
Chapter 7
Mathematical Concepts in Pharmacokinetics
and Pharmacodynamics with Application
to Tumor Growth

Gilbert Koch and Johannes Schropp

Abstract Mathematical modeling plays an important and increasing role in drug
development. The objective of this chapter is to present the concept of pharma-
cokinetic (PK) and pharmacodynamic (PD) modeling applied in the pharmaceutical
industry. We will introduce typically PK and PD models and present the underlying
pharmacological and biological interpretation. It turns out that any PKPD model
is a nonautonomous dynamical system driven by the drug concentration. We state
a theoretical result describing the general relationship between two widely used
models, namely, transit compartments and lifespan models. Further, we develop a
PKPD model for tumor growth and anticancer effects based on the present model
figures and apply the model to measured data.
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7.1 Introduction to Pharmacokinetic/Pharmacodynamic
Concepts

The development of new drugs is time-consuming (12–15 years) and costly. A study
from 2003 [9] reports costs of approximately US$ 800 million to bring a drug to the
market. It is further estimated that around 90 % of compounds (drug candidates) will
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fail during the drug development process [23]. Hence, the pharmaceutical industry
is in search of new tools to support drug discovery and development. It is stated by
the U.S. Food and Drug Administration that computational modeling and simulation
is a useful tool to improve the efficiency in developing safe and effective drugs, see
e.g. [16].

The development of a drug is usually divided into three categories. Firstly,
numerous compounds are developed and screened in vitro. Secondly, promising
compounds are tested for an effect in animals (in vivo). Here, the interest is also
in prediction of an appropriate dose for first in man studies. Finally, the drug is
tested in humans (phase I–III).

In the drug discovery and development process, so-called pharmacoki-
netic/pharmacodynamic experiments are conducted, which consists of two parts:
The first part, called pharmacokinetics, deals with the time course of the drug
concentration in blood. The interest is on absorption, distribution, metabolism
and excretion of the drug in the body. The disease or more general the
biological/pharmacological effect is not considered. Roughly said, one observes
what the body does to the drug. The second part is the pharmacodynamics
which “can be defined as the study of the time course of the biological effects
of drugs, the relationship of the effects to drug exposure and the mechanism
of drug action”, see [14]. That means one observes what the drug does to the
body. Combining pharmacokinetics (PK) and pharmacodynamics (PD) gives an
overall picture of the pharmacological effect/response, where it is assumed that the
drug concentration is the driving force. In this work, the pharmacological effect is
understood as the measurable therapeutic effect of the drug on a disease. In [4] it is
stated: “Appropriate linking of pharmacokinetic and pharmacodynamic information
provides a rational basis to understand the impact of different dosage regimens on
the time course of pharmacological response.” Furthermore, it is believed “that by
better understanding of the relationship between PK and PD one can shed light
on situations where one or the other needs to be optimized in drug discovery
and development”, see [40]. Typically, “PKPD modeling is widely used as the
theoretical basis for optimization of the dosing regimen . . . of drugs in Phase II”,
see [6]. Finally, it is stated in [34] about PKPD modeling: “When these insights are
obtained in early development they can be used in translational approach to better
predict efficacy and safety in the later stages of clinical development.”

From the mathematical point of view, linking of PK and PD leads to nonautono-
mous differential equations driven by the drug action.

Ideally, PKPD models are based on fundamental biological and pharmacological
principles to mimic the underlying mechanisms of disease development and drug
response. Models fulfilling these requirements are called (semi-) mechanistic.
Therefore, the development of such models is in general performed in an interdisci-
plinary collaboration between mathematicians, biologists, pharmacologists etc.

It is written in [6]: “Not surprisingly, PKPD modeling has developed from an
empirical and descriptive approach into a scientific discipline based on the (patho-)
physiological mechanisms behind PKPD relationships. It is now well accepted that
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mechanism-based PKPD models have much improved properties for extrapolation
and prediction.”

Following Mager et al. [32] and Danhof et al. [7] a PKPD model consists of four
parts:

(i) Modeling of pharmacokinetics to describe the drug concentration.
(ii) Modeling the binding of drug molecules at the receptor/target to describe the

effect concentration relationship.
(iii) Transduction modeling, describing a cascade of processes that govern the time

course of pharmacological response after drug-induced target activation.
(iv) Modeling of the disease.

An important task of a PKPD model is to describe several dosing schedules
simultaneously (at least the placebo group and one dosing group) by one set of
model parameter obtained from an optimization process. In a PKPD model with an
estimated set of parameter only the dosing schedule is allowed to vary. Hence, a
PKPD model build without existing data is mostly useless in practice. Based on a
PKPD model with an appropriate amount of data, different dosing schedules could
be simulated and physiological model parameter could be inter-specifically (animals
to human) scaled to support e.g. first in man dose finding in early drug development.
A PKPD model could also be extended with a population approach to investigate
clinical data (phase I–III), see e.g. [2]. However, this additional statistical approach
will not be treated in this chapter.

7.2 Pharmacokinetic Models

7.2.1 Introduction

The pharmacokinetics (PK) describes the behavior of an administered drug in
the body over time. In detail, the PK characterizes the absorption, distribution,
metabolism and excretion (called ADME concept, see e.g. [14]) of a drug.

