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Abstract. We propose a framework to build formal developments for robot
networks using the COQ proof assistant, to state and prove formally various prop-
erties. We focus in this paper on impossibility proofs, as it is natural to take ad-
vantage of the COQ higher order calculus to reason about algorithms as abstract
objects. We present in particular formal proofs of two impossibility results for
convergence of oblivious mobile robots if respectively more than one half and
more than one third of the robots exhibit Byzantine failures, starting from the
original theorems by Bouzid et al.. Thanks to our formalisation, the correspond-
ing COQ developments are quite compact. To our knowledge, these are the first
certified (in the sense of formally proved) impossibility results for robot networks.

1 Introduction

Networks of static and/or mobile sensors (that is, robots) [19] received increasing atten-
tion in the past few years from the Distributed Computing community. On the one hand,
the use of cooperative swarms of inexpensive robots to achieve various complex tasks in
potentially hazardous environments is a promising option to reduce human and material
costs and assess the relevance of Distributed Computing in a practical setting. On the
other hand, execution model differences warrant extreme care when revisiting “classi-
cal results” from Distributed Computing, as very small changes in assumed hypotheses
may completely change the feasibility of a particular problem. Negative results such as
impossibility results are fundamental in Distributed Computing to establish what can
and cannot be computed in a given setting, or permitting to assess optimality results
through lower bounds for given problems. Two notorious examples are the impossibil-
ity of reaching consensus in an asynchronous setting when a single process may fail
by stopping unexpectedly [18], and the impossibility of reliably exchanging informa-
tion when more than one third of the processes can exhibit arbitrary behaviour [29]. As
noted by Lamport, Shostak and Pease [25], correctly proving results in the context of
Byzantine (a.k.a. arbitrary behaviour capable) processes is a major challenge, as [they
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knew] of no area in computer science or mathematics in which informal reasoning is
more likely to lead to errors than in the study of this type of algorithm.

An attractive way to assess the validity of distributed algorithm is to use tool assisted
verification, be it based on process algebra [4,20], local computations [27],Event-B [8],
COQ [9], HOL [10], Isabelle/HOL [23], or TLA [25,24] that can enjoy an Isabelle back-
end for its provers [13]. Surprisingly, only few works consider using mechanised as-
sistance for networks of mobile entities, be it population protocols [14,11] or mobile
robots [15,5]. In this paper, our goal is to propose a formal provable framework in order
to prove positive or negative results for localised distributed protocols in mobile robotic
networks, based on recent advances in mechanical proving and related areas, and in par-
ticular on proof assistants. Proof assistants are environments in which a user can ex-
press programs, state theorems and develop interactively proofs that will be mechanically
checked (that is machine-checked). They have been successfully employed for various
tasks such as the formalisation of programming language semantics [26,28], verification
of cryptographic protocols [2], certification of RSA keys [31], mathematical develop-
ments as involved as the 4-colours [21] or Feit-Thompson [22] theorems.

Our Contribution. We developed a general framework relying on the COQ proof as-
sistant to prove possibility and impossibility results about mobile robotic networks.
The key property of our approach is that its underlying calculus is of higher order:
instead of providing the code of the distributed protocols executed by the robots, we
may quantify universally on those programs/algorithms, or just characterise them with
an abstract property. This genericity makes this approach complementary to the use
of model-checking methods for verifying distributed algorithms [7,11,15,17] that are
highly automatic, but address mainly particular instances of algorithms. In particular,
quantifying over algorithms allows us to express in a natural way impossibility results.

We illustrate how our framework allows for such certification by providing COQ

proofs of two earlier impossibility and lower bound theorems by Bouzid et al. [6], guar-
anteeing soundness of the first one, and of the SSYNC fair version of the second one.
More precisely, in the context1 of oblivious robots that are endowed with strong global
multiplicity detection and whose movements are constrained along a rational line, and
assuming that the demon (that is, the way robots are scheduled for execution) is fair,
the convergence problem cannot be solved if respectively at least one half (Theorem 1)
and at least one third (Theorem 2) of robots are Byzantine.

