
Local Decision and Verification

with Bounded-Size Outputs

Heger Arfaoui1, Pierre Fraigniaud1,�, and Andrzej Pelc2,��

1 CNRS and University Paris Diderot, France
2 Université du Québec en Outaouais, Canada

Abstract. We are dealing with the design of algorithms using few re-
sources, enabling to decide whether or not any given n-node graph G
belongs to some given graph class C. Our model borrows from property
testing the way the decision is taken, by an unconstrained interpretation
function applied to the set of outputs produced by individual queries (in-
stead of an interpretation function limited to the conjunction operator as
in local distributed decision). It borrows from local distributed decision
the fact that all nodes are involved in the decision (instead of o(n) nodes
as in property testing). The unique, but severe restriction we impose to
the nodes is a limitation on the amount of information they are enabled
to output: every node is bounded to output a constant number of bits.
In this paper, we provide separation results between distributed deci-
sion and verification classes, and we analyze the size of the certificates
enabling to verify distributed languages.

1 Introduction

Objective. The ability to computationally decide a language using few re-
sources is at the core of computer science, where, e.g., P can be interpreted
as the class of languages decidable using little computation time, L can be in-
terpreted as the class of languages decidable using little memory space, and
NP and NL, the non deterministic versions of P and L, can be interpreted as
the classes of languages verifiable using little computation time and little mem-
ory space, respectively, with small certificates. Still in the spirit of minimizing
resources, property testing [17] is aiming at identifying languages that can be
decided without accessing the whole instance. In particular, for any fixed graph
class C, property testing on graphs [18] aims at designing algorithms able to
decide whether or not any given n-node graph G belongs to C, by querying only
o(n) (random) nodes of the graph. In essence, the result of querying a node u
is a value out(u) such as, e.g., the degree of u. The decision algorithm acts and

� The first and second authors receive support from the ANR project DISPLEXITY,
and from the INRIA project GANG.

�� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais. Additional support
from the Foundation Sciences Mathématiques de Paris.

T. Higashino et al. (Eds.): SSS 2013, LNCS 8255, pp. 133–147, 2013.
c© Springer International Publishing Switzerland 2013

134 H. Arfaoui and P.F.A. Pelc

decides depending on the set of values collected so far. There are no restrictions
imposed to this algorithm, except that one aims at designing algorithms decid-
ing in polynomial time. In the distributed setting, the theory of local distributed
decision [12,26] also aims at understanding the ability to decide graph proper-
ties, with or without inputs at nodes, using few resources. In this framework,
all nodes are involved, each node u computes and outputs a single bit value bu
by inspecting its local neighborhood, and the result of the distributed decision
is obtained by applying the conjunctive operator

∧
u bu on these 1-bit-per-node

outputs. (That is, the input configuration is accepted if and only if all nodes
locally accept).

The restriction to the conjunctive operator in the framework of local dis-
tributed decision is conceptually elegant, and is well motivated by practical ap-
plications. For instance, the output bu = 0 at node u can be interpreted as node u
“raising an alarm”. This alarm can be used by a central entity collecting data,
like in, e.g., sensor networks. It can also be used in a distributed manner. For
instance, in the framework of self-stabilzation, the alarm at node u may corre-
spond to the detection of an invalid state of the system, and yields the launch of
a recovery procedure [4,20]. Also, since the conjunctive operator is idempotent,
commutative, and associative, it is easy to conceive a gossip procedure enabling
all nodes to become aware of the global decision, by flooding in diameter rounds,
where each round involves exchanging a single bit on each link (see, e.g., [5] for
decision and verification in the CONGEST model).

Nevertheless, restricting ourselves to the conjunctive operator in the frame-
work of local distributed decision is not a law carved in stone. In fact, there
are several arguments against restricting the distributed decision setting to this
specific operator. For instance, this restriction does not fit with elementary al-
gebraic operations on sets. Typically, one may be able to distributedly decide
locally two distributed properties P and P ′, and yet be unable to distributedly
decide P ∨ P ′. For instance, using the conjunctive operator, one cannot decide
locally whether nodes are properly k-colored if the set of k colors is not specified
(this holds even if this set of colors is specified as being either {green, orange, red}
or {green, orange, blue}). Last but not least, recent results in the framework of
distributed local decision [11] reveal that restricting ourselves to the conjunc-
tion operator prevents us from “boosting” probabilistic decisions. That is, using
the conjunction operator, and as opposed to, say, languages in BPP, there are
classes of distributed languages that can be decided distributedly with a fixed
probabilistic guarantee, but which cannot be decided distributedly with better
guarantees. In fact, there are computational models (e.g., distributed quantum
computing) in which the exclusive-disjunction operator is known to be far more
practical and efficient than the conjunctive operator (see [2], and the references
therein).

To sum up the above discussion, while using the conjunctive operator in the
framework of local distributed decision is well grounded for some settings, there
are no reasons to stick to this specific operator in general. The objective of this

Local Decision and Verification with Bounded-Size Outputs 135

paper is thus to revisit local distributed decision, without restricting ourselves
to the conjunctive operator.