First pharmacokinetic models representing the circulatory system were published
by the Swedish physiologist T. Teorell [39] in 1937. The German pediatrist
F.H. Dost is deemed to be the founder of the term pharmacokinetics, see [41].
In his famous books “Der Blutspiegel” from 1953 [10] and “Grundlagen der
Pharmakokinetik” from 1968 [11], he presented a broad overview and analysis of
drug behavior in time based on linear differential equations.

In pharmacokinetic experiments the drug concentration in blood over time is
measured. In order to develop a PK model the body is typically divided into several
parts. In this work we focus on the widely used two-compartment model approach
dividing the body in a heavily with blood supplied part and the rest. Such a model
is based on linear differential equations and is from the modeling point of view an
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empirical approach to describe the drug concentration. However, the time course of
most drugs could be well described by such models.

Further note, that the PK model is the driving force in a full PKPD model and
therefore, a handy and descriptive representation of the solution is necessary from
the computational point of view.

7.2.2 Two-Compartment Models

In this work we focus on two-compartment pharmacokinetic models representing
the body based on linear differential equations. We consider oral absorption and
intravenous administration of a drug. In practice, for drug concentration mea-
surements, blood samples have to be taken from the patients and therefore, the
availability of data is limited due to ethical constraints. It turned out in application
that two compartments are sufficient to appropriate describe the time course in blood
for most drugs. For a more detailed overview of pharmacokinetic models see e.g.
the book from Gabrielsson [14].

A two-compartment model consists of two physiological meaningful parts (see
e.g. [28]):

– The central compartment is identified with the blood and organs heavily supplied
with blood like liver or kidney.

– The peripheral compartment describes for example tissue or more generally, the
part of the body which is not heavily supplied with blood.

The compartments are connected among each other in both directions and therefore,
a distribution between central and peripheral compartment takes place.

Main assumption in pharmacokinetics:

– The drug is completely eliminated (metabolism and excretion) from the body
through the central (blood) compartment.

In case of oral administration of a drug (p.o.), absorption through the gastrointestinal
tract takes place. Therefore, the distribution in the blood is not immediate and also
only a part of the drug will reach the blood circulation (called bioavailability). In
contrast, in case of intravenous dosing (i.v.) the drug is directly applied to the blood
circulation and it is assumed that the drug is immediately distributed in the body.

With the formulated assumptions a two-compartment model for oral drug
administration (p.o.) at time t D 0 reads

x0
1 D �k10x1 � k12x1 C k21x2 C k31x3 ; x1.0/ D 0 (7.1)

x0
2 D k12x1 � k21x2 ; x2.0/ D 0 (7.2)

x0
3 D �k31x3 ; x3.0/ D f � dose (7.3)
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where 0 < f � 1 is a fraction parameter representing the amount of drug which
effectively reaches the blood. We set without loss of generality f � 1. The blood
compartment is described by (7.1), the peripheral compartment by (7.2) and (7.3)
describes the absorption. Note that Eq. (7.3) is not a part of the body. It is understood
as additional hypothetical compartment necessary to describe the absorption. The
model (7.1)–(7.3) has the parameters

� D .k10; k12; k21; k31/

and the variable dose.
The parameter k10 > 0 describes the elimination rate from the body, k12; k21 > 0

stand for the distribution between central and peripheral compartment and k31 > 0

is the absorption rate. In case of i.v. administration k31 D 0 (no absorption) and
x1.0/ D dose and therefore, the model reduces to (7.1)–(7.2).

In practice, the drug is measured as concentration in blood plasma. Therefore,
the parameter volume of distribution V1 > 0 of the central compartment x1.t/ is
introduced to obtain the drug concentration

c.t/ D x1.t/

V1

: (7.4)

In this work, c.t/ will always denote the drug concentration in blood.
The representation of the two-compartment model based on ordinary differential

equation is unhandy in application because in a full PKPD model the drug concen-
tration has to be evaluated many times. Also for multiple dosing the representation
is not appropriate. In order to reduce the computational effort the analytical solution
of the blood compartment is presented in the next section.

7.2.3 Single Dosage

Applying the Laplace transform to (7.1)–(7.3) gives for the blood compartment in
concentration terms for p.o. administration

cp:o:.t/ D dosek31.k21 � ˛/

V1.k31 � ˛/.ˇ � ˛/
exp.�˛t/ C dosek31.k21 � ˇ/

V1.k31 � ˇ/.˛ � ˇ/
exp.�ˇt/

C dosek31.k21 � k31/

V1.k31 � ˇ/.k31 � ˛/
exp.�k31t/

D doseApo exp.�˛t/ C doseBpo exp.�ˇt/

� dose.Apo C Bpo/ exp.�k31t/ (7.5)
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where

˛; ˇ D 1

2

�
k12 C k21 C k10 ˙

p
.k12 C k21 C k10/2 � 4k21k10

�
:

The final parameterization of the two-compartment p.o. model with a given dose
reads

� D �
Apo; Bpo; ˛; ˇ; k31

�
(7.6)

and is called macro constant parameterization. Typically, (7.5)–(7.6) is used to fit
data. However, this parameterization is not physiological interpretable. Following
the clearance concept (see e.g. [14]), one obtains the physiological parameterization
(see e.g. [18]) standing in a one-to-one correspondence to (7.6)

� D .Cl; Cld ; V1; V2; k31/

where Cl D k10V1 is the hepatitic clearance, Cld D k12V1 D k21V2 the
intercompartmental clearance and V2 the volume of distribution of the peripheral
compartment.

