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Preface

The theory of dynamical systems is a well-developed and successful mathematical
framework to describe time-varying phenomena. Its applications in the life sciences
range from simple predator—prey models to complicated signal transduction path-
ways in biological cells, in physics from the motion of a pendulum to complex
climate models, and beyond that to further fields as diverse as chemistry (reaction
kinetics), economics, engineering, sociology, demography, and biosciences. Indeed,
Systems Biology relies heavily on methods from Dynamical Systems. Moreover,
these diverse applications have provided a significant impact on the theory of
dynamical systems itself and is one of the main reasons for its popularity over the
last decades.

As a general principle, before abstract mathematical tools can be applied to
real-world phenomena from the above areas, one needs corresponding models in
terms of some kind of evolutionary difference or differential equation. Their goal
is to provide a realistic and tractable picture for the actual behavior of, e.g., a
biodynamical system. A thorough understanding helps to optimize time-consuming
and costly experiments, like the development of harvesting or dosing strategies and
might even enable field studies to be avoided.

From a conceptional level, in developing such models one distinguishes an actual
dynamical system from its surrounding environment. The system is given in terms
of physical or internal feedback laws that yield an evolutionary equation. The
parameters in this equation describe the current state of the environment. The latter
may or may not vary in time, but is assumed to be unaffected by the system.

For autonomous dynamical systems the basic law of evolution is static in
the sense that the environment does not change with time. However, in many
applications such a static approach is too restrictive and a temporally fluctuating
environment is required:

— Parameters in real-world situations and particularly in the life sciences are rarely
constant over time. This has various reasons, like absence of lab conditions,
adaption processes, seasonal effects on different time scales, changes in nutrient
supply, or an intrinsic “background noise.”
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— On the other hand, sometimes it is desirable to include regulation or control
strategies into a model (e.g., harvesting and fishing, dosing of drugs or radiation,
stimulating chemicals or catalytic submissions), as well as extrinsic noise, and to
study their effects. In particular, biochemical signaling within and into cells is a
nonautonomous process.

— Several problems can be decomposed into coupled subsystems. Provided the
influence of some of them is understood, without the requirement to precisely
know their explicit form, they can be seen as a non-constant time-varying input.

These temporal fluctuations might be deterministic or random and in the first case
often more than just periodic in time. The evidence of time-dependent parameters
can also be verified statistically, when it comes to the problem of fitting parameters
to actual measured data or in phenomena like cardiovascular ageing.

Consequently, in reasonable models that are adapted to and well suited for prob-
lems in temporally fluctuating environments, the resulting evolutionary equations
have to depend explicitly on time. In order to study such realistic problems, the
classical theory of dynamical systems has to be extended. The field of nonautono-
mous and random dynamical systems has thus received a wide attraction over the
recent 10—15 years and is expected to develop to further maturity. Both the fields
of nonautonomous and of random dynamical systems are parallel theories featuring
very similar concepts.

In the area of biomathematics, for example, the corresponding contributions
deal with nonautonomous equations and have provided major progress in our
understanding of classical boundedness, global stability, persistence, permanence,
or positivity aspects. Nevertheless, often more subtle questions are crucial. For
instance, it is of utmost importance to identify “key players” in biodynamical
processes, i.e., the variables or parameters crucially affecting the long-term behavior
of a system. Knowing these quantities enables researchers to reduce the dimension
of a system significantly and thus makes it amenable for analytical tools, as opposed
to sometimes problematic numerical methods and simulations. Such questions
clearly fit into the framework of bifurcation theory describing qualitative changes.
However, when dealing with nonautonomous and random equations new ideas and
concepts are required: For instance, the classical notions of invariance, attraction,
hyperbolicity, and invariant manifolds have had to be extended.

Despite being well motivated, one rarely finds biological processes modeled
using nonautonomous equations. A cause seems to be the problem that classical
methods from autonomous dynamical systems theory do not apply to them,
while more recent tools tailor-made for time-dependent problems still need to be
popularized.

For these reasons, the contemporary fields of nonautonomous and random
dynamical systems on the one side, and biodynamics on the other side, strongly
benefit from each other. Actually, it is essential to

— illustrate such a modern theory using successful and convincing real-world
applications,
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— gain input from real-life application inducing a further development of the theory
into directions of a broader interest.

On the other hand, researchers interested in mathematical approaches to life sciences
will

— find suitable mathematical methods promising and fruitful in various applica-
tions,

— obtain a solid toolbox for an understanding and iterative refinement of models in
fluctuating environments,

— lower an inhibition threshold to use nonautonomous models from the beginning.

In conclusion, the main motivation for this book is to bring readers’ attention
to various recent developments and methods from the field of nonautonomous and
random dynamical systems and promising applications originating in life sciences.
For this reason we collected three articles (Chaps. 1-3) illustrating theoretical
aspects, as well as six further papers (Chaps. 4-8) focussing on more concrete
applications, where these new ideas and tools could be used:

1. The introductory contribution of the editors shares the title with this book and
surveys several key concepts from the mathematical theory of deterministic
nonautonomous dynamical systems. They are exemplified using various simple
models from the life sciences.

2. The chapter on Random Dynamical Systems with Inputs by Michael Marcondes
de Freitas and Eduardo D. Sontag describes the concept of a random dynamical
system and extends it to problems with inputs and outputs. Applications to
feedback connections are given.

3. Multiple time scales are an important feature of physiological systems and
functions. Martin Wechselberger, John Mitry, and John Rinzel give a modern
introduction to the basic geometrical singular perturbation theory and use it in
their chapter Canard Theory and Excitability to tackle related problems and their
transient behavior.

4. Stimulus-Response Reliability of Biological Networks by Kevin K. Lin reviews
some basic concepts and results from the ergodic theory of random dynamical
systems and explains how these ideas can be used (partly in combination with
numerical simulations) to study the reliability of networks, i.e., the reproducibil-
ity of a network’s response when repeatedly presented with a given stimulus.

5. The “Lancaster group” Philip Clemson, Spase Petkoski, Tomislav Stankovski,
and Aneta Stefanovska explain how networks of nonautonomous self-sustained
oscillators can model a virtual physiological human. Their chapter Coupled
Nonautonomous Oscillators includes novel methods suitable to reconstruct
nonautonomous dynamics using data from a real living system by studying time-
dependent coupling between cardiac and respiratory rhythms.

6. Germdn Enciso’s contribution Multisite Mechanisms for Ultrasensitivity in Sig-
nal Transduction gives a mathematical review of the most important molecular
models featuring ultrasensitive behavior.
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7. The chapter Mathematical Concepts in Pharmacokinetics and Pharmacodynam-
ics with Application to Tumor Growth by Gilbert Koch and Johannes Schropp
describes corresponding models and their applications in the pharmaceutical
industry. Moreover, a model for tumor growth and anticancer effects is developed
and discussed.

8. In Viral Kinetic Modeling of Chronic Hepatitis C and B Infection, Eva Herrmann
and Yusuke Asai demonstrate the interplay between mathematical and statistical
analysis of compartment ODE models for hepatitis B and C. They give an
account of clinical use of models in treatment. Moreover, the most relevant
models for such infections are surveyed.

9. Finally, Christina and Nicolae Surulescu study Some Classes of Stochastic
Differential Equations as an Alternative Modeling Approach to Biomedical
Problems. In detail, models for an intracellular signaling pathway, a radio-
oncological treatment, and cell dispersal are presented and studied.

Finally, we cordially thank all the contributors to this volume and hope to have
contributed to building a bridge between nonautonomous/random dynamics and the
life sciences.

Frankfurt am Main, Germany Peter E. Kloeden
Klagenfurt, Austria Christian Potzsche
September 2013
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Part I
Theoretical Basics



Chapter 1
Nonautonomous Dynamical Systems in the Life
Sciences

Peter E. Kloeden and Christian Potzsche

Abstract Nonautonomous dynamics describes the qualitative behavior of evolu-
tionary differential and difference equations, whose right-hand side is explicitly
time-dependent. Over recent years, the theory of such systems has developed into
a highly active field related to, yet recognizably distinct from that of classical
autonomous dynamical systems. This development was motivated by problems of
applied mathematics, in particular in the life sciences where genuinely nonautono-
mous systems abound.

In this survey, we introduce basic concepts and tools for appropriate nonautonomous
dynamical systems and apply them to various representative biological models.

Keywords Nonautonomous dynamical system ¢ Exponential dichotomy e
Dichotomy spectrum ¢ Bohl exponent ¢ Pullback attractor e Bifurcation °
Integral manifold ¢ Life sciences

1.1 Motivation

The theory of dynamical systems is a well-developed and successful mathemat-
ical framework to describe time-varying phenomena in various applied sciences,
especially in mathematical and theoretical biology. Its areas of applications range

P.E. Kloeden (0<)
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from simple predator-prey models to complicated signal transduction pathways
in biological cells, from epidemiological models to tumor growth and beyond
that to further fields as pattern formation or wound healing, see e.g., [39, 62]. In
particular, this broad range of its applications has provided a significant impact on
the development of the theory of dynamical systems itself and is one of the main
reasons for its popularity over recent decades.

As a general principle, appropriate models have to be developed before abstract
mathematical tools can be applied to real-world phenomena in the above areas. From
a conceptional level, in developing such models, one must distinguish the actual
dynamical system from its surrounding environment. The system is given in terms
of physical or internal feedback laws involving evolutionary equations, which are
typically difference, ordinary differential or delay equations or an integro-difference
or reaction diffusion equation when spatial effects are relevant. The parameters in
this equations describe the current state of the environment that may or may not be
variable in time, but is assumed to be unaffected by the system.

For autonomous dynamical systems the basic law of evolution is static in the
sense that the environment does not change with time. In many applications,
however, such a static approach is too restrictive and a temporally fluctuating
environment must be taken into account.

— Parameters in real-world situations are rarely constant over time. This has various
reasons, like absence of lab conditions, adaption processes, seasonal effects on
different time scales, changes in nutrient supply, or an intrinsic “background
noise”.

— Sometimes it is desirable to include regulation or control strategies into a model
(e.g. harvesting, dosing of drugs or radiation, stimulating chemicals or catalytic
submissions) and to study their influence.

Evidence of time-dependent parameters can often be verified statistically, especially
when parameters have to be determined from actual measured data (cf., e.g., [1,7]).

Consequently, in reasonable models adapted to and well-studied for problems
in temporally fluctuating environments, the evolutionary equations have to depend
explicitly on time through time-dependent parameters or external inputs. Then
the classical theory of dynamical systems is no longer applicable and has to be
extended. Alone in the area of biomathematics, there has been significant progress
in treating boundedness, global stability, persistence, permanence or positivity
issues in nonautonomous systems [11,28, 30, 55,59, 87, 88,91-93]. Although well-
motivated, one rarely finds biological processes being modeled directly in terms of
nonautonomous equations. The reason for this seems to be the problem that classical
methods from autonomous dynamical systems theory do not apply to them. There
are, of course, many papers in the literature with nonautonomous modifications of
existing models, but their analysis has been somewhat ad hoc and problem specific.

In recent years the theory of nonautonomous dynamical systems has undergone
extensive development and is providing tools, concepts and results to describe the
behavior of nonautonomous systems in a more systematic way. The main motivation
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for this survey and tutorial is to show how these developments in the theory of
nonautonomous dynamical systems can be applied to problems in biomathematics
and the life sciences. Here, we restrict to analytical methods for continuous time
dynamical systems. It is not our goal to develop, motivate and explain the various
models presented here, nor do we intend to be exhaustive in the topics chosen.
Instead we take representative models from the literature and illustrate how new
ideas about nonautonomous dynamical systems might be of use in understanding
them.

We point out that biological applications have a stimulating and symbiotic
influence on related mathematical fields like control theory (see, e.g., [61, 85, 86]).
This chapter restricts to deterministic problems since they, compared to a stochastic
approach, have the advantage that their behavior is easier to interpret, in particular
for non-mathematicians (cf. [89]). On the other hand, there are many publications of
biomathematical models with noise in one form or another, involving either random
(see, e.g., Chap. 2 by de Freitas and Sontag in this volume) or stochastic differential
equations (see Chap. 9 by Surulescu and Surulescu in this volume). These are also
intrinsically nonautonomous and can be formulated as random dynamical systems
with analogous concepts of nonautonomous attractors, we refer to e.g., [14,49, 50].
The latter possess a measure theoretic skew-product structure with the noise as a
driving system.

We organize this introductory chapter as follows:

— Our initial Sect. 1.2 consists of a biased list of problems from the life science,
where nonautonomous models are well-motivated.

— In Sect. 1.3 we present the basic ingredients and geometrical intuition behind our
nonautonomous theory for parameter-dependent ordinary differential equations
(ODEs for short). This includes an appropriate invariance notion and the helpful
concept of the equation of perturbed motion.

— Due to its robustness properties, we advocate uniform asymptotic stability
as the appropriate stability notion in a nonautonomous context. The related
hyperbolicity concept is given in terms of an exponential dichotomy. Thus,
when dealing with time-varying equations it turns out that eigenvalue real parts
become spectral intervals (in the sense of Sacker and Sell), whose location w.r.t.
0 indicates stability or hyperbolicity.

— Equilibria of autonomous equations generically persist as entire bounded solu-
tions under time-varying perturbations and we describe a procedure how to
approximate them in terms of a Taylor series in the parameters.

— Section 1.6 illustrates that nonautonomous attractors are whole families of sets
rather than single sets and discusses two convergence concepts, namely forward
and pullback convergence.

— Nonautonomous bifurcation theory is briefly sketched in Sect. 1.7, basically
using two examples.

— The theoretical part of this survey is concluded by explanations on nonautono-
mous invariant manifolds, so-called integral manifolds. We explain how to obtain
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a Taylor approximation of them. This enables a corresponding center manifold
reduction and applications in bifurcation theory.

— The final Sect. 1.9 briefly indicates parallels between the theory of random
dynamical systems, control systems and nonautonomous systems described by
means of skew-product flows—a concept of fundamental theoretical importance.

Throughout, we illuminate our results and techniques using corresponding contin-
uous time nonautonomous models from the life sciences. Furthermore, a survey of
related results in discrete time can be found in [54] or, with a focus on bifurcation
theory, in [71].

1.2 Examples of Nonautonomous Models from Life Sciences

There exists a large number of models describing biological phenomena, where an
aperiodic temporally fluctuating, and deterministic environment is well-motivated.
The models presented here have been chosen to give a hint at the wide range of
applications and to illustrate different aspects of nonautonomous behavior. We use a
combined numerical and analytical framework to set up a local bifurcation analysis.
Indeed, the above methods shall be exemplified using such applications w.r.t. the
following aspects:

— Identification of the bounded entire solutions and their hyperbolicity properties.

— Stability and bifurcation analysis to detect sensitive parameters. Under which
parameter changes is the behavior robust or leads to significant qualitative
changes?

— Suggest and theoretically verify immunization, dosing and treatment strategies.

The models presented are low-dimensional and might be considered as caricatures.
Nevertheless, we think a thorough application of methods from Sect. 1.3 etc. to such
models is challenging and will provide an insight into more complex phenomena.

1.2.1 Bacterial Growth

In [8] the growth of bacterial cultures is modeled using the ODE
X = a()pulx)x, (1.1)

where x denotes the cell concentration (i.e. the number of individual bacteria
per unit). The function p describes the specific growth rate and is assumed to
continuously differentiable. A lag phase in form of an adjustment period is given
using the time-dependent function «.
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1.2.2 Epidemiology

The realistic assumption of a time-varying total population size N, sometimes given
as solution of an independent ODE (cf., e.g., [55]), naturally leads to nonauton-
omous problems. In particular, as a model for the spread of infectious childhood
diseases, [87, 88] study the following time-heterogeneous, i.e., nonautonomous
SIR model

S =) + (u(t) + )R — a(1)SI,

I =—u()I +a®)SI—y@)I,

R=—p(®R+y@) —&(1)R,

where the constant population size N = § 4 I 4 R splits into susceptible S,
infective I and recovered R individuals. As motivation, for childhood diseases the
time-heterogeneity in the per capita/capita infection rate «(¢) is induced by the
school system, because the chain of infections is interrupted or at least weakened
by the vacations and new individuals are recruited into a scene with higher infection
risk at the beginning of each school year (cf. also [87, 88] for references). A further
stability and bifurcation analysis of nonautonomous SIRS models with, as well as
without constant population size can be found in [48,51].

Similar models with time-varying external forcing and hence a time-varying
population were investigated by Kloedenm and Kozyakin [48] in the SI case, where
explicit entire solutions are given, and in [15], where the system behaves chaotically.
Corresponding four-dimensional SEIRS models were considered in [30, 88, 91],
while [11] investigate a three-dimensional model leading to Tuberculosis elimina-
tion in the USA, which also incorporates the effect of HIV/AIDS after 1983.

SEIR models of microparasitic infections featuring time-periodic, hence nonau-
tonomous nonlinearities were investigated in [78]. Similar contact rates were used
in [24] in order to understand resonance phenomena in influenza epidemics.

Optimal control problems for a chemotherapy in the interaction of the immune
system with the human immunodeficiency virus (HIV) have been studied in [40—
43]. See also [60] for a linear nonautonomous system.

1.2.3 Tumor Drug Treatment Models

Logistic autonomous models for tumor growth have been analyzed in [36, 58], and
an extension in form of

X =rx (1 — % — cly) —(p+do(t))x —di(t)y,

y=ry (1 - Kl - CzX) + (p + do())x — da(1)y
2
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has been investigated in [28]. Roughly speaking, x and y describe populations of
differentiated and undifferentiated tumor cells, respectively. The constant mutation
rate p is influenced by the time-dependent induction rate dy(¢) of a cytotoxic drug,
and d;(t), d»(t) denote death rates due to cytotoxicity.

The temporal change of a tumor mass V' was considered in [29, 76] using

V= —A1V log (%) ,
K = —)0,K +bS(V,K) — dI(VK) + eg(t)K,

where the carrying capacity K is also time-dependent and given by the coupled
second equation. The concentration g(#) represents the effect of a chemotherapeutic
treatment. We refer to [21, 38] for further time-dependent tumor models as control
problem. Further reference are [10], the tridiagonal model from [20] or the scalar
tumor growth model from [76]. A survey of non-spatial models describing the
interaction between cancer and the immune system is [25].

1.2.4 Pharmacodynamics

For a general introduction into pharmacodynamic models we refer to the Chap. 7 by
Koch and Schropp in this book (in particular, see Sect. 7.3).

Moreover, models describing the effects of antibiotics dosing on a bacterial
population whose growth is checked by nutrient-limitation and possibly host
defenses, are studied in [34,35]. They are of the form

S = D(So—S) —yf(S)u,

= (f(S) =D —g(S,a®)))u,

where S denotes the concentration of a nutrient sustaining microbial growth, u is
the density of bacteria and a the concentration of an antibiotic. Here, a(t) is time-
dependent and given as solution of a scalar ODE

a=D(i(t) —a) —up(a)

and i (¢) is the antibiotic input and p a nondecreasing function with p(0) = 0.
References to various forms of the so-called pharmacodynamic functions f, g
have been given in [34]. For related investigations we refer to [16].

1.2.5 Cardiovascular System

Oscillations are a very basic phenomenon in the life sciences ranging from bio-
chemical reactions, though circadian rhythms to the respiratory and cardiovascular
system [39, 62].
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Chapter 5 in this book by Stefanovska and her coworkers investigates the
intrinsically nonautonomous nature of the coupled respiratory and cardiovascular
system, which they model as autonomous oscillators with time-dependent coupling.
Much of their work involves the analysis of time-series of data obtained from real
systems to identify such effects and to determine appropriate parameters in their
models.

1.3 Nonautonomous Differential Equations

Here we briefly review of some basic concepts for nonautonomous systems. In order
to determine the temporal horizon of interest, let us abbreviate R := [0, co) and
R_ := (—00, 0]. For simplicity we restrict attention to ODEs

@)

in a d -dimensional Euclidean state space RY. We suppose (D;) has a right-hand side
fi i Rx 2 — R such that (x, 1) — fi(t, x) is of class C” with continuous partial
derivatives in (¢, x, A), although in some applications such as in control theory the
time-dependence may only be measurable. Typically, the nonempty set 2 € R is
open or the nonnegative cone R, while the parameter A is assumed to be a real
number or a vector in R?.

Since (®),) is nonautonomous, the asymptotic behavior of its solutions will
depend crucially on the initial time and not just on the elapsed time as in autonomous
systems. Thus, we denote the solution of the ODE (©,) with the initial value
problem x (z9) = xo by ¢, (¢, to, Xo)-

Such nonautonomous problems typically occur in two forms:

— investigate the behavior near fixed reference solutions ¢; of (D;), which may
be periodic or almost periodic or even aperiodic such as a heteroclinic trajectory
joining two steady state solutions; even in a purely autonomous setting, where f;
is independent of the time variable, this yields a nonautonomous problem.

— replace constant parameters A by time-dependent functions A(¢), which can be
an external stimulus or the solution of an independent equation with known
behavior; then one speaks of parametric perturbations.

As a general principle, the appropriate geometrical setting to describe the
dynamical behavior of (9,) is the extended state space R x §2. Accordingly,
invariant subspaces, manifolds or attractors will be subsets &7 of R x §2 rather than
of §2, or equivalently families of subsets (<7 (¢));cr of §£2 parametrized over the real
numbers, which represents time. Here the sets .7 (¢) C §2 are called fibers of ./ and

o =|Jithx 7 (1) ={(t.x) eRx 2: x € F(1)}.

teR
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Fig. 1.1 Extended state space R X £2 and an invariant set .o/ C R X £2

We say that 7 is invariant if its fibers fulfill
o, s, (s)) = /() foralls <t. (1.2)

See the textbook [52] for an elementary but detailed exposition and Fig. 1.1 for an
illustration of (1.2).

The behavior of (D) close to ¢; is studied often using the associated equation
of perturbed motion

L= A, (0)x + F(t.x)| (1.3)

with linear part A, (¢) := D5 f)(t, ¢} (t)) and a nonlinearity F) satisfying the limit
relation F) (¢, x) = o(x) as x — 0 uniformly in ¢ given by

Fy(t.x) == falt.x + ¢5(1) = falt. $3 (1)) — D2 fi(1. 67 (1))x.

Clearly, the behavior of (1.3) near the trivial solution is the same as the behavior of
(D) close to ¢

1.4 Linear Stability Theory

An important tool for investigating the dynamics of (D)) near ¢; is provided by
linear stability theory. For instance, an attractive zero solution ¢} = 0 is a necessary
condition for the extinction of all populations (or tumor cells, cf. Example 1.6) with
small initial size in population dynamics (tumor models, respectively). Similarly,
a solution ¢} on the coordinate hyperplanes x; = 0 for certain 1 < i < d
indicates asymptotically vanishing species (or for example, HIV populations like
in Example 1.10). Asymptotic stability in linear systems implies that all solutions
share the same long term behavior.
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Now classical examples (cf. [18, p. 3]) show that the time-dependent eigenvalues
of A, (¢) are of little use for stability investigations in a nonautonomous framework,
unless the time-dependence is periodic (replace eigenvalues by Floquet multipliers,
cf. [3]) or “slow” (see, e.g., [18, 66]). Moreover, Lyapunov exponents merely yield
asymptotic stability and therefore do not give a stability theory that is robust to
nonlinear perturbations (see, e.g., [2]). We advocate that the appropriate stability
notion for nonautonomous linear problems

& = 4:()x = D2 fa1.¢7(1))x | (£2)

in a d-dimensional space RY is uniform exponential stability on a subinterval I C
R, while the corresponding hyperbolicity concept is as follows:

Definition 1.1 (cf. [18]). A linear ODE (£,) is said to possess an exponential
dichotomy (ED for short) on I, if there exists a projection Py € R?*? and real
numbers K > 1, « > 0 such that the transition or fundamental matrix of (£;)
denoted by @, (¢, s) € RY*? fulfills

|@;.(£,0) Py ®5(0,5)|| < Ke U™ ||®;(s,0)[id — P3]5.(0, 1) || < Ke*™

forall s,t € I withs <.

The linear equation (£,) is also known as the variational equation associated with
a reference solution ¢} and in case (£;) has an ED, ¢ is called hyperbolic. The
corresponding spectral notion for (£,) is given in terms of the dichotomy (also called
the Sacker-Sell or dynamical) spectrum (cf. [77,81])

Y1(Ay) :={y e R: x = [A,(¢t) — y id]x does not have an ED on /} C R.
Theorem 1.1 (Spectral Theorem, cf. [77,81]). For unbounded intervals I < R

the dichotomy spectrum X1(Ay) of (£4) is the disjoint union of 0 < n < d closed
spectral intervals, i.e., ¥;(Ax) = @, X;(Ax) = R or one of the four cases

[a1, bi] [an, b]
Xi(Ay)) = or Ulaz, bo]U ... Ulay—1,bp—1] U or
(_OO,bl] [ans OO)

applies, where a; < b; < aj+1.

Remark 1.1. (a) The dichotomy spectrum X;(A,) depends crucially on the time
interval, where it is usually / = R, I = Ry or I = R_. We often use the
abbreviations

T(Ay) = Tr(A)), TT(A) = e, (A0, T 7(4y) = Zr_(4)).
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(b) For bounded A4; : I — R9*? in (£;) the dichotomy spectrum X;(A4;) is
compact and depends upper-semicontinuously on perturbations in A4; .

For asymptotically autonomous or periodic equations, the spectral intervals in
Y*+(A;) are singleton sets given by real parts for the eigenvalues (or Floquet
multipliers) of the limit system. In contrast, the linearization along a heteroclinic
solution yields spectral intervals in X'(A4,) of positive length. Using [19] we obtain
the following examples:

Example 1.1 (Autonomous Equations). For autonomous problems X = A, x with a
coefficient matrix A € R*? the dichotomy spectrum consists of singletons

T(A) =X (A) =27 (4) = {Rep € R: pu € 0(A4y)}.
Example 1.2 (Periodic Equations). For periodic problems x = A, (¢)x, i.e., with

coefficient matrices A, (t) = Ax(t + T) for some T > 0, the dichotomy spectrum
consists of singleton sets

Z(4y) = ZT(4) = T7(4))

= {y € R: ®,(T.0) has an eigenvalue with modulus e"” } ;

here, the Floquet multipliers for (£, ) are the eigenvalues of @, (T, 0).

Example 1.3 (Bohl Exponents). For scalar equations X = a(t)x with a coefficient
function a € L*° (1) the dichotomy spectrum reads as

T(a) = [B(a). B(a)].

with the lower and upper Bohl exponents

1 ! — 1 !
B(a) := liminf / a(t)dr, B(a) := limsup / a(r)dr.
SR, e =9 s

This example illustrates that the dichotomy spectrum actually depends on the
temporal interval / under consideration. For a linear equation (£,) with triangular
matrix A; the dichotomy spectrum X% (A4,) is given as union of the spectra for the
diagonal elements.

Concrete examples on the dichotomy spectrum and its computation will be given
below. Once the dichotomy spectrum is known, it has the following consequences
on the stability of the reference solution ¢}

Proposition 1.1 (cf.[69]). Let A € A and the interval I be unbounded above.

(a) Ifmax X;(Ay) < 0, then ¢ is uniformly asymptotically stable on I,
(b) if there exists a spectral interval o with mino > 0, then ¢} is unstable.
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d d
R R Vi

143
s t

Fig. 1.2 Spectral manifolds "I/1+, YT S Rx R¢ for (£;) associated to a hyperbolic situation

X (A;) = [a1, b1] U [aa, by] with by < 0 < a,. The stable spectral manifold ”I/l+ consists of all
solutions decaying exponentially to 0 in forward time, while the unstable spectral manifold ¥~
is formed of solutions with the corresponding asymptotics in backward time. Solution curves are
indicated by dotted lines

Each gap in the dichotomy spectrum induces two associated spectral manifolds
7/i+, YT € Rx RY, 1 <i < n, consisting of solutions for (£;) with a specific
growth behavior (see Fig. 1.2). The spectral manifolds ”1/1.jE extend the generalized
eigenspaces known from the autonomous case (see, e.g., [31]).

Example 1.4 (Gene Transcription, cf. [9]). The transcription concentration x; (¢)
of a gene j is given by a system of decoupled linear nonautonomous differential
equation

X;j=-Djx; +B;+S;f(t) forallj =1,...,n, (1.4)

where D; > 0 is the degradation rate. The production term B; 4 S; f(¢) comprises
of a basal transcription rate B; > 0, a sensitivity §; and a transcription factor
activity f, which is assumed to be a bounded function. This system has the
dichotomy spectra

r=x*=J{-D;}

J=1

and is therefore uniformly asymptotically stable.

Example 1.5 (Insulin Absorption, cf.[65]). According to Palumbo et al. [65,
Eq. (1)] the insulin absorption from a subcutaneous injection is described by the
linear inhomogeneous ODE

X

—Ki()x +uz(t),

Y =—Ky(t)y + us(t), (1.5)

=V 'K()x + V7 K1)y — Ks(t)z,
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where x and y are the respective fast and slow insulin masses, z is the plasma insulin
concentration. The absorption rates of the fast and slow masses of insulin are K| and
K>, while K3 denotes the rate of plasma insulin disappearance and V; stands for the
distribution volume. The fast and slow insulin injections u s and u;, as well as the
other above time-dependent parameters, are assumed to be L°°-functions.

The dichotomy spectrum of (1.5) can be computed as

3

z* = J[BK).B=K)]

i=1
and under the assumption X C (—o0, 0) the system (1.5) is uniformly asymptoti-
cally stable.

Example 1.6 (Tumor Growth, cf. [82]). We investigate a model for tumor growth
under the effect of anticancer treatment of the form

A
X = 10—3614 — kporc(t)x1,
0
I+—)> Xxj
X2 = kporc(t)x1 — kxa, 8y

X3 = k(x2 — x3),

fC4 = k(X3 — X4).

The tumor cells can be subdivided into four classes, where only the class x; is
actually proliferating and x,, x3, x4 show different stages of degeneracy until cell
death. Concerning the parameters, k is the first-order rate constant of transit, k,,
measures the drug potency and c(¢) gives the plasma concentration of the anticancer
agent.

System (%) has the trivial solution with corresponding variational equation

Ao —kpoc(t) O 0 0
kporc(t) —k 0 0

%= x (1.6)
0 k —k 0

0 0 k —k

and the dichotomy spectrum

Ei = {_k} U [E(AO - kpotc)s E(AO - kpol‘c):l .
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Hence, an effective dosing strategy for the anticancer treatment in form of the
function ¢ must satisfy the Bohl exponent condition (1o — kporc) < 0.

A model related to () allowing n classes of tumor cells can be found in Chap. 7
by Koch and Schropp (see the PKPD model in Sect. 7.4).

How to Verify an Exponential Dichotomy?

Although the approach via the dichotomy spectrum provides a natural extension of
the classical autonomous theory, an explicit expression for X'; (4;) is hard to obtain
in general. Effective numerical approximation methods are quite recent (see [22,23])
and robust for so-called integrally separated systems. These algorithms are based on
triangulation techniques via QR or singular value decompositions of 4, (¢) over /.

One might argue that the computation of the dichotomy spectrum requires a
priori information on an infinite interval /. However, under certain recurrence
assumptions (e.g. almost periodicity) it is possible to extend an ED from a finite
interval to the whole real axis (cf. [64]).

1.5 Entire Solutions

A nonautonomous problem usually does not share equilibria or periodic solutions
with its autonomous counterpart, so an appropriate substitute for equilibria in
a time-variant framework is needed. Since the equilibria points of autonomous
systems generically persist as bounded, globally defined solutions ¢(A) under
parametric perturbations (see [33, 67, 70]), such entire solutions are the appropriate
and adequate concept in a nonautonomous setting. They are called nonautonomous
equilibria in [14].

Theorem 1.2 (Hyperbolic Solutions on R, cf. [70]). Let a parameter A* € A
be fixed. If $* € BC(R, §2) is an entire solution of (D ;=) staying away from the
boundary of §2 and satisfying

0 X(Ayx), 1.7

then there exist a C"-function ¢ : B,(A*) € R? — B.(¢r+) C BC'(R, ),
p,€ > 0, such that:

(a) p(A*) = ¢*,

(b) ¢(A) is the unique bounded entire solution of (D)) in Bc(¢p*) x B,(A¥),

(c) ¢ (L) is hyperbolic with the same Morse index, i.e., the same dimension, as the
kernel N(P;).
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Here, BC or BC! abbreviates the bounded continuous respectively bounded
continuously-differentiable functions.

Remark 1.2 (Autonomous Case). Suppose that (D;+) is autonomous and ¢* is a
nontrivial periodic solution to x = f(x, A*). Since the derivative ¢* is a nontrivial
periodic solution to the variational equation X = D, f(¢™*(t), A*)x corresponding
to the Floquet multiplier equal to 1, the hyperbolicity assumption (1.7) cannot hold
in this situation. Adequate continuation results for periodic solutions can be found
in [3].

In the following, we illustrate the nonautonomous alternative to a steady state
solution in some typical models in the life sciences. The first examples are linear,
where Theorem 1.2 becomes global:

Example 1.7 (Gene Transcription, cf. [9]). In Example 1.4 we established that the
gene transcription model (1.4) is uniformly asymptotically stable. Now we tackle
its limit behavior. Indeed, every solution converges to the unique bounded solution

G0 =[P (B 45, 10) i

—00

B; !

=L 4 S,»/ e Dit=9) f(s)ds forall j =1,...,n.
D; o

This solution exists for all € R, i.e., is an entire solution. It is obtained by taking
the pullback limit, i.e., t) — —oo with t fixed, of the explicit solution

1
X; (1) = xpe~Pi=0) +/ e P (B + S f(s)) ds forall j =1,...,n.

to

Example 1.8 (Insulin Absorption, cf. [65]). The Insulin absorption model (1.5)
from Example 1.5 features the following asymptotics: There exists a unique globally
bounded entire solution that is given explicitly by

? !
x*() ::/ e Ki@dry (s) ds,

—0o0

! t
v = [ RO as
—00

1 i ' S ’
(@) = 7 e~ s Ka(r)dr/ (Kl(()')e_'f" Kl(f)druf(o_)
7 J—oo oo

+ Ky(0)e™ Jo Kadry (0)) do ds.

We point out that intrinsically nonautonomous systems often occur as models for
glucose-insulin regulatory system; see [57,90] for surveys.
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The proof of Theorem 1.2 is based on the implicit mapping theorem. Thus, there
exist constructive methods to obtain the perturbed solution ¢(A) for parameters
A near A*. Due to the C™-smoothness of ¢, a finite Taylor approximation is
possible. This highlights a typical phenomenon in the nonautonomous theory
(see also [72]): Instead of solving an algebraic equation to obtain the Taylor
coefficients, one has to determine the bounded entire solutions of nonautonomous
linear differential equations, i.e., an algebraic problem in the autonomous case has
become a dynamical one in the nonautonomous case. The corresponding differential
equation for the unknowns is called homological equation (cf. (J,) below).

More precisely, to deduce a formal scheme we begin with the Taylor ansatz

1
P =¢"+ > D" =2")" + Rn(3) (18)
n=1"""

for coefficients D"¢(A*) € L, (R?,R?) and a remainder R,, satisfying

Rn(R)
1m
=0 |A"

=0.

For 1 < n < m we apply the higher order chain rule (see [72] for a reference in our
notation) to the solution identity

@@t 1) = fi(t,p(t, 1)) on B,(A*) onR.

For all yy, ..., y, € R this yields the relation

D3t M)y1- ..o yu = Do folt. p(t, M) Drd(t. )1+ Y

+3 Y DIACHE AN Dyn gl (. M)y,

J=2(Ny....Nj)EPF (D)

where P7~(l) is the totality of ordered partitions {Ny,--+, N;} of the finite set
{0,1,...,[} into disjoint subsets (see [70] for details) and the abbreviation

d*N (gt 1), 2)

#N o
gk l(th’) T dA,#Nl

has been used. Setting A = A* in this relation it follows that the Taylor coefficients
D"$(A*) € L,(R?,BC) = BC(L,(R?,R?)) in demand fulfill the linearly
inhomogeneous differential equation

X =Dy fo=(t.¢* ()X + Hy (1) ()
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in L, (R?,R?), where the inhomogeneity H, : R — L,(R?,R¢) reads as

HyOyi-.oyn=y Y D] fis(t.4*(1)

J=2(NiNjEPF ()
x gt A yw, g A )y,

In particular, H(t) = D, fi=(t, $*(¢)). We denote (J,) as homological equations.

Corollary 1.1 (Taylor Approximation of Hyperbolic Solutions, cf. [70]). The
coefficients D"$(A*) : R — L,(R?,RY), 1 < n < m, in the Taylor expansion
(1.8) are determined recursively by the Lyapunov-Perron integrals

Di¢(t,A") = / D« (t,s)H,(s)ds foralll <n <m,
R
where TI') is the Green’s function associated to (£,), which is defined by

D, (1,0) P, d,(0, 5), s <t,
I(t,s) =
—@A(I,O)[id—P)L]@A(O, s), t<s.

The following example illustrates the formal procedure described above:

Example 1.9 (Neural Networks of Hopfield-type, cf. [59]). The dynamics of an
artificial and isolated neuron under a temporally changing stimulus c(¢) is given by
the scalar ODE

X = fa(t,x) ;= —a(t)x + b(t) tanh x + Ac(1), (1.9)

where x is the membrane potential. The function ¢ : R — (0,00) yields a
dissipative or negative feedback term and the bounded » : R — (0, co) describes
the neuron gain; both are assumed to be continuous.

For A = A* = 0 it is clear that (1.9) has the trivial solution ¢*(¢) = 0, whose
continuation for A # 0 we like to approximate. The corresponding variational
equation reads as

X = (b(t) —a(t))x

and has the dichotomy spectrum ¥ = [B(b — a), B(b — a)]. Hence, ¢* is a
hyperbolic solution, if the parameter functions have Bohl exponents satisfying
Y N {0} = @. It persists due to Theorem 1.2 for small values of A. If we abbreviate
¢ (1) :== Dip(t, A*), then the corresponding linear equations (J,) become
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£ =[b(t) — a(0)]x + c(0).

x=1[b(t) —a(r)]x,

X =[b(t) —a(®))x —2b(1)¢; (1),

X =[b(1) —a()]x — 12b(0)a(1)¢7 (1),

X =[b(1) —a()]x + 2b()$1(1) (8¢} (1) — 10¢3(1)¢h1 (1) — 15¢5 (1)),

%= [b(1) —a(0)]x +30b(1)(B¢2(1)¢} (1) — Pa()B7 (1) — 42 ()3 (1) 1 (1) — B3 (1))

and we can apply Corollary 1.1 in order to obtain its bounded entire solutions.
Above all, one sees that ¢,(f) = ¢s(t) = ¢6(f) = 0 on R and we obtain
successively

¢1(7) [' o cls)elsb=atndr gg - B(h —q) <0,
1(1) = )
[ e(s)els br=atndr gy, Bb—a) >0,

(1) = —2 1 ()i (s)Sel OO s B(h —a) <0,
3 - t
7 b(s)gi(s) el OO g5 B(b —a) > 0,

o) = 4 Tt b)) (4b1 (1) — 5eps (1)) OO g By — a) < 0,
U b2 (1) — S50 OO a5 g —a) > 0.

From this we arrive at the approximation

2 2i+1
TIEDY Grrmitn©+0a)

i=0

with the functions ¢, ¢3, ¢s computed above. The persistence of the zero solution
under different perturbation functions is illustrated in Fig. 1.3.

A source for time-dependent models are treatment strategies for diseases.

Example 1.10 (HIV and T-cell Interaction, cf. [42]). The interaction between HIV
and T-cells in the human immune system is described by the ODE

. Hv

P = s =29 o,

Lo Y (1.10)
V= —cVT,

b+ 7V
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Fig. 1.3 Example 1.9: Solution portrait indicating the persistence of the trivial solution as constant
solution (left, c(¢t) = 1), periodic solution (middle, c(¢t) = sint) and as bounded entire solution
(right, c(t) = sgnt)forA=1,a=1,=2

where T is the uninfected CD4™ T-cell, and V the HIV population. The terms sy (¢)
and s,(¢) describe the source and production of T-cells and r(¢) is an interleukin
treatment function during possibly aperiodic treatment intervals; the L°°-functions
s1, 52,7 : R — R are assumed to be known.

To understand the dynamics of (1.10) we first consider the autonomous case

. %
T = — —2 T —kVT,
bhy+V (1.11)
. \% :
v=_8"_ _.yr
b, +V

where both s5; and s, are now assumed to be constant in time. The autonomous
system (1.11) possesses the disease free equilibrium (7o, Vp) = (% 0). From the
corresponding Jacobian

kSl A\
W=

g CS1
by o

we see that (Tp, 1p) is asymptotically stable for bg—2 < “71 and hyperbolic (with Morse
index 1) for % > % The critical case bg—z = % corresponds to a transcritical
bifurcation of (7y, V). Hence, in order to enforce that the virus free equilibrium
(To, Vp) becomes asymptotically stable, we have to choose a treatment strategy such
that the decay rate u for the T-cells becomes small.

Now we proceed to the full nonautonomous equation (1.10). Then the virus free

dynamics is given by the scalar linearly inhomogeneous problem
T'=s51(t) + (r(t) = wT. (1.12)

which is stable under the upper Bohl exponent condition E(r — ) < 0. Moreover,
this assumption guarantees the existence of a unique globally bounded solution

! !
Tu(t) = / elslr@)—uldo g (o gy
—0Q
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to (1.12). Clearly, (%‘, 0) is not an equilibrium of (1.10) anymore, but it persists as
the entire bounded solution

! 1
Tu(t) = / elilr)—uldo g () gs, Vi(t) = 0.
—00

Its stability behavior is determined by the variational equation

(T) B (r(t) — e = —kT*(t)) (T)
v 0, £ —cTu(t) 4
i.e., its corresponding dichotomy spectrum

2 =[Ber—w. B = | U BGE — T B(E —eT)].
Thus, an effective dosing function r must satisfy the Bohl exponent condition
max {E(r - B(E - cT*)} <0,

since it guarantees that (7%, Vi) is uniformly asymptotically stable.

For further time-varying (and higher dimensional) models see [40,41]. Moreover,
related optimal control approaches to HIV-modelling using more complicated four-
and higher dimensional equations, are studied in [27,43,60].

1.6 Attractors

In an autonomous system, the solutions depend only on the elapsed time # — 7 since
starting, so the limit relation # — #y — oo either holds when t — oo with 7y fixed or
as t) — —oo with ¢ fixed, so (yet to be defined) forward and pullback convergence
are equivalent for an autonomous system.

Two types of attractors for nonautonomous systems are possible, depending on
which of the above types of convergence is used. Moreover, unlike autonomous
attractors, a nonautonomous attractor <7 for (9, consists of a family (<7 (¢));er of
nonempty compact subsets which is invariant in the sense that

(t,s,9/(s)) = /(t) forallt € R

and attracts bounded subsets D C R? of initial values (o, xo) (rather than just
individual points), in the sense that

as t — oo with £ fixed (forward case),
dist (¢x (¢, 20, D), &/ ()) — 0
as fp — —oo with ¢ fixed (pullback case).
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T R[Z

Fig. 1.4 Solution curves (dotted) and the attractor .o/ with forward convergence + — oo for ¢
fixed (left) and pullback convergence #y — —oo for ¢ fixed (right)

This gives, respectively, a forward attractor and a pullback attractor, which consist
of entire solutions. In general, forward and pullback convergencies do not imply
each other, but in special cases both may hold. Under appropriate dissipativity
assumption on (©,), pullback attractors exist as fiber-wise compact sets. See
[12,44,46,52] for more information and Fig. 1.4 for an illustration.

We have already seen some examples of such attractors above without have
explicitly said so (cf. Examples 1.4, 1.5 and 1.10). The following example is a very
simple illustration of a situation that is common in the biological sciences, which
are intrinsically nonautonomous.

Example 1.11 (Switching Systems). Consider two autonomous ODEs
X =Ax+ by, X =Ax+ b, (1.13)

with a stable matrix A € R?*? ie., all its eigenvalues A of A satisfy ReA < 0.
Hence, the equations in (1.13) have its equilibria —4~'h; and —A~'b, as respective
global attractor.

Lets : R — {b;, bo} be a given piecewise continuous function and consider the
nonautonomous ODE

% = Ax + s(t) (1.14)

formed by switching between the two autonomous systems in (1.13). Its explicit
solution with initial value x (#y) = x is

t
o(t, 19, x0) = x(t) = e x, +/ e 5(1) d. (1.15)
o

The difference ¢; — ¢, of any two solutions with initial conditions ¢; (fp) = x; for
i = 1,2, satisfies the homogeneous ODE X = Ax, so
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Fig. 1.5 Example 1.12: Solution portrait indicating the attractors o7 of (1.16) with constants
fibers o7 (t) given by an interval (left, c(t) = 1), periodic fibers <7 (¢) (middle, c(t) = sint)
and temporally changing fibers <7, (t) (right, c(t) = sgnt) with A = % a=1,8=2

d1(t) — a(t) = e (x; —y,) > 0 ast — oo,

so all solutions converge together forward in time. What do they converge to? Taking
the pullback limit ) — —oo in (1.15) gives

d* (1) := /t e (1) dx,

—00

which is an entire and bounded solution of the nonautonomous ODE (1.13).
This simple example has nonautonomous attractor in both pullback and forward
senses, which consists of singleton subsets <7 () = {¢*(¢)}.