Framework. We consider the LOCAL model [27], which is a standard net-
work computing model capturing the essence of locality. In this model, proces-
sors have individual inputs, and arbitrary pairwise distinct identities. The al-
gorithms should work properly for every possible identity assignment. They are
woken up simultaneously, and computation proceeds in fault-free synchronous
rounds during which every processor exchanges messages of unlimited size with
its neighbors, and performs arbitrary computations on its data. Our aim is to
decide distributed languages, locally, i.e., in a constant number of rounds. A
distributed language is a (TM-decidable) collection L of pairs (G,x), where G
is a (connected) graph, and x = {xu, u ∈ V (G)} denotes the set of inputs given
to the nodes (node u receives the binary string xu as input). Typical examples
of distributed languages are

IsColored = {(G,x) s.t. ∀u ∈ V (G), ∀v ∈ N(u),xu �= xv}

where N(u) denotes the (open) neighborhood of u, that is, all nodes at distance
exactly 1 from u, and

Tree = {(G,x) s.t. G is a tree}.

Deciding a distributed language L relies on two ingredients. One ingredient is
a distributed algorithm A enabling each node u to output some value out(u)
in a constant number of rounds t, that is, after inspecting all nodes in the ball
of radius t. This includes the structure of that ball, and the input values given
to the nodes in this ball. The second ingredient is an interpretation operator I,
which applies to the collection {out(u), u ∈ V (G)} of all values output by the
nodes. As in classical local distributed decision, the interpretation is taken over
all outputs. However, as in property testing, we allow any form of interpretation.
Obviously, all distributed languages would be decidable in a single round in this
setting if one did not impose restrictions on the values output by the nodes. We
restrict every node to output a constant number k of bits. Hence, our framework
is the extension of the model in [11,12,19,26] where:

1. every node outputs a number of bits bounded by a language-specific constant
(rather than only one bit), and

2. the interpretation of these outputs is allowed to be any binary valued func-
tion I whose arguments are the unordered multi-sets of outputs of all nodes
(rather than only the conjunction operator applied to these outputs).

Note that, using the interpretation function I, an instance is accepted or rejected
on the basis of the number of outputs of each type, regardless by which node a
given output is produced.

For a non-negative integer t, we define the class ULD(t) (for Unrestricted
Local Decision) as the class of distributed languages that can be decided in t

136 H. Arfaoui and P.F.A. Pelc

communication rounds in the LOCAL model, where decision is taken according
to the rules specified above. We then define one of two classes of main interest
for the purpose of this paper: ULD = ∪t≥0ULD(t).

We are also concerned with distributed verification, which can be seen as the
nondeterministic version of decision, in the same way as NP is the nondetermin-
istic version of P. In distributed verification, every node u ∈ V (G) is given a
certificate yu, in addition to the input xu. Each certificate is an arbitrary binary
string. A distributed language L is locally verifiable if there exists a pair (A, I),
where A is a distributed algorithm performing in a constant number of rounds,
and I is an interpretation of the outputs produced by A at all nodes, such that
the following holds:

– if (G,x) ∈ L then there exists a collection of certificates y = {yu, u ∈ V (G)}
satisfying that A running in G, with the pair (xu,yu) given to each node u,
returns out(u) at every node u such that I accepts the multi-set {out(u), u ∈
V (G)};

– if (G,x) /∈ L then for any collection of certificates y = {yu, u ∈ V (G)}, A
running in G, with the pair (xu,yu) given to each node u, returns out(u) at
every node u such that I rejects the multi-set {out(u), u ∈ V (G)}.

For a non-negative integer t, we define the class UNLD(t) (for Unrestricted Non-
deterministic Local Decision) as the class of distributed languages that can be
verified in t communication rounds in the LOCAL model, where the verification
is performed according to the rules specified above. We then define our second
class of interest: UNLD = ∪t≥0UNLD(t).

Observe that, for both decision and verification, the global outcome should not
depend on the identities assigned to the nodes. In particular, the certificate y for
a legal instance (G,x), i.e., for an instance (G,x) ∈ L, enabling the interpretation
to accept (G,x) should not depend on the identity assignment to the nodes. This
is in accordance to distributed verification, as studied in [11,12], but should not
be mixed up with proof-labeling schemes [19,25] in which the certificates can
possibly depend on the identity assignment.

Our Results. We first establish a set of classification and separation results, by
placing various languages in their appropriate decision and verification classes.
These results are summarized in Figure 1, where the classes LD and NLD are the
classes of locally decidable languages, and of non-deterministic locally decidable
languages, respectively, defined in [12]. These classes can alternatively be defined
as the restriction of ULD and UNLD to the setting in which each node can output
a single bit, and the interpretation is the result of the conjunction operator on
these outputs.

We then prove that, in our “universal” decision and verification model, as op-
posed to classical distributed decision, all distributed languages can be verified.
More specifically, all distributed languages on n-node networks with k-bit input
per node can be verified using certificates of O(n2+kn) bits, by having each node
inspecting its neighborhood at distance 1 only, with just 1-bit-per-node outputs.

