
Concurrent Wait-Free Red Black Trees�,��

Aravind Natarajan, Lee H. Savoie, and Neeraj Mittal

Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA

Abstract. We present a new wait-free algorithm for concurrent manipulation of
a red-black tree in an asynchronous shared memory system that supports search,
insert, update and delete operations using single-word compare-and-swap instruc-
tions. Search operations in our algorithm are fast and execute only read and write
instructions (and no atomic instructions) on the shared memory. The algorithm is
obtained through a progressive sequence of modifications to an existing general
framework for deriving a concurrent wait-free tree-based data structure from its
sequential counterpart. Our experiments indicate that our algorithm significantly
outperforms other concurrent algorithms for a red-black tree for most workloads.

1 Introduction

With the growing prevalence of multi-core, multi-processor systems, concurrent data
structures are becoming increasingly important. In such a data structure, multiple pro-
cesses may need to operate on overlapping regions of the data structure at the same
time. Contention between different processes must be managed in such a way that all
operations complete correctly and leave the data structure in a valid state.

Concurrency is most often managed through locks. However, locks are blocking;
while a process is holding a lock, no other process can access the portion of the data
structure protected by the lock. If a process stalls while it is holding a lock, then it
will cause other processes to wait on the stalled process for extended periods of time.
As a result, lock-based implementations of concurrent data structures are vulnerable to
problems such as deadlock, priority inversion and convoying [1].

Non-blocking algorithms avoid the pitfalls of locks by using special (hardware-
supported) read-modify-write instructions such as load-link/store-conditional
(LL/SC) 1 [2] and compare-and-swap (CAS) 2 [1]. Non-blocking implementations of

� This work was supported, in part, by the National Science Foundation (NSF) under grant
number CNS-1115733.

�� This work has appeared as a brief announcement in the Proceedings of the 26th International
Symposium for Distributed Computing (DISC), pages 421–422, 2012.

1 A load-link instruction returns the current value of a memory location; a subsequent store-
conditional instruction to the same location will store a new value only if no updates have
occurred to that location since the load-link was performed.

2 A compare-and-swap instruction compares the contents of a memory location to a given value
and, only if they are the same, modifies the contents of that location to a given new value.

T. Higashino et al. (Eds.): SSS 2013, LNCS 8255, pp. 45–60, 2013.
c© Springer International Publishing Switzerland 2013

46 A. Natarajan, L.H. Savoie, and N. Mittal

common data structures such as queues, stacks, linked lists, hash tables, and search
trees have been proposed [1, 3–8].

Non-blocking algorithms may provide varying degrees of progress guarantees [1].
Three widely accepted progress guarantees are: obstruction-freedom, lock-freedom,
and wait-freedom. An algorithm is said to be obstruction-free if any process that ex-
ecutes in isolation will finish its operation in a finite number of steps. It is said to be
lock-free if some process will complete its operation in a finite number of steps. Finally,
it is said to be wait-free if every process will complete its every operation in a finite
number of steps.

Binary search tree is one of the fundamental data structures for organizing ordered
data that supports search, insert, update and delete operations [9]. Red-black tree is a
type of self-balancing binary search tree that provides good worst-case time complex-
ity for all tree operations. As a result, they are used in symbol table implementations
within systems like C++, Java, Python and BSD Unix [10]. They are also used to im-
plement completely fair schedulers in Linux kernel [11]. However, red-black trees have
been remarkably resistant to parallelization using both lock-based and lock-free tech-
niques. The tree structure causes the root and high level nodes to become the subject of
high contention and thus become a bottleneck. This problem is only exacerbated by the
introduction of balance requirements.

Related Work: Designing an efficient concurrent non-blocking data structure that guar-
antees wait-freedom is hard. Several universal constructions exist that can be used to
derive a concurrent wait-free data structure from its sequential version [1, 12, 13]. Due
to the general nature of the constructions, when applied to a binary search tree, the re-
sultant data structure is quite inefficient. This is because universal constructions involve
either: (a) applying operations to the data structure in a serial manner, or (b) copying the
entire data structure (or parts of it that will change and any parts that directly or indi-
rectly point to them), applying the operation to the copy and then updating the relevant
part of the data structure to point to the copy. The first approach precludes any con-
currency. The second approach, when applied to a tree, also precludes any concurrency
since the root node of the tree indirectly points to every node in the tree.

Several customized non-blocking implementations of concurrent unbalanced search
trees [4–7], and balanced search trees such as B-tree [3] and B+-tree [8] have been
proposed, that are more efficient than those obtained using universal constructions.

In [14], Ma presented a “lock-free” algorithm for a concurrent red-black tree that
supports search and insert operations using CAS, DCAS (double-word3 CAS) and
TCAS (triple-word3 CAS) instructions [14]. Kim et al. extended Ma’s algorithm to sup-
port delete operations as well as eliminate the use of multi-word CAS instructions [15].
However, a closer inspection of the algorithm reveals that it is actually a blocking algo-
rithm. It is only lock-free in the sense that CAS instructions are used for synchronization
(setting and unset-ting flags at nodes) and no “locks” are used. But, if a process blocks
while holding the flag on the root of the tree, all other processes will be prevented
from making progress. Concurrent algorithms for a red-black tree based on the trans-
actional memory framework have also been proposed (e.g., [16, 17]). The algorithm
in [17] maintains a relaxed red-black tree in which the balance requirements of a red-

3 Words need not be adjacent.

Concurrent Wait-Free Red Black Trees 47

black tree may be violated temporarily. In contrast to the aforementioned algorithms,
our algorithm has the following desirable properties: (a) it uses only single word CAS
instruction, which is commonly available in many hardware architectures including In-
tel 64 and AMD64, (b) it does not require any additional underlying system support
such as transactional memory, and (c) it never allows the tree to go out of balance.