The interestingly short size of the COQ proofs we obtained using our framework not
only makes it easily human-readable, but is also very encouraging for future applica-
tions and extensions of our framework.

Related Work. With reference to proof assistants, Küfner et al. [23] develop a method-
ology to develop ISABELLE-checked proofs of properties of fault-tolerant distributed
algorithms in an asynchronous message passing style setting. This work’s motivations
are similar to ours, however the setting (message passing distributed algorithms) is dif-
ferent, moreover it focuses on positive results only whereas we provide negative results,
i.e. proofs of impossibility.

1 Distributed Robot model assumptions are presented in Section 2.
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Chou [10] develops a methodology based on the HOL proof assistant to prove prop-
erties of concrete distributed algorithms via proving simulation with abstract ones. The
methodology does not allow to prove impossibility results. Casteran et al. [9] propose
proofs of negative results in COQ for some kinds of distributed algorithms. Though
very interesting, their approach is based on labeled graph rewriting and does not ad-
dress robot networks. Another interesting approach is that of Deng and Monin [14] that
uses COQ to prove the correctness of distributed self-stabilizing protocols in the popu-
lation protocol model. This model permits to describe interactions of an arbitrary large
size of mobile entities, but the considered entities lack movement control and geomet-
ric awareness that are characteristic of robot networks such as those we envision, and is
thus not suitable for our purpose. This approach also only considers positive results.

Preliminary attempts for automatically proving impossibility results in robot net-
works properties are due to Devismes et al. [15], Bonnet et al. [5], and Bérard et al.[3].
The first paper [15] uses the LUSTRE formalism and model-checking to search ex-
haustively all possible 3-robots protocols that explore every node of a 3 × 3 grid (and
conclude that no such algorithm exists). The second paper [5] uses an ad hoc tool to
generate all possible unambiguous protocols of k robots operating in an n-sized ring (k
and n are given as parameters) and check exhaustively the properties of the generated
protocols (and in the paper conclude that no protocol of 5 robots on a 10 sized ring
can explore all nodes infinitely often with every robot). The third proposal [3] uses the
DiVinE model-checker to verify the correctness of two existing algorithms for explo-
ration with stop and exclusive perpetual exploration in uniform anonymous rings of size
n. Those three proposals differ from our goal in several ways. Firstly, they are limited
to a so called discrete space, where the robots may only occupy a finite number of posi-
tions, while we focus on the more realistic setting where an infinite number of positions
are possible for the robots. Also, contrary to all three, we do not want to restrict our
tools to a particular setting (e.g. 3 robots on a 3 × 3 grid), but rather have results that
are general with respect to all considered parameters. Then, unlike the second proposal,
we want universal impossibility results (i.e. consider not only unambiguous protocols
– that permit to limit combinatorial explosion to some extent – but also ambiguous
ones – resulting from symmetrical situations that are likely to occur in practice). Fi-
nally, we want to integrate the possibility of misbehaving robots (e.g. robots crashing or
exhibiting arbitrary and potentially malicious behaviour), rather than assuming that all
considered robots are correct. This enables to state formally and assess the amount of
faults and attack resilience a given robot protocol may guarantee, which is crucial when
robots are deployed in dangerous areas as it is often the case.

Roadmap. The sequel of the paper is organised as follows. First, we recall the context
of robot networks in Section 2. Then, in Section 3 we give a brief description of COQ

and its main principles. Section 4 contains the basis of our formal model for robot
networks, and some useful theorems. We show in Section 5 how convenient it is to
carry out formal proofs of various properties, as we study previous results by Bouzid et
al. [6]. We provide some concluding remarks in Section 6.

Note that for the sake of readability we slightly simplified COQ notations (mostly to
avoid syntactic sugar). The actual development for COQ 8.4pl3 is available at
http://pactole.lri.fr/pub/framework.tgz

http://pactole.lri.fr/pub/framework.tgz
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2 Robot Networks

We borrow most of the notions in this section from [30,1,19]. The network consists in
a set of n mobile entities, called robots, arbitrarily located in the space. Robots cannot
communicate directly by sending messages to each others. Instead, their communica-
tion is based on vision: they observe the positions of other robots, and based on their
observations, they compute destination points to which they move.