Finally, we give a short comment on classical allometric (inter-species) scaling of
physiological parameters like clearance or volume of distribution. First, to perform a
scaling, the underlying pharmacokinetic mechanism for the different species has to
be similar. Second, it is commonly believed that clearance or volume of distribution
depend on the body weight w, see [33]. A typical allometric model for scaling a
physiological parameter p is based on a power law and reads

p.w/ D awb (7.7)

where a; b > 0 are allometric parameters, see [14,33] or [42]. It is suggested that at
least 4 to 5 species are necessary to predict from mouse to human. A typical chain
is mouse, rat, rabbit, monkey and finally human.

7.2.4 Multiple Dosage

The next step to describe the pharmacokinetics of a drug is to handle multiple dosing
events, that means, a drug is administered several times to the body. Hence, one
has also to account the remaining drug concentration in the body from a previous
dosage.

A drug is often designed for equidistant administration, i.e. every day, every
second day, every week and so on. This makes the application of drugs more secure
for patients and therefore, increases the success on the market.
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Let � > 0 be the length of the dosing interval, m 2 N the maximal number of
doses and j 2 f1; : : : ; mg denote the actual number of dosage. Using the super-
position principle one obtains the multiple dosing formula for p.o. administration
represented by a composed function. The drug concentration at time t reads

cp:o:.t/ D
(

c
p:o:
j .�/ ; t D j� C � ; � 2 Œ0; �� j 2 f1; : : : ; m � 1g

c
p:o:
j .�/ ; t D j� C � ; � � 0 j D m

with

c
p:o:
j .�/ D doseApo

1 � exp.��j˛/

1 � exp.��˛/
exp.�˛�/

C doseBpo
1 � exp.��jˇ/

1 � exp.��ˇ/
exp.�ˇ�/

� dose.Apo C Bpo/
1 � exp.��jk31/

1 � exp.��k31/
exp.�k31�/ (7.8)

see e.g. the book from Gibaldi [15]. We remark that for multiple p.o. administration,
cp:o:.t/ is a continuous function whereas in case of i.v., ci:v:.t/ is not continuous at
the dosing time points.

7.2.5 Discussion and Outlook

The pharmacokinetics describes the behavior of a drug in the body over time. Two-
compartment models are widely used in industry and academics to describe the
drug concentration in blood empirically because the time course of most drugs is
reflected quite well. Such models have an analytical representation and mainly serve
as input (driving force) in a full nonautonomous PKPD model. Also note that in
experiments often a sparse PK data situation exists because only a limited number
of blood samples can be taken from the animals or patients.

A mechanistic description of pharmacokinetic processes (ADME) to predict
the kinetics of drugs in the whole body is provided by physiologically based
pharmacokinetic models (PBPK), see [19]. Such models are composed of several
compartments representing relevant organs (like kidney, liver, lung, gut, etc.) and
tissues described by weight or volume and blood perfusion rates. PBPK models
admit a mechanistic understanding of the drug’s kinetics in the body and its
implication to toxicological assessment. It is commonly stated that these models are
superior when estimating human pharmacokinetic parameters based on animal data
in contrast to classical allometric approaches based on empirical compartment PK
models, see [19]. In addition, these models allow to differentiate for the prediction
in PK between children and adults, see [1]. Nevertheless, in this work we skip a
detailed description of PBPK because in a full PKPD model the drug concentration
is usually described by empirical models.
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7.3 Pharmacodynamic Models

7.3.1 Introduction

The pharmacodynamics (PD) “can be defined as the study of the time course of the
biological effects of drugs, the relationship of the effects to drug exposure and the
mechanism of drug action”, see [14].

Of major importance in PD is the binding of the drug at the receptor (target)
because “receptors are the most important targets for therapeutic drugs”, see [31].
For that purpose we introduce effect-concentration models (compare [14]). Such
models are typically used as subunits in larger systems describing the pharmaco-
logical effect/response on a disease provoked by the binding of the drug at the
receptor/target.

Hence, the next step is “the process of target activation into pharmacological
response. Typically, binding of a drug to its target activates a cascade of electrophys-
iological and/or biochemical events resulting in the observable biological response”,
see [6]. For that we consider models with a zero order inflow and first order outflow
and also focus on cascades of these models, so-called transit compartments.

Further, we present lifespan models to describe the lifespan of subjects in a
population, e.g. typically used to describe maturation of cells. Such models have
a zero order in- and outflow term, an explicit lifespan parameter and a description of
the past. Finally, we show an important relationship between transit compartments
and lifespan models.

From the mathematical point of view, the resulting pharmacodynamic models are
differential equations. In the following we understand the existence of the solution
in two different terms. If the right hand side is continuous (p.o. case) the existence
of the solution is understood in terms of Picard–Lindelöf. If the right hand side is
piecewise continuous in time (i.v. case) we understand the existence in the sense of
Carathéodory, see [5].

7.3.2 Effect-Concentration Models

In Sect. 7.2, pharmacokinetic models describing the time course of the drug
concentration c.t/ were introduced. Now we consider models that put the drug
concentration in relationship to an effect denoted by

e.�; c.t// (7.9)

where we call � the drug-related parameter. The only requirement on (7.9) is

e.�; c/ � 0 and e.�; 0/ D 0 :
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The simplest approach for an effect of a drug is a linear term

e.kpot; c.t// D kpotc.t/ (7.10)

where kpot > 0 describes the drug potency. Such a parameter could be used to
rank different compounds among each other in preclinical screening. The approach
(7.10) is also useful if only few dosing groups are available for a simultaneous fit.
For more dosing groups this approach is only locally true because the effect of a
drug is in the majority of cases only linear in a small range of different doses.

