
 

S.C. Satapathy et al. (eds.), ICT and Critical Infrastructure: Proceedings of the 48th Annual 
Convention of CSI - Volume I, Advances in Intelligent Systems and Computing 248,  

11

DOI: 10.1007/978-3-319-03107-1_2, © Springer International Publishing Switzerland 2014 
 

Authenticating Grid Using Graph Isomorphism Based 
Zero Knowledge Proof 

Worku B. Gebeyehu*, Lubak M. Ambaw*, M.A. Eswar Reddy, and P.S. Avadhani 

Dept. of Computer Science & Systems Engineering, Andhra University, India  
{workubrhn,eswarreddy143}@gmail.com, 
{rosert2007,psavadhani}@yahoo.com 

Abstract. A zero-Knowledge proof is a method by which the prover can prove 
to the verifier that the given statement is valid, without revealing any additional 
information apart from the veracity of the statement. Zero knowledge protocols 
have numerous applications in the domain of cryptography; they are commonly 
used in identification schemes by forcing adversaries to behave according to a 
predetermined protocol. In this paper, we propose an approach using graph 
isomorphism based zero knowledge proof to construct an efficient grid 
authentication mechanism. We demonstrate that using graph isomorphism 
based zero knowledge proof provide a much higher level of security when 
compared to other authentication schemes. The betterment of security arises 
from the fact that the proposed method hides the secret during the entire 
authentication process. Moreover, it enables one identity to be used for various 
accounts. 

Keywords: Zero Knowledge proof, zero knowledge protocol, graph 
isomorphism, grid authentication, grid security, graph, prover, verifier. 

1 Introduction 

The intention of authentication and authorization is to deploy the policies which 
organizations have devised to administer the utilization of computing resources in the 
grid environment. According to Foster in grid technology is described as a “resource-
sharing technology with software and services that let people access computing 
power, databases, and other tools securely online across corporate, institutional, and 
geographic boundaries without sacrificing local autonomy”[1]. For example a 
scientist in research institute might need to use regional, national, or international 
resources within grid-based projects in addition to using the major network of the 
campus. Each grid-project mainly requires its own authentication mechanisms, 
commonly in the form of GSI based or kerberos based certificates so as to 
authenticate the scientist to access and utilize grid based resources. 

                                                           
* Corresponding authors. 



12 W.B. Gebeyehu et al. 

 

These days, computer scientists are exerting lots of efforts to develop different 
kinds of authentication mechanisms that provide strong Grid security. The currently 
existing grid authentication mechanisms are usually bound with only one, in most 
cases based on public key infrastructure (PKI). Such system unnecessarily limits users 
since they are required to use only the one mechanism, which may not be flexible or 
convenient. 

Moreover, regardless of particular type of certificates or PKI, one of the key 
drawbacks of the PKI is that current tools and producers for certificate management 
are too complicated for users. This leads either to rejection of the PKI or to insecure 
private-key management, which dis-empowers all the Grid infrastructure [2]. This 
paper proposes a novel methodology to overcome the aforementioned limitations by 
implementing ZKP based grid authentication. 

2 Basic Concepts 

2.1 What Is Zero-Knowledge Proof? 

A zero-knowledge proof (ZKP) is a proof of some statement which reveals nothing 
other than the veracity of the statement. Zero-Knowledge proof is a much popular 
concept used in many cryptography systems. In this concept, two parties are involved, 
the prover A and the verifier B. Using this technique, it allows prover A to show that 
he has a credential, without having to give B the exact number. 

The reason for the use of a Zero-Knowledge Proof in this situation for an 
authentication system is because it has the following properties: 

 
 Completeness: If an honest verifier will always be convinced of a true 

statement by an honest prover  
 
 Soundness: If a cheating prover can convince an honest verifier that some 

false statement is actually true with only a small probability.  
 
 Zero-knowledge: if the statement is true, the verifier will not know anything 

other than that the statement is true. 

Information about the details of the statement will not be revealed. [3]. A common 
application for zero-knowledge protocols is in identification schemes, due to Feige, 
Fiat, and Shamir[4]. 

2.2 Graph 

A graph is a set of nodes or vertices V, connected by a set of edges E. The sets of 
vertices and edges are finite. A graph with n vertices will have: V = {1, 2, 3,..., n} and 
E a 2-element subsets of V. Let u and v be two vertices of a graph. If (u,v)ЄE, then u 
and v are said to be adjacent or neighbors. 