Example 1.12 (Neural Networks of Hopfield-type, cf. [59]). In Example 1.9 we
saw that the zero solution to (1.9) for A = 0 persists as an entire bounded solution
for small stimuli in form of a continuous ¢ : R — R; the stability depends on the
Bohl exponents of b — a. We now retreat to the simplified model

X = fo(t,x) = —ax + Btanhx + Ac(?), (1.16)

where the coefficient functions are constants fulfilling 0 < « < B. Then the
unperturbed equation (A = 0) has three equilibria x_ < 0 < x4, with the trivial
one being unstable and x_, x4 being asymptotically stable. Moreover, the interval
[x—,x4] is the global attractor. For A # 0 (1.16) becomes nonautonomous and
the equilibria x_, x+ persist as bounded entire solutions ¢, ¢;" : R — R, whose
Taylor approximation in A can be computed as in Example 1.9. Moreover, the global
attractor of (1.16) is (cf. Fig. 1.5)

adh ={(t.x) eRxR: ¢7 (1) <x < ¢ (1)} .

Remark 1.3. We note that a pullback attractor &7 = {(t x)eRxR?: x ¢ Jz%(t)}
contained in a uniformly bounded set (this means there exists a R > 0 such that
2/ (t) C Bgr(0) for all ¢) consist of the bounded entire solution of the system (D,)
(cf. [46]).
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How Realistic Is Pullback Convergence?

An advantage of pullback convergence is that it provides a means for constructing
the component sets of a pullback attractor and hence entire solutions. This obviously
requires knowledge of the past history of the system. In some important systems
involving the periodic or almost periodic forcing this past history is known.

There are, however, many modelling situations for which the past history is not
known. Instead the system is known—in fact, prescribed—on future time intervals
of the form [ty, 00). Forward attractors can be easily modified to these situations.
Pullback attractors can also be used if we invent an artificial past history, but the
pullback attractor will then depend on which “history” we choose and it is not clear
which history we should use.

A generalization of the theory of nonautonomous dynamical systems to nonau-
tonomous semi-dynamical systems proposed in [46, 52] offers some insight here.
Essentially, it contains all possible past histories of the driving system and the
modified pullback attractor component sets are the accumulative effect of all of
these past histories. In this sense, pullback attraction is still meaningful and useful
for nonautonomous systems defined only for future time.

1.7 Bifurcation Theory

A satisfactory bifurcation theory for nonautonomous systems is still under develop-
ment. Due to the lack of equilibria (or periodic solutions) for aperiodic time-variant
problems (D), at least two approaches were investigated so far:

— Attractor bifurcation: Pullback attractors or repellers change their structure under
varying parameters, i.e., become trivial or change their dimension (cf. [26,37,53]
or [73-75]). In particular, this led to bifurcation patterns generalizing the classical
counterparts of saddle-node, transcritical and pitchfork types.

— Solution bifurcation: The number of bounded entire solutions for () with a
specific property changes, if parameters are varied. For instance, almost periodic
solutions have been considered in [45] and [63] treat even more general classes.
Inspired by the persistence of equilibria as globally defined bounded solutions
under parametric perturbation, bifurcation results for such solutions have been
obtained in [68, 69].

The following examples illuminate these different approaches:
Example 1.13 (A Time-dependent Logistic Model, cf. [56]). A nonlinear logistic

model of population growth is given by

X =Ax (B(1) —x)
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with a constant A € R and a continuous function § : R — [by,, by], where 0 <
bn < by < o0. Itis a Bernoulli ODE which is explicitly solvable. It has a positive
entire solution

exfioob(s)ds

- - forall A > O,
A .[—oo ek./_oob(s)dx dt

¢ (1) =

which can be determined by taking pullback convergence. For A < 0 the system has
a trivial nonautonomous attractor 7 (t) = {0} in both the pullback and forwards
senses, which undergoes a transcritical attractor bifurcation at A = 0 to

(1) = 10,95 (1]

for A > 0, which is also pullback and forward attracting. It is also possible to verify
this topological change of the attractor theoretically on basis of [75].

Example 1.14 (Neural Networks of Hopfield-type, cf. [59]). We return to the
scalar model from our above Examples 1.9 and 1.12, but with different parameter
constellations. Indeed, we focus on

X = fa(t,x) == —a,(t)x + by(¢) tanh x, (1.17)

with continuous function a,,b, : R — (0, 00) and the trivial solution to (1.17).
Furthermore, for continuous functions «, 8 : R — R used below the upper and
lower Bohl exponents of B — « are supposed to exist as finite numbers.

(a) Pitchfork bifurcation: At first we assume that

a (1) = y(1), bi(1) ==y (1) + AB(1),

where o, 8, y : R — R is continuous. The associate variational equation reads
as X = AB(t)x yielding

Xy =[B(AB). B(AB)]
as dichotomy spectrum, which degenerates to the singleton {0} for the critical
parameter A = 0. This setting implies a nonautonomous pitchfork bifurcation
as understood in [75]: In case B(AB) > 0 it is supercritical, i.e., for A < 0 the
trivial solution is asymptotically stable, while it becomes unstable for A > 0
and is embedded into a nontrivial attractor for (1.17). In case B(A8) < O the
bifurcation is subcritical, i.e., a dual stability change occurs (cf. Fig. 1.6).



26 P.E. Kloeden and C. P6tzsche

% REVEN
i

-2 -2 -2
-4 -4 -4
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Fig. 1.6 Supercritical pitchfork bifurcation from Example 1.14(a): Solution portrait indicating the
bifurcation of a trivial attractor &y = R x {0} (left, A < 0) over the neutral situation (middle,
A = 0) into a nontrivial attractor (right, A > 0) with y(¢) = 1 +sin |¢|, B(t) = 1

Fig. 1.7 Shovel bifurcation from Example 1.14(b): Solution portrait indicating the bifurcation of

a 1-parameter family of bounded entire solutions. The trivial solution is the unique bounded entire
solution and uniformly asymptotically stable (A < %, left), 0 is asymptotically stable on Ry and
embedded into a family of bounded entire solutions (A € (—%, —%), middle) and 0 is the unique

bounded entire solution and unstable (A > —%, right) with functions a(t) = 0.5sgnt, f(t) = 1

(b) Shovel bifurcation: A different situation occurs when, for instance,

a(t) :=oa()—A, by(t) = B(1).

As variational equation we have X = [A + B(f) — «(f)]x and the dichotomy
spectrum

5 =BB-a).BB -] -2

This yields a shovel bifurcation as introduced in [69] and in particular two
critical parameters:

- A = B(B — a): The trivial solution is asymptotically stable for A < A%,
while there exists a 1-parameter family of bounded entire solutions to (1.17)
for A > AT, i.e. a supercritical bifurcation.

— A3 = B(B — «): The trivial solution is asymptotically stable for A > AJ,
and for A < Aj there is a 1-parameter family of bounded entire solutions to
(1.17), i.e. a subcritical bifurcation.

See Fig. 1.7 for an illustration.

The following section provides a geometrical tool to investigate bifurcation
phenomena in higher dimensional problems.
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Fig. 1.8 Splitting of the dichotomy spectrum according to (1.18)

1.8 Integral Manifolds

Invariant manifolds are an important geometrical tool in dynamical systems to
separate different domains of attraction or for dimension reductions (cf., for
instance, Chap.3) and bifurcation problems to capture the essential asymptotic
behavior. The reason is based on the fact that after a decay of transients, the behavior
of a differential equation modeling a biochemical system often stays on a low-
dimensional surface which is an invariant manifold.

A corresponding theory for nonautonomous problems (1.3) is due to [5, 80] and
one speaks of integral manifolds in this generalized context. They are associated to
fixed reference solutions ¢* of (©,), which are transformed to the trivial solution
by means of the equation of perturbed motion (1.3).

Keeping the parameter A fixed throughout, we introduce a nonautonomous
version of an invariant manifold for (1.3) as follows: The essential assumption is
a gap in the dichotomy spectrum X;(A4,) for (£;), i.e., there existsan 1 < i < n
and an interval (o, §) € R such that (cf. Fig. 1.8)

a; <oua < ,3 < bi+1. (118)
Thus, for y € («, B) the scaled variational equation X = [A4,(¢) — y id]x has an
exponential dichotomy with associated projector P; € R*?. We define projection-
valued maps
P (1) := ®,(t,0) P;03(0, 1), P (1) i= §3(1,0)[id — P;] P2 (0, 7)

and assume that wijE : U x I — R are continuously differentiable and satisfy

w(t,00=0 onl, lim |DawE(t,x)| =0 uniformlyins e I, (1.19)

wiE(t, x) = wE(t, PE(1)x) € R(PT (1)) (1.20)
for all (¢, x) € I x U. Then the nonautonomous set given by the graph
WE =, +wE(r.§) e I xR?: £ e R(PE(1)) N U} (1.21)
is called a local integral manifold of the nonlinear ODE (9,), if

(to.x0) € " + #* = (t.g(t.19,x0)) € §* + #;E forallt € Jy(to, xo)
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S

Fig. 1.9 Integral manifolds V/IJr, W, C Rx$2 for (D, ) associated to the solution ¢™* (dashed) to
a hyperbolic situation X' (A,) = [ay, by] U [az, by] with by < 0 < a,. The stable integral manifold
”//1+ consists of all solutions decaying exponentially to O in forward time, while the unstable
spectral manifold %, is formed of solutions with the corresponding asymptotics in backward
time. Solution curves are indicated by dotted lines

holds, where Jy (fy, xo) C I is the maximal existence interval for @, (-, fo, Xo) W.L.L.
the tubular neighborhood ¢* + U. One speaks of a C"-integral manifold of (D)),
if the derivatives D} wfc exist and are continuous forn € {1,...,m}.
Geometrically, conditions (1.19)-(1.20) imply that ¢* + %i contains the
solution ¢* of (D,), and Vﬂii is fiber-wise tangent to the spectral manifolds

¥E = {(r.§) e I xR : § € R(PE (1))},

while (1.20) implies that each ¢-fiber Wii(t) is a graph over the intersection
R(PE(t))NU,t €I (cf. Fig. 1.9).

Local integral manifolds satisfy the following nonlinear first order partial
differential equation, called the invariance equation,

A (OWE(,E) + PT () Fy(t. & + wF(E.1)) (1.22)
= DywiE(1,8) + DawE(1,8) (Au()E + PE)Fu(1,§ + wE(1,£)))

forallt € I,& € R(P~(1)) N U such that £ + wt(z, §) € U.

Remark 1.4 (Classical Hierarchy of Integral Manifolds). The sets ¢* + 7/1-"' and
¢* + W~ are known as pseudo-stable and pseudo-unstable integral manifolds of
the solution ¢* to (D, ), respectively. Then

— for I unbounded above, ¢* + Wﬁ' describes a center-stable integral manifold in
case B > 0, a stable integral manifold in the hyperbolic situation ¢ < 0 < 8 and
a strongly stable integral manifold for § < 0.

— For I unbounded below, ¢* + #;~ is a center-unstable integral manifold in case
o < 0, an unstable integral manifold in the hyperbolic situation « < 0 < 8 and
a strongly unstable integral manifold in case o > 0.

This terminology corresponds to the autonomous situation in, e.g., [13].
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Theorem 1.3 (Local Integral Manifolds, cf. [72]). If¢* : I — $2 is a solution to
(®,) such that (1.18) holds, then there exists a py > 0 with:

(a) for I unbounded above and under the gap condition
ma < B, (1.23)

the ODE (D)) has a local pseudo-stable C'™ -integral manifold ¢* + Wi—",
(b) for I unbounded below and under the gap condition

a < mp, (1.24)

the ODE (9,) has a local pseudo-unstable C™-integral manifold ¢* + #;~,
(c) for the corresponding mapping wijE 1By (0) x I — R? from (1.21), there exist
real numbers yy, . .., Ym > 0 such that

HDSW?:(Z,X)” <vyn, forallx € By(0),t €I, ne{0,...,m}, (1.25)

(d) if the right-hand side f, of (D)), as well as the solution ¢p* are periodic in t
with period 6 > 0, then

wE(t +60,x) =wt(t,x) forallx € 2,t €,

+

and if (D)) is autonomous and ¢* constant, then the mappings w;

independent of t € 1, i.e., the sets

are

{p* +E+wE(E) eRY: & € R(PF) N B, (0))

are a locally invariant manifolds of (D).

Remark 1.5 (Reduction Principle). Center-unstable manifolds ¢ + #;~ are of
particular importance, since they allow a reduction in the dimension in critical
stability situations: First, the stability of ¢* is completely determined by the
corresponding properties of the zero solution for the ODE reduced to ;™. Second,
bifurcating entire solutions near ¢* are contained in ¢* + #;~.

In general, the integral manifolds ¢* + Vﬂii are unknown. However, for a nonau-
tonomous center manifold reduction it suffices to determine a Taylor approximation
of the mappings w,-ﬂE in x. Thereto we make the ansatz

m

1
wEtx) =) ;wfn )x" + RE (1, x) (1.26)

n=2"""

with coefficient functions wfn : I — L,(R?%) given by wfn (1) := D?wijE (¢,0) and

. . . . RE £, .. .
a remainder Rfm satisfying lim, ¢ % = 0. In addition, let us introduce the

mappings an : I — L,(RY),
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Hi:,:(t)xl Xy 1= PE@)DYFi(t,0)x; -+ X,

n—1
+PT0Y Y DR OWy, (Dxn -+ Wi, (Oxy,
J=2(Ny,....N;)EP(n)

- Z g#;tN1+l(t)xN1 'g;#th([)xsz

(N1,N2)€ P (n)
O<#Ny<n—1
Ny#0

where we use the terminology from Sect. 1.5 and (neglecting the index i)

WE(t) == DIW*(,0), WE(t,x) := PE(t)x + w(t,x),

gx (1) 1= DIg*(1,0),  g*(t.x) := A ()PE(D)x + PEW)F(, WE(t, x)).

One has H5(1) = P (1)D3F3(t,0), and for n € {3,...,m}, the values H= (1)
only depend on wfz, o ,wfn_l. We obtain that the Taylor coefficients wfn fulfill
linear differential equations with inhomogeneities H lj; (for the precise form of this
homological equation, see [72, Theorem 4.2]) and their unique bounded solutions

can be determined recursively from

Theorem 1.4 (Taylor Approximation of Integral Manifolds, cf. [72]). Given the
mappings wijE : U x I — R? introduced in Theorem 1.3, their Taylor coefficients
wi’n : I — L,(RY) in the expansion (1.26) can be determined recursively from the
respective Lyapunov-Perron integrals

o0
wih (1) = — /t @A(t,s)H,;(s)qDA(mPi+(I) ds,

t
w;, (1) = / G (t,8)H; ,()ays.p@yds foralln € {2,...,m},

—0o0
with the abbreviation Xrx;...x, = X(Txy,...,Tx,) for a symmetric n-linear
form X € L, (Rd, Rd), amatrix T € R gnd vectors x1, . .., x, € R".

The above integrals for wiin provide an explicit formula. However, in concrete
examples we recommend a direct and less formal approach:

Example 1.15 (Tumor Growth, cf. [§2]). Let us return to the tumor growth model
from Example 1.6 with parametric perturbations



1 Nonautonomous Dynamical Systems in the Life Sciences

i.e., we have ¢y (t) =

Aoxi

X =

1+A
A

4
0

2%
i

- kpot

Xo = kporca(t)x1 — kxz,
fC3 = k(x2 — X3),

X4 = k(x3 — x4),

ca(t)xy,

¢o + Ac(t) with a bounded continuous function ¢ :

31

(T

R —

R. The parameters are assumed to satisfy co, k, k,,, > 0. Restricting to the trivial
solution to (‘T,), the variational equation (1.6) has the dichotomy spectrum

Ek = {_k} U [E(AO - kpotck)7E(A'0 - kpotck)] .

For A = 0 this reduces to Xy = {—k, Ao — k,,,,,co}. Hence, the zero solution to

(%o) is asymptotically stable for Ay < kp,:co and unstable for Ay > kp,co. More

interesting is the nonhyperbolic situation Ao = k,,co on which we focus now:
Denote the right-hand side of (1) by f) (¢, x) and apply the linear transformation

Yo
V1
2
V3
V4

to the five-dimensional ODE A = 0, % = fa(t, x). This readily implies

0

CoKpor
1

1

100 O
000 O

1
OOOP

010 0

-1

y=Ay+ F(,y)

COkpot
0 — 000
k
1 0 000
COkpot
0 — 001
k

0 —cokpor 0 k O
0 —cokkpos k2 0 0

with the time-invariant linear part (in Jordan canonical form)

000 0 O
000 O O
00—k 1 O
000 —k 1

000 0 —k

(1.27)
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and the nonlinearity

kporyo (cod(y) — y1c(2))
0
F(t,y) == | —kporyoyic(t) + cokporyod (y) + ky, — y3 |+
—kporyoyic(t) + cokpor Yo (¥) + kyz; — ya
—kporyoyic(t) + cokporyod (y) + ky,

where

kX

- 1.
kz(cokpot(3y0 + yZ) + Al) + COkkpoI‘y3 + COkpoty4 + k3)’0

d(y) =

Thanks to Theorem 1.3(b), the transformed equation (1.27) has a two-dimensional
center-unstable manifold 7/1+ C R x R® given as graph of a mapping denoted as w.
The ansatz

wi (o)
2 3
wit.yo. ) = Yy ot [ W) [+ o (Vg + %)
i=0
Wi (1)

in the invariance equation (1.22) yields the following homological equations

3cak2,, + cokkpor

pot

Al

2

W = —kwg + + wg,

3c2kk2,, + cok’kp,
WE = —kwp 4+ — Prkl 2w,

Cokzkp()[(3cokp()t + k)

Wy = —kwj + »

Wi = —kwi + kpoc(t) + wi, Wy = —kwh + w3

W= —kw + kkporc (1) + w3, W3 = —kws + w3,
k2 (cokpor + k

i = —tow] 4 LK 20 Wy = —kw

Co

and their unique bounded entire solution is given by
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3COkpot(3COkpot + k)

wo(t) kA wh (1)
W%([) — ZCOkP()I‘(SCA()kpot + k) . W%(I) =0 on R,
1
wi(t) cokkpor (3cokpor + k) wi(1)
Al

as well as the successively given coefficients

k2(cokpor + k) ("
w?(t) = %/ 6D (s) ds,
—00
1
w2 (t) = / F Tk e (5) + W (s) ds,
—0Q

t
wh(t) = / MOk e (s) + wi(s)ds foralls € R,
—00

This finally shows that (1.27) reduced to %™ is given by the scalar equation

co(k + 3cokpor) y

Yo = —kpur (c(r)x » S
1

0) yo+ O (3. 932 (1.28)

We thus observe a nonautonomous transcritical bifurcation of the trivial solution to
both (1.27) and (1.28) in the sense of [75, Theorem 5.1]. In particular, depending
on the Bohl exponents, the trivial solution is unstable for f(Ac) > 0 and becomes

asymptotically stable for (Ac) < 0.

1.9 Skew-Product, Control and Random Systems

Nonautonomous dynamics as presented so far was based on processes (or 2-parame-
ter semiflows), i.e. continuous mappings ¢ : {(t,5,x) e RxRx 2 : s <t} - 2
satisfying

o, t,x)=x, o,s,¢(s,1,x) =@t t,x) forallt <s <t x € 2. (1.29)

This has partly didactical reasons and is due to the fact that the general solution ¢;
to (9, ) fulfills (1.29) at least on maximal existence intervals.

Nevertheless, there is a further approach being theoretically important and
flexible in applications at the same time (see [79, 83]). Indeed, a deterministic
nonautonomous dynamical system can alternatively be formulated as a topological
skew-product flow (0, ¢) consisting of a cocycle mapping ¢ on a state space X
(a metric space) driven by an autonomous dynamical system 6 acting on a base
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or parameter space P (also a metric space), which is particularly useful when the
nonautonomity is due to periodic or almost periodic coefficients, e.g., [79, 83].
Specifically, 8 = {6, : t € R} is an autonomous dynamical system on P, i.e., a
group of homeomorphisms under composition on P with the properties that

() 6p(p) = pforallpe P

(B) Os4:(p) = 0,(6;(p)) forall s,t € R
(y) the mapping (¢, p) +— 6,(p) is continuous,

and the cocycle mapping ¢ : R x P x X — X satisfies

(@) ¢(0,p,x) =xforall (p,x) e P x X
(b) ¢p(s+1,p,x) =¢(s,0:(p), (¢, p,x)) foralls,t e RT, (p,x) e P x X
(c) the mapping (¢, p, x) — ¢ (¢, p, x) is continuous.

Note that a skew-product flow (6, ¢) defines an autonomous semi-dynamical
system on the product space P x X. They include nonautonomous dynamical
systems in the process formulation ¢(?, fy, Xo) used above as a special case with
a noncompact base P = R, the shift operator 6,(ty) := ¢ + ty and the cocycle
mapping ¢ (¢, to, Xo) := @(t + 1o, o, Xo), 1.¢., the parameter p is the initial time .

A major advantage of the skew-product formulation appears when the parameter
space P is compact, which arises in differential equations with periodic, almost
periodic or almost automorphic forcing such as in the simplest situation

X =—x+ p(t).
Here, P is the hull of the inhomogeneity p € C(R, R) defined by
P :=cl{p(s+):seR}
with the shift operator 6, p(-) := p(t + -) and the closure taken in an appropriate
topology.

Analogously, a set & = {(p, A(p)) : p € P} with nonempty compact fibers
7 (p) C X is said to be ¢-invariant, if ¢ (¢, p, A(p)) = A(6;(p)) forall t € R and
p € P and pullback attracting, if

disty ((t.0-,(r), D), A(p)) = 0 ast — oo

for appropriate bounded subsets D C X. See the monograph [52] for more details
and examples.

Control Systems
A further class of intrinsically nonautonomous problems are control systems. While

this chapter basically dealt with deterministic ODEs (©; ) where the parameter A is a
real number (or a tuple of them), control theory is concerned with the situation when
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A is a function in time—typically denoted as control function u from an appropriate
set or function space U. In this field, the central question is to investigate how
changing these functions within U affects the solutions or their long-term behavior.
This gives rise to a number of different questions like controllability or “optimal
control” not tackled here and we refer to e.g. [84] for further information.

We finally point out that also control systems allow a formulation as skew-
product flows and refer to [17] for details.

Random Dynamical Systems

A random dynamical system is defined similarly, except that the base space P is now
the sample space §2 of a probability space (§2, .%, P) and continuity properties w.r.t.
p are now replaced by measurability in @ € 2. In particular, a random attractor
o = {(w, A(w)) : w € §2} consists of nonempty compact fibers 2/ (w) € X such
that the set valued mapping w +— A(w) becomes .%-measurable. For details, we
refer to [6, 14,52] and the Chap. 2 by de Freitas and Sontag in this volume. In fact,
de Freitas and Sontag propose a novel generalization of random dynamical systems
that includes control and uncertainty as well as randomness.
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Chapter 2
Random Dynamical Systems with Inputs

Michael Marcondes de Freitas and Eduardo D. Sontag

Abstract This work introduces a notion of random dynamical systems with inputs,
providing several basic definitions and results on equilibria and convergence. It
also presents a “converging input to converging state” (“CICS”) result, a concept
that plays a key role in the analysis of stability of feedback interconnections, for
monotone systems.

Keywords Pullback convergence ¢ Random dynamical systems e Stochastic
dynamics

2.1 Introduction

In the late 1980s, Ludwig Arnold conceived an elegant and deep approach to the
foundations of random dynamics [3]. His paradigm of a random dynamical system
(RDS for short) is based on an ultimately simple idea: view an RDS as consisting
of two ingredients, a stochastic but autonomous “noise process,” and a classical
dynamical system that is driven by this process. The noise process is described by
a measure-preserving dynamical system. It is typically probabilistic, representing
for example environmental perturbations, internal variability, randomly fluctuating
parameters, model uncertainty, or measurement errors. But the formalism allows for
deterministic periodic or almost-periodic driving processes as well. The resulting
theory, developed since by many authors, provides a seamless integration of
classical ergodic theory with modern dynamical systems, giving a theoretical frame-
work parallel to classical smooth and topological dynamics (stability, attractors,
bifurcation theory, and so forth), while allowing one to treat ina unified way the most
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important classes of dynamical systems with randomness—random differential
or difference equations (basically, deterministic systems with randomly changing
parameters), or stochastic ordinary and partial differential equations (white noise
or, more generally, martingale-driven systems as studied in the Itd calculus). The
main goal of this chapter is to propose a new RDS-based formalism for random
control systems, that is, systems with inputs (and outputs), which we abbreviate
RDSI (or RDSIO).

Why Systems with Inputs and Outputs?

Our motivation for studying RDS with inputs and outputs arises from the need to
provide foundations for a constructive theory of interconnections and feedback for
stochastic systems, one that will eventually generalize successful and widely applied
deterministic approaches to the analysis and design of dynamic networks [17, 19,
20]. To motivate this need and in order to set the stage for our definitions, let us
start by recalling the basic paradigm of (deterministic) control theory. We use for
concreteness ordinary differential equations. (For a more abstract general dynamical
systems approach, see [30], as well as the definition of RDSIO’s in this chapter.) The
objects of study are systems with inputs and outputs:

210) = A1) X (@)1 (1) um(t))

Xn(®) = ful1(@),. ..., x, (@), u1(t), ..., upn(t))

states inputs

supplemented by a set of output variables yi, ..., y, that are functions of the state
vector Xx:

yi(t) = hj(x(®), j=1...,p.

The inputs u; (f) may be viewed as controls, forcing functions, external signals, or
stimuli, depending on the context. The outputs y; represent responses, typically
a partial read-out of the system state vector (xi, ..., X,). Such a formalism, which
originated in the analysis of engineering systems, is also natural in biology. Cells are
not autonomous systems; they process external information, provided by physical
(UV or other radiation, mechanical, temperature) or chemical (drugs, growth
factors, hormones, nutrients) inputs. They also produce signals which we may
view as outputs, such as chemical signals sent to other cells, commands to motors
that move flagella or pseudopods, or the internal activation of transcription factors
which may be monitored by measurement technologies. Thus, the control-theory
formalism—in contrast to dynamical-systems theory, which deals with isolated
systems—is not only reasonable, but natural in biology.
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Fig. 2.1 A system viewed as inputs to subsystem 2

an interconnection of " outputs of subsystem 2
subsystems with inputs and
outputs

input
to system

output
of system

There is also a somewhat different reason for considering systems with inputs and
outputs. Cells can be seen as composed of a large number of subsystems, networks
of proteins, RNA, DNA, and metabolites involved in various processes such as
cell growth and maintenance, division, and death. Indeed, one of the important
themes in current molecular biology [9, 15,22] is that of understanding cell behavior
in terms of cascades and feedback interconnections of elementary “modules.”
The hope is that one should be able to decompose large systems into, hopefully
simpler, subsystems, and then study the emergent properties of interconnections.
Diagrammatically, one might represent this situation by a graph as in Fig.2.1,
which shows an overall system as composed of four subsystems. In Fig. 2.1, there
are inputs and outputs for the overall system. However, even if the entire system
were autonomous (no arrows into or out of the large box), in order to be able to
define such interconnections, one must necessarily consider subsystems that admit
time-dependent input signals and which produce output signals. Thus, the control
theoretic formalism is a necessity even in the analysis of autonomous systems, when
using a decomposition-based approach. Observe that, if the behavior of subsystems
is subject to random effects, then it is imperative to allow inputs to be random
when studying subsystems: for example, the subsystem “2” in Fig.2.1 has inputs
that depend on subsystems “1” and “4” and thus, if these are described by random
processes, the inputs to “2” are also random processes.

As an illustration of how these ideas play out in the deterministic case, consider
an inhibitory or activating cyclic structure

X1 = fi(xn, x1)

Xo = falx1,x2)

Xy = fn(-xn—ls -xn)s

as diagrammed in the left panel of Fig.2.2. This is the “Goodwin model” of gene
expression, and appears as well in many other models in mathematical biology
(e.g. [14, 25]). It has been much studied mathematically, notably by Mallet-Paret
and others [13,24,27,28], which among other major results, established a Poincaré-
Bendixson theorem which tightly characterizes £2-limit sets for such systems in
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Fig. 2.2 A cyclic system (left), built by feedback from a cascade of n systems (right)

terms of periodic orbits and heteroclinic connections among equilibria. In the
present context, we wish to view the system as built out of » components x;,
i =1,...,n.These components form a “cascade” or “series interconnection” when
the feedback connection is ignored (right panel of Fig.2.2). This view has been
very successful when combined with tools from passivity theory [2], input-to-state
(ISS) stability [29], and monotone systems with inputs and outputs [1]. To be more
concrete, suppose, for example, that the system has the following special form, with
each x; scalar:

X1 = biki(x,) —ax

X2 = baka(x1) — azrx;

xn = ann(xn—l) —dpXy,

where the a;’s and b;’s are (for the moment) positive constants. The functions
ki (x;—1) represent the way in which the previous state in the cycle affects the given
state. “Opening up” the feedback loop amounts to studying the system:

X1 = bk (u) —ayx;

X2 = baka(x1) — azxy

Xy = ann(-xn—l) —anpXp,

in which now u represents an external input. We may, in turn, view this open system
as an interconnection of n subsystems

X = b,-/c,-(u) —da;X.

The hope is to be able to conclude something interesting about the overall system by
the following two steps: (1) study the “open” system by recursively interconnecting
the systems X = b;k; (u) —a; x until the whole system is obtained, and then (2) study
the effect of “closing the loop” with feedback to recover the original system. The key
property needed in the first step, at least in order to recursively study stability, is the
CICS property: the state x; (¢) should converge to an equilibrium provided that the
input u(t) converges to a limit. Obviously, in this simple example CICS is trivially
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true (assuming that « is continuous), since we just have a forced linear system,
easily solved in closed form using variation of parameters. However, for general
nonlinear systems, CICS fails even for systems which are globally asymptotically
stable with respect to constant inputs. This motivated, for deterministic systems, the
introduction of the notions of ISS [29] and of monotone systems with inputs [1],
either of which allows one to obtain CICS types of theorems, and these approaches
coupled with what are generically called “small-gain theorems” (essentially, asking
that the feedback loop results in a contraction in an appropriate sense) allow one
to complete the program (step 2). In this work, we focus exclusively on the CICS
problem (step 1) for stochastic systems, and leave the study of small-gain theorems
for follow-up work.

Stochastic extensions of deterministic theory should take full advantage of the
power of ergodic theory. Suppose, continuing with the above simple example, that
we have the scalar linear system X = bu — ax, where a and b are now not constants
but are randomly varying, ¢ = a(w), b = b(w). Randomness might model the
effect of cell-to-cell variability in essential enzymes, or physical factors such as
temperature or pH. If a(w) < —A < 0 for all @ (and b is, for example, bounded),
then stability will not be an issue. However, it may be that the only possible
assumption is that the expected value of a(w) is negative, but a(w) might take zero,
or even positive, values (for example, a might be a difference between an auto-
catalytic term of production and a degradation/dilution term). Then, ergodic theory
is needed in order to establish results on almost-sure stability (or convergence to
steady-state probability distributions). We feel, therefore, that an RDS-based theory
is most natural in this context.

Much work has been done on random control systems, but not employing an RDS
axiomatic approach. This includes the papers [11,26] on stochastic stabilization, as
well as the papers [7, 8,31] on feedback stabilization using noise to state stability
analogs of input to state stability. We believe, however, that an RDS approach is a
useful addition to the literature, for the reasons mentioned above. Also very relevant
is an extension [6] of RDS to allow (deterministic) inputs that are themselves
generated by a dynamical system (in the terminology of regulation and disturbance
rejection, one would say that inputs are generated by an “exosystem”).

Outline of Chapter

We first review the classical RDS theory. This material is not new; however, with
an eye to generalizations, we reformulate it in a slightly different language. We
next define our new concept of RDSI (and RDSIO), which extends the notion of
RDS to systems in which there is an external input or forcing function, which is
itself a stochastic process. A major contribution of this work lies upon the precise
formulation of this concept, particularly the way in which the stochastic argument
of the input is shifted in the semigroup (cocycle) property. Note that stochasticity
of inputs is essential if one is to develop a theory of interconnected subsystems,
as an input to one system in such an interconnection is typically obtained by
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using a combination of outputs (necessarily random) of other subsystems. After
establishing several basic results that provide a foundation for further study, we
turn to the question of “converging input to converging state” (CICS) properties.
Specifically, recent work by Chueshov [5] introduced the class of monotone RDS
(without inputs), a theory that provides us with the concepts needed to pursue the
generalization of the latter to RDSI. Thus, we introduce also a class of monotone
RDSI, and are able to formulate and prove a CICS theorem for monotone systems.
A follow-up of this work will provide a small-gain theorem for monotone RDSI,
generalizing [1], which follows from the CICS tools developed here. Separate work
in progress deals with generalizations of ISS. Space prevents giving many examples,
so we limit ourselves to a simple linear RODE (a pathwise random ODE). In
principle, however, our setup also allows one to study more complicated objects
including stochastic differential equations as in the It6 calculus. (A good reference
for RODE’s and SDE’s in the context of RDS is the original book by Arnold [3];
see also [18]).

Other chapters in this volume deal with concepts closely related to those
discussed in this chapter. Linear systems with inputs are considered, for example,
in Chap. 1, Example 1.4, when viewing the transcription factor activity f(¢) as
an input. Pullback limits are discussed in Example 1.7 of that same chapter, and
especially at the end of Sect. 1.6, where the significance of this concept is discussed.
Cascade flows (semi-direct products, skew-product flows) are described in Sect. 1.9.
The mass-action kinetics model of the JAK-STAT signal transduction pathway
described in Chap.9, (9.7), can also be interpreted as a cascade closed under the
feedback of x4 into the first coordinate. It is in fact a monotone system. Finally,
the base model given in Chap. 8, Sect.8.2.6 for hepatitis C virus viral kinetics
in chronically infected patients, can be interpreted as a closed-loop system. More
specifically, it can be viewed as the closed-loop obtained from a monotone stochastic
RDS (with cone Rxo x Rxo x R<p, and when the term 7'(¢) in the equation for /(¢)
is viewed as an input), closed under “negative” feedback, when setting this input
again to T'(¢).

2.2 Random Dynamical Systems

We first review the random dynamical systems framework of Arnold [3]. Along the
way we introduce a couple of pieces of terminology not found in [3], to facilitate
the discussion. Suppose given a measure preserving dynamical system' (MPDS)

0 =(2,7,P{6}er);

! Arnold [3, p. 635] and Chueshov [5, p. 10, Definition 1.1.1] refer to such an object primarily as a
metric dynamical system. We find measure preserving, which Arnold also uses as a synonym, less
confusing and more informative.
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that is, a probability space (£2, %, IP), a topological group (7, +), and a measurable
flow {0, };e» of measure preserving maps 2 — £2 satisfying (T1)—(T3):

(T1) (¢t,w) > b, (t,w) € T x £2,is (B(T) @ .F)-measurable,
(T2) 645 = 0; o O, forevery t,s € .7 (semigroup property),
(T3) Po @, =P foreacht € .7 (measure preserving?).

In this work 7 will always refer to either R or Z, depending on whether one is
talking about continuous or discrete time, respectively. In either case 7% refers
to the nonnegative elements of .77. We will occasionally need to make measure-
theoretic considerations about .7 or Borel subsets of it. If 7 = R, that is, in
continuous time, then we tacitly equip any Borel subset of 7 with the measure
induced by the Lebesgue measure on R. If 7 = Z, or in discrete time, then we
think of the counting measure in Z. When . = Z, it follows from (T2) that 0 is
completely determined by 6; = 6(1,-). In that case we will abuse the notation and
use the same 6 to denote both the underlying MPDS and 6.

In the context of a given MPDS 0, a set B € % is said to be f-invariant if
0;(B) = Bforallt € .7. We say that an MPDS 0 is ergodic (under PP) if, whenever
B € % is f-invariant, then we have either P(B) = 0 or P(B) = 1.

Let X be a metric space constituting the measurable space (X,%) when
equipped with the o-algebra # of Borel subsets of X. A (continuous) random
dynamical system (RDS) on X is a pair (6, ¢) in which 6 is an MPDS and

0: Toox2xX —X
is a (continuous) cocycle over 6; that is, a (B(F>0) @ F ® H)-measurable map
such that
(S1) ¢(t,w) := ¢(t,w,-) : X — X is continuous for each t € I%¢, w € £2,
(S2) ¢(0,w) = idy for each w € £2, and (cocycle property)
ot +5s,0) = o(t,bw) o p(s,w), Vs,t € T, Yo € £2.

The cocycle property generalizes the semigroup property of deterministic dynamical
systems. More specifically, RDS’s include deterministic dynamical systems as the
special case in which §2 is a singleton.

Example 2.1 (RDS’s Generated by Random Linear Differential Equations). Given
an MPDS 6, suppose A: 2 — R™" is a random n X n real matrix such that, for
eachw € £2,

*P roperty (T3) is normally [32, Definition 1.1] stated as
P(6]'(B)) =P(B), VBE€Z, VieT.

But since it follows from (T2) that 6, is invertible with 67! = 6_, for each ¢ € 7, the two
formulations are equivalent in this context.
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t— |A@Go)ll. =0,
is locally essentially bounded. For each w € 2, let
E(,0):RxR— R"™
be the fundamental matrix solution® of the linear differential equation
£ =ABw)E, teR; 2.1

that is, for each fixed s € R, Z (s, -, w) is the unique absolutely continuous R —
R map such that

10---0
01---0
E(s,s,w) =1, :=
00---1

and
d
d_tE(s’ t,w) = ABw)E(s,t,w)

for almost all ¢t € R.
Let

P:Rsox 2 xR" — R”
(t,w,x) — 5(0,t,w) - x"

Then @ (0, , x) = x for every (w, x) € £2 x R" and
d
Ecb(t,w,x) = AB,w)D(t,w, x)

for almost all ¢+ > 0. Moreover, @(¢, »,-): R" — R” is continuous for each fixed
(t,w) € R x £2, and it can be shown using existence and uniqueness of solutions
for (2.1) that @ has the cocycle property:

Dt +s,0,x) =P, 6w, P(t,w,x)), V(,0,x)€Rsox2xR".

Thus (6, @) constitutes an RDS, referred to as the RDS generated by the (homoge-
neous, linear) random differential equation (RDE) (2.1).

3The reason we are introducing the fundamental matrix solution as a function of (s,7) € R X R
rather than a function of just # € R (for each fixed w € §2) will become clear in Example 2.3. This
notation will make it easier to discuss the rate of growth of the fundamental matrix solution.
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In this work, we use linear (or affine) systems as a case study to illustrate the
theory developed. Such systems (and their discrete counterparts) may be interpreted
as “switched linear systems,” and include classes of systems of great interest in
applications such as iterated function systems. Throughout the remainder of the
chapter, we will be building upon the example above. Thus for any random matrix
A as in Example 2.1, the symbols “&” and “®” will be reserved to carry the
meanings established in the example. We shall need the following two properties
of the fundamental matrix solution:

(F1) E(0,t,) - (.E?(O,s,w))_l = 5(s,t,w), forall (s,t,w) € R x R x £2, and
F2) E(s,t,0,w) = E(0+s,0+t,w),forall (s,f,w) € RxRx$2,forallc € R.

These properties also follow from uniqueness of solutions.

2.2.1 Trajectories, Equilibria and 0-Stationary Processes

In the context of RDS’s, the analogue to points in the state space X for a
deterministic system are random variables £2 — X, that is, Z-measurable maps
£2 — X. We denote the set of all random variables on a metric space X by X gg.
We refer to a (#(7%0) ® F)-measurable map q : Foq x 2 — X as a 0-stochastic
process* on X, and denote ¢, := q(t,-) for each 1 € F>¢. The set of all f-stochastic
processes on a metric space X is denoted by y@X .

Let (6, ¢) be an RDS. Given x € X gg, we define the (forward) trajectory starting
at x to be the -stochastic process £* € .7;* defined by

&(w) =t 0, x(w), (t,w)e I>x52. (2.2)

The pullback trajectory starting at x is in turn defined to be the 6-stochastic process
&Y 1 Fo x 2 — X defined by

EX(w) = o(t. 00, x(0_,0)). (t.0) € Top x 2. (2.3)

More generally, the pullback of a 8-stochastic process ¢ € YQX is the §-stochastic
process § € .%;" defined by

é[(a)) = qt(e_[(l)), (t,(l)) (S] 920 X §2.
So the pullback trajectory starting at x is simply the pullback of the forward

trajectory starting at x. We will always use the accent ~ to indicate the pullback
of the §-stochastic process being accented.

4A “f-stochastic process” is indeed a stochastic process in the traditional sense. We use the prefix
“H-" to emphasize the underlying probability space, as well as the time semigroup.
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We slightly modify the standard notion of equilibrium for RDS’s (see, for
instance, [5, p. 38, Definition 1.7.1]) to allow for the defining property to hold only
almost everywhere, as opposed to everywhere. So an equilibrium of an RDS (6, ¢)
is a random variable x € X such that

E(w) = o(t.w,x(®)) = x(B,0), Vte To Yo € 2,

for some A-invariant £2 C £ of full measure.’ It is often not necessary to specify
the said £2. So we say “for 8-almost all v € £2” and write

‘Yo € 2°

to mean “for all w € S~2, for some O-invariant set £2 C £2 of full measure.”

In view of the notion of pullback convergence with which we will be working
(see Sect. 2.2.3), it is more natural to think of the concept of equilibrium in terms of
pullback trajectories. Observe that a random variable x € X fj is an equilibrium of
the RDS (6, ¢) if, and only if

EX(w) = ¢(t. 0,0, x(0_,0)) = x(w), Vi€ Tag. Yo € Q2.

The remaining of this section is devoted to interpreting the concept of equilibrium
for an RDS in terms of a shift operator in the set YQX of all f-stochastic processes
on X. For each s € 7%, let

ps Ix — SX

2.4
q — ps(q) @9

be defined by

(ps(q))t(w) = qt+s(9—sw)7 (t’ 0)) € ‘720 X 2. (2.5)

Definition 2.1 (6-Stationary Process). A 0-stochastic process g € y@X is said to
be O-stationary if

(s (@) (@) = G (),

forall s, € F5, for f-almost all w € £2.

We use the prefix “6-” in “O-stationary” to emphasize the dependence on the
underlying MPDS 6. Using the characterization of 0-stationary processes given in

5Thatis, 6,2 = 2 forallt € 7, and P(2) = 1.
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Lemma 2.1 below, it is not difficult to show that a 6-stationary 6-stochastic process
q is indeed stationary in the traditional stochastic processes sense:

]P)(QH € Al""’étk S Ak) = P(é[l+h € Al,...,é[k+h € Ak)

forall Ay,..., Ay € F,foranyty,...t;,h > 0 (see, for instance, [23, Sect. 1.3]).

Lemma 2.1. The 6-stochastic process § € YQX is O-stationary if and only if there
exists a random variable g € X g such that

gi(®) = q(B,0), Vte Top, Vo € 2. (2.6)

Proof. (Sufficiency) Suppose that (2.6) holds for some g € ij Pick any s € Z~o.
For any t € 9 and f-almost all w € £2,

(ps (@)1 (@) = Gr5(0—50) = q(6;4,0—0) = (O w) = G (w).

So g is 6-stationary.
(Necessity) Suppose that g € 5”9)( is f-stationary and define ¢ € X ;3 by

q(®) = go(w), w e 2. 2.7
We have
Gi+5(0-50) = (@)1 (@) = Gi(@), Vs,1 € Foo, Yo € £2.
Setting t = 0 and renaming s as ¢ we then have
Gi(0_,0) = §o(®) = q(®), Vit e Fop, YV € 2.

Given any o € 2 and any ¢ € >0, we may apply this property with ® = 0,0 due
to the A-invariance of §2, thus obtaining

4: () = q(6,w).

Therefore (2.6) holds. O

Note that the random variable ¢ associated to ¢ is unique up to a f-invariant set
of measure zero. Indeed, it is determined #-almost everywhere by (2.7). Thus, we
have:

Corollary 2.1. Given an RDS (0, ¢) over a metric space X and a random state
X € Xu%, the following three properties are equivalent:

(1) x is an equilibrium;
(2) the trajectory £*, as defined in (2.2), is 0-stationary;
(3) themapt — &' € Xu%, t € T, is constant.
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We will always use an overbar to denote the 6-stationary 6-stochastic process g
associated with a given random variable g.

2.2.2 Perfection of Crude Cocycles

We briefly review the theory of perfection of crude cocycles discussed in Arnold’s
[3, Sect. 1.2]. It is customary for the definition of an RDS to require that the cocycle
property of ¢ in (S2) holds for every s,t € J5¢ and every @ € £2. If we want
to emphasize this fact we shall say that ¢ is a perfect cocycle (over the underlying
MPDS 6).