The classical drug-receptor binding theory states that the amount of binding
possibilities at the receptor is limited. Therefore, the effect of a drug will saturate
and more drug will not lead to more effect. The most common nonlinear model to
relate drug concentration and effect is

e.�; c.t// D Emaxc.t/h

ECh
50 C c.t/h

(7.11)

with � D .Emax; EC50; h/, see [31]. Emax > 0 is the maximal effect, EC50 > 0 is
the concentration needed to produce the half-maximal effect and h > 0 is the Hill
coefficient. Equation (7.11) is one of the basic principles in PKPD and called the
Emax model, see also Chap. 6.

7.3.3 Indirect Response Models

In pharmacodynamics, one is often faced with a so-called indirect drug response,
that means, the drug stimulates or inhibits factors which control the response, see
[8]. Further, one often assumes that the system describing the pharmacological
action is in a so-called baseline condition. For example, think of heart rate, blood
pressure, biomarkers etc. . The aim is to describe a perturbation of the baseline by
a drug c.t/. Moreover, if the perturbation vanishes, it is pharmacological assumed
that the response runs back into its baseline.

The basic equation of an indirect response model (IDR) with constant inflow
kin > 0 and outflow kout > 0 reads

x0 D kin � koutx ; x.0/ D x0 � 0 : (7.12)

For the baseline condition the initial value is set equal to the steady state x� D
lim

t!1 x.t/,

x0 D x� D kin

kout
:
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In nonautonomous indirect response models, the drug effect is often described by
an Emax term modulating the in- and outflow. Depending on which rate is stimulated
or inhibited, one obtains four possible models, see originally Jusko and coworkers
[8] or summarized in [14], presented here in compact form

x0 D kin �
( 

1 � Imaxc.t/h

ICh
50 C c.t/h

!
;

 
1 C Smaxc.t/h

SCh
50 C c.t/h

!)
(7.13)

�kout �
( 

1 � Imaxc.t/h

ICh
50 C c.t/h

!
;

 
1 C Smaxc.t/h

SCh
50 C c.t/h

!)
� x

with the initial value

x.0/ D kin

kout

where 0 < Imax � 1. IDRs of the form (7.13) are one of the most popular models in
PKPD and are extensively studied and applied in the last 20 years.

7.3.4 General Inflow–Outflow Models

Consider a state x W R�0 ! R�0 controlled by two processes, namely, an inflow
into the state and an outflow from this state. A reasonable realization is by a zero-
order inflow and a first-order outflow. Let kin W R�0 ! R�0 and kout W R�0 ! R�0

be piecewise continuous and bounded functions with

lim
t!1 kin.t/ D k�

in � 0 and lim
t!1 kout.t/ D k�

out > 0

describing inflow and outflow, respectively. We call

x0.t/ D kin.t/ � kout.t/x.t/ ; x.0/ D x0 � 0 (7.14)

an inflow–outflow model (IOM). Model (7.14) has an asymptotically stable station-
ary point

x� D lim
t!1 x.t/ D k�

in

k�
out

: (7.15)

Note that indirect response models are a special case of IOMs.
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7.3.5 Transit Compartment Models

Widely used models in PKPD are transit compartment models (TCMs). Such
models are chains of inflow–outflow models where the inflow in the j -compartment
is just the outflow of the j � 1. The corresponding equations read

x0
1 D kin.t/ � kx1; x1.0/ D x0

1 � 0 (7.16)

x0
2 D kx1 � kx2; x2.0/ D x0

2 � 0 (7.17)

:::
:::

x0
n D kxn�1 � kxn; xn.0/ D x0

n � 0 (7.18)

where kin W R�0 ! R�0 is a piecewise continuous and bounded function. For
example, kin.t/ could describe the PK and therefore, in case of i.v. discontinuities
exist. The transit rate between the compartments is k > 0. Roughly said, the states
x2.t/; : : : ; xn.t/ can be viewed as delayed versions of x1.t/.

The application of (7.16)–(7.18) is versatile in PKPD modeling. TCMs can
be motivated by signal transduction processes, see [38], and therefore, mimic
biological signal pathways. But TCMs are also often used to just produce delays, see
[30] (delayed drug course) or [12] (delayed cytokine growth). Hence, the states xi .t/

often lose their pharmacological interpretation and the TCM concept is downgraded
to a help technique. Historically, Sheiner was the first in 1979, see [36], who
suggested to apply a TCM with n D 1 to describe a delay between pharmacokinetics
and effect which is also called an effect compartment.

TCMs are also applied to describe populations, see e.g [37]. When looking at
a TCM one sees that one could assign a mean residence/transit time of 1

k
for an

individual to stay in the i -th compartment, i 2 1; : : : ; n, see e.g. [38]. In this sense, a
TCM could be reinterpreted as a model describing an age structured population and
xi .t/ describes the number of individuals with age ai , where ai 2 . i�1

k
; i

k
�. Hence,

spoken in terms of population, the x1.t/; : : : ; xn.t/ describe the age distribution of
a total population

yn.t/ D x1.t/ C � � � C xn.t/ :

Therefore, the secondary parameter

T D n

k

describes the mean transit/residence time needed for an object created by kin to pass
through all states xi .t/ for i D 1; : : : ; n.

