Chapter 3
Canard Theory and Excitability

Martin Wechselberger, John Mitry, and John Rinzel

Abstract An important feature of many physiological systems is that they evolve
on multiple scales. From a mathematical point of view, these systems are modeled
as singular perturbation problems. It is the interplay of the dynamics on different
temporal and spatial scales that creates complicated patterns and rhythms. Many
important physiological functions are linked to time-dependent changes in the
forcing which leads to nonautonomous behaviour of the cells under consideration.
Transient dynamics observed in models of excitability are a prime example.

Recent developments in canard theory have provided a new direction for under-
standing these transient dynamics. The key observation is that canards are still
well defined in nonautonomous multiple scales dynamical systems, while equilibria
of an autonomous system do, in general, not persist in the corresponding driven,
nonautonomous system. Thus canards have the potential to significantly shape the
nature of solutions in nonautonomous multiple scales systems. In the context of
neuronal excitability, we identify canards of folded saddle type as firing threshold
manifolds. It is remarkable that dynamic information such as the temporal evolution
of an external drive is encoded in the location of an invariant manifold—the canard.
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3.1 Motivation

Physiological rhythms and patterns are central to life. Prominent examples are the
beating of the heart, the activity patterns of neurons, and the release of the hormones
that regulate growth and metabolism. Although many cells in the body display
intrinsic, spontaneous rhythmicity, many physiological functions derive from the
interaction of these cells, with each other and with external inputs, to generate these
essential rhythms. Thus it is important to analyse both the origin of the intrinsic
complex nonlinear processes and the effects of stimuli on these physiological
rhythms.

Cell signalling is the result of a complex interaction of feedback loops that
control and modify the cell behaviour via ionic flows and currents, proteins and
receptor systems. The specific feedback loops differ from one cell to another and,
from a physiological point of view, the signalling seems to be extremely cell
specific. The respective mathematical cell models, however, have an amazingly
similar structure. This suggests unifying mathematical mechanisms for cell
signalling and its failure.

An important feature of most physiological systems is that they evolve on
multiple scales. For example, the rhythm of the heart beat consists of a long interval
of quasi steady-state followed by a short interval of rapid variation, which is the beat
itself [34]. The same feature is observed for activity patterns of neurons [34,55] and
for calcium signalling in cells [34]. It is the interplay of the dynamics on different
temporal or spatial scales that creates complicated rhythms and patterns.

Multiple scales problems of physiological systems are usually modelled by
singularly perturbed systems [28, 34,55]. The geometric theory of multiple scales
dynamical systems—known as Fenichel theory [17, 32, 33, 49]—has provided
powerful tools for studying singular perturbation problems. In conjunction with the
innovative blow-up technique [15, 39, 57], geometric singular perturbation theory
delivers rigorous results on global dynamics such as periodic and quasi-periodic
relaxation oscillations in multiple time-scale problems [58]. When combined with
results on Henon-like maps, this approach has the potential to explain chaotic
dynamics in relaxation oscillators as observed in the periodically forced van der Pol
relaxation oscillator [24].

This development within dynamical systems theory provides an excellent frame-
work for addressing questions on how complex rhythms and patterns can be
detected and controlled. The fact that equivalent stimulation can elicit qualitatively
different spiking patterns in different neurons demonstrates that intrinsic coding
properties differ significantly from one neuron to the next. Hodgkin recognized
this and identified three basic types of neurons distinguished by their coding
properties [29]. Pioneered by Rinzel and Ermentrout [31, 51, 52], bifurcation theory
explains repetitive (tonic) firing patterns for adequate steady inputs (e.g. current
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step protocols) in integrator (type I) and resonator (type II) multiple time-scales
neuronal models.

In contrast, the dynamic behaviour of differentiator (type III) neurons cannot
be explained by standard (autonomous) dynamical systems theory. This third type
of excitable neuron encodes a dynamic change in the input and hence they are
well suited for temporal processing like phase-locking and coincidence detection
[42, 53]. Auditory brain stem neurons are an important example of such neurons
involved with precise timing computations. The nonautonomous (dynamic) nature
of the signal is essential to determine the response of a type III neuron. A major
aim of this chapter is to highlight the profound differences in the behaviour of all
neuron types (I-III) when we apply a step current protocol compared to a smooth
dynamic current protocol, either excitatory or inhibitory.

In a dynamical system that exhibits time-dependence in its forcing or parameters,
one still expects convergence of the phase-space flow to some lower dimensional
object; but this object, termed a pullback attractor [36, 37, 50], is now itself
time-dependent. Identifying dynamic objects in phase-space that act effectively as
separatrices is a major mathematical challenge. Such separatrices may influence the
observed dynamics only on a certain (finite) time scale.

Recently, a canard mechanism was identified that leads to transient dynamics in
multiple time-scales systems [26,41, 44, 64]. Canards are exceptional solutions in
singularly perturbed systems which occur on boundaries of regions corresponding
to different dynamic behaviours. The theory on canards and their impact on
transient dynamics of multiple scales dynamical systems is the main focus of this
chapter. What makes canards so special for (driven) nonautonomous multiple scales
dynamical systems? The key observation is that canard points (also known as folded
singularities) are still well defined in nonautonomous multiple scales dynamical
systems, while equilibria of an autonomous system will, in general, not persist in
the corresponding driven, nonautonomous system. Thus canards have the potential
to significantly shape the nature of solutions in nonautonomous multiple scales
systems. We highlight this important point of view in Sect. 3.3.2.1.

Another class of complex oscillatory behaviour observed in neuroscience is
mixed-mode oscillations (MMOs). These oscillations correspond to switching
between small-amplitude oscillations and relaxation oscillations—patterns that
have been frequently observed in experiments [1, 12, 25, 35, 47]. Recently, canard
theory combined with an appropriate global return mechanism was used based
on the multiple time-scale structure of the underlying models to explain these
complicated dynamics [2, 3, 6,22,43,57,61,63]. This is now one widely accepted
explanation for MMOs; see, e.g., [5, 8, 14, 16, 27, 38, 54, 56, 60] and the current
review [10].

The outline of the chapter is as follows: In Sect. 3.2 we review geometric singular
perturbation theory in arbitrary dimensions with a particular emphasis on canard
theory. In Sect. 3.3 we review excitable systems. We focus on external drives that
are either piecewise constant or vary smoothly. The former models instantaneous
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(fast) changes while the later models smooth (slow) changes. We then outline the
relationship between the theory of singularly perturbed systems and nonautonomous
(multiple scales) systems. In particular, we show how canard theory can be used to
explain excitability for smooth dynamic forcing protocols by identifying a canard
of folded saddle type as the firing threshold manifold of an excitable neuron.
The geometric theory is applied to neuronal and biophysical models. Finally, we
conclude in Sect. 3.4.

Remark 3.1. Section 3.2 provides a comprehensive review of geometric singular
perturbation theory and assumes a solid background on dynamical systems theory
such as found in [23]. While the basic ideas of geometric singular perturbation
theory are well known to the mathematical biology/neuroscience community, the
theory presented in this section might seem at certain points too technical and/or too
rigorous for this peer group. We suggest that these readers skip (parts of) the section
and explore the necessary theory after reading through Sect.3.3 on excitability.
Nevertheless, we hope that many readers will appreciate the rigor and generality
of the presented material.

3.2 Geometric Singular Perturbation Theory

Our focus is on a system of differential equations that has an explicit time scale
splitting of the form

wi =eg(w,v,€) G.1)

V= f(w,v,€),
where (w,v) € RF x R™ are state space variables and k,m > 1. The variables
v = (v1,...,vy) are denoted fast, the variables w = (wy,...,wy) are denoted
slow, the prime denotes the time derivative d/dt and € < 1 is a small positive
parameter encoding the time scale separation between the slow and fast variables.
The functions f : R x R” x R — R” and g : R¥ x R x R — R¥ are assumed
to be C* smooth. By switching from the fast time scale ¢ to the slow time scale
T = €t, system (3.1) transforms to

w= g(w,v,e€)

ev= f(w,v,e€). (3-2)
where the overdot denotes the time derivative d /d t. System (3.1) respectively (3.2)
are topologically equivalent and solutions often consist of a mix of slow and fast
segments reflecting the dominance of one time scale or the other. We refer to (3.1)
respectively (3.2) as a singularly perturbed system. As € — 0, the trajectories of
(3.1) converge during fast segments to solutions of the m-dimensional layer (or
fast) problem
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w =0
33
vV = f(w,v,0) (3-3)
while during slow segments, trajectories of (3.2) converge to solutions of
w = g(w,v,0)
34
0= f(w,v,0) (34)

which is a k-dimensional differential-algebraic problem called the reduced (or
slow) problem. Geometric singular perturbation theory [17, 32] uses these lower-
dimensional sub-systems (3.3) and (3.4) to predict the dynamics of the full (k +
m)-dimensional system (3.1) or (3.2) for € > 0.

3.2.1 The Layer Problem

First, we focus on the layer problem (3.3). Note that the slow variables w are
parameters in this limiting system.

Definition 3.1. The set
S = {(w,v) € R* xR" | f(w,v,0) =0} 3.5)

is the set of equilibria of (3.3). In general, this set S defines a k-dimensional
manifold, i.e. the Jacobian Dy, ,) f evaluated along S has full rank, and we refer
to it as the critical manifold.

Remark 3.2. The set S could be the union of finitely many k-dimensional mani-
folds. All definitions regarding the critical manifold hold also for such a set.

Since we assume that f is smooth, this implies that the critical manifold is a
differentiable manifold. The basic classification of singularly perturbed systems is
given by the properties of the critical manifold S of the layer problem (3.3).

Definition 3.2. A subset S;, C S is called normally hyperbolic if all (w,v) € Sy,
are hyperbolic equilibria of the layer problem, that is, the Jacobian with respect to
the fast variables v, denoted D, f, has no eigenvalues with zero real part.

- We call a normally hyperbolic subset S, € S arttracting if all eigenvalues of
D, f have negative real parts for (w,v) € S,; the layer problem describes the
flow towards this set.

- S, € S is called repelling if all eigenvalues of D, f have positive real parts for
(w,v) € S,; the layer problem describes the flow away from this set.

- If S; € S is normally hyperbolic and neither attracting nor repelling we say it is
of saddle type.
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For a normally hyperbolic manifold S, € S, we have a uniform splitting of
eigenvalues of D, f along S, into two groups, i.e. for each p € S the Jacobian
D, f has m, eigenvalues with positive real part and m; eigenvalues with negative
real part where m, + m; = m. This enables us to define local stable and unstable
manifolds of the critical manifold Sj:

Definition 3.3. The local stable and unstable manifolds of the critical manifold S},

denoted by W} .(S;) and W% .(S)), respectively, are the unions

Wi (S) = | Wi (p), Wit (S = | Wi (p) . (3.6)

PESH PESH

The manifolds W} (p) and W/ (p) form a family of fast fibers (called a fast
fibration or foliation) for W} (Sy,) and W (S},), respectively, with base points
p € Si. The dimension of W} (S) is k + my and the dimension of W} (S.¢)
isk +m,.