Definition 2.2 (Crude Cocycle). We say that ¢: 750 x 2 x X — X is a crude
cocycle (over 0) if itis a (#B(7) ® F @ %)-measurable map satisfying (S1) and

(S2)) ©(0,w) = idy for each w € £2, and for every s € J~, there exists a
subset 2, C £2 of full measure such that

ot +5.0) = ¢t 0;w) 0 9(s. ), V1 € T, Vo € £2.

The £2,’s need not be f-invariant.

As Arnold points out, there are circumstances where this flexibility in the
requirements for a cocycle is desirable. For instance, the flow of a stochastic
differential equation is only guaranteed to be a crude cocycle [3, Sect. 2.3]. Another
example will come up below after we introduce random dynamical systems with
inputs. Consider (deterministic) controlled dynamical systems. Such systems yield
a (deterministic) dynamical system when restricted to a constant input. One would
expect a sensible extension of the concept to random dynamical systems to have an
analogous property. However we shall see in the proof of Lemma 2.3 in the next
section that the restriction of the flow of an RDS with inputs to a f-stationary input
is not necessarily a perfect cocycle.

In this work we deal only with random dynamical systems (with inputs) evolving
in locally compact, connected subsets of R”. We will informally refer to such
systems as finite dimensional. It turns out that crude cocycles evolving in these
spaces can be perfected in a very reasonable sense.

Definition 2.3 (Indistinguishable Cocycles). Let 6 be an MPDS and ¢, ¢: Z%¢ X
2 x X — X crude cocycles over 6. If there exists a subset N € % such that
P(N) = 0and

{w e 2; p(t,w) # V¥(t,w), forsomet € 5o} C N,

then ¢ and v are said to be indistinguishable.
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Proposition 2.1. Let 0 = (%, 2,P, (0;);c5) be an MPDS with & = Z or =
R. Suppose ¢: ¢ x 2 x X — X is a crude cocycle over 0 evolving in a locally
compact, locally connected, Hausdorff topological space X. Then there exists a
perfect cocycle : T>o x §2 x X — X such that ¢ and  are indistinguishable.

Proof. See Arnold [3, Theorem 1.2.1] for the discrete case, which actually holds
with weaker hypotheses and yields stronger conclusions. For the continuous case,
see Arnold [3, Theorem 1.2.2 and Corollary 1.2.4]. O

2.2.3 Pullback Convergence

We work with the notion of pullback convergence developed in the literature and
canonized in the works of Arnold and Chueshov [3,5]. As with equilibria, we relax
the notion to require only that pointwise convergence happens 6-almost everywhere.

Definition 2.4 (Pullback Convergence). A 6-stochastic process & € ng is said
to converge to a random variable o, € X ;3 in the pullback sense if

gt(a)) =&0—w) — (@) as t — oo,

for f-almost all w € 2.

Proposition 2.2. Let (0, ¢) be an RDS evolving on a metric space X . Suppose there
exists a random initial state x € ng and a map Xoo : §2 — X such that

ét"(w) = (1, 0_,0,x(0_;0)) —> Xo(®) as t —>o0, YweR. (2.8)

Then X is an equilibrium.
Proof. For each t € 5, the map w +— ¢(t,0_0,x(0—w)), © € £, is
measurable, since it is the composition of measurable maps:

w+—> 0,0 — x(b—;w),

0w, x(0—;w)) —> @(t, 00—, x(0_; w)).

So it follows from [21, Chap. 11, Sect. 1, Property M7 on page 248] that x is
measurable. (If .7 is continuous time, just pick a subsequence (Z,),en going to
infinity.)

In addition, for each w € §2 such that the limit in (2.8) exists, and each t € J%,
we have

tlim ot — 7,0, x (60— w)) = Xoo(w)
—>00
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also. By f-invariance, the limit in (2.8) exists for 6, w as well. Hence

Xoo(O:0) = tl_l)lgo o(t, 00,0, x(0—;0,w))
= tl_i)m o(t, 0.0t —tw,p(t — 1,0, 0, x(0,—w)))

(T, 0, Xoo(w))

by continuity (property (S1) in the definition of an RDS). a

2.3 RDS’s with Inputs and Outputs

We now define a new concept. It extends the notion of RDS’s to systems in which
there is an external input or forcing function. A contribution of this work is the
precise formulation of this concept, particularly the way in which the argument of
the input is shifted in the semigroup (cocycle) property.

As in the previous section, given a metric space U, we equip it with its Borel
o-algebra Z(U) and denote by U, 543 the set of Borel measurable maps 2 — U. Let
YOU be the set of all 6-stochastic processes J>o X 2 — U. Given u,v € YQU and
s € I50, we define udsv: 59 x £2 — U by

u(w),0<t<s
Vi—s(Bsw), s <1

@Qsv)e(w) =

, 1€ 9%, wef.

We say that a subset 7 C . is a set of 0-inputs if u(sv € % for any u,v € %
and any s € 5. In other words, a set of 8-inputs is a subset of YQU which is closed
under concatenation.

Given € U, we denote by c(it) the trivial §-stochastic process defined by
(c(@)):(w) := uforevery t € 5 and every w € 2.

Definition 2.5 (Random Dynamical Systems with Inputs). A random dynamical
system with inputs (RDSI) is a triple (0, ¢, %) consisting of an MPDS

6 - (vavpv{et}tey)v
a set of f-inputs % C R and a map
0: Too X 2xX XU —> X

satisfying

A1) o, u): Tox 2 x X - X is (B(T>0) ® F @ HB)-measurable for each
fixedu € %,
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(11") the map @: F>p x 2 x X x U — X defined by
ot,w,x, ) =@t w,x,c(@), (tw,x,n)eToxR2xXxU,
is (B(F>0) ® F @ B ® B(U))-measurable;
(12) ¢(t,w,-,u) : X — X is continuous, for each fixed (¢, w,u) € Too X 2 X U ;

(I13) ¢(0,w,x,u) = x foreach (w,x,u) € 2 x X XU,
(I14) givens,t € F5p,w € 2, x € X, u,ve %, if

o(s,w,x,u) =y
and
o(t,bw, y,v) =z,
then
(s +t,w,x,udsv) = z;

(I5) and givent € Fop, w € £2,x € X, and u,v € %, if u;(w) = v;(w) for
almost all T € [0,¢), then ¢(t, w, x,u) = p(t,w, x,v).

We refer to the elements u € % as O-inputs, or simply inputs. Whenever we
talk about an RDSI (0, ¢, %), we tacitly assume the notation laid above, unless
otherwise specified.

(I1), (I1”) and (I2) are regularity conditions. (I3) means that nothing has “happened”
if one is still at time ¢ = 0. (I4) generalizes the cocycle property and (I5) states
that the evolution of an RDS subject to an input u is, so to speak, independent of
“irrelevant” random input values.

Remark 2.1. Notice that for each s, € J50, x € X, w € £2,
ot +s,0,x,u) = @, 0;w,9(s,w,x,u), ps(u)), Yue,
where p;: Y — S is defined by (2.5)%:
(ps () (Os0) = uy45(). (2.9)

This follows from (I4) with v = p,(u), which then yields u{;v = u. a

6We will use the same notation p; for the shift operator Y(,V — Y(,V defined by (2.5), irrespective
of the underlying metric space V. Since the domain of any §-stochastic process is always 7= X £2,
this will not be a source of confusion.
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The shift operator p; has a physical interpretation. The right-hand side is the
input as interpreted by an observer of the RDSI ¢ who started at time #; = 0, while
the left-hand side is how someone who started observing the system at time #, = s
would describe it at time ¢ (+ #,). Following this interpretation, a 6-stationary input
would then be an input which is observed to be just the same, regardless of when
one started observing it.

Example 2.2 (RDSI’s Generated by Random Differential Linear Equations with
Inputs). This generalizes Example 2.1. Given an MPDS 6, suppose that A: 2 —
R™" and B: 2 — R"** are random real matrices such that, for each @ € £2,

t+— |AG;w)||, t >0, and t+—— |B(6;w)|, t=>0,

are locally essentially bounded. Let U := R¥ and let SY YOU be the set of
O-inputs consisting of all #-stochastic processes u € YQU such that

t— |lu(w)|, t >0,

is locally essentially bounded for each w € 2. We consider the random differential
equation with inputs (RDEI)

£ = A(Bw)E + B,o)u(®), >0, 02, ue S (2.10)

Let Z:R x R x 2 — R"™" be the fundamental matrix solution of the
homogeneous, linear RDE

£ =AW w)E, >0,

and let (6, @) be the RDS generated by the same equation (see Example 2.1). For
each fixed (w,u) € 2 x Y, define

U(,w,u):Rsog > R"

t
V(t,w,u) ::/ Z(o,t,w)B(O,;w)us(w)do, t>0.
0

Finally, define

P:Rogx 2 xR" x SY — R"
t,w,x,u) — Ot w,x) +¥(E, 0, u)

Fixing (w, x,u) € 2 x R" x 5”0% arbitrarily, and differentiating ¢ (¢, w, x, u) with
respect to ¢, we get
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%qp(l,w,x,u) = AB,0)P(t,w,x) + E(t,t,w) B(6;w)u; (w)

+A(6;w) /Ot E(o,tw)B(O,w)us(w) do
= A(b;0)¥(t,w,u) + B(Oow)u,(w), Vit =>0.
Thus t — ¢(t,w, x,u),t > 0, is a solution of (2.10) with initial state
00,w,x,u) = P0,w,x) + ¥(0,w,u) = x.

In fact, (6, ¢, 5”0%) is an RDSI. Indeed, (I1) and (I1") follow from the fact that
the limit of a sequence of measurable functions is measurable. Properties (I12) and
(I3) follow directly from the analogous properties of @. And (I4) and (I5) follow
from uniqueness of solutions applied for each fixed w € §2—one basically verifies
that both sides of each equation we want to prove to be true, when looked at as
functions of ¢, define solutions of the same differential equation with the same initial
condition. We refer to (6, ¢, .#Y) as the RDSI generated by the RDEI (2.10).

We also introduce a notion of outputs.

Definition 2.6 (Random Dynamical System with Inputs and Outputs). A ran-
dom dynamical system with inputs and outputs (RDSIO) is a quadruple (0, ¢, % , h),
such that (6, ¢, %) is an RDSI, and

h:2xX—=>Y

is an (.7 ® #)-measurable map into a metric space Y such that 4 (w, -) is continuous
for each w € £2. In this context we call & an output function and Y an output space.

It may sometimes be useful to refer to a random dynamical system with outputs
(RDSO) only, by which we mean a triple (6, ¢, h) where (6, ¢) is an RDS and 4 is
an output function.

The $2-component in the domain of output functions is important. It allows for the
concept to model uncertainties in the readout as well. We will return to systems with
outputs further down, in the context of RDSIO’s which can be realized as cascades
of RDSO’s and RDSIO’s.

2.3.1 Pullback Trajectories

Let (0, ¢, %, h) be an RDSIO with output space Y. Given x € X g andu € %, we
define the (forward) trajectory starting at x and subject to u to be the 6-stochastic
process £ € .#;¥ defined by

() =gt o.x@).0). (1) € T x 2.
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We then define the pullback trajectory starting at x and subject to u to be the 6-
stochastic process £ € YOX defined by

V,X'”(a)) =" (0—0) = ¢, 00, x(0—w),u), (t,w)€ Topx 2.

The (forward) output trajectory corresponding to initial state x and input u is
defined to be the 6-stochastic process n** € yg, where

I @) = h(Gw. ot 0. x(@). 1) = h(60.5"©). (t.0) € Tnx 2.

while the pullback output trajectory corresponding to initial state x and input u is
analogously defined to be the 6-stochastic process 7** € YGY , where

(@) = 1" (0—0)
= h(ws (p(ts e—fa)v x(9_,w), M))
= h(w, " (w)), (t,w) € Top x 2.

For RDSI’s the definitions of forward and pullback trajectories are the same and
we also use the notations £ and 5” For RDSO’s the definitions are analogous,
except that they of course do not depend on any inputs. So forward and pullback
trajectories are defined as for RDS’s and we also use the notations £* and g",
respectively. We denote the forward and pullback output trajectories corresponding
to initial state x by n* and 1*, respectively:

(@) :=h(Ow. 91,0, x(®) = h(00.§ (@)

and

(@) := h(w, ¢(t, 0—0, x(0_»))) = h(w, £ (@)

for every (¢, w) € F5¢ x £2.

Note that the input u is not shifted in the argument of ¢ in the pullback, while at
first one might intuitively think it should have been. There are several reasons this
is so. First notice that

@) = £ (0-0), V(o) € Trox 2.

So éw is just the pullback of the 6-stochastic process £¥*, as it should be the case.
However we are more concerned with what happens in the context of cascades and
feedback interconnections of RDSIO’s. But before we get to that we first discuss
discrete RDSIO’s. This will further motivate axioms (I1)—(I5) in the definition of
an RDSI, provide—and completely characterize—a whole class of examples, and
provide the framework for said discussion of pullback trajectories and cascades.
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We say that an RDSI (or RDSIO) is discrete when .7 = 7. We first note that,
just like RDS’s [3, Sect. 2.1], RDSI’s also have their flows completely determined
by their state at time t = 1.

Theorem 2.1 (Characterization of Discrete RDSI’s). For every discrete RDSI
O,0,%),

there exists a unique map f:§2 x X x U — X such that

(Gl) [f:2xXxU—Xis(F QB ABU))-measurable,
(G2) f(w,-,u): X — X is continuous for each (w,u) € 2 x U,

and
(p(n + lﬂw’x’u) = f(enws (p(nsws xsu)s un(w))7 (211)

Jorevery (n,w,x,u) € Too X 2 x X xXU.
Conversely, given an MPDS 0, a set of 0-inputs % and a map

fR2xXxU—>X
satisfying (G1) and (G2), define ¢: T X 2 X X x U — X recursively by
00, 0,x,u) :=x, (w,x,u)e XX XU, (2.12)

and (2.11). Then (0, ¢, %) is an RDSI.
We refer to the map f as the generator of the RDSI (0, ¢, % ).

Proof. Define f by setting
flw,x,u) =¢(l,w,x,c(@), (w,x,u)e2xXxU.

Then (G1) and (G2) follow directly from (I1") and (I2), respectively. Equation (2.11)
follows from (I4) (see Remark 2.1) and (I5):

o+ 1, w,x,u) = ¢, 0,0,0n,w,x,u), p,(u))
= ¢(1. 0,0, 9, 0, x,u), c((pn (u))o(6r)))
= f(Onw. o, 0, x,u), (0a())o(6,0))
= f(Ohw,p(n, 0, x,u), up(w))
forany (n,w,x,u) € J50 x 2 x X x % . Uniqueness follows from (I3) and (I5),
together with the computations above performed backwards for = 0.

Now suppose f satisfies (G1) and (G2), and that ¢ is defined recursively by
(2.12) and (2.11). For (I1), pick any u € %/ . One first shows using induction on n
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that

@(”v RN M) = f(en—l'v @(n - 15 R Lt), un—l(')) (213)

is (% ® %)-measurable for each n € Z-q. Indeed, at n = 1 we have

QO(,,,M) f(el la(p(l_lv7vu) ui— 1())_f(7 ,MO())

which is (F ® %)-measurable, since [ satisfies (G1) and ug is .#-measurable.
Now (2.13) gives us the inductive step, since the right hand side is a composition of
measurable functions and, hence, itself measurable. Now pick any A € 2. We then
have

o

oG, u) H(A) = U{n} x @, u)"(A) € 2720 9 .F ® B,
n=0

since it is a countable union of (272 @ .# ® %)-measurable sets. Thus (I1) holds.
One can prove (I1') in the same way by noting that

o0

¢ (A) = [ Jin} x gm0 (4)

n=0

for each A € 44, and that
@(”s ) ') = f(en—l'v @(” - 15 ) ')s ')

is (¥ ® Z ® AB(U))-measurable for each n € Z..

Property (I2) follows from (G2), (2.12) and (2.11), again by induction on n €
Zso.Indeed, atn = 0, ¢(0, w, -, u) is continuous for every w € 2 andeveryu € % .
So once (I2) has been proved for a certain value of n € Z>(, we conclude that

@(n + lsws ',I/t) = f(ena)v qo(n,a),~,u),un(a)))

is continuous for any @ € §2 and any u € % as well.

Property (I3) follows from (2.12).

Before proving (I14) we first prove (I5) by induction on n € Zs¢. Fix o € 2,
x € X. Equation (2.12) gives us the base of the induction. Now assume (I5) holds
for a certain value of n € Zxo. If u,v € % are such that u;(w) = v;(w) for
j=0,1,...,n,then p(n,w, x,u) = ¢(n,w, x,v) by the induction hypothesis. So
it follows from (2.11) that

on+ 1, w,x,u) = f(bho,0(n,w, x,u), u,(w))
= f(bhw. o, w,x,v),va(®))
=opn+1,0,x,v).

This proves (I5).
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It remains to prove (I4). For each arbitrarily fixed p € Zx>(, we use induction on
n € Zso. For n = 0, (I4) holds in virtue of (I3) and (I5). For any w € 2, we have
uj(w) = ud,v);j(w)forj =0,..., p— 1. Therefore

@0, 0,0, 0(p,w,x,u),v) = ¢(p,w,x,u) = 90+ p,w,x,ul,v),

for any x € X. Now suppose (I4) holds for some n € Zso. Given w € §2 and
x e X,sety :=¢(n,0,0,x,u). Then

e(n+1,0,0,y,v) = f(0,0,0,00n,0,0,y,v),v,(0,0))
= f(Ontpw,0(n + p,w,x,udpv), @ pv)n+p(w))
=pm+p+ Lo x,ud,v).

This completes the proof that (6, ¢, %) is an RDSI. |

Observe that we did not need (I1) in order to prove the first half of the theorem.
So we could have in principle dropped this axiom from the definition of an RDSI
and an analogous result would still hold. We remind the reader that (I1) was
nevertheless used in showing that RDSI’s restricted to 6-stationary inputs are RDS’s
(see Lemma 2.3 below).

From the construction of the generator f of an RDSI (0, ¢, %), it is clear how
the dependence of the flow ¢ at time n € Z>( and subject to w € 2 on the input u
is really through the value u, (w) of the input u. So when one shifts the £2-argument
w of ¢ in the pullback trajectory to 6_,w, there is no need to change the input, since
on,0_,0,x(0-,0), u) depends on u, (6, w) already. This is our second reason for
defining the pullback trajectories of systems with inputs like so.

We now discuss the third and most important reason this is the mathematically
sensible way of defining pullback trajectories for RDST’s. Let (6, ) be a discrete
RDS evolving on the state space Z = X| X X5:

Y:Zso X 2 X (X1 X X2) — (X1 x X2).

Let g: 2 x Z — Z be the generator of (6, ¥). Suppose g can be written as

_ Silw,x1)
g(a)’ (XI’xz)) - (fz((U,)Cz,]’ll((U,)Cl))) ' (214)

where f1: 2 x X; — X) is the generator of some RDSO (6, ¢1, h;) with output
space Y1, and f»: 2 X X, x U, — X, is the generator of some RDSI (0, g2, %)
with input space U, = Y;. Let mp: X| X X2 — X be the projection onto the second
coordinate. We use 7, to denote the output trajectories of (6, ¢1, h;), & for the state
trajectories of ¥, and &, for the state trajectories of (0, @2, %).
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Theorem 2.2 (Projection of Pullback Equals Pullback of Projection). For any
random initial state

2 2 2
7= (x1,x2) € Zga(z) = (Xl)gg(xl) X (Xz)gg(xz),

the following two identities hold:

_ o1(n, w, x1(w))
(1) v(n,w,z(w)) = ((pz(n’w,xz(w),(m)xl)), and

(2) mEW) = ER" ().

Proof. (1) For each fixed w € £2 and 7 € Zg(z), we use induction on n € Zx¢. At
n = 0 we have

_ _ (x1(w)) _ 010, w, x1(w))
V0,0, 20)) = 2() = (X2 (w)) _ (w2 oo (m)""‘))'

Now suppose that (1) holds for some n € Zs. Since

hl (enwv @1 (l’l, w, X ((l)))) = (771)21 ((l))

by definition, it follows that

Y+ 1,0,.2(0) = gl ¥(n,0,2(0)))

_ ( S1(Onw, 91(n, 0, x1(w))) )
S2(bhw, pa(n, 0, x2(w), (M1)*), (M), (@)
— ( @](H+I,G),X](CU)) )
©(n+ 1,0, x(w), (1))

This completes the induction.
(2) We prove by induction that (2) holds, for each n € Zy, for all random initial
states z = (x1, x2) € Z'g(z), and all w € 2. Atn = 0 we have

(&) = 1Y (0, 0. (x1(®). x2(w))))
= xz(w)
= 020, 0, x2(w), (m)™")
= &

Now assume (2) has been proved to hold for all integer values of n up to some
ng > 0, for all random initial states z = (x1,x2) € Z gga(z) and all € £2. Given

z=(x1,x) € Z,ig(z), define z = (X1, Xy) € Z%(z) by



2 Random Dynamical Systems with Inputs 63

2w) = g(b-1w,2(0-10))

— Si(O—o, x1(0-1w)) (2.15)
= (fz(Q_la),xz(@_la)), hl(Q_lw’xl(e_lw)))) , weES.

We have ()% = p((11)*") by Lemma 2.2 below, and also

7y (O—np+ 1@, X1(O—uo+1y®)) = (Mg O=no+n@), € 2.

Fix w € 2 arbitrarily and denote @ := 6_(,,+ 1. Then

m(E 11 (@) = 1Y (no + 1.6, 2(0)))
= 12 (¥ (1. Oy, ¥(1,6,2())))
= 12 (9. by, §(6.2(6))))
= 2 (10, Oy @, 2(0—p, )))
= my (&}, (@)

= G2 ()

by the induction hypothesis. Now

ED ™ (@) = 9210, 0-0y0. 52(0-,). (7))
= @2(n9, -y, fo(&, X2(D), ()3 (@)), (m)™1)
= 0210, 0—now. 92(1, 0, x2(H), (1)), p1 ((m)*))
= @2(n0 + 1, 0t 1)@, X2(O—(no+1y@), (M1)™)
= @il ).
So

128 41 (@) = E)2 ™ ().

Since z = (x1,x2) € Z éé(z) and w € §2 were arbitrary, this completes the inductive
step. O

The left hand side of (2) in the proposition above is the projection over the second
coordinate of the pullback trajectory starting at z = (x1, x2) of the RDS (8, ¥).
The right hand side is the pullback trajectory of the RDSI (0, @2, %) starting at
X, and subject to the input (17;)*!, the output trajectory of (8, ¢1, i) starting at x;.
Theorem 2.2 then says that they coincide. An analogous result holds in continuous
time for systems generated by random differential equations. These provide the
motivation for the definition of cascades of systems with inputs and outputs, an
introductory discussion of which is carried out in Sect.2.4.2.
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We now state and prove the technical lemma referred to in the proof of item (2)
in Theorem 2.2:

Lemma 2.2. Let f:§2 x X — X be the generator of a discrete RDSO (0, ¢, h).
Given x € X2, let £ € X3 be defined by

X(w) = f(O-1w,x(0—1w)), w € 2.

Then n* = pi (7).

Proof. Indeed, we have

(@) = h(uw, 9(n, 0, %(0)))
= h(bhw, ¢, 0, f(0-10,x(0-10))))
= h(bho, 9, 0, ¢9(1,0_ 10, x(0-10))))
= h(Ont10-10,0(n + 1,010, x(0-10)))
= 772+1(9—10))
= (01(1")n (@),

for every n € Z>( and every w € £2. |

2.3.2 0-Stationary Inputs

The concept of RDSI subsumes that of an RDS, as we shall see below. Denote the
subset of .7 consisting of §-stationary inputs by .. We identify .7 and U$
via Lemma 2.1.

Let (8, ¢, %) be a RDSI, and suppose that u € % N 529” is some 6-stationary
input. Consistent with the convention that an overbar is used to indicate the 6-
stationary process associated with a given random variable, we remove the bar to
denote the random variable associated with a given 6-stationary process. So we
denote by u the random variable in U gg associated via Lemma 2.1 with u. We then
define

Oy = @C, - u): Toox 2x X — X.

Lemma 2.3. ¢, is a crude cocycle.

Proof. Tt follows from condition (I1) and [12, p. 65, Proposition 2.34] that ¢, is
measurable. From (I12), ¢, (¢, w, -) is continuous for each (¢, w) € F X £2, yielding
(S1). From (13), we know that ¢, (0, ®, -) = idx forevery w € £2. So to verify (S2)
it remains to prove that ¢, satisfies the “crude cocycle property.” Let RC Nbea
O-invariant subset of full measure such that
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(ps (@) (©) = (), Vs,t € Top, Yo € 2. (2.16)

Fix arbitrarily w € 2. For any s,t € 5, we have 6,0 € Q by #-invariance, and
so it follows from (2.16) and (I5) that

Pt 00, pu(s, @, x), ps () = @(1, Oy, u(s, w, x), ).
It then follows from (I4)—see Remark 2.1—that

ot +5,0,x) =@t +s,0,x,u)
= (1, 00, (s, w, x, it), ps(it))
= o(t, b0, 9 (s, w, x), it)
= @u(t. 00, 9u(s, 0, x)).

So (S2') is satisfied with §2; := Q for every s € Jso. O

Proposition 2.3. If X is a locally compact and locally connected, Hausdorff
topological space, then ¢, can be perfected.

Proof. This follows straight from Proposition 2.1. |

Note that, since f) in the proof of Lemma 2.3 is f-invariant, so is its complement
in £2, namely £2\£2. So Proposition 2.3 could have also been proved directly by
redefining ¢, to take an arbitrarily fixed value of xy € X on the set

Too x (2\2) x X.

Whenever the state space X is such that ¢, can be perfected, we shall assume
that ¢, has already been replaced by an indistinguishable perfection and then refer
to the resulting RDS (0, ¢,,).

2.3.3 Tempered Random Sets

Recall that, given a topological space X, a multifunction D: £2 — 2% is said to be
a random set if

D' U)={weR; Dw)NU # o} e F

for every open set U C X (see [16, Chap. 2]). In this work, we shall be concerned
exclusively with so-called Polish spaces; that is, separable topological spaces
generated by a metric with respect to which they are complete. In such spaces,
the definition above is known [16, p. 142, Proposition 1.4] to be equivalent to the
requirement that
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w +—> dist(x, D(w)) := inf d(x,y), o €S2,
yED(w)

defines a Borel-measurable’ map £2 — Rx foreach x € X.

Definition 2.7 (Tempered Random Variables). A nonnegative, Borel-measurable
function r: 2 — R is said to be a tempered random variable (with respect to the
underlying MPDS 0) if, for every y > 0,

sup r(Bsw) e < 00, Vo € 2.
S€ET

We denote the family of nonnegative, tempered (with respect to 8) random variables
Q — RZO by (RZO)GQ

Observe that we do not require the bound to be independent of w € £2. In fact, if
it were, then r would have been essentially bounded. More precisely, suppose that,
for some y > 0, there exists a K, > 0 such that

sup r(6sw) e 7l < K,, Vo € 2.
SET

Then

0 < r(w) < sup r(6;w) e 7l < K,, Yo € 2.
SET

So r is actually essentially bounded.

Definition 2.8 (Tempered Random Set). Let (X, d) be a metric space. A random
set D: 2 — 2% is said to be tempered (with respect to ) if there exist xo € X and
a nonnegative tempered random variable r: £2 — R such that

D(w) C{x e X; d(x,xy) <r(w)}, VweSs2. 2.17)

A Borel-measurable map v: £2 — X is said to be a tempered random variable (with
respect to 0) if the random singleton defined by @ +— {v(w)}, w € £2, is a tempered
random set.

We denote the family of tempered (with respect to ) random sets 2 — 2%
by (2% )g . Likewise, the family of tempered (with respect to ) random variables
2 — X is denoted by X’

Lemma 2.4. Suppose 6 is an MPDS, (X, || - ||) is a normed space over R, and let
Ri,Roe X% re Rg, and ¢ € R. Then

7Our convention is that inf & := +oo0.
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(1) Ri+ R, istempered.

(2) cR; is tempered.

(3) 1R istempered; in particular, the product of two real-valued tempered random
variables is tempered.

Proof. (1) Indeed, for any y > 0 and any w € f?, we have
sup [(Ry + R2)(Bs0)le™M! < sup | Ry (6,0)lle™""! + sup || Ry (B,00) [l
SET SET SET
< 00,

where we write (R; + R;)(6,w) for R;(6,w) + Ry(0;w). So both Ry + R; is
tempered.

(2) follows from (3), which we now prove. Given y > 0 and w € 2, apply the
definition of tempered random variable for y/2:

sup ||r (B,0) R1 (Bs)[le 7! = sup |r(6,0)[e™ 2PN Ry (Byw) e~ 5P|
SE€ET SE€ET

(Sup Ir((%w)le‘g") (sup ||R1(9Sw)||e—isl)
SET SET

< 0.

IA

Thus rR; is tempered. |

In other words, X 99 is a real vector space, and also a module over the ring of real-
valued tempered random variables.

We now introduce concepts of convergence and continuity taking into account
the notion of temperedness just introduced.

Definition 2.9 (Tempered Convergence). Suppose 6 is an MPDS and (X, d) is a
metric space. We say that a net (§y)yeq in X fj converges in the tempered sense to a
random variable &o, € X if there exists a nonnegative, tempered random variable
r:§2 — R>p and an a € A such that

(1) &y(w) = Exo(w) as o — oo for B-almost all w € §2, and
(2) d(Ey(w), Eso(®)) < r(w) for all & > oy, for B-almost all w € 2.

In this case we denote &, —p £ (as @ — 00).

Definition 2.10 (Tempered Continuity). Suppose 6 is an MPDS and X, U are
metric spaces. A map #:% < USZ — X3 is said do be tempered continuous
if # (uy) =9 H (uoo) for every net (uy)yes in % such that u, —¢ Uy for some

Uoo € U .

We close this subsection with the definition of several asymptotic behavior
concepts. Let X be a metric space. Given £ € 5”9)( and T > 0, we call the
multifunction ,Bg 2 — 2X\{@}, defined by
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,Bg(w) ={& 0 w); t =1}, wes2,

the tail (from moment t) of the pullback trajectories of &. If a f-stochastic process
S YQX is such that there exists a 7z > 0 such that ,Bg (w) is precompact for all
T > 1, for f-almost all @ € £2, then we say that & is eventually precompact.
We denote the subset of all eventually precompact 6-stochastic processes & € YQX
by J,*. A f-stochastic process § € .7;* is said to be tempered if there exists a
tempered random set D € (2% )9Q such that

Bi(®) € D(w), VY720, Yo € 2 (2.18)
in other words,
£(0_w) =& (0) € D(w), Vt>0, Yo € 2. (2.19)

Any D € (2% )f for which the relation above holds is called a rest set. The subset of
;X consisting of all tempered 6-stochastic processes § € .7 is denoted by 7,*.
Observe that, in virtue of f-invariance, condition (2.19) is equivalent to

& (w) € D(bw), Vi>0, Vo € 2.

We further motivate the concept of temperedness just introduced. The idea is to
have a term to talk about 8-stochastic processes which, as far as their oscillatory
behavior is concerned, look somewhat like a 6-stationary process generated by a
tempered random variable. Since this pertains to long-term behavior, this property
should be preserved by shifting or concatenating tempered stochastic processes.
Indeed, it is not difficult to show that (1) O-stationary processes generated by
tempered random variables are tempered, (2) ps(u) is tempered for any tempered
u, and (3) u(,v is tempered for any tempered u, v.

Definition 2.11 (Tempered RDSI). An RDSI (6, ¢, %) is said to be tempered if
the trajectories £¥* are tempered for every tempered initial state x € X 52 and every
tempered input u € % .

2.3.4 Input to State Characteristics

Let (60, ¢, %) be an RDSI and suppose that u € 7% is a 6-stationary process, with
generating random variable u (refer to Lemma 2.1). Any equilibrium £ of the RDS
(8, ¢,) will be referred to as an equilibrium associated to u (or to u). The set of all
equilibria associated to i (or to u) is denoted as & () (we may also write &' (u)). So
an element £ € & () is a random variable 2 — X such that

0t 0_0,E(0_,w)) = E(w), VY1>0, Vo e . (2.20)
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When we have a “proper” RDS (0, ¢), we write simply & for the set of equilibria of
(0.9).

For deterministic systems—when £2 is a singleton and we may identify the set of
O-inputs % with the input space U—, if the set & (i) consists of a single, globally
attracting equilibrium, then the mapping u +— & (u), u € U, is the object called the
“input to state characteristic” in the literature on monotone i/o systems. For systems
with outputs, composition with the output map & provides the “input to output”
characteristic [1]. One of the contributions of this work is the extension of these
concepts to RDSI’s and RDSIO’s.

In this section we introduce the notion of input to state characteristics for RDSI’s
and discuss a class of examples. Systems with outputs will be considered in greater
detail in the next section. For reasons which will be illustrated in Example 2.3
and become clearer in the proof of Theorem 2.3 (CICS), further conditions on the
convergence of the states are needed.

Definition 2.12 (I/S Characteristic). An RDSI (6, ¢, %) is said to have an input
to state (i/s) characteristic - UéQ — Xéo if

Ul cu
and
V,X’” —>g H () as t— oo,

2 2
for every x € X*, forevery u € Uy*.

Example 2.3 below illustrates the concepts of tempered RDSI (Definition 2.11)
and i/s characteristics (Definition 2.12 above). Temperedness features in said
example will be a special case (with p = 1 or p = 00) of the general result below.

Proposition 2.4. Suppose r: 2 — Ry is a tempered random variable. For each
y > 0and each p € [1, <], the map

w +—> ||r(f.w) eI lrr)y, o €82,

is a tempered random variable. Moreover, temperedness bounds are uniform in p €
[1, 00]; that is, for each y > 0 and each § > 0,

sup sup ||r(6.0,w) e 7" |l r®) el <00, Vo e .
pE[l,00] s€R

Proof. For each p > 0, set

Ko = supr(bs;w) e Ml
sER
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for every w € £2 such that the supremum above is finite. Since r is tempered by
assumption, this will be true for -almost all w € £2.

Fix arbitrarily y > 0 and choose any § > 0. We consider two different cases.

(Case 1 < p < o00) Setting m := min{y, §} > 0 and using the triangle inequality
we obtain

1/p
F (6.6,0) " [lLo gy =1 = |r(e,+ ) eIl |pd,)

1/p

( P (Brg) e~ |pd,)
om 1/p

Kn, (/ ez Il dtsw)

1/p
_ 4
=Kz, (],—m) ,

which is finite for all s € R, for f-almost all @ € £2. In fact, since the map

IA

IA

4 \Vr
p+— K%’w (%) , 1< p<oo, (2.21)

is continuous in p and

tim Koo (£) 21
an;o lg @ pm o ’

we then know that the map in (2.21) is bounded. Thus

Mys, = sup supllr(6.6w)e™ | om e <00, Vo e .
pE[l,00) s€ER

(Case p = o0o) The trick is basically the same as before. We have

||r(99Ya)) eyH ||L°°(]R) e—5\s| = sup r(9t+sw) e_V|t|_8|S‘
teR

supr(G;4+;w) e
(€R

= Km,w,

—mlt+s|

IA

which is finite for all s € R, for 8-almost all w € £2.
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Combining both cases we conclude that

sup sup |7 (6.6,0) e || Loy e = max{M, 5., Kin.w},
pE[l,00] sER

which is finite for 6-almost all w € £2. Since y,§ > 0 were chosen arbitrarily, this
completes the proof. O

Example 2.3 (I/S Characteristics for RDSI’s Generated by Linear RDEI’s). Con-
sider the RDSI (0, ¢, .#Y) from Example 2.2, generated by the RDEI

£ = A(Bw)E + BO,o)u(w), >0, ue LY, (2.22)

where X = R", U = R¥, and 4: 2 — R and B: 2 — R are random
matrices such that

t+— A(Bw), t>0, and t+— B(bw), t>0,
are locally essentially bounded for every w € §2. Now suppose in addition that A, B

are such that

(L1) B is tempered and

(L2) there exista A > 0 and a nonnegative, tempered random variable y € (}Rz)eQ
such that the fundamental matrix solution = of the homogeneous part of (2.22)
satisfies

IEGs,s +rw)| <y@w)e™, VseR, Vr>0, Vocef.

Then (0, ¢, #2) is tempered (in the sense of Definition 2.11) and has a continuous
input to state characteristic J#: U 09 - X 99 (refer to Definition 2.12). We will prove
this in several steps, indicated below.

Construction of % : Us? — X . We first claim that the limit

B 0
lim EXl () = / Z(0,0,0)B(0,0)u(f,0) do (2.23)

—00

exists for each x € Xg? and each u € UQQ, for f-almost w € £2. Let @ and ¥ be as
in Example 2.2, so that we may write

ot,w,x,u) =D, w,x) +¥(t,w,u).
So it is enough to show that

lim &(,0-,0.x(0-w)) =0, Vxe X2, Vo e, (2.24)
o0
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and that
0 ~
Jim (.0 0.0) = / E(0,0,0)BO,w)u(By0)do, Yue UL, VYoef.
—>00 _
°° (2.25)
Fix arbitrarily x € X 52 and let w € £2 be such that
K, 1. = supy(tio)|x(Bw)|e 2 < oo, (2.26)

sER

where A > 0 and y nonnegative and tempered are given by (L2). Combining (L2)
and (2.26), we obtain

|P(t, 0w, x(0—w))| = |E(0,1,0w) - x (6 w)|
< y(6-0) e [x(6-,0)
= (=) x(O-w) et ) et

A
e 2!, Vir>0.

IA
ol

w,5.x

Hence
|D(t, 0w, x(O—;w))] — 0 as t — oco.

Since Kw%!x is finite for f-almost all w € $§2—recall that, by Lemma 2.4(3),
the product of two tempered random variables is tempered—, this holds §-almost
everywhere. So since x € X éQ was chosen arbitrarily, this proves (2.24).

Now fix arbitrarily u € UéQ . Then by (F2) and a change of variables,

t
v(t,0_iw, i) =/ E(0,t,0_;0)B(Oy—1)u(Oy—;w) do
0
t
= / (o —1,0,0)B(0,—0)u(0,—;w) do
0

0
= / EZ(0,0,0)B(O;w)u(f,0)do, V(t,w) € Rso x £2.

—t

In virtue of (L2), for each w € §2 such that

= sup y (6;0) | B(Os )| - |u(Bs0)| e 2¥! < o0, (2.27)

L,
2 SER

w,5,U

we have
|8(0,0,0) B(ly0)u(By0)| < y(0sw) e 1| B(Oyw)]| - [u(Brw)]

_i|a|
fLw,%’Me 29l Yo e R.
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Since

Ul—)Lw,%’M s

is integrable on (—o0, 00), S0 is
0 +— &(0,0,w)B(0,w)u(b,w), o e€R.

In particular, it follows from dominated convergence that the limit

0
lim; oo ¥ (¢, 0—;w,u) = lim Z(0,0,w)B(0,w)u(b,w) do
t

t—oo [_

0
/ Z(0,0,w)B(0,w)u(6,w) do
—00

exists. Finally, observe that, for each u € UOQ R Lw’ tu as defined in (2.27) is finite

for f-almost all w € £2. This establishes (2.25). We have then proved that (2.23)
holds for each x € X§* and each u € U, for f-almost all » € 2.
Define 7 : Uj? — X5 by

0
(F (n)(w) := / Z(0,0,w)B(0,w)u(b,w) do, Vo € 2.

—00

It remains to show that J# (U(,Q )X 52 . Indeed, fix u € U(f arbitrarily. It follows
from the computations above that

0

(A () ()| < / Y (0,0) || B0y )| - u(@sw)| e ! do

o0
= [ v lBEw] - Wb do
—00
=l IBI - uD(.0) e || 1@y, Vo € 2.
From Proposition 2.4,
o — [|(7IBIl - lu) o) e ™ g, @€,

is tempered. Thus J# (u) is also tempered.

' is an i/s characteristic. To show that J# is an i/s characteristic, it remains to
show that the convergence in both (2.24) and (2.25) is tempered.

Fixx e X éQ arbitrarily. From the estimates above, we have

|D(t, 0_;0, x(0_0))| < y(O_,w)|x(O_w)| e

IA

sup y (6s0)|x (Osw)| e !
seR

= lyIxDO.w) e ooy, Vi=0, VoeQ.
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It follows from Proposition 2.4 (applied with p = co) that
o = (7 IxDO.w) e Low, o e,

is tempered. We conclude that the convergence in (2.24) is tempered.
Similarly, for any arbitrarily fixed u € US?, we have

—t
W (t,0—iw,ut) — (H (u)(w)| = ‘/ Z(0,0,w)B(0,w) - u(b,w) do
;OOO
< / |Z(0,0,w)B(O,w) - u(6,w)| do
—00
= [ IBI - uh(B.0) e || 1 g
for all # > 0 and f-almost all @ € £2. As we saw above, the rightmost term in
these inequalities is a tempered random variable. So the convergence in (2.25) is
also tempered.
J is continuous. Suppose that uy, —>¢ Ueo € UéQ for some net (1y)yeq in UOQ.
Letay € Aandr € (Rzo)‘g be such that
lta(@) — uso(@)] < r(®), Ya>ay, VYoeR.
Then
[(H (1)) (@) — (K (o)) (@)]

0
= ‘/ Z(0,0,w)B(0,0) - (e (050) — oo (Oyw)) do
- / " 18(0,0.0) B, - r(6,) do

for every @ > oy, for f-almost all @ € £2. As above, we can combine (L2), the
temperedness of y, B and r, Lemma 2.4(3) and Proposition 2.4 to conclude that

o +— |&(0,0,w)B(O,w)| - r(b,w), w €S2,
is integrable for 6-almost all w € 2, and that the map

o0
W —> / |Z(0,0,w)BO,w)| - r(,w)do, e $2,

is tempered. In particular, since

lug(w) — oo (W) — 0 as o — oo, Vo € 2,
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it follows from dominated convergence that the map

|(H (1)) (@) — (F (o)) (@) — 0 as o — 0o, Vo € 2,
as well. This shows that JZ (uy) —>¢ H# (1oo). Since uy € UéQ and the net (uy)gea
converging to it were arbitrary, this shows % is continuous.

@ is tempered. The argument here goes along the same lines. Fix arbitrarily any
tempered input u € Yolé and any tempered initial state x € X 52 . When we were
showing that " is an i/s characteristic above, we saw that

|®(t, 00, x(0_0))| < ri(w), Vt>0, Voef,
where r;: §2 — R is a tempered random variable defined by
(@) = [|lxDO0) e om. e
Now let D € (2Y){ be a (tempered) rest set for u. Let r € (R>0)¥ be such that
D) C{uecU; |u| <r(w)}, VYoeSf.
Thus indeed
lu, ()| < r(®), Vt>0, YoeR.
Then
t
W (t,0_w,u)| = '/ E(o,t,0_;0)B(ls—10)us (0—;w) do
0
t
< / |E (o, t,0—10)B(Oo—@)|| - |t (05 05—t )| do
0
t
< / |E(0 —1,0,0)B(Os—0)| - r(Os—w) do
0
0 ~
< / |Z(0,0,w)BO,w)| -r(,w)do, ¥Vt>0, VoeS.

—0o0

The argument repeatedly applied above shows that the map r,: §2 — R defined
by

o0
r(w) = / |Z(0,0,w)BO,w)| - r(f,w)do, e $2,

is tempered. Now r; + r; is tempered and we have

|§rxu(a))| = |o(t, 60—, x(0—;w),u)| < ri(w) + r(w), Vt=>0, Yo € 2.
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This proves that £°* is tempered. Since u tempered and x tempered were chosen
arbitrarily, this completes the proof that ¢ is a tempered cocycle.

Remark 2.2. If |A(-)|| € L'(£2, %, P), the largest eigenvalue A(-) of the Hermitian
part of A(-) is such that

EX::/X(w)d]P(w) <0,
2

and the underlying MPDS 6 is ergodic, then it follows from [5, p. 60, Theorem 2.1.2]
that (L2) holds with A := —(EA + ¢) for any choice of ¢ € (0, —EA). |

2.4 Monotone RDSI’s

Suppose that (X, <) is a partially ordered space. Forany a,b € X g ,wewritea <b
to mean that a(w) < b(w) for #-almost all w € £2. Similarly, for any p,q € .75,
we write p < ¢ to mean that p(¢, w) < q(¢,w) forallz > 0, for f-almost all w € £2.
Observe that this convention naturally induces partial orders in X gg and YQX.

Definition 2.13 (Monotone RDSI). An RDSI (0, ¢, %) is said to be monotone if
the underlying state and input spaces are partially ordered spaces (X, <y), (U, <y),
and

(p('s ) X('), M) <x @(v ) Z(')v V)

whenever x,z € X and u,v € % are such that x <y zandu <y v.