However, in most cases it is obvious that the choice of the number of compart-
ments n is somehow arbitrary. In application, n is often chosen in such a way that
the final PKPD model fits the data best. For example, Savic and Karlsson [35] used
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a TCM to describe an absorption lag which is often seen in PK p.o. data because
“some time passes before drug appears in the systemic circulation.” They calculated
the optimal number of compartments based on fitting results for different drugs.

A reasonable extension of (7.16)–(7.18) is to use a time-variant transit rate
satisfying kg.t/ > 0. This leads to

x0
1 D kin.t/ � kg.t/x1; x1.0/ D x0

1 � 0 (7.19)

x0
2 D kg.t/x1 � kg.t/x2; x2.0/ D x0

2 � 0 (7.20)

:::
:::

x0
n D kg.t/xn�1 � kg.t/xn; xn.0/ D x0

n � 0 (7.21)

where g W R ! R>0 is a piecewise and bounded function with finitely many
discontinuity points. We call (7.19)–(7.21) a generalized TCM and will have a closer
look at it in Sect. 7.3.7.

7.3.6 Lifespan Models

Another class of pharmacodynamic models are lifespan models introduced by
Krzyzanski and Jusko in 1999 [26] to PKPD. Generally, such models describe
populations where the individuals have a certain lifespan. Krzyzanski and Jusko
applied this approach to hematological cell populations in the context of indirect
response models.

Let y W R�0 ! R�0 be a state controlled by production (birth of individuals) and
loss (death of individuals). The general form of a lifespan model (LSM) is

y0.t/ D kin.t/ � kout.t/ ; y.0/ D y0 (7.22)

where kin and kout are piecewise continuous and bounded functions.
In this chapter we consider two different cases. First, we present LSMs with

a constant lifespan, that means every individual in the population has the same
lifespan T > 0. This approach is first of all an idealized situation. However, this
assumption is reasonable in most applications due to the data situation. Second, we
additionally consider distributed lifespans.

7.3.6.1 Constant Lifespan

Assuming a constant lifespan T , the outflow from state y at time t is equal to the
inflow at time t � T and we obtain the relation

kout.t/ D kin.t � T / for t � 0 :
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Hence, the LSM for constant lifespan reads

y0.t/ D kin.t/ � kin.t � T / ; y.0/ D y0 : (7.23)

In applications one has seldom the freedom of choosing the initial value y.0/ D y0

arbitrarily. For example, in populations the initial value y0 has to be set in such a
way that it describes the amount of individuals already born and also died in the
interval Œ�T; 0�. Therefore, we obtain

y0 D
0Z

�T

kin.s/ ds : (7.24)

The solution of (7.23)–(7.24) reads

y.t/ D
tZ

t�T

kin.s/ ds for t � 0 :

An important situation in application is a constant production in the past (e.g. in
context of cell production)

kin.s/ D k�
in for s � 0 :

Then the initial value (7.24) is

y0 D Tk�
in :

7.3.6.2 Distributed Lifespan

Let X be a random variable with a probability density function l W R ! R�0 where
l.s/ D 0 for s < 0 describes the lifespan of individuals and T D EŒX�. The outflow
term then reads

kout.t/ D
1Z

0

kin.t � �/l.�/d� D .kin � l/.t/

see e.g. [25], [27]. The LSM is

y0.t/ D kin.t/ � .kin � l/.t/ ; y.0/ D y0 : (7.25)

Again the initial value y0 has to be chosen in such a way that it describes the amount
of individuals already born and died. One obtains
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y0 D
1Z

0

0Z

��

kin.s/ ds l.�/ d� (7.26)

see [20]. The solution of (7.25)–(7.26) reads

y.t/ D
1Z

0

tZ

t��

kin.s/ ds l.�/ d� for t � 0 :

For constant past kin.s/ D k�
in for s � 0 we have y0 D Tk�

in.

7.3.7 General Relationship Between Transit Compartments
and Lifespan Models

In this section we present an important relationship between transit compartments
and lifespan models with constant lifespan. Roughly said, if the number of
compartments tends to infinity and the parameter

T D n

k

is fixed, then in the limit the sum of all compartments is a lifespan model with
constant lifespan T > 0.

An initial result was presented by Krzyzanski in 2011, see [24]. He investigated
equal initial values for the generalized TCM (7.19)–(7.21) and constant past for the
LSM (7.23)–(7.24).

Here, we consider (7.19)–(7.21) with arbitrary initial values x0
1 � 0; : : : ; x0

n �
0 and look for the corresponding generalized LSM with arbitrary past. This
generalization covers more pharmacological situations. An important role plays

�.t/ D
tZ

0

g.s/ ds ; t 2 R :

Note that � is a strongly increasing function with �.0/ D 0 and inverse ��1.
Furthermore, �.t/ could be interpreted as a time-transformation.