Robots are homogeneous and anonymous: they run the same algorithm (called robo-
gram), they are completely indistinguishable by their appearance, and no identifier can
be used in their computations. They are also oblivious, i.e. they cannot remember any
previous observation, computation or movement performed in any previous step.

For simplicity, we assume that robots are without volume, i.e. they are modeled as
points that cannot obstruct the movement or vision of other robots. Visibility is global:
the entire set of robots can always be seen by any robot at any time. Robots that are
able to determine the exact number of robots occupying the same position enjoy strong
multiplicity detection ; if they can only know if a given position is inhabited or not,
their multiplicity detection is said to be weak. Each robot has its own local coordinate
system and its own unit measure. They do not share any origin, orientation, and more
generally any frame of reference.

The multiset of positions of robots at a given time is called a configuration. We as-
sume that the actions of robots are controlled by a fictitious entity called the demon
(or adversary). Each time a robot is activated by the demon, it executes a complete
three-phases cycle: Look, Compute and Move. During the Look phase, using its visual
sensors, the robot gets a snapshot of the current configuration. Then, based only on this
observed configuration, it computes a destination in the Compute phase using its robo-
gram and moves towards it during the subsequent Move phase. Movements of robots
are atomic, i.e. the demon cannot stop them before they reach the destination.

A run (or execution) is an infinite sequence of rounds. During each round, the de-
mon chooses a subset of robots and activates them to execute a cycle. We assume the
scheduling to be fair, i.e. each robot is activated infinitely often in any infinite execution,
and atomic in the sense that robots that are activated at the same round execute their
actions synchronously and atomically. An atomic demon is called fully-synchronous
(FSYNC) if all robots are activated at each round, otherwise it is said to be semi-
synchronous (SSYNC). The impossibility results we focus on are given in the FSYNC
and SSYNC models, and hence remain valid in less constrained ones (e.g. non-atomic,
unfair scheduling, etc.).

A robot is Byzantine (or faulty) if it does not comply with the robogram and behaves
in an arbitrary and unpredictable way. We assume that the movements of Byzantine
robots are controlled by the adversary that uses them in order to make the algorithm
fail. Let f ∈ [0, n] be a parameter that denotes the number of faulty robots. Robots
that are not Byzantine are called correct. Correct robots are supposed to know an upper
bound on the number of Byzantine robots.
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3 The COQ Proof Assistant

COQ is based on type theory. Its formal language can express objects, properties
and proofs in a unified way; all these are represented as terms of an expressive λ-
calculus: the Calculus of Inductive Constructions (CIC) [12]. λ-abstraction is denoted
fun x:T ⇒ t, and application is denoted t u. A proof development with COQ con-
sists in trying to build, interactively and using tactics, a λ-term the type of which corre-
sponds to the proven theorem (Curry-Howard style).

The kernel of COQ is a proof checker that checks the validity of proofs written as
CIC-terms. Indeed, in this framework, a term is a proof of its type, and checking a
proof consists in typing a term. Roughly speaking, the small kernel of COQ simply
type-checks λ-terms to ensure soundness.

A very powerful feature of COQ is the ability to define inductive types to express in-
ductive data types and inductive properties. For example the following inductive types
define the data type nat of natural numbers, O and S (successor) being the two construc-
tors, and the property even of being an even natural number. In this setting the term
even_S(S(S O))(even_S O (even_O)) is of type even(S(S(S(S O)))) so it is
a proof that 4 is even.

Inductive nat : Set := O : nat | S : nat → nat.
Inductive even : nat → Prop :=

| even_O : even O
| even_S : ∀ n : nat, even n → even (S(S n)).

We also make use of coinductive types to express infinite data types and proper-
ties on them. For example in the robot networks setting a set of robots has an infinite
behaviour. For example one can define infinite streams of natural numbers and the prop-
erty all_even of being an infinite stream of even natural number as follows:

CoInductive stm : Set :=
| scons : nat → stm → stm.