The geometric theory of singular perturbation problems with normally
hyperbolic manifolds is referred to as Fenichel Theory [17, 32]. This theory
guarantees the persistence of a normally hyperbolic manifold close to S, € S and
corresponding local stable and unstable manifolds close to W} (S;,) and W (S;)
as follows:

Theorem 3.1 (Fenichel’s Theorem 1, cf. [17,32]). Given system (3.1) with f, g €
C°. Suppose S, C S is a compact normally hyperbolic manifold, possibly with
boundary. Then for € > 0 sufficiently small the following holds:

(i) Foranyr < oo, there exists a C" smooth manifold Sy, ¢, locally invariant under
the flow (3.1), that is C" O(¢) close to Sy,
(ii) For anyr < oo, there exist C" smooth stable and unstable manifolds

WieSna = | Wi, Wi (S = |J Wipd. 37

Pe€Sh.e Pe€Sh.e

locally invariant under the flow (3.1), that are C" O(€) close to W .(S;) and
Wyt (Sh.e), respectively.

Remark 3.3. Sj¢ is, in general, not unique but all representations of Sj . lie
exponentially close in ¢ from each other, i.e. all r-jets are uniquely determined.

Remark 3.4. We assume that a compact, simply connected, k-dimensional smooth
manifold with boundary implies that its boundary is a (k — 1)-dimensional smooth
manifold. A compact manifold with boundary is called overflowing invariant, if the
vector field inside the manifold is tangent to the manifold and along the boundary
it points everywhere outward. The proof of Fenichel’s theorem is based on this
definition.



3 Canard Theory and Excitability 95

3.2.1.1 Folded Critical Manifolds

Normal hyperbolicity fails at points on S where D, f has (at least) one eigenvalue
with zero real part, i.e. a bifurcation occurs in the layer problem under the variation
of the parameter set w. Generically, such points are folds in the sense of singularity
theory [59].

Definition 3.4. The critical manifold S (3.5) of the singularly perturbed sys-
tem (3.2) is (locally) folded if there exists a set F' that forms a (k — 1)-dimensional
manifold in the k-dimensional critical manifold S defined by

F = {(w,v) e R* xR";| f(w,v,0) =0,rk(D, f)(w,v,0) =m — 1,

1-[(D2,£)(w.v.0) ()] # 0, - [(Dy f)(w.v.0)] # 0} (5:5)

with corresponding left and right null vectors / and r of the Jacobian D, f. The set
F denotes the fold points of the critical manifold.

A fold corresponds to a saddle-node bifurcation in the layer problem which is
one of the generic codimension-one bifurcations in a dynamical system.

3.2.2 The Reduced Problem

The reduced problem (3.4) is a differential algebraic problem and describes the
evolution of the slow variables w constrained to the critical manifold S. As a
consequence, S defines an interface between the two sub-systems (3.3) and (3.4).

Definition 3.5. Given the reduced problem (3.4). A vector field on the critical
manifold S (3.5) is a C'-mapping g : S — R such that g(w,v) € Ty,.,)S for
all (w,v) € S.

In other words, the reduced vector field (3.4) has to be in the tangent bundle 7'S of
the critical manifold S. The total (time) derivative of f(w,v,0) = 0,1e. D, f -V +
D,, f-w = 0 provides exactly the definition for a tangent vector (w, v) of an integral
curve (w(t), v(r)) € R¥T” to be constrained to the tangent bundle 7'S. This leads
to the following representation of the reduced problem (3.4):

w=g(w,v,0)

_va V= (Dwfg) (Ws v, 0) (39)

where (w,v) € S. Let adj (D, f) denote the adjoint of the matrix D, f which is the
transpose of the co-factor matrix of D, f,i.e.adj (D, f)-D, f = D, f-adj (D, f) =
det(D, f) 1.

Remark 3.5. Inthe case m = 1, D, f = detD,f = % = f, is a scalar and
adj (D, f) := 1. Note that the adjoint of a square matrix is well defined for both
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regular and singular matrices. This is in contrast to the definition of the inverse of a
square matrix which is only defined in the regular case.

We apply adj (D, f') to both sides of the second equation in (3.9) to obtain

w=g(w,v,0) (3.10)

—det(Dy f)v =adj(Dyf)-Dyf -gw,v,0) '
where (w,v) € S. System (3.10) provides a representation of the original reduced
problem (3.4) in any (local) coordinate chart on the manifold S.

Remark 3.6. A coordinate chart on an n-dimensional smooth manifold S is a pair
(U; ¢), where U is an open subset of S and ¢ : U — Uisa diffeomorphism from
U to an open subset U= #(U) C R¥. A well-known (and often used) example is
the graph of a smooth function F : U — R” which is a subset of R” x R¥ defined
by {(x;y) eR"xRF : x e U,y = F(x)}.

Suppose that the critical manifold S is normally hyperbolic, i.e. D, f has full
rank for all (w,v) € S. The implicit function theorem implies that S is given as a
graph v = h(w). In other words, S can be represented in a single chart given by the
slow variable base w € R, The reduced problem (3.10) on S}, is then given in this
coordinate chart by

w=gw, h(w),0). (3.11)
Fenichel theory [17,32] guarantees the persistence of a slow flow on Sj ¢ close to

the reduced flow of S, in the following way:

Theorem 3.2 (Fenichel’s Theorem 2, cf. [17,32]). Given system (3.1) with f, g €
C®. Suppose S, < S is a compact normally hyperbolic manifold, possibly
with boundary. Then for € > 0 sufficiently small, Theorem 3.1(i), holds and the
following:

(iii) The slow flow on Sy, converges to the reduced flow on Sj, as € — 0.
Since Sy, is a graph v = h(w) it follows that Sy ¢ is also a graph v, = h(w, €) for
sufficiently small € < 1. Thus the slow flow on Sj, ¢ fulfills
w=gw h(w,e),¢€), (3.12)
and we are dealing with a regular perturbation problem on S, which is a
remarkable result. Consequently, we have

Corollary 3.1. Hyperbolic equilibria of the reduced problem (3.11) persist as
hyperbolic equilibria of the full problem (3.2) for sufficiently small ¢ < 1.

For € > 0, the base points p. € Sp. of the fast fibers W} (pc), respectively
W/ .(pe), evolve according to (3.12). Hence, the individual fast fibers W} (pc),
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respectively W (p), are not invariant, but the families of fibers (3.7) are invariant
in the following sense:

Theorem 3.3 (Fenichel’s Theorem 3, cf. [17]). Given system (3.1) with f,g €
C®°. Suppose S, < S is a compact normally hyperbolic manifold, possibly
with boundary. Then for € > 0 sufficiently small, Theorem 3.1(ii) holds and the
following:

(iv) The foliation { W,

s
oc

(Pe)| Pe € She} is (positively) invariant, i.e.

Wioe(pe) -t C Wi (pe-1)

forallt > 0 such that p. -t € Sy, where -t denotes the solution operator of
system (3.1).
(v) The foliation {W}" (pe)| pe € Sh.e} is (negatively) invariant, i.e.

u
oc
VVI’:)c(pE) 1 C VVI’:)c(ps : t)

forallt < 0 such that p. -t € Sy, where -t denotes the solution operator of
system (3.1).

This theorem implies that the exponential decay of a trajectory in the stable
manifold W*(Sj.) towards its corresponding base point p. € Sj . is inherited from
the unperturbed case. The same is true in backward time for a trajectory in the
unstable manifold W* (S} ) and summarized in the following:

Theorem 3.4 (Fenichel’s Theorem 4, cf. [17,32]). Let oy < 0 be an upper bound
Red; <oy <0,i = 1,...,my, for the stable eigenvalues of the critical manifold
Sp. There exists a constant kg > 0, so that if pc € Sy and qge € W} .(pe) then

lge -t — pe - t]| < kyexp(agt)

forallt > 0 such that p. -t € Sp..

Similarly, let o, > 0 be a lower bound ReA; > o, > 0, j = 1,...,m,, for the
unstable eigenvalues of the critical manifold Sy,. There exists a constant k,, > 0, so
that if pe € Sp.e and q. € W (pe) then

e -t — pe - t]| < kuexp(ayt)

forallt <0 suchthat p. -t € Sp..

If we assume that S, = S, is an attracting normally hyperbolic manifold then
Fenichel theory implies that the dynamics of system (3.2) are completely described
(after some initial transient time) by the dynamics on the k-dimensional slow
manifold S, . which to leading order can be completely determined by the reduced
flow on S,. This result justifies certain model reduction techniques often found in
the mathematical biology literature on biochemical reactions.
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Example 3.1. A classic biophysical example of a normally hyperbolic problem is
given by Michaelis-Menten enzyme kinetics (see, e.g., [34] for details):

kl ko
S+E=C—~P+E, (3.13)
k—1

which models an enzymatic reaction with substrate S, enzyme E, an intermediate
complex C and product P. Using the law of mass action gives the following system
of differential equations

48 — k_\[C] - ki [S][E],

4L — | [S][E] = (k=1 + ka)[C],
4E = (k_; + k2)[C] — k1 [S][E].
4P — k,[C,

(3.14)

where [X] denotes the concentrationof X = S, C, E, P with initial concentrations
[S1(0) = So,  [C](0) =0, [E](0) = Eo, [P](0)=0.

Notice that [ P] can be found by direct integration, and there is a conserved quantity
since d[C]/dt 4+ d[E]/dt = 0, so that [C] + [E] = Ey. Hence it suffices to study
the first two equations of system (3.14) with [E] = Ey — [C]. Using dimensional
analysis gives the corresponding two-dimensional dimensionless system,

d
d_s = s=ajc—s(l—c)=g(s,c)
d’ (3.15)
c
ed— =e¢ =s5(l—c)— (a1 + x)c = f(s,0),
T
with (dimensionless) substrate and complex concentration s = [S]/Sy and ¢ =

[C]/ E)y, initial conditions s(0) = 1 and ¢(0) = 0, time T = Eok¢ and parameters
o = k_l/(S()kl) > 0, Oy = kz/(S()kl) > O, & = EO/SO < 1. Here, the
initial enzyme concentration E is considered significantly smaller than the initial
substrate concentration Sy which is a realistic condition for enzyme reactions. Thus,
the obtained dimensionless system is a singularly perturbed system with s slow and
c fast.