For a tree-based data structure that supports operations executing in top-down man-
ner using small-sized windows, Tsay and Li’s framework [18] can be used to derive a
concurrent wait-free data structure from its sequential version. Operations are injected
into the tree at the root node, and work their way toward a leaf node by operating on
small portions of the tree at a time. Wait-freedom is achieved using helping; as an opera-
tion traverses the tree, it helps any operation that it encounters on its way “move out” of
its way. The framework requires that an operation (including a search operation) makes
a copy of every node that it encounters as it traverses the tree. Our wait-free algorithm is
based on Tsay and Li’s framework, but significantly modified to (a) overcome some of
its practical limitations, and (b) reduce the overhead for search and modify operations.

Contributions: In this paper, we present a new wait-free algorithm for concurrent ma-
nipulation of a red-black tree in an asynchronous shared memory system that supports
search, insert, update and delete operations using single-word CAS instructions. Search
operations in our algorithm are fast and perform only read and write instructions (and
no atomic instructions) on the shared memory. The algorithm is obtained through a
progressive sequence of modifications to the Tsay and Li’s framework for deriving
a concurrent wait-free tree-based data structure from its sequential counterpart. Our
experiments indicate that our algorithm significantly outperforms all other concurrent
algorithms for maintaining a (non-relaxed) red-black tree that can be implemented di-
rectly without any additional system support.

2 Preliminaries

2.1 Tsay and Li’s Wait-Free Framework for Tree-Based Data Structures

Tsay and Li described a framework in [18] (or TL-framework for short) that can be used
to develop wait-free operations for a tree-based data structure provided operations work
on the tree in top-down manner. The framework is based on the concept of a window,
which is simply a rooted subtree of the tree structure, that is, a small, contiguous piece
of the tree. We say that a window is located at its root node. The execution of a top-
down operation can be modeled using a sequence of windows starting from the root and
ending at a leaf of the tree. For example, Fig. 1(a) shows a sequence of three windows
W1, W2 and W3; the shaded nodes denote the root node of the respective windows.
Note that different windows of an operation may be of different shapes and sizes. We
refer to actions performed by an operation as part of its window as transaction.

In the TL-framework, when an operation starts, it first needs to be “injected” into the
tree. This involves obtaining the ownership of the root of the tree. This step “initializes”
the first window of the operation. Thereafter the operation performs a sequence of win-
dow transactions until it reaches the bottom of the tree at which point the it terminates.
Consecutive windows of an operation always overlap. The root of the next window is

48 A. Natarajan, L.H. Savoie, and N. Mittal

W3

W2

W1

Overlapping windows of a top-down
operation.

α

WM
L

X

δ

C

D

γβ

To σTo δTo γTo β

G

H

I K

JE

F

WGB

A

σ

Dual node structure of a tree node.

Fig. 1. Windows in Tsay and Li’s framework

part of the current window. For an example, see Fig. 1(a). A process table is used to
store the current state of the most recent operation of each process. We now explain
how a window transaction is performed in the TL-framework. To execute a window
transaction of an operation α with current window WG in the tree, a process p needs to
perform the following four steps:

1. Explore-Help-And-Copy: In this step, p traverses nodes in WG starting from the
root node of the window. On visiting a node X (in WG), if p finds that X is owned
by another operation β, then p helps β “move out” of α’s way by performing a win-
dow transaction on β’s behalf. As p traverses WG, it also makes its copy, denoted
by say WL. Note that, at this point, only p can access nodes in WL.

2. Transform-And-Lock: In this step, p modifies WL as needed (e.g., performing rota-
tions). Let WM

L denote the window obtained after applying all transformations to
WL. Let Y denote the node in WM

L that corresponds to the root node of the next
window of α (recall that consecutive windows of an operation overlap). Process p
then obtains the ownership of node Y . Note that actions in this step do not require
any synchronization because, at this point, only p can access nodes in WM

L .
3. Install: In this step, p replaces the window WG in the tree with the window WM

L

in its local memory using a synchronization instruction. If this step succeeds, then
nodes in WM

L become accessible from the root of the tree and are thus visible to
all processes in the system. Further, nodes in WG are no longer accessible from the
root of the tree (but some processes may still hold references to them). We refer to
nodes that are reachable from the root of the tree as active nodes, and nodes that
were once active but not any more as passive nodes. Note that, on performing this
step, α’s ownership of the root node of the current window in the tree is released
and that of the next window in the tree gained atomically.

4. Announce: Let α belong to process q, where q may be p. In this step, p announces
the location of α’s new window to other processes in the system by updating q’s
(process) table entry using a synchronization instruction. It is possible for this step
to be performed by another process, say r, where r may be different from both p
and q, since α’s new window is now visible to all processes in the system. Sufficient
information is stored in the root node of the window to enable this to happen.