Local Decision and Verification with Bounded-Size Outputs 137

UNLD = All

LD

ULD NLD

Coloring

Cover

Leader EvenSize Containment

Fig. 1. Four distributed decision and verification classes, with representatives

Hence, in other words, UNLD = All. This result is essentially obtained by prov-
ing that the problem Cover, known to be a “hardest” local decision problem up
to local reduction [12], is in UNLD. (Formally, Cover is BPNLD-complete1 [12]).

The above upper bound on the certificate size enabling to put any language in
UNLD is tight. Indeed, we prove that there are languages which require Ω(n2 +
kn) bits to be verified, even if the nodes are allowed to perform an arbitrarily
large number of communication rounds, and even if each node can output an
arbitrarily large number of bits.

From the fact that all distributed languages can be verified, it results that, as
for proof-labeling scheme, one major issue in our setting is minimizing the size
of the certificates. We prove that just enabling two output bits per node instead
of just one, and just enabling a slightly more complex interpretation that the
conjunction operator, has a tremendous impact on the size of the certificates. For
instance, it is known that verifying trees using the logical conjunction operator,
on 1-bit-per-node outputs, requires certificates of Ω(log n) bits. (This holds even
in the proof-labeling setting, i.e., when the certificates can possibly depend on
the identity assignment). One of our perhaps most surprising results is a proof
that, by simply using the conjunction and the disjunction operators together, on
only 2-bit-per-node outputs, one can verify trees using certificates of only O(1)
bits.

Importantly, several of our positive results use interpretations of the outputs
that have desirable properties. In particular, they are idempotent, commutative
and associative. As a consequence, all nodes can become aware of the deci-
sion result by a simple gossip protocol performing in O(log n) time whenever
such a mechanism can be implemented on top of the network. Alternatively, the
global decision can be computed by all nodes in O(D) time in the CONGEST (1)
model [27], where D denotes the diameter of the network. Our universal verifier,
used to establish UNLD = All, does not satisfy the idempotence property. Nev-
ertheless, the global decision can still be computed by all nodes in O(D) time in
the CONGEST (logn) model.

1 BPNLD stands for Bounded-error Probabilistic Non-deterministic Local Decision.

138 H. Arfaoui and P.F.A. Pelc

Related Work. Locality issues have been thoroughly studied in the literature,
via the analysis of various construction problems, including coloring and max-
imal independent set (MIS), minimum-weight spanning tree (MST), matching,
dominating set, spanners, etc. We refer to the book [27] for an excellent intro-
duction to local computing, providing pointers to the most relevant techniques
for solving construction problems. The question of what can be computed in
a constant number of communication rounds was actually posed in the semi-
nal work of Naor and Stockmeyer [26], which considered a subclass of LD, called
LCL, which is essentially LD restricted to languages involving graphs of constant
maximum degree and processor inputs taken from a set of constant size. In fact,
[26] studies the question of how to compute in O(1) rounds the constructive
versions of decision problems in LCL.

Recently, several results were established concerning decision problems in dis-
tributed computing. For example, [5] and [21] study specific decision problems
in the CONGEST model. Specifically, tight bounds are established in [21] for
the time and message complexities of the problem of deciding whether a given
subgraph is an MST of the network, and time lower bounds for many other
subgraph-decision problems (e.g., spanning tree, connectivity) are established in
[5]. Decision problems have recently received attention in the asynchronous set-
ting too, in the framework of wait-free computing [15]. In particular, [16] extends
the results in [15] by allowing interpretations beyond the simple conjunction op-
erator. Similarly, decision problem have also received attention in the context of
computing with mobile agents [14].

The theory of proof labeling schemes [19,23,25] was designed to tackle the
issue of locally verifying (with the aid of a “proof”, i.e., a certificate, at each
node) solutions to problems that cannot be decided locally. Investigations in
this framework mostly focus on the minimum size of the certificate necessary so
that verification can be performed in a single round [19,23,25], or in t rounds
[24]. Hence, the model of proof labeling schemes has some resemblance to our
definition of the class UNLD. The notion of proof labeling schemes also has
interesting similarities with the notions of local detection [1], local checking [3], or
silent stabilization [6], which were introduced in the context of self-stabilization.

The use of oracles that provide information to nodes was studied intensively in
the context of distributed construction tasks. In particular, it was studied in the
framework of local computation with advice. In this framework, MST construction
was studied in [10], 3-coloring of cycles in [7], and broadcast and wake up in [8].
Finally, in [22] it is shown that, in the context of local computation, access to the
oracle providing the number of nodes is not required for solving efficiently several
central problems (e.g., O(Δ)-coloring, MIS, etc.), while previous algorithms in
the literature explicitly or implicitly assumed the use of this oracle.