In particular, if
ot,w,x,u) <x p(t,w,z,v)

holds for every ¢ > 0, every w € £2, and every x,z € X and u,v € % such that
x <y zand u <y v, then it follows that (6, ¢, %/) is monotone as per definition
above.

Most of the time the underlying partially ordered space will be clear from the
context. So unless there is any risk of confusion, we shall often drop the indices in
“<y”and “ <y, and write simply “ <.’

Proposition 2.5. If an RDSI (6, ¢, %) is monotone and has an i/s characteristic
T U0Q — XGQ, then J is order-preserving; in other words, if u,v € U0Q and
u <v, then X (u) < % (v).

Proof. The proof is straightforward, and we emphasize its main purpose of pointing
out a subtlety in Definition 2.13 which might have otherwise gone overlooked. Pick
any u,v € Uj? such that u < v, and fix x € X arbitrarily. Then x < x, and &t < V.
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By Definition 2.13, there exists a f-invariant subset of full-measure ? C 2 such
that

o(t, o, x(w), i) < ¢(t,w,x(®),v), Yt>0, Vo € 2.
Thus
o(t, 0_yw, x(O_,w), 1) < @(t, 00, x(O_,w),v), Yt=>0, Vo € 2,

in view of the f-invariance of £2. The result then follows by taking the limit as
t — oo on both sides of the inequality above for each fixed w € £2. (Recall that,
from the definition of i/s characteristic, such limits exist for #-almost all w € £2.) O

2.4.1 Converging Input to Converging State

The “converging input to converging state” result below was first stated and
proved for deterministic and finite-dimensional “monotone control systems” by
Angeli and Sontag [1, Proposition V.5(2)]. In [10, Theorem 1], Enciso and Sontag
explore normality to extend the result to infinite-dimensional systems. Replacing the
geometric properties in [10] by minihedrality and adding a compactness assumption
it is possible to extend this result to monotone RDSTI’s.

Recall that a (closed) cone in a vector space X is a subset X4 € X such that
X+4+ X+ CX,cX+ € Xy foreveryc > 0,and X4 N(—X4) = @. The cone X+
induces a partial order <y in X, defined by

x<xy & y—xeXi.

A cone is said to be solid if it has nonempty interior, and minihedral if every finite
subset has a supremum. If X is a normed space, then X is said to be normal if
there exists a constant £ > 0 such that 0 < x < y implies ||x|| < k|| y|.

Theorem 2.3 (Random CICS). Suppose that X and U are separable Banach
spaces, partially ordered by solid, normal, minihedral cones X € X andUy C U,
respectively. Let (0, ¢, %) be a tempered, monotone RDSI with state space X and
input space U, and suppose that ¢ has a continuous i/s characteristic ¥ UéQ —
Xé?. Ifue and us € UéQ are such that

(i) uis tempered and eventually precompact, and
(i) W, —>¢ Uso as t — 00,

then

N g A (us) as ¢ — oo, Vxe XE. (2.28)
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In other words, if the pullback trajectories of u are eventually precompact and
converge to U in the tempered sense, then the pullback trajectories of ¢ subject
to u and starting at any tempered random state x will converge to Jt (uxo) in the
tempered sense as well.

Proof. Fix arbitrarily x € X g)Q . From (i), u is tempered. Since ¢ is assumed to be
tempered, the 6-stochastic process £¥* is also tempered (see Definition 2.11). In
particular,

IE () = (H o) Ol < IE Ol + 1 o) O]

which is in turn bounded by a nonnegative tempered random variable for large
enough values of # > 0. Thus in order to prove the tempered convergence in (2.28),
it remains to show the pointwise convergence; in other words, we need only show
that

Vf’“(a)) — (%(Moo))(w) as 1 — oo, VYwe Q. (2.29)

This will require some setting up.

Since Uy is solid and normal, it follows from temperedness and Proposition [5,
p- 89, Proposition 3.2.2] that there exist a tempered random variable v: £2 — int Uy
and a 7, > 0 such that

(®) € [-v(w),v(®)], Yt>t, VYocecf.

Moreover, [—v,v] is a random closed set by Proposition [5, p. 88, Proposi-
tion 3.2.1](1); in particular, it is a random set. So [—v,v] is indeed a tempered
random set—temperedness follows from normality. In view of the assumption (i)
that u is eventually precompact, by picking a larger #,, if necessary, we may assume
without loss of generality that 8% (w) is precompact for 6-almost all w € £2.

Let (a:)r>;, and (b;).>;, be, respectively, lower and upper tails of the pullback
trajectories of u:

a.(w) = tir>1fu,(9_,fa)) =inf B (w), ©=>t,
and

bi(w) :=supu,(0_,w) =sup B (w), T>1t,,

t>t

for each @ € §2 such that ’(w) is precompact. It follows from the hypotheses that
U is separable and U is minihedral that the lower and upper tails of the pullback
trajectories of u are well-defined, and the maps w +— a.(w), € £2, and v >
b.(w), w € §2, are measurable for each 7 > ¢, (see [5, Theorem 3.2.1, p. 90]). For
each t > 1,, we have a,, b, € [-v,v]. Thus by normality a., b, are indeed tempered
random variables. Moreover,
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a;, by —p Use as T — 00, (2.30)
which also follows by normality.
For each t > ¢,, let a,, b, be the O-stationary processes generated by a, b,
respectively. Then
(), (@) = ac (050) = 106 16, (0-B,0) = e (O—(e9050) = (02 (1))
and, similarly,
(p:(W)s(@) < (bo)s(@), VT>1, Vs=>0, VoeS.
Thus
ar < pc(u) <bey, VT =1y (2.31)

We now return to (2.29). Using the cocycle property, we may rewrite

W) = @t — T, O— 0y, 9(T, 010, X (0—,w), u), pe (1))
=t — 7, 0-(—0)®, X (O0——ny®), p: (1))

= ij’tpr(u)(w), Yo e 2, Vi>t>1,
where x; € X 52 is defined by x; := g;u Therefore

IES (@) — (H (uso)) (@) = [|E57 @ (@) — (H (use)) (@)

for every w € §2, for all s > 0, for all ¢ > ¢,. For any such w, s, 7, we have

IE7"“ (@) — (H (o)) (@)]| < &7 (@) — X% ()]
F|EF A (@) — (H (@) (@)]]
I (@) (@) — (F (o)) (@)]].

From (2.30) and the continuity of Z, there exist #-invariant subsets .Qu and .Qb
of full measure of £2 such that

I (@) (@) — (K (o)) (@) — 0, as T —o00, Vo €8,
and

1 (b)) (@) = (H (uso))@)| — 0, as T =00, Vo € 2.
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Similarly, from the definition of i/s characteristic, for any integer n > ¢,, there exist
f-invariant subsets £2,, and £2;, of full measure of £2 such that

£ (@) — (A (@) (@) —> 0, as s — 00, Yo € L,
and
IE3 1 () — (H (b)) (@) —> 0, as s — 00, Yo € Dy

Now by (2.31) and monotonicity, for each integer n > t,, there exists a f-invariant
subset of full measure £2<, C £2 such that

ggnﬁn ((U) < g;fnqpn(u)(w) < g;fnql;n ((U), Vs > O’ Yo € qun'

Let?
o0 o0 o0
=200 () Qan |0 [ 2n | 0] [) Lz
n=1t,] n=[t,] n=[t,]

Thus £2 is a countable intersection of f-invariant subsets of full measure of £2
and, hence, itself a f-invariant subset of full measure of 2. We shall show that
convergence in (2.29) occurs for every w € Q.

Fix arbitrarily an w € Qanda positive integer k. It follows from the construction
of £ that there exists an integer ny > t, such that

[( (@) (@) — (Z (uoo)) (@) < 1/k, VT = ng,
and
(£ (b)) (@) — (F (o)) (@)l < 1/k, VT > ng.

Now we can use the convergence in the definition of i/s characteristic to choose an
Sk > 0 such that

JE7 (@) — (A (@ @) < 1/k. Vs = 5.

and

||§§”k’5”k (@) — (H (b)) < 1/k, Vs> s;.

8For any x € R, we write [x] to denote the smallest integer larger than or equal to x.
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Again from the construction of 2, we have
e n !_l’l 4 nj »Mn i n sEI'I
T @) < B (@) < £ @), Vs 20,
Thus
X Py (1) Xn Jn S Xny bn xn Jan
1€ (@) = & ()| = C1E™ "( ) =& (@), Vs =0,

where C > 0 is the normality constant for U;.. Now

JE " () — M )] < JE (@) = (F (b)) (@)
(A (Bu)) (@) = (H (o)) (@)
(A (s00)) (@) — (%(ank N©)]
HICH (an ) (@) — E" " ()|
<4/k, Vs=>sy.

We conclude that

1E5 (@) — (F (s @) = 757 (@) — (F (o)) (@)
< [E7 ) (@) — E (@)
HIE™ ™ (@) — (H (an) @)
(A (an) (@) — (K (1o0)) (@) ]
<4C/k+1/k+1/k
= A4C +2)/k, Vt=>ng—+si.

Since w € £2 and the positive integer k were chosen arbitrarily, this completes the
proof. |

2.4.2 Cascades

We now discuss a few applications of the “converging input to converging state”
theorem just proved. Separate work in preparation deals with a small-gain theorem
for random dynamical systems, a brief outline of which will be given at the end of
the chapter.

Let (0, ) be an autonomous RDS evolving on a space Z = X x X,. We say
that (6, ¥) is cascaded if the flow v can be decomposed as
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_ @1(1‘,(1),)(]((1)))
vt 0, (x1(w), x2(0))) = ((pz(t,w,)C2(w), (m)xl)) .

for some RDSO (6, ¢, ;) with state space X; and output space Y, and some
RDSI (6, ¢, %) with state space X», input space U, = Y, and set of f-inputs
%, containing all (forward) output trajectories of (6, @1, h1). In this case we write
¥ = @1 X ¢p. Recall from item (1) in Theorem 2.2 that if the generator of a
discrete RDS can be decomposed as in (2.14), then this RDS is a cascade. A similar
decomposition can be done for systems generated by RDEI’s whose generator
satisfies the natural analogues of (2.14).

Example 2.4 (Bounded Outputs). Let (0, v) := (6, ¢1 X ¢;) be a cascaded RDS as
above. Suppose that (6, ¢;, k1) is an RDSO evolving on a normed space X, and
such that (6, ¢;) has a unique, globally attracting equilibrium (§])s0 € X g :

ED' (@) — (EDoo(@). as t—>o00. Vo€, Vx € (X)F.

Now suppose that (8, ¢, %) is an RDSI satisfying the hypotheses of Theorem 2.3,
and that the output function /i is bounded; in other words, there exists M > 0 such
that

(@, x1)|| <M, Vx; € X, Vo € 2.

We prove that (6, ¢) has a unique equilibrium which is attracting for all tempered
random initial states.
By continuity of /& with respect to the state variable, we have

()M (@) = hi(o, E) (@)

— hi(@, E)eo(@)), as t— o0, Yo e R, Vx; e (X1)2.

Since & is bounded, the convergence and the limit are automatically tempered. Thus

50— (i) ® 17 Yoc@ vt

by Theorem 2.3. In particular, the convergence in the second coordinate is tempered.

For conditions guaranteeing that an RDS (6, ¢) would have a unique, globally
attracting equilibrium in the sense above, see [4, Theorem 3.2]. The assumption that
the output is bounded is very reasonable in biological applications, since there is
often a cut off or saturation in the reading of the strength of a signal.

Before we consider the next example, we develop a stronger notion of regularity
for output functions than continuity with respect to the state variable. We seek a
property which preserves tempered convergence, and which we could check it holds
in specific examples.
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Definition 2.14 (Tempered Lipschitz). An output function s: 2 x X — Y is said
to be tempered Lipschitz (with respect to a given MPDS 6) if there exists a tempered
random variable L € (Rzo)‘g such that

1h(w, x1) — h(w, x2)|| < L(w)||x1 —x2]|, Vx1,x2 € X, Yo € 0.

We refer to L as a Lipschitz random variable for h.

For example, suppose that X C R”, and that 7: 2 x X — R is an output function
such that i (w, -) is differentiable for all w in a f-invariant set of full measure 2 C
£2. If the norm of the Jacobian with respect to x,

o +—> || Dih(w,-)| := sup |Dih(w, x)|, € £2,

xeX

is finite and tempered, then % is tempered Lipschitz.

Lemma 2.5. Let h: 2 X X — Y be a tempered Lipschitz output function, p € YOX
be a 0-stochastic process in X, and let po € X';g. Let q: >0 x §2 — Y be the
0-stochastic process in Y defined by

q:(w) = h(w, p;(w)), (o) T>0x 82,

and oo € Ygg(y)

be the random variable in Y defined by
oo (@) := h(w, po(®)), w € £2.

If pi —>¢ Doos then q; —¢ qoo.

Proof. Tt follows from continuity with respect to x € X that
4:(®) = h(@, p (@) —> h(©, po(®)) = poo(@) as t =00, YweQ.
Now because p; =9 poo, there exist r € (Rzo)g and 79 > 0 such that
1P (@) = poo(@)I| < F(@), Vi=1, Yo € Q.
Let L be a Lipschitz random variable for /. Then

g: (@) — goo (@) || = [|h(@, p:(@)) — h(®, pec(@))|
< L(@)| pr(@) = poo (@)l
< L(w)r(w), Vi > 19, Yo € 2.

By item (3) in Lemma 2.4, Lr is tempered, completing the proof. O
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Now suppose that (6, ¥, %) is an RDSI evolving on a state space Z = X X X,.
In this case we say that (8, ¥, %) is cascaded if the flow ¥ can be decomposed as

_ @](Z,(I),Xl((I)),u)
I/I(I,CO, (Xl (60)7)(72(0))), “) = (@2(1,(1),)62(60), (nl)xl,u)) s

for some RDSIO (0, ¢1, %, h1) with state space X, set of f-inputs %, = %
and output space Y7, and some RDSI (6, ¢,, %) with state space X, input space
U, = Y, and set of O-inputs %4 containing all (forward) output trajectories of
(0, o1, 2%, hy). In this case we also write ¢ = @1 X ¢;. Item (1) in Theorem 2.2 can
be generalized to contemplate this kind of cascades for discrete systems, as well as
systems generated by random differential equations.

Example 2.5 (Tempered Lipschitz Outputs). Suppose that (8, ¢1, 241 ) and (0, @2, %)
in the decomposition above satisfy both the hypotheses of Theorem 2.3. If the output
function &, is Lipschitz continuous, then (6, ¥, %) also has the “converging input
to converging state” property; that is, if u € % is such that i, —p us for some
oo € U, then there exists a (o €Z éz such that

s b, VzE Z, (2.32)
as well.
To see this, let 7: (U)§ — (X1)§ and %: (Un)F — (X2)§ be the i/s
characteristics of (8, ¢1, %) and (0, @2, %), respectively. Fix
2= (x1,0) € Z§ = (X)) x (X2)§
arbitrarily. From Theorem 2.3, we have
EDM 0 Hi(uoo).
Since &, is tempered Lipschitz, it follows from Lemma 2.5 that
({0 —>6 (U2)oo,
where
(U2)o00 1= 1 (-, K1 (1oo) (*))-

It follows, again from Theorem 2.3, that

EDPMM Sy (1) oo)-
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Hence

s _ GO _)9(%(%0))
f (£ H(u2)00) )

Sincez € Z éQ was picked arbitrarily, this establishes (2.32).

The procedure above can be generalized to cascades of three or more systems to
show that the “converging input to converging state” property will hold provided that
it holds for its individual components—and the intermediate outputs are tempered
Lipschitz. In Example 2.3, suppose we assume, in addition, that the off-diagonal
entries of A and all entries of B are nonnegative 8-almost everywhere. Then the
RDSI generated by the RDEI in the example is monotone and thus satisfies the
hypotheses of Theorem 2.3. Tempered Lipschitz output functions are not difficult to
come by, as we pointed out above. This yields a class of cascaded systems having
the “converging input to converging state” property.

A couple more remarks about this example are in order. A cascade of monotone
systems need not itself be monotone. So the construction above provides us with
a way of checking the “converging input to converging state” property for systems
which do not directly satisfy the hypotheses of Theorem 2.3. But even if it would
be possible to check it directly that (0, ¢, %) already satisfies the hypotheses of
Theorem 2.3, it might be easier to check them for each component—for instance,
if (6, ¢, %) can be decomposed as a cascade of linear systems linked by (possibly
nonlinear) tempered Lipschitz output functions.

We have illustrated in Examples 2.4 and 2.5 how one may obtain global
convergence results for systems decomposable into cascades, as discussed in the
Introduction. Further work in preparation deals with “closed loop” systems, and
how “converging input to converging state” property can be used to prove small-
gain theorems for such systems. Below we provide a brief outline of the idea.

2.4.3 Small-Gain Theorem

A small-gain theorem for the closed-loop of monotone RDSIO’s with anti-monotone
outputs follows along the lines of the deterministic case [1, 10]. Assuming the
input and output spaces coincide, one defines an “input to output characteristic”
VAE U9Q — UOQ by composing the i/s characteristic (assuming, of course the
underlying RDSI has one) with the output function / in the natural way:

(A (W) (@) := h(w, (F (W) (@), uelUy, ocf.

If the iterates (Y )®) (u) := (HY o---0 . #7)(u) (k times) of .# ¥ converge to a
unique equilibrium us (“small-gain condition”), then every eventually precompact
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solution of the closed-loop system converges to % (i), the state characteristic
corresponding to the input u.

A proof as in [1, 10] goes by appealing to the random CICS property for
monotone RDSI’s above, after establishing a contraction property on the “limsup”
and “liminf” (defined analogously as in these references) of external signals. Mild
technical assumptions on the state and input/output spaces guarantee that said
limsup’s and liminf’s are well-defined and measurable. Reasonable (‘“polynomial
temperedness”) growth conditions on the outputs guarantee that the input to output
characteristic is well-defined as a map UéQ — UéQ (preserves temperedness).
Separate work in preparation will provide all the details and several examples.

Acknowledgements Work supported in part by grants NIH1R01GMO086881 and IRO1GM 100473,
and AFOSR FA9550-11-1-0247.
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Chapter 3
Canard Theory and Excitability

Martin Wechselberger, John Mitry, and John Rinzel

Abstract An important feature of many physiological systems is that they evolve
on multiple scales. From a mathematical point of view, these systems are modeled
as singular perturbation problems. It is the interplay of the dynamics on different
temporal and spatial scales that creates complicated patterns and rhythms. Many
important physiological functions are linked to time-dependent changes in the
forcing which leads to nonautonomous behaviour of the cells under consideration.
Transient dynamics observed in models of excitability are a prime example.

Recent developments in canard theory have provided a new direction for under-
standing these transient dynamics. The key observation is that canards are still
well defined in nonautonomous multiple scales dynamical systems, while equilibria
of an autonomous system do, in general, not persist in the corresponding driven,
nonautonomous system. Thus canards have the potential to significantly shape the
nature of solutions in nonautonomous multiple scales systems. In the context of
neuronal excitability, we identify canards of folded saddle type as firing threshold
manifolds. It is remarkable that dynamic information such as the temporal evolution
of an external drive is encoded in the location of an invariant manifold—the canard.
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3.1 Motivation

Physiological rhythms and patterns are central to life. Prominent examples are the
beating of the heart, the activity patterns of neurons, and the release of the hormones
that regulate growth and metabolism. Although many cells in the body display
intrinsic, spontaneous rhythmicity, many physiological functions derive from the
interaction of these cells, with each other and with external inputs, to generate these
essential rhythms. Thus it is important to analyse both the origin of the intrinsic
complex nonlinear processes and the effects of stimuli on these physiological
rhythms.

Cell signalling is the result of a complex interaction of feedback loops that
control and modify the cell behaviour via ionic flows and currents, proteins and
receptor systems. The specific feedback loops differ from one cell to another and,
from a physiological point of view, the signalling seems to be extremely cell
specific. The respective mathematical cell models, however, have an amazingly
similar structure. This suggests unifying mathematical mechanisms for cell
signalling and its failure.

An important feature of most physiological systems is that they evolve on
multiple scales. For example, the rhythm of the heart beat consists of a long interval
of quasi steady-state followed by a short interval of rapid variation, which is the beat
itself [34]. The same feature is observed for activity patterns of neurons [34,55] and
for calcium signalling in cells [34]. It is the interplay of the dynamics on different
temporal or spatial scales that creates complicated rhythms and patterns.

Multiple scales problems of physiological systems are usually modelled by
singularly perturbed systems [28, 34,55]. The geometric theory of multiple scales
dynamical systems—known as Fenichel theory [17, 32, 33, 49]—has provided
powerful tools for studying singular perturbation problems. In conjunction with the
innovative blow-up technique [15, 39, 57], geometric singular perturbation theory
delivers rigorous results on global dynamics such as periodic and quasi-periodic
relaxation oscillations in multiple time-scale problems [58]. When combined with
results on Henon-like maps, this approach has the potential to explain chaotic
dynamics in relaxation oscillators as observed in the periodically forced van der Pol
relaxation oscillator [24].

This development within dynamical systems theory provides an excellent frame-
work for addressing questions on how complex rhythms and patterns can be
detected and controlled. The fact that equivalent stimulation can elicit qualitatively
different spiking patterns in different neurons demonstrates that intrinsic coding
properties differ significantly from one neuron to the next. Hodgkin recognized
this and identified three basic types of neurons distinguished by their coding
properties [29]. Pioneered by Rinzel and Ermentrout [31, 51, 52], bifurcation theory
explains repetitive (tonic) firing patterns for adequate steady inputs (e.g. current
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step protocols) in integrator (type I) and resonator (type II) multiple time-scales
neuronal models.

In contrast, the dynamic behaviour of differentiator (type III) neurons cannot
be explained by standard (autonomous) dynamical systems theory. This third type
of excitable neuron encodes a dynamic change in the input and hence they are
well suited for temporal processing like phase-locking and coincidence detection
[42, 53]. Auditory brain stem neurons are an important example of such neurons
involved with precise timing computations. The nonautonomous (dynamic) nature
of the signal is essential to determine the response of a type III neuron. A major
aim of this chapter is to highlight the profound differences in the behaviour of all
neuron types (I-III) when we apply a step current protocol compared to a smooth
dynamic current protocol, either excitatory or inhibitory.

In a dynamical system that exhibits time-dependence in its forcing or parameters,
one still expects convergence of the phase-space flow to some lower dimensional
object; but this object, termed a pullback attractor [36, 37, 50], is now itself
time-dependent. Identifying dynamic objects in phase-space that act effectively as
separatrices is a major mathematical challenge. Such separatrices may influence the
observed dynamics only on a certain (finite) time scale.

Recently, a canard mechanism was identified that leads to transient dynamics in
multiple time-scales systems [26,41, 44, 64]. Canards are exceptional solutions in
singularly perturbed systems which occur on boundaries of regions corresponding
to different dynamic behaviours. The theory on canards and their impact on
transient dynamics of multiple scales dynamical systems is the main focus of this
chapter. What makes canards so special for (driven) nonautonomous multiple scales
dynamical systems? The key observation is that canard points (also known as folded
singularities) are still well defined in nonautonomous multiple scales dynamical
systems, while equilibria of an autonomous system will, in general, not persist in
the corresponding driven, nonautonomous system. Thus canards have the potential
to significantly shape the nature of solutions in nonautonomous multiple scales
systems. We highlight this important point of view in Sect. 3.3.2.1.

Another class of complex oscillatory behaviour observed in neuroscience is
mixed-mode oscillations (MMOs). These oscillations correspond to switching
between small-amplitude oscillations and relaxation oscillations—patterns that
have been frequently observed in experiments [1, 12, 25, 35, 47]. Recently, canard
theory combined with an appropriate global return mechanism was used based
on the multiple time-scale structure of the underlying models to explain these
complicated dynamics [2, 3, 6,22,43,57,61,63]. This is now one widely accepted
explanation for MMOs; see, e.g., [5, 8, 14, 16, 27, 38, 54, 56, 60] and the current
review [10].

The outline of the chapter is as follows: In Sect. 3.2 we review geometric singular
perturbation theory in arbitrary dimensions with a particular emphasis on canard
theory. In Sect. 3.3 we review excitable systems. We focus on external drives that
are either piecewise constant or vary smoothly. The former models instantaneous
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(fast) changes while the later models smooth (slow) changes. We then outline the
relationship between the theory of singularly perturbed systems and nonautonomous
(multiple scales) systems. In particular, we show how canard theory can be used to
explain excitability for smooth dynamic forcing protocols by identifying a canard
of folded saddle type as the firing threshold manifold of an excitable neuron.
The geometric theory is applied to neuronal and biophysical models. Finally, we
conclude in Sect. 3.4.

Remark 3.1. Section 3.2 provides a comprehensive review of geometric singular
perturbation theory and assumes a solid background on dynamical systems theory
such as found in [23]. While the basic ideas of geometric singular perturbation
theory are well known to the mathematical biology/neuroscience community, the
theory presented in this section might seem at certain points too technical and/or too
rigorous for this peer group. We suggest that these readers skip (parts of) the section
and explore the necessary theory after reading through Sect.3.3 on excitability.
Nevertheless, we hope that many readers will appreciate the rigor and generality
of the presented material.

3.2 Geometric Singular Perturbation Theory

Our focus is on a system of differential equations that has an explicit time scale
splitting of the form

wi =eg(w,v,€) G.1)

V= f(w,v,€),
where (w,v) € RF x R™ are state space variables and k,m > 1. The variables
v = (v1,...,vy) are denoted fast, the variables w = (wy,...,wy) are denoted
slow, the prime denotes the time derivative d/dt and € < 1 is a small positive
parameter encoding the time scale separation between the slow and fast variables.
The functions f : R x R” x R — R” and g : R¥ x R x R — R¥ are assumed
to be C* smooth. By switching from the fast time scale ¢ to the slow time scale
T = €t, system (3.1) transforms to

w= g(w,v,e€)

ev= f(w,v,e€). (3-2)
where the overdot denotes the time derivative d /d t. System (3.1) respectively (3.2)
are topologically equivalent and solutions often consist of a mix of slow and fast
segments reflecting the dominance of one time scale or the other. We refer to (3.1)
respectively (3.2) as a singularly perturbed system. As € — 0, the trajectories of
(3.1) converge during fast segments to solutions of the m-dimensional layer (or
fast) problem
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w =0
33
vV = f(w,v,0) (3-3)
while during slow segments, trajectories of (3.2) converge to solutions of
w = g(w,v,0)
34
0= f(w,v,0) (34)

which is a k-dimensional differential-algebraic problem called the reduced (or
slow) problem. Geometric singular perturbation theory [17, 32] uses these lower-
dimensional sub-systems (3.3) and (3.4) to predict the dynamics of the full (k +
m)-dimensional system (3.1) or (3.2) for € > 0.

3.2.1 The Layer Problem

First, we focus on the layer problem (3.3). Note that the slow variables w are
parameters in this limiting system.

Definition 3.1. The set
S = {(w,v) € R* xR" | f(w,v,0) =0} 3.5)

is the set of equilibria of (3.3). In general, this set S defines a k-dimensional
manifold, i.e. the Jacobian Dy, ,) f evaluated along S has full rank, and we refer
to it as the critical manifold.

Remark 3.2. The set S could be the union of finitely many k-dimensional mani-
folds. All definitions regarding the critical manifold hold also for such a set.

Since we assume that f is smooth, this implies that the critical manifold is a
differentiable manifold. The basic classification of singularly perturbed systems is
given by the properties of the critical manifold S of the layer problem (3.3).

Definition 3.2. A subset S;, C S is called normally hyperbolic if all (w,v) € Sy,
are hyperbolic equilibria of the layer problem, that is, the Jacobian with respect to
the fast variables v, denoted D, f, has no eigenvalues with zero real part.

- We call a normally hyperbolic subset S, € S arttracting if all eigenvalues of
D, f have negative real parts for (w,v) € S,; the layer problem describes the
flow towards this set.

- S, € S is called repelling if all eigenvalues of D, f have positive real parts for
(w,v) € S,; the layer problem describes the flow away from this set.

- If S; € S is normally hyperbolic and neither attracting nor repelling we say it is
of saddle type.
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For a normally hyperbolic manifold S, € S, we have a uniform splitting of
eigenvalues of D, f along S, into two groups, i.e. for each p € S the Jacobian
D, f has m, eigenvalues with positive real part and m; eigenvalues with negative
real part where m, + m; = m. This enables us to define local stable and unstable
manifolds of the critical manifold Sj:

Definition 3.3. The local stable and unstable manifolds of the critical manifold S},

denoted by W} .(S;) and W% .(S)), respectively, are the unions

Wi (S) = | Wi (p), Wit (S = | Wi (p) . (3.6)

PESH PESH

The manifolds W} (p) and W/ (p) form a family of fast fibers (called a fast
fibration or foliation) for W} (Sy,) and W (S},), respectively, with base points
p € Si. The dimension of W} (S) is k + my and the dimension of W} (S.¢)
isk +m,.

The geometric theory of singular perturbation problems with normally
hyperbolic manifolds is referred to as Fenichel Theory [17, 32]. This theory
guarantees the persistence of a normally hyperbolic manifold close to S, € S and
corresponding local stable and unstable manifolds close to W} (S;,) and W (S;)
as follows:

Theorem 3.1 (Fenichel’s Theorem 1, cf. [17,32]). Given system (3.1) with f, g €
C°. Suppose S, C S is a compact normally hyperbolic manifold, possibly with
boundary. Then for € > 0 sufficiently small the following holds:

(i) Foranyr < oo, there exists a C" smooth manifold Sy, ¢, locally invariant under
the flow (3.1), that is C" O(¢) close to Sy,
(ii) For anyr < oo, there exist C" smooth stable and unstable manifolds

WieSna = | Wi, Wi (S = |J Wipd. 37

Pe€Sh.e Pe€Sh.e

locally invariant under the flow (3.1), that are C" O(€) close to W .(S;) and
Wyt (Sh.e), respectively.

Remark 3.3. Sj¢ is, in general, not unique but all representations of Sj . lie
exponentially close in ¢ from each other, i.e. all r-jets are uniquely determined.

Remark 3.4. We assume that a compact, simply connected, k-dimensional smooth
manifold with boundary implies that its boundary is a (k — 1)-dimensional smooth
manifold. A compact manifold with boundary is called overflowing invariant, if the
vector field inside the manifold is tangent to the manifold and along the boundary
it points everywhere outward. The proof of Fenichel’s theorem is based on this
definition.
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3.2.1.1 Folded Critical Manifolds

Normal hyperbolicity fails at points on S where D, f has (at least) one eigenvalue
with zero real part, i.e. a bifurcation occurs in the layer problem under the variation
of the parameter set w. Generically, such points are folds in the sense of singularity
theory [59].

Definition 3.4. The critical manifold S (3.5) of the singularly perturbed sys-
tem (3.2) is (locally) folded if there exists a set F' that forms a (k — 1)-dimensional
manifold in the k-dimensional critical manifold S defined by

F = {(w,v) e R* xR";| f(w,v,0) =0,rk(D, f)(w,v,0) =m — 1,

1-[(D2,£)(w.v.0) ()] # 0, - [(Dy f)(w.v.0)] # 0} (5:5)

with corresponding left and right null vectors / and r of the Jacobian D, f. The set
F denotes the fold points of the critical manifold.

A fold corresponds to a saddle-node bifurcation in the layer problem which is
one of the generic codimension-one bifurcations in a dynamical system.

3.2.2 The Reduced Problem

The reduced problem (3.4) is a differential algebraic problem and describes the
evolution of the slow variables w constrained to the critical manifold S. As a
consequence, S defines an interface between the two sub-systems (3.3) and (3.4).

Definition 3.5. Given the reduced problem (3.4). A vector field on the critical
manifold S (3.5) is a C'-mapping g : S — R such that g(w,v) € Ty,.,)S for
all (w,v) € S.

In other words, the reduced vector field (3.4) has to be in the tangent bundle 7'S of
the critical manifold S. The total (time) derivative of f(w,v,0) = 0,1e. D, f -V +
D,, f-w = 0 provides exactly the definition for a tangent vector (w, v) of an integral
curve (w(t), v(r)) € R¥T” to be constrained to the tangent bundle 7'S. This leads
to the following representation of the reduced problem (3.4):

w=g(w,v,0)

_va V= (Dwfg) (Ws v, 0) (39)

where (w,v) € S. Let adj (D, f) denote the adjoint of the matrix D, f which is the
transpose of the co-factor matrix of D, f,i.e.adj (D, f)-D, f = D, f-adj (D, f) =
det(D, f) 1.

Remark 3.5. Inthe case m = 1, D, f = detD,f = % = f, is a scalar and
adj (D, f) := 1. Note that the adjoint of a square matrix is well defined for both
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regular and singular matrices. This is in contrast to the definition of the inverse of a
square matrix which is only defined in the regular case.

We apply adj (D, f') to both sides of the second equation in (3.9) to obtain

w=g(w,v,0) (3.10)

—det(Dy f)v =adj(Dyf)-Dyf -gw,v,0) '
where (w,v) € S. System (3.10) provides a representation of the original reduced
problem (3.4) in any (local) coordinate chart on the manifold S.

Remark 3.6. A coordinate chart on an n-dimensional smooth manifold S is a pair
(U; ¢), where U is an open subset of S and ¢ : U — Uisa diffeomorphism from
U to an open subset U= #(U) C R¥. A well-known (and often used) example is
the graph of a smooth function F : U — R” which is a subset of R” x R¥ defined
by {(x;y) eR"xRF : x e U,y = F(x)}.

Suppose that the critical manifold S is normally hyperbolic, i.e. D, f has full
rank for all (w,v) € S. The implicit function theorem implies that S is given as a
graph v = h(w). In other words, S can be represented in a single chart given by the
slow variable base w € R, The reduced problem (3.10) on S}, is then given in this
coordinate chart by

w=gw, h(w),0). (3.11)
Fenichel theory [17,32] guarantees the persistence of a slow flow on Sj ¢ close to

the reduced flow of S, in the following way:

Theorem 3.2 (Fenichel’s Theorem 2, cf. [17,32]). Given system (3.1) with f, g €
C®. Suppose S, < S is a compact normally hyperbolic manifold, possibly
with boundary. Then for € > 0 sufficiently small, Theorem 3.1(i), holds and the
following:

(iii) The slow flow on Sy, converges to the reduced flow on Sj, as € — 0.
Since Sy, is a graph v = h(w) it follows that Sy ¢ is also a graph v, = h(w, €) for
sufficiently small € < 1. Thus the slow flow on Sj, ¢ fulfills
w=gw h(w,e),¢€), (3.12)
and we are dealing with a regular perturbation problem on S, which is a
remarkable result. Consequently, we have

Corollary 3.1. Hyperbolic equilibria of the reduced problem (3.11) persist as
hyperbolic equilibria of the full problem (3.2) for sufficiently small ¢ < 1.

For € > 0, the base points p. € Sp. of the fast fibers W} (pc), respectively
W/ .(pe), evolve according to (3.12). Hence, the individual fast fibers W} (pc),
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respectively W (p), are not invariant, but the families of fibers (3.7) are invariant
in the following sense:

Theorem 3.3 (Fenichel’s Theorem 3, cf. [17]). Given system (3.1) with f,g €
C®°. Suppose S, < S is a compact normally hyperbolic manifold, possibly
with boundary. Then for € > 0 sufficiently small, Theorem 3.1(ii) holds and the
following:

(iv) The foliation { W,

s
oc

(Pe)| Pe € She} is (positively) invariant, i.e.

Wioe(pe) -t C Wi (pe-1)

forallt > 0 such that p. -t € Sy, where -t denotes the solution operator of
system (3.1).
(v) The foliation {W}" (pe)| pe € Sh.e} is (negatively) invariant, i.e.

u
oc
VVI’:)c(pE) 1 C VVI’:)c(ps : t)

forallt < 0 such that p. -t € Sy, where -t denotes the solution operator of
system (3.1).

This theorem implies that the exponential decay of a trajectory in the stable
manifold W*(Sj.) towards its corresponding base point p. € Sj . is inherited from
the unperturbed case. The same is true in backward time for a trajectory in the
unstable manifold W* (S} ) and summarized in the following:

Theorem 3.4 (Fenichel’s Theorem 4, cf. [17,32]). Let oy < 0 be an upper bound
Red; <oy <0,i = 1,...,my, for the stable eigenvalues of the critical manifold
Sp. There exists a constant kg > 0, so that if pc € Sy and qge € W} .(pe) then

lge -t — pe - t]| < kyexp(agt)

forallt > 0 such that p. -t € Sp..

Similarly, let o, > 0 be a lower bound ReA; > o, > 0, j = 1,...,m,, for the
unstable eigenvalues of the critical manifold Sy,. There exists a constant k,, > 0, so
that if pe € Sp.e and q. € W (pe) then

e -t — pe - t]| < kuexp(ayt)

forallt <0 suchthat p. -t € Sp..

If we assume that S, = S, is an attracting normally hyperbolic manifold then
Fenichel theory implies that the dynamics of system (3.2) are completely described
(after some initial transient time) by the dynamics on the k-dimensional slow
manifold S, . which to leading order can be completely determined by the reduced
flow on S,. This result justifies certain model reduction techniques often found in
the mathematical biology literature on biochemical reactions.
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Example 3.1. A classic biophysical example of a normally hyperbolic problem is
given by Michaelis-Menten enzyme kinetics (see, e.g., [34] for details):

kl ko
S+E=C—~P+E, (3.13)
k—1

which models an enzymatic reaction with substrate S, enzyme E, an intermediate
complex C and product P. Using the law of mass action gives the following system
of differential equations

48 — k_\[C] - ki [S][E],

4L — | [S][E] = (k=1 + ka)[C],
4E = (k_; + k2)[C] — k1 [S][E].
4P — k,[C,

(3.14)

where [X] denotes the concentrationof X = S, C, E, P with initial concentrations
[S1(0) = So,  [C](0) =0, [E](0) = Eo, [P](0)=0.

Notice that [ P] can be found by direct integration, and there is a conserved quantity
since d[C]/dt 4+ d[E]/dt = 0, so that [C] + [E] = Ey. Hence it suffices to study
the first two equations of system (3.14) with [E] = Ey — [C]. Using dimensional
analysis gives the corresponding two-dimensional dimensionless system,

d
d_s = s=ajc—s(l—c)=g(s,c)
d’ (3.15)
c
ed— =e¢ =s5(l—c)— (a1 + x)c = f(s,0),
T
with (dimensionless) substrate and complex concentration s = [S]/Sy and ¢ =

[C]/ E)y, initial conditions s(0) = 1 and ¢(0) = 0, time T = Eok¢ and parameters
o = k_l/(S()kl) > 0, Oy = kz/(S()kl) > O, & = EO/SO < 1. Here, the
initial enzyme concentration E is considered significantly smaller than the initial
substrate concentration Sy which is a realistic condition for enzyme reactions. Thus,
the obtained dimensionless system is a singularly perturbed system with s slow and
c fast.

The critical manifold is given by f(s,c) = 0. The Jacobian of the layer problem
is the derivative f. = —(s + o1 + o) < O for all s > 0. Hence, the critical
manifold is an attracting normally hyperbolic manifold S, for the biophysically
relevant domain of s > 0 and is given as a graph

N

¢ () S+ o) + o



3 Canard Theory and Excitability 99

08
06
04

02

L L
0 0.2 0.4 0.6 0.8 1
S

Fig. 3.1 Michaelis-Menten kinetics: from the initial condition (s,c¢) = (1,0), the complex ¢
builds quickly up (along fast fibers) until it reaches the normally hyperbolic manifold S,. Then the
slow uptake of the substrate s starts (slow flow along S, towards the rest state (s, ¢) = (0, 0))

The reduced problem is then given in the single coordinate chart s € R by

sfg(sﬁ(s))z—ﬁso, Vs >0. (3.16)

This differential equation has a hyperbolic equilibrium at s = 0 which is stable.
Since the initial condition (s(0), c(0)) = (1,0) is not on the critical manifold S,
we expect an initial fast transient behavior towards the slow manifold S, . close
to the stable fast fiber at s = 1. Then the slow dynamics will take over and the
substrate concentration will slowly decay towards zero along the slow manifold S, .
as predicted by the reduced flow. Figure 3.1 confirms the predictions of Fenichel
theory. The reduced problem (3.16) is indeed a good approximation of the substrate
concentration dynamics after a transient initial time. The rate of uptake of the
substrate s described by (3.16) is often referred to as the Michaelis-Menten law.

3.2.2.1 Reduced Problem on Folded Critical Manifolds

Similar to the normally hyperbolic case, a (local) graph representation of the critical
manifold S is used to analyse the k-dimensional reduced problem (3.10) in the
case of a folded critical manifold. From the definition (3.8) of the folded critical
manifold follows that there exists (at least) one slow variable w;, j € {l,...,k}
with [ - [(Dy,; f)(w,v,0)] # 0. Without loss of generality, let w; be this slow
variable. One is then able to replace one column in D, f (we assume, without
loss of generality, that this column is D,, f) by the column of D,, f such that
tk Dy vs....vm) f = m along S (including F). In the case k = 1 respectively k > 2,
the implicit function theorem then implies that S is (locally) a graph y = h(v;)
respectively y = h(wy, ..., wg,v) where y = (w,va,...,vy). Inthecase k = 1,
incorporating this graph representation of S leads to the projection of the reduced
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problem (3.10) onto the coordinate chart v; € R,

—det(D,f)vi =adj(D,f)1-Dwf-g(v,0), (3.17)

respectively in the case k > 2 it leads to the projection of the reduced problem
(3.10) onto the coordinate chart (wy, ..., wi,vq) € Rk:

szgj(WZa--'awk’vl’O)’ .]:2’k (318)
—det(Dy f) 1 = adj(Dyf)1 - Dy f -8 Wa,....we.v1.0).

where adj (D, f); denotes the first row of the adjoint matrix adj (D, f).

Remark 3.7. This row vector adj (D, f); represents the left null-vector / of the
matrix D, f. As mentioned before, the scalar adj (D, f); - Dy, f # 0 and, hence,
the row vector adj (D, f); - D,, f is non-singular.

Looking at the reduced problem (3.17), respectively (3.18), we observe
det (D, f) = 0 along the fold F, i.e. (3.17), respectively (3.18), is singular along
F.

Definition 3.6. Regular fold points p € F of the reduced flow (3.17) respectively
(3.18) satisfy the transversality condition (normal switching condition)

adj(Dyf)1-Dyf - g #0. (3.19)

The condition / - [(D2, f)(w,v,0) (r,r)] # 0 along F implies that det (D, f) has
different signs on adjacent subsets (branches) of the critical manifold S bounded
by F. Hence, in the neighborhood of regular fold points p € F the flow is directed
either towards or away from the fold F'. Solutions of the reduced problem will reach
the fold F in finite (forward or backward) time where they cease to exist.

We can circumvent the problem of the singular nature of the reduced problem
along the fold F by introducing a new time t; defined by dtv = —det (D, f)d 1,
(this is a space dependent time rescaling and, hence, the differential form is
needed), and rescaling time in system (3.17) respectively (3.18) which then gives
the desingularized problem

vi =adj(Dyf)i-Dwf-g(.0), (3.20)
respectively

w; =—det(D,f) -gjwa,....wx,v1,0), j=2,...k 3.21)

vi=adj(D,f)1-Dwf-gwa,...,wk,v1,0)
where the overdot denotes now d/d 1. From the time rescaling it follows that
the direction of the flow in (3.20) respectively (3.21) has to be reversed on
branches where det (D, f) > 0 to obtain the corresponding reduced flow (3.17),
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respectively (3.18). Otherwise, the flows of (3.17) and (3.20), respectively (3.18)
and (3.21), are equivalent. Obviously, the analysis of the desingularized problem
(3.20), respectively (3.21), is preferable.

3.2.3 Folded Singularities and Singular Canards

Our aim is to understand the properties of the reduced problem (3.17), respectively
(3.18), based on properties of the desingularized problem (3.20), respectively (3.21).
Keeping that in mind, we define the following:

Definition 3.7. We distinguish between two possible types of singularities of the
desingularized problem (3.20), respectively (3.21):

- Ordinary singularities which are defined by g = 0.
- Folded singularities which are defined by

det(Dyf) =0, adj(D,f)i-Dyf-g=0. (3.22)

Ordinary singularities correspond to equilibria of the reduced problem (3.17),
respectively (3.18). Generically, they are positioned away from the fold F,
ie. det(D,f) # 0, and they are isolated singularities. In other words, these
singularities correspond to equilibria in both the reduced and desingularized
system.

Folded singularities are positioned on the fold F. There is a crucial difference
between the case k = 1 and k > 2 and we will study these two cases separately.

3.2.31 TheCasek =1

Recall from Remark 3.7 that the scalar adj (D, f), - D,, f # 0. Hence, the folded
singularity condition (3.22) can only be fulfilled for g = 0. This folded singularity
is generically a hyperbolic equilibrium for the desingularized problem (3.20), but
it does not correspond to an equilibrium of the reduced problem (3.17). In fact,
the reduced problem has finite non zero speed at the folded singularity (due to a
cancellation of a simple zero). This allows solutions of the reduced problem to cross
(in forward or backward time) from one branch of S via the fold F to the other
branch of S.