Concurrent Wait-Free Red Black Trees 49

Consider a window rooted at some tree node, say X . A window transaction may
involved changing multiple attributes of X (e.g., color, key and/or children pointers).
This, in general, cannot be performed using a single synchronization instruction. To
address this problem, a tree node in the TL-framework has dual structure; it consists
of a pointer node and a data node. The pointer node contains a reference to the data
node, and information about whether the tree node (it represents) is owned by some
operation. The data node stores all other attributes of the tree node (color, key, etc.).
This dual structure allows a window in the tree to be replaced by replacing the data
node of its root node. For example, in Fig. 1(b), window WG is rooted at tree node X
with pointer and data nodes as A and B, respectively, and WM

L denotes a transformed
copy of WG. Now, WG can be replaced with WM

L by changing the reference stored in
A from B to G.

The TL-framework has several limitations. First, the pointer node, which is a sin-
gle word, needs to store two distinct addresses. Second, it assumes the availability of
a special hardware instruction check valid that checks if the contents of a word have
changed since they were last read using an LL instruction; to our knowledge, no hard-
ware currently implements such an instruction. We have modified the framework to
remove both the above limitations. A pointer node in our algorithm needs to only store
a single address (and a small number of bits). Further, our algorithm uses only a single-
word CAS instruction, which is widely available in hardware. Hereafter, we refer to the
TL-framework, modified to make it more practical, as MTL-framework; our wait-free
algorithm is built on top of this modified framework.

2.2 Red-Black Trees and Top-Down Operations

We assume that a red-black tree implements a dictionary of key-value pairs and supports
the following four operations: A search operation explores the tree for a given key and,
if the key is present in the tree, returns the value associated with the key. An insert
operation adds a given key-value pair to the tree if the key is not already present in the
tree. Otherwise, it becomes an update operation and changes the value associated with
the key to the given value. A delete operation removes a key from the tree if the key is
present in the tree. A modify operation is an insert, update or delete operation.

Traditional insert and delete operations for maintaining a red-black tree do not work
in a top-down manner (a top-down phase may be followed by a bottom-up phase for re-
balancing the tree). In [19], Tarjan proposed algorithms for insert and delete operations
that work in a top-down manner on an external red-black tree in which all the data
are stored in the leaf nodes. Basically, all operations begin at the root of the tree and
traverse the tree towards the leaf nodes along a path called the access path using a
constant-size window, while maintaining specific invariants. For more details of insert
and delete operations, including invariants they maintain and various transformations
they use to keep the tree balanced, please refer to [19].

3 A Wait-Free Algorithm for Red-Black Tree

We now describe how to reduce the overhead of search and modify operations in the
MTL-framework to obtain a more efficient wait-free algorithm for a red-black tree.

50 A. Natarajan, L.H. Savoie, and N. Mittal

3.1 Reducing the Overhead of Search Operation

Note that MTL-framework, when used with red-black tree operations that work in top-
down manner [19], yields a wait-free red-black tree. But the resulting data structure has
a serious limitation. In the MTL-framework, every operation including search opera-
tion: (i) only “acts” on active nodes, (ii) needs to make a copy of every node that it en-
counters, and (iii) needs to help every stalled operation on its path before it can advance
further. This copying and helping makes an operation expensive to execute. Besides, ev-
ery operation that is currently executing on the tree, including a search operation, owns
a node in the tree and each node can only be owned by at most one operation at a time.
This means that concurrently invoked search operations may conflict with each other,
which is an unusual behavior for a concurrent algorithm.

To reduce the overhead of a search operation, we make the following observations.
First, in the MTL-framework, a window transaction is atomic with respect to an op-
eration; either the operation sees all modifications made by the transaction or none of
them. This is because a process makes change to its local window first and then installs
it in the tree using a single CAS instruction at which time it becomes accessible to all
processes. Second, every window transaction applied to the tree maintains the legality
of the red-black tree, that is, the set of active nodes in the tree always form a valid red-
black tree. So, in our algorithm, a search operation simply traverses the tree, unaware of
other operations and without helping other operations on their path complete. Clearly,
a search operation can now proceed concurrently with other search and modify opera-
tions without interfering with them. Note that, as a modify operation traverses the tree
from from top to bottom, it replaces all nodes in the current window with new copies
before moving down. Thus, as a search operation proceeds, it may encounter nodes that
are no longer part of the tree. Nevertheless, we show that the result of a search operation
is still meaningful, that is, our algorithm only generates linearizable histories [20].

3.2 Reducing the Overhead of Modify Operation

We reduce the overhead of a modify operation in two ways, which are described one-
by-one as follows.

Minimizing the Use of the MTL-Framework: By reducing the overhead of a search
operation, we can also reduce the overhead of a modify operation by first using a search
operation to determine whether the tree contains the key and, depending on the result,
execute the modify operation using the MTL-framework [1]. For example, for an in-
sert/update operation, if the search operation finds the key, then it returns the address of
the leaf node containing the key and the insert/update operation can change the value
associated with the key outside the MTL-framework. Note that, in the MTL-framework,
a node is replaced with a new copy whenever it happens to be in the window of a modify
operation. Hence, to be able to change the value associated with a key outside the MTL-
framework, the value can no longer be stored inside a node. Rather, it has to be stored
outside a node as a separate record with the node containing the address of the record.
Also, a search operation is then changed to return the address of the record (containing
the value) if it finds the given key in the tree.

