs were randomly generated with the aid of the software Task Graph For Free
(TGFF) [9]. The TGFF is a general purpose, user controllable pseudo-random graph
generator, widely used in embedded real-time systems research. The software works
based on a script, where the user defines parameters such as total number of tasks,
levels, or tasks per level. A example of graph created by TGFF is shown in
Fig. 11.11, with two intermediary levels, each one with three tasks.

Fig. 11.11 Example of TGFF generated graph

The task graph is composed by a set of nodes (rectangles) and arcs (arrows).
The numbers in each node is a task index, where “1” is the start task and “2” is
the end task, and the execution time of the task, in cycles. The values in the arcs
are the number of bits of the transmitted packet. In orther to explore the behavior
of applications with parallel characteristics, tasks were generated following a fork-
join structure, with the start task sending packets to several destinations, and the
end task receiving packets from several origins. Between start and end tasks exist
intermediate tasks, arranged in various levels of parallelism. Tasks at the same level
can run concurrently and independently.

190 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

Therefore, 50 graphs are generated, being arranged in 5 sets of 10 graphs. Each
set, called Ex1, Ex2, Ex3, Ex4 and Ex5, has a different characteristic on the max-
imum number of tasks. Within a set, each of the ten tasks are differentiated by the
number of intermediate levels.

In the Ex1 set, graphs are generated based only in the total number of tasks. The
structure of nodes and arcs are build in a randomly way, with only restriction the
format of fork-join graph. Thus, the graph Ex1.1 (the first of set Ex1) is composed
of ten tasks, while Ex1.10 (the last) is composed of a total of one hundred tasks.
In the other four sets, the structure of each application graph is based mainly in the
number of tasks per level and the number of levels. Applications in Ex2 have two
tasks per level - the set Ex3 have three tasks, and so on. In each graph from Ex2.1
to Ex2.10, the number of levels vary from one to ten intermediary levels. Table 11.3
shows the number of levels and the total number of tasks in all five sets of graphs.

Table 11.3 Number of intermediary levels and tasks in all application graphs

Ex1 Ex2 Ex3 Ex4 Ex5
Lvs. Tasks Lvs. Tasks Lvs. Tasks Lvs. Tasks Lvs. Tasks

1 6 10 1 4 1 5 1 6 1 7
2 8 22 2 6 2 8 2 10 2 12
3 10 30 3 8 3 11 3 14 3 17
4 12 42 4 10 4 14 4 18 4 22
5 14 50 5 12 5 17 5 22 5 27
6 16 62 6 14 6 20 6 26 6 32
7 16 70 7 16 7 23 7 30 7 37
8 16 82 8 18 8 26 8 34 8 42
9 18 90 9 20 9 29 9 38 9 47

10 22 102 10 22 10 32 10 42 10 52

From the information of a graph, the routing can be accomplished by identifying
which packets are generated by tasks at the same level, i.e., which packets may be
transmitted simultaneously. The Algorithm 11.4 was used to perform this process.

11.7.2.1 Simulation Results

The simulations were performed by submitting applications to four different routing
algorithms and measuring its total execution time. This consists of execution of all
individual tasks on a critical path plus the communication time of these tasks. The
so-called packet delay is the difference between the value obtained using a specific
routing algorithm and the optimal value of the network without congestion. To cal-
culate this ideal value, we used a modified XY algorithm, called dummy XY. In this
routing, the XY algorithm is used to define the communication time using short-
est paths. But unlike the real XY (and any other routing algorithm), the potential
congestion delays are not counted.

11.7 Evaluation Experiments and Results 191

Algorithm 11.4. Mapping and routing of application
Require: Task Graph;
1: define size of NoC;
2: perform the mapping;
3: for l = 1 → #levels do
4: get all arcs in level l;
5: read tstart of source tasks;
6: perform the routing;
7: write tstart of destination tasks;
8: end for
9: texecution ← tstart(last task)+ tcomp(last task)

10: return routing paths, texecution;

The Fig. 11.12 shown results of the performed simulations. The values of packet
delay is presented for the four routing algorithms in each of 50 applications. These
values are a mean of packet delay in 10 different mappings.