The critical manifold is given by f(s,c) = 0. The Jacobian of the layer problem
is the derivative f. = —(s + o1 + o) < O for all s > 0. Hence, the critical
manifold is an attracting normally hyperbolic manifold S, for the biophysically
relevant domain of s > 0 and is given as a graph

N

¢ () S+ o) + o
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Fig. 3.1 Michaelis-Menten kinetics: from the initial condition (s,c¢) = (1,0), the complex ¢
builds quickly up (along fast fibers) until it reaches the normally hyperbolic manifold S,. Then the
slow uptake of the substrate s starts (slow flow along S, towards the rest state (s, ¢) = (0, 0))

The reduced problem is then given in the single coordinate chart s € R by

sfg(sﬁ(s))z—ﬁso, Vs >0. (3.16)

This differential equation has a hyperbolic equilibrium at s = 0 which is stable.
Since the initial condition (s(0), c(0)) = (1,0) is not on the critical manifold S,
we expect an initial fast transient behavior towards the slow manifold S, . close
to the stable fast fiber at s = 1. Then the slow dynamics will take over and the
substrate concentration will slowly decay towards zero along the slow manifold S, .
as predicted by the reduced flow. Figure 3.1 confirms the predictions of Fenichel
theory. The reduced problem (3.16) is indeed a good approximation of the substrate
concentration dynamics after a transient initial time. The rate of uptake of the
substrate s described by (3.16) is often referred to as the Michaelis-Menten law.

3.2.2.1 Reduced Problem on Folded Critical Manifolds

Similar to the normally hyperbolic case, a (local) graph representation of the critical
manifold S is used to analyse the k-dimensional reduced problem (3.10) in the
case of a folded critical manifold. From the definition (3.8) of the folded critical
manifold follows that there exists (at least) one slow variable w;, j € {l,...,k}
with [ - [(Dy,; f)(w,v,0)] # 0. Without loss of generality, let w; be this slow
variable. One is then able to replace one column in D, f (we assume, without
loss of generality, that this column is D,, f) by the column of D,, f such that
tk Dy vs....vm) f = m along S (including F). In the case k = 1 respectively k > 2,
the implicit function theorem then implies that S is (locally) a graph y = h(v;)
respectively y = h(wy, ..., wg,v) where y = (w,va,...,vy). Inthecase k = 1,
incorporating this graph representation of S leads to the projection of the reduced
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problem (3.10) onto the coordinate chart v; € R,

—det(D,f)vi =adj(D,f)1-Dwf-g(v,0), (3.17)

respectively in the case k > 2 it leads to the projection of the reduced problem
(3.10) onto the coordinate chart (wy, ..., wi,vq) € Rk:

szgj(WZa--'awk’vl’O)’ .]:2’k (318)
—det(Dy f) 1 = adj(Dyf)1 - Dy f -8 Wa,....we.v1.0).

where adj (D, f); denotes the first row of the adjoint matrix adj (D, f).

Remark 3.7. This row vector adj (D, f); represents the left null-vector / of the
matrix D, f. As mentioned before, the scalar adj (D, f); - Dy, f # 0 and, hence,
the row vector adj (D, f); - D,, f is non-singular.

Looking at the reduced problem (3.17), respectively (3.18), we observe
det (D, f) = 0 along the fold F, i.e. (3.17), respectively (3.18), is singular along
F.

Definition 3.6. Regular fold points p € F of the reduced flow (3.17) respectively
(3.18) satisfy the transversality condition (normal switching condition)

adj(Dyf)1-Dyf - g #0. (3.19)

The condition / - [(D2, f)(w,v,0) (r,r)] # 0 along F implies that det (D, f) has
different signs on adjacent subsets (branches) of the critical manifold S bounded
by F. Hence, in the neighborhood of regular fold points p € F the flow is directed
either towards or away from the fold F'. Solutions of the reduced problem will reach
the fold F in finite (forward or backward) time where they cease to exist.

We can circumvent the problem of the singular nature of the reduced problem
along the fold F by introducing a new time t; defined by dtv = —det (D, f)d 1,
(this is a space dependent time rescaling and, hence, the differential form is
needed), and rescaling time in system (3.17) respectively (3.18) which then gives
the desingularized problem

vi =adj(Dyf)i-Dwf-g(.0), (3.20)
respectively

w; =—det(D,f) -gjwa,....wx,v1,0), j=2,...k 3.21)

vi=adj(D,f)1-Dwf-gwa,...,wk,v1,0)
where the overdot denotes now d/d 1. From the time rescaling it follows that
the direction of the flow in (3.20) respectively (3.21) has to be reversed on
branches where det (D, f) > 0 to obtain the corresponding reduced flow (3.17),
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respectively (3.18). Otherwise, the flows of (3.17) and (3.20), respectively (3.18)
and (3.21), are equivalent. Obviously, the analysis of the desingularized problem
(3.20), respectively (3.21), is preferable.

3.2.3 Folded Singularities and Singular Canards

Our aim is to understand the properties of the reduced problem (3.17), respectively
(3.18), based on properties of the desingularized problem (3.20), respectively (3.21).
Keeping that in mind, we define the following:

Definition 3.7. We distinguish between two possible types of singularities of the
desingularized problem (3.20), respectively (3.21):

- Ordinary singularities which are defined by g = 0.
- Folded singularities which are defined by

det(Dyf) =0, adj(D,f)i-Dyf-g=0. (3.22)

Ordinary singularities correspond to equilibria of the reduced problem (3.17),
respectively (3.18). Generically, they are positioned away from the fold F,
ie. det(D,f) # 0, and they are isolated singularities. In other words, these
singularities correspond to equilibria in both the reduced and desingularized
system.

Folded singularities are positioned on the fold F. There is a crucial difference
between the case k = 1 and k > 2 and we will study these two cases separately.

3.2.31 TheCasek =1

Recall from Remark 3.7 that the scalar adj (D, f), - D,, f # 0. Hence, the folded
singularity condition (3.22) can only be fulfilled for g = 0. This folded singularity
is generically a hyperbolic equilibrium for the desingularized problem (3.20), but
it does not correspond to an equilibrium of the reduced problem (3.17). In fact,
the reduced problem has finite non zero speed at the folded singularity (due to a
cancellation of a simple zero). This allows solutions of the reduced problem to cross
(in forward or backward time) from one branch of S via the fold F to the other
branch of S.

Definition 3.8. Given a singularly perturbed system (3.2) with a (locally) folded
critical manifold § = §, U F U S;,, where S, denotes an attracting branch and S;/,
denotes a repelling branch (case m = 1) respectively a saddle type branch (case
m > 2). A trajectory of the reduced problem (3.17) that has the ability to cross in
finite time from the S, branch of the critical manifold to the S, /; branch via a folded
singularity is called a singular canard.
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Fig. 3.2 The FitzHugh-Nagumo (FHN) model (3.23) with a = —+/3, b = /3, ¢ = 4/15,
€ = 8/100: (a) singular canard cycles and relaxation oscillation cycles for I = I = —7/4

obtained through continuous concatenations of slow orbit segments (gray) and fast fibers (black);
(b) the corresponding reduced flow projected onto coordinate chart v € R indicates the crossing of
a singular canard from S, to S,; (¢) Bifurcation diagram includes a singular subcritical Andronov-
Hopf bifurcation (HB) at I = Iy ~ —1.632, a branch of canard cycles and relaxation oscillation
cycles and a saddle-node of limit cycles (SNLC) bifurcation at I = I¢ &~ —1.653

Example 3.2. The FitzHugh-Nagumo (FHN) model [20,45] is a qualitative (dimen-
sionless) description of action potential generation in a class of conductance based,
Hodgkin-Huxley-type models [30], given by

w = eg(w,v) = e(v—cw)

V= fwv)y=viv—a)b—v)—w+1,

(3.23)

where we assume b > 0 > a. For I = 0, this system may have one, two or three
equilibria depending on (a, b, c). We restrict the parameter set to 4 /(a—b)*> > ¢ > 0
which guarantees only one equilibrium. Note, for sufficiently small ¢ > 0 there will
be only one equilibrium in system (3.23) for any choice of /.

The critical manifold S of system (3.23) is not normally hyperbolic since f, =
—3v? 4+ 2(a + b)v — ab vanishes for vt = (a + b £ /a? —ab + b?)/3. At these
values, f,,(vY) = F2+a? —ab +a? # 0. Furthermore f,, = —1 # 0 which
shows that the FHN model has a cubic-shaped critical manifold § = §; U F~ U
S, U FT U S} with outer attracting branches S* and repelling middle branch S, ;
see Fig.3.2a.

The critical manifold S is given as a graphw = h(v) = v(v—a)(b —v) + I.
Thus we project the reduced problem on the single coordinate chart v € R,
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—(=3vV* 4+ 2@+ byv—abyy=—-v—cO(v—a)b—v)+1)). (3.24)
The corresponding desingularized problem is given by
v=—-(wv—clviv—a)(b—v)+1)). (3.25)

We have to reverse direction of the desingularized flow on S, to obtain the
corresponding reduced flow. Otherwise, the desingularized flow is equivalent to the
reduced flow. There exist parameter values I = [ f such that the right hand side

of (3.25) evaluated at v = v* vanishes. These particular parameter values define
folded singularities of the reduced problem (3.24). Figure 3.2a,b shows the case
I =1 7 where the folded singularity exists at the lower fold F~. We observe a
singular canard crossing from S, to S;.

This enables us to construct a whole family of singular limit cycles known as
singular canard cycles that are formed through continuous concatenations of slow
orbit segments including canard segments (gray segments, one arrowhead) and fast
fibers (black segments, two arrowheads). We distinguish two types of canard cycles,
known as canards without head and canards with head [2,62]. Both are illustrated in
Fig.3.2a: a canard without head is a continuous concatenation of a singular canard
segment from S to S, (grey) and a fast fiber segment connecting S, with S
(black). Obviously, a jump back along a fast fiber segment from any base point on
S, works. This gives the family of canards without head.

Similarly, a canard with head is a continuous concatenation of a singular canard
segment from S to S, (grey), a fast fiber segment connecting S, to S (black),
a slow segment on S connecting to the upper fold F* (grey) and, finally, a fast
fiber segment connecting F* to S, (black). Again, a jump forward along a fast
fiber segment from any base point on S, works and we obtain a whole family of
canards with head. All these singular canard cycles have O(1) amplitude and have
a frequency on the order of the slow time scale. The canard cycles are bounded by
a singular relaxation cycle, a continuous concatenation of a slow segment on S
connecting to F~ (grey), a fast fiber segment connecting F~ to S (black), a slow
segmenton S;F connecting to F* (grey) and, finally, a fast fiber segment connecting
FT to S, (black).