Concurrent Wait-Free Red Black Trees 51

An insert/update operation consists of three phases: (a) Phase 1: The tree is searched
for the given key using the fast search operation. (b) Phase 2: If the key does not exist
in the tree, then the key along with its associated value are added to the tree using
the expensive MTL-framework, (c) Phase 3: If the key already exists in the tree, then
the value stored in the record associated with the key is updated outside the MTL-
framework. Note that an operation in phase 2 may find that the key already exists in
the tree due to concurrent modifications to the tree. In that case, the insert operation
becomes an update operation after completing its phase 2 and then executes phase 3 as
well. To accomplish this, we modify the MTL-framework to return the address of the
record in case the key is already present in the tree.

A delete operation consists of two phases: (a) Phase 1: The tree is searched for
matching key using the fast search operation. If the key does not exist in the tree, no
further action is required and the delete operation terminates. (b) Phase 2: If the key
exists in the tree, the key and its associated value are removed from the tree using the
expensive MTL-framework.

Updating the Value in a Record: To modify the value associated with a key in phase 3 of
an update operation, we adopt the wait-free algorithm proposed by Chuong et al. in [12].
The algorithm uses two data structures that are shared by all processes: (i) an array
announce that is used by processes to announce their operations to other processes, and
(ii) a variable gate that is used by processes to agree on the next operation to execute. To
maximize concurrency, we use a separate instance of Chuong et al.’s algorithm for each
record. However, to reduce the space-complexity, all records share the same announce
array, but each record has its own copy of the gate variable. We modify Chuong et al.’s
algorithm so that a process helps an update operation only if the operation conflicts
with its own update operation (wants to update the value stored in the same record).
This would require storing the address of the record that an update operation wants to
modify in the announce array. Processes whose update operations conflict use the gate
variable stored in the (target) record to decide on the next update operation to be applied
to the value.

Minimizing Copying of Nodes in the MTL-Framework: There may be situations
when a transaction does not need to modify the window of the tree in any way because
the required invariant already holds [19]. We refer to such transactions as trivial trans-
actions. Clearly, it is wasteful for a trivial transaction to copy the entire window of the
tree in local memory and then replace that window with an identical copy. It is instead
desirable for the window to simply slide down to its next root. To avoid copying a win-
dow, acquiring ownership of the next root of the window and releasing ownership of
the current root of the window is no longer an atomic step as in the MTL-framework.
Rather, a process first needs to acquire ownership of the next root of the window and
then release the ownership of the current root of the window in two separate steps.

The consequence of not copying the entire window is that a modify operation can
now overtake a search operation that started before it. As a result, it is possible for a
search operation to never complete if it is repeatedly overtaken by a constant stream
of modify operations that continually cause the bottom of the tree to move down. To
ensure that a search operation eventually terminates, a modify operation may now have

52 A. Natarajan, L.H. Savoie, and N. Mittal

flag dNode

A pointer node

right

valData

keycolor

next

left

movestatus

opData

A data node

variables used by

value

except announce
wait-free algorithm

Chuong et al.’s

A value record

type

pid

state

key

status position

value

An operation record

Fig. 2. Data structures used by our algorithm

to help a search operation complete. To that end, whenever a process executes a modify
operation, at the beginning of phase 2, it selects a process to help in a round-robin
manner. If the search operation of the process it selected at the beginning of phase 2 is
still pending at the end of phase 2, then it helps that search operation complete.

3.3 Data Structures Used

Our algorithm uses four major data structures as shown in Fig. 2: (1) pointer node that
stores reference to the data node, (2) data node that stores tree node attributes, (3) value
record that stores the value associated with the key, and (4) operation record that stores
information about the operation such as its type, arguments and current state.

A pointer node, which is a single word, contains the following fields: (a)flag: a bit
that indicates whether the node is owned by an operation, and (b) dNode: the address
of the data node. Theflag field has two possible values: FREE or OWNED.

A data node contains the following fields: (a) node specific attributes such as color,
key, pointers to left and right children nodes, denoted by color, key, left and right,
respectively, (b) valData: the address of the record that contains the value associated
with the key, (c) opData: the address of an operation record (only relevant if the node
was/is the root of some window), and (d) next: information about the operation after
executing window transaction (only relevant if the node was the root of some window);
it contains two sub-fields (packed into a single word): (i) status: the new status of the
operation, and (ii)move: the address of the next location of the operation’s window. The
status field has three possible values: WAITING (waiting to be injected into the tree),
IN PROGRESS (executing window transactions) and COMPLETED (terminated).

A value record contains the following fields: (a) value: the value associated with the
key, and (b) variables used by the Chuong et al.’s wait-free algorithm (e.g., gate).