Theorem 7.1. Consider the generalized transit compartment model

x0
1 D kin.t/ � kg.t/x1; x1.0/ D x0

1 � 0 (7.27)

x0
2 D kg.t/x1 � kg.t/x2; x2.0/ D x0

2 � 0 (7.28)
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:::
:::

x0
n D kg.t/xn�1 � kg.t/xn; xn.0/ D x0

n � 0; (7.29)

where kin W R ! R�0 and g W R ! R>0 are piecewise continuous and
bounded functions with finitely many discontinuity points and k > 0. Again let

�.t/ D
tR

0

g.s/ ds and let h W Œ0; 1� ! R�0 be an arbitrary piecewise continuous

function with h.0/ D kin.0/. Assume that the initial values of (7.27)–(7.29) satisfy

xi .0/ D 1

k
h

�
i

n

�
for i D 1; : : : ; n : (7.30)

Let

T D n

k
> 0

be an arbitrary but fixed value. Further consider the total population based on
(7.27)–(7.29)

yn.t/ D x1.t/ C � � � C xn.t/ :

Then the limit

y.t/ D lim
n!1 yn.t/ for t � 0 (7.31)

fulfills the lifespan model

y0 D kin.t/ � g.t/
kin.z/

g.z/
; y.0/ D y0 (7.32)

z0 D g.t/

g.z/
; z.0/ D ��1.�T / (7.33)

provided the input function kin satisfies

kin
�
��1.t/

�

g .��1.t//
D h

�
� t

T

�
for � T � t � 0 : (7.34)

The initial value of (7.32) reads

y0 D T

1Z

0

h.s/ ds : (7.35)
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Proof. The matrix notation of (7.27)–(7.30) is

x0 D g.t/Ax C kin.t/e1 ; x.0/ D 1

k
Ox0 (7.36)

with Ox0
i D h

�
i
n

�
; i D 1; : : : ; n and

A D

0
BBB@

�k

k �k
: : :

: : :

k �k

1
CCCA 2 R

n;n :

Consider in addition

u0 D Au C kin.��1.t//

g.��1.t//
e1 ; u.0/ D 1

k
Ox0 (7.37)

where the time dependency of the transit rate is shifted into the inflow term. Note
that u1.t/; : : : ; un.t/ describe a TCM with constant transit rate k and inflow

Qkin.t/ D kin.��1.t//

g.��1.t//
: (7.38)

It is obvious that the solutions of (7.36) and (7.37) are linked via

x.t/ D u.�.t// : (7.39)

Next we use (7.39) and obtain

y0
n.t/ D x0

1.t/ C � � � C x0
n.t/ D kin.t/ � kg.t/un.�.t// :

Because (7.37) is a TCM with constant transit rate k and inflow Qkin.t/ (see (7.38)),
we can apply the convergence result from [21]. This yields

lim
n!1 kun.s/ D Qkin.s � T / D kin.��1.s � T //

g.��1.s � T //
for s 2 R

provided that (7.34) holds. Hence, the equation for the limit (7.31) reads

y0.t/ D kin.t/ � g.t/ lim
n!1 kun.�.t// D kin.t/ � g.t/

kin.��1.�.t/ � T //

g.��1.�.t/ � T //



7 Mathematical Concepts in Pharmacokinetics and Pharmacodynamics 241

with the initial value

y0 D lim
n!1

nX
iD1

xi .0/ D lim
n!1

nX
iD1

T

n
h

�
i

n

�
D T

1Z

0

h.s/ ds :

Furthermore,

z.t/ D ��1.�.t/ � T /

satisfies

z0.t/ D 1

� 0 .��1 .�.t/ � T //
� 0.t/ D g.t/

g.z.t//
; z.0/ D ��1.�T / :

Summarizing, we obtain the stated result. ut
Remark 7.1. (a) In case of g � 1 in (7.27)–(7.29), the lifespan model (7.32)–(7.33)

reduces to

y0.t/ D kin.t/ � kin.t � T / ; y.0/ D y0 ; z.t/ D t � T

which is well known from [21].
(b) The assumption g W R ! R>0 is pharmacological reasonable. For example,

g could describe a stimulation or inhibition term depending on the drug
concentration as applied in (7.13).

(c) The solution of (7.32)–(7.33) reads

y.t/ D
tZ

z.t/

kin.s/ ds ; z.t/ D ��1 .�.t/ � T / :

7.3.8 Discussion and Outlook

Typical (semi-) mechanistic pharmacodynamic models describing the pharmacolog-
ical effect applied in academics and industry were presented. We introduced models
to describe the effect-concentration relationship, stated inflow/outflow models typ-
ically applied to describe perturbations of a baseline and finally, presented lifespan
models for populations. In Theorem 7.1 we presented an important relationship
between general transit compartments and lifespan models.

In the next section we will develop a model for a disease progression (tumor
growth) and the effect of drug on the disease. For that we apply an effect
concentration term and mimic the dying of proliferating cells by either transit
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compartments or lifespan models. For another application of PKPD see Chap. 8 in
this volume.

For further reading about PKPD modeling we recommend the books from
Gabrielsson and Weiner [14], from Bonate [2] for a more statistical oriented data
analysis and also from Macheras and Iliadis [31] for a more general biologi-
cal/mathematical point of view. Finally, several excellent review articles about
PKPD modeling were published in the last years where we like to highlight the
manuscripts from Danhof et al. [6, 7] or Mager et al. [32].