CoInductive all_even : stm → Prop :=
| Ceven_all: ∀ n s, even n → all_even s → all_even (scons n s).

4 The Formal Model

We present our formal model and the relevant notations. Robots are anonymous, how-
ever we need to identify some of them in the proofs. Thus, we consider the union of two
given disjoint finite sets of identifiers: G referring to robots that behave correctly, and
B referring to the set of Byzantine ones. We will omit Sets G and B most of the time,
except in Section 5 where they characterise the number of robots. Note that those sets
are isomorphic to segments of N but we keep our formalisation as abstract as possible.
If needed in the model, we can make sure that names are not used by the embedded
algorithm, as shown below.
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Variable G B : finite.
Inductive ident := Good : G → ident | Byz : B → ident.

Locations, Positions, Similarities. Robots are distributed in space, at places called loca-
tions. We define a position as a function from a set of identifiers to the space of locations.
As the space of locations in the paper of Bouzid et al. [6] is an infinite line, we use Q for
locations. Note that going from one to many dimensions is not a problem with respect
to our formalisation. Throughout this article, and unless specified otherwise gp denotes
a position for correct robots, and bp a position for Byzantine ones. The position of all
robots is then given by the combination gp � bp.

Record position:= { gp: G → location ; bp: B → location }.
(* Getting the location of a robot *)
Definition locate p (id: ident): location :=

match id with Good g ⇒ p.(gp) g | Byz b ⇒ p.(bp) b end.

Robots compute their target position from the observed configuration of their sib-
lings in the considered space. We also define permutations of robots, that is bijective
applications from G∪B to itself, usually denoted hereafter by Greek letters. Moreover,
any correct robot is supposed to act as any other correct robot in the same context, that
is, with a similar perception of the environment. For two rational numbers k �= 0 and t,
a similarity is a function mapping a location x to k × (x − t), denoted [[k, t]]. Rational
number k is called the homothetic factor, and −k× t is called the translation factor. For
simplicity we restrict this definition to the uni-dimensional case; otherwise rotational
factors may have to be provided too. Similarities are invertible; they form a group for
the law of composition ([[k, t]]−1 = [[k−1,−k−1 × t]]). Similarities can be extended to
positions, by applying the similarity transform to the extracted location.

Definition similarity (k t : Q) (p:position) : position := {
gp := fun n ⇒ k * (p.(gp) n - t) ;
bp := fun n ⇒ k * (p.(bp) n - t) }.

This operation will be (abusively) written [[k, t]](gp � bp). Similarities will be used as
transformations of frames of reference.

Robograms. We now model what an algorithm r embedded in a correct robot is. For
a robot r-idi, a computation takes as an input an entire position gp � bp as seen by
r-idi, in its own frame of reference (scale, origin, etc.),2 and returns a rational number
li corresponding to a location (the destination point) in the same frame.

Remark 1. Recall that robots in G cannot decide whether another robot is Byzantine,
and have no access to a symmetry breaking mechanism such as an identifier. In such a
case: the result of r must be invariant by permutations of robots. This is a fundamental
property that any embedded algorithm must fulfil.

Embedded computation algorithms verifying Remark 1 are called robograms. They
are naturally defined in our COQ model as follows.

2 Note that the scale factor is taken anew at each cycle for oblivious robots; in the context of
Byzantine failures, it is convenient to consider it as chosen by some adversary.
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Record robogram := {
algo : position → location ;
AlgoMorph : ∀ p q σ, (q ≡ p ◦ σ-1) → algo p = algo q }.

It is worth noticing that this definition is completely abstract and makes no use of con-
crete code whatsoever.

Computation. So as to provide to r the locations of robots in terms of the considered
robot’s local frame of reference, and to obtain an absolute location in the global coor-
dinate system from the result of r (thus local) we use the notion of similarity. Let us
consider a robot r-idi the location of which is at t, and the scale of which is k times the
global one, defining a similarity [[k, t]]. To obtain the resulting location in terms of the
global coordinate system:

1. We center the origin of the position in t, and we zoom according to the homothetic
factor k to express the position in the local frame of r-idi.