3.2.3.2 The Casek > 2

Here, the folded singularity condition (3.22) can be fulfilled for g # 0. Such
generic folded singularities do not correspond to equilibria of the reduced problem
(3.18). The set of these folded singularities, denoted M y, forms a submanifold of
codimension one in the (k — 1)-dimensional set of fold points F.

Remark 3.8. Inthe case k = 2, the set M ; consists of isolated folded singularities.
This makes the following description of associated geometric objects sometimes
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simpler or even trivial. The reader should keep that in mind since we do not
distinguish between k = 2 and k > 2 throughout this section and Sect. 3.2.4.2.

Generically, the set My viewed as a set of equilibria of the desingularized system
(3.21) has (k — 2) zero eigenvalues and two eigenvalues A/, with nonzero real
part. Thus for k > 3, M represents a normally hyperbolic manifold of equilibria
in system (3.21). The classification of folded singularities is based on these two
nonzero eigenvalues A1/, and follows that of singularities in two-dimensional vector
fields.

Definition 3.9. Classification of generic folded singularities (3.22):

- Inthe case that A/, are real, let us denote the eigenvalue ratio by
mi=A/A

where we assume without loss of generality that |A;] < |A;|. Then the
corresponding singularity is either a folded saddle if © < 0, or a folded node
if0<pu<l.

- In the case that A/, are complex conjugates and Rel;;» # O then the

corresponding singularity is a folded focus.

For a generic folded singularity, the algebraic multiplicity of the corresponding
singularities on both sides of the last equation in the reduced problem (3.18) is
the same (i.e. one). This leads in the case of a folded saddle or a folded node to a
nonzero but finite speed of the reduced flow through a folded singularity. Hence,
folded saddles and folded nodes create possibilities for the reduced flow to cross to
different (normally hyperbolic) branches of the critical manifold S via such folded
singularities. This is the hallmark of singular canards in systems with two or more
slow variables. Definition 3.8 of singular canards applies here as well. We restate it
here for convenience:

Definition 3.10. Given a singularly perturbed system (3.2) with a folded critical
manifold § = §, U F U Sy, where S, denotes an attracting branch and S;/,
denotes a repelling branch (case m = 1) respectively a saddle type branch (case
m > 2). A trajectory of the reduced problem (3.18) that has the ability to cross in
finite time from the S, branch of the critical manifold to the S, /; branch via a folded
singularity is called a singular canard.

Remark 3.9. In the case of a folded focus there are no singular canards. Only the
flow direction changes along the fold F at the folded focus. All solutions starting
near a folded focus reach the set of fold-points '/ M ; in finite forward or backward
time where they cease to exist due to finite time blow-up.

In the folded saddle case, i < 0, there exists a (k — 1)-dimensional centre-stable
manifold W, and a (k — 1)-dimensional centre-unstable manifold W,, along the
(k — 2)-dimensional normally hyperbolic manifold W, = W., N W, = M;y.
Both manifolds, W, and W,,, are uniquely foliated by one-dimensional fast fibers
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Sa

Fig. 3.3 A folded saddle singularity: (a) desingularized flow; (b) corresponding reduced flow and
(c) reduced flow on the critical manifold S. There are two singular canards that cross the fold F at
the folded singularity (black dot), one from S, to S, and the other (called faux canard) from S, to
Sa. The shaded region indicates a region of solutions on S, that will reach the fold F in forward
time

W; respectively W, over the base My where the fibers are tangent to the stable
respectively unstable eigenvector of the corresponding folded singularity pr € M,
i.e. the corresponding base point.

Recall that the reduced flow is obtained from the desingularized flow by changing
the direction of the flow on S, /. Thus, trajectories that start in a stable fiber W C
Wes C S, approach My in finite time and cross tangent to the stable eigenvector
of the corresponding folded singularity on M s to the unstable branch W, C S, ;.
These are singular canards of folded saddle type.

All other trajectories of the reduced flow starting in S, (close to F') reach either
the set of fold-points '/ M r in finite forward or backward time where they cease to
exist due to finite time blow-up or they do not reach the set /M at all. Figure 3.3
shows the folded saddle case fork = 2.

Remark 3.10. Trajectories starting on an unstable fiber W,, C W,,, C S, /; approach
M ; in finite time and cross tangent to the unstable eigenvector of the corresponding
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folded singularity on M ¢ to the stable branch W,; C S,. Such solutions are called
singular faux canards.

In the folded node case p > 0, assuming A/ < O are both negative, the whole
phase space S is equivalent to W,,. Let us define Wy, C W, as the (k — 1)-
dimensional subset of unique fast fibers corresponding to the span of the strong
stable eigenvectors along the base M y. Again, the reduced flow is obtained from
the desingularized flow by changing the direction of the flow on S,.

Definition 3.11. The set W, together with the (k—1)-dimensional set of fold points
F bounds a sector in S,, called the singular funnel, with the property that every
trajectory starting in the singular funnel reaches the set of folded node singularities
M in finite time and subsequently crosses the set F transversely to the other
branch S,/ in the direction that is tangent to the weak stable eigenvector of the
corresponding folded node singularity on M ¢.

Thus, every trajectory within a singular funnel is a singular canard. Trajectories
that start on the boundary set Wy, C S, reach also the set M ¢ in finite time but cross
tangent to the strong stable eigenvector of the corresponding folded node singularity
(by definition). All other trajectories of the reduced flow starting in S, (close to F)
reach the set of fold-points /M s in finite forward or backward time where they
cease to exist due to finite time blow-up.

Remark 3.11. In the folded node case i > 0 with A1/, > 0, we are dealing with a
whole family of faux canards.

3.2.4 Maximal Canards

Next, we are concerned with the persistence of singular canards as canards of the
full system (3.1). We first provide a geometric definition of canards for € > 0.
Recall that the branches S, and S,/ are normally hyperbolic away from the fold F'.
Thus, Fenichel theory implies the existence of (non-unique but exponentially close)
invariant slow manifolds S,  and S, /s away from F. Fix a representative for each
of these manifolds S, . respectively S, g ¢

Definition 3.12. A maximal canard corresponds to the intersection of the mani-
folds S, and S,/ extended by the flow of (3.1) into the neighborhood of the set
Mf C F.

Such a maximal canard defines a family of canards nearby which are exponen-
tially close to the maximal canard, i.e. a family of solutions of (3.1) that follow
an attracting branch S, of the slow manifold towards the neighbourhood of the
set My C F, pass close to My C F and then follow, rather surprisingly, a
repelling/saddle branch S, ;. of the slow manifold for a considerable amount of
slow time. The existence of this family of canards is a consequence of the non-
uniqueness of S, . and S,/ . However, in the singular limit € — 0, such a family
of canards is represented by a unique singular canard.
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Remark 3.12. The key to understanding the local dynamics near the set of folded
singularities by means of geometric singular perturbation theory is the blow-
up technique. The “blow-up” desingularizes degenerate singularities such as the
set of folded singularities or the fold itself. With this procedure, one gains
enough hyperbolicity on the blown-up locus B to apply standard tools from
dynamical system theory. For a detailed description of the blow-up technique and
its application to singularly perturbed systems we refer the interested reader to
[15,39,40,57,58,61,63].

Remark 3.13. A folded critical manifold S implies a single zero eigenvalue of the
m-dimensional layer problem. Hence in system (3.1), there exist locally invariant
manifolds W, (centre-stable) and W,, (centre-unstable) near the fold F where
W, U W, spans the whole phase space and W, = W,, N W, corresponds to a
(k + 1)-dimensional centre-manifold. A centre manifold reduction of system (3.1)
onto this (k + 1)-dimensional subspace W, captures the local dynamics near the
fold F. Note that the reduced problem (3.17) respectively (3.18) reflects already
such a center manifold reduction (on the linear level) through the projection onto
the nullvector / = adj (D, f); corresponding to the zero eigenvalue of the Jacobian
D, f. In the following, we present results that are based on such a reduction. The
interested reader is referred to, e.g. [6, 63, 65], for details.

3.2.4.1 Case k = 1: Singular Hopf Bifurcation and Canard Explosion

Recall from the FHN model that a folded singularity and associated singular canards
exist only for a specific parameter value / = [ . In the case k = 1, this shows thata
folded singularity is degenerate, i.e. a codimension-one phenomenon. Furthermore,
the condition for the folded singularity coincides with the equilibrium condition
g = 0. This indicates a bifurcation of the equilibrium state in the full system under
the variation of /. This can be easily seen when looking at a planar slow-fast system

w = eg(w,v)

3.26
V= fwv,1). (3.26)

The trace and the determinant of the Jacobian are given by
trJ = f, +egw, detJ = e(fogw — fugy) - (3.27)

Close to the fold F, a bifurcation of equilibria defined by f = g = 0 happens for
0 < € <« 1 when trJ = 0. This implies f, = —eg,, = O(¢€) and, in the singular
limit, this gives the fold condition f, = 0. The existence of singular canards is
given if the equilibrium g = 0 of the desingularized problem (3.20) is stable. This
implies that f,g, < O evaluated at g = 0 and, hence, detJ = O(e) > 0. So,
we are expecting a singular Andronov-Hopf bifurcation for I = Iy that creates
small O(/€) amplitude limit cycles with nonzero frequencies of order O (/) [39].
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Hence, the singular nature of the Andronov-Hopf bifurcation is encoded in both,
amplitude and frequency. Figure 3.2c shows an example of a singular subcritical
Andronov-Hopf bifurcation.

Note in Fig.3.2¢ that the O(4/€) branch of the Andronov-Hopf bifurcation
suddenly changes dramatically near / = I.. This almost vertical branch marks the
unfolding of the canard cycles within an exponentially small parameter interval of
the bifurcation parameter /. This is often referred to as a canard explosion [2,15,39].
The following summarizes these observations:

Theorem 3.5 (cf. [39]). Given a planar slow-fast system

w = eg(w,v)

3.28

V= fwow, 1), (3.28)

with a (locally) folded critical manifold S = S, U F U S,. Assume there exists a

folded singularity for I = Iy that also allows for the existence of singular canards.
Then a singular Andronov-Hopf bifurcation and a canard explosion occur at

Iy =1;+H e+ 0  and (3.29)
I =17+ (H + Ki) e + 0O(?). (3.30)

The coefficients Hy and K| can be calculated explicitly and, hence, the type of
Andronov-Hopf bifurcation (super- or subcritical).

In the singular limit, we have Iy = I, = Iy. By definition, we associate one
maximal canard with the canard explosion. In Fig.3.2a, this maximal canard is
represented by the singular canard that moves along the middle branch S, right
up to the upper fold F7. It delineates between jump back canards that form small
amplitude canard cycles—canards without head—and jump away canards that form
large amplitude canard cycles—canards with head.