The results show the REAS getting the best results in the simulations when com-
pared with other routing algorithms. The REAS is exceeded only in 12 of 50 tests.
These low delay values show that the REAS is able to find good solutions to routing
problem, independent of mapping or complexity of graph. For routing based on XY
algorithm and Odd-Even turn model, there is a wide variation in average delays ob-
tained for a given set of graphs. This large deviation in the delay values may suggest
that XY and OE are very sensitive to mapping adopted, even more than the com-
plexity of the application. The worst results were obtained with the second proposed
routing. The values found by RACS are increasing due to the complexity of the used
graphs.

11.7.2.2 Statistical Analysis

A given set of statistical results have significance if it is unlikely that these have
occurred by chance. The presented results show the REAS being able to get better
results than other routing algorithms used for comparison. In order to determine
whether the results obtained by REAS are significantly better than those obtained
by RACS, XY and OE, we performed a statistical test of significance. The most
commonly used method of comparing proportions uses the χ2-test [7]. This test
makes it possible to determine whether the difference existing between two groups
of data is significant or just a chance occurrence.

Eat =

∑
x∈A

Oxt · ∑
y∈T

Oay

∑
(x,y)∈A×T

Ox,y
(11.11)

For the sake of completeness, we explain briefly how the test works. χ2-test de-
termines the differences between the observed and expected measures. The observed

192 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

E
x1

.1

E
x1

.2

E
x1

.3

E
x1

.4

E
x1

.5

E
x1

.6

E
x1

.7

E
x1

.8

E
x1

.9

E
x1

.1
0

1

10

100

1000
REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(a) Ex1

E
x2

.1

E
x2

.2

E
x2

.3

E
x2

.4

E
x2

.5

E
x2

.6

E
x2

.7

E
x2

.8

E
x2

.9

E
x2

.1
0

0

2

4

6

8

10

12

REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(b) Ex2

E
x3

.1

E
x3

.2

E
x3

.3

E
x3

.4

E
x3

.5

E
x3

.6

E
x3

.7

E
x3

.8

E
x3

.9

E
x3

.1
0

0

5

10

15

20

25

30
REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(c) Ex3

E
x4

.1

E
x4

.2

E
x4

.3

E
x4

.4

E
x4

.5

E
x4

.6

E
x4

.7

E
x4

.8

E
x4

.9

E
x4

.1
0

0

10

20

30

40

50
REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(d) Ex4

E
x5

.1

E
x5

.2

E
x5

.3

E
x5

.4

E
x5

.5

E
x5

.6

E
x5

.7

E
x5

.8

E
x5

.9

E
x5

.1
0

0
10
20
30
40
50
60
70

REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(e) Ex5

Fig. 11.12 Packet delay in 5 sets of applications

11.7 Evaluation Experiments and Results 193

values are the actual experimental results, whereas the expected ones refer to the hy-
pothetical distribution based on the overall proportions between the two compared
algorithms if these are alike. Tests were conducted to REAS×XY , REAS×OE and
REAS×RACS separately for each set of simulations (Ex1 to Ex5) using the obtained
values of latency. The calculation of the expected value is performed with (11.11).
The value of χ2 is calculated with (11.12), where A and T are the sets of simula-
tions and algorithms used in each test. The value Oat is the observed latency in the
simulation t by the routing algorithm a.

χ2 = ∑
(a,t)∈A×T

(Oat −Eat)
2

Eat
(11.12)

The computed values for χ2 for each of the comparisons are given in Table 11.4.
The use of the χ2-test is recommended when the proportions are small. Therefore,
the time quantities were converted to 0.1 cycle instead of 1 cycle, thus avoiding the
limitation imposed for the usage of the test.

Table 11.4 Significance levels obtained with χ2 test

Degrees of freedom χ2 critical χ2 Significance

Ex1
REAS×XY 8 155,5 26,12 99,90%
REAS×OE 8 124,48 26,12 99,90%

REAS×RACS 8 68,38 26,12 99,90%

Ex2
REAS×XY 5 32,94 20,52 99,90%
REAS×OE 5 13,25 12,83 99,90%

REAS×RACS 6 120,12 22,46 97,50%

Ex3
REAS×XY 8 24,43 24,35 99,80%
REAS×OE 8 33,47 26,12 99,90%

REAS×RACS 8 105,25 26,12 99,90%

Ex4
REAS×XY 9 90,93 27,88 99,90%
REAS×OE 9 99,36 27,88 99,90%

REAS×RACS 9 37,57 27,88 99,90%

Ex5
REAS×XY 9 144,53 27,88 99,90%
REAS×OE 9 166,6 27,88 99,90%

REAS×RACS 9 31,21 27,88 99,90%

The critical value of χ2 is 0.05 (i.e. 95% of confidence) and considered the limit
to assume the tested hypothesis. The degree of freedom depends on the amount
of results used to compute χ2. Assuming that the results are organized in a two-
dimensional array of r rows and c columns, the degree of freedom is defined by
(r− 1)× (c− 1).