2 Classification and Separation

Recall that the classes LD and NLD, defined in [12], are the respective restric-
tions of ULD and UNLD to the setting in which each node can output a single

Local Decision and Verification with Bounded-Size Outputs 139

bit, and the interpretation is the result of the conjunction operator on these
outputs. Hence, by definition, LD ⊆ ULD, and NLD ⊆ UNLD. Also, by defini-
tion, ULD ⊆ UNLD. The purpose of this section is to show that these inclusions
are strict (the strict inclusion LD ⊂ NLD is established in [12]), and to study
the relationship between ULD and NLD. The following result is illustrated in
Figure 1.

Theorem 1. ULD \ NLD �= ∅, NLD \ ULD �= ∅, and LD ⊂ (ULD ∩ NLD) ⊂
(ULD ∪ NLD) ⊂ UNLD = All.

The proof of the above theorem is direct by combining the following four
lemmas, including Lemma 2 which, in addition, provides an upper bound on the
size of the certificates enabling to place every language in UNLD.

Lemma 1. ULD \NLD �= ∅ and LD ⊂ ULD ∩ NLD.

Proof. Let Leader = {(G,x) s.t. ∀u ∈ V (G),xu ∈ {0, 1}, and
∑

u∈V (G) xu = 1}.
We have Leader /∈ NLD because this language is not closed under lift (see [9] for
the characterization of NLD in term of lifts). To establish that Leader ∈ ULD,
we describe a local distributed algorithm enabling each node to output a constant
number of bits, with the associated interpretation. The algorithm performs in
zero rounds: every node u simply returns the single bit bu = xu. The decision
is then made according to the collection {bi ∈ {0, 1}, i ∈ [n]} of outputs2, by

applying the logical operator I =
∨n

i=1

(
bi ∧

∧
j �=i bj

)
which is true if and only

if there is a unique bi equal to 1. Hence, the input configuration is accepted if
and only if there is a unique node u with xu = 1, as desired. This proves that
ULD \NLD �= ∅.

Let EvenSize = {(G,x) s.t. G has an even number of nodes}. This language
is in NLD because it is closed under lift (see [9]). To establish that EvenSize ∈
ULD, consider the algorithm performing in zero rounds consisting, for each node
u, in outputting the single bit bu = 1. The decision is then made by applying
the operator I = 1 −

⊕n
i=1 bi to the collection {bi ∈ {0, 1}, i ∈ [n]} of output

bits, where ⊕ denotes the exclusive-disjunctive operator. The value of I is equal
to 1 if and only if the graph has an even number of nodes. Now, we also have
EvenSize /∈ LD. This is because if some node u outputs 0 in an odd cycle C
with some identity assignment (there must be such a node for C being rejected
by the conjunction operator), then it also outputs 0 in some even cycle, causing
this latter legal instance to be wrongly rejected. (Take the same cycle C with
the same identity assignment, and insert one node between the two nodes at
distance
n/2� from u, with some arbitrary identity distinct from the existing
ones: node u still outputs 0 in this cycle). This proves LD ⊂ ULD∩NLD, which
completes the proof. ��

Let us consider the language

Cover = {(G, (e,S)) | ∃v ∈ V (G), ∃S ∈ Sv s.t. S = {eu : u ∈ V (G)}}
2 The indexes i = 1, . . . , n are only for the purpose of notation. The decision is made
based on an unordered multiset of outputs.

140 H. Arfaoui and P.F.A. Pelc

introduced in [12]. This language is formed by all configurations (G,x) with xu =
(eu,Su), where eu is an element of some universe U , and Su = {S1, . . . , Sku} is
a collection of sets with elements in U , such that there exists a node v whose
collection Sv contains a set S that is equal to the set formed of all the elements
eu for all u ∈ V (G). We have Cover ∈ UNLD as a consequence of the combined
observations that (1) by providing every node with an oracle deciding Leader,
all distributed languages are in NLD, and (2) Leader ∈ ULD. The first claim is
implicit in [12], and the second has been established in the proof of Lemma 1. In

other words, Cover ∈ UNLD simply because UNLD = NLDLeader = All. We
provide a complete proof of UNLD = All below, for the purpose of completeness
and further references in the text, and refer to [12] for more details on the impact
of using oracles on the theory of local decision.

Lemma 2. Every TM-decidable distributed language is in UNLD. Moreover,
the verification of languages on n-node networks with k-bit input per node can
be achieved using certificates of O(n2 + kn) bits, by having each node inspecting
its neighborhood at distance 1, and with 1-bit-per-node outputs.

Proof. Let L be a language. We describe a 1-round nondeterministic verification
scheme (A, I) for L. The certificate y of an instance (G,x) ∈ L is a n × n
adjacency matrix M of G, with vertices indexed arbitrarily by distinct integers
in [1, n], plus a n-dimensional vector I where Ii is the input of vertex i ∈ [1, n].
In addition, every node v receives the index λ(v) ∈ [1, n] corresponding to v in
M and I. More formally, the certificate at node v is yv = ((G′,x′), i), where
G′ is an isomorphic copy of G with nodes labeled by λ from 1 to n, x′ is an
n-dimensional vector such that x′

λ(u) = xu for every node u, and i = λ(v). In

n-node networks with k-bit input per node, such a certificate is on O(n2 + kn)
bits.