7.4 Pharmacokinetic/Pharmacodynamic Tumor Growth
Model for Anticancer Effects

In this section we develop a PKPD model to describe tumor growth and the anti-
cancer effects of a drug along the guideline (i)–(iv) listed in Sect. 7.1. We firstly
model the disease development (iv) without drug action, here called unperturbed
tumor growth. Then we present the modeling of the drug effect on the disease
(compare (ii)–(iii)) called perturbed tumor growth. Finally, we include the phar-
macokinetics of a specific drug into the model, see (i).

7.4.1 Introduction and Experimental Setup

It is generally stated that the work of Laird [29] “Dynamics of tumor growth”
published in 1964 initiated the mathematical modeling of tumor growth. Laird
applied the Gompertz equation (here presented in the original formulation)

W

W0

D e
A
˛ .1�e�˛t /

to describe unperturbed (no drug administration) tumor growth. W denotes the
tumor size in time, W0 is the initial tumor size and A, ˛ are growth related
parameters. This model realizes a sigmoid growth behavior and therefore, describes
the three significant phases of tumor growth. First, a tumor grows exponentially,
after a while the tumor growth becomes linear due to limits of nutrient supply and
finally, the tumor growth saturates. Laird applied the Gompertz equation to data
from mice, rats and rabbits.

In the book from Wheldon [43] it is stated that the saturation property of tumors
could seldom be measured in patients because the host dies in the majority of cases
before saturation begins. Also in preclinics, the experiments have to be terminated
when a critical tumor size is reached due to ethical constraints and according to the
animal welfare law. Hence, in this work we present a tumor growth model without
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saturation and focus on the first two tumor growth phases, namely exponential
growth followed by linear growth.

We consider experiments performed in xenograft mice. Such mice are
applied as a model for human tumor growth. It is stated by Bonate in [3]: “Most
every drug approved in cancer was first tested in a xenograft model to determine its
anticancer activity”. Xenograft mice develop human solid tumors based on
implantation of human cancer cells. The tumor grows in the flank of the mice and its
volume is measured by an electronic caliber and recalculated to weight based on
tissue consistency assumptions. Roughly said, the tumor size could be measured
“from the outside” without stressing the animals in contrast to PK where blood sam-
ples have to be taken. Therefore, in general more data is available in PD in contrast
to PK.

However, we also mention two disadvantages of xenografts formulated by
Bonate, see [3]: “First, these are human tumors grown in mice and so the mice
must be immunocompromised for the tumor growth in order to prevent a severe
transplant reaction from occurring in the host animal. Second, since these tumors
are implanted in the flank, they do not mimic tumors of other origins, e.g. a lung
cancer tumor grown in the flank may not representative for a lung cancer tumor in
the lung.”

7.4.2 Unperturbed Tumor Growth

The growth of a tumor without an anticancer drug is called unperturbed growth. The
aim of this section is to model this behavior with a realistic right hand side of the
differential equation

w0 D f .w/ ; w.0/ D w0 (7.40)

where w0 > 0 is the inoculated tumor weight, more precisely, the amount of
implanted human tumor cells into the xenograft mouse. The tumor weight is denoted
by w.t/.

In 2004, Simeoni et al. [37] presented a model consisting of an exponential and a
linear growth phase in order to describe the tumor growth in xenograft mice in time
by the function

gs.w/ D
(

�0w ; w � wth

�1 ; w > wth

; wth D �1

�0

(7.41)

for (7.40). In (7.41), the parameter �0 > 0 describes the exponential growth rate
and �1 > 0 the linear growth rate. If the weight w reaches a threshold wth, then the
exponential growth switches immediately to linear growth in (7.41). This produces
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a fast transition between the exponential and linear phase in w.t/. It is suggested by
Simeoni to apply the approximation

ga.w/ D �0w
�
1 C

�
�0

�1
w
�20
	 1

20

for (7.41) in practice.
Another growth function for (7.40)

g.w/ D 2�0�1w

�1 C 2�0w
(7.42)

was presented in [22] which is based on the Michaelis–Menten approach and
produces a longer transition between these two essentially different growth phases.
The parameter in (7.42) have the same meaning as in Simeoni’s model, see [22] for
argumentation and derivation.

In this work we use the disease progression model

w0 D 2�0�1w

�1 C 2�0w
; w.0/ D w0 (7.43)

for unperturbed tumor growth w.t/ with the three parameter

� D .�0; �1; w0/ :

In Fig. 7.1, measurements from four different human tumor cell lines in xenograft
mice, namely RKO (cancer of the colon), PC3 (prostate cancer), MDA (breast
cancer) and A459 (lung cancer) were fitted with (7.43).

7.4.3 Perturbed Tumor Growth Based on Transit
Compartments

The next step towards a PKPD tumor growth model is to include the pharmacoki-
netics of a drug, or more precisely, the perturbation of the tumor growth by an
anticancer agent. It is generally observed that the anti-cancer effect is delayed due
to the drug concentration. Hence, the attacked tumor cells could be considered as a
population with a lifespan. Simeoni and co-workers applied a transit compartment
model and assumed that proliferating cells attacked by the drug will pass through
different damaging stages until the cells finally and irrevocably die, see [37].

We apply the linear effect-concentration term

e.kpot; c.t// D kpotc.t/
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Fig. 7.1 Different human tumor cell lines (RKO, PC3, MDA and A549) in xenograft mice fitted
with model (7.43)

to describe the action of the drug at the target (proliferating cells). The pharmacoki-
netics is denoted by c.t/ and kpot > 0 describes the potency parameter of a drug.
The PK c.t/ is a two-compartment model with either p.o. or i.v. administration.
In our performed experiments we have two dosing groups, namely, a placebo and a
drug administration group. Therefore, the linear effect term is an appropriate choice.