In Fig.3.2c, the branch of canard cycles then connects to the branch of stable
relaxation oscillation cycles with large amplitude. Note, there is also a saddle-node
of limit cycles bifurcation of the canard cycles where the stability property changes.
Since canards are exponentially sensitive to parameter variations, they are hard to
detect. In reality, this makes canard cycles rather exceptional.

3.2.4.2 Case k > 2: Folded Saddle and Folded Node Canards

Here, folded singularities are generic, i.e. they persist under small parameter
variations. This makes these canards robust creatures, i.e. their impact on the
dynamics of a singularly perturbed system is observable. In the following, we
present persistence results of canards.
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Theorem 3.6 (cf. [57, 63]). In the folded saddle case (u < 0) of a singularly
perturbed system (3.1), the (k — 1)-dimensional set W, of singular canards perturb
to a (k — 1)-dimensional set of maximal canards for sufficiently small € < 1.

Thus, there is a one-to-one correspondence between singular and maximal canards
in the case of folded saddles. Note that these canards form a separatrix set for
solutions that either reach the fold F locally near the set M ¢ or not. This separatrix
set of folded saddles will play an important role in the analysis of neural excitability
(see Sect.3.3).

Theorem 3.7 (cf. [6,57,61,63]). In the folded node case 0 < u <1 of a singularly
perturbed system (3.1), we have the following results:

(i) The (k—1)-dimensional set Wy of singular strong canards perturb to a (k—1)-
dimensional set of maximal strong canards called primary strong canards for
sufficiently small € <K 1.

(ii) If 1/u ¢ N then the (k — 1)-dimensional set of singular weak canards perturb
to a (k — 1)-dimensional set of maximal weak canards called primary weak
canards for sufficiently small € < 1.

(iii) If2l + 1 < u=' <2l +3,1 € Nand u=' # 2l + 2, then there exist |
additional sets of maximal canards, all (k — 1)-dimensional, called secondary
canards for sufficiently small € < 1. These | sets of secondary canards are
0 (e'=M/2) close to the set of primary strong canards in an O(1) distance
from the fold F.

Note the difference to the folded saddle case. In the folded node case, only a finite
number of maximal canards persists under small perturbations 0 < € < 1 out of the
continuum of singular canards given in the singular limit ¢ = 0. Furthermore, these
maximal canards create some counter-intuitive geometric properties of the invariant
manifolds S, and S,/ near the set of folded singularities M . In particular, the
(k — 1)-dimensional set of primary weak canards forms locally an “axis of rotation”
for the k-dimensional sets S,  and S, /, . and hence also for the set of primary strong
canards and the set of secondary canards; this follows from [61], case k = 2. These
rotations happen in an O(/€) neighbourhood of F. The rotational properties of
maximal canards are summarized in the following result:

Theorem 3.8 (cf. [6,57,61,63]). In the folded node case of a singularly perturbed
system 3. D) with2l +1 < pu™' <2l +3, 1 eNand p=" #21 + 2,

(i) the set of primary strong canards twists once around the set of primary weak
canards in an O(+/€) neighbourhood of F,

(ii) the j-th set of secondary canards, 1 < j <, twists (2] + 1)-times around the
set of primary weak canards in an O(+/€) neighbourhood of F,

where a twist corresponds to a half rotation. Thus each set of maximal canards has
a distinct rotation number.
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As a geometric consequence, the funnel region of the set of folded nodes My in S,
is split by the secondary canards into (/ + 1) sub-sectors /;, j = 1,...,/ 4+ 1, with
distinct rotational properties. /) is the sub-sector bounded by the primary strong
canard and the first secondary canard, 7, is the sub-sector bounded by the first and
second secondary canard, [; is the sub-sector bounded by the (I — 1)-th and the
[-th secondary canard and finally, /;4; is bounded by the /-th secondary canard
and the set of fold points F. Trajectories with initial conditions in the interior of
I;,1 < j <[+ 1, make (2j + 1/2) twists around the set of primary weak
canards, while trajectories with initial conditions in the interior of /;4; make at
least [2(/ 4+ 1) — 1/2] twists around the set of primary weak canards. All these
solutions are forced to follow the funnel created by the manifolds S, /. and
S, /5, e After solutions leave the funnel in an O(+/€) neighbourhood of F they
get repelled by the manifold S,/ /c and will follow close to a fast fiber of system
(3.1). Hence, folded node type canards form separatrix sets in the phase space for
different rotational properties near folded critical manifolds. Canard induced mixed
mode oscillations (MMOs) are a prominent example of a complex rhythm that
can be traced to folded node singularities. We refer the interested reader to, e.g.,
[5,6,10,43,61].

3.3 Excitable Systems

The notion of excitability was first introduced in an attempt to understand firing
behaviors of neurons. Neural action potentials are responsible for transmitting
information through the nervous system. Most neurons are excitable, i.e. they are
typically silent but can fire an action potential or produce a firing pattern in response
to certain forms of stimulation. While the biophysical basis of action potential
generation per se is well established, the coding properties of single neurons are
less well understood. A first answer to the question of the neuron’s computational
properties was given by Hodgkin [29] who identified three basic types (classes)
of excitable axons distinguished by their different responses to injected steps of
currents of various amplitudes.

Type I (class I) axons are able to integrate the input strength of an injected current
step, i.e. the corresponding frequency-current (f-I) curve is continuous.

Type II (class II) axons have a discontinuous f-I curve because of their inability
to maintain spiking below a certain frequency. The frequency band of a type II
neuron is very limited and, hence, relatively insensitive to the strength of the injected
current. It appears that type II neurons resonate with a preferred frequency input.

Type III (class III) axons will only fire a single or a few action potentials at the
onset of the injected current step, but are not able to fire repetitive action potentials
like type I and type II neurons (besides for extremely strong injected currents). Type
III neurons are able to differentiate, i.e. they are able to encode the occurrence of
a “change” in the stimulus. Such phasic firing (versus tonic or repetitive firing)
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identifies these type III neurons as slope detectors. Obviously, the f-I curve is not
defined for type III neurons.

Rinzel and Ermentrout [52] pioneered a mathematical framework based on
bifurcation theory that distinguishes type I and type II neural models. In Sect. 3.3.1,
we will briefly review this approach but with a slight twist. We will emphasise the
inherent multiple time-scales structure found in many neuronal models and apply
geometric singular perturbation theory together with bifurcation theory to define
the different types of excitability.

In Sect.3.3.2 we will go a step further and ask more general questions about
excitability. In particular, we want to focus on dynamic inputs beyond (current) step
protocols (that are usually applied in laboratory settings). For example, synapses
produce excitatory or inhibitory inputs and these synaptic inputs may be activated
(resp. inactivated) fast or slow. We will model sufficiently smooth dynamic inputs
and apply these inputs to the 2D slow-fast excitable system models introduced
in Sect.3.3.1. The geometric key to the understanding of excitability will be to
identify threshold manifolds (aka separatrices). This is very much in the spirit of
FitzHugh’s work on excitability [18-20] (see also Izhikevich [31], Chap. 7), but it
extends FitzHugh’s ideas to the dynamic, nonautonomous case.

3.3.1 Slow-Fast Excitable Systems with Step Protocols

We focus on a class of 2D excitable models given by

w = eg(w,v,¢€)

3.31

V= fwov,e,I)= fiw,v,e)+ 1 (3.31)

where I € [Iy, I;] C R is an external (constant) drive of the excitable system, and
the following assumptions hold (for many two-dimensional neuronal models):

Assumption 1. The critical manifold S of system (3.31) is cubic shaped, i.e.
S=S; UF US,UFtust,

with attracting outer branches Sai, repelling middle branch S,, and folds F*.

Assumption 2. The (unforced) system (3.31) with I = 0 has one, two or three
equilibria. In the corresponding reduced problem, one equilibrium is located on the
lower attracting branch S and it is stable. Each of the other two equilibria, if they
exist, are located on the middle branch S,.

Example 3.3. The Morris-Lecar (ML) model [46] was originally developed to
study the electrical activity of barnacle muscle fiber. Later it was popularised as
a model for neural excitability; see e.g. Izhikevich [31] where a large collection of
minimal conductance based 2D ML-type models is introduced. We use the ML-type
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model from Rinzel and Ermentrout [52] in the following form (as in Prescott et al
[48]):

w = ¢[WOO(V) — W]/TW(V)

CV/ = _Iion(wa V) + Istim ’ (332)
with functions
Tion(w. V) = ~(g pmo(V)(V = E ) + gow(V — Eo) + &1(V ~ E1)
Moo(V) = [1 + tanh((V — V1)/ V2)]/2 (3.33)

Woo (V) = [1 + tanh((V — V3)/V4)]/2
Tw(V) = 1/ cosh((V —V3)/(2V4)) .

V' models the voltage membrane potential and Z;on (V) = 1 rust + Isiow + licak
represents the ionic currents of the model which consist of a fast non-inactivating
current /s,y = grMoo(V)(V — Ey), a delayed rectifier type current Ig,, =
gsw(V — E), and a leak current Ijo,x = g;(V — V;). The parameter Iy,
represents the injected current step. The activation variable w of the Iy, current
provides the slow voltage-dependent negative feedback required for excitability.
Its dynamics are described by the sigmoidal activation function weo (V') and the
bell-shaped voltage dependent time-scale t,,(}')/¢. The activation of the fast [ 7,
current is assumed instantaneous and, hence, its activation variable is set to m =

Meo(V).

A representative parameter set of this ML model is given by g, = 20mS/ cm?,
gs = 20mS/ cm?, g = 2mS/ cm? (maximal conductances of ion channels),
E; = 50mV, E; = —100mV, E; = —70mV (Nernst potentials), capacitance

C = 2pF/cm?, time scale factor ¢ = 0.1 ms~! and auxiliary voltage parameters
Vi=—-12mV,V, =18mV, V3 =0mV, V; = 10mV.

To identify a slow-fast timescale structure explicitly in (3.32) we have to non-
dimensionalise the model. This is done by introducing dimensionless variables v =
V/k, and t; = t/k; with typical reference scales for voltage k, = 100mV and
time k; = C/gmax = 0.1 ms where g,,,, = 20mS is a reference conductance
scale. This leads to the dimensionless ML model,

w = E[\'l/'oo (V) - W]/fw(v) = Gg(W, V)

VvV = _Ii()n (W, V) + I_stim = f(W, v, I_stim) = fl (W’ V) + I_S”m ’ (334)
with functions
Tion(w.v) = =(@rmoc(M (v = Ep) + gw(v = Ey) + 21(v = E))
Moo(v) = [1 + tanh((k,v — V1)/ V2)]/2 (3.35)

Woo (v) = [1 + tanh((k,v — V3)/ V4)]/2
T (v) = 1/ COSh((kvV - V3)/(2V4)) .
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where gx = gx/gmax, Ex = Ex/kv (-x = f;s’ l), I_stim = Istim/(kvgmax) and
€ := (C/gmax)$ = 0.01

is the singular perturbation parameter that measures the time-scale separation
between the fast v dynamics and the slow w dynamics. This timescale separation
can be enhanced by decreasing the capacitance C, slowing the w-dynamics via ¢
or increasing the maximum conductance of the ion channels. Hence, system (3.34)
can be viewed as a singularly perturbed system.