An operation record contains the following fields: (a) operation specific attributes
such as its type, arguments and process identifier, denoted by type, key, value and pid,
and (b) state: information about the current state of the operation; it contains two sub-
fields (packed into a single word): (i) status: the current status of the operation, and
(ii) position: the address of the current location of the operation’s window. In case of

Concurrent Wait-Free Red Black Trees 53

1 Value search(key)
2 begin
3 opData := create(SEARCH, key, ⊥) ; // create a new operation record
4 opData→state := {IN PROGRESS, null} ; // initialize the operation state
5 ST [myid] := opData ; // initialize the search table entry
6 traverse(opData) ; // traverse the tree
7 if (opData→state)�position �= null then
8 read the value stored in the record using Chuong et al.’s algorithm and return it;
9 else return ⊥

10 insertOrUpdate(key, value)
11 begin
12 valData := null;

// phase 1: determine if the key already exists in the tree
13 search(key);
14 valData := (ST [myid]→state)�position;
15 if valData = null then

// phase 2: try to add the key-value pair to the tree using the MTL-framework
// select a search operation to help at the end of phase 2

16 pid := the process selected to help in round-robin manner; pidOpData := ST [pid];

17 opData := create(INSERT, key, value) ; // create a new operation record
18 executeOperation(opData) ; // add the key-value pair to the tree
19 valData := (opData→state)�position;

20 if pidOpData �= null then
21 traverse(pidOpData) ; // help the selected search operation complete

22 if valData �= null then
// phase 3: update the value in the record using Chuong et al.’s algorithm

23 delete(key)
24 begin

// phase 1: determine if the key already exists in the tree
25 if search(key) then

// phase 2: try to delete the key from the tree using the MTL-framework
// select a search operation to help at the end of phase 2

26 pid := the process selected to help in round-robin manner; pidOpData := ST [pid];

27 opData := create(DELETE, key, ⊥) ; // create a new operation record
28 executeOperation(opData) ; // remove the key from the tree

29 if pidOpData �= null then
30 traverse(pidOpData) ; // help the selected search operation complete

31 traverse(opData)
32 begin
33 dCurrent := pRoot�dNode ; // start from the root of the tree
34 while dCurrent is not a leaf node do

// abort the traversal if no longer needed
35 if (opData→state)�status = COMPLETED then return;

// find the next node to visit
36 if opData→key < dCurrent→key then dCurrent := (dCurrent→ left)�dNode;
37 else dCurrent := (dCurrent→right)�dNode;

// check if the two keys match
38 if dCurrent→key = opData→key then valData := dCurrent→valData;
39 else valData := null;
40 opData→state := {COMPLETED, valData} ; // update the operation state

Fig. 3. Pseudo-code for MINIMALCOPY

search or update operation, the position field of its operation record is used to store the
address of the record containing the value (if found).

Besides the above data structures, our algorithm also uses two tables, namely mod-
ify table, denoted by MT , and search table, denoted by ST . They are used to enable

54 A. Natarajan, L.H. Savoie, and N. Mittal

41 executeOperation(opData)
42 begin
43 opData→state := {WAITING , root} ; // initialize the operation state
44 MT [myid] := opData ; // initialize the modify table entry

// select a modify operation to help later at the end
45 pid := the process selected to help in round-robin manner; pidOpData := MT [pid];

// inject the operation into the tree
46 injectOperation(opData);

// repeatedly execute transactions until the operation completes
47 {status, pCurrent} := read(opData→state);
48 while status �= COMPLETED do
49 dCurrent := pCurrent�dNode;
50 if dCurrent→opData = opData then
51 executeWindowTransaction(pCurrent, dCurrent);

52 {status, pCurrent} := opData→state;

53 if pidOpData �= null then
54 injectOperation(pidOpData) ; // help inject the selected operation

55 injectOperation(opData)
56 begin

// repeatedly try until the operation is injected into the tree
57 while (opData→state)�status = WAITING do
58 dRoot := pRoot�dNode;

// execute a window transaction, if needed
59 if dRoot→opData �= null then executeWindowTransaction(pRoot, dRoot)

60 dNow := pRoot�dNode ; // read the address of the data node again
// if they match, try to inject the operation into the tree; otherwise restart

61 if dRoot = dNow then
62 dCopy := clone(dRoot); dCopy→opData := opData;

// try to obtain the ownership of the root of the tree
63 result := CAS(pRoot, {FREE, dRoot}, {OWNED, dCopy});
64 if result then

// the operation has been successfully injected; update the operation state
65 CAS(opData→state, {WAITING , pRoot}, {IN PROGRESS, pRoot});

Fig. 4. Pseudo-code for MINIMALCOPY (continued)

helping so as to ensure the wait-freedom property. Each table contains one entry for
every process; the entry stores the address of the operation record of the most recent
operation generated by the process.