2. The algorithm r computes a local destination point.
3. We apply the inverse of the similarity to obtain the global destination point, that is:

according to the global coordinate system.

We denote this operation r[[k,t]](gp � bp) = [[k, t]]−1(r([[k, t]](gp � bp))). This way
we ensure that the global destination point does not depend on the individual frame of
reference of robots.3

Demons and Properties. A demon provides the position for Byzantine robots, and se-
lects the correct robots to be activated at the current round. As noticed in Footnote 2,
we may consider that the demon, acting as an adversary, selects also the scale of the
frame of reference for each activated correct robot at each round. A demonic action is
thus a record

Record demonic_action:= {locate_byz: B → location; frame: G → Q}.

consisting of a position for Byzantine robots (locate_byz), and a function associating
to each correct robot a rational number k such that k = 0 and the robot is not activated,
or k �= 0 and the robot is activated with a scale factor. The actual demon is simply an
infinite sequence (stream) of demonic actions.

CoInductive demon := NextDemon: demonic_action → demon → demon.

Characteristic properties of demons include fairness and synchronous aspects.
A demon (seen as a sequence) is locally fair for a robot (inductive property
LocallyFairForOne) if either this robot is activated during the first demonic action,
or if the robot is not activated during the first round but the sequel of the demon is
locally fair for that robot. This is related to the classical notion of accessibility. The
demon will be fair if it is locally fair for all robots and if its infinite sequel is fair.

3 Note that in this presentation, any considered robot perceives itself as the origin of its local
frame of reference.
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Inductive LocallyFairForOne g (d : demon) : Prop :=
| ImmediatelyFair : ((demon_head d).frame g) �= 0

→ LocallyFairForOne g d
| LaterFair : ((demon_head d).frame g) = 0

→ LocallyFairForOne g (demon_tail d)
→ LocallyFairForOne g d.

CoInductive Fair (d : demon) : Prop :=
AlwaysFair : Fair (demon_tail d) → (∀ g, LocallyFairForOne g d)

→ Fair d.

To be fully synchronous for a demon can be defined similarly. Recall that a fully
synchronous demon is a particular case of fair demon such that all correct robots
are activated at each round. This is done easily in our setting where we only have
to state that the demonic action’s frame never returns 0. An inductive property
FullySynchronousForOne states that the first demonic action activates a given robot.
A demon is then fully synchronous if FullySynchronousForOne holds for all robots
and this demon, and if its infinite sequel is fully synchronous.

CoInductive FullySynchronous d :=
NextfullySynch: FullySynchronous (demon_tail d)
→ (∀ g, FullySynchronousForOne g d) → FullySynchronous d.

Execution. Finally, given an initial position for correct robots gp0, and a demon

D = (locate_byzi, framei)i∈N,

we may define an infinite sequence (gpi)i∈N called the execution (from gp0 according
to D) as

gpi+1(x) =

{
r[[framei(x),gpi(x)]](gpi � bpi) if framei(x) �= 0
gpi(x) otherwise

Its type is thus:
CoInductive execution := NextExecution : (G → location) → execution → execution.

and its computation is reflected by the following corecursive function execute:
Definition round (r : robogram) (da : demonic_action) (gp: G → location)
: G → location := fun g ⇒
let k := da.(frame) g in let t := g.(gp) in
if k = 0 then t

else t + 1
k * (algo r ( [[k,t ]]{gp := gp; bp := locate_byz da})).

Definition execute (r : robogram): demon → (G → location) → execution :=
cofix execute d gp :=

NextExecution gp (execute (demon_tail d) (round r (demon_head d) gp)).