 Authenticating Grid Using Graph Isomorphism Based Zero Knowledge Proof 13 

 

A graph is represented by its adjacency matrix. For instance, a graph with n 
vertices, is represented by a nxn matrix M=[m i,j] , where the entry is “1” if there is an 
edge linking the vertex i to the vertex j, and is “0” otherwise. For undirected graphs, 
the adjacency matrix is symmetric around the diagonal. 

2.3 Graph Isomorphism 

Two graphs G1 and G2 are said to be isomorphic, if a one-to-one permutation or 
mapping exists between the set of vertices of G1 and the set of vertices of G2, with 
the property that if two nodes of G1 are adjacent, so are their images in G2. The graph 
isomorphism problem is therefore the problem of determining whether two given 
graphs are isomorphic. In other words, it is the problem of determining if two graphs 
with different structures are the same. Figure 1 gives an example of isomorphic 
graphs, with their corresponding adjacency matrices. Notice that the entries of the 
matrices, where m ij =0 are left blank. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. Example of Isomorphic Graphs with their corresponding adjacency matrices 

For example, Graph (b) is found, by relabeling the vertices of Graph (a) according 
to the following permutation: (3, 5, 2, 4, 1). This means that Node 1 in Graph (a) 
becomes Node 3 in Graph (b), Node 5 becomes Node 1 and so on. Following in Fig.2 
is an illustration of how the permutation is applied to Graph (a). 

 
 
 



14 W.B. Gebeyehu et al. 

 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Relabeling the vertices of Graph (a) using the permutation (3,5,2,4,1) 

3 Proposed Method 

3.1 Graph Isomorphism Based Zero-Knowledge Proofs 

The purpose of Zero-Knowledge Proof (ZKP) protocols is to enable the prover to 
prove an assertion to the verifier that he holds some secret knowledge ,without 
leaking any information about the knowledge during the verification process (zero-
knowledge).To demonstrate this concept ,we chose to implement ZKP protocol based 
on Graph Isomorphism (GI).In this protocol the input to the prover and the verifier is 
a pair of graphs G0 , G1 , and the goal of the prover is to convince the verifier that the 
graphs are isomorphic, but without revealing any information. If G0 and G1 are 
isomorphic, then the prover also has a permutation π such that π(G0 ) = G1 (i.e., π is 
an isomorphism). 

Suppose we have two graphs G1 and G2 where G2 is generated from G1 using a 
secret permutation named π. G2 is obtained by relabeling the vertices of G1 according 
to secret permutation π by preserving the edges. The pair of graphs G1 and G2 forms 
the public key pair, and the permutation π serves as the private key. A third graph Q is 
either obtained from G1 or G2 using another random permutation ρ. Once the graph Q 
is found, the prover (represents the new node seeking entrance to the grid)sends it to 
the verifier who will challenge him to provide the permutation σ which can map Q to 
either G1 or G2. 

For example, if Q is found from G1 and the verifier puts a challenge to the prover 
to map Q to G1, then σ = ρ-1. In the same fashion, if Q is obtained from G2 and the 
verifier challenges the prover to map Q to G2, then σ = ρ-1. Otherwise, if Q is 
obtained from G1 and the verifier puts a challenge to the prover to provide the 
permutation that maps Q to G2, then σ = ρ -1 ○ π, which is a combination of ρ-1and 
π. Indeed, ρ-1will be applied to Q to obtain G1 then the vertices of G1 will be 
modified according to the secret permutation π to get G2. Eventually, if Q is obtained 
from G2 and the verifier challenges the prover to map Q to G1, then σ = ρ-1○ π-1. 



 Authenticating Grid Using Graph Isomorphism Based Zero Knowledge Proof 15 

 

One can observe that in the first two cases, the secret permutation π is not even 
used. Thus, a verifier could only be certain of a node’s identity after many 
interactions. Moreover, we can also observe that during the whole interaction process, 
no clue was given about the secret itself this makes it strong grid authentication 
mechanism. 