Definition 3.8. Given a singularly perturbed system (3.2) with a (locally) folded
critical manifold § = §, U F U S;,, where S, denotes an attracting branch and S;/,
denotes a repelling branch (case m = 1) respectively a saddle type branch (case
m > 2). A trajectory of the reduced problem (3.17) that has the ability to cross in
finite time from the S, branch of the critical manifold to the S, /; branch via a folded
singularity is called a singular canard.
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Fig. 3.2 The FitzHugh-Nagumo (FHN) model (3.23) with a = —+/3, b = /3, ¢ = 4/15,
€ = 8/100: (a) singular canard cycles and relaxation oscillation cycles for I = I = —7/4

obtained through continuous concatenations of slow orbit segments (gray) and fast fibers (black);
(b) the corresponding reduced flow projected onto coordinate chart v € R indicates the crossing of
a singular canard from S, to S,; (¢) Bifurcation diagram includes a singular subcritical Andronov-
Hopf bifurcation (HB) at I = Iy ~ —1.632, a branch of canard cycles and relaxation oscillation
cycles and a saddle-node of limit cycles (SNLC) bifurcation at I = I¢ &~ —1.653

Example 3.2. The FitzHugh-Nagumo (FHN) model [20,45] is a qualitative (dimen-
sionless) description of action potential generation in a class of conductance based,
Hodgkin-Huxley-type models [30], given by

w = eg(w,v) = e(v—cw)

V= fwv)y=viv—a)b—v)—w+1,

(3.23)

where we assume b > 0 > a. For I = 0, this system may have one, two or three
equilibria depending on (a, b, c). We restrict the parameter set to 4 /(a—b)*> > ¢ > 0
which guarantees only one equilibrium. Note, for sufficiently small ¢ > 0 there will
be only one equilibrium in system (3.23) for any choice of /.

The critical manifold S of system (3.23) is not normally hyperbolic since f, =
—3v? 4+ 2(a + b)v — ab vanishes for vt = (a + b £ /a? —ab + b?)/3. At these
values, f,,(vY) = F2+a? —ab +a? # 0. Furthermore f,, = —1 # 0 which
shows that the FHN model has a cubic-shaped critical manifold § = §; U F~ U
S, U FT U S} with outer attracting branches S* and repelling middle branch S, ;
see Fig.3.2a.

The critical manifold S is given as a graphw = h(v) = v(v—a)(b —v) + I.
Thus we project the reduced problem on the single coordinate chart v € R,
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—(=3vV* 4+ 2@+ byv—abyy=—-v—cO(v—a)b—v)+1)). (3.24)
The corresponding desingularized problem is given by
v=—-(wv—clviv—a)(b—v)+1)). (3.25)

We have to reverse direction of the desingularized flow on S, to obtain the
corresponding reduced flow. Otherwise, the desingularized flow is equivalent to the
reduced flow. There exist parameter values I = [ f such that the right hand side

of (3.25) evaluated at v = v* vanishes. These particular parameter values define
folded singularities of the reduced problem (3.24). Figure 3.2a,b shows the case
I =1 7 where the folded singularity exists at the lower fold F~. We observe a
singular canard crossing from S, to S;.

This enables us to construct a whole family of singular limit cycles known as
singular canard cycles that are formed through continuous concatenations of slow
orbit segments including canard segments (gray segments, one arrowhead) and fast
fibers (black segments, two arrowheads). We distinguish two types of canard cycles,
known as canards without head and canards with head [2,62]. Both are illustrated in
Fig.3.2a: a canard without head is a continuous concatenation of a singular canard
segment from S to S, (grey) and a fast fiber segment connecting S, with S
(black). Obviously, a jump back along a fast fiber segment from any base point on
S, works. This gives the family of canards without head.

Similarly, a canard with head is a continuous concatenation of a singular canard
segment from S to S, (grey), a fast fiber segment connecting S, to S (black),
a slow segment on S connecting to the upper fold F* (grey) and, finally, a fast
fiber segment connecting F* to S, (black). Again, a jump forward along a fast
fiber segment from any base point on S, works and we obtain a whole family of
canards with head. All these singular canard cycles have O(1) amplitude and have
a frequency on the order of the slow time scale. The canard cycles are bounded by
a singular relaxation cycle, a continuous concatenation of a slow segment on S
connecting to F~ (grey), a fast fiber segment connecting F~ to S (black), a slow
segmenton S;F connecting to F* (grey) and, finally, a fast fiber segment connecting
FT to S, (black).

3.2.3.2 The Casek > 2

Here, the folded singularity condition (3.22) can be fulfilled for g # 0. Such
generic folded singularities do not correspond to equilibria of the reduced problem
(3.18). The set of these folded singularities, denoted M y, forms a submanifold of
codimension one in the (k — 1)-dimensional set of fold points F.

Remark 3.8. Inthe case k = 2, the set M ; consists of isolated folded singularities.
This makes the following description of associated geometric objects sometimes
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simpler or even trivial. The reader should keep that in mind since we do not
distinguish between k = 2 and k > 2 throughout this section and Sect. 3.2.4.2.

Generically, the set My viewed as a set of equilibria of the desingularized system
(3.21) has (k — 2) zero eigenvalues and two eigenvalues A/, with nonzero real
part. Thus for k > 3, M represents a normally hyperbolic manifold of equilibria
in system (3.21). The classification of folded singularities is based on these two
nonzero eigenvalues A1/, and follows that of singularities in two-dimensional vector
fields.

Definition 3.9. Classification of generic folded singularities (3.22):

- Inthe case that A/, are real, let us denote the eigenvalue ratio by
mi=A/A

where we assume without loss of generality that |A;] < |A;|. Then the
corresponding singularity is either a folded saddle if © < 0, or a folded node
if0<pu<l.

- In the case that A/, are complex conjugates and Rel;;» # O then the

corresponding singularity is a folded focus.

For a generic folded singularity, the algebraic multiplicity of the corresponding
singularities on both sides of the last equation in the reduced problem (3.18) is
the same (i.e. one). This leads in the case of a folded saddle or a folded node to a
nonzero but finite speed of the reduced flow through a folded singularity. Hence,
folded saddles and folded nodes create possibilities for the reduced flow to cross to
different (normally hyperbolic) branches of the critical manifold S via such folded
singularities. This is the hallmark of singular canards in systems with two or more
slow variables. Definition 3.8 of singular canards applies here as well. We restate it
here for convenience:

Definition 3.10. Given a singularly perturbed system (3.2) with a folded critical
manifold § = §, U F U Sy, where S, denotes an attracting branch and S;/,
denotes a repelling branch (case m = 1) respectively a saddle type branch (case
m > 2). A trajectory of the reduced problem (3.18) that has the ability to cross in
finite time from the S, branch of the critical manifold to the S, /; branch via a folded
singularity is called a singular canard.

Remark 3.9. In the case of a folded focus there are no singular canards. Only the
flow direction changes along the fold F at the folded focus. All solutions starting
near a folded focus reach the set of fold-points '/ M ; in finite forward or backward
time where they cease to exist due to finite time blow-up.

In the folded saddle case, i < 0, there exists a (k — 1)-dimensional centre-stable
manifold W, and a (k — 1)-dimensional centre-unstable manifold W,, along the
(k — 2)-dimensional normally hyperbolic manifold W, = W., N W, = M;y.
Both manifolds, W, and W,,, are uniquely foliated by one-dimensional fast fibers
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Sa

Fig. 3.3 A folded saddle singularity: (a) desingularized flow; (b) corresponding reduced flow and
(c) reduced flow on the critical manifold S. There are two singular canards that cross the fold F at
the folded singularity (black dot), one from S, to S, and the other (called faux canard) from S, to
Sa. The shaded region indicates a region of solutions on S, that will reach the fold F in forward
time

W; respectively W, over the base My where the fibers are tangent to the stable
respectively unstable eigenvector of the corresponding folded singularity pr € M,
i.e. the corresponding base point.

Recall that the reduced flow is obtained from the desingularized flow by changing
the direction of the flow on S, /. Thus, trajectories that start in a stable fiber W C
Wes C S, approach My in finite time and cross tangent to the stable eigenvector
of the corresponding folded singularity on M s to the unstable branch W, C S, ;.
These are singular canards of folded saddle type.

All other trajectories of the reduced flow starting in S, (close to F') reach either
the set of fold-points '/ M r in finite forward or backward time where they cease to
exist due to finite time blow-up or they do not reach the set /M at all. Figure 3.3
shows the folded saddle case fork = 2.

Remark 3.10. Trajectories starting on an unstable fiber W,, C W,,, C S, /; approach
M ; in finite time and cross tangent to the unstable eigenvector of the corresponding
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folded singularity on M ¢ to the stable branch W,; C S,. Such solutions are called
singular faux canards.

In the folded node case p > 0, assuming A/ < O are both negative, the whole
phase space S is equivalent to W,,. Let us define Wy, C W, as the (k — 1)-
dimensional subset of unique fast fibers corresponding to the span of the strong
stable eigenvectors along the base M y. Again, the reduced flow is obtained from
the desingularized flow by changing the direction of the flow on S,.

Definition 3.11. The set W, together with the (k—1)-dimensional set of fold points
F bounds a sector in S,, called the singular funnel, with the property that every
trajectory starting in the singular funnel reaches the set of folded node singularities
M in finite time and subsequently crosses the set F transversely to the other
branch S,/ in the direction that is tangent to the weak stable eigenvector of the
corresponding folded node singularity on M ¢.

Thus, every trajectory within a singular funnel is a singular canard. Trajectories
that start on the boundary set Wy, C S, reach also the set M ¢ in finite time but cross
tangent to the strong stable eigenvector of the corresponding folded node singularity
(by definition). All other trajectories of the reduced flow starting in S, (close to F)
reach the set of fold-points /M s in finite forward or backward time where they
cease to exist due to finite time blow-up.

Remark 3.11. In the folded node case i > 0 with A1/, > 0, we are dealing with a
whole family of faux canards.

3.2.4 Maximal Canards

Next, we are concerned with the persistence of singular canards as canards of the
full system (3.1). We first provide a geometric definition of canards for € > 0.
Recall that the branches S, and S,/ are normally hyperbolic away from the fold F'.
Thus, Fenichel theory implies the existence of (non-unique but exponentially close)
invariant slow manifolds S,  and S, /s away from F. Fix a representative for each
of these manifolds S, . respectively S, g ¢

Definition 3.12. A maximal canard corresponds to the intersection of the mani-
folds S, and S,/ extended by the flow of (3.1) into the neighborhood of the set
Mf C F.

Such a maximal canard defines a family of canards nearby which are exponen-
tially close to the maximal canard, i.e. a family of solutions of (3.1) that follow
an attracting branch S, of the slow manifold towards the neighbourhood of the
set My C F, pass close to My C F and then follow, rather surprisingly, a
repelling/saddle branch S, ;. of the slow manifold for a considerable amount of
slow time. The existence of this family of canards is a consequence of the non-
uniqueness of S, . and S,/ . However, in the singular limit € — 0, such a family
of canards is represented by a unique singular canard.
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Remark 3.12. The key to understanding the local dynamics near the set of folded
singularities by means of geometric singular perturbation theory is the blow-
up technique. The “blow-up” desingularizes degenerate singularities such as the
set of folded singularities or the fold itself. With this procedure, one gains
enough hyperbolicity on the blown-up locus B to apply standard tools from
dynamical system theory. For a detailed description of the blow-up technique and
its application to singularly perturbed systems we refer the interested reader to
[15,39,40,57,58,61,63].

Remark 3.13. A folded critical manifold S implies a single zero eigenvalue of the
m-dimensional layer problem. Hence in system (3.1), there exist locally invariant
manifolds W, (centre-stable) and W,, (centre-unstable) near the fold F where
W, U W, spans the whole phase space and W, = W,, N W, corresponds to a
(k + 1)-dimensional centre-manifold. A centre manifold reduction of system (3.1)
onto this (k + 1)-dimensional subspace W, captures the local dynamics near the
fold F. Note that the reduced problem (3.17) respectively (3.18) reflects already
such a center manifold reduction (on the linear level) through the projection onto
the nullvector / = adj (D, f); corresponding to the zero eigenvalue of the Jacobian
D, f. In the following, we present results that are based on such a reduction. The
interested reader is referred to, e.g. [6, 63, 65], for details.

3.2.4.1 Case k = 1: Singular Hopf Bifurcation and Canard Explosion

Recall from the FHN model that a folded singularity and associated singular canards
exist only for a specific parameter value / = [ . In the case k = 1, this shows thata
folded singularity is degenerate, i.e. a codimension-one phenomenon. Furthermore,
the condition for the folded singularity coincides with the equilibrium condition
g = 0. This indicates a bifurcation of the equilibrium state in the full system under
the variation of /. This can be easily seen when looking at a planar slow-fast system

w = eg(w,v)

3.26
V= fwv,1). (3.26)

The trace and the determinant of the Jacobian are given by
trJ = f, +egw, detJ = e(fogw — fugy) - (3.27)

Close to the fold F, a bifurcation of equilibria defined by f = g = 0 happens for
0 < € <« 1 when trJ = 0. This implies f, = —eg,, = O(¢€) and, in the singular
limit, this gives the fold condition f, = 0. The existence of singular canards is
given if the equilibrium g = 0 of the desingularized problem (3.20) is stable. This
implies that f,g, < O evaluated at g = 0 and, hence, detJ = O(e) > 0. So,
we are expecting a singular Andronov-Hopf bifurcation for I = Iy that creates
small O(/€) amplitude limit cycles with nonzero frequencies of order O (/) [39].
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Hence, the singular nature of the Andronov-Hopf bifurcation is encoded in both,
amplitude and frequency. Figure 3.2c shows an example of a singular subcritical
Andronov-Hopf bifurcation.

Note in Fig.3.2¢ that the O(4/€) branch of the Andronov-Hopf bifurcation
suddenly changes dramatically near / = I.. This almost vertical branch marks the
unfolding of the canard cycles within an exponentially small parameter interval of
the bifurcation parameter /. This is often referred to as a canard explosion [2,15,39].
The following summarizes these observations:

Theorem 3.5 (cf. [39]). Given a planar slow-fast system

w = eg(w,v)

3.28

V= fwow, 1), (3.28)

with a (locally) folded critical manifold S = S, U F U S,. Assume there exists a

folded singularity for I = Iy that also allows for the existence of singular canards.
Then a singular Andronov-Hopf bifurcation and a canard explosion occur at

Iy =1;+H e+ 0  and (3.29)
I =17+ (H + Ki) e + 0O(?). (3.30)

The coefficients Hy and K| can be calculated explicitly and, hence, the type of
Andronov-Hopf bifurcation (super- or subcritical).

In the singular limit, we have Iy = I, = Iy. By definition, we associate one
maximal canard with the canard explosion. In Fig.3.2a, this maximal canard is
represented by the singular canard that moves along the middle branch S, right
up to the upper fold F7. It delineates between jump back canards that form small
amplitude canard cycles—canards without head—and jump away canards that form
large amplitude canard cycles—canards with head.

In Fig.3.2c, the branch of canard cycles then connects to the branch of stable
relaxation oscillation cycles with large amplitude. Note, there is also a saddle-node
of limit cycles bifurcation of the canard cycles where the stability property changes.
Since canards are exponentially sensitive to parameter variations, they are hard to
detect. In reality, this makes canard cycles rather exceptional.

3.2.4.2 Case k > 2: Folded Saddle and Folded Node Canards

Here, folded singularities are generic, i.e. they persist under small parameter
variations. This makes these canards robust creatures, i.e. their impact on the
dynamics of a singularly perturbed system is observable. In the following, we
present persistence results of canards.
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Theorem 3.6 (cf. [57, 63]). In the folded saddle case (u < 0) of a singularly
perturbed system (3.1), the (k — 1)-dimensional set W, of singular canards perturb
to a (k — 1)-dimensional set of maximal canards for sufficiently small € < 1.

Thus, there is a one-to-one correspondence between singular and maximal canards
in the case of folded saddles. Note that these canards form a separatrix set for
solutions that either reach the fold F locally near the set M ¢ or not. This separatrix
set of folded saddles will play an important role in the analysis of neural excitability
(see Sect.3.3).

Theorem 3.7 (cf. [6,57,61,63]). In the folded node case 0 < u <1 of a singularly
perturbed system (3.1), we have the following results:

(i) The (k—1)-dimensional set Wy of singular strong canards perturb to a (k—1)-
dimensional set of maximal strong canards called primary strong canards for
sufficiently small € <K 1.

(ii) If 1/u ¢ N then the (k — 1)-dimensional set of singular weak canards perturb
to a (k — 1)-dimensional set of maximal weak canards called primary weak
canards for sufficiently small € < 1.

(iii) If2l + 1 < u=' <2l +3,1 € Nand u=' # 2l + 2, then there exist |
additional sets of maximal canards, all (k — 1)-dimensional, called secondary
canards for sufficiently small € < 1. These | sets of secondary canards are
0 (e'=M/2) close to the set of primary strong canards in an O(1) distance
from the fold F.

Note the difference to the folded saddle case. In the folded node case, only a finite
number of maximal canards persists under small perturbations 0 < € < 1 out of the
continuum of singular canards given in the singular limit ¢ = 0. Furthermore, these
maximal canards create some counter-intuitive geometric properties of the invariant
manifolds S, and S,/ near the set of folded singularities M . In particular, the
(k — 1)-dimensional set of primary weak canards forms locally an “axis of rotation”
for the k-dimensional sets S,  and S, /, . and hence also for the set of primary strong
canards and the set of secondary canards; this follows from [61], case k = 2. These
rotations happen in an O(/€) neighbourhood of F. The rotational properties of
maximal canards are summarized in the following result:

Theorem 3.8 (cf. [6,57,61,63]). In the folded node case of a singularly perturbed
system 3. D) with2l +1 < pu™' <2l +3, 1 eNand p=" #21 + 2,

(i) the set of primary strong canards twists once around the set of primary weak
canards in an O(+/€) neighbourhood of F,

(ii) the j-th set of secondary canards, 1 < j <, twists (2] + 1)-times around the
set of primary weak canards in an O(+/€) neighbourhood of F,

where a twist corresponds to a half rotation. Thus each set of maximal canards has
a distinct rotation number.
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As a geometric consequence, the funnel region of the set of folded nodes My in S,
is split by the secondary canards into (/ + 1) sub-sectors /;, j = 1,...,/ 4+ 1, with
distinct rotational properties. /) is the sub-sector bounded by the primary strong
canard and the first secondary canard, 7, is the sub-sector bounded by the first and
second secondary canard, [; is the sub-sector bounded by the (I — 1)-th and the
[-th secondary canard and finally, /;4; is bounded by the /-th secondary canard
and the set of fold points F. Trajectories with initial conditions in the interior of
I;,1 < j <[+ 1, make (2j + 1/2) twists around the set of primary weak
canards, while trajectories with initial conditions in the interior of /;4; make at
least [2(/ 4+ 1) — 1/2] twists around the set of primary weak canards. All these
solutions are forced to follow the funnel created by the manifolds S, /. and
S, /5, e After solutions leave the funnel in an O(+/€) neighbourhood of F they
get repelled by the manifold S,/ /c and will follow close to a fast fiber of system
(3.1). Hence, folded node type canards form separatrix sets in the phase space for
different rotational properties near folded critical manifolds. Canard induced mixed
mode oscillations (MMOs) are a prominent example of a complex rhythm that
can be traced to folded node singularities. We refer the interested reader to, e.g.,
[5,6,10,43,61].

3.3 Excitable Systems

The notion of excitability was first introduced in an attempt to understand firing
behaviors of neurons. Neural action potentials are responsible for transmitting
information through the nervous system. Most neurons are excitable, i.e. they are
typically silent but can fire an action potential or produce a firing pattern in response
to certain forms of stimulation. While the biophysical basis of action potential
generation per se is well established, the coding properties of single neurons are
less well understood. A first answer to the question of the neuron’s computational
properties was given by Hodgkin [29] who identified three basic types (classes)
of excitable axons distinguished by their different responses to injected steps of
currents of various amplitudes.

Type I (class I) axons are able to integrate the input strength of an injected current
step, i.e. the corresponding frequency-current (f-I) curve is continuous.

Type II (class II) axons have a discontinuous f-I curve because of their inability
to maintain spiking below a certain frequency. The frequency band of a type II
neuron is very limited and, hence, relatively insensitive to the strength of the injected
current. It appears that type II neurons resonate with a preferred frequency input.

Type III (class III) axons will only fire a single or a few action potentials at the
onset of the injected current step, but are not able to fire repetitive action potentials
like type I and type II neurons (besides for extremely strong injected currents). Type
III neurons are able to differentiate, i.e. they are able to encode the occurrence of
a “change” in the stimulus. Such phasic firing (versus tonic or repetitive firing)
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identifies these type III neurons as slope detectors. Obviously, the f-I curve is not
defined for type III neurons.

Rinzel and Ermentrout [52] pioneered a mathematical framework based on
bifurcation theory that distinguishes type I and type II neural models. In Sect. 3.3.1,
we will briefly review this approach but with a slight twist. We will emphasise the
inherent multiple time-scales structure found in many neuronal models and apply
geometric singular perturbation theory together with bifurcation theory to define
the different types of excitability.

In Sect.3.3.2 we will go a step further and ask more general questions about
excitability. In particular, we want to focus on dynamic inputs beyond (current) step
protocols (that are usually applied in laboratory settings). For example, synapses
produce excitatory or inhibitory inputs and these synaptic inputs may be activated
(resp. inactivated) fast or slow. We will model sufficiently smooth dynamic inputs
and apply these inputs to the 2D slow-fast excitable system models introduced
in Sect.3.3.1. The geometric key to the understanding of excitability will be to
identify threshold manifolds (aka separatrices). This is very much in the spirit of
FitzHugh’s work on excitability [18-20] (see also Izhikevich [31], Chap. 7), but it
extends FitzHugh’s ideas to the dynamic, nonautonomous case.

3.3.1 Slow-Fast Excitable Systems with Step Protocols

We focus on a class of 2D excitable models given by

w = eg(w,v,¢€)

3.31

V= fwov,e,I)= fiw,v,e)+ 1 (3.31)

where I € [Iy, I;] C R is an external (constant) drive of the excitable system, and
the following assumptions hold (for many two-dimensional neuronal models):

Assumption 1. The critical manifold S of system (3.31) is cubic shaped, i.e.
S=S; UF US,UFtust,

with attracting outer branches Sai, repelling middle branch S,, and folds F*.

Assumption 2. The (unforced) system (3.31) with I = 0 has one, two or three
equilibria. In the corresponding reduced problem, one equilibrium is located on the
lower attracting branch S and it is stable. Each of the other two equilibria, if they
exist, are located on the middle branch S,.

Example 3.3. The Morris-Lecar (ML) model [46] was originally developed to
study the electrical activity of barnacle muscle fiber. Later it was popularised as
a model for neural excitability; see e.g. Izhikevich [31] where a large collection of
minimal conductance based 2D ML-type models is introduced. We use the ML-type
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model from Rinzel and Ermentrout [52] in the following form (as in Prescott et al
[48]):

w = ¢[WOO(V) — W]/TW(V)

CV/ = _Iion(wa V) + Istim ’ (332)
with functions
Tion(w. V) = ~(g pmo(V)(V = E ) + gow(V — Eo) + &1(V ~ E1)
Moo(V) = [1 + tanh((V — V1)/ V2)]/2 (3.33)

Woo (V) = [1 + tanh((V — V3)/V4)]/2
Tw(V) = 1/ cosh((V —V3)/(2V4)) .

V' models the voltage membrane potential and Z;on (V) = 1 rust + Isiow + licak
represents the ionic currents of the model which consist of a fast non-inactivating
current /s,y = grMoo(V)(V — Ey), a delayed rectifier type current Ig,, =
gsw(V — E), and a leak current Ijo,x = g;(V — V;). The parameter Iy,
represents the injected current step. The activation variable w of the Iy, current
provides the slow voltage-dependent negative feedback required for excitability.
Its dynamics are described by the sigmoidal activation function weo (V') and the
bell-shaped voltage dependent time-scale t,,(}')/¢. The activation of the fast [ 7,
current is assumed instantaneous and, hence, its activation variable is set to m =

Meo(V).

A representative parameter set of this ML model is given by g, = 20mS/ cm?,
gs = 20mS/ cm?, g = 2mS/ cm? (maximal conductances of ion channels),
E; = 50mV, E; = —100mV, E; = —70mV (Nernst potentials), capacitance

C = 2pF/cm?, time scale factor ¢ = 0.1 ms~! and auxiliary voltage parameters
Vi=—-12mV,V, =18mV, V3 =0mV, V; = 10mV.

To identify a slow-fast timescale structure explicitly in (3.32) we have to non-
dimensionalise the model. This is done by introducing dimensionless variables v =
V/k, and t; = t/k; with typical reference scales for voltage k, = 100mV and
time k; = C/gmax = 0.1 ms where g,,,, = 20mS is a reference conductance
scale. This leads to the dimensionless ML model,

w = E[\'l/'oo (V) - W]/fw(v) = Gg(W, V)

VvV = _Ii()n (W, V) + I_stim = f(W, v, I_stim) = fl (W’ V) + I_S”m ’ (334)
with functions
Tion(w.v) = =(@rmoc(M (v = Ep) + gw(v = Ey) + 21(v = E))
Moo(v) = [1 + tanh((k,v — V1)/ V2)]/2 (3.35)

Woo (v) = [1 + tanh((k,v — V3)/ V4)]/2
T (v) = 1/ COSh((kvV - V3)/(2V4)) .
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where gx = gx/gmax, Ex = Ex/kv (-x = f;s’ l), I_stim = Istim/(kvgmax) and
€ := (C/gmax)$ = 0.01

is the singular perturbation parameter that measures the time-scale separation
between the fast v dynamics and the slow w dynamics. This timescale separation
can be enhanced by decreasing the capacitance C, slowing the w-dynamics via ¢
or increasing the maximum conductance of the ion channels. Hence, system (3.34)
can be viewed as a singularly perturbed system.

Using the parameter values from above, it can be shown that the critical manifold
is cubic shaped (Assumption 1) and that it has three equilibria for / = 0, one on
the lower attracting branch and the other two are on the repelling middle branch
(Assumption 2). By changing the system parameters, this model can be transformed
into all three excitable neuron types; see [48] for more details.

Example 3.4. We introduce a dimensionless hybrid of the Morris-Lecar and the
FitzHugh-Nagumo (ML-FHN) model that combines important features of both:

/

W= eg(w,v) = €(Woo (V) — W)
V= fwv,)=viv—a)b—v)—w+I=FQW)—w+1, (3.36)

with
Woo (v) = [l + tanh((v — v3)/v4)]/2

with dimensionless parameters b > 0 > a, v3, v4 > 0, I is the primary bifurcation
parameter and € < 1 as the singular perturbation parameter. Again, this singularly
perturbed system has a cubic-shaped critical manifold (Assumption 1). Furthermore,
the sigmoidal shaped activation function we(v) allows us to explore more easily
the cases of different numbers of equilibria as described by Assumption 2. We
focus on this ML-FHN model (3.36) to explore the notion of excitability. We fix
the parameter « = —0.5, b = 1, and vary (Z, v3, v4).

3.3.1.1 The Geometry of Excitability

A classical physiology definition of excitability is that a large enough brief stimulus
(“supra-threshold” pulse) triggers an action potential (large regenerative excursion).
This implies the existence of a “threshold” that the stimulus must pass to evoke
an action potential with a fairly constant amplitude. On the other hand, a graded
response with intermediate amplitudes was already observed in the Hodgkin-Huxley
model of the squid giant axon [29] as well as the FHN model [19, 20] which
contradicts the traditional view that the action potential is an all-or-none event with
a fixed amplitude. We will focus on a geometrical definition of excitability to avoid
this ambiguity.
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Fig. 3.4 Bifurcation diagrams for type I-III neurons of the ML-FHN model (3.36) together with
J — I curves: (Type I) v3 = 0.3, v4 = 0.1; we observe a SNIC bifurcation for I = Ij;; = 0.079
where the frequency approaches zero; (Type II) v = —0.1, v4 = 0.1; we observe a singular HB
bifurcation for I = Ij;y = 0.109; note the small frequency band for the relaxation oscillation
branch; (Type III) v3 = —0.3, v4 = 0.1; there are no bifurcation for / = [—0.4,0.4]

As mentioned in the introduction, Hodgkin [29] identified three distinct types
(classes) of excitability by applying a current step protocol to neurons:

- Type I neurons: depending on the strength of the injected current, action
potentials can be generated with arbitrary low frequency; see Fig. 3.4.

- Type Il neurons: Action potentials are generated in a certain frequency band that
is relatively insensitive to changes in the strength of the injected current; see
Fig.3.4.

- Type III neurons: A single action potential is generated in response to a pulse of
injected current. Repetitive spiking is not possible or can be only generated for
extremely strong injected current.

Type I and type II neurons are able to fire trains of action potentials (tonic firing)
if depolarized sufficiently strong which distinguishes them from type III neurons.
This distinction points to a bifurcation in type I and type II neurons where the cell
changes from an excitable to an oscillatory state. The main bifurcation parameter is
given by I, the magnitude of the current step protocol. This leads to the following
classical definition of excitability via bifurcation analysis under the variation of the
applied current / [52]:
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Fig. 3.5 Two parameter bifurcation diagram (vs, v4) of the ML-FHN model (3.36) with bound-
aries of type I, type II and type III neurons: the three dots indicate the parameter values used in
Fig.3.4

- Type I : The stable equilibrium (resting state) disappears via a saddle-node on
invariant circle (SNIC) bifurcation; see Fig. 3.4.

- Type II: The stable equilibrium (resting state) loses stability via an Andronov-
Hopf bifurcation; see Fig.3.4.

- Type III: The equilibrium (resting state) remains stable for I € [ly, I;]; see
Fig.3.4.

In the ML-FHN model (3.36) we are able to identify all three types of neurons
by varying the parameters (v3, v4) which change the position (v3) and maximum
slope (v4) of the sigmoidal function weo (v). Figure 3.5 shows the different regions
in the parameter-space (vs, v4) that correspond to the different excitability classes.
The boundaries were found numerically using the software package AUTO [13].
The boundary between type II and type III is a continuation of the Andronov-Hopf
bifurcation at a fixed I = I;. Hence, its position depends on the definition of the
interval I € [Iy, I;] where the type III neuron must stay excitable. The boundary
between type I and type Il is a continuation of a cusp-bifurcation where the two folds
coalesce. This boundary is not exact but defines a small strip where the transition
happens. Note that fixing v4 (slope) and varying v3 (position) provides us with a
simple way to change the model from type I to type II and to type III. Figure 3.4
was obtained in that way. Throughout the rest of the chapter, we will fix v4 = 0.1
and use vz as our second bifurcation parameter.

Since the ML-FHN model (3.36) is a singularly perturbed system, we are able
to provide the corresponding definition of excitability based on geometric singular
perturbation theory:

- Type I: The stable equilibrium on the lower attracting branch S, disappears via
a singular Bogdanov-Takens bifurcation at the lower fold F—; see Fig. 3.6.
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Fig. 3.6 ML-FHN model (3.36), singular limit bifurcations and their singular limit orbits: (type I)
saddle-node homoclinic (SNIC) for v; = 0.3 and I = Ij;y = Ip;r(v3) = 0.079; (type II) canard
cycles for v3 = —0.1 and I = Ij;y = Ip;r(v3) =~ 0.109

- Type II: The stable equilibrium on the lower attracting branch S bifurcates via
a singular Andronov-Hopf bifurcation at the lower fold F~; see Fig. 3.6.

- Type III: The stable equilibrium on the lower attracting branch S, remains stable
for I € [I(), 11]

To identify the different types of excitability one has to look at the nullclines of the
ML-FHN model (3.36). As can be seen in Fig.3.7, for I = Iy a type I neuron
has a saddle-node bifurcation of equilibria at the lower fold F~. This allows for
the construction of a singular homoclinic orbit as follows (see Fig.3.6): we start at
the saddle-node equilibrium at the lower fold F~ and concatenate a fast fiber of
the layer problem that connects to the upper stable branch S,". Then we follow the
reduced (slow) flow towards the upper fold F+ where we concatenate a fast fiber at
F™ that connects back towards the lower attracting branch S_". Finally, we follow
the reduced (slow) flow on S, towards the lower fold /'~ and hence end up at the
saddle-node equilibrium. This homoclinic orbit is the singular limit representation
of the SNIC shown in Fig. 3.4. The unfolding of this singular limit object is quite
intricate [9], is closely related to a local slow-fast Bogdanov-Takens bifurcation [7]
at the lower fold FF~ and goes beyond the aim of this chapter.

In the case of a type II neuron, the stable equilibrium on the lower branch
S, crosses the lower fold F~ at I = Ipy = Ipir(v3) (note, it is a different
value than for the type I case) and moves onto the unstable middle branch S,; see
Fig.3.7 (note, a precise definition of I = I;;, will be given in Sect. 3.3.2). This
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Fig. 3.7 ML-FHN model (3.36): nullclines under variation of / which leads to the (singular limit)
definition of /;;, and Ip;s for type I-III: (type I) I = Ij;s at a saddle node bifurcation; (type II)
I = Iy at singular HB bifurcation; (type III) no bifurcation; (type I-III) / = I, when the
w-coordinate of the equilibrium on S~ for I = 0 equals the w-coordinate of the lower fold F—
for I = Ij,,. In the type I case, Ij;y = I,;,. The bifurcation values I;;s respectively threshold
values I, are not the same for the different types

is the same mechanism as shown for the FHN model in Fig.3.2. Hence, one can
construct singular canard cycles that are formed through concatenations of slow
canard segments and fast fibers as shown in Fig. 3.6. Note that these singular canard
cycles have O(1) amplitude and have a frequency O(1) on the order of the slow
time scale. These singular canard cycles will unfold to actual canard cycles as we
turn on the singular perturbation parameter. The unfolding of these canard cycles,
the canard explosion, happens within an exponentially small parameter interval of
the bifurcation parameter near / = I¢ . This canard explosion is preceded by a
singular supercritical Andronov-Hopf bifurcation at / = Iy that creates small
stable O(4/€) amplitude limit cycles with nonzero intermediate frequencies of order
O(+/€) [39] and succeeded by relaxation oscillations with frequencies of order
O(1); see Fig.3.4. Hence the singular nature of the Andronov-Hopf bifurcation is
encoded in both, amplitude and frequency. Note that the classic definition of type
II excitability refers to the slow frequency band of the relaxation oscillations which
does not vary much.
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Fig. 3.8 ML-FHN model (3.36) with current step protocols for type I-III and time traces for
different step currents /: (type I) for I < I,y = I, no spiking while for I > I,;; there is
periodic (tonic) spiking; (type II) for I < I, no spiking, for I;;, < I < Ip;s a transient spike
while for I > I;;s there is periodic (tonic) spiking; (type III) for I < I, no spiking while for
I, < I there is a transient spike

In the case of type III neurons, there is no bifurcation (see Fig. 3.4) and, hence, a
type III neuron is excitable for all I € [y, I;], i.e. a type III neuron does not spike
repetitively. On the other hand, as one observes in Fig. 3.8, the type III neuron is
indeed excitable—it is able to elicit a single spike for a sufficiently strong injected
current step I > Ij,.

3.3.1.2 Transient Responses

Let us consider possible transient responses of type I and type II neurons for I <
Ipir, the minimum injected current step I;;s required for periodic tonic spiking.
Type II neurons are also able to elicit a single spike for a sufficiently strong injected
current step I, < I < Ip;r; see Fig. 3.8. On the other hand, type I neurons are not
able to elicit a single spike below the minimum injected current step /j;s required
for periodic tonic spiking; see Fig. 3.8. Obviously, this transient behavior for type II
neurons cannot be explained by the bifurcation structure identified in Fig. 3.7 since
this transient behavior is found for I;,, < I < I;;¢. It points to the ability of type II
and III neurons to elicit single transient spikes under a current step protocol, while
type I neurons are not able to produce this transient behaviour.

Figure 3.9 provides an explanation for the firing threshold / = I, in the case
of a type III neuron. The rest state, / = 0 case in Fig. 3.9, on the lower attracting
branch (the resting membrane potential of a neuron) is given by the intersection of
the two nullclines, the critical manifold S and the sigmoidal w = weo(v). When
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Fig. 3.9 Explanation of transient spiking property of type III neuron shown in Fig. 3.8: open circle
indicates resting state for / = 0 while filled circle indicates the resting state for / > 0; the firing
threshold manifold (dashed curve) for I > 0 is the extension of the middle repelling branch S, .
in backward time; (left panel) no spike since initial rest state is to the right of the firing threshold
manifold; (right panel) transient spike since initial rest state is to the left of the firing threshold
manifold

a current step / is injected, the critical manifold S shifts to the right. The old rest
state is suddenly off S and it will follow the fast dynamics to find a stable attractor.
If it follows a fast fiber of the lower stable branch S, then the cell is not able to fire
(right panel), but if it follows a fast fiber of the upper stable branch S a+ . then the cell
will fire an action potential before it returns to the lower S, and the new resting
state (left panel). The firing threshold manifold [11, 18,42,48] is shown as a dashed
curve. It is the extension of the unstable middle branch S, in backward time. In
the singular limit, this firing threshold manifold is given by the concatenation of the
branch S, and the layer fiber attached to the lower fold F~. By looking at Fig. 3.7
and the position of the equilibrium state for / = 0 relative to the nullclines for
I > 0 it becomes now apparent why type II and type III neurons can fire transient
spikes while type I neurons cannot.

This also points to a well known phenomenon in neuronal dynamics known as
post-inhibitory rebound (PIR) [4,21], where excitable neurons are able to fire an
action potential when they are released after having received an inhibitory current
input for a sufficient amount of time. Again, only type II and III neurons are able
to create a post-inhibitory rebound while type I neurons cannot. Simply note that
Fig. 3.8 could also be interpreted as a PIR current step protocol where cells have
been held sufficiently long at / = 0 before they are released back to the original
state I > 0.
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It seems that the transient firing behavior observed for type I and type III neurons
is a function of the external current amplitude only. This is actually a misconception
because it also depends crucially on the dynamics of the external input. In a current
step protocol, we are dealing with an instantaneous (fast) change in the external
input, i.e. a fast input modulation. In the following, we will show that these transient
behaviors can be explained in a more general context by applying a dynamic,
nonautonomous approach to the problem under study.

3.3.2 Slow-Fast Excitable Systems with Dynamic Protocols

We focus on the ML-FHN model (3.36) with an external drive /():
w: =eg(w,v) = €(Weo (v) —w) (3.37)
V= fwvt)=Fv)—w+ I(1),
where we assume that /(¢) is a sufficiently smooth function. This excludes the case
of the current step protocol used in the previous section. We replace this protocol
by a mollified version such as given by a smooth ramp or by a smooth pulse which
resemble qualitatively certain classes of neuronal synaptic or network inputs.
System (3.37) is a singularly perturbed nonautonomous system. Is it possible
to apply geometric singular perturbation theory to the nonautonomous case as
well? In the following, we briefly highlight connections between geometric singular
perturbation theory and nonautonomous attractor theory (see also Chap. 1 of this
book).

3.3.2.1 Nonautonomous Systems and Canard Theory

Given a nonautonomous singularly perturbed system
w = eg(w,v,€,1)

V = f(w,v,€,1) (3.38)

where w = (wy,...,wi—1) € R-1and v = i,...,vy) € R™ are slow and fast
phase space variables, ¢ € R is the fast time scale and the prime denotes the time
derivative d /dt. It is well known that such a nonautonomous system can be viewed
as an extended autonomous system by increasing the phase space dimension by one,
ie.

w =eg(w,v,¢,5)
V= f(w,v,€,5) (3.39)
s’ =1
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where s € R is an additional (fast) dummy phase-space variable. Note, this system
has no critical manifold S. Hence, the previously introduced geometric singular
perturbation theory is only of limited use here. To be more precise, the fast dynamics
of the (v,s)-variables are dominant throughout the phase space. Thus we can
interpret this system as a regularly perturbed nonautonomous problem [36,37,50].

This apparent shortfall with respect to geometric singular perturbation theory
diminishes immediately if we assume that the nonautonomous nature of the problem
evolves slowly, i.e. g(v,w,€,7 = €t) and f(v,w,€,7 = €t) where € < 1 indicates
the scale separation between the fast time scale ¢ and the slow time scale ¢ which
leads to

/

S =
w = eg(w,v,¢,5) (3.40)
V= f(w,v,e,5).

This system represents a special case of a singularly perturbed system (3.1) where
(w, s) € R¥ are slow variables and v € R™ are fast variables. The critical manifold
is given by f = 0 and we can apply the theory given in Sect.3.2. In particular,
folded critical manifolds provide singularly perturbed systems with the opportunity
to switch from the slow time scale to the fast time scale or from one attracting sheet
of a critical manifold to another. As we have seen before, most models of excitability
have cubic shaped critical manifolds (i.e. they have two folds) and, hence, have the
ability to switch between different states (e.g. silent and active).

Furthermore, while system (3.40) possesses, in general, no equilibria, it may
possess folded singularities. As described in Sect. 3.2.4, canards of folded saddle
and folded node type have the potential to act as “effective separatrices” between
different local attractor states in a dynamically driven multiple scales system. A
dynamic drive itself (e.g., in the case of a periodic signal that regularly rises and
falls) has the potential to create folded singularities and to form and change these
effective separatrices. Hence, the specific nature of the dynamic drive determines
which local attractor states can be reached through global mechanisms. This point
of view has profound consequences in the analysis of excitable systems as we will
show next. In particular, we will identify canards of folded saddle type as firing
threshold manifolds.

3.3.2.2 Slow External Drive Protocols

We analyse a 2D singularly perturbed system with slow external drive /(ef) given
by

w = egw,v) = e(Weo (V) — W)

V= fw,v,t) = F(v) —w+ I(et), (3.41)

~
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where the autonomous part of this model, i.e. system (3.41) with I(ez) = 0, fulfills
Assumption 1 and 2. Obviously, the ML-FHN model (3.37) with slow external
drive I(et) fulfills this requirement. We recast the 2D nonautonomous singularly
perturbed problem as a 3D autonomous singularly perturbed problem,

s =¢€
W =eg(w,v) = e(Woo(v) — W) (3.42)
V= fw,v,s) = F(v) —w+ I(s),

where (s, w) € R? are the slow variables and v € R is the fast variable.

Assumption 3. The external slow drive 1(s) is a C* function which is constant
outside a finite interval [s~,sT], i.e. I(s) = Io for s < s~ and I(s) = I for
s > st I(s) is bounded, i.e. Iyi, < I1(s) < Lyax, Vs € R, such that type I and II
neurons are in an excitable state for the maximal constant drive I = 1,4 < Ij;r.

Remark 3.14. By Assumption 3, the function I’(s) = I, is compactly supported.
This is not necessary for the following analysis but makes it more convenient. We
could relax the smoothness assumption on /(s). The constant states could also be
relaxed to asymptotic states.

Example 3.5 (Ramp). This is a mollified version of the current step protocol and is
given by

I(s) = % (1 + tanh (M)) . Vsels,sT], (3.43)

S1

I(s) = 0 = Iy, fors < s~ and I(s) = I} = I,4, fors > s™ for a sufficiently
large choice of [s~, s "] centered around so. The ramp has a maximal slope of 11 /s;
when I (sg) = 1;/2.

Example 3.6 (Pulse). We model a symmetric pulse given by

I

— ., Vsel[s.sT], (3.44)
cosh (—2(‘:“‘)) )

I(s) =

I(s) = 0 = Iy, fors < s~ and for s > st for a sufficiently large choice of
[s™, s+] centered around sy with I(s9) = I} = I,4.. The pulse has its maximal
slope of I1/sy when I(so + % In(3 — 2J2) = 1/V2.

Figure 3.10 shows ramp and pulse protocol examples. Note that the maximal
drive I; is the same in both cases, only the maximal slope of the ramp respectively
the pulse varies (slightly). In both cases, a single spike is elicited if the slope of rising
exceeds a certain threshold value. This clearly indicates that this type II neuron is
a slope detector (for I < I;r). The same can be observed for type III neurons.
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Fig. 3.10 Type Il neuron (v3 = —0.1) for /;, < I} = 0.09 < I;;r: (a) ramp protocol (3.43) with
s1 = 0.5 (dark grey, no spike) and s; = 0.4 (bright grey, transient spike); note that the difference
in the two ramp protocols is barely visible; (b) pulse protocol (3.44) with s, = 2.3 (dark grey,
no spike) and s, = 2.2 (bright grey, transient spike). Note that the difference in the two ramp
protocols is barely visible

In the following, we will use geometric singular perturbation theory to explain this
phenomenon in detail.

3.3.2.3 Geometric Singular Perturbation Analysis
The critical manifold S of system (3.42) is given as a graph
w=W(s,v)=FW)+ I(s). (3.45)

By Assumption 1, this manifold is cubic shaped, i.e. S has two folds F* forv = v*
where F,(vY) = 0 and F,,(v) # 0 for all s € R. Note that F, = dF/dv,
F,, = d*>F/dv*. The geometry of the critical manifold S together with the stability
properties of the three branches of S, outer branches S ui are stable and middle
branch S, is unstable, imply that F,,(v*) < 0 while F,,(v") > 0. Figure 3.11
shows the critical manifold in the case of a ramp respectively pulse protocol.