Using the parameter values from above, it can be shown that the critical manifold
is cubic shaped (Assumption 1) and that it has three equilibria for / = 0, one on
the lower attracting branch and the other two are on the repelling middle branch
(Assumption 2). By changing the system parameters, this model can be transformed
into all three excitable neuron types; see [48] for more details.

Example 3.4. We introduce a dimensionless hybrid of the Morris-Lecar and the
FitzHugh-Nagumo (ML-FHN) model that combines important features of both:

/

W= eg(w,v) = €(Woo (V) — W)
V= fwv,)=viv—a)b—v)—w+I=FQW)—w+1, (3.36)

with
Woo (v) = [l + tanh((v — v3)/v4)]/2

with dimensionless parameters b > 0 > a, v3, v4 > 0, I is the primary bifurcation
parameter and € < 1 as the singular perturbation parameter. Again, this singularly
perturbed system has a cubic-shaped critical manifold (Assumption 1). Furthermore,
the sigmoidal shaped activation function we(v) allows us to explore more easily
the cases of different numbers of equilibria as described by Assumption 2. We
focus on this ML-FHN model (3.36) to explore the notion of excitability. We fix
the parameter « = —0.5, b = 1, and vary (Z, v3, v4).

3.3.1.1 The Geometry of Excitability

A classical physiology definition of excitability is that a large enough brief stimulus
(“supra-threshold” pulse) triggers an action potential (large regenerative excursion).
This implies the existence of a “threshold” that the stimulus must pass to evoke
an action potential with a fairly constant amplitude. On the other hand, a graded
response with intermediate amplitudes was already observed in the Hodgkin-Huxley
model of the squid giant axon [29] as well as the FHN model [19, 20] which
contradicts the traditional view that the action potential is an all-or-none event with
a fixed amplitude. We will focus on a geometrical definition of excitability to avoid
this ambiguity.
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Fig. 3.4 Bifurcation diagrams for type I-III neurons of the ML-FHN model (3.36) together with
J — I curves: (Type I) v3 = 0.3, v4 = 0.1; we observe a SNIC bifurcation for I = Ij;; = 0.079
where the frequency approaches zero; (Type II) v = —0.1, v4 = 0.1; we observe a singular HB
bifurcation for I = Ij;y = 0.109; note the small frequency band for the relaxation oscillation
branch; (Type III) v3 = —0.3, v4 = 0.1; there are no bifurcation for / = [—0.4,0.4]

As mentioned in the introduction, Hodgkin [29] identified three distinct types
(classes) of excitability by applying a current step protocol to neurons:

- Type I neurons: depending on the strength of the injected current, action
potentials can be generated with arbitrary low frequency; see Fig. 3.4.

- Type Il neurons: Action potentials are generated in a certain frequency band that
is relatively insensitive to changes in the strength of the injected current; see
Fig.3.4.

- Type III neurons: A single action potential is generated in response to a pulse of
injected current. Repetitive spiking is not possible or can be only generated for
extremely strong injected current.

Type I and type II neurons are able to fire trains of action potentials (tonic firing)
if depolarized sufficiently strong which distinguishes them from type III neurons.
This distinction points to a bifurcation in type I and type II neurons where the cell
changes from an excitable to an oscillatory state. The main bifurcation parameter is
given by I, the magnitude of the current step protocol. This leads to the following
classical definition of excitability via bifurcation analysis under the variation of the
applied current / [52]:
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Fig. 3.5 Two parameter bifurcation diagram (vs, v4) of the ML-FHN model (3.36) with bound-
aries of type I, type II and type III neurons: the three dots indicate the parameter values used in
Fig.3.4

- Type I : The stable equilibrium (resting state) disappears via a saddle-node on
invariant circle (SNIC) bifurcation; see Fig. 3.4.

- Type II: The stable equilibrium (resting state) loses stability via an Andronov-
Hopf bifurcation; see Fig.3.4.

- Type III: The equilibrium (resting state) remains stable for I € [ly, I;]; see
Fig.3.4.

In the ML-FHN model (3.36) we are able to identify all three types of neurons
by varying the parameters (v3, v4) which change the position (v3) and maximum
slope (v4) of the sigmoidal function weo (v). Figure 3.5 shows the different regions
in the parameter-space (vs, v4) that correspond to the different excitability classes.
The boundaries were found numerically using the software package AUTO [13].
The boundary between type II and type III is a continuation of the Andronov-Hopf
bifurcation at a fixed I = I;. Hence, its position depends on the definition of the
interval I € [Iy, I;] where the type III neuron must stay excitable. The boundary
between type I and type Il is a continuation of a cusp-bifurcation where the two folds
coalesce. This boundary is not exact but defines a small strip where the transition
happens. Note that fixing v4 (slope) and varying v3 (position) provides us with a
simple way to change the model from type I to type II and to type III. Figure 3.4
was obtained in that way. Throughout the rest of the chapter, we will fix v4 = 0.1
and use vz as our second bifurcation parameter.

Since the ML-FHN model (3.36) is a singularly perturbed system, we are able
to provide the corresponding definition of excitability based on geometric singular
perturbation theory:

- Type I: The stable equilibrium on the lower attracting branch S, disappears via
a singular Bogdanov-Takens bifurcation at the lower fold F—; see Fig. 3.6.
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Fig. 3.6 ML-FHN model (3.36), singular limit bifurcations and their singular limit orbits: (type I)
saddle-node homoclinic (SNIC) for v; = 0.3 and I = Ij;y = Ip;r(v3) = 0.079; (type II) canard
cycles for v3 = —0.1 and I = Ij;y = Ip;r(v3) =~ 0.109

- Type II: The stable equilibrium on the lower attracting branch S bifurcates via
a singular Andronov-Hopf bifurcation at the lower fold F~; see Fig. 3.6.

- Type III: The stable equilibrium on the lower attracting branch S, remains stable
for I € [I(), 11]

To identify the different types of excitability one has to look at the nullclines of the
ML-FHN model (3.36). As can be seen in Fig.3.7, for I = Iy a type I neuron
has a saddle-node bifurcation of equilibria at the lower fold F~. This allows for
the construction of a singular homoclinic orbit as follows (see Fig.3.6): we start at
the saddle-node equilibrium at the lower fold F~ and concatenate a fast fiber of
the layer problem that connects to the upper stable branch S,". Then we follow the
reduced (slow) flow towards the upper fold F+ where we concatenate a fast fiber at
F™ that connects back towards the lower attracting branch S_". Finally, we follow
the reduced (slow) flow on S, towards the lower fold /'~ and hence end up at the
saddle-node equilibrium. This homoclinic orbit is the singular limit representation
of the SNIC shown in Fig. 3.4. The unfolding of this singular limit object is quite
intricate [9], is closely related to a local slow-fast Bogdanov-Takens bifurcation [7]
at the lower fold FF~ and goes beyond the aim of this chapter.

In the case of a type II neuron, the stable equilibrium on the lower branch
S, crosses the lower fold F~ at I = Ipy = Ipir(v3) (note, it is a different
value than for the type I case) and moves onto the unstable middle branch S,; see
Fig.3.7 (note, a precise definition of I = I;;, will be given in Sect. 3.3.2). This
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Fig. 3.7 ML-FHN model (3.36): nullclines under variation of / which leads to the (singular limit)
definition of /;;, and Ip;s for type I-III: (type I) I = Ij;s at a saddle node bifurcation; (type II)
I = Iy at singular HB bifurcation; (type III) no bifurcation; (type I-III) / = I, when the
w-coordinate of the equilibrium on S~ for I = 0 equals the w-coordinate of the lower fold F—
for I = Ij,,. In the type I case, Ij;y = I,;,. The bifurcation values I;;s respectively threshold
values I, are not the same for the different types

is the same mechanism as shown for the FHN model in Fig.3.2. Hence, one can
construct singular canard cycles that are formed through concatenations of slow
canard segments and fast fibers as shown in Fig. 3.6. Note that these singular canard
cycles have O(1) amplitude and have a frequency O(1) on the order of the slow
time scale. These singular canard cycles will unfold to actual canard cycles as we
turn on the singular perturbation parameter. The unfolding of these canard cycles,
the canard explosion, happens within an exponentially small parameter interval of
the bifurcation parameter near / = I¢ . This canard explosion is preceded by a
singular supercritical Andronov-Hopf bifurcation at / = Iy that creates small
stable O(4/€) amplitude limit cycles with nonzero intermediate frequencies of order
O(+/€) [39] and succeeded by relaxation oscillations with frequencies of order
O(1); see Fig.3.4. Hence the singular nature of the Andronov-Hopf bifurcation is
encoded in both, amplitude and frequency. Note that the classic definition of type
II excitability refers to the slow frequency band of the relaxation oscillations which
does not vary much.
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Fig. 3.8 ML-FHN model (3.36) with current step protocols for type I-III and time traces for
different step currents /: (type I) for I < I,y = I, no spiking while for I > I,;; there is
periodic (tonic) spiking; (type II) for I < I, no spiking, for I;;, < I < Ip;s a transient spike
while for I > I;;s there is periodic (tonic) spiking; (type III) for I < I, no spiking while for
I, < I there is a transient spike

In the case of type III neurons, there is no bifurcation (see Fig. 3.4) and, hence, a
type III neuron is excitable for all I € [y, I;], i.e. a type III neuron does not spike
repetitively. On the other hand, as one observes in Fig. 3.8, the type III neuron is
indeed excitable—it is able to elicit a single spike for a sufficiently strong injected
current step I > Ij,.

3.3.1.2 Transient Responses

Let us consider possible transient responses of type I and type II neurons for I <
Ipir, the minimum injected current step I;;s required for periodic tonic spiking.
Type II neurons are also able to elicit a single spike for a sufficiently strong injected
current step I, < I < Ip;r; see Fig. 3.8. On the other hand, type I neurons are not
able to elicit a single spike below the minimum injected current step /j;s required
for periodic tonic spiking; see Fig. 3.8. Obviously, this transient behavior for type II
neurons cannot be explained by the bifurcation structure identified in Fig. 3.7 since
this transient behavior is found for I;,, < I < I;;¢. It points to the ability of type II
and III neurons to elicit single transient spikes under a current step protocol, while
type I neurons are not able to produce this transient behaviour.