3.2 Pseudo Code 

Given G1 and G2 such that G2 = π (G1), the interactions constituting iterations of the 
graph isomorphism based ZKP protocol are demonstrated below: 

Step 1: Prover randomly selects x Є {1,2} 
Step 2: Prover selects a random permutation ρ, and generates Q=ρ(Gx) 
Step 3: Prover communicates the adjacency matrix of Q to the verifier 
Step 4: Verifier communicates y Є {1,2}to prover and challenges for σ that maps 

Q to Gy  
Step 5: If x=y the prover sends σ = ρ-1 to the verifier  

Step 6: If x=1 and y=2 the prover sends σ = ρ-1 о π to the verifier 
Step 7: If x=2 and y=1 the prover sends  σ = ρ-1 о π-1   to the verifier  
Step 8: Verifier checks if σ (Q)=Gy and access is granted to the prover accordingly 

A number of iterations of these interactions are needed for the verifier to be totally 
convinced of the prover’s identity, as the prover can be lucky and guess the value of y 
before sending Q. 

3.3 Prototype 

The researchers have implemented a prototype version of graph isomorphism based 
ZKP protocol for authenticating a grid. Graph isomorphism has been chosen because 
of its ease of implementation. The JAVA-implementation of the ZKP protocol in 
authentication of the grid is presented below. The advantage of this implementation is 
that it allows us to verify the adjacency matrices at each level of the simulation and to 
evaluate the correctness of the algorithm. The JAVA implementations are mainly 
based on the pseudo-code provided in Pseudo code section above. So as to 
demonstrate the logic used in the program, we considered a simple graph with 4(four) 
nodes. In reality, however, the graphs need to be very large, consisting of several 
hundreds of nodes (in our case the number of users requesting for grid resources), and 
present a GI complexity in the order of NP-complete.  

There are three functions that are used in the implementation, namely, 
“Generate_Isomorphic”, “Permutuate”, and “Compare_Graphs” also one main 
function. 

a) “Generate_Isomorphic” function 
Generate_Isomorphic function enables us to apply a random permutation (π or ρ) 

to a specific graph and to get another graph that is isomorphic to the first graph.  For 
example, the declaration G2=Generate_Isomorphic(G1,pi,n)” is used to apply π to the 



16 W.B. Gebeyehu et al. 

 

graph G1 so as to get the graph G2; where the variable „n‟ represents the number of 
nodes in the graph( the number of users requesting for grid resources). 

b) “Permutuate” function 
This function is used after receiving the challenge response from the prover. 

Indeed, once the verifier receives σ from the prover, his objective is to apply that 
permutation to the graph Q to check if he will get the expected response G1 or G2. 
This function is declared as follows, “Permutuate (Q,sigma,n)” where σ is being 
applied to a graph Q. 

c) “Compare_Graphs” function 
Once the verifier receives the response σ and applies it to Q to get another graph 

that we will refer it as R for explanation purpose, the “Compare_Graphs” function is 
used to check whether or not R = G1 or R = G2 depending on the case.  

The function is declared as “Compare_Graphs(G2,R,n).” Here, for instance, the 
function is used to compare both graphs G2 and R. 

4 Simulations and Results 

In this section we will depict how the implemented algorithm works through 
simulation. At first, the simulator requests for the value of “n” which represents the 
size of the graphs (In practise the number of grid users requesting for resource at one 
point of time). Once the size is set(the value of „n‟ is known), the user has the choice 
to either launch the interaction or to stop the simulation. The user is then prompted to 
provide the values of the graph G1. After all the values are entered, the user is asked 
for the value of the secret π and then for the value of the random permutation ρ. The 
user is then requested to choose the graph from which to create the graph Q and the 
graph that the verifier could ask the prover to generate when challenged. After these 
graphs are specified, the user is eventually asked for the value of σ. Once the value of 
σ entered, the simulator verifies all the inputs and declares if the prover is correct or 
incorrect. In other words, the simulator verifies if the prover knows the secret or not. 
In the real environment it is similar to proving the veracity of the grid user before 
allowing access to the grid. At last, the user is requested to repeat the process if he/she 
is willing. In order to test the correctness of the algorithm we simulate the code with 
some input examples and validate the results. In fact, the simulations were ran with 
the values of n, π, ρ and the graph G1 illustrated below. 