The local algorithm A executed on an instance (G,x) with certificate y out-
puts one bit cu at every node u. Let us first describe an algorithm with two bits
au and bu at every node u, and then we will show how to reduce these two bits
into just one. Every node u with index λ(u) = 1 sets au = 1. The others set
au = 0. For computing bu, every node performs a single round of communica-
tion. First, every node u checks that it has received the input as specified by x′,
i.e., u checks whether x′

λ(u) = xv, and set bu = 0 if this does not hold. Second,

each node u communicates with its neighbors to check that (1) they all got the
same graph G′ and the same input vector x′, and (2) they are indexed the way
they should be according to the map G′. If some inconsistency is detected by a
node, then this node sets bu = 0. At this point, each node u that has not yet
set the variable bu sets it to 1 if (G′,x′) ∈ L, and to 0 otherwise. All nodes u
output the pair (au, bu). The decision is then made according to the collection
{(ai, bi) ∈ {0, 1}2, i ∈ [n]} of outputs, by applying the operator

I =

(n∨

i=1

(
ai ∧

∧

j �=i

aj

))

∧
(n∧

i=1

bi

)

Local Decision and Verification with Bounded-Size Outputs 141

which is 1 if and only if (G,x) ∈ L. To see why, observe that if every node u
passes the tests regarding the certificates without setting bu to 0, then all nodes
agree on the graphG′ and on the input vector x′. Moreover, they know that their
respective neighborhood in G fits with the corresponding one in G′. Therefore,
if every node u passes the tests regarding the certificates without setting bu to 0,
then (G′,x′) is either identical to (G,x) or to a lift of it3. It follows that, if all
bits bu are 1, then (G′,x′) = (G,x) if and only if there exists exactly one node
v ∈ G, whose index λ(v) = 1. This is precisely the Leader problem, which is
decided using the aus.

Now, we reduce the two bits au and bu into just one bit cu. This reduction is
based on the observation that if any node u detects some inconsistencies, then at
least one of it neighbors also detects the same inconsistencies. As a consequence,
if some node “raises an alarm” (i.e., set bu = 0), then at least another node does
the same. Thus, every node u sets cu = au ∨ bu and output cu. The decision
is then made according to the collection {ci ∈ {0, 1}, i ∈ [n]} of outputs, by
applying the operator

I ′ =
n∨

i=1

(
ci ∧

∧

j �=i

cj

)

which is 1 if and only if (G,x) ∈ L. Indeed, cu = 1 if and only if u detects
some inconsistencies (i.e., bu = 0) or λ(u) = 1 (i.e., au = 1). However, if u has
detected some inconsistencies, then one of its neighbors u′ has also detected the
same inconsistencies, which guarantees cu′ = 1 for u′ as well. Thus I ′ = 0 if
(G,x) /∈ L. (The case where G is reduced to a single node is an exception: in
this case, the unique node u sets cu = au ∧ bu). This completes the proof that
UNLD = All. ��

Lemma 3. ULD ∪ NLD ⊂ UNLD.

Proof. It is known that Cover /∈ NLD [12]. We prove that Cover /∈ ULD by
contradiction, using arguments from communication complexity. Assume that
there exists a local algorithmA and an interpretation I of the individual outputs
produced by A enabling to decide Cover. In particular, (A, I) must decide the
restricted version of Cover, defined on paths P = (v1, . . . , vn) with U = {0, 1}k,
defined as follows. Let 0̄ denote the k-bit string formed by k consecutive 0s. We
set

e1 = x, en = y, and ei = 0̄ for 1 < i < n,

and Si = {Si} for i = 1, . . . , n with

S1 = {0̄, x}, Sn = {0̄, y} and Si = ∅ for 1 < i < n .

Such a configuration is in Cover if and only if x = y. We show that, using
(A, I), one could solve the communication complexity problem “Equality” be-
tween Alice and Bob, by exchanging less than k bits. Assume A performs in t

3 A graph H is a lift of a graph G if there exists a homomorphism from H to G
preserving the neighborhood of each node.

142 H. Arfaoui and P.F.A. Pelc

rounds. Then, given x as input, Alice simulates the algorithm A applied at the
n− t− 1 nodes v1, . . . , vn−t−1, while, given y as input, Bob simulates A applied
to the t+1 nodes vn−t, . . . , vn. Assume that A produces B bits of output at each
node. The simulation of A allows Alice to compute (n − t + 1)B bits, i.e., the
n− t− 1 outputs of the nodes v1, . . . , vn−t−1. Similarly, Bob computes (t+ 1)B
bits. It is thus sufficient for Bob to send these (t + 1)B = O(1) bits to Alice
so that she can apply I on these bits together with her own (n − t + 1)B bits
to determine whether x = y or not. This holds for any x, y ∈ {0, 1}k. This is a
contradiction, whenever k > (t + 1)B because “Equality” requires k bits to be
exchanged between Alice and Bob for being solved. Hence Cover /∈ ULD∪NLD,
which completes the proof. ��
Lemma 4. NLD \ULD �= ∅.
Proof. Let us consider the following language, similar to Cover:

Containment = {(G, (e,S)) | ∃v ∈ V (G), ∃S ∈ Sv s.t. S ⊇ {eu : u ∈ V (G)}}

The two languages Cover and Containment differ only in the fact that Cover

asks for S = {eu : u ∈ V (G)} while Containment simply asks for S ⊇ {eu : u ∈
V (G)}. It is known [12] that Containment ∈ NLD. Now, by the same arguments
as for proving Cover /∈ ULD, one can show Containment /∈ ULD as well. ��
Remark. Lemma 2 states that all distributed languages are verifiable using
certificates of O(n2 + kn) bits, which is the same upper bound as for proof-
labeling schemes [25]. However, while proof-labeling schemes allows certificates
to depend on the identity assignment, our verification algorithm uses certificates
that are independent of the identity assignment.

3 Minimum Certificate Size for Universal Verification

By Lemma 2, we know that every TM-decidable distributed language with k-bit
inputs is locally verifiable by providing nodes with certificates of O(n2 + kn)
bits in n-node networks. Moreover, the verification is performed in one round,
with 1-bit outputs. The following theorem proves that this bound is tight, in
the sense that, for every k, there exist languages with k-bit inputs which require
certificates of size Ω(n2 + nk) bits to be verified in t rounds for b-bit outputs,
for all t and b.

Theorem 2. There exist languages with k-bit inputs that require certificates of
size Ω(n2 + nk) bits in n-node networks to be verified locally (i.e., to be placed
in UNLD).

Proof. We define the language Symmetry as follows. Given a graph G with k-bit
input xu per node u, an input-preserving automorphism φ of G is an automor-
phism satisfying xu = xφ(u) for every node u. Let

Symmetry = {(G,x) : there is a non-trivial input-preserving automorphism for G}.

Local Decision and Verification with Bounded-Size Outputs 143

The proof that Symmetry requires Ω(n2 + nk) bits to be verified in n-node
networks with k-bit inputs is based on a construction used in [19] to prove a lower
bound on the size of the certificates when using the conjunction operator. We
extend the arguments from [19] so that they apply to languages with inputs (and
not only to graph properties), and apply to all possible operators for interpreting
b-bit outputs (and not only the conjunction operator for 1-bit outputs).

Let Fn,k be the family of configurations (G,x) where G is a non-symmetric
graph with n-nodes, and |xu| = k for every node u of G. More precisely, by
labeling the nodes of G from 1 to n in arbitrary manner, we select a unique
(labeled) instance of each non-symmetric graph with n nodes, to be placed in
Fn,k. It results from the same analysis as in [19] that

|Fn,k| = 2kn
(1− o(1))2(

n
2)

n!

and thus log |Fn,k| = Θ(n2+nk). Now, for every two configurations (F1,x1) and
(F2,x2) in Fn,k, let (G,x) = (F1,x1) + (F2,x2) be the configuration formed by
a copy of F1 together with its inputs x1, a copy of F2 together with its inputs
x2, and a path P of 4t + 1 nodes (without inputs), connecting the node with
label 1 in F1 to the node with label 1 in F2. The number of nodes in G is
2n+ 4t+ 1 = Θ(n). Let

C = {(G,x) = (F1,x1) + (F2,x2) : (F1,x1) ∈ Fn,k and (F2,x2) ∈ Fn,k}.

We show that even verifying Symmetry-membership for configurations in C re-
quires Ω(n2 + nk)-bit certificates. Since all graphs in Fn,k are non-symmetric,
we get that, for any (G,x) ∈ C, we have (G,x) ∈ Symmetry if and only if
(F1,x1) = (F2,x2). (Recall that the graphs in Fn,k are labeled, and thus equal-
ity here means the existence of a label-preserving input-preserving isomorphism
between F1 and F2). Let Csym be the subset of C consisting of symmetric graphs
in C, i.e., Csym = C ∩ Symmetry. We have:

Csym = {(G,x) = (F,x′) + (F,x′) : (F,x′) ∈ Fn,k}.

Note that |Csym| = |Fn,k| ≥ 2c(n
2+nk) for some constant c > 0 and for big

enough values of n. Assume now, for the sake of contradiction, that one can
verify Symmetry in t rounds with certificates of size s = o(n2 + nk) bits per
node, using algorithm A with interpretation I. Then, for every configuration in
C, the path P includes 4t+1 certificates, for a total of (4t+1)s bits, that is still
o(n2 + nk) bits since t is constant. Therefore, there are at least

R = 2c
′(n2+nk)

graphs in Csym, that have the same collection of certificates on their respective
paths P , for some c′, 0 < c′ < c. On the other hand, for an (n+t)-node graph with
b bits of output per node, the total number of possible multi-sets the verification

144 H. Arfaoui and P.F.A. Pelc

algorithm A can produce on this graph is upper bounded. If
((

x
y

))
denotes the

multinomial coefficient “x multichoose y”, then this number is:

N =

((
2b

n+ t

))

=

(
2b + n+ t− 1

n+ t

)

.