Figure 3.9 provides an explanation for the firing threshold / = I, in the case
of a type III neuron. The rest state, / = 0 case in Fig. 3.9, on the lower attracting
branch (the resting membrane potential of a neuron) is given by the intersection of
the two nullclines, the critical manifold S and the sigmoidal w = weo(v). When
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Fig. 3.9 Explanation of transient spiking property of type III neuron shown in Fig. 3.8: open circle
indicates resting state for / = 0 while filled circle indicates the resting state for / > 0; the firing
threshold manifold (dashed curve) for I > 0 is the extension of the middle repelling branch S, .
in backward time; (left panel) no spike since initial rest state is to the right of the firing threshold
manifold; (right panel) transient spike since initial rest state is to the left of the firing threshold
manifold

a current step / is injected, the critical manifold S shifts to the right. The old rest
state is suddenly off S and it will follow the fast dynamics to find a stable attractor.
If it follows a fast fiber of the lower stable branch S, then the cell is not able to fire
(right panel), but if it follows a fast fiber of the upper stable branch S a+ . then the cell
will fire an action potential before it returns to the lower S, and the new resting
state (left panel). The firing threshold manifold [11, 18,42,48] is shown as a dashed
curve. It is the extension of the unstable middle branch S, in backward time. In
the singular limit, this firing threshold manifold is given by the concatenation of the
branch S, and the layer fiber attached to the lower fold F~. By looking at Fig. 3.7
and the position of the equilibrium state for / = 0 relative to the nullclines for
I > 0 it becomes now apparent why type II and type III neurons can fire transient
spikes while type I neurons cannot.

This also points to a well known phenomenon in neuronal dynamics known as
post-inhibitory rebound (PIR) [4,21], where excitable neurons are able to fire an
action potential when they are released after having received an inhibitory current
input for a sufficient amount of time. Again, only type II and III neurons are able
to create a post-inhibitory rebound while type I neurons cannot. Simply note that
Fig. 3.8 could also be interpreted as a PIR current step protocol where cells have
been held sufficiently long at / = 0 before they are released back to the original
state I > 0.
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It seems that the transient firing behavior observed for type I and type III neurons
is a function of the external current amplitude only. This is actually a misconception
because it also depends crucially on the dynamics of the external input. In a current
step protocol, we are dealing with an instantaneous (fast) change in the external
input, i.e. a fast input modulation. In the following, we will show that these transient
behaviors can be explained in a more general context by applying a dynamic,
nonautonomous approach to the problem under study.

3.3.2 Slow-Fast Excitable Systems with Dynamic Protocols

We focus on the ML-FHN model (3.36) with an external drive /():
w: =eg(w,v) = €(Weo (v) —w) (3.37)
V= fwvt)=Fv)—w+ I(1),
where we assume that /(¢) is a sufficiently smooth function. This excludes the case
of the current step protocol used in the previous section. We replace this protocol
by a mollified version such as given by a smooth ramp or by a smooth pulse which
resemble qualitatively certain classes of neuronal synaptic or network inputs.
System (3.37) is a singularly perturbed nonautonomous system. Is it possible
to apply geometric singular perturbation theory to the nonautonomous case as
well? In the following, we briefly highlight connections between geometric singular
perturbation theory and nonautonomous attractor theory (see also Chap. 1 of this
book).

3.3.2.1 Nonautonomous Systems and Canard Theory

Given a nonautonomous singularly perturbed system
w = eg(w,v,€,1)

V = f(w,v,€,1) (3.38)

where w = (wy,...,wi—1) € R-1and v = i,...,vy) € R™ are slow and fast
phase space variables, ¢ € R is the fast time scale and the prime denotes the time
derivative d /dt. It is well known that such a nonautonomous system can be viewed
as an extended autonomous system by increasing the phase space dimension by one,
ie.

w =eg(w,v,¢,5)
V= f(w,v,€,5) (3.39)
s’ =1
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where s € R is an additional (fast) dummy phase-space variable. Note, this system
has no critical manifold S. Hence, the previously introduced geometric singular
perturbation theory is only of limited use here. To be more precise, the fast dynamics
of the (v,s)-variables are dominant throughout the phase space. Thus we can
interpret this system as a regularly perturbed nonautonomous problem [36,37,50].

This apparent shortfall with respect to geometric singular perturbation theory
diminishes immediately if we assume that the nonautonomous nature of the problem
evolves slowly, i.e. g(v,w,€,7 = €t) and f(v,w,€,7 = €t) where € < 1 indicates
the scale separation between the fast time scale ¢ and the slow time scale ¢ which
leads to

/

S =
w = eg(w,v,¢,5) (3.40)
V= f(w,v,e,5).

This system represents a special case of a singularly perturbed system (3.1) where
(w, s) € R¥ are slow variables and v € R™ are fast variables. The critical manifold
is given by f = 0 and we can apply the theory given in Sect.3.2. In particular,
folded critical manifolds provide singularly perturbed systems with the opportunity
to switch from the slow time scale to the fast time scale or from one attracting sheet
of a critical manifold to another. As we have seen before, most models of excitability
have cubic shaped critical manifolds (i.e. they have two folds) and, hence, have the
ability to switch between different states (e.g. silent and active).

Furthermore, while system (3.40) possesses, in general, no equilibria, it may
possess folded singularities. As described in Sect. 3.2.4, canards of folded saddle
and folded node type have the potential to act as “effective separatrices” between
different local attractor states in a dynamically driven multiple scales system. A
dynamic drive itself (e.g., in the case of a periodic signal that regularly rises and
falls) has the potential to create folded singularities and to form and change these
effective separatrices. Hence, the specific nature of the dynamic drive determines
which local attractor states can be reached through global mechanisms. This point
of view has profound consequences in the analysis of excitable systems as we will
show next. In particular, we will identify canards of folded saddle type as firing
threshold manifolds.

3.3.2.2 Slow External Drive Protocols

We analyse a 2D singularly perturbed system with slow external drive /(ef) given
by

w = egw,v) = e(Weo (V) — W)

V= fw,v,t) = F(v) —w+ I(et), (3.41)

~
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where the autonomous part of this model, i.e. system (3.41) with I(ez) = 0, fulfills
Assumption 1 and 2. Obviously, the ML-FHN model (3.37) with slow external
drive I(et) fulfills this requirement. We recast the 2D nonautonomous singularly
perturbed problem as a 3D autonomous singularly perturbed problem,

s =¢€
W =eg(w,v) = e(Woo(v) — W) (3.42)
V= fw,v,s) = F(v) —w+ I(s),

where (s, w) € R? are the slow variables and v € R is the fast variable.

Assumption 3. The external slow drive 1(s) is a C* function which is constant
outside a finite interval [s~,sT], i.e. I(s) = Io for s < s~ and I(s) = I for
s > st I(s) is bounded, i.e. Iyi, < I1(s) < Lyax, Vs € R, such that type I and II
neurons are in an excitable state for the maximal constant drive I = 1,4 < Ij;r.

Remark 3.14. By Assumption 3, the function I’(s) = I, is compactly supported.
This is not necessary for the following analysis but makes it more convenient. We
could relax the smoothness assumption on /(s). The constant states could also be
relaxed to asymptotic states.

Example 3.5 (Ramp). This is a mollified version of the current step protocol and is
given by

I(s) = % (1 + tanh (M)) . Vsels,sT], (3.43)

S1

I(s) = 0 = Iy, fors < s~ and I(s) = I} = I,4, fors > s™ for a sufficiently
large choice of [s~, s "] centered around so. The ramp has a maximal slope of 11 /s;
when I (sg) = 1;/2.

Example 3.6 (Pulse). We model a symmetric pulse given by

I

— ., Vsel[s.sT], (3.44)
cosh (—2(‘:“‘)) )

I(s) =

I(s) = 0 = Iy, fors < s~ and for s > st for a sufficiently large choice of
[s™, s+] centered around sy with I(s9) = I} = I,4.. The pulse has its maximal
slope of I1/sy when I(so + % In(3 — 2J2) = 1/V2.

Figure 3.10 shows ramp and pulse protocol examples. Note that the maximal
drive I; is the same in both cases, only the maximal slope of the ramp respectively
the pulse varies (slightly). In both cases, a single spike is elicited if the slope of rising
exceeds a certain threshold value. This clearly indicates that this type II neuron is
a slope detector (for I < I;r). The same can be observed for type III neurons.
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Fig. 3.10 Type Il neuron (v3 = —0.1) for /;, < I} = 0.09 < I;;r: (a) ramp protocol (3.43) with
s1 = 0.5 (dark grey, no spike) and s; = 0.4 (bright grey, transient spike); note that the difference
in the two ramp protocols is barely visible; (b) pulse protocol (3.44) with s, = 2.3 (dark grey,
no spike) and s, = 2.2 (bright grey, transient spike). Note that the difference in the two ramp
protocols is barely visible

In the following, we will use geometric singular perturbation theory to explain this
phenomenon in detail.

3.3.2.3 Geometric Singular Perturbation Analysis
The critical manifold S of system (3.42) is given as a graph
w=W(s,v)=FW)+ I(s). (3.45)

By Assumption 1, this manifold is cubic shaped, i.e. S has two folds F* forv = v*
where F,(vY) = 0 and F,,(v) # 0 for all s € R. Note that F, = dF/dv,
F,, = d*>F/dv*. The geometry of the critical manifold S together with the stability
properties of the three branches of S, outer branches S ui are stable and middle
branch S, is unstable, imply that F,,(v*) < 0 while F,,(v") > 0. Figure 3.11
shows the critical manifold in the case of a ramp respectively pulse protocol.

Assumptions 2 and 3 are concerned with properties of the reduced problem of
system (3.42). Since the critical manifold S is a graph w = W(s,v), we are able
to project the reduced problem onto a single coordinate chart (s, v) € R? (compare
with Sect. 3.2.2.1):
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Fig. 3.11 Critical manifold (3.45) for (a) ramp and (b) pulse protocol; note that the ramp and
pulse profiles are visible in the geometry of the critical manifold

s=1

3.46
—F,v=FQW) —we() + I(s) + I, ( )

where I, = dI/ds. This system is singular along the folds F* where F, vanishes.

We rescale time by dt = —F, dt; in system (3.46) to obtain the desingularized

system

s =-F,
v=FU) —we(v) + I(s) + Iy, (347)
where the overdot denotes now d/d t;. From the time rescaling it follows that the
direction of the flow in (3.47) has to be reversed on the middle branch S, where
F, > 0 to obtain the corresponding reduced flow (3.46). Otherwise, the reduced
flow (3.46) and the desingularized flow (3.47) are equivalent.