Assumptions 2 and 3 are concerned with properties of the reduced problem of
system (3.42). Since the critical manifold S is a graph w = W(s,v), we are able
to project the reduced problem onto a single coordinate chart (s, v) € R? (compare
with Sect. 3.2.2.1):
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Fig. 3.11 Critical manifold (3.45) for (a) ramp and (b) pulse protocol; note that the ramp and
pulse profiles are visible in the geometry of the critical manifold

s=1

3.46
—F,v=FQW) —we() + I(s) + I, ( )

where I, = dI/ds. This system is singular along the folds F* where F, vanishes.

We rescale time by dt = —F, dt; in system (3.46) to obtain the desingularized

system

s =-F,
v=FU) —we(v) + I(s) + Iy, (347)
where the overdot denotes now d/d t;. From the time rescaling it follows that the
direction of the flow in (3.47) has to be reversed on the middle branch S, where
F, > 0 to obtain the corresponding reduced flow (3.46). Otherwise, the reduced
flow (3.46) and the desingularized flow (3.47) are equivalent.

By Assumption 3, the drive /(s) is constant for s € (—o00,s™) U (sT, o0). From
Assumption 2 it follows that

V= FW) =W (W) +I(s)+I; = F(V)—weo(V)+1 < 0,Vs € (—o0, s )U(sT, 00),

where I = I, or I = I,. This shows that the reduced flow cannot reach the lower
fold F'~ from S for a constant drive I confirming I < Ip;ir for type I and type II
neurons. For an action potential to occur we need necessarily that v > 0 somewhere
along the lower fold F~ within the dynamic range of /(s) where I; > 0 (on the
rising phase of /(s)). This implies that v must vanish in system (3.47) along the
lower fold F—, i.e.

I(s):=FO0v) —weo(V) + I(s)+ I, =0, (3.48)

which is Definition 3.7 of a folded singularity. The type of these folded singularities
is obtained by calculating the Jacobian of system (3.47),

0 —F
J = " . 3.49
(Is"l‘lss Fv_WOO,V) ( )
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Fig. 3.12 Reduced flow on the critical manifold S near the lower fold F~ corresponding to
Fig.3.10a, ramp protocol: there are two folded singularities, a folded saddle (FS) and a folded
focus (FF), £ denotes the folded saddle canard that crosses from the lower stable branch S, via
the FS singularity onto the repelling middle branch S,. The canard & forms the firing threshold
manifold. Note, the other canard of the FS singularity (the faux canard) crosses from S, to S, .
The segment on S, forms a boundary that prevents trajectories to the right of £ to spike

Note that ws , > 0. Hence, the trace of the Jacobian evaluated along F ™ is
tr(J) = —Weoy < 0.
The determinant of the Jacobian evaluated along F'~ is given by
det(J) = Foo(Is + L) .

Recall, we have F,, > 0 along F~. The function I (s) defined in (3.48) is constant
and negative for s € (—o0,s57) N (st, 00). This implies, in general, an even number
of folded singularities (if they exist). The derivative I, must be positive at the first
(odd) folded singularity while negative at the second (even) singularity. Hence,
det(J) > O for an odd folded singularity and det(J) < O for an even folded
singularity. This implies that an odd folded singularity is either of folded node or
folded focus type while an even folded singularity is of folded saddle type. From
the structure of the Jacobian (3.49) it follows that the eigenvectors corresponding
to negative eigenvalues have a positive slope while eigenvectors corresponding to
positive eigenvalues have a negative slope.

Figures 3.12 and 3.13 show an example of system (3.42) for a type II neuron
with ramp protocol (3.43), where F(v) is given by the ML-FHN model (3.36).
Figure 3.12 is a three-dimensional representation of the critical manifold S near
the lower fold F~ and Fig. 3.13 is the corresponding reduced flow on S projected
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Fig. 3.13 Reduced flow shown in Fig. 3.12 projected onto coordinate chart (s, v) corresponding
to Fig. 3.10a, ramp protocol: there are two folded singularities, a folded saddle (FS) and a folded
focus (FF), £ denotes the folded saddle canard that crosses from the lower stable branch S, via
the FS singularity onto the repelling middle branch S,. The canard & forms the firing threshold
manifold. Note, the other canard of the FS singularity (the faux canard) crosses from S, to S, .
The segment on S, forms a boundary that prevents trajectories to the right of & to spike

onto the coordinate chart (s,v). The initial state on the stable branch S, of the
critical manifold is (s, v,,,,) where v = v,_, (the horizontal trajectory for s < s7)
corresponds to the resting membrane potential of the neuron for s < 57, i.e. for
I = 0. On the lower fold F~ (dashed horizontal line), we observe two folded
singularities, a folded focus (FF) respectively a folded saddle (FS). Note, v > 0
along the segment of F'~ bounded by the two folded singularities. To reach this
segment of the lower fold F~ and, hence, to be able to elicit a spike, the initial state
(87, Vo5, ) must be in the ‘domain of attraction’ of this segment (shown as a shaded
region). This domain is bounded by the folded saddle canard & and a segment of the
lower fold F~. Thus the folded saddle canard & forms the firing threshold manifold
onS,.

As can be also seen in Fig.3.13, the position of the canard £ changes as the
(maximal) slope of the drive /(s) changes. Clearly, folded singularities and their
canards encode the complete temporal information of the drive /(s), i.e. amplitude,
slope, curvature, etc. Figure 3.13a predicts no spike while Fig. 3.13b predicts a
spike. These correspond to the two cases shown in Figs. 3.10a and 3.12 for the ramp
protocol.

Similarly, Fig.3.14a predicts no spike while Fig. 3.14b predicts a spike. These
correspond to the two cases shown in Fig. 3.10b for the pulse protocol. Therefore,
we can view this type II excitable neuron shown in Fig. 3.10 as a slope detector.
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Fig. 3.14 Reduced flow projected onto coordinate chart (s, v) corresponding to Fig. 3.10b, pulse
protocol: & denotes the folded saddle canard that forms the firing threshold manifold; see Fig. 3.13
caption for details

It is remarkable that dynamic, nonautonomous information such as the evolution
profile of the external drive /(s) is encoded in the location of an invariant manifold
of a singular perturbation problem, the canard. Here, in particular, we observe
that only changing the slope is sufficient to elicit a spike. In general, our analysis
provides a slow input modulation condition for transient phenomena based on
canard theory.

3.3.2.4 Firing Threshold Amplitude 7,;,

The previous analysis showed that the existence of a folded saddle singularity is
a necessary but not a sufficient condition for a neuron model to be able to fire an
action potential. At the heart of the issue lies the relative position of the folded
saddle canard ¢ that forms the firing threshold manifold in these models to the initial
condition. Numerically, we found that any ramp with a maximal drive I} < I, is
not able to elicit a spike independent of the slope of the ramp. Although a folded
saddle singularity might exist, the domain of attraction for firing a spike bounded by
the folded saddle canard & never encloses the initial condition given by the resting
membrane potential.

Even if we formally take the limit s; — O (at s = s¢) which transforms the
smooth ramp into a discontinuous step protocol, we are not able to elicit a spike.
By looking at Fig. 3.7, it becomes immediately clear why the model neuron cannot
spike. The shift of the critical manifold is not sufficient to pass the lower fold as
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Fig. 3.15 Bifurcation diagram of folded singularities under variation of the slope s, for type II
neuron with ramp protocol shown in Fig.3.13: I} = 0.09 is fixed. For s; =~ 0.83 we observe a
folded saddle-node (FSN) type I bifurcation where two folded singularities annihilate each other.
The vertical line at s; ~ 0.47 indicates the firing slope threshold, i.e for sufficiently steep slope
51 < 0.47, the type II neuron will transiently spike; compare with Fig. 3.10a

discussed at the end of Sect.3.3.1.1. Although the canard £ represents the firing
threshold manifold for slow dynamic changes, it can be continued towards the fast
time-scale limit and it will converge to the firing threshold shown in Fig. 3.9 (dashed
curve). Hence I = I;j, represents the fast time-scale limit of the minimum current
amplitude needed to elicit a spike. The closer the amplitude I > I;p, to this limit
1., the steeper the slope of the profile has to be. The same holds for type III neurons.
This relates the concepts of fast and slow input modulations.

3.3.2.5 Bifurcation of Canards

The existence of folded singularities and their associated canards is necessary for
the transient spiking phenomenon observed. They are slope detectors. Figure 3.15
shows a folded singularity bifurcation diagram for a type Il neuron under the
variation of the slope s; of the ramp (the amplitude is fixed). Folded singularities
bifurcate at a saddle-node bifurcation of a folded saddle with a folded node.
(Subsequently, the branch of folded nodes becomes a branch of folded foci.) This
bifurcation is known as a folded saddle-node (FSN) of type I [40,57]. Here, the type
refers to the bifurcation, not to the type of neuron. This points to the importance of
this bifurcation for the excitability of neurons.

In contrast, a FSN type II bifurcation [40,57] indicates a transcritical bifurcation
of a folded and an ordinary singularity bifurcation. This type of bifurcation usually
happens in type II neurons close to / = Ip;s. It corresponds to the unfolding of
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a singular Hopf bifurcation in singularly perturbed systems with two or more slow
variables. The interested reader is referred to [10] and references therein.

3.4 Conclusion

There is a growing synergy between neurophysiology and dynamical systems.
The abstraction and generalization of the mathematical approach can lead to
the identification of, and deep insights into, common mathematical structures of
rhythmicity and excitability across contexts. The demand for an adequate high-level
description of cell function raises a number of challenges at the forefront of present-
day research in the field of dynamical systems. We face fundamental challenges in
trying to understand the relationships between intrinsic dynamics, stimuli, coupling,
and patterns of synchrony in network models. The ability of neuronal networks to
create spatio-temporal patterns, spontaneously or driven, and the ways in which
neuromodulators reshape or totally change these patterns is of eminent interest for
understanding neuronal dynamics.

The application of concepts and techniques from dynamical systems theory
to neuronal dynamics continues to mature, especially to stationary rhythms and
steady state attractors. Meanwhile, there is increasing awareness that transient
dynamics play an important physiological role. Excitability of neurons [18,29, 52]
and networks are prime examples of transient dynamics, especially as responses
to brief or non-stationary time-varying inputs. Recent developments in canard
theory [26, 63, 64] have provided a new direction for understanding these transient
dynamics that are modelled as nonautonomous multiple time-scale systems. It is
well known that a nonautonomous system can be viewed as an extended autonomous
system by increasing the phase space dimension by one. The key observation is
that folded singularities are still well defined, while equilibria of the unforced
system will not persist in the extended system. Thus canards have the potential to
significantly shape the nature of solutions in nonautonomous multiple time-scales
systems. We would like to stress this important point of view.

The take-home message lies in the realisation that folded singularities and associ-
ated canards create local transient “attractor” states in multiple scales problems. This
is due to the fact that trajectories in the domain of attraction of folded singularities
will reach and pass these folded singularities in finite slow time; folded singularities
are not equilibrium states. In the context of neuronal excitability and as shown in
[64], we identify canards of folded saddle type as firing threshold manifolds. We
have demonstrated the role of such structures in comparing the dynamics of spike
generation for neuron models in the different behavioral regimes of type I, IT and III
excitability. For type I and III we have revealed and characterized stimulus features
that lead to spike generation for transient stimuli, most notably that a stimulus must
rise fast enough for excitation.

Dynamic forcing has the potential to create folded singularities and to form
these effective separatrices or to change the global return mechanism. Hence,
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the specific nature of the dynamic forcing determines which local attractor states
can be reached through global mechanisms. This point of view has profound
consequences in the analysis of excitable physiological systems such as in auditory
brain stem neurons [42], modeling propofol anesthesia [41, 44] and cell calcium
dynamics [26]. From a mathematical point of view, the time is “ripe” for forging
(more) connections between nonautonomous attractor theory [36,37] and geometric
singular perturbation theory [17,32].
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Chapter 4
Stimulus-Response Reliability of Biological
Networks

Kevin K. Lin

Abstract If a network of cells is repeatedly driven by the same sustained, complex
signal, will it give the same response each time? A system whose response is
reproducible across repeated trials is said to be reliable. Reliability is of interest in,
e.g., computational neuroscience because the degree to which a neuronal network is
reliable constrains its ability to encode information via precise temporal patterns
of spikes. This chapter reviews a body of work aimed at discovering network
conditions and dynamical mechanisms that can affect the reliability of a network.
A number of results are surveyed here, including a general condition for reliability
and studies of specific mechanisms for reliable and unreliable behavior in concrete
models. This work relies on qualitative arguments using random dynamical systems
theory, in combination with systematic numerical simulations.

Keywords Reliability * Spike-time precision ¢ Coupled oscillators ¢ Random
dynamical systems ¢ Neuronal networks ¢ Lyapunov exponents * SRB measures

4.1 Introduction

If a network of neurons is repeatedly presented with the same complex signal, will
its response be the same each time? A network for which the answer is affirmative
is said to be reliable. This property is of interest in computational neuroscience
because neurons communicate information via brief electrical impulses, or spikes,
and the degree to which a system is reliable constrains its ability to transmit
information via precise temporal patterns of spikes. Thus, whether a given system
is capable of reliable response can affect the mode and rate with which it transmits
and processes information.
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The reliability of single neurons has been well studied both experimentally and
theoretically. In particular, in vitro experiments have found that single, synaptically
isolated neurons are reliable under a broad range of conditions, i.e., the spike times
of an isolated neuron in response to repeated injections of a fixed, fluctuating current
signal tend to be repeatable across multiple trials [6,16,33]. Theoretical studies have
also found that models of isolated neurons tend to be reliable [15, 16,20, 38, 39,41,
53]. Less is known at the network or systems level; see, e.g., [2,4,7,17,31, 34] for
some relevant experimental findings, and [40] for a theoretical treatment using a
different approach.

This chapter reviews a body of work aimed at discovering network conditions
and dynamical mechanisms that can affect the reliability of a network. The ergodic
theory of random dynamical systems, i.e., the measure-theoretic analog of the
theories surveyed in Chaps. 1 and 2 of the present collection, plays a key role in
this work: it provides a natural mathematical framework for precisely formulating
the notion of reliability and providing tools that, in combination with numerical
simulations, enable the analysis of concrete network models.

Much of the material and exposition here follow [27-29]. The first of these
papers is concerned with mathematically-motivated questions, while the latter two
concentrate on a more biological class of networks. These papers, as well as the
present review, mainly focus on networks of oscillatory (i.e., tonically spiking)
neurons. Networks of excitable neurons, which can behave rather differently, are
the subject of a recent study [22] (see the discussion).

Relevance Outside Neuroscience. Reliability is a general dynamical property that is
potentially relevant for a wide range of signal processing systems. Since biological
systems, on scales ranging from single genes to entire organisms (and even
populations), must respond to unpredictable environmental signals, it is possible
that some of the mathematical framework and perhaps even the approaches and
ideas outlined here may be of use in studying other types of biological information
processing. Concepts analogous to reliability have also found use in areas far from
biology, e.g., in engineered systems like coupled lasers [42] and in molecular
dynamics simulations [43].

The rest of this chapter is organized as follows: in Sect.4.2, the concept of
reliability is given a precise formulation, and some relevant results from random
dynamical systems theory are reviewed. Section 4.3 presents a general condition
that guarantees reliability, and Sect. 4.4 examines specific mechanisms for reliable
and unreliable behavior in some concrete network models.

4.2 Problem Statement and Conceptual Framework

This section describes a class of models which will be used throughout the rest of
this chapter. The concept of reliability is given a precise formulation in this context,
and relevant ideas from random dynamical systems theory are reviewed.
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4.2.1 Model Description and a Formulation of Reliability

To illustrate our ideas, we use networks of so-called “theta neurons” (see, e.g., [12]).
These are idealized models of neurons that spike periodically at a fixed frequency w
in the absence of external forcing.! Single theta neurons have the form

0(t) = o +2(0()) (1) (4.1)

Here, the state of the neuron is given by an angle § € S', which is here mapped
onto the interval [0, 1] with endpoints identified; w > 0 is the intrinsic frequency of
the neuron; /(¢) represents the sum of all the stimuli driving the neuron; and z is the
phase response curve (PRC) of the neuron. The angle 6 represents the fraction of
the cycle that the neuron has completed; the neuron is viewed as generating a spike
at@ = 0.If I(z) = 0, (4.1) is just the equation for a phase oscillator. A nonzero
input /(¢) modulates the firing rate of the neuron, and the phase response z captures
the state-dependent response of the neuron to stimuli.

Phase models like (4.1) are often used in biology to model rhythmic activity (see,
e.g., [12,49], and also Chap.5). In the context of neuroscience, the choice of PRC
determines the response of the neuron model to stimuli, and a variety of PRCs are
commonly used. In this chapter, z(6) is taken to be % (1 —cos(2x 9)), which models
so-called “Type I neurons [5, 11]. This PRC has the property that it is positive
when the neuron spikes, and for § ~ 0, z(6) = O(6?). The latter represents a
form of refractory effect: at the moment when the neuron spikes, it is insensitive
to its inputs, and is unable to generate a second spike immediately. This PRC is
sometimes justified formally by truncating the normal form of neuron models near
a saddle-node-on-invariant-circle bifurcation?; for our purposes, it mainly serves as
convenient phenomenological model for neuronal response.

The class of models used in this chapter are networks of theta neurons. The
network equations have the form

b= +20) (Y aj @)+ L), i=12-.N (42
j#i

where the function g : [0,1] — R is an approximate delta function, i.e., it is a
smooth function supported in a small interval [—§, §] (here § ~ 1/20) satisfying
fol g(0) d6 = 1; such pulse couplings are simple models for relatively fast
synapses. The coupling matrix A = (a;;) encodes the network structure; for
simplicity we assume a;; = 0 for all i, i.e., no self-loops. A number of different

I'Theta neurons can also model neurons operating in an excitable regime. The reliability of excitable
theta neuron networks is studied in [22].

2See, e.g., [5], but note that phase truncations can sometimes miss important dynamical effects
[30], and their use in biological modeling should be carefully justified.
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Fig. 4.1 Raster plots showing the spike times of two neurons across 20 trials in response to a fixed
stimulus. (a) Neuronal reliability, (b) neuronal unreliability. The neuron shown in (a) is chosen at
random from a network with 100 neurons, with parameters chosen so that the network response is
reliable across trials (as are single neuron responses). In (b), the neuron comes from an unreliable
network. Figure adapted from [28]

network architectures are considered in this review; these are specified along the
way.

The stimuli /; (¢) in (4.2) are modeled as white noise, i.e., I;(t)dt = ¢ dW]
where I/W denotes a standard Wiener process. This is an idealization of sustained,
fluctuating signals, and has the convenient mathematical consequence that (4.2) is
a (possibly quite large) system of stochastic differential equations (SDEs). A priori,
the W/ fori = 1,---, N may be independent or correlated; for simplicity let us
assume they are either independent or identical, allowing some neurons to receive
the same input. Note that in (4.2), the stochastic forcing terms solely represent
external stimuli driving the neuron, and not sources of neuronal or synaptic noise
(but see the discussion at the end of the chapter).

These network models, though highly idealized, are broad enough to generate
both reliable and unreliable network response without requiring careful tuning of
parameters. That is, upon repeated trials with the same realizations of the [;(¢)
but different initial conditions, they can generate responses that are essentially the
same across trials (reliable) or differ substantially across trials (unreliable). These
behaviors are illustrated in Fig. 4.1.

A Notion of Neuronal Reliability

What would it mean for a system of the form (4.2) to be reliable? Suppose we fix a
single realization of the stimulus (/; (¢)) and drive (4.2) with the stimulus realization
over a number of repeated “trials,” with a new initial condition on each trial. The
system (4.2) is said to be neuronally reliable (or simply “reliable”) if

lim dist(©(1), &' (1)) = 0. (4.3)
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where ©(t) = (0i(¢),---,6y(t)) denotes the state of the entire network at time
t, and ® and @' are two trajectories with initial states @ (0) # ©’(0) [28]; it is
assumed that @ (0) is sampled independently from a fixed probability density p, say
p =Lebesgue, on each trial. In other words, (4.3) means that given enough time,
the entire network state is reproducible across repeated trials with random initial
conditions.

As will be seen in Sect.4.2.2, this notion of reliability can be naturally studied
within the framework of random dynamical systems theory, making it a convenient
mathematical definition. In biological terms, if a network is neuronally reliable,
any network output that is a function of the network state will also be reproducible
across repeated trials, so that neuronal reliability is in a sense the strongest form
of reliability one might consider. Note, however, that there are other biologically
relevant notions of reliability; some of these are mentioned in Sect. 4.2.3.

4.2.2 Relevant Mathematical Background

I begin by reviewing some relevant mathematical ideas [1, 3]; these can be viewed
as ergodic-theoretic analogs of the theories reviewed in Chap. 1 by Kloeden and
Potzsche, and Chap. 2 by de Freitas and Sontag. There is, in particular, some overlap
(both in overall goals and specific results) with the latter, though the perspective and
emphasis here are different. The setting is a general SDE

k
dx; = a(x;)dt + Y bi(x;)od W/, (4.4)

i=1

where x; € M with M a compact Riemannian manifold, and the Wt’ are
independent standard Brownian motions. Clearly, (4.2) is a special case of (4.4):
x = (01(),....08), M =TV =8"x S x---x S

(To make sense of the theory outlined below on a general manifold M,
Stratonovich calculus is necessary. But for M = TV one can use either Ito or
Stratonovich, and for simplicity It6 is used in Sect. 4.3 and beyond.)

Stochastic Flows. Inmost physical applications involving SDEs, one fixes an initial
X0, and looks at the distribution of x; for + > 0. These distributions evolve in
time according to the Fokker-Planck equation, and under fairly general conditions
converge to a unique stationary measure [ as  — 00. Since reliability is about a
system’s reaction to a single stimulus, i.e., a single realization of the driving Wiener
processes (W,!,--- W), at a time, and concerns the simultaneous evolution of all
or large sets of initial conditions, of relevance to us are not the distributions of x;
but flow-maps Fy, 1., , Where t; < t, are two points in time, w is a sample Brownian
path, and Fj, ;,;,(x;,) = X;, where x; is the solution of (4.4) corresponding to w.
A well known theorem states that such stochastic flows of diffeomorphisms are
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well defined if the functions a(x) and b(x) in (4.4) are sufficiently smooth; see,
e.g., [21]. More precisely, the maps F;, ;,:», are well defined for almost every w,
and they are invertible, smooth transformations with smooth inverses. Moreover,
Fi 10 and Fy, ;,.,, are independent for #; < £, < 3 < t4. These results allow us to
treat the evolution of systems described by (4.4) as compositions of random, 11D,
smooth maps. Many of the techniques for analyzing smooth deterministic systems
have been extended to this random setting (see, e.g., Chaps. I and 2); the resulting
body of results is collectively called “RDS theory” in this review.

The stationary measure w, which gives the steady-state distribution averaged over
all realizations w of the driving Wiener processes, does not describe what we see
when studying a system’s reliability. Of relevance are the sample measures {{L.},
defined by

fo = Tim (F_y )it (4.5)
—>00

where (F_;0.,)« /4 denotes the push-forward of the stationary measure p along the
flow F_; 0., , and we think of @ as defined for all t € (—o00,00) and not just
for ¢+ > 0. (That the limit in (4.5) exists follows from a martingale convergence
argument; see, e.g., [18].) One can view u,, as the conditional measures of p given
the past history of w; it describes the distribution of states at # = 0 given that
the system has experienced the input defined by w for all # < 0. The family of
measures {/(i,} is invariant in the sense that (Fp;;,)+(le) = o) Where o, (@)
is the time-shift of the sample path w by ¢; for this reason they are also sometimes
called random invariant measures. Sample measures are measure-theoretic analogs
of pullback attractors (see Chaps. 1 and 2), and are the distributions of equilibria
(Chap.2).

If our initial distribution is given by a probability density p and we apply the
stimulus corresponding to w, then the distribution at time ¢ is (Fo.,)«p. For ¢
sufficiently large, and assuming p and p are both sufficiently smooth, one expects
in most situations that (Fo.,)«p is very close to (Fo;..)x M, Which is essentially
given by (i, () for large times ¢. (The time-shift by ¢ of @ is necessary because by
definition, u,, is the conditional distribution of y at time 0.)

Figure 4.2 shows some snapshots of (Fp ;e )« p for a system with N = 2 cells, for
two different sets of parameters. As noted earlier, these distributions approximate
Mo, (w) for t sufficiently large. In these simulations, the initial distribution p is the
stationary density of (4.2) with a small-amplitude noise, the interpretation being
that the system is intrinsically noisy even in the absence of external stimuli; this
distribution is then pushed forward in time using a fixed stimulus w. Observe that
these pictures evolve with time, and for large enough ¢, they have similar qualitative
properties depending on the underlying system. This is in agreement with RDS
theory, which tells us in fact that the 1, (., obey a statistical law for almost all w.

The measure pu, gives the distribution of all possible states that a system may
attain starting in a random state in the past and receiving a given stimulus for
a sufficiently long time. Its structure is therefore of natural interest in reliability
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Fig. 4.2 Temporal snapshots of sample measures for (4.2) with N = 2 oscillators driven by a
single stimulus realization. Two different sets of parameters are used in (a) Random fixed point
(Amax < 0) and (b) Random strange attractor (A, > 0). In (a), the sample measures converge to
a random fixed point. In (b), the sample measures converge to a random strange attractor. These
figures (adapted from [27]) illustrate Theorem 4.1

studies. Below we recall two mathematical results that pertain to the structure of
Mo, specifically relating Lyapunov exponents to i,.

Lyapunov Exponents and Sample Distributions. For a fixed stimulus realization
w, any X € M, and any nonzero tangent vector v € T, M, define the Lyapunov
exponent [50]

1
ho(x.v) = lim —log | DFo 0 (x) -] “.6)

when the limit exists. If u is a stationary measure of the stochastic flow, then for
almost every @ and p-a.e. x, A,(x,v) is well defined for all v. Moreover, if the
invariant measure is ergodic, then A, (x,v) is non-random, i.e., there exists a set
Ao+, Ar|A; € R}, 1 < r < dim(M), such that for a.e. ® and x and every v,
Aw(x,v) = A; for some i. (We can have r < dim(M ) because some of the A; may
have multiplicity > 1.) In what follows, we assume the invariant measure is indeed
ergodic, and let A,y = max; A;.

As in deterministic dynamics, Lyapunov exponents measure the exponential rates
of separation of nearby trajectories. In particular, a positive Ay,x means the flow is
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sensitive to small variations in initial conditions, which is generally synonymous
with chaotic behavior, while A,,,x < 0 means nearby trajectories converge in time;
in the deterministic context, this is usually associated with the presence of stable
fixed points.

In Theorem 4.1 below, we present two results from RDS theory that together
suggest that the sign of A« is a good criterion for distinguishing between reliable
and unreliable behavior:

Theorem 4.1. In the setting of (4.4), let 1 be an ergodic stationary measure.

(1) (Random sinks) [23] If Amax < O, then with probability 1, ., is supported on
a finite set of points.

(2) (Random strange attractors) [24] If u has a density and A,y > 0, then with
probability 1, i, is a random Sinai-Ruelle-Bowen (SRB) measure.

In Part (1) above, if in addition to Ay, < 0, two non-degeneracy conditions (on
the relative motions of two points embedded in the stochastic flow) are assumed,
then almost surely ,, is supported on a single point, and (as required in (4.3))
any pair of trajectories will almost surely converge in time [3]. Observe that this
corresponds exactly to reliability for almost every @ as defined in Sect.4.2.1,
namely the collapse of trajectories starting from almost all initial conditions to a
single, distinguished trajectory. This is the situation in Fig.4.2a. In view of this
interpretation, we will equate Amax < O with reliability in the rest of this chapter.

The conclusion of Part (2) requires clarification: in deterministic dynamical
systems theory, SRB measures are natural invariant measures that describe the
asymptotic dynamics of chaotic dissipative systems, in the same way that Liouville
measures are the natural invariant measures for Hamiltonian systems. SRB measures
are typically singular with respect to Lebesgue, and are concentrated on unstable
manifolds, which are families of curves, surfaces etc., that wind around in a
complicated way in the phase space [10, 51]. Part (2) of Theorem 4.1 generalizes
these ideas to random dynamical systems. Here, random (i.e., w-dependent) SRB
measures live on random unstable manifolds, which are complicated families of
curves, surfaces, etc. that evolve with time. In particular, in a system with random
SRB measures, different initial conditions acted on by the same stimulus may lead
to very different outcomes at time ¢; this is true for all # > 0, however large. Note
that in principle, a random strange attractor may still be supported in e.g. a small ball
at all times, for the class of oscillator networks at hand we have not observed this to
occur. It is, therefore, natural to regard A, > 0 as a signature of unreliability.

In the special case where the phase space is a circle, such as in the case of a single
oscillator, the fact that A < 0 is an immediate consequence of Jensen’s inequality.
In more detail,

o1
Alx) = tl_%lo " log Fy,,., (x)
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for typical w by definition. Integrating over initial conditions x, we obtain

.1 1
A= /S lim 7log Fypp(x) dx = lim " /sl log Fy,.,,(x) dx .

1 t—>00

The exchange of integral and limit is permissible because the required integrability
conditions are satisfied in stochastic flows [18]. Jensen’s inequality then gives

/ log Fy,.,(x) dx < log/ Fyo(x)dx = 0. 4.7
Sl Sl

The equality above follows from the fact that Fy ., is a circle diffeomorphism. Since
the gap in the inequality in (4.7) is larger when Fo’,,;w is farther from being a constant
function, we see that A < 0 corresponds to F(;J;w becoming “exponentially uneven”
as t — oo. This is consistent with the formation of random sinks.

The following results from general RDS theory shed some light on the situation
when the system is multi-dimensional:

Proposition 4.1 (see, e.g., Chap. 5 of [18] or [23]). In the setting of (4.4), assume
W has a density, and let Ay, - - , Ay be the Lyapunov exponents of the system counted
with multiplicity. Then

(i) DA =0;
(ii) Y ; Ai = 0ifand only if Fy; , preserves [ for almost all w and all s < t;
(iii) if Y, Ai <0, and A; # 0 forall i, then [, is singular.

A formula giving the dimension of w, is proved in [24] under mild additional
conditions.

The reliability of a single oscillator, i.e. that A < 0, is also easily deduced from
Proposition 4.1: p has a density because the transition probabilities have densities,
and no measure is preserved by all the Fj, , because different stimuli distort the
phase space differently. Proposition 4.1(i) and (ii) together imply that A < 0. See
also [35,38,39,41].

For the 2-oscillator system illustrated in Fig. 4.2, assuming that u has a density
(this is straightforward to show; see Part 1 of [27]), Proposition 4.1(i) and (ii)
together imply that A; + A, < 0. Here Ay = A can be positive, zero, or
negative. If it is > 0, then it will follow from Proposition 4.1(i) that A, < 0,
and by Proposition 4.1(iii), the u, are singular. From the geometry of random
SRB measures, we conclude that different initial conditions are attracted to lower
dimensional sets that depend on the stimulus history. Thus even in unreliable
dynamics, the responses are highly structured and far from uniformly distributed,
as illustrated in Fig. 4.2b.

Note on Numerical Computation of Lyapunov Exponents. As is usually the case
for concrete models, A, for (4.2) can only be computed numerically. As in the
deterministic context, the maximum Lyapunov exponent A, can be computed by
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solving the variational equation associated with the SDE. In the examples shown
here, this is done using the Milstein scheme [19].

4.2.3 Reliability Interpretations

RDS theory provides a useful framework for analyzing the reliability properties
of specific systems. Before proceeding, however, let us discuss some issues
related to the interpretation of the foregoing theory in reliability studies, as these
interpretations are useful to keep in mind in what follows.

Lyapunov Exponents and Neuronal Reliability

Advantages of Lyapunov Exponents as a Theoretical and Numerical Tool. A
natural question is: since reliability measures across-trial variability, why does one
not simply perform a number of trials using the same input, and compute e.g. cross-
trial variances? Here are some reasons for using A,,x—without asserting that it is
better for all circumstances:

(1) Amax Is a Convenient Summary Statistic. Consider a network of size N. Should
one carry out the above procedure for a single neuron, a subset of neurons, or
for all N of them? Keeping track of N neurons is potentially computationally
expensive, but other possibilities (e.g., using a subset of neurons or other small sets
of observables) may involve arbitrary choices and/or auxiliary parameters. A virtue
of using A« is that it is a single non-random quantity, depending only on system
parameters. It thus sums up the stability property of a system in a compact way,
without requiring any auxiliary, tunable parameters. When plotted as a function of
system parameters it enables us to view at a glance the entire landscape, and to
identify emerging trends.

(2) Useful, Well-understood Mathematical Properties. A second reason is that
known mathematical properties of Lyapunov exponents can be leveraged. For
example, under fairly general conditions, A, varies continuously, even smoothly,
with parameters. This means that if A, is found to be very negative for a system,
then it is likely to remain negative for a set of nearby parameters; the size of this
parameter region can sometimes be estimated with knowledge of how fast A« is
changing. Knowing that a system has zero across-trial variance alone will not yield
this kind of information.

(3) Computational Efficiency. Lyapunov exponents are defined in terms of infinites-
imal perturbations. This means they are easily computed by simulating a single long
trajectory, rather than requiring evolving an ensemble of trajectories. The latter can
be quite expensive computationally.
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(4) Amax as a Measure of Relative Reliability. Theorem 4.1 justifies using the sign
of the Lyapunov exponent as a way to detect reliability. Reliability, however, is often
viewed in relative terms, i.e., one might view some systems as being “more reliable”
or “less reliable” than others. We claim that, all else being equal, the magnitude of
Amax carries some useful information. There are no theorems to cite here, but ideas
underlying the results discussed above tell us that other things being equal, the more
negative Ay, the stronger the tendencies of trajectories to coalesce, hence the more
reliable the system. Conversely, for A, > 0, the larger its magnitude, the greater
the instability, which often translates into greater sensitivity to initial conditions.
(But there are some caveats; see below.)

In practice, this can be rather useful because for reliable systems, a variance
computation will yield 0, while the magnitude of A« indicates how reliable the
system is. If one were to, say, model various sources of noise by adding random
terms to (4.2) that vary from trial to trial, a system with a more negative Ap,y is
likely to be have greater tolerance for such system noise.

Limitations. Having explained some of the advantages, it is important to keep in
mind that Lyapunov exponents have a number of serious limitations. The first is that
Amax IS a long-time average. As was pointed out in Chap. 1, Lyapunov exponents
measure asymptotic stability. For one thing, this means A,, may not reflect the
initial response of the network upon presentation of the stimulus, which can be
important as biological signal processing always occurs on finite timescales. In a
bit more detail, for a system with A,,x < 0, one can view initial transients as an
“acquisition” period, during which the system has yet to “lock on” to the signal and
after which the system can respond reliably. The magnitude of A, does not give
direct information about this acquisition timescale.

Second, Amax reflects only net expansion in the fastest-expanding direction.
Because of the pulsatile nature of the interactions in our networks, the action of
the stochastic flow map on phase space is extremely uneven: at any one time,
some degrees of freedom may be undergoing rapid change, while others evolve
at a more modest pace. One therefore expects phase space expansion to occur only
in certain directions at a time, and that expansion may coexist with strong phase
space contraction. A positive A, only tells us that, on balance, expansion wins
over contraction in some phase space direction. It does not give information about
the relative degrees of expansion and contraction, nor does it tell us the directions
in which expansion is taking place. In situations where one is interested in the
response of specific “read-out” neurons in the network (see below), it may well
be that phase space expansion occurs mainly in directions that do not significantly
affect the reliability of these read-out neurons; A, will not be a useful indicator of
relative reliability in that case. (See [22,27] for examples.)

Moreover, as discussed below, in many applications one may be interested
in other notions of reliability other than neuronal reliability. While A .x < O
will typically ensure other forms of reliability, the magnitude of A« need not
necessarily map onto other reliability measures in a one-to-one fashion.
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Other Notions of Reliability

From the point of view of encoding information in the response of networks
of biological neurons, neuronal reliability is very stringent: in a large biological
network, where individual neurons and synapses may be rather noisy [13], it is
clearly quite idealistic to insist that the detailed, microscopic dynamics of each
neuron be reproducible across multiple trials. A less stringent way to formulate
reliability is to project the dynamics onto a number k << N of lower-dimensional
signals, e.g., by applying a function @ to the network state @(¢), and to ask
whether @(6(¢)) is reproducible across trials. A neuronally reliable system is
clearly guaranteed to be reliable for any choice of @, but a neuronally unreliable
system may still produce reliable responses for some observables @. In [28], this
idea was carried out in the form of “pooled-response reliability”: a “pool,” or subset
C, of neurons is chosen, and their synaptic outputs are averaged; this average
output defines a function @¢. A system is said to exhibit pooled-response reliability
if the signal @¢(O(¢)) is reproducible. In [28], it is found that (as one might
suspect) neuronally unreliable systems often retain some degree of pooled-response
reliability. Pooled-response reliability is, however, more difficult to work with, both
computationally and mathematically.

There are also a number of other notions of spike-time reliability and precision
in use in neuroscience that are distinct from neuronal reliability. Some of these
focus on the reproducibility of spike counts within narrow time windows, while
others focus on the variability of the spike times themselves. (See, e.g., [14] for a
discussion.) A recent numerical study [22] has found that while A,,x > 0 does imply
unreliability as indicated by other reliability measures, the quantitative behavior of
these other measures are not always captured by trends in Ap,x.

4.3 Acyclic Networks and Modular Decompositions

We now consider the neuronal reliability of acyclic networks, i.e., networks in
which there is no feedback, and thus a well defined direction of information flow.
We will show that acyclic networks are never unreliable. The proof technique
will also suggest a broader class of networks that is more accessible to analysis,
namely networks that admit a decomposition into modules with acyclic inter-
module connections. The exposition here closely follows Part II of [27], with some
details omitted.

For simplicity, we assume throughout that the stimuli are independent; it is trivial
to modify the results of this section to accommodate the situation when some of
them are identical to each other.
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Fig. 4.3 Schematic of an
acyclic network. Figure %

adapted from [27]
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4.3.1 Skew-product Representations

We first describe the connection graph that correspond to an acyclic network. Each
node of this graph, i € {1,---, N}, corresponds to an oscillator. If oscillator i
provides input to oscillator j, i.e., if a;; # 0, we assign a directed edge from node
i to node j and write “i — j”. A cycle in such a directed graph is a sequence of
nodes such that iy — i, — ---i; — i; for some k.

Definition 4.1. An oscillator network is acyclic if its connection graph has no
cycles.

Given any two vertices i and j, let us write “i 2 j” if there exists a path from
i tojorifi = j.Itis well known that if a graph is acyclic, then the relation 2
is a partial ordering, so thati 2 j and j 2 i if and only if i = j. In terms of
information flow in an acyclic network, this means that for any pair of oscillators
in an acyclic network, either they are “unrelated” (i.e., not comparable with respect
to ), or one is “upstream” from the other. Unrelated oscillators are not necessarily
independent: they may receive input from the same source, for example. Acyclic
networks can still be quite complex, with many branchings and recombinations; see
Fig.4.3 for an example.

Now let ¢, denote a flow on TV with zero inputs, i.e., with ¢, = 0. We say
@ factors into a hierarchy of skew-products with one-dimensional fibers if after
relabeling the N oscillators, the following holds: for each k = 1,---, N, there is

a vector field X® on T* such that if (p,(k) is the flow generated by X then (i)
(p,(k) describes the dynamics of the network defined by the first k oscillators and the

relations among them, and (ii) (p,(k+1)
field X *+1 on T**! has the form

is a skew-product over (p,(k) , that is, the vector

XEED@G oo Ogr) = (XDO1, -+, 06), Yoy 00)(Okt1)) (4.8)
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where {Y(g, . g,)} is a family of vector fields on S' parametrized by (6;,-- , 6;) €

T*. In particular, got(N) = ¢,. In the system defined by (4.8), we refer to (pt(k) on T*
as the flow on the base, and each copy of S! over T as a fiber.

Proposition 4.2. The flow of every acyclic network of N oscillators with no inputs
can be represented by a hierarchy of skew-products with one-dimensional fibers.

The proof is straightforward consequence of the partial ordering Z ; see [27].

Next we generalize the notion of skew products to acyclic networks with stimuli.
Such networks can also be represented by a directed graph of the type described
above, except that some of the nodes correspond to stimuli and others to oscillators.
If i is a stimulus and j an oscillator, then i — j if and only if oscillator j receives
stimulus i. Clearly, since no arrow can terminate at a stimulus, a network driven by
stimuli is acyclic if and only if the corresponding network without stimuli is acyclic.

Consider now a single oscillator driven by a single stimulus. Let §2 denote the
set of all Brownian paths defined on [0, c0), and let 0; : £2 — £2 be the time shift.
Then the dynamics of the stochastic flow discussed in Sect. 4.2.2 can be represented
as the skew-product on £2 x S! with

D (w,x) = (01(w), Forw(x)) .

Similarly, a network of N oscillators driven by ¢ independent stimuli can be
represented as a skew-product with base 29 (equipped with the product measure)
and fibers TV .

Proposition 4.3. The dynamics of an acyclic network driven by q stimuli can be
represented by a hierarchy of skew-products over §29 with one-dimensional fibers.

The proof is again straightforward; see [27].

4.3.2 Lyapunov Exponents of Acyclic Networks

Consider a network of N oscillators driven by g independent stimuli. As before, let
w € 29 denote a g-tuple of Brownian paths, and let Fy,.,, denote the corresponding
stochastic flow on TV . Let A,, (x, v) denote the Lyapunov exponent defined in (4.6).
The following is the main result of this section:

Theorem 4.2. Consider a network of N oscillators driven by q independent
stimuli, and let | be a stationary measure for the stochastic flow. Assume

(a) the network is acyclic, and
(b) 1 has a density on TV .

Then Ay, (x,v) <0 forae w € 29 and ji-a.e. x.
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One way to guarantee that condition (b) is satisfied is to set ¢; to a very small
but strictly positive value if oscillator i is not originally thought of as receiving
a stimulus, so that ¢; > 0 for all i. Such tiny values of ¢; have minimal effect on the
network dynamics. Condition (b) may also be satisfied in many cases where some
€; = 0 if suitable hypoellipticity conditions are satisfied, but we do not pursue this
here [36].

Before proceeding to a proof, it is useful to recall the following facts about
Lyapunov exponents. For a.e. @ and pu-a.e. x, there is an increasing sequence of
subspaces {0} = V, C V; C --- C V; = R" and numbers A; < --- < A, such that
Ao(x,v) = A; forevery v € V; \ Vi_; . The subspaces depend on @ and x, but the
exponents A ; are constant a.e. if the flow is ergodic. We call a collection of vectors
{vi,--+,vn} a Lyapunov basis if exactly dim(V;) — dim(V;_;) of these vectors are
in V; \ Vi—1. If {v;} is a Lyapunov basis, then for any u, v € {v;}, u # v,

1
tlim " log | sin Z(DFy 4;0(X)u, DFy 4.0 (x)v)| = 0. (4.9)
—00

That is, angles between vectors in a Lyapunov basis do not decrease exponentially
fast; see e.g., [50] for a more detailed exposition.

Proof. Since the network is acyclic, it factors into a hierarchy of skew-products.
Supposing the oscillators are labeled so that i < j means oscillator i is upstream
from or unrelated to oscillator j, the kth of these is a stochastic flow Fo(,];?w on
T* describing the (driven) dynamics of the first k oscillators. Let 1*) denote the
projection of 4 onto T*. Then 1) is an stationary measure for F()(,];?a)’ and it has a
density since u has a density. We will show inductively in k that the conclusion of
Theorem 4.2 holds for F(flj)w .

First, fork = 1, A, (x,v) < 0 for a.e. w and u(l)-a.e. x. This is a consequence
of Jensen’s inequality; see (4.7) in Sect. 4.2.2.

Now assume we have shown the conclusion of Theorem 4.2 up to k — 1, and
view Fo(lj)w as a skew-product over £29 x T*~! with S!-fibers. Choose a vector
vk in the direction of the S!-fiber. Note that due to the skew-product structure,
this direction is invariant under the variational flow DFO(];)w Starting with vi, we
complete a Lyapunov basis {vy, - - - , v } at all typical points. Due to the invariance of
the direction of v;, we may once more use Jensen to show that A, (x, v¢) < 0 fora.e.
x and @. We next consider v; with i < k. First, define the projection 77 : TK — T*~!

onto the first £ coordinates, and note that

[Z(DE) (X))
|sin Z(ve, DEX) (xyvi)|

0,t;0

k
IDFY), (x)vi| =

Due to (4.9), we have A, (x,v;) = lim; %log |71(DF(k) (x)v;)|. But the skew-

0,10
product structure yields n(DFO(f;)w (x)v) = DFO(f;_wl) (mx)(mrv;), so by our induction

hypothesis, A, (x,v;) <0. O
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Remark 4.1. Some remarks concerning Theorem 4.2:

(a) Our conclusion of Ayx < 0 falls short of reliability (which corresponds to
Amax < 0). This is because our hypotheses allow for freely-rotating oscillators,
i.e., oscillators that are not driven by either a stimulus or another oscillator, and
clearly Anax = 0O in that case. When no freely-rotating oscillators are present,
typically one would expect A.x < 0. We do not have a rigorous proof, but this
intuition is supported by numerical simulations.