 

Fig. 3. Graph G1 and its Adjacency Matrix representation 



 Authenticating Grid Using Graph Isomorphism Based Zero Knowledge Proof 17 

 

If Q is obtained from G1 (Q = G1* ρ) and the verifier challenges for G1, we will 
have the equation: 

σ = ρ-1                                                                  (1) 

From equation 1 we have σ = ρ-1 = {1, 4, 2, 3} and to get the inverse of ρ = {1, 3, 
4, 2}, we assign indices running from 1 to 4 to its vertices, and then process as 
follows. The first index “1” is at position 1, so its position remains the same. Index 2 
is at the position 4; so the second vertex of ρ-1 is 4. Index 3 is at the second position; 
therefore the next vertex in ρ-1 is 2. Finally, index 4 is at the third position; therefore, 
the last element of ρ-1 is 3. Following this logic, the vertices of ρ-1 are obtained. If Q 
is obtained from G2 (Q = G2* ρ) and the verifier challenges for G2, we will have σ = 
ρ = {1, 4, 2, 3}.If Q is obtained from G1 (Q = G1* ρ) and the verifier challenges for 
G2, we will get the equation 

σ = ρ-1○ π                                                                 (2) 

From equation 2 we have σ = ρ-1 ○ π = {1, 4, 2, 3} ○ {2, 3, 1, 4} = {2, 4, 3, 1}.To 

equate and get the value of σ, we consider the vertices of ρ-1 as indices in π and 
observe which values they are associated with. The whole process consists of the 
following steps namely the first vertex of π is 2, the fourth vertex of π is 4. and the 
second vertex of π is 3 and the third vertex of π is 1. If Q is obtained from G2 (Q = 
G2* ρ) and the verifier challenges for G1, we will have the equation: 

σ = ρ-1○ π-1                                                              (3) 

From equation 3 we have σ = ρ-1 ○ π-1 = {1, 4, 2,3} ○ {3, 1, 2, 4} = {3, 4, 1, 
2}.Now that all the parameters are set, we can run the actual simulation. One can note 
that the permutations are applied to the rows as well as the columns of the adjacency 
matrix in the above process. Simulation results will be depicted in the following 
section so as to demonstrate the three different cases (i.e. σ ρ-1, σ = ρ-1 ○ π, and σ = ρ-

1 ○ π-1). 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Demonstration of the case in which Q = G1 *ρ and when the verifier challenges the 
prover to map Q to G1 

 



18 W.B. Gebeyehu et al. 

 

After the first simulations is over we obtained G2 = G1*π and Q = G1* ρ as 
depicted in figure 3 and figure 4 below respectively. 

 

Fig. 5. Graph G2 in two distinct forms and its adjacency matrix 

 

Fig. 6. Demonstration of graph Q = G1 * and its adjacency matrix 

At last, let us see the situation where the prover enters incorrect responses to the 
challenges. The following figure depicts this case. 

  
 
 
 
 
 
 
 

 
  

 
 
 
 
 

Fig. 7. Demonstration of the case where a user provides wrong answer for the challenge 

 
 



 Authenticating Grid Using Graph Isomorphism Based Zero Knowledge Proof 19 

 

5 Conclusion and Future Work 

A new approach for authenticating grid using ZKP protocol based on Graph 
Isomorphism (GI) is proposed. Our simulation results show that the proposed method 
provides a much higher level of security for authenticating users in the grid by hiding 
the secret during the entire authentication process. Besides, it enables one identity to 
be used for various accounts. The implementation could be modified further so that 
the system is interactive and user friendly. Moreover, one can integrate the 
implementation of graph isomorphism based zero knowledge proof within a grid 
portal. 

References 

[1] Foster, I.: The Physiology of the Grid: An Open Grid Services Architecture for Distributed 
Systems Integration. Wiley, Argonne Illinois (2002) 

[2] Daniel, K., Ludek, M., Michal, P.: Survey of Authentication Mechanisms for Grids. In: 
CESNET Conference, pp. 200–204. Czech Academy of Science Press, Prague (2008) 

[3] Lum, J.: Implementing Zero Knowledge Authentications with Zero Knowledge. In: The 
Python Papers Monograph Proceedings of PyCon Asia-Pacific, Melbourne (2010) 

[4] Lior, M.: A Study of Perfect Zero-Knowledge Proofs, PhD Dissertation, University of 
Victoria, British Colombia, Victoria (2008) 


	Authenticating Grid Using Graph Isomorphism Based Zero Knowledge Proof
	1 Introduction
	2 Basic Concepts
	2.1 What Is Zero-Knowledge Proof?
	2.2 Graph
	2.3 Graph Isomorphism

	3 Proposed Method
	3.1 Graph Isomorphism Based Zero-Knowledge Proofs
	3.2 Pseudo Code
	3.3 Prototype

	4 Simulations and Results
	5 Conclusion and Future Work
	References