As can be seen in the Table 11.4, null hypothesis may be discarded in all cases.
Based on this statistical analysis, the REAS can be considered significantly better
than the algorithms XY, OE and RACS.

194 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

11.7.3 Simulation with Real World Applications

The simulations were performed by submitting applications to four different routing
algorithms and measuring its total execution time. This consists of execution of all
individual tasks on a critical path plus the communication time of these tasks. The
so-called packet delay is the difference between the value obtained using a specific
routing algorithm and the optimal value of the network without congestion. To cal-
culate this ideal value, we used a modified XY algorithm, called dummy XY. In this
routing, the XY algorithm is used to define the communication time using short-
est paths. But unlike the real XY (and any other routing algorithm), the potential
congestion delays are not counted.

11.7.3.1 Applications from E3S

The Embedded Systems Synthesis benchmarks Suite (E3S) [8] is a collection of
task graphs , representing real applications based on embedded processors from
Embedded Microprocessor Consortium (EEMBC). It was developed to be used in
system-level allocation, assignment and scheduling research. The E3S contains the
characteristics of 17 embedded processors. These processors are characterized by
the measured execution times of 47 different type of tasks, power consumption de-
rived from processor data sheets, and additional information, such as die size, price,
clock frequency and power consumption during idle state. In addition, E3S contains
task graphs of common tasks in auto-industry, networking, telecommunication and
office automation. Each one of the nodes of these task graphs is associated with a
task type. A task type is a processor instruction or a set of instructions, e.g., FFT,
inverse FFT, floating point operation, etc.

In this study, we used 16 graphs found in E3S, which represent serial and parallel
applications. Information about the number of levels and tasks for each application
is shown in Table 11.5. The AMD-ElanSC520 was selected, which is able to perform
all 47 tasks.

11.7.3.2 SegImag Application

Another application used in this work is the segmentation of images for object
recognition, SegImag [21]. This application aims to accelerate the process of identi-
fying the number of objects in an image. For this purpose, the original image must be
split in parts, where each segment is handled by an auxiliary processor. In addition,
the SegImag contains two other processing elements: a central processor, which re-
ceives the results of each auxiliary processor, and an external memory which stores
the image to be segmented.

In the original implementation of SegImag, the amount of auxiliary processors
is parameterized. The segmentation is directly related to the amount of process-
ing elements, since each segment must be processed by a auxiliary processor. In
the present study, we used the implementation shown in SegImag [4], which

11.7 Evaluation Experiments and Results 195

Table 11.5 List of applications in E3S

label Application Name # Tasks # Levels

TG1 auto-indust-tg0 6 6
TG2 auto-indust-tg1 4 4
TG3 auto-indust-tg2 9 8
TG4 auto-indust-tg3 5 5
TG5 consumer-tg0 7 5
TG6 consumer-tg1 5 4
TG7 networking-tg1 4 4
TG8 networking-tg2 4 4
TG9 networking-tg3 4 4
TG10 office-tg0 5 4
TG11 telecom-tg0 4 4
TG12 telecom-tg1 6 5
TG13 telecom-tg2 6 5
TG14 telecom-tg3 3 3
TG15 telecom-tg4 3 3
TG16 telecom-tg5 2 2

SI

PF_1

PI_2PI_1

76800 76800

 76800
 76800

PI_3

76800

PI_0

76800

PF_0 PF_2

240

 320

240

76800

128 128
 128

 320

PI_2PI_1 PI_3PI_0

128 128

128

MI
76800 76800

76800 76800

128

 128

PVC

Fig. 11.13 Task graph of SegImage application

represents a specific application to the image segmented into four parts. The task
graph of this application is shown in Fig. 11.13. The values in each arc represent
the amount of bits transmitted between tasks, considering an image with 640× 480
pixels. The run-time values were based on allocation results presented in [4], where

196 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

each task in SegImag task graph was associated with a task performed by a processor
repository E3S. This information concerning the task data is organized in Table 11.6.
As the time unit of tasks is in ns, in this test we considered that the simulator cycle
is equal to 1 ns.