Therefore

N =
(n+ t+ 1)(n+ t+ 2)...(n+ t+ 2b − 1)

(2b − 1)!
= O(n2b).

So, let us assign identities to every graphs (G,x) = (F,x′) + (F,x′) in Csym
as follows. One copy of (F,x′) is given identities from 1 to n, while the other
copy of (F,x′) is given identities from n + 1 to 2n. In both copies, the identity
assignment is set with respect to the labeling of F , i.e., node labeled i receive
identity i in one copy, and n+ i in the other copy. Nodes in the path P are given
identities from 2n+ 1 to 2n+ 4t+ 1.

Since R is very large compared toN2, there exist two configurations (G1,x1) =
(F1,x

′
1) + (F1,x

′
1) and (G2,x2) = (F2,x

′
2) + (F2,x

′
2) in Csym that receive the

same collection of certificates on their respective path P , and for which A pro-
duces the same multi-set M1 of outputs in the copies of (F1,x

′
1) and (F2,x

′
2)

connected to the nodes with identities 2n + 1, . . . , 2n + t on P , and the same
multi-set M2 of outputs in the copies of (F1,x

′
1) and (F2,x

′
2) connected to the

nodes with identities 2n + 3t + 1, . . . , 4t + 1 on P . Let us denote by M0 the
multi-set of produced produced by A on the 2t+ 1 nodes at the middle of P in
both configuration (G1,x1) and (G2,x2).

Now, consider the following configuration (G,x) formed by “cutting and
gluing” (G1,x1) and (G2,x2). More precisely, (G,x) is formed by connecting
(F1,x1), (P,∅), and (F2,x2), with identities in [1, n] for F1, in [n + 1, 2n] for
F2, and, as usual, in [2n+1, 2n+4t+1] for P . Let us provide these nodes with
the certificates inherited from these respective copies of (F1,x1), and (F2,x2).
Each node with identities {1, ..., n}∪{2n+1, . . . , 2n+t} (resp., with identities in
{n+1, . . . , 2n}∪{2n+3t+1, . . . , 2n+4t+1}) has the same local view of radius
t in (G,x) as in (F1,x1) (resp., (F2,x2)). Moreover, nodes in the middle part of
the path, with identities in [2n+ t+1, 2n+3t] have the same view in (G,x) as in
(G1,x1) and (G2,x2). Therefore, the verification algorithm A outputs the same
multi-set M0 ∪ M1 ∪ M2 for the illegal configuration (G,x), as it does for the
legal configurations (G1,x1) and (G2,x2), yielding the desired contradiction. ��

Remark. By inspecting R and N in the proof of Theorem 2, we can notice that
the theorem holds even if the number of output bits per node is up to c log(n2+
nk), for c < 1, and, by the construction of the accepted illegal configuration,
even for verification algorithms performing in time up to o(n) rounds.

4 Verifying Trees with Constant-Size Certificates

In this section, we show that, for languages in NLD, restricting the interpretation
to the use of the conjunctive operator may have a significant cost in terms of

Local Decision and Verification with Bounded-Size Outputs 145

certificate size. For instance, it is known [25] that verifying Tree using the con-
junction operator requires Ω(log n)-bit certificates for n-node trees. This holds
even if the certificates can depend on the identity assignment, and even if the
verification can take an arbitrarily large (but constant) number of rounds. In
contrast, we show that using conjointly the conjunction and disjunction oper-
ators, on 2-bit outputs, enables to verify Tree in one round, using certificates
of only O(1) bits. Moreover, as we can see in the proof of this result, the de-
cision is made according to the application of a 2-bit logical operator I that is
idempotent, commutative, and associative, and thus with all the desirable prop-
erties to be used in environments supporting gossip protocols, as well as in the
CONGEST (1) model.

Theorem 3. Tree can be verified in one round, with certificates of constant
size, and two output bits per node.

Proof. To establish the theorem, we first describe the collection of O(1)-bit cer-
tificates assigned to the nodes in the case of a valid instance of Tree, i.e., for
a tree T . The certificate assigned to node v is a pair yv = (r(v), d(v)), where
r(v) is on one bit, and d(v) is on two bits. Every certificate is thus encoded
using three bits. To define the assignment of these bits at node v, let us pick an
arbitrary node u0 of T , and set u0 as the root of T . Set r(u0) = 1, and r(v) = 0
for every node v �= u0. For every v ∈ V (T), let d(v) = distT (v, u0) mod 3, where
distT (x, y) denotes the distance in T between nodes x and y, i.e., the minimum
number of edges of a path from x to y in T .