(b) An analogous result in the context of uncertainty propagation was obtained by
Varigonda et. al.; see [44].

4.3.3 Modular Decompositions

Next, we describe how the ideas from the preceding section can be used to
analyze the reliability of more general networks, by decomposing large networks
into smaller subunits. Consider a graph with nodes {1,---, N}, and let ~ be an
equivalence relationon {1, --- , N }. The quotient graph defined by ~ has as its nodes
the equivalence classes [i] of ~, and we write [i] — [/j] if there exists i’ € [i] and
j' € [j] such that i” — j’. The following is a straightforward generalization of
Proposition 4.3:

Proposition 4.4. In a network of oscillators driven by q independent stimuli, if
an equivalence relation leads to an acyclic quotient graph, then the dynamics of
the network can be represented by a hierarchy of skew-products over 24, with the
dimensions of the fibers equal to the sizes of the corresponding equivalence classes.

Proposition 4.4 has a natural interpretation in terms of network structure: observe
that an equivalence relation on the nodes of a network partitions the nodes into
distinct modules. Introducing directed edges between modules as above, we obtain
what we call a quotient network. Assume this quotient network is acyclic, and let
M, M,,---, M, be the names of the modules, ordered so that M; is upstream from
or unrelated to M forall i < j. Let k; be the number of nodes in module M ;. For

si=ki+ky+---+ ki, let FO(;’ i) denote, as before, the stochastic flow describing

the dynamics within the union of the first i modules; we do not consider Fo(?w

except when s = s; for some i. The dynamics of the entire network can then be
. ] . . (k1)

built up layer by layer as follows: we begin with the stochastic flow FO,t,la)’ then

proceed to FO(I?J %) which we view as a skew-product over F."") . This is followed

’ 0.t,w
e +ko+k : ~ itk
by FA1H2+5) which we view as a skew-product over Fp -+ and so on.

0.t,0

Let /\(11) yoo ,/\,({11) denote the Lyapunov exponents of Fo(lflz) Clearly, these are
the Lyapunov exponents of a network that consists solely of module M; and the
stimuli that feed into it. If /\fﬁgx = max; AW > 0, we say unreliability is produced

within M. We now wish to view M, as part of the larger network. To do so, for
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i>1let )L(li), ‘e ,)k](fi) denote the fiber Lyapunov exponents® in the skew-product

representation of F") over Fy'.V, and let Aflnx = max; A, Then Afnx > 0
has the interpretation that unreliability is produced within module M; as it operates
within the larger network (but see the remark below).

The proof of the following result is virtually identical to that of Theorem 4.2:

Proposition 4.5. Suppose for a driven network there is an equivalence relation
leading to an acyclic quotient graph. Then, with respect to any ergodic stationary
measure |4, the numbers /\y), 1 <i<p,1=<j <k, are precisely the Lyapunov
exponents of the network.

Proposition 4.5 says in particular that if, in each of the p skew-products in the
hierarchy, the fiber Lyapunov exponents are < 0, i.e., if no unreliability is produced
within any of the modules, then A« for the entire network is < 0. Conversely, if
unreliability is produced within any one of the modules as it operates within this
network, then A,.x > O for the entire network.

Remark 4.2. Some comments on Proposition 4.5:

(a) The idea of “upstream” and “downstream” for acyclic networks extends to
modules connected by acyclic graphs, so that it makes sense to speak of
a module as being downstream from another module, or a node as being
downstream from another node (meaning the modules in which the nodes reside
are so related).

(b) Note that any network can be decomposed into modules connected by an acyclic
graph, but the decomposition may be trivial, i.e., the entire network may be a
single module.* If the decomposition is nontrivial and A, > 0 for the network,
Proposition 4.5 enables us to localize the source of the unreliability, i.e., to
determine in which module unreliability is produced via their fiber Lyapunov
exponents. In particular, modules that are themselves acyclic cannot produce
unreliability.

(c) It is important to understand that while fiber Lyapunov exponents let us assess
the reliability of a module M as it operates within a larger network, i.e., as it
responds to inputs from upstream modules and external stimuli, this is not the
same as the reliability of M when it operates in isolation, i.e., when driven
by external stimuli alone. Nevertheless, for many concrete examples, there is
reason to think that the two types of reliability may be related. See Part II of
[27] for details.

3The fiber exponent can be defined exactly as in (4.6), but with the tangent vector v chosen to lie
in the subspace tangent to each fiber; note these subspaces are invariant due to the skew product
structure.

“It is straightforward to show that there is always a unique modular decomposition connected
by an acyclic graph that is “maximal” in the sense that it cannot be refined any further without
introducing cycles into the quotient graph.
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Fig. 4.4 Example of a larger network and its quotient graph. In (a) full network, we have labeled
the edges with a sample of coupling constants;. The w; are drawn randomly from [0.95, 1.05].
Panel (b) quotient graph shows a modular decomposition. Figure adapted from [27]

(d) On a more practical level, the skew product structure implies that DFy,., is
block-lower-triangular, and this fact together with Proposition 4.5 give us a
more efficient way to numerically compute Lyapunov exponents of networks
with acyclic quotients.

Example. To illustrate the ideas above, consider the network in Fig.4.4a. Here,
a single external input drives a network with nine nodes. The network can be
decomposed into modules connected by an acyclic graph, as shown in Fig.4.4b.
Observe that Module A and Module C are both acyclic, and thus by Proposition 4.5
they cannot generate unreliability. From Proposition 4.5, it follows that whether
the overall network is reliable hinges on the behavior of Module B. In [27],
the reliability properties of 2-oscillator circuits like Module B are studied using
ideas outlined in Sect.4.4.1, and it is shown that one can indeed give qualitative
predictions of the reliability of the network in Fig. 4.4 via modular decomposition.

4.4 Reliable and Unreliable Behavior in Recurrent Networks

Theorem 4.2 highlights the importance of feedback in reliability studies. This
section examines some examples of recurrent networks.

4.4.1 Unreliability in a Two-oscillator Circuit

To better understand what can occur in a system with feedback, we have studied the
simplest circuit with recurrent connections, namely a two-oscillator system driven
by a single stimulus:
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Fig. 4.5 Lyapunov exponent A,x versus coupling strengths in the two-cell network. In all plots,
we use w; = 1. The dashed curve shows the bifurcation curve ag (ag). (a) € = 0.2, (b) € = 0.8.

Figure adapted from [27]
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Equation (4.2) here simplifies to

01 = w1 + ap 2(61) g(6:) + 2(61) 1(1)
. (4.10)

0 = wr + ag 2(62) g(01) ,
where we have written ag and ayg, (for “feed-forward” and “feedback”) instead of
an and any.

Figure 4.5 shows the maximal Lyapunov exponent A« as a function of ag and
agp. In Fig. 4.5a, the stimulus amplitude is € = 0.2; in Fig. 4.5b, itis turnedup to ¢ =
0.8. In both figures, it can be seen that there are large regions of both reliable and
unreliable behavior. There is quite a bit of structure in both plots. For example, in
Fig.4.5b, there is a region of strong reliability along the agp, = 0 axis. This is exactly
as expected, since Theorem 4.2 guarantees that A;;,,x < 0 when ag, = 0 (there are no
freely-rotating oscillators here), and since A, should depend continuously on ay
and agp,, we would expect it to remain negative for some range of ag,. This “valley”
of negative A, is also present in Fig. 4.5a, but to a far lesser degree because € is
smaller, and the Jensen inequality argument given in Sect.4.3.2 suggests that the
greater € is, the more negative Ay,x should be.

A second, clearly visible structure occurs near the diagonal {ax = ag} in
Fig.4.5a: one can clearly see Ayx > 0 on one side and Ap,x < O on the
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other; in Fig. 4.5b, this structure has expanded and merged with the valley around
{am = 0}. To make sense of what is going on there, it is necessary to first
discuss the unforced dynamics of the two-cell system. Observe that with € = 0,
(4.10) is just a deterministic flow on T2. It is straightforward to show that in the
parameter regimes of interest, this 2D flow has no fixed points. One would thus
expect essentially two types of behavior: either the flow has one or more limit
cycles, or it is essentially quasiperiodic. In [27], an analysis of this ODE and an
associated circle diffeomorphism (defined via a Poincaré section) shows that for
€ = 0 and w; > wy, the ag-ag space is dominated by a large region, roughly
equal to {ag, > ag}, over which the 2D flow is quasiperiodic. As ag, decreases, a
bifurcation occurs in which the system acquires an attracting limit cycle. One can
further prove that the corresponding critical value af; (ar) of ag, occurs near ag, and
that for ap, < ag (as), the behavior of the system is dominated by a large region
with a single attracting limit cycle. That is to say, when € = 0 and ap < af (ax),
the two oscillators are phase-locked in a 1:1 resonance. The critical value af; (ar)
can be numerically computed, and is shown as the dashed line in Fig. 4.5.

Since the noise amplitude in Fig.4.5a is fairly small, the structure near the
diagonal suggests that the onset of unreliability is connected with the onset of
phase-locking in the unforced system. In [27], it was proposed that a dynamical
mechanism called shear-induced chaos can explain this phenomenon, and a number
of its predictions have been checked numerically there. Shear-induced chaos, a
version of which was first studied numerically by Zaslavsky [52] and in a general,
rigorous developed theory by Wang and Young [45—48], is a general mechanism for
producing chaotic behavior when a dissipative system meeting certain dynamical
conditions is subjected to external forcing. We provide a brief summary below; see
[25,26,30] and references therein for more details.

Brief Summary of Shear-induced Chaos. First, recall that in order to generate
positive Lyapunov exponents in a dynamical system, it is necessary to have a way
of stretching and folding phase space. Shear-induced chaos is a general mechanism
for accomplishing this using two main ingredients:

(i) an attracting limit cycle where the surrounding flow exhibits shear, and
(i) a source of external perturbation that forces trajectories off the limit cycle.

By shear, we mean a differential in the velocity as one moves transversally to the
limit cycle, as illustrated in the bottom panel of Fig. 4.6. The perturbation in (ii) can
take a variety of forms (deterministic or random), the simplest being a sequence of
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brief “kicks” applied periodically at a fixed time interval; such periodic kicks can be
modeled by applying a fixed (deterministic) mapping at a fixed interval.

Figure 4.6 illustrates the basic geometric ideas: imagine a set of initial conditions
along the limit cycle, and that at a certain time a single kick is applied, moving
most of the initial conditions off the cycle. Because the limit cycle is attracting, the
curve of trajectories will fall back toward the cycle as they evolve. But because of
shear, the curve will be stretched and folded as the trajectories fall back toward
the cycle. If this process is iterated periodically, it is easy to see that it can
lead to the formation of Smale horseshoes, which is well known to be a source
of complex dynamical behavior in deterministic dynamical systems. However,
horseshoes can coexist with attracting fixed points, so that the associated chaotic
behavior may only be transient, i.e., the Lyapunov exponents may still be < 0. In
[45—48], it is proved that for periodically-kicked dissipative oscillators, sustained
chaotic behavior characterized by positive Lyapunov exponents, exponential decay
of correlations, and the existence of SRB measures (see Sect. 4.2.2) are guaranteed
whenever certain conditions are met.” In non-technical terms, the conditions are
that the limit cycle possesses sufficient shear, that the damping is not too strong, and
that the perturbations are sufficiently large and avoids certain “bad” phase space
directions (associated with the “strong stable manifolds” of the limit cycle).

The theorems in [45—48] apply to periodically-kicked oscillators, and the proof
techniques do not carry over to the stochastic setting. Nonetheless, the underlying
ideas suggest that the shear-induced chaos, as a general dynamical mechanism
for producing instabilities, is valid for other types of forcings as well, including
stochastic forcing. A systematic numerical study [25] has provided evidence
supporting this view, and a recent analysis of a specific SDE with shear has found
positive Lyapunov exponents [8].

As explained in detail elsewhere (see, e.g., [25]), shear-induced chaos makes
a number of testable qualitative predictions. First, the more shear is present in
the vicinity of a limit cycle, the more effective the stretching is, so that all else
being equal, increasing shear would lead to a more positive Lyapunov exponent.
Similarly, if the limit cycle were strongly attracting, any perturbations would be
quickly damped out, reducing the amount of phase space stretching and decreasing
the exponent. Finally, as mentioned above, the direction of kicking relative to the
geometry of the flow is also important. If these conditions are met, then a system
would have the tendency to generate chaotic behavior; the exact nature of the
external perturbations (provided they are sufficiently strong) will affect quantitative
details, but not gross qualitative features.

Returning now to the two-oscillator system, it has been shown (see Part I of [27])
that as the limit cycle emerges from the bifurcation at ag, ~ af; (ar), there is a great
deal of shear in the vicinity of the limit cycle. Moreover, the forcing term in (4.10)
is such that it can take advantage of the shear to produce stretching and folding.

SThese results have been extended to certain nonlinear parabolic PDEs [32] and periodically-
kicked homoclinic loops [37].
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Fig. 4.7 Folding action caused by white noise forcing and shear near the limit cycle (with ag, >
ay). Att = 0, the curve shown is the lift of the limit cycle y to R2. The remaining panels show
lifts of the images Fy ., (y) at increasing times. The parameters are w; = 1, w, = 1.05, ag = 1,
ag, = 1.2, and € = 0.8. Note that it is not difficult to find such a fold in simulations: very roughly,
1 out of 4 realizations of forcing gives such a sequence for ¢ € [0, 5]. Figure adapted from [27]

Figure 4.7 illustrates how the folding and stretching occurs. These numerical results
show that shear-induced stretching and folding do occur in the system (4.10).

While in this context, there are no theorems linking shear-induced folding with
positive exponents, the various features seen around the diagonal in Fig. 4.5a can be
readily explained using the ideas of shear-induced chaos. First, consider the phase-
locked side of the af -curve, i.e., ap < aj. Observe that as an, decreases, Amax
becomes more negative for some range of ag,. This is consistent with increasing
damping as the limit cycle (initially weak right after the bifurcation) becomes more
strongly attracting. As we move farther away from the aj -curve still, Ayax increases
and remains for a large region close to 0. Intuitively, this is due to the fact that
for these parameters the limit cycle is very robust. The damping is so strong that
the forcing cannot (usually) deform the limit cycle appreciably before it returns
near its original position. That is to say, the perturbations are negligible, and the
value of A,y is close to the value for the unforced flow (which for a limit cycle is
always Amax = 0). On the other side of the af; -curve, where the system is essentially
quasiperiodic, regions of unreliability are clearly visible. These regions in fact begin
slightly on the phase-locked side of the curve, where a weakly attractive limit cycle
is present. The fact that Ay,,x is more positive before the limit cycle is born than
after can be attributed to the weaker-to-nonexistent damping before its birth. Thus,
the general progression in Fig. 4.5a of A,x from roughly O to definitively negative
to positive as we cross the aj -curve from below consistent with the mechanism of
shear-induced chaos.

In Fig.4.5b, where the stimulus amplitude is increased to € = 0.8, the picture
one obtains clearly continues some of the trends seen in Fig.4.5a: there are still
regions of Ay.x > 0 near the diagonal, and a valley of Ap,x < 0 around {ag, = 0}.
But while the valley around {ag, = 0} can be explained on the basis of Theorem 4.2
(which is valid regardless of the magnitude of ¢€), the behavior around the diagonal
now likely involves more global effects as the system takes larger excursions from
the limit cycle due to the increased forcing amplitude.
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4.4.2 Single-Layer Networks

Lest the reader think that all recurrent networks are unreliable, for our last example
we examine a large recurrent network that is strongly, robustly reliable. The network
is shown schematically in Fig.4.8. It is a sparsely-coupled recurrent network in
which each neuron receives exactly « inputs from other neurons (usually « is 10 or
20 % of the network size N). The intrinsic frequencies w; are drawn randomly from
[l —p,1 + p], and the nonzero coupling constants a; are drawn randomly from
[a(1—p),a(l + p)]; the heterogeneity parameter p is taken to be 0.1. All oscillators
receive the same external drive of amplitude €. This architecture is motivated by
layered models often found in neuroscience.

The Lyapunov exponent A,x of such a single-layer network is plotted against
A = k - a in Fig.4.9a. Two values of € are used. As can be seen, as € increases,
Amax decreases. This is not unexpected: just as for the single oscillator in Sect. 4.2.2,
we expect the magnitude of A,y to increase with increasing € (more on this below).
Next, observe that A, is most negative when A = 0. This is also expected: with
no coupling, the “network” is just a collection of uncoupled oscillators, each of
which has Anmax < 0 by Jensen’s inequality; by continuity, this persists for a range
of A. Finally, as | A| increases, A.x increases, suggesting that network interactions
generally have a destabilizing effect in this network. However, even when 4 is quite
large,6 Amax remains < 0 fore = 2.5.

In [28], the following qualitative explanation was proposed: consider first the
system with a = p = 0. In this case, we have a collection of uncoupled, identical
theta neurons. Since A, < O for single theta neurons (Sect. 4.2.2), the ensemble
will become entrained to the common input, and thus synchronize with each other. If
we now allow slightly nonzero couplings and heterogeneous frequencies, i.e.,a ~ 0
and p &~ 0, then by continuity we expect A,y to still be < 0, and that the oscillators
will remain nearly synchronized much of the time. Recall now that in (4.2), the
phase response curve z(6) = O(0?) for § ~ 0. That is, around the time a neuron
spikes, it is very insensitive to its inputs. Thus the near-synchrony of the neurons
will lead to an attenuation in the effective strength of the coupling. This provides

oA rough estimate shows that when A = 2, each kick should be sufficient to drive the oscillator
roughly 1/3 of the way around its cycle.
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Fig. 4.9 Behavior of single-layer network. In (a), we plot the maximum Lyapunov exponent A,y
versus A = k - a; the parameters are N = 100, k = 10, and € = 1.5 (upper curve) and 2.5
(bottom). Panel (b) shows the phase distribution of neurons at the arrival of synaptic impulses for
a single-layer network with N = 100. Figure adapted from [28]

an explanation for why A can be made so large in Fig. 4.9 without causing Amax to
become positive.

This explanation also leads to a number of testable predictions. First, if we
examine the phases of the oscillators when a spike arrives, we should observe
a highly-clustered distribution. This has been checked numerically; an example
is shown in Fig.4.9b. Second, anything that makes it harder for the neurons to
synchronize should lead to an increase in Ay,x. For example, if we were to increase
the amount of heterogeneity p in the system, Ay« should also increase. This is
corroborated by the following results:

Heterogeneityp| 0 0.01 0.1 0.3
Amax | -1.9 -1.7 -0.70 —0.18

As the degree of heterogeneity in the network increases, the oscillators become
harder to entrain, and accordingly A« increases as well.

Concluding Discussion

The work surveyed here has shown that the reliability of neuronal networks can
be fruitfully formulated and studied within the framework of random dynamical
systems. Particularly useful is the maximum Lyapunov exponent of a system, as
a summary statistic for detecting reliability in numerical simulations. The results
reviewed here show that:
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(a) RDS theory, in particular the maximum Lyapunov exponent Amax and results
linking Amax to the structure of sample measures, provide a useful framework
for studying reliability.

(b) Acyclic networks of pulse-coupled theta neurons are never unreliable. This
result highlights the importance of feedback in producing unreliability. The
underlying ideas also generalize to the setting of modules connected by acyclic
graphs, providing a way to analyze larger networks via modular decomposi-
tions.

(c) Recurrent networks can be reliable or unreliable. In particular, a system as small
as a two-oscillator circuit can become unreliable; moreover, there is evidence
that unreliability in the two-cell circuit can be explained using the ideas of
shear-induced chaos. At the same time, large recurrent networks can be robustly
reliable as a result of (i) entrainment to a common input, and (ii) the strong
refractory effect of the phase response of Type I theta neurons.

There are a number of additional issues relevant to neuroscience that have not
been discussed here. We highlight three that are perhaps the most relevant from a
biological point of view:

Noise. Neurons and synapses are well known to behave in a noisy fashion, both in
vivo and in vitro. In the context of our model, one can represent the effects of noise
by adding stochastic forcing terms that vary from trial to trial. While such a model
no longer fits exactly in the framework of standard RDS theory (though the theory
of RDS with inputs from Chap.2 may be relevant), it can be studied numerically
via direct measures of reliability such as cross-trial variance. In [28], the theoretical
ideas surveyed here (Lyapunov exponents, random attractors) are used to carry out
an analysis of the effects of noise on reliability, and to explain the different effects
of correlated versus independent noise.

Pooled-response Reliability. As mentionedin Sect. 4.2.2, even when A, > 0 there
can still be a great deal of structure in the sample distribution pu,,, suggesting that by
suitable projections or pooling of neuronal outputs, one can obtain responses that
have some degree of reliability; this has been studied numerically in [28], and has
received some attention in the experimental literature [9].

Beyond Lyapunov Exponents. As previously mentioned, Lyapunov exponents do
not always capture what one wants to know about neuronal response, and other
aspects of sample measures and random attractors may be more relevant in studies
of network reliability. Exactly which aspects matter depends, of course, on the
application at hand. Some steps in this direction have been taken in [22].
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Chapter 5
Coupled Nonautonomous Oscillators

Philip T. Clemson, Spase Petkoski, Tomislav Stankovski,
and Aneta Stefanovska

Abstract First, we introduce nonautonomous oscillator—a self-sustained oscillator
subject to external perturbation and then expand our formalism to two and many
coupled oscillators. Then, we elaborate the Kuramoto model of ensembles of
coupled oscillators and generalise it for time-varying couplings. Using the recently
introduced Ott-Antonsen ansatz we show that such ensembles of oscillators can
be solved analytically. This opens up a whole new area where one can model a
virtual physiological human by networks of networks of nonautonomous oscillators.
We then briefly discuss current methods to treat the coupled nonautonomous
oscillators in an inverse problem and argue that they are usually considered as
stochastic processes rather than deterministic. We now point to novel methods
suitable for reconstructing nonautonomous dynamics and the recently expanded
Bayesian method in particular. We illustrate our new results by presenting data from
a real living system by studying time-dependent coupling functions between the
cardiac and respiratory rhythms and their change with age. We show that the well
known reduction of the variability of cardiac instantaneous frequency is mainly on
account of reduced influence of the respiration to the heart and moreover the reduced
variability of this influence. In other words, we have shown that the cardiac function
becomes more autonomous with age, pointing out that nonautonomicity and the
ability to maintain stability far from thermodynamic equilibrium are essential
for life.
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Keywords Nonautonomous coupled oscillators ¢ Networks of oscillators
Coupling function ¢ Dynamical Bayesian inference * Kuramoto model ¢ Time
series analysis ¢ Cardio-respiratory interactions * Ageing

5.1 Introduction

Searching for the basic particle of a living system one arrives at two important
molecules: DNA, which specifies the structural property of a cell, and ATP, which
serves as the primary energy currency of the cell. While the role of DNA has been
excessively studied over the last decades, the role of ATP is still largely unknown.

To understand the role of ATP a dynamical approach is needed. Moreover, since
ATP enables a cell to exchange energy and matter with its surroundings, the theory
of thermodynamically open systems must be applied. It is in this endeavour that one
unavoidably identifies the need to mathematically describe life as being composed
of linked nonautonomous systems. Furthermore, recent experiments have shown
that the activity of mitochondria, the main producers of ATP in human cells, is
oscillatory [46], thus pointing to the oscillatory nature of the underlying dynamics.

The link between the mitochondrial function and disfunction on one hand and
the cardiovascular system on the other, has been frequently reported in recent
years. For example, Dai et al. [15] review the evidence supporting the role of
mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the
crosstalk between mitochondria and cellular signaling in cardiac and vascular age-
ing. Dromparis and Michelakis [17] highlight the profound impact of mitochondria
on vascular function in both health and disease based on their role in integrating
metabolic, oxygen, or external signals with inputs from other cellular organelles, as
well as local and systemic signals. Given that the mitochondrial activity has been
shown to be oscillatory [46], the need for an appropriate theory of nonautonomous
oscillatory systems in further studies of mitochondrial dynamics and its connection
with the cardiovascular dynamics is obvious.

Oscillatory activity has long been identified on the higher level of organisation
in living systems (e.g. [27]). For example, it has been shown that the cardiovascular
system, which can be perceived as a system that transports substances needed for
the generation of ATP, is characterised by many interacting oscillatory processes
[81, 82]. Similarly, the neuronal activity controlled by the brain, which can be
perceived as a control system of the information transfer between the ensembles
of cells and ensembles of systems of cells in the body, is characterised by many
interacting waves [12].

The accumulated evidence of oscillatory dynamics at various levels of complex-
ity in living systems is now imposing an urgent need for a theory of nonautonomous
coupled oscillators and ensembles of coupled nonautonomous oscillators. In this
chapter, we present a new framework for nonautonomous oscillatory systems. In
Sect. 5.2 we define the basic properties of a nonautonomous self-sustained oscillator
and then discuss the properties that arise in case of two coupled and interacting
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nonautonomous oscillators. In the case of weakly interacting oscillators, application
of the phase approximation leads to the Kuramoto model (KM) [45] which has been
extensively used to describe globally coupled phase oscillators. In Sect. 5.3 we show
how the KM can be expanded to include time-varying parameters [62]. We also
review current efforts to explain certain forms of nonautonomicity. In Sect. 5.4 we
review methods used in the inverse approach to nonautonomous dynamics. Namely,
with the rapid developments of sensors and computational facilities we are now
able to collect—most often non-invasively—time series of almost any dynamical
processes of interest. In the last decades, various methods have been proposed for
extracting information about the workings of the underlying dynamics [1,7,19]. This
is usually achieved not through experimental perturbations, but by observing the
spontaneous dynamics of a system over a finite time period. We now point to novel
methods suitable for the reconstruction of nonautonomous dynamics, in particular
the recently expanded Bayesian method [18,78,79]. In the final Sect. 5.5, we present
data from a real living system. We study the effect of ageing on cardio-respiratory
interactions and extract time-dependent coupling functions. We show that the well
known reduction of the variability of instantaneous cardiac frequency with age is
mainly on account of the reduced influence of the respiration on the heart and,
moreover, the reduced variability of this influence. In other words, we have shown
that the cardiac function is becoming more autonomous with age. We therefore
emphasise that nonautonomicity and the ability to sustain a stable functioning far
from thermodynamic equilibrium are vital for living systems.

5.2 Coupled Nonautonomous Self-sustained Oscillators
with Time-varying Couplings and Frequencies

5.2.1 Introduction

Physicists usually try to study isolated systems, free from external influences, that
can be described precisely by well-defined equations. In practice, of course, this
ideal is seldom completely realised and it is normally necessary to take account
of a variety of external perturbations. When these perturbations are parametric,
i.e. tending to alter the parameters or even the functional relationships of the
modeling equations, a wide range of often counter-intuitive effects can arise. These
include the occurrence of noise-induced phase transitions [30], or spontaneous
shifts in synchronization ratio in cardio-respiratory interactions [85]. Consequently,
particular care is needed in analysing the underlying physics. Such phenomena
are especially important in relation to oscillatory systems, whose frequency or
amplitude may be modified by external fields. One approach to the problem involves
focusing on the idealised model system but, at the same time, accepting that
it is nonautonomous, i.e. that one or more of its parameters may be subject to
external modulation. Without some knowledge of the form of modulation, little
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more can be said other than admitting to the corresponding inherent uncertainty
in the analysis. It often happens, however, that the external field responsible for the
nonautonomicity may itself be deterministic, e.g. periodic. At the other extreme, it
might be either chaotic or stochastic. In each of these cases, it is possible to perform
a potentially useful analysis.

5.2.2 Nonautonomous Systems: A Physics Perspective

Nonautonomous (Greek: auto-“self”” + nomos-“law’) systems (NA) are those whose
law of behaviour is influenced by external forces. From a dynamical point of view,
a set of differential equations is nonautonomous if they include an explicit time-
dependence (TD). The external influence can be formulated in different ways, for
instance, it could be a periodic force, a quasi-periodic function or a noisy process.
It could also affect the systems in a various ways i.e. it might be additive, could
enter in the definition of a parameter, or might modulate the functional relationships
that define the interactions between systems. By focussing our attention on only
one or a few components of a high dimensional autonomous dynamical system,
we are actually dealing with nonautonomous differential equations because of the
time-variability embedded within their interactions with the rest of the system.

Often in the literature, and especially in inverse problems, the nonautonomous
dynamics have been associated or referred to as non-stationary. This poses a
significant confusion, misunderstanding and even spurious results. Therefore, we
first outline the differences between non-stationary statistics and nonautonomous
dynamics. Stationarity is a statistical property of the output signal and as such
is characterized by the application of tools from statistical mechanics [86]. The
definition of stationarity is closely related to the time of observation, especially in
inverse problems where what seems to be non-stationary on short time scales can
be stationary on longer ones. The solution of an autonomous dynamical systems
x(t) = f(x(¢)) depends only on the time difference (# —#y) between the current state
x(¢) and the initial condition x(%y). It therefore follows that the statistical behaviour
of a bounded-space solution, if far enough from the initial condition, must be time-
independent. In contrast, when a process is bounded and non-stationary, then it is
clearly impossible to represent the driving dynamics with autonomous equations.
For this reason, nonautonomous dynamics x(¢) = f(x(t),?) must constitute the
core mechanism underlying a non-stationary output signal. On the other hand, for
an appropriate time-dependence of the external dynamical field, it is possible that
nonautonomous dynamics may be perfectly stationary in the statistical sense. Hence
nonautonomous dynamics can act as a functional “generator” for both stationary and
non-stationary dynamics.

Nonautonomous dynamical systems have attracted considerable attention from
mathematicians, with much effort being expended on the development of a solid
formalism [43, 66]. Chapter 1 succinctly outlines the main concepts from math-
ematical theory of deterministic nonautonomous dynamical systems, describing
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in detail nonautonomous differential equations, stability and bifurcation theory,
and the nature of nonautonomous attractors. The treatment of pullback attractors
with a fixed target set and progressively earlier starting time #y, — —oo gives
additional insight for the analysis of nonautonomous attractors, which is greatly
important for many physical systems. The proposed theory has been found useful in
number of applications, including switching and control systems [41] and complete
(dissipative) synchronization [40,42]. This recently established mathematical theory
promises many applications in more complex nonautonomous systems.

In the physics community, there seems to have been a degree of reluctance to
address the problem as it really is and, in general, the issue has been sidestepped
by reducing the nonautonomous equation to an autonomous one by the addition of
an extra variable to play the role of time-dependence in f(x(¢), ¢). This approach is
not mathematically justified because the new dimension is not bounded in time (as
t — 00), and because attractors cannot be defined easily. Certain transformations
can be employed to bound the extra dimension, but this approach does not work
in the general case. However, the procedure of reduction to the autonomous form
has been safely employed in some situations—especially in studies closely related
with experiments, where the dynamical behaviour is observed for finite length of
time. One particular example of this kind is the geometric singular perturbation
theory applied to slow-fast dynamics—an approach discussed succinctly in relation
to canards in Chap. 3.

There are two cases for the treatment of nonautonomous dynamics that recur in
the physics literature: (1) where the dynamical field is a periodic function of 7 (i.e.
x = f(x,sin(?)), often referred as an “oscillating external perturbation”); and (2)
when the dynamical field is stochastic (the noise being the time-dependent part).
Figure 5.1a and b illustrate a simple example of such nonautonomous systems.
The first case is obviously one where an extra variable is often substituted, and
the latter case involves the application of the mathematical instruments of stochastic
dynamics. These can be seen as the two limiting-cases of an external perturbation
from a system with either one degree of freedom, or with an infinite number of
degrees of freedom. In between these two extremes there is a continuum of cases
where the time dependence is neither precisely periodic, nor purely stochastic.
An example of an intermediate case of this kind would be a dynamical system
x = f(x(t), g(t)), where g(¢) is the n-th component of a chaotic (low dimensional)
dynamical system.

5.2.3 Single Nonautonomous Self-sustained Oscillator

The nonautonomous systems constitute a vast and very general class of systems.
Motivated largely by biological systems, here we will concentrate on nonautono-
mous self-sustained oscillatory systems. To date, limited work has been done in
this area. Anishchenko et al. [6] mainly focus on the case in which limit cycles are
induced by external nonautonomous fields. In what follows, however, we direct our
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Fig. 5.1 Phase portrait of nonautonomous van der Pol oscillator with time-varying frequency, for:
@), (¢) f(t) = A sin@t), A = 0.3, @ = 0.01; (b), (d) f(t) is uncorrelated Gaussian noise,
A = 0.6. The top plots show the time evolution of a single trajectory of the system in grey,
while the black line is the phase portrait in the autonomous (A = 0) case. The bottom plots
show the positions of 10,000 trajectories with various initial conditions and at snapshots in time,
given in the legend, which correspond to points in the phase of sin(@ t). The system is given as:
¥—pu(d—=x)x+ [0+ f@)]>x =0, where w = 1 and = 0.2

attention to self-sustained oscillators which exhibit stable limit cycles in the absence
of the nonautonomous contribution. This means that an oscillator can still be treated
as being self-sustained at all times, even though its characteristics (frequency, shape
of limit cycle, etc,...) are time-varying.

Let us consider an oscillator dx/dt = f(x(¢)) with a stable periodic solution
x(t) = x(¢t + T) in an absence of external influence, characterized by a period
T. The field f(x(¢),¢) can be set to be an explicit function of the time. This will
be the case, for instance, if one or more of the parameters that characterize f
are bounded (periodic or non-periodic) functions of time. The periodic solution
x(¢) is, in general, lost and the definition of the period 7 becomes somewhat
“blurred”. An example of such nonautonomous oscillator is presented on Fig.5.1a.
In the absence of a periodic solution x(¢) = x(¢ 4+ T), the definition of period
could be replaced by the concept of “instantaneous period” (and correspondingly
“instantaneous frequency”): at any instant of time t the instantaneous period 7 (7)
of the dynamics is the period of the limit cycle solution of f(x(¢), ), where  is
fixed.
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Defining unambiguously the phase of a nonautonomous oscillator can be a
difficult and nontrivial task. In an autonomous system, the phase over the limit
cycle is defined as that quantity which increases by 2w during each cycle of
the dynamics. A nonautonomous version of the phase function can be found by
exploiting weak external perturbations and the instantaneous period definition.
Following the concept of phase reduction proposed by Kuramoto [45] one can then
derive the notion of phase. This procedure, however, does not hold in the general
case. In particular, if the external nonautonomous source is strong, the separation
of amplitude and phase dynamics becomes very difficult. In terms of analysis, there
has been some notable progress in the development of techniques that can estimate
the instantaneous phases from time series. The most used methods are based on the
Hilbert transform [65] and the synchrosqueezed wavelet transform [16] which can
decompose the time-varying phases from relatively complex signals.

5.2.4 Coupled Nonautonomous Oscillators

When two or more systems coexist in the same environment, they often interact and
tend to influence each others’ dynamical fields. The couplings can be manifested
as linear or nonlinear parametric connectivity or as functional relationships. Due to
the couplings the systems can go through qualitative states of collective behaviour,
including synchronization, oscillation death (Bar-Eli effect), clustering, etc. Even
outside these states, the interactions can cause some important dynamical properties
to vary—for example inducing time-variability of the frequency of an oscillator. A
more difficult problem is faced where two or more interacting oscillatory systems
are subject to external deterministic influences, a scenario that often arises in
practice, e.g. in physiology including cellular dynamics, blood circulation, and
brain dynamics. In such cases, the interacting systems (e.g. cardio-respiratory) are
influenced by other oscillatory processes as well as by noise. These nonautonomous
influences can perturb the dynamical properties of the interacting system and can
cause transitions between qualitative states to appear.

In what follows we are going to concentrate on one of the most popular
qualitative states of interaction—synchronization. It is defined as the mutual
adjustment of rhythms due to weak interactions between oscillatory systems [65].
When the oscillators are weakly nonlinear and the couplings are weak as well,
the synchronization phenomenon can be described qualitatively and sufficiently
well by the corresponding phase dynamics. This is often referred to as phase
synchronization [65,68]. To set up a general description of synchronization between
nonautonomous systems, two nonautonomous oscillators are set to interact through
coupling function g;, g, parameterized by the coupling parameters €, €,

x; =f1(xq, 1) + € () g1(x1, X2, 1)

xy =f(x2,1) + €2(t) g2(x1, X2, 1) .
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When the frequency mismatch is relatively small, one can observe for which
parameter values the system is synchronized and does not exhibit phase-slips [65],
i.e. when | (¢, p2,1)| < constant, where ¢ (x1(¢),7) and ¢,(x2(¢),t) are the
instantaneous phases of the two oscillators respectively, and the phase difference
is defined as' ¥ (¢1, 2, 1) = $a(x2(2),7) — 1 (x1 (), 7).

The synchronization condition |y (¢, ¢, ¢)| < constant will be satisfied if there
exists a stable solution for the dynamics dv(¢1, ¢, t)/dt. Because the velocity
field is a function of time, the existence of a stable equilibrium ., (¢) satisfying
dy(¢1, ¢2,t)/dt = 0 does not mean that the relative phase remains constant. Not
even the existence of a time-dependent stable root can guarantee an absence of
phase-slips. However, if v.,(¢) changes in time slowly enough for the solution
¥ (¢) to remain continuously within its attracting basin, then the phase difference
will vary with time (as imposed by the nonautonomous source) while the system
remains within the state of synchronization.

The Poincaré oscillators are chosen as an example of a nonautonomous limit-
cycle system whose dynamical field can be made explicitly time-dependent. This
isochronous oscillator in polar coordinates (r, ¢) rotates at a constant-frequency,
attracted with exponential velocity towards the radius, 7 = r(1—r); ¢ = w. Interms
of Euclidean coordinates, a model of two weakly interacting Poincaré oscillators
takes the form

X, = —(qi Xi —wi(t) yi + e,-(t)g,-(x,-,xj,t) + ég.i(l),
—qiyi + i (1) x;i + & () g (i, yj. 1) + & (1), 5.1

Yi

g =G/xF+y =1 i.j=12,

where w; are angular frequencies, ¢; are the coupling amplitudes and g; (x;, x;, 1),
gi(yi, yj,t) are the coupling functions. We considered the case where the frequency
parameter of the first oscillator consists of a leading constant part and a small
nonautonomous term e.g. w;(¢) = w; + /fl sin(w;t), where /fl and @, are small
compared to w;. Note that, in the absence of the nonautonomous terms (/f 1 = 0), the
oscillators generate self-sustained oscillations [5, 6]. The coupling functions were
linear and autonomous g; (x;, x;,¢) = x; —x; and g;(¥;,y,,t) = yi — ;. The
phases were evaluated as ¢; = arctan f—i, with arctan defined as a four-quadrant
operation.

For certain parameters the systems oscillate in synchrony. Due to the nonau-
tonomous influence imposed on the frequency parameter, periodic modulations are
introduced both on the amplitude and the phase dynamics. If the effect from the
periodic influence is increased (through A) the oscillators can lose synchrony. For
some intervals within the period of the nonautonomous modulation (the light gray

I'The following statement holds also for higher frequency ratios in the form ¥ = n¢, —me¢, where
n and m are integer numbers.
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Fig. 5.2 Intermittent synchronization transitions for unidirectionally coupled (1 — 2) Poincaré
oscillators (5.1). The frequency of the first oscillator is nonautonomous: w, (t) = w; + A, sin(@;1?).
(@) r2(t), ¥(t) and x,(¢) from numerical simulation. The light gray regions indicate the non-
synchronous state. The dashed lines of ¥ (), r,(¢) within this state indicate existence of phase-
slips. (b) 1:N synchrogram for the case under (a). (¢) 2:N synchrogram showing synchronization
transitions from 2 : 2 to 2 : 3 ratio

regions in Fig. 5.2a) the conditions for synchronization do not hold: (req(2), Yeq(2))
is unstable or does not exist, a continuously-running phase appears and the two
oscillators lose synchrony. More precisely, they go in and out of synchrony as time
passes, i.e. there is intermittent synchronization.

The existence of synchronization and the corresponding transitions are investi-
gated by application of a method for the detection of phase synchronization—the
synchrogram [65], Fig. 5.2b and c. They are constructed by plotting the normalized
relative phase of one oscillator within m cycles of the other oscillator, according
to ¥, (tx) = %qb(tk) mod 27 m, where ¢, is the time of the k-th marked event of
the first oscillator, and ¢ (#) is the instantaneous phase of the second oscillator at
time ;. The synchrogram provides a qualitative measure where (for autonomous
systems) the appearance of horizontal lines is normally taken to correspond to
the synchronous state. The method clearly detects synchronization consistently
with our analysis. The synchrograms show, however, that synchronization is now
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characterized by a smooth curve rather than a horizontal line, owing to the
continuously changing phase shift induced by the nonautonomous modulation.

The nonautonomous source can also induce transitions between different fre-
quency synchronization ratios. This situation is often encountered in high order
interactions of open oscillatory systems—an obvious example being the cardio-
respiratory system. A numerical example of this kind is presented on Fig.5.2c.
The synchrogram shows consecutive transitions from 2:2 (or 1:1) to 2:3 frequency
locking, with short non-synchronized epochs in between. The external influence
causes the system to not only lose and gain synchrony, but also induces transitions
between different synchronization states.

So far we have concentrated on one nonautonomous frequency parameter and
how it affects the interactions only. An equally important parameter that defines the
interactions is the coupling amplitude. If influenced by nonautonomous sources, the
coupling variability can also perturb the coupled systems, consequently leading to
variability and transitions of the qualitative states. In interactions of many systems,
like in networks of oscillators, the time-variability of the coupling strength can
change the structural connectivity within the network. Another important property
that characterizes the interactions among oscillators is the coupling function. It
defines the functional law of the interactions and the law through which the
interactions undergo transitions to synchronization.

It was recently shown [78,79] that, as opposed to closed autonomous oscillators,
the coupling function in open oscillatory systems can vary in time, both in intensity
and form. Indeed, time-varying coupling functions have already been identified in
living systems. For example, the functional relationships that characterise cardio-
respiratory interactions are in fact time-varying. In Sect. 5.5 we elaborate on this in
some detail and show how these relationships change with age. The time-variability
of the form of the coupling function is important because it alone can be the cause
for synchronization transitions. The external forces can influence several parametric
and functional properties of the interacting systems at the same time, leading to
relatively complex dynamics that is largely difficult to decipher. There is therefore
a clear need for improved analysis techniques, formalism and understanding of
such systems. The application of current methods of analysis will be presented in
Sect. 5.4.

5.2.5 Summary

In this section we outlined a general description of nonautonomous oscillatory
systems. First, we discussed the difference between non-stationary and nonauton-
omous systems and how they are treated. In the general class of nonautonomous
systems we focused on self-sustained nonautonomous oscillators. We point out
that the phase of such oscillators cannot be defined uniquely. However, in the
presence of slow external forces we show that the problem is tractable. Furthermore,
we reviewed the interactions and the state of synchronization, and how they are
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affected by nonautonomous perturbations. By analysis of two coupled Poincaré
oscillators subject to periodic nonautonomous sources, we illustrated the onset of
phase synchronization. In this case, the phase difference that defines the state of
synchronization becomes time-varying, leading to qualitative transitions and inter-
mittent synchronization. Transitions between synchronized and non-synchronized
states, as well as between different synchronization ratios, were also demonstrated.

5.3 Ensembles of Nonautonomous Oscillators

After introducing the concept of nonautonomous oscillators in Sect. 5.2, here the
focus will be turned to the effects of nonautonomicity in a population of coupled
oscillators. The dynamics of such systems will be analyzed in case of parametric
perturbations. Hence, the external influence in these systems can be directed either
to the natural frequencies of the single oscillators or to the coupling strengths.
Nevertheless, due to the assumption of the thermodynamical limit, the analysis
of ensembles of coupled oscillators is not just a trivial extension of the case with
two coupled oscillators. Thereby, the focus in the following analysis is put on the
changes of the mean-field dynamics, as a result of the frequency, strength and the
distribution of the external field.

Systems consisting of large numbers of interacting oscillating subsystems are
pervasive in science and nature, and have been the essential modelling tools
in physics, biology, chemistry and social science [89]. In the case of weakly
interacting units, application of the phase approximation leads to the Kuramoto
model for globally coupled phase oscillators [45]. It represents a mainstream
approach today in tackling wide diversity of significant problems, and the variety
of these issues, spanning from Josephson-junctions arrays [94] to travelling waves
[29], has led to many extensions and generalizations of the basic model [4, 65, 88].
However, although biological examples are known to have provided the original
motivation lying behind this model, neither the original model [45], nor most of its
extensions [4], have incorporated a fundamental property of living systems—their
inherent time-variability.