Table 11.6 Tasks of E3S used in SegImag application

label Task Name id Task Time (ns) Proc. Name
SI Decompress JPEG 455 7×107 ST20C2
PI Fixed Point Complex FFT - Data3 (sine) 449 1,2×105 ST20C2
PF Basic floating point 371 8,9×102 MPC555
PCV Autocorrelation - Data2 (sine) 439 6,9×104 ST20C2
MI Compress JPEG 454 8,7×107 ST20C2

11.7.3.3 Simulation Results

The Fig. 11.14 shown results of simulations with real world applications. The values
of packet delay is presented for the four routing algorithms - XY, OE, REAS and
RACS. These values are a mean of packet delay in 10 different mappings. Results
of only 5 applications are shown. To other 11 applications, all the four routing algo-
rithms were able to find the best path, i.e., no delay congestion occurred. In four of
the five applications, ACO-based routing found better results than other algorithms.

TG3 TG5 TG6 TG10 TG12
0,00

5,00

10,00

15,00

20,00

25,00

0,
04

4,
16

0,
04

0,
04

0,
00

8,
32

21
,4

4

12
,2

2

1,
92

0,
000,

56

6,
88

0,
32 0,
52 0,
80

8,
96

20
,4

8

14
,1

0

2,
56

0,
00

REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(a) E3S applications

0

200

400

600

800

1000

1200

1400

1600

232

1428

466

1284

REAS
XY
RACS
OE

P
ac

ke
t d

el
ay

 (
cy

cl
es

)

(b) SegImage application

Fig. 11.14 Results for simulation with applications

References 197

11.8 Summary

Static routing is an efficient solution in NoCs designed to run always the same set
of applications, since communication paths need be defined only one time. In this
chapter we propose the use of ACO-based algorithms in the optimization of com-
munication paths in the static routing step in NoC design. The performance of these
algorithms was evaluated in three different approaches: analyzing the behavior of
network under different random traffic patterns; using several synthetic application
task graphs; and using task graphs of real world applications. Best results were ob-
tained with REAS algorithm. Future work may be conducted in two directions. First,
it is of interest to determine how to enhance the performance of the proposed meth-
ods, and the study of the use of other ant algorithms. Second, it is still necessary
to perform an analysis covering both routing, mapping and allocation, so that these
tasks can be used in future in an EDA tool, thus assisting in the design of systems
based on the NoC platform.

References

1. Benini, L., De Micheli, G.: Networks on chips: A new soc paradigm. Computer 35(1),
70–78 (2002)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial
systems. Oxford University Press, USA (1999)

3. Chiu, G.M.: The odd-even turn model for adaptive routing. IEEE Transactions on Parallel
and Distributed Systems 11(7), 729–738 (2000)

4. da Silva, M.V.C., Nedjah, N., Mourelle, L.M.: Efficient mapping of an image processing
application for a network-on-chip based implementation. International Journal of High
Performance Systems Architecture 2(1), 46–57 (2009)

5. da Silva, M.V.C., Nedjah, N., Mourelle, L.M.: Optimal ip assignment for efficient noc-
based system implementation using nsga-ii and microga. IJCIS 2(2), 115–123 (2009)

6. da Silva, M.V.C., Nedjah, N., Mourelle, L.M.: Power-aware multi-objective evolution-
ary optimisation for application mapping on network-on-chip platforms. International
Journal of Electronics 97(10), 1163–1179 (2010)

7. Diaconis, P., Efron, B.: Testing for independence in a two-way table: new interpretations
of the chi-square statistic. The Annals of Statistics 13(3), 845–874 (1985)

8. Dick, R.: Embedded system synthesis benchmarks suites (E3S),
http://ziyang.eecs.umich.edu/˜dickrp/e3s/ (accessed May 2, 2012)

9. Dick, R.P., Rhodes, D.L., Wolf, W.: Tgff: task graphs for free. In: Proceedings of the 6th
International Workshop on Hardware/Software Codesign, pp. 97–101. IEEE Computer
Society (1998)

10. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational In-
telligence Magazine 1(4), 28–39 (2006)

11. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

12. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 26(1), 29–41 (1996)

http://ziyang.eecs.umich.edu/~dickrp/e3s/

198 11 Application Routing in Network-on-Chip Using Ant Colony Optimization

13. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks. IEEE
Transactions on Parallel and Distributed Systems 4(12), 1320–1331 (1993)

14. Duato, J., Yalamanchili, S., Ni, L.M.: Interconnection networks: An engineering ap-
proach. Morgan Kaufmann (2003)

15. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded
systems: Formal models, validation, and synthesis. Proceedings of the IEEE 85(3), 366–
390 (1997)

16. Esser, R., Knecht, R.: Intel paragon xp/s-architecture and software enviroment. In: An-
wendungen, Architekturen, Trends, Seminar, pp. 121–141. Springer (1993)

17. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. In: SIGARCH Computer
Architecture News, vol. 20, pp. 278–287. ACM (1992)

18. Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the argentine
ant. Naturwissenschaften 76, 579–581 (1989), doi:10.1007/BF00462870

19. A. Intel. Touchstone delta system description. Supercomputer Systems Division, Intel
Corporation, Beaverton, OR, 97006 (1991)

20. Jóźwiak, L., Nedjah, N., Figueroa, M.: Modern development methods and tools for em-
bedded reconfigurable systems: A survey. Integration, The VLSI Journal 43(1), 1–33
(2010)

21. Marcon, C.A.M.: Modelos para o Mapeamento de Aplicações em Infra-estruturas de
Comunicação Intrachip. PhD thesis, Universidade Federal do Rio Grande do Sul (2005)

22. Moraes, F., Calazans, N., Mello, A., Moller, L., Ost, L.: Hermes: an infrastructure for low
area overhead packet-switching networks on chip. Integration, The VLSI Journal 38(1),
69–93 (2004)

23. Mourelle, L.M., Ferreira, R.E., Nedjah, N.: Migration selection of strategies for paral-
lel genetic algorithms: implementation on networks on chips. International Journal of
Electronics 97(10), 1227–1240 (2010)

24. Nedjah, N., Da Silva, M.V.C., Mourelle, L.M.: Customized computer-aided application
mapping on noc infrastructure using multi-objective optimization. Journal of Systems
Architecture: The EUROMICRO Journal 57(1), 79–94 (2011)

25. Nedjah, N., da Silva, M.V.C., Mourelle, L.M.: Preference-based multi-objective evolu-
tionary algorithms for power-aware application mapping on noc platforms. Expert Sys-
tems with Applications: An International Journal 39(3), 2771–2782 (2012)

26. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct networks.
Computer 26(2), 62–76 (1993)

27. Seitz, C.L., Athas, W.C., Flaig, C.M., Martin, A.J., Seizovic, J., Steele, C.S., Su, W.K.:
The architecture and programming of the ametek series 2010 multicomputer. In: Pro-
ceedings of the Third Conference on Hypercube Concurrent Computers and Applica-
tions: Architecture, Software, Computer Systems, and General Issues, vol. 1, pp. 33–37.
ACM (1988)

28. Seitz, C.L., Boden, N.J., Seizovic, J., Su, W.K.: The design of the caltech mosaic c mul-
ticomputer. Computer 256, 80 (1993)

29. Zeferino, C.A., Susin, A.A.: Socin: a parametric and scalable network-on-chip. In: Pro-
ceedings of the 16th Symposium on Integrated Circuits and Systems Design, SBCCI
2003, pp. 169–174. IEEE (2003)

	Preface
	Contents
	Part I Hardware for Soft Computing
	A Reconfigurable Hardware for Genetic Algorithms
	1.1 Introduction
	1.2 Principles of Genetic Algorithms
	1.3 Overall Architecture for the Hardware Genetic Algorithm
	1.4 Detailed Component Architectures
	1.4.1 Shared Memory for Generational Population
	1.4.2 Random Number Generator
	1.4.3 Selection Component
	1.4.4 Genetic Operator’s Components
	1.4.5 Fitness Evaluation Component

	1.5 Performance Results
	1.6 Summary
	References

	Genetic Algorithms on Network-on-Chip
	2.1 Introduction
	2.2 Multi-processor System-on-Chip Platform
	2.3 Parallel Genetic Algorithm
	2.3.1 Topology Strategies