5 Case Study: Impossibility Proofs with Byzantine Behaviours

Let us illustrate how well-suited our formalisation is to prove impossibility results, with
two theorems by Bouzid et al. [6]. Those results address the problem known as con-
vergence. Given any initial configuration of robots, the convergence problem requires
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correct robots to approach asymptotically the same, but unknown beforehand, location.
That is, for every initial configuration, convergence requires the existence of a point c
in space such that for every ε > 0, there exists a time τε such that ∀τ > τε, all correct
robots are within a distance of at most ε of c at τ . The impossibility results in [6] are as
follows:

Theorem 1 ([6], Thm 4.3). It is impossible to achieve convergence if n ≤ 2f in the
FSYNC uni-dimensional model, where n denotes the number of robots and f denotes
the number of Byzantine robots.

Theorem 2 ([6], Thm 4.4). Byzantine-resilient convergence is impossible for n ≤ 3f
in the SSYNC uni-dimensional model and a 2-bounded demon.

Proofs of Impossibility. Providing a solution to a problem in robot networks usually
implies giving a robogram such that the expected property holds at some point in the
execution, whatever the demon (seen as an adversary, thus including the Byzantine
robots) might do. More precisely, it amounts to showing that there exists a robogram
such that for all demons, the property is eventually satisfied. An immediate way of
proving such a fact is to provide the actual code for the robogram.

When it comes to impossibility proofs, one has to show instead that for all robogram
pretending to be a solution, there exists a demon such that the considered robogram
will fail. In fact, the usual attempts to achieve this involve looking for a stronger re-
sult: exhibiting a demon that will make any candidate robogram for solution to fail. In
both cases the statement of such a result is quantified universally on robograms. Giving
any concrete code will not help. However, working with higher-order mechanical the-
orem proving allows us to consider programs as abstract objects and to quantify over
them. Robograms will be just characterised by some invariants and the fact that they are
supposed to be a solution of a considered problem.

The Theorems in our Formal Model. First of all we need to define formally the con-
vergence problem. In the atomic FSYNC and SSYNC models, an execution (gpi)i∈N

is said to be convergent when for any ε > 0 there exists a number of rounds Nε ∈ N

and a location lε (in the particular context of [6], lε ∈ Q) such that for all n > Nε, all
correct robots at round n are no further than ε from lε.

∀ε > 0, ∃Nε ∈ N, lε ∈ Q, ∀n > Nε, ∀x ∈ G, |gpn(x) − lε| < ε

Convergence expresses that all correct robots will be gathered forever (thus involving a
coinductive construct) in a disc of radius ε...

CoInductive imprisoned (prison_center : location) (radius : Q)
(e : execution) : Prop :=

InDisk : (∀ g, [(prison_center - execution_head e g)] <= radius)
→ imprisoned prison_center radius (execution_tail e)
→ imprisoned prison_center radius e.

. . . that they reach eventually (thus involving an inductive part).
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Inductive attracted (pc: location) (radius: Q) (e: execution): Prop :=
| Captured : imprisonned pc radius e → attracted pc radius e
| WillBeCaptured : attracted pc radius (execution_tail e)

→ attracted pc radius e.

A solution to the Convergence problem is a robogram such that for any initial position
and assuming a fair demon, the execution eventually imprisons all correct robots.

Definition solution (r: robogram) : Prop :=
∀ (gp: G → location), ∀ d: demon, Fair d
→ ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp).

Remark 2. Our current model considers locations in Q, however the final destination
(limit) for convergence is allowed to be in R \Q, in which case the sequence of lεi is a
sequence in Q, which has a limit in R.

In this section, we shall make explicit the given two sets (i.e. objects of type finite)
that were provided as variables G and B in the formal model on page 182, so as to
characterise the numbers of corrects and byzantine robots in the COQ statement of
theorems.

A formal version of Theorem 1. Let us focus on Theorem 1. As the premises require
the demon to be fully-synchronous (FSYNC model) we may as well define what a
fully-synchronous demon is, as mentioned on page 185, and specialise with it a version
of solution. It is worth noticing that our development contains a proof that a fully-
synchronous demon is fair and that therefore a solution for any fair scheduler is also a
solution for a FSYNC one.

Definition solution_FSYNC (r : robogram) : Prop :=
∀ (gp : G → location), ∀ (d : demon), FullySynchronous d
→ ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp).