3.4 Formal Description

A detailed pseudo-code of the algorithm is given in Figs. 3-6. The pseudo-code contains
extensive comments and is self-explanatory. It uses the following functions: (i) read to
dereference a pointer node and extract both its fields, (ii) clone to make a copy of a
data node (copies all fields except opData and next), and (iii) create to allocate and
initialize an operation record. Note that a data node in our algorithm is an immutable
object. Once it becomes part of the tree, the contents of its fields never change. Thus,
it can be safely copied without any issues. In the pseudo-code, we use pRoot to refer
to the pointer node of the root of the tree, which never changes. Further, we use the
convention that a variable with prefix ‘p’ represents a pointer node and that with prefix
‘d’ represents a data node. For convenience, we assume that the tree is never empty and
always contains at least one node. This can be ensured by using a sentinel key that is

Concurrent Wait-Free Red Black Trees 55

66 executeWindowTransaction(pNode, dNode)
67 begin

// execute a window transaction for the operation stored in dNode
68 opData := dNode→opData;
69 {flag, dCurrent} := read(pNode) ; // read the contents of pNode again
70 if dCurrent→opData = opData then
71 if flag = OWNED then
72 if pNode = pRoot then

// the operation may have just been injected into the tree, but the operation state
may not have been updated yet; update the state

73 CAS(opData→state, {WAITING , pRoot}, {IN PROGRESS, pRoot});

74 if not (executeCheapWindowTransaction(pNode, dCurrent)) then
// traverse the window and make copies as required

75 windowSoFar := {clone(dCurrent)};
76 while more nodes need to be added to windowSoFar do
77 pNextToAdd := the address of the pointer node of the next tree node to be copied;
78 dNextToAdd := pNextToAdd�dNode;

// help the operation located at this node, if any, move aside
79 if dNextToAdd→opData �= null then
80 executeWindowTransaction(pNextToAdd, dNextToAdd);
81 // read the address of the data node again as it may have changed
82 dNextToAdd := pNextToAdd�dNode;
83 copy pNextToAdd and dNextToAdd, and add them to windowSoFar;

84 window has been copied; now apply transformations dictated by Tarjan’ algorithm to
windowSoFar;

85 dWindowRoot := the address of the data node now acting as window root in
windowSoFar;

86 if last/terminal window transaction then
87 status := COMPLETED;
88 pMoveTo :={

the address of the record containing the value : if update operation;
null : otherwise;

89 else
90 status := IN PROGRESS;
91 pMoveTo := the address of the pointer node of the node in windowSoFar to

which the operation will now move;
92 pMoveTo�flag := OWNED;
93 dMoveTo := pMoveTo�dNode;

dMoveTo→opData := opData;

94 dWindowRoot→opData := opData;
dWindowRoot→next := {status, pMoveTo};
// replace the tree window with the local copy and release the ownership

95 CAS(pNode, {OWNED, dCurrent}, {FREE, dWindowRoot});

// at this point, no operation should own pNode; may still need to update the operation state
with the new position of the operation window

96 dNow := pNode�dNode;
97 if dNow→opData = opData then
98 CAS(opData→state, {IN PROGRESS, pNode}, dNow→next);

Fig. 5. Pseudo-code for MINIMALCOPY (continued)

larger than any other key value. For ease of exposition, we also assume that there is no
reclamation of the memory allocated to nodes that have become garbage and are not
“accessible” by any process. Thus all objects will have unique addresses. However, a
wait-free garbage collection operation can be easily developed for our algorithm using
the well-known notion of hazard pointers [21]. More details of the garbage collection
operation can be found in [22].

To prove the correctness of our algorithm, we show that all its execution histories are
linearizable and all its operations are wait-free. For the linearizability proof, we define

56 A. Natarajan, L.H. Savoie, and N. Mittal

99 Boolean executeCheapWindowTransaction(pNode, dNode)
100 begin
101 opData := dNode→opDate; pid := opData→pid;

// traverse the tree window using Tarjan’s algorithm
102 while traversal not complete do
103 pNextToV isit := the address of the pointer node of the next node to be visited;
104 dNextToV isit := pNextToV isit�dNode;

// abort if transaction already executed
105 if (opData→state)�position �= pNode then return true

// if there is an operation residing at the node, help it move out of the way
106 if dNextToV isit→opData �= null then

// there are several cases to consider
107 if (dNextToV isit→opData)→pid �= pid then

// the operation residing at the node belongs to a different process
108 executeWindowTransaction(pNextToV isit, dNextToV isit);

// read the address of the data node again as it may have changed
109 dNextToV isit := pNextToV isit�dNode;

// abort if transaction already executed
110 if (opData→state)�position �= pNode then return true
111 else if dNextToV isit→opData = dNode→opData then

// partial window transaction has already been executed; complete it if needed
112 if (opData→state)�position = pNode then
113 slideWindowDown(pNode, dNode, pNextToV isit, dNextToV isit);

114 return true;
115 else if MT [pid] �= opData then
116 return true; // abort; transaction already executed

117 visit dNextToV isit;

118 if no transformation needs to be applied to the tree window then
119 if last/terminal window transaction then

120 pMoveTo :=

{
the address of the record containing the value : if an update operation;
null : otherwise;

121 dMoveTo := null;
122 else
123 pMoveTo := the address of the pointer node of the node in the tree to which the operation

will now move;
124 dMoveTo := pMoveTo�dNode;

125 if (opData→state)�position = pNode then
126 slideWindowDown(pNode, dNode, pMoveTo, dMoveTo);

127 return true;
128 else return false;

129 slideWindowDown(pMoveFrom, dMoveFrom, pMoveTo, dMoveTo)
130 begin
131 opData = dMoveFrom→opData;

// copy the data node of the current window location
132 dCopyMoveFrom := clone(dMoveFrom);

dCopyMoveFrom→opData := opData;
133 if dMoveTo �= null then dCopyMoveFrom→next := {IN PROGRESS, pMoveTo};
134 else dCopyMoveFrom→next := {COMPLETED, pMoveTo};