We now describe the verification algorithm. It performs in just one round,
during which every node v sends its certificate yv to all its neighbors, and receives
all the certificates of its neighbors. Given its own certificate and the certificates of
its neighbors, every node v then computes a pair of bits (av, bv) as follows. First,
every node v checks whether it has at most one neighbor w with d(w) = d(v)−1
(mod 3). Node w is called the parent of v. More precisely, if r(v) = 1 then there
must be no parent for v, and, if r(v) = 0 then there must be exactly one parent
for v. Similarly, v checks whether all its neighbors w different from its parent
satisfy d(w) = d(v) + 1 (mod 3). All such nodes are called the children of v. If
any of these tests is not passed, then v aborts, and outputs (0, 0). If node v has
not aborted, then it has identified its parent and its children (apart the root
which has no parent), and it outputs (1, r(v)). This completes the description of
the verification algorithm.

We now describe the interpretation of the collection of 2-bit outputs
{(ai, bi), i = 1, . . . , n}. It is the result of the following operator:

I =
(n∧

i=1

ai

)
∧
(n∨

i=1

bi

)
.

By construction, if T is a tree, then I = 1. Indeed, all tests are passed suc-
cessfully, and thus the (unique) node v with r(v) = 1 returns (1, 1) while all the
other nodes return (1, 0).

146 H. Arfaoui and P.F.A. Pelc

Establishing that I = 0 whenever T is not a tree, independently from the
certificates given to the nodes, is based on the fact that, if all tests are passed
(i.e., if

∧n
i=1 ai = 1) then there cannot be a node v with r(v) = 1, and therefore∨n

i=1 bi = 0, yielding I = 0. To see why this is indeed the case, assume that
the current input (connected) graph G is not a tree. Assume moreover that the
verification algorithm returns a set {(ai, bi), i = 1, . . . , n} such that

∧n
i=1 ai = 1.

(Note that if this is not the case, then I = 0, and we are done).
Since

∧n
i=1 ai = 1, every edge ofG is given an orientation, from child to parent,

and this orientation in locally consistent. That is, every node has exactly one
outgoing edge, and a (potentially empty) set of incoming edges, apart from nodes
marked r(v) = 1, if any, which may have no outgoing edges. Since G is not a
tree, there is a cycle C in G. Since ai = 1 for all i, it must be the case that all
edges of the cycle are consistently oriented along C. That is, each node in C has
exactly one outgoing edge in C and one incoming edge in C. In particular, all
edges incident to C are entering C. As a consequence, there is a unique cycle in
G. Indeed, if there were two node-disjoint cycles, then one could not guarantee
consistency of the edge orientation along a path connecting these two cycles.
The same holds if the two cycles would share one or more nodes. So, G is an
“octopus”. That is, it consists of a cycle C to which are attached a collection
of trees, whose edges are all consistently oriented toward the cycle. Therefore,
every node has an outgoing edge, and thus there cannot be a root node in G, i.e.,
a node v with r(v) = 1. Thus, bi = 0 for all i, yielding I = 0, which completes
the proof of the theorem. ��
Acknowledgements. the authors are thankful to Amos Korman for fruitful
discussions regarding the subject of this paper.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

2. Arfaoui, H., Fraigniaud, P.: What Can Be Computed without Communications? In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 135–146.
Springer, Heidelberg (2012)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking
and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science
(FOCS), pp. 268–277 (1991)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-Stabilization by Local
Checking and Global Reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS,
vol. 857, pp. 326–339. Springer, Heidelberg (1994)

5. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed
Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)

6. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta
Informatica 36(6), 447–462 (1999)

7. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with
Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242.
Springer, Heidelberg (2007)

Local Decision and Verification with Bounded-Size Outputs 147

8. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J.
Comput. Syst. Sci. 76(3-4), 222–232 (2008)

9. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the Impact of Identifiers on
Local Decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012.
LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012)

10. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short ad-
vice. In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), pp. 154–160 (2007)

11. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized Distributed Deci-
sion. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 371–385. Springer,
Heidelberg (2012)

12. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd
Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 708–717
(2011)

13. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: 32nd ACM Symp. on Principles of Distributed Computing,
PODC (2013)

14. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer,
Heidelberg (2012)

15. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free
Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer,
Heidelberg (2011)

16. Fraigniaud, P., Rajsbaum, S., Travers, C.: An Impossibility Result for Run-Time
Monitoring (submitted, 2013)

17. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)
18. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-

mica 32(2), 302–343 (2002)
19. Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on

Principles of Distributed Computing, PODC (2011)
20. Katz, S., Perry, K.: Self-stabilizing extensions to for message-passing systems. Dis-

tributed Computing 7, 17–26 (1993)
21. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification.

In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS
(2011)

22. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing, PODC, pp. 49–58 (2011)

23. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
tributed Computing 20, 253–266 (2007)

24. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verifi-
cation, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing, PODC (2011)

25. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22, 215–233 (2010)

26. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

	Local Decision and Verification with Bounded-Size Outputs
	1 Introduction
	2 Classification and Separation
	3 Minimum Certificate Size for Universal Verification
	4 Verifying Trees with Constant-Size Certificates
	References