In a first approach we also apply a transit compartment model to describe the
different stages of dying non-proliferating tumor cells initiated by the drug action.
We denote by p.t/ the amount of proliferating tumor cells and by d1.t/; : : : ; dn.t/

the different stages of dying tumor cells attacked by an anticancer agent. Since,
the non-proliferating cells d1; : : : ; dn still add to total tumor mass, the total tumor
w is the sum of proliferating tumor cells p and non-proliferating tumor cells
d1; : : : ; dn. Only proliferating cells that are not affected by drug action contribute to
the tumor growth. Therefore, the growth function g.w/ of the total tumor consisting
of proliferating and non-proliferating cells is slowed down by the factor p

w .
The PKPD model with transit compartments reads

p0 D 2�0�1p

�1 C 2�0p

p

w.t/
� kpotc.t/p; p.0/ D w0 (7.44)

d 0
1 D kpotc.t/p � kd1; d1.0/ D 0 (7.45)

d 0
2 D kd1 � kd2; d2.0/ D 0 (7.46)

:::
:::

d 0
n D kdn�1 � kdn; dn.0/ D 0 (7.47)

w.t/ D p.t/ C d1.t/ C � � � C dn.t/ (7.48)
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Fig. 7.2 In every plot the unperturbed and perturbed tumor growth data was simultaneously fitted
with (7.44)–(7.48) and n D 3. In the left panel the drug A1 was administered at day 15, 16, 17 and
18 and in the right panel the drug B was administered at day 12, 13, 14, 15 and 16

with the model parameter

� D .�0; �1; w0; kpot; k/ :

The total tumor weight is denoted by w.t/. The average lifespan of attacked tumor
cells is computed after a fitting process by

T D n

k
: (7.49)

In Fig. 7.2 we present two simultaneous fits of unperturbed and perturbed data with
(7.44)–(7.48) and n D 3.

7.4.4 Perturbed Tumor Growth Based on the Lifespan
Approach

In this section we apply Theorem 7.1 to the tumor growth model based on transit
compartments. From a schematic point of view the model (7.44)–(7.48) can be
regarded as a system with a TCM represented by (7.16)–(7.18) with input

kin.t/ D e.�; c.t//p.t/ : (7.50)

On the way to a description of the pharmacological process with an LSM we set

d.t/ D d1.t/ C � � � C dn.t/
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representing the totality of cells attacked by the anticancer agent and replace the
TCM (7.45)–(7.47) by a LSM for the population d.t/. Using (7.50) this leads to

d 0.t/ D kin.t/ � kin.t � T / D e.�; c.t//p.t/ � e.�; c.t � T //p.t � T /

completed by the initial condition d.0/ D 0 and the past

e.�; c.s//p.s/ D 0 ; �T � s < 0 : (7.51)

In applications, (7.51) is fulfilled because no drug is administered before inoculation
of the tumor cells.

Then the reformulation of (7.44)–(7.48) in the lifespan model context reads

p0.t/ D 2�0�1p.t/

�1 C 2�0p.t/

p.t/

w.t/
� e.�; c.t//p.t/; p.0/ D w0 (7.52)

d 0.t/ D e.�; c.t//p.t/ � e.�; c.t � T //p.t � T /; d.0/ D 0 (7.53)

w.t/ D p.t/ C d.t/ : (7.54)

In the LSM formulation (7.51)–(7.54) we have exactly two differential equations,
one for the proliferating cells p.t/ and one governing the population of the attacked
tumor cells d.t/. Note that it is not necessary to provide information about p.s/ for
�T � s < 0 due to (7.51). The parameters are

� D .�0; �1; w0; kpot; T /

where T is the lifespan of the dying tumor cells which is now fitted directly from
the data.

The sum of squares and parameter estimates of (7.51)–(7.54) and (7.44)–(7.48)
are similar. The new formulation (7.51)–(7.54) is also from the modeling point of
view a serious alternative to the classical formulation. Here the number of dying
tumor stages is reduced to exactly one stage for the total population of cells attacked
by the anticancer agent. This coincides with the situation in practice, where the
choice of the number of compartments n is more or less arbitrary because the
different stages could not be measured.

7.4.5 Discussion and Outlook

It is estimated that every third European develops cancer once in life time. Hence,
mathematical modeling of tumor growth data is an important task to support drug
development. The PKPD model structure presented by Simeoni et al. in 2004 [37]
is one of the most applied tumor growth models in the last years.
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In this work we focused on administration of one single drug. However, an
important topic in anticancer drug development is the combination of different drugs
and the search of synergistic effects in order to maximize the pharmacological
effect. Based on a synergistic combination of drug effects the dosage could be
reduced to minimize the side effects in patients. Hence, a new direction in tumor
growth modeling is the development of realistic and mechanistic models for drug
combination approaches. In [22] an approach which explicitly quantifies the synergy
by a parameter and also describes combination therapy data was presented. The
model could be used to rank different combination therapies. Nevertheless, this
modeling field is subject of active research, see e.g. [17] for preclinical and [13]
for clinical phase. To our knowledge no widely accepted mechanistic PKPD tumor
growth combination therapy model is developed yet.
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