	2.4 Simulation Results
	2.5 Summary
	References

	A Reconfigurable Hardware for Particle Swarm Optimization
	3.1 Introduction
	3.2 RelatedWorks
	3.3 Particle Swarm Optimization
	3.3.1 Global Best PSO
	3.3.2 Parallel PSO

	3.4 The MicroBlaze Embedded Processor
	3.5 Co-processor Architecture
	3.6 Performance Results
	3.7 Summary
	References

	Particle Swarm Optimization on Crossbar Based MPSoC
	4.1 Introduction
	4.2 The Crossbar Topology
	4.2.1 Network Controller

	4.3 Experimental Results
	4.3.1 Particle Swarm Optimization
	4.3.2 Communication between Processes
	4.3.3 Performance Results

	4.4 Summary
	References

	A Reconfigurable Hardware for Artificial Neural Networks
	5.1 Introduction
	5.2 ANNs Computational Model
	5.3 Approximation of the Output Function
	5.4 Implementation Issues
	5.5 ANN Hardware Architecture
	5.6 Summary
	References

	A Reconfigurable Hardware for Fuzzy Controllers
	6.1 Introduction
	6.2 Fuzzy Controllers
	6.3 The Proposed Macro-architecture
	6.4 Micro-architecture of the Functional Units
	6.4.1 Membership Function Unit
	6.4.2 Membership Function Memory
	6.4.3 Fuzzification Unit
	6.4.4 Inference Unit
	6.4.5 Defuzzification Unit

	6.5 Performance Results
	6.6 Summary
	References

	A Reconfigurable Hardware for Subtractive Clustering
	7.1 Introduction
	7.2 Radiation Detection
	7.3 Clustering Algorithms
	7.4 Proposed Architecture
	7.5 Performance Results
	7.6 Summary
	References

	Reconfigurable Hardware for DNA Matching
	8.1 Introduction
	8.2 BLAST Algorithm
	8.3 Proposed Architecture
	8.3.1 Seeding Unit
	8.3.2 Extension Unit
	8.3.3 The Controllers

	8.4 Performance Results
	8.5 Summary
	References

	Part IISoft Computing for Hardware
	Synchronous Finite State Machines Design with Quantum-Inspired Evolutionary Computation
	9.1 Introduction
	9.2 Design Methodology of Synchronous Finite State Machines
	9.3 Impact of State Assignment
	9.4 Principles of Quantum Computation
	9.4.1 Quantum Bit
	9.4.2 Quantum Registers
	9.4.3 Quantum Gates

	9.5 Quantum-Inspired Genetic Algorithms
	9.5.1 Solution Representation
	9.5.2 Algorithm Description

	9.6 State Assignment with QIGA
	9.6.1 State Assignment Encoding
	9.6.2 Q-Gate for State Assignment
	9.6.3 State Assignment Fitness

	9.7 Logic Synthesis with QIGA
	9.7.1 Circuit Codification
	9.7.2 Logic Fitness

	9.8 Performance Results
	9.8.1 State Assignments Results and Discussion
	9.8.2 Logic Synthesis Results and Discussion

	9.9 Summary
	References

	Application Mapping in Network-on-Chip Using Evolutionary Multi-objective Optimization
	10.1 Introduction
	10.2 RelatedWork
	10.3 NoC Internal Structure
	10.4 Task Graph and IP Repository Models
	10.5 Multi-objective Evolution
	10.5.1 The IP Mapping Problem
	10.5.2 EMO Algorithm
	10.5.3 Representation and Genetic Operators

	10.6 Objective Functions
	10.6.1 Area
	10.6.2 Execution Time
	10.6.3 Power Consumption

	10.7 Results
	10.8 Summary
	References

	Routing in Network-on-Chips Using Ant Colony Optimization
	11.1 Introduction
	11.2 Routing in Communication Networks
	11.3 Network Specification
	11.4 Ant Colony Optimization
	11.5 ACO-Based Routing
	11.5.1 REAS Algorithm
	11.5.2 RACS Algorithm

	11.6 Applications in NoC
	11.6.1 Task Graphs
	11.6.2 Random Mapping

	11.7 Evaluation Experiments and Results
	11.7.1 Tests with Synthetic Traffic Patterns
	11.7.2 Simulation with Synthetic Task Graphs
	11.7.3 Simulation with Real World Applications

	11.8 Summary
	References