Lemma solution_FAIR_FSYNC : ∀ r, solution r → solution_FSYNC r.
Theorem th1:

∀ (g b:finite) (g �= ∅) → (r: robogram ({·} � g) (b � (g � {·}))),
¬ solution_FSYNC r.

It may seem surprising that we use g both for correct and Byzantine robots. As a matter
of fact, since unions are disjoint by construction, this notation just ensures that the sets
of names share the same cardinal. Adding another arbitrary set b to the Byzantine part
is thus a way of saying that there are at least as many Byzantine robots as correct ones.

Further note that this expression of the theorem clearly states that there are at least
2 correct robots; this is not implicit (as no assumption can be in COQ): the considered
set of correct robots is indeed a singleton {·} added to a non-empty set.

This theorem and its complete formal proof can be found in our development, as
Theorem no_solution in File NoSolutionFSYNC_2f.v. The file itself is a hundred
lines long and relies on various lemmas provided by our framework.

A formal SSYNC fair version of Theorem 2. Akin to the previous theorem the addition
of an arbitrary set b denotes that the total number of robots is not more than three times
the number of Byzantine ones.
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We prove in fact a sligthly different result, instead of assuming the demon 2-bounded
(that is, the demon may execute a particular robot at most two times between any two
executions of any other robot [16]), we show that the impossibility result holds for
a demon that is fair in SSYNC, and for a number f of Byzantine robots such that
2f < n ≤ 3f where n is the total number of robots. The bound about f and n by
Bouzid et al. can be obtained by combining this theorem with the previous one and
using lemma solution_FAIR_FSYNC above.

Theorem th2’:
∀ (g b: finite) (g �= ∅) → (r : robogram ((b 	 g) 	 g ) (b 	 g)),

¬ solution r.

As before, the theorem and its complete formal proof can be found in our devel-
opment, as Theorem no_solution in File NoSolutionFAIR_3f.v. The file itself is
125 lines long and relies on various lemmas provided by our framework.

6 Remarks and Perspectives

The choice of the usual topology of Q as the basic one is driven by three main rea-
sons. First, it allows arbitrary homotheties (which is not the case for N). Then, it pre-
serves arbitrary precision (thus excluding IEEE754 floating point numbers). Finally, it
is axiom-free, while R is not. As noticed in Remark 2, considering rational numbers is
not a handicap for convergence properties.

The total size of our development, including the framework and the proofs of the
aforementioned theorems is quite small, as it is approximately 450 lines of specifica-
tions and 950 lines of proofs. This is encouraging with reference to how adequate our
framework is, as it indicates that proofs are not too intricate and remain human readable.

It is worth noticing that our formalism is robust enough to take into account several
alternative models with few modifications. For instance, and thanks to the high abstrac-
tion level of our framework, considering a multi-dimensional space (instead of just a
line) only amounts to considering tuples for locations (and not simply rational num-
bers) and adding a rotation for some similarities. The effort is thus put on the actual
proof and not on the modeling tasks. Hence, a first short-term perspective is to tackle
impossibility proofs for convergence on the rational plane or three dimensional space.
Similarly, going from strong multiplicity to weak multiplicity is only a redefinition of
the equality relation between positions. . . The same remark applies to demons’ charac-
teristics. Adding constraints such as being fully-synchronous is just (i) Defining this
constraint, and (ii) Adding this constraint as an assumption in the statement of a the-
orem. Of course proofs may be very demanding in all those models, but we want to
emphasise that relevant adaptations of our framework are rather non-expensive.

A noteworthy added benefit of our abstract formalisations is that keeping them as
general as possible may lead to relaxing premises of theorems, thus potentially discov-
ering new results (e.g. formalising weaker daemons [16] and weaker forms of Byzantine
behaviours could lead to stronger impossibility results).

Finally, we plan to use our development for positive results also, that is, to prove
properties of concrete algorithms. The language of COQ can handle data-types, pro-
grams, and properties about them. Our general framework should allow for certification
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of embedded algorithms, as both concrete code for robots and global properties of the
network fit in. Notice that such proofs would guarantee the expected properties in infi-
nite spaces, i.e. without limits on locations.
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