// copy the data node of the next window location, if needed
135 if dMoveTo �= null then
136 if dMoveTo→opData �= opData then
137 dCopyMoveTo := clone(dMoveTo); dCopyMoveTo→opData := opData;

// acquire the ownership of the next window location
138 CAS(pMoveTo, {FREE, dMoveTo}, {OWNED, dCopyMoveTo});

// release the ownership of the current window root and update the operation state
139 CAS(pMoveFrom, {OWNED, dMoveFrom}, {FREE, dCopyMoveFrom});
140 CAS(opData→state, {IN PROGRESS, pMoveFrom}, dCopyMoveFrom→next);

Fig. 6. Pseudo-code for MINIMALCOPY (continued)

Concurrent Wait-Free Red Black Trees 57

10 20 30 40

0

1 · 106
2 · 106
3 · 106
4 · 106

Number of Threads −−→

M
ea

n
T

hr
ou

gh
pu

t
−−

→

Read-dominated workload

10 20 30 40

0

2 · 105

4 · 105

6 · 105

Number of Threads −−→

M
ea

n
T

hr
ou

gh
pu

t
−−

→

Mixed workload

10 20 30 40
0

50,000

1 · 105

1.5 · 105

2 · 105

Number of Threads −−→

M
ea

n
T

hr
ou

gh
pu

t
−−

→

Write-dominated workload

CGL-BOTTOMUP

CGL-TOPDOWN

FGL-TOPDOWN

MODIFIED-TSAY&LI

MINIMALCOPY

MINIMALCOPY+GC

Legend.

Fig. 7. Comparison of throughput of different implementations of red-black tree

the linearization point of a “completed” operation as follows. For an insert or delete
operation, the linearization point is taken to be the time when the operation performed
its last window transaction. All update and search operations that act on the same record
are linearized in the order given by Chuong et al.’s wait-free algorithm, and are ordered
immediately after the insert operation that created that record. For a search operation
that does not find the key, the linearization point is taken to be the time when the last
terminal window transaction that is visible to the search operation is performed by some
modify operation working on the same key. If no such modify operation exists, then the
linearization point is taken to be the time when the operation began its traversal. We use
these linearization points to construct an equivalent sequential history that respects the
relative order of non-overlapping operation and in which all operations are legal. The
wait-freedom of an operation follows from the helping performed by modify operations
during searching, injection and execution of window transaction. More details of the
correctness proof can be found in [22].

We refer to our wait-free algorithm for concurrent red-black tree as MINIMALCOPY

and the version that supports garbage collection as MINIMALCOPY+GC.

4 Experimental Evaluation

Other Concurrent Red-Black Tree Implementations: For our experiments, we consid-
ered four other implementations of concurrent red-black tree besides the two based
on MINIMALCOPY and MINIMALCOPY+GC: (i) two based on coarse-grained-locking

58 A. Natarajan, L.H. Savoie, and N. Mittal

(using the standard bottom-up and the Tarjan’s top-down approaches), denoted by CGL-
BOTTOMUP and CGL-TOPDOWN, (ii) one based on fine-grained-locking (using the
Tarjan’s top-down approach), denoted by FGL-TOPDOWN and (iii) one based on Tsay
and Li’s framework (modified to use one-word pointer nodes and CAS instructions),
denoted by MODIFIED-TSAY&LI. We did not implement Kim et al.’s algorithm for
concurrent red-black tree because some important details about the algorithm are miss-
ing in the description given in [15]. For example, it is not clear how a search operation
works. It appears that it cannot simply traverse the tree as in [14] because the tree is
modified in-place using multiple CAS instructions and thus may be in an inconsistent
state at times.

In all three lock-based implementations, a tree node is a singular entity and not split
into pointer and data nodes, and the value associated with a key is stored inside a
node and not outside in a record. Windows are modified in-place. Note that all the
above changes improve the performance of lock-based implementations by reducing
indirection and copying. Finally, in both lock-based top-down implementations CGL-
TOPDOWN and FGL-TOPDOWN, search operations are used to speedup modify oper-
ations as appropriate.

Experimental Setup: We conducted our experiments on a dual-processor AMD Opteron
6180 SE 2.5 GHz machine, with 12 cores per processor (yielding 24 cores in total),
64 GB of RAM and 300 GB of hard disk, running 64-bit Linux operating system. All
implementations were written in C. To compare the performance of different imple-
mentations, we considered the following parameters:
1. Maximum Tree Size: This depends on the size of the key space. We considered

three different key space sizes of 10,000 (10K), 100,000 (100K) and 1 million (1M)
keys. To ensure consistent results, as in [7], rather than starting with an empty tree,
we populated the tree to a certain size prior to starting the simulation run.

2. Relative Distribution of Various Operations: We considered three different work-
load distributions: (a) Read-dominated workload: 90% search, 9% insert/update
and 1% delete (b) Mixed workload: 70% search, 20% insert/update and 10% delete
(c) Write-dominated workload: 0% search, 50% insert/update and 50% delete

3. Maximum Degree of Contention: This depends on the number of threads. We
varied the number of threads from 5 to 40 in steps of 5.

We compared the performance of different implementations with respect to system
throughput, which is given by the number of operations executed per unit time.