By Assumption 3, the drive /(s) is constant for s € (—o00,s™) U (sT, o0). From
Assumption 2 it follows that

V= FW) =W (W) +I(s)+I; = F(V)—weo(V)+1 < 0,Vs € (—o0, s )U(sT, 00),

where I = I, or I = I,. This shows that the reduced flow cannot reach the lower
fold F'~ from S for a constant drive I confirming I < Ip;ir for type I and type II
neurons. For an action potential to occur we need necessarily that v > 0 somewhere
along the lower fold F~ within the dynamic range of /(s) where I; > 0 (on the
rising phase of /(s)). This implies that v must vanish in system (3.47) along the
lower fold F—, i.e.

I(s):=FO0v) —weo(V) + I(s)+ I, =0, (3.48)

which is Definition 3.7 of a folded singularity. The type of these folded singularities
is obtained by calculating the Jacobian of system (3.47),

0 —F
J = " . 3.49
(Is"l‘lss Fv_WOO,V) ( )
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Fig. 3.12 Reduced flow on the critical manifold S near the lower fold F~ corresponding to
Fig.3.10a, ramp protocol: there are two folded singularities, a folded saddle (FS) and a folded
focus (FF), £ denotes the folded saddle canard that crosses from the lower stable branch S, via
the FS singularity onto the repelling middle branch S,. The canard & forms the firing threshold
manifold. Note, the other canard of the FS singularity (the faux canard) crosses from S, to S, .
The segment on S, forms a boundary that prevents trajectories to the right of £ to spike

Note that ws , > 0. Hence, the trace of the Jacobian evaluated along F ™ is
tr(J) = —Weoy < 0.
The determinant of the Jacobian evaluated along F'~ is given by
det(J) = Foo(Is + L) .

Recall, we have F,, > 0 along F~. The function I (s) defined in (3.48) is constant
and negative for s € (—o0,s57) N (st, 00). This implies, in general, an even number
of folded singularities (if they exist). The derivative I, must be positive at the first
(odd) folded singularity while negative at the second (even) singularity. Hence,
det(J) > O for an odd folded singularity and det(J) < O for an even folded
singularity. This implies that an odd folded singularity is either of folded node or
folded focus type while an even folded singularity is of folded saddle type. From
the structure of the Jacobian (3.49) it follows that the eigenvectors corresponding
to negative eigenvalues have a positive slope while eigenvectors corresponding to
positive eigenvalues have a negative slope.

Figures 3.12 and 3.13 show an example of system (3.42) for a type II neuron
with ramp protocol (3.43), where F(v) is given by the ML-FHN model (3.36).
Figure 3.12 is a three-dimensional representation of the critical manifold S near
the lower fold F~ and Fig. 3.13 is the corresponding reduced flow on S projected
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Fig. 3.13 Reduced flow shown in Fig. 3.12 projected onto coordinate chart (s, v) corresponding
to Fig. 3.10a, ramp protocol: there are two folded singularities, a folded saddle (FS) and a folded
focus (FF), £ denotes the folded saddle canard that crosses from the lower stable branch S, via
the FS singularity onto the repelling middle branch S,. The canard & forms the firing threshold
manifold. Note, the other canard of the FS singularity (the faux canard) crosses from S, to S, .
The segment on S, forms a boundary that prevents trajectories to the right of & to spike

onto the coordinate chart (s,v). The initial state on the stable branch S, of the
critical manifold is (s, v,,,,) where v = v,_, (the horizontal trajectory for s < s7)
corresponds to the resting membrane potential of the neuron for s < 57, i.e. for
I = 0. On the lower fold F~ (dashed horizontal line), we observe two folded
singularities, a folded focus (FF) respectively a folded saddle (FS). Note, v > 0
along the segment of F'~ bounded by the two folded singularities. To reach this
segment of the lower fold F~ and, hence, to be able to elicit a spike, the initial state
(87, Vo5, ) must be in the ‘domain of attraction’ of this segment (shown as a shaded
region). This domain is bounded by the folded saddle canard & and a segment of the
lower fold F~. Thus the folded saddle canard & forms the firing threshold manifold
onS,.

As can be also seen in Fig.3.13, the position of the canard £ changes as the
(maximal) slope of the drive /(s) changes. Clearly, folded singularities and their
canards encode the complete temporal information of the drive /(s), i.e. amplitude,
slope, curvature, etc. Figure 3.13a predicts no spike while Fig. 3.13b predicts a
spike. These correspond to the two cases shown in Figs. 3.10a and 3.12 for the ramp
protocol.

Similarly, Fig.3.14a predicts no spike while Fig. 3.14b predicts a spike. These
correspond to the two cases shown in Fig. 3.10b for the pulse protocol. Therefore,
we can view this type II excitable neuron shown in Fig. 3.10 as a slope detector.
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Fig. 3.14 Reduced flow projected onto coordinate chart (s, v) corresponding to Fig. 3.10b, pulse
protocol: & denotes the folded saddle canard that forms the firing threshold manifold; see Fig. 3.13
caption for details

It is remarkable that dynamic, nonautonomous information such as the evolution
profile of the external drive /(s) is encoded in the location of an invariant manifold
of a singular perturbation problem, the canard. Here, in particular, we observe
that only changing the slope is sufficient to elicit a spike. In general, our analysis
provides a slow input modulation condition for transient phenomena based on
canard theory.

3.3.2.4 Firing Threshold Amplitude 7,;,

The previous analysis showed that the existence of a folded saddle singularity is
a necessary but not a sufficient condition for a neuron model to be able to fire an
action potential. At the heart of the issue lies the relative position of the folded
saddle canard ¢ that forms the firing threshold manifold in these models to the initial
condition. Numerically, we found that any ramp with a maximal drive I} < I, is
not able to elicit a spike independent of the slope of the ramp. Although a folded
saddle singularity might exist, the domain of attraction for firing a spike bounded by
the folded saddle canard & never encloses the initial condition given by the resting
membrane potential.

Even if we formally take the limit s; — O (at s = s¢) which transforms the
smooth ramp into a discontinuous step protocol, we are not able to elicit a spike.
By looking at Fig. 3.7, it becomes immediately clear why the model neuron cannot
spike. The shift of the critical manifold is not sufficient to pass the lower fold as
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Fig. 3.15 Bifurcation diagram of folded singularities under variation of the slope s, for type II
neuron with ramp protocol shown in Fig.3.13: I} = 0.09 is fixed. For s; =~ 0.83 we observe a
folded saddle-node (FSN) type I bifurcation where two folded singularities annihilate each other.
The vertical line at s; ~ 0.47 indicates the firing slope threshold, i.e for sufficiently steep slope
51 < 0.47, the type II neuron will transiently spike; compare with Fig. 3.10a

discussed at the end of Sect.3.3.1.1. Although the canard £ represents the firing
threshold manifold for slow dynamic changes, it can be continued towards the fast
time-scale limit and it will converge to the firing threshold shown in Fig. 3.9 (dashed
curve). Hence I = I;j, represents the fast time-scale limit of the minimum current
amplitude needed to elicit a spike. The closer the amplitude I > I;p, to this limit
1., the steeper the slope of the profile has to be. The same holds for type III neurons.
This relates the concepts of fast and slow input modulations.

3.3.2.5 Bifurcation of Canards

The existence of folded singularities and their associated canards is necessary for
the transient spiking phenomenon observed. They are slope detectors. Figure 3.15
shows a folded singularity bifurcation diagram for a type Il neuron under the
variation of the slope s; of the ramp (the amplitude is fixed). Folded singularities
bifurcate at a saddle-node bifurcation of a folded saddle with a folded node.
(Subsequently, the branch of folded nodes becomes a branch of folded foci.) This
bifurcation is known as a folded saddle-node (FSN) of type I [40,57]. Here, the type
refers to the bifurcation, not to the type of neuron. This points to the importance of
this bifurcation for the excitability of neurons.

In contrast, a FSN type II bifurcation [40,57] indicates a transcritical bifurcation
of a folded and an ordinary singularity bifurcation. This type of bifurcation usually
happens in type II neurons close to / = Ip;s. It corresponds to the unfolding of
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a singular Hopf bifurcation in singularly perturbed systems with two or more slow
variables. The interested reader is referred to [10] and references therein.

3.4 Conclusion

There is a growing synergy between neurophysiology and dynamical systems.
The abstraction and generalization of the mathematical approach can lead to
the identification of, and deep insights into, common mathematical structures of
rhythmicity and excitability across contexts. The demand for an adequate high-level
description of cell function raises a number of challenges at the forefront of present-
day research in the field of dynamical systems. We face fundamental challenges in
trying to understand the relationships between intrinsic dynamics, stimuli, coupling,
and patterns of synchrony in network models. The ability of neuronal networks to
create spatio-temporal patterns, spontaneously or driven, and the ways in which
neuromodulators reshape or totally change these patterns is of eminent interest for
understanding neuronal dynamics.

The application of concepts and techniques from dynamical systems theory
to neuronal dynamics continues to mature, especially to stationary rhythms and
steady state attractors. Meanwhile, there is increasing awareness that transient
dynamics play an important physiological role. Excitability of neurons [18,29, 52]
and networks are prime examples of transient dynamics, especially as responses
to brief or non-stationary time-varying inputs. Recent developments in canard
theory [26, 63, 64] have provided a new direction for understanding these transient
dynamics that are modelled as nonautonomous multiple time-scale systems. It is
well known that a nonautonomous system can be viewed as an extended autonomous
system by increasing the phase space dimension by one. The key observation is
that folded singularities are still well defined, while equilibria of the unforced
system will not persist in the extended system. Thus canards have the potential to
significantly shape the nature of solutions in nonautonomous multiple time-scales
systems. We would like to stress this important point of view.

The take-home message lies in the realisation that folded singularities and associ-
ated canards create local transient “attractor” states in multiple scales problems. This
is due to the fact that trajectories in the domain of attraction of folded singularities
will reach and pass these folded singularities in finite slow time; folded singularities
are not equilibrium states. In the context of neuronal excitability and as shown in
[64], we identify canards of folded saddle type as firing threshold manifolds. We
have demonstrated the role of such structures in comparing the dynamics of spike
generation for neuron models in the different behavioral regimes of type I, IT and III
excitability. For type I and III we have revealed and characterized stimulus features
that lead to spike generation for transient stimuli, most notably that a stimulus must
rise fast enough for excitation.

Dynamic forcing has the potential to create folded singularities and to form
these effective separatrices or to change the global return mechanism. Hence,
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the specific nature of the dynamic forcing determines which local attractor states
can be reached through global mechanisms. This point of view has profound
consequences in the analysis of excitable physiological systems such as in auditory
brain stem neurons [42], modeling propofol anesthesia [41, 44] and cell calcium
dynamics [26]. From a mathematical point of view, the time is “ripe” for forging
(more) connections between nonautonomous attractor theory [36,37] and geometric
singular perturbation theory [17,32].
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