Evaluation Results: The results of our experiments are shown in Fig. 7. Each test was
carried out for 60 seconds and the results were averaged over several runs to obtain val-
ues within 99% confidence interval. For MINIMALCOPY+GC, the garbage collection
threshold was set to 25,000 nodes per thread. The results for the three key space sizes
are very similar to each other; due to space limitations, we only show the results for the
100K key space size.

As the graphs show, for all the three categories of workloads, MINIMALCOPY and
MINIMALCOPY+GC are the top two performers among all the implementations. Be-
tween the two, MINIMALCOPY+GC has 20%-45% lower throughput than MINIMAL-
COPY indicating that garbage collection has relatively significant overhead. The third

Concurrent Wait-Free Red Black Trees 59

best performer for read-dominated workloads is FGL-TOPDOWN, whereas for mixed
and write-dominated workloads is CGL-BOTTOMUP. For read-dominated workloads,
MINIMALCOPY+GC has 350%-4,300% better throughput than FGL-TOPDOWN. For
mixed workloads, MINIMALCOPY+GC has 150%-660% better throughput than CGL-
BOTTOMUP. For write-dominated workloads, the gap between MINIMALCOPY+GC
and CGL-BOTTOMUP is much smaller; MINIMALCOPY+GC has only 3.4%-34% bet-
ter throughput than CGL-BOTTOMUP. More details about the experiments (e.g., com-
parison of various implementations with respect to execution times of search and mod-
ify operations) can found in [22].

5 Conclusion

In this paper, we have presented an new wait-free algorithm for a concurrent red-black
tree. Our experiments indicate that our algorithm has significantly better performance
than other concurrent algorithms for a red-black tree including those based on locks.

References

1. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint. Morgan
Kaufmann (2012)

2. Herlihy, M.: Wait-Free Synchronization. ACM Transactions on Programming Languages and
Systems (TOPLAS) 13(1), 124–149 (1991)

3. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concurrent Cache-Oblivious B-
Trees. In: Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), pp. 228–237 (2005)

4. Ellen, F., Fataourou, P., Ruppert, E., van Breugel, F.: Non-Blocking Binary Search Trees. In:
Proceedings of the 29th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 131–140 (2010)

5. Brown, T., Helga, J.: Non-Blocking k-ary Search Trees. In: Fernàndez Anta, A., Lipari, G.,
Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 207–221. Springer, Heidelberg (2011)

6. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent Tries with Efficient Non-
Blocking Snapshots. In: Proceedings of the 17th ACM Symposium on Principles and Prac-
tice of Parallel Programming (PPOPP), pp. 151–160 (2012)

7. Howley, S.V., Jones, J.: A Non-Blocking Internal Binary Search Tree. In: Proceedings of the
24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 161–171
(June 2012)

8. Braginsky, A., Petrank, E.: A Lock-Free B+tree. In: Proceedings of the 24th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pp. 58–67 (2012)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press
(1991)

10. Sedgewick, R.: Left-leaning Red-Black Trees
11. Jones, M.T.: Inside the Linux 2.6 Completely Fair Scheduler (December 2009)
12. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free transaction

friendly data structures. In: Proceedings of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 335–344 (2010)

60 A. Natarajan, L.H. Savoie, and N. Mittal

13. Fatourou, P., Kallimanis, N.D.: A Highly-Efficient Wait-Free Universal Construction. In:
Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 325–334 (2011)

14. Ma, J.: Lock-Free Insertions on Red-Black Trees. Master’s thesis. The University of Mani-
toba, Canada (October 2003)

15. Kim, J.H., Cameron, H., Graham, P.: Lock-Free Red-Black Trees Using CAS. Concurrency
and Computation: Practice and Experience, 1–40 (2006)

16. Fraser, K.: Practical Lock-Freedom. PhD thesis, University of Cambridge (February 2004)
17. Crain, T., Gramoli, V., Raynal, M.: A Speculation-Friendly Binary Search Tree. In: Pro-

ceedings of the 17th ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pp. 161–170 (2012)

18. Tsay, J.J., Li, H.C.: Lock-Free Concurrent Tree Structures for Multiprocessor Systems. In:
Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS),
pp. 544–549 (December 1994)

19. Tarjan, R.E.: Efficient Top-Down Updating of Red-Black Trees. Technical Report TR-006-
85, Department of Computer Science, Princeton University (1985)

20. Herlihy, M., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems (TOPLAS) 12(3), 463–492
(1990)

21. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 15(6), 491–504 (2004)

22. Natarajan, A., Savoie, L., Mittal, N.: Concurrent Wait-Free Red Black Trees. Technical Re-
port UTDCS-16-12, Department of Computer Science, The University of Texas at Dallas
(October 2012)

	Concurrent Wait-Free Red Black Trees
	1 Introduction
	2 Preliminaries
	2.1 Tsay and Li’sWait-Free Framework for Tree-Based Data Structures
	2.2 Red-Black Trees and Top-Down Operations

	3 A Wait-Free Algorithm for Red-Black Tree
	3.1 Reducing the Overhead of Search Operation
	3.2 Reducing the Overhead of Modify Operation
	3.3 Data Structures Used
	3.4 Formal Description

	4 Experimental Evaluation
	5 Conclusion
	References