In this chapter first the original KM will be described and then its recent
generalization that allows for time-varying parameters [62] will be introduced,
together with the other studies of the original model that explain certain forms of
nonautonomicity.

5.3.1 The Kuramoto Model

Kuramoto showed that the long-term dynamics for any system of weakly coupled,
nearly identical limit-cycle oscillators, are given by the following universal ordinary
differential equations (ODEs)
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N
; Ko .
b =+ D sin(0; = 0), i=1....N. (5.2)

J=1

Here K > 0 is the coupling strength, while w; are the natural frequencies of the
uncoupled oscillators. They are randomly distributed according to some unimodal
probability density function g(w) with half-width, half-maximum y. This model
corresponds to the simplest possible case of equally weighted, all-to-all, purely
sinusoidal coupling and it can be applied to any system whose states can each be
captured by a single scalar phase 6;.

A centroid of the phases as given in the complex plane complex defines an
complex order parameter

N
= re”// = N E ele'/. (53)
j=1

It is then introduced into the governing equation (5.2), so that it becomes
6; = w; — K rsin(0; — ), (5.4)

where r and ¥ are mean field and phase respectively. For a coupling strength
larger than some critical value, some of the oscillators become locked to each other
resulting in a bump in the distribution of phases and thus non-zero value for r.

In the thermodynamic limit N — oo the state of the system (5.4) is described
by a continuous PDF p(6, w, t) which gives the proportion of oscillators with phase
0 at time ¢, for fixed w [52].The number of oscillators is conserved and since w is
fixed, the following continuity equation emerges for every @

dp d K 6«6
= = —(ze7'" = z*¢ , 5.5
5 = =gl + 3 =)} (5.5)
where the velocity along 6 is substituted from the governing equations (5.4). The
definition (5.3) is also included in (5.3), rewritten using % > j sin(0; — 6;) =

Im{ze "%}, thus becoming

2 o)
z=/ / pw,0,0)g(w)e’dbdw. (5.6)
0 —00

The last two equations self-consistently give the stationary mean field behaviour of
the autonomous model. The stability analysis of this behaviour in the general case is
thoroughly discussed in Ref. [31]. However, analytical description of the dynamics
of oscillator ensembles, remains an important and interesting problem in bulk of
the situations, while the closed solution for the mean field exists only in case of
Lorentzian natural frequencies’ distribution for the simplest KM, (5.4).
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5.3.2 The Nonautonomicity in the Kuramoto Model

Non-constant collective rhythms in the inverse problem are very often a result
of external influence. Nevertheless, they can simply follow from asymmetrically-
coupled ensembles [54, 72] or from populations with multimodally distributed
natural frequencies [3, 10]. Multimodal distribution of the parameters is common
cause for the complex collective behaviour of these and should not be confused
with NA [63].

Many studies have been performed on coupled oscillators influenced by external
dynamics. Noise is the first form of external influence introduced by Sakaguchi [70]
and it is thoroughly studied since then. Its effect into increasing of the heterogeneity
is similar to increasing the width of the frequency distribution and the bifurcation
analysis for this case was performed in [87]. Likewise, driving by an external
periodic force [74] is a long-explored model. Each of the oscillators in this case
become additionally driven by an external frequency 2. This leads to the mean
behaviour directly characterized by the interplay between the external pacemaker
and the mean field of all other oscillators. Hence, the system corresponds to the
case of oscillator driven by an external force.

A generalization of the KM that allowed certain time-varying frequencies and
couplings have been also numerically explored in [14] or applied in certain models
of brain dynamics [71]. However, in none of them were the dynamics described
analytically, nor a qualitative description was given for slow or fast varying cases.

Frequency adaptation as discussed in [92] also assumes non-constant natural
frequencies, but without external influence. It is similar to the models with inertia
[2] and its dynamics, apart from the stable incoherence, are characterized by
either synchronization or bistable regime of both synchronized and incoherent
states. In addition, the model with drifting frequencies [69] assumes frequency
dynamics formulated as an Ornstein-Uhlenbeck process, but it also leads to time-
independent mean fields, resembling the simple KM under influence of colored
noise.

Alternately-switching connectivity [47,77] or periodic couplings [48], are some
of examples that explore phase oscillators with varying coupling strengths. Yet,
most of the discussions in these are concerned with the networks and graph theory
properties of the system, the analysis in mostly numerical and only Heaviside step
functions are considered for the interaction between oscillators.

Nevertheless, none of these models for group dynamics can exhibit the deter-
ministic and stable TD dynamics of many real physical, chemical, biological, or
social systems that can never be completely isolated from their surroundings. These
systems do not reach equilibrium but, instead, exhibit complex dynamical behavior
that stems from some external system.
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5.3.3 The Kuramoto Model with Time-dependent Parameters

Thermodynamical assumption of the KM, makes the introduction of NA into sys-
tem’s parameters a special case of interest. Unlike the case of two or finite number of
interacting oscillators, external influence in the KM affects the whole population and
continuously alters its group behaviour. The non-equilibrium dynamics that arise
from the NA influenced parameters was addressed in a recent generalization of the
KM with TD parameters [62]. It introduced an external, explicitly TD, bounded
function x (¢) that modulates the frequencies or couplings of the original KM. In the
most general case, the strengths of the interactions [; are distributed according to a
PDF /(1) and depending on which parameter is influenced two generalized models
emerge

A: 6 =aw + Lix(t) + K r(t)sin(y —6;), (5.7)
B: 0, =w; + K+ Lix(1)] r(t)sin(y — 6). (5.8)

For description of each oscillator of the NA KM, beside the natural frequency w;
and the coupling strength K;, one should know the strength /; and the form of the
external forcing, x (¢). Additionally, for each oscillator of the above models, at any
given time there exists a correspondence between the fixed and TD parameters, such
that 7; (t) = I;x(t). Thereafter, in the limit N — oo the population can be described
either by a continuous PDF p(6, w, I,t) which assumes fixed parameters, or by
its counterpart p(6, w, I, t) with TD parameters. However, since the latter would
further complicate the continuity equation for fixed volume by including gradients
along the TD variables also, the distribution for the fixed @ and I is chosen. Hence
the continuity equation for every fixed w and I is given by

.0 _ 9 K o «.io

A i 89{[(0 + Ix(t) + % (ze z7e')]p}, (5.9)
o _ 3 KA+1x(®) i «i6

B i a9{[0) + T (ze Z*e')p}, (5.10)

where the velocity along 0 is substituted from the governing equations ((5.7), (5.8)).

Since p(0, w, I, 1) is real and 27 periodic in 8, it allows a Fourier expansion. The
same would also hold for 5(6, w, I, t). Next, we apply the Ott and Antonsen ansatz
[58] in its coefficients, such that f,(w, I,1) = [¢(w, I,1)]". Thus,

p(0,w,1,t) = %{1 + {Z [a(w, I,0)]"e"? + c.c}, (5.11)

n=1

where c.c. is the complex conjugate. Substituting (5.11) into the continuity equa-
tions ((5.9), (5.10)), it follows that this special form of p is their particular solution
as long as «(w, I, t) evolves with
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K
A: aa_? +ifw + Ix(t)]e + E(za2 -7 =0, (5.12)

K + Ix(t)

5 (za®> —7*) =0, (5.13)

a
B: & +ioa +
ot
for models A and B respectively. The same ansatz implemented in (5.6), reduces the
order parameter to

+o0 ptoo
z* =/ / a(w,I1,1)g(w)h(Idwdl. (5.14)

Equations ((5.12), (5.13)) give the evolution for the parameter « which is related
to the complex mean field through the integral equation (5.14) and they all hold
for any distributions g(w) and A(/), and for any forcing x(z). Despite this, the
integrals in (5.14) can be analytically solved for certain polynomial or multimodal-
§ distributions g(w) and A (1), leading to direct evolution of the mean field.

5.3.3.1 Low-dimensional Dynamics

In order to be obtained evolution of the mean field, the integral (5.14) should
be solved. Therefore the natural frequencies follow a Lorentizan distribution, and
a(w, I,t) is continued to the complex w-plane so g(w) can be written as g(w) =
— w_(a%_’.y) — w_($+’.y)] with poles w,1 2, = (& £iy).

For the model A (5.7) with forcing strengths proportional to frequencies, ®(t) =
o[l + ex(t)] with a constant . This means that / = ew and h(/) = g(ew). Hence,
the integration in (5.14) is now only over w, and by using the residue theorem it

yields z* = a(® F iy, t). This is substituted in (5.12) returning

F=—rly|l +ex(t)| + g(r2 -DlL ¥ =a[l +ex()]. (5.15)

The simplest case of model A, (5.7), is when the external forcing is identical for
each oscillator, h(/) = §(I — ¢). This leads to trivial dynamics, since the original
model is invariant to equal shift of the natural frequencies. On contrary, the model
B with identical forcing to each oscillator yields TD mean field parameters given by

F=—rly+ S0+ ex@lC? ~ 1) d =0, (5.16)

The similar approach is used for obtaining the low-dimensional dynamics of
other cases of Models A and B which include forcing strengths with polynomial
Lorentzian-like distributions. Thus, Model A with an independent Lorentzian
distribution of forcing strengths evolves as
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= —rly vl @]+ 5 02 = DL =04 (o), (5.17)

where I and y; are the mean and half-width of &(7) respectively. However, for a
Lorentzian distributed forcing strengths of Model B, contour integration cannot be
applied to (5.14). Namely, the integration contour should be such that if «(w, I, 1)
is analytic and || < 1 everywhere inside the contour at ¢ = 0, this would also hold
for all + > 0. For this to happen, one of the requirements from [53] is |¢| < 0, for
|| = 1, but this cannot be proven to hold [62].

The integral (5.14) has straightforward solution for multimodal §-distributed
external strengths. Hence, for bimodal function 2(1) = %[8 (I - I— yr) +8(1 —

I+ y1)], the complex parameter z becomes

*

1 ~ . A A
F4 ai(@—iy, ] —yr,t) +or(@—iy I +yi1,1)]. (5.18)

ZE[

The dynamics on the other hand is consistently described by the evolutions of ¢,
obtained from (5.12) as

8051,2
ot

i A K
=il + U Fy)x@®)] —ylaa+ Z[al + o — 0512,2(011 + a2)"],
(5.19)
and from (5.13) as

3061,2
ot

1 N
=—({d—y)s+ ZK[l + I Fy)x@)][or + o — ozlzyz(on + a3)*].
(5.20)

Choi et al. [13] carried out a bifurcation analysis near the limit 7K < 1 for this case
of model A with cosine forcing.

The plots in Fig. 5.3 show the observed NA mean field for different cases of both
models. The plots Fig.5.3a, b are for cosine forcing and the plot Fig. 5.3c shows
chaotic forcing. A theorem in [59] states that ((5.12), (5.13)) asymptotically capture
all macroscopic behavior of the system as t — oo. Similarly, the incoherent and
partly synchronized states both belong to the manifold defined by ((5.12), (5.13))
[58], and the initial incoherent state is set with uniformly distributed phases at time
t = 0. Thus, the ansatz ((5.12), (5.13)) and the evolutions ((5.15)—(5.20)) should
continuously describe the NA system, as confirmed by Fig. 5.3.

5.3.3.2 Slow/Fast Reduction

Since the evolutions ((5.15)-(5.20)) are nonlinear and include explicit dependence
on time, the classical bifurcation analysis cannot be applied for these cases, as was
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Fig. 5.3 The time-varying mean field for model B resembles the externally applied cosine (a),(b),
or chaotic forcing for model B (¢). Numerical simulations of the full system (light blue) are in
agreement with the low-dimensional dynamics (dashed red). Adiabatic (dotted brown) and non-
adiabatic evolutions (dashed green) confirm the limits of the reduced dynamics (see text for
details). (a),(b) Constant forcing, K = 7,& = 0.6, £2 = 0.075 and £2 = 15 respectively; (c)
bimodal § distributed forcing, K =5,y =1, y; = 1.2 and =05

also discussed in Chap. 1. In addition, these are Bernoulli ODEs which can not be
explicitly solved, yielding to integro-differential equations. Still, the dynamics could
be reduced for the slow and fast limits of the external forcing, relative to the inherent
time-scale of the dynamics of the autonomous system. This is a similar approach
to the simplification of the dynamics introduced in Chap. 3. The systems analyzed
there evolve on multiple time scales, a fast and a slow, thus allowing for the proposed
reduction.

Here, we address the impact of the external forcing to the nonautonomous
system. The plots in Fig.5.3a, b show that oscillations of the mean field follow
the frequency of the forcing, but the challenge is to describe the magnitude of these
oscillations and whether it adiabatically follows the strength of the forcing. The
low-frequency filtering and different responses depending on the frequency of the
external forcing are also obvious. These two characteristics of population models
are well known and are a direct consequence of their intrinsic transient dynamics.
Accordingly, the NA dynamics can be reduced depending on the period of the
external field 7 = 27/ $2, relative to the system’s transition time [62].

The exponential damping rate of the original system is definedby 7 = 1/|K/2—
y| [58]. For a system far from incoherence, K = 2y + O(2y), T ~ 1/0(y) holds.
This means that the transition time depends only on the width of the distribution of
natural frequencies, y. Thereafter for this case, the system’s response is adiabatic
for slow external fields, £2 < y, and non-adiabatic for fast, £2 > y. To make the
analysis independent on y, it is removed by scaling the time and the couplings in the
autonomous system, t = ¢/y, K = K/2y and t = 1/|K — 1] (the scaled variables
keep the same letters in the further analysis).

For model B, (5.8), with x(¢) = ecos §2¢, after the initial transition and in the
absence of bifurcations, the amplitude of the mean field consists of a constant term
ro and a TD term Ar(¢). For the non-adiabatic response, simulations, grey lines in
Fig.5.3b, show that Ar(t) ~ 1/§2 and ro > Ar(t). Thereafter ry can be expressed
as averaged over one period T = 27/2 of the oscillations of Ar(¢). Proceeding
with averaging of both sides of (5.15) for one period, the term Ar(¢) cos §2¢ in the
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integral vanishes only if Ar(f) ~ sin £2¢, which is self-consistently proved as the
obtained form of Ar(¢) for non-adiabatic response, (5.22), follows this assumption.
Thus ry = /1 —1/K. Further, r(t) ~ ry and % = % is applied to (5.15) and
then it is integrated. From there Ar(f) = —ro5 sin §2¢, and the magnitude of the

NA response is

€ 1
Afast == 25 1 - ? (521)

Hence the long-term non-adiabatic evolution follows

/ 1
rast(f) = (1 + % sin Ql) 1— E (5.22)

The adiabatic behavior emerges through the introduction of a slow time-scale
t' = §2t, such that the system is constant on the fast time-scale ¢, and changes only
in ¢t'. Hence the Lh.s. of (5.16) is zero, whence

1
slow(l) = l———, 5.23
Tstow(0) \/ K(1 + ecos £2t) ( )

while, for the magnitude of the NA part, one obtains

1 1
Aslow:\/l—m—\/l—m. (5.24)

The adiabatic responses can also be obtained from the self-consistency of (5.6)
and (5.9) for stationary states of the mean field. Namely, assuming very slow
dynamics of the external forcing, the system can be treated as quasistationary.
This is similar to assuming stationarity on a fast time scale. Thus one obtains
r=4/1—=2y(t)/K(t), corresponding to the result (5.23).

The reduced dynamics, Fig. 5.3a—c, are in line with the above analysis, confirm-
ing the interplay between external and internal time scales of the NA system. The
magnitudes of the slow/fast responses to cosine forcing are given in Fig.5.4 for
model A, (5.7). It confirms the obtained dependence of A on the frequency and
amplitude of the external field. The low-frequency filtering is also obvious, and the
transient behavior for slow and fast forcing can be seen.

However, for coupling close to critical, the system’s transition time increases and
T — oo when K ~ K,.. As a result, the slow reduction fails when r is close to 0,
unlike the case K = K. + O(K_,) given in Fig. 5.3a, b for r far from 0.

The analysis of the reduced dynamics is shown only for simple periodic forcing.
Still, this does not decrease the generality of the reduction, since any external field
can be represented by its Fourier components. As a result, this method could be of
great importance in modeling systems with multiple time-scales of oscillation and
interaction.
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Fig. 5.4 Magnitude of the response, A, of the NA model B to the cosine forcing. External forcing
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(dotted black), (5.21), and adiabatic, (dashed black), (5.24), evolution fore € [0 : 1; 0:3; 0: 9],
compared with the real dynamics (light blue), (5.16)

5.3.4 Summary

In summary, different models of ensembles of interacting phase oscillators influ-
enced by external systems are presented. The main focus is put on the nonauton-
omous, stationary, time-dependent dynamics of interacting oscillators subject to
continuous, deterministic perturbation. Thus, this represents a generalization of the
case of two coupled oscillators, as discussed in Sect.5.2, for a large number of
interacting units. It consists of the dynamics of an external system superimposed
on the original collective rhythm and have been missing from earlier models and
extensions described in Sect. 5.3.2, possibly leading to an incorrect interpretation of
some real dynamical systems. The impact of the forcing to the original system is also
explained and the effect of its dynamics, amplitude and distribution is evaluated.
Hence, the generalization of the KM that encompasses NA systems [62] offers
possibility for direct tackling the NA in the interacting oscillators. In particular,
it allows reconstruction of the stable, time-varying mean field. As a result, a large
range of systems explained by the Kuramoto model—spanning from a single cell
up to the level of brain dynamics—can be described more realistically.

5.4 Nonautonomous Systems as Inverse Problems

5.4.1 Introduction

The theory of nonautonomous systems is able to explain a wide range of phenom-
ena, especially in living systems. However, there is very little literature available
on how to analyse the observables of these systems for the inverse problems
encountered in the real world.

Time series analysis has been used for decades as a non-invasive tool for
extracting information about the workings of unknown dynamical systems [1,7,19].
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This is achieved not through experimental perturbations, but by observing the
spontaneous dynamics of a system over a finite time period. In the case of
nonautonomous systems, this form of analysis is even more important given that
in real world systems there is rarely control over the initial time 7,.

5.4.2 Time-Delay Embedding

For deterministic systems, phase space is the most common domain of analysis. In
this representation, systems in or close to equilibrium are confined to either a limit
cycle or fixed point, while non-equilibrium systems such as those exhibiting chaos
occupy an area of phase space known as a strange attractor. The stability of these
systems can also be quantified in phase space by the use of Lyapunov exponents,
which determine whether two nearby trajectories will converge, diverge or remain
at the same separation over time.

The theory of transforming time series data to phase space was developed by
Floris Takens [91] and Ricardo Mafié [50]. The procedure involves the construction
of an embedding vector for each point in time

x(t;) = [x(t), x(t + 1A?), ... . x(t; + (d — 1) AD)], (5.25)

where d is the embedding dimension and [ is an integer, both of which must
be chosen prior to embedding. The dimensions of the reconstructed attractor are
therefore composed of time-delayed versions of the data in x (7).

For the choice of /, the embedding theorem specifies no conditions. Technically
any delay time / Az (so long as it is not exactly equal to the period of an oscillatory
mode) should give a “correct” reconstruction of the attractor, preserving all of its
local properties. However, for the purpose of improved statistics, the best time
delays are neither extremely short or extremely large [11, 39, 76].

For the estimation of d, the embedding theorem specifies the following condition

d>2D+1, (5.26)

where D is the smallest theoretical dimension of phase space for which the
trajectories of the system will not overlap [1]. An appropriate value of d can be
estimated empirically from a time series by using the false nearest neighbours
method [37,67].

While embedding works well for the case of autonomous systems, the theory
does not consider nonautonomous systems and the possibility of time-dependent
attractors. As discussed in Chap. 3, the time-dependent components in these systems
are incorporated into extra dimensions in phase space, essentially resulting in a
more complex, time-independent attractor. For example, the nonautonomous van
der Pol oscillator shown in Fig. 5.1a, ¢ becomes equivalent to the following four-
dimensional system of equations
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Fig. 5.5 Analysis of time series from the system in Fig.5.1a, ¢ using time-delay embedding:
(a),(c) The autonomous system; (b),(d) The nonautonomous system. The top plots show the
derivative of the correlation integrals [24,25] with respect to the length scale ¢ for the embedding
dimensions d = 2,3,...,7. The bottom plots show the normalised exponents from Karhuen-
Loeve decomposition [36,49] for d = 4,5,..., 9. The results for the autonomous system are
given in (a) and (c¢) for /At = 1.5s, while the results for the nonautonomous system are given in
(b) and (d) for /At = 2.1s. In each case the time delay was estimated from the first minimum of
the mutual information [21]

X=y

y=(0-xY)y+ [0+ Au]’x (5.27)
u=v

v =—@

This problem is demonstrated in Fig.5.5. In Fig.5.5a and b the plateau in the
derivative of the correlation integral indicates the dimension of the attractor [83,84].
For the nonautonomous system, the lines for different embedding dimensions
converge to a value ~ 2, despite the fact that the time-dependent attractor,
as seen in Fig.5.1c, is really a one-dimensional limit cycle. In Fig.5.1c, the
distribution of exponents from Karhunen-Lo¢ve decomposition quickly converges
as the embedding dimension is increased for the autonomous system. However,
in Fig.5.1d the decomposition is highly dependent on the dimension for the
nonautonomous system, which again suggests the incorporation of much higher-
dimensional dynamics. When embedded in phase space, the deterministic motion
of the attractor in Fig.5.5c is therefore treated in a similar way to the genuinely
stochastic motion of the attractor in Fig. 5.5d.



184 P.T. Clemson et al.

M VA U (1] 200 400 a0 00 1000 1200 1400 1600 1800

a
I 0.1

Frequency (Hz)

0% 10

Power Time (s)

Fig. 5.6 Time-frequency analysis of a time series from the nonautonomous system in Fig. 5.1a, c.
The Fourier transform power spectrum is shown in (a), while the amplitude of the Morlet wavelet
transform is shown in (b) using arbitrary units (AU)

5.4.3 Time-Frequency Analysis

At present there exists no theory to extract a time-dependent nonautonomous attrac-
tor from a single time series. For inverse problems, the analysis of nonautonomous
systems in phase space is therefore impractical.

Similarly to phase space analysis, transformations to the frequency domain
remove time-dependent information and therefore suffer from related problems. The
conversion of data from the time domain to the frequency domain is achieved via
the well known Fourier transform,

F(o) =% T fye T ar, (5.28)

_L
2

where f(z) is the time series, w is the angular frequency of the components in the
frequency domain, and L is the length of the time series.

Figure 5.6a shows the Fourier transform of the nonautonomous van der Pol
system. The wide distribution of peaks provides no information about the underling
system, which comprises of a simple time-dependent limit cycle oscillator. How-
ever, the gaps between these peaks suggests some deterministic structure, rather than
a single stochastic oscillation. Combining this information with the fact that only
one oscillation is observed in the time domain indicates that the other components
must be harmonics, which identifies the presence of nonlinearity in the system.

The combination of information from both the time and frequency domains is
a powerful tool for inverse problems involving dynamical systems. However, it
also has inherent limitations due to the uncertainty principle associated with the
time and frequency resolution. The optimal transformation to the time-frequency
domain therefore requires an adaptive basis, which allows components at all times
and frequencies to be extracted at this maximal resolution. This optimum is provided
by the wavelet transform,
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L/2
Wi(s,t) = /—L/z W(s,u—1t)f(u)du, (5.29)

where ¥ (s, u — t) is the wavelet defined at scale s and time 7. The closest wavelet
to the basis used in the Fourier transform is the Morlet wavelet,

142 _ 2miocu

U(s,u) =s e 22e s, (5.30)

where w, is the central frequency, which defines the time/frequency resolution ratio.
With this basis the frequency is given by 1/s.

The amplitude of the wavelet transform shown in Fig. 5.6b reveals a less complex
distribution of peaks than the Fourier transform. This is because the wavelet
transform is able to track the nonstationary frequency distribution of the time series.
However, due to the fact that wavelets are a linear basis, the additional harmonic
component is still observed.

Harmonics that are observed in the wavelet transform do not pose a problem
because time-dependent phase information is preserved. Methods have now been
developed which exploit this information to separate the underlying nonlinear
components from the harmonics [73]. In addition, by analysing these phases it
is possible to detect the nature of the interactions between the real nonlinear
components.

5.4.4 Interacting Systems

For inverse problems involving coupled systems, the interactions can be time-
dependent if the nature of the coupling is nonautonomous. In particular, the problem
of time-varying couplings between two van der Pol oscillators is considered,

X12 = Y12,

Viz = u(1=x75) yia + of yx12 + v1200) (12— y2.1)* + Emalt). (5.31)

Here 1, 2(¢) are uncorrelated Gaussian noises with & = 0.05. The parameters y; »(t)
determine the strength of the time-dependent quadratic couplings between the two
systems.

Previously, the most common way of observing this time-dependence was by
tracking epochs of synchronization [85] but this is in fact a consequence of
interaction rather than a cause. Other methods have now been developed which are
able to decipher the more subtle effects of these interactions in order to directly
reveal the couplings y; 2(t).

The first of these methods follows directly from time-frequency analysis. The
bispectrum was introduced by Hasselmann et al. [28] and arises from high-order
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statistics [57]. In the frequency domain, the bispectrum can be thought of as an
estimate of the third-order statistic and describes the nonlinear (or more specifically,
quadratic) properties of a time series [33, 56]. By using the Fourier bispectrum, the
nonlinear couplings between oscillations at different frequencies can be detected,
although there is no easy way to track the changes in these couplings due to
the limits of time-frequency resolution. The wavelet transform again provides the
optimal solution to this limit and following from (5.29), the wavelet bispectrum is
given by Jamsek et al. [34,35],

BW(sl,sz)zfW(sl,t)W(sz,t)W*(S3,t)dt, (5.32)
L

where 53 = 1/( L 12) The instantaneous biamplitude can now be defined as
A(sy,82,1) = |W(s1, HW(sa, t)W*(s3,1)| to give a time-dependent bispectrum. In
addition, the instantaneous biphase ¢, (s1, s2,¢) = 0(s1,t) + 0(s2, 1) — 0(s3,¢) can
also be defined, where 6(s, n) are the phases of the wavelet components. Whenever
a coupling between the scales s and s, is active, the biphase remains constant [35].

Wavelets are not the only available tool for the analysis of interactions between
coupled systems. Couplings can also be detected using methods based around
Granger causality [35, 60, 61, 93]. In this case, a coupling is said to exist if one
system gives information about the state of the other system after some time lag.
Using the observed time series from the two systems x , the appropriate measure
for this principle is given by the conditional mutual information (CMI),

L(x1(2); x2(2 + 7))[x2(0)) = H(x1(2)) + H(x2(2)) — H(x1(1), x2(t + 7)[x2(2)),
(5.33)

where H(x;,) is the Shannon entropy and H(x;(¢),xz(¢)|x;(t + 7)) is the
conditional entropy [61]. Here the CMI gives a measure of the information flow
in the direction x; — x, for the time lag t. Alternating the time series indices 1, 2
gives the CMI for the opposite direction.

The most recent approach applies the Bayesian theorem [8], in which information
about the couplings can be propagated in time. The method uses a set of periodic
basis functions which are inferred using the phases of the two oscillators. The
dependence of one oscillator on the other can be detected by inferring the most
likely parameters for the basis given the data from the phases and generating the
coupling functions. For the full details of the method see [18, 78, 79]. However,
the key to Bayesian inference is that the inferred parameters from a previous time
window are assumed as prior information in the calculation of the parameters in the
next window. Consequently, the inference of the couplings is formulated in time and
is ideal for the application to nonautonomous coupled systems.

Figure 5.7 shows these methods applied to the coupled van der Pol oscillators.
The couplings were made very weak so that the additive noise prevented synchro-
nization without having a strong effect on the limit cycle oscillations. Both the
wavelet biamplitude Fig. 5.7b and biphase Fig. 5.7c are able to detect the coupling
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Fig. 5.7 Time series analysis of the van der Pol oscillators defined by (5.31) with a very weak
one-directional, time-dependent coupling 0 < y; < 0.01, ¥, = 0. (a) The strength of the coupling
against time. (b) The wavelet biamplitude and (c¢) biphase for the frequency pair wy, (0, + @2)/2.
(d) The CMI of the extracted phases as calculated with a 25 s moving window using a time delay
t = 0.1. (e) The inferred coupling parameter from the Bayesian method using a 25 s window, with
the coupling functions (f), (g) and (h) for the corresponding direction of coupling at the times 175,
475 and 800 s respectively. The parameters used were © = 0.2, w; = 2 and w, = 2.7. The phases
were extracted by applying the protophase to phase transformation [44]

for the chosen frequency pair, although there are many other combinations for
the oscillations frequencies and their harmonics and each gives a slightly different
result. The CMI in Fig.5.7d is also able to trace the general shape of the coupling
strength in time, although again slightly different results can be obtained depending
on the time delay used. In Fig.5.7e, the Bayesian method is able to track the
coupling with a high degree of accuracy after the initial window where the prior
information is unknown. Additionally, the coupling functions Fig. 5.7f and g were
derived from completely different time windows but are an almost identical match,
which demonstrates the robust dependence on the coupling parameters.

5.4.5 Summary

Previous methods used in inverse problems of deterministic dynamical systems have
relied on time-independent representations. Analyses performed in phase space and
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the frequency domain provide measures of the dimensionality and complexity of a
system. However, when the same analyses are applied to nonautonomous systems
the results can be misleading, causing the system to appear equivalent to a more
complex or even stochastic system.

In order to understand the true nature of a nonautonomous system from a single
time series it is important to use methods that are able to track time-dependence.
This allows the separation of the purely time-dependent parts of the system so
that a simple nonautonomous limit cycle oscillator is not mistaken for a chaotic
or stochastic system.

5.5 Living Systems as Coupled Nonautonomous Oscillators

5.5.1 Introduction

Spontaneous oscillations are abundant in nature, from the cellular level [22] to
oscillations of whole populations [51]. No matter at which level of complexity we
observe the dynamics of a living system the net balance of concentrations associated
with its functioning will be a dynamical process rather than a static one, and will
be associated with a dynamical equilibrium. This is a consequence of a continuous
exchange of energy and matter of each living unit with its environment, or its direct
perturbation from the environment.

The recognition that living systems are characterised by many interacting
rhythms can be traced back to at least as early as to the experiments by Hales [27].
He observed that the heart rate, seen as pulsations of blood flow and blood pressure,
is modulated by the respiratory rhythm and in this way introduced what has been
studied much later as coupled oscillatory processes. The interaction between the
heart beat and respiratory rhythm is known as respiratory sinus arrythmia and its
precise physiological mechanisms are still subject of investigation. Below we will
briefly discuss some of the current progress.

The brain waves are another types of rhythms associated with functioning of a
human organisms, which were discovered as soon as the electrical activity of the
brain was non-invasively recorded [9]. Almost 100 years later their neurophysi-
ological mechanisms are still poorly understood, owing to the immense number of
connections between neurons in the brain and the resulting complex spatio-temporal
dynamics. Although intracellular oscillations were reported as early as in 1975 [22],
we still cannot link the basic cellular oscillations to those observed in the ensembles
of neurones in the brain.

One of the obstacles in understanding the functioning of living systems has been
a lack of appropriate physical framework as well as a mathematical description of
nonautonomous systems far from thermodynamical equilibrium. However, these
areas have faced a huge development in the last decades which is now coming
to fruition. There are several milestones in this development, both in theory and
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numerical approaches. One line of research resulted in the introduction of the theory
of cooperative phenomena by Haken [26], the theory of entrainment and phase
resetting by Winfree [95] and the phase dynamics approach by Kuramoto [45]. The
other line of research resulted in developments in the theory of stochastic dynamics
[55]. At the same time various numerical approaches were proposed to deal with the
growing amount of time series that are now easy to record. Generally, due to their
immense complexity living systems are most comfortably treated as stochastic and
their statistical properties are elaborated in various ways [80].

Taking the nonautonomicity as one of the fundamental properties of living
systems, we adopt another approach. Namely, paying particular attention to the
effect of interactions by inferring it as a time evolution, we can reduce an immensely
complex dynamics to a mainly deterministic dynamics of interacting units. In this
way we can treat a human as a network of interacting ensembles of oscillators.
Armed with the methods presented in the Sects.5.2-5.4 we will take cardio-
respiratory interactions to illustrate our point.

5.5.2 Dynamical Inference of Cardio-respiratory Coupling
Function

We now take real data recorded from healthy subjects and focus on cardio-
respiratory coupling functions and their change with age. The major results of this
study, where 197 subjects of all age spanning from 16 to 90 years were included,
have been published earlier [32, 75]. The electrical activity of the heart (ECG) was
recorded with electrodes placed over bony prominence: two over the shoulders and
one over the lover left rib. The respiration was recorded using an elastic belt with
an attached Biopac TSD201 Respiratory Effort Transducer (Biopac Systems Inc.,
CA, USA) positioned around the chest. The signals were recorded continuously
and simultaneously for 30 min with subjects lying relaxed and supine in a quiet
environment at normal room temperature. In a sense, we have reproduced Hales’
experiment, asking two questions—

(i) What is the coupling function that maintains the respiratory sinus arrythmia?
and
(i1)) What happens to the coupling function with ageing?

Both instantaneous frequencies, cardiac (IHR) and respiratory (IRF), were
extracted using synchrosqueezed wavelet transform (SWT, for details see [32]).
It is obvious from Fig.5.8a that both are not constant, but are varying in time.
The variations can be equally considered as either resulting from stochastic or
deterministic modulation/perturbation. To date, both approaches have been applied
and two major conclusions can be drawn—

(i) The spectral peaks of both the cardiac and respiratory instantaneous frequencies
contain several time-varying oscillations. This means that several oscillatory
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Fig. 5.8 (a) Instantaneous cardiac and respiratory frequencies for a young and an aged subject
and (b) the corresponding coupling functions

processes are perturbing/ modulating the beating of the heart [81,82]. A similar
situation holds for the instantaneous respiratory frequency [38]. The power
of these perturbations/modulations is reduced with age [32, 75]. Hence, one
can treat both, the cardiac and the respiratory process as resulting from thou-
sands of highly 1:1 synchronized oscillators that are continuously perturbed
by other processes. Because all cells in the ensembles of the “heart” and
“respiration” are synchronized most of the time—with a pacemaker in case
of the heart and with a similar mechanism in case of the lungs—we will
consider their macroscopic behaviour only, reducing each to a single oscillator.
They also perturb each other and below we will extract the extent of this
perturbation.

(i) The instantaneous frequencies are highly complex and stochastic processes. To
date various methods to extract complexity have been applied, especially to
the instantaneous heart frequency which is also known as heart rate variability
(HRV). In addition, it has been shown that the complexity highly significantly
reduces with age [23,75].
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5.5.2.1 A Model of Cardio-respiratory Interactions

We now model the cardio-respiratory system as a pair of nonautonomous, noisy
coupled oscillators with phases ¢y, ,, where & implies heart and r implies respiration

on(t) = 2 wn(t) + qn(n, ¢r. 1) + En(t)

. (5.34)
& (1) = 2mw, (1) + qr(Pns Pr, 1) + §:(2).
The time-derivatives of the phases d)h,, /27w correspond to IHF and IRF, wy,
denote natural frequencies, and & ,(¢) is assumed to be white Gaussian noise:
(&(1)§;(r)) = 8( — 1v)E;;. Note that the coupling functions g, are time-
dependent.

The model (5.34) explicitly includes only the phases of the cardiac and respira-
tory activities. However, it is known that the IHF and IRF are modulated by other
processes as well, e.g. modulation of IHF at low frequencies around 0.1 Hz [82] and
here we incorporate these external influences by considering nonautonomicity and
time-dependent parameters.

5.5.2.2 Extraction of Nonlinear Interactions Using Dynamical Inference

In brief, the Bayesian method, extended to account for nonautonomicity [18,78,79]
as discussed in Sect. 5.4, is applied to the phases extracted using SWT. Thus, we
model the right hand sides of (5.34) as a sum of Fourier basis functions multiplied
by some coefficients, q'S/” = Chrn f1(@n. &r) + Chr fo(Pns dr) + ...+ & (2), and
find most probable values of these coefficients Cj,,; in each time window. Fourier
series up to second order, sin(m¢y, —ne, ), cos(me, —n¢,) withn = —2,—1,0,1,2
andm = -2,—1,0, 1, 2, were used.

The inference was performed within non-overlapping windows of time length
50s, chosen to incorporate at least ten cycles of the slower oscillatory process and
thus provide enough information for accurate inference. While further details of
analyses and the results obtained for all subjects can be found in [32], in Fig.5.8,
here we present results characteristic of a young and an older subject.

To gain an insight into the nature of cardio-respiratory interactions, we
have reconstructed the time-varying coupling functions g, (¢n, ¢r,t) in (5.34).
Figure 5.8b shows the coupling functions g;, typical of a young and an older
subject. It is obvious that the heart coupling function, g, changes markedly with
age. We now show that especially it is its time-variability that changes, whereas the
respiratory coupling function, ¢,, seems to be irregular and unaffected by age.
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5.5.3 Summary

What have we learned by considering cardiac and respiratory oscillatory properties
as nonautonomous? We have confirmed that the variability of heart rate and
hence its complexity reduce with age. But in addition, we have shown that this
reduction is mainly on account of reduced influence of the respiration to the heart
and moreover the reduced variability of this influence. In other words, we have
shown that the cardiac function is becoming more autonomous with age, pointing
out that nonautonomicity and the ability to sustain stable functioning far from
thermodynamic equilibrium are essential for life.

5.6 Outlook

In this chapter we first provided a general description of nonautonomous oscillatory
systems, discussing their properties and the ways in which they are usually treated.
We proceeded to discuss the difference between non-stationary and nonautonomous
dynamics. Namely, the notation and relationship between the two is often misinter-
preted, especially when certain phenomena are investigated from an experimental
point of view. In Sect. 5.2 we point out that non-stationarity is a statistical measure
that one obtains from a signal, while the nonautonomous dynamics can act as a
functional generator of non-stationary signals.

Nonautonomous systems are a very broad class of systems and in this chapter
we narrowed down our interest to self-sustained nonautonomous oscillators. Fur-
thermore, we studied the interactions and particularly the synchronization state
of such oscillators under nonautonomous perturbations. We first used a model
consisting of two coupled Poincaré limit-cycle oscillators with periodically varying
frequency parameters. By the use of numerical simulations and methods for phase
synchronization detection, we presented how the nonautonomous sources can affect
the interacting dynamics. Moreover, we show that the phase difference can become
a time-varying process leading to qualitative transitions in the synchronization
ratios, or intermittent synchronization with transitions between synchronized and
non-synchronized states. Transitions between synchronization ratios and between
synchronized and non-synchronized states are frequently observed in analyses of
biological oscillators, e.g. cardio-respiratory interactions [32, 38, 82], which we
briefly discuss in Sect. 5.5.

In the case of a population of nonautonomous oscillators (Sect. 5.3), the external
forcing is superimposed on the dynamics of the original system—for any parameter
of forcing. We have shown numerically and analytically [62] that this influence
can be quantified for periodic forcing depending on the frequency of the external
forcing compared to the system’s transient time, i.e. the system’s homogeneity. We
show that this new approach could be of great importance in modelling systems
with multiple time scales of oscillations and interactions, such as the human
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cardiovascular system [82], interactions between the cardiovascular system and the
brain [81], or interactions between inhibitory neurons in the cortex [20].

The generalization of the KM that encompasses NA systems is directly appli-
cable to any thermodynamically open system. For example, the observed time
variations of brain dynamics can be easily explained as a consequence of TD
frequencies or couplings of the single neurons, where the source of the external
variation could be due to anaesthesia [71], event related [64], or due to some
influence from another part of the brain, or the cardiovascular system [81]. In the
brain dynamics, these findings could be used to explain how slow-varying signals
from the cardio-vascular system [82] could modulate membrane potentials of the
neuronal populations, leading to modulated spiking activity. Analogously, the same
slow signals would have a greater influence on the group dynamics of the neurons,
while the faster signals from the brain would mostly influence more homogeneous
and more synchronized neurons.

An important issue for the further research is the bifurcation analysis for the
TD KM described by its low-dimensional dynamics. This is not a trivial problem
because of the explicit dependence of the model parameters (frequencies, couplings)
on time. Unfortunately, in such a case the classical approach used for autonomous
systems cannot be applied. However the system’s dynamics are deterministic
and could experience different macroscopic states at different points in the time,
depending on the system’s parameters. Hence, one possible way out—of a big
importance for the theory of NA systems—is determining the times or other space
points where these transitions occur.

We also discussed recent developments in numerical methods for the analysis
of data recorded from nonautonomous systems (Sect. 5.4). With the rapid increase
in computational facilities today, the range of methods used for the time series
analysis of nonautonomous systems continues to grow. However, unlike other types
of deterministic systems there is still no theorem to embed the time series of a
nonautonomous system in phase space. Such a theorem would have to track the
time-dependent attractor of the system, which in the absence of an analytic solution
can currently only be found by observing many trajectories with different initial
conditions.

We have also illustrated that the coupling function between the cardiac and
respiratory activity becomes weaker with ageing. At the same time new aspects
of mitochondrial function and their role in diseases of both systemic and pulmonary
vessels have been continuously revealed [17]. One of the challenges is now to
relate the mitochondrial oscillations to those in the cardiovascular system and see
if and how they change with ageing. Undoubtedly, the theory of nonautonomous
oscillators in this endeavour will be crucial.

Following from the theory of self-sustained nonautonomous oscillators a new
class named chronotaxic systems was also recently defined [90]. It provides formal-
ism for deterministic systems that can maintain stable frequencies. The chronotaxic
attractor in these systems is point pullback attractor related to the ones discussed
in Chap. 1. It has already been shown that the heart can be readily described as
a chronotaxic system. Furthermore, we expect many systems to be identified as
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chronotaxic, despite the fact that some were previously characterised as stochastic.
Additional work, however, is needed to generalise the theory of chronotaxic systems
including how they should be tackled in an inverse approach.
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Chapter 6
Multisite Mechanisms for Ultrasensitivity
in Signal Transduction

German A. Enciso

Abstract One of the key aspects in the study of cellular communication is
understanding how cells receive a continuous input and transform it into a discrete,
all-or-none output. Such so-called ultrasensitive dose responses can also be used
in a variety of other contexts, from the efficient transport of oxygen in the blood
to the regulation of the cell cycle and gene expression. This chapter provides a
self contained mathematical review of the most important molecular models of
ultrasensitivity in the literature, with an emphasis on mechanisms involving mul-
tisite modifications. The models described include two deeply influential systems
based on allosteric behavior, the MWC and the KNF models. Also included is a
description of more recent work by the author and colleagues of novel mechanisms
using alternative hypotheses to create ultrasensitive behavior.

Keywords Systems biology e Ultrasensitivity * Allostery ¢ Cooperativity e
Signal transduction

6.1 Introduction: Ultrasensitive Dose Responses

Chemical reaction networks (CRN) lie at the heart of many biochemical processes
inside the cell. They have been extensively modeled to understand the behavior of
specific systems, and they have also been systematically studied at the theoretical
level [5, 14,23]. Although often implicitly assumed to converge globally towards a
unique equilibrium in chemical engineering and other applications, CRNs can have
exceedingly complex dynamical behavior. Moreover, many biological systems have
arguably evolved towards precisely such relatively rare complex examples, driven
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Fig. 6.1 (a) A sample signal transduction pathway involving the signaling protein egf and the
output protein MAPK, which can trigger cell division. (b) The function y = x"/(x" + 1) is
the canonical example of an ultrasensitive function. The coefficient n quantifies the ultrasensitive
behavior. (¢) A protein can be activated through phosphorylation at multiple specific locations.
(d) A receptor complex is activated through the collective binding of ligand to its multiple receptors

Cell Division

by a need to exhibit behaviors such as oscillations (e.g. circadian rhythms, cell cycle)
and multistability (e.g. cell differentiation).

Here we focus on chemical reaction networks in the context of signal transduc-
tion, i.e. in the study of cell communication and the processing of information.
Such systems have a parameter that is usually regarded as an input, and which
corresponds e.g. to a signal molecule binding on the cell or to a component of a
larger network. They also have an output, i.e. a molecule in the system that is thought
to produce a downstream response and which represents the overall activity level of
the network. For instance, a protein known as epidermal growth factor, or egf for
short, is used as a messenger molecule to induce cells near the skin to divide after
a wound (Fig. 6.1a). If a sufficient number of egf molecules bind to the membrane
of a cell, a series of internal reactions takes place resulting in the activation of the
output protein MAPK. This protein goes on to activate many transcription factors
that can cause the cell to divide [2].

There are good reasons to study nonautonomous networks with inputs and
outputs in biology, rather than autonomous networks. First, sometimes the full
model would take place at a scale much larger than desired. If a hormone is used
as a cell ligand input, the cell behavior might ultimately feed back into the tissues
that produce the hormone. But modeling the full system would involve including
other parts of the body, which is much larger in scope than an intra-cellular model.
Another reason is that understanding subsets of a larger network, e.g. the way that
Cdc28 affects Weel in the cell cycle, is often a fairly difficult and open problem in
itself [31,32] and a step towards an understanding of the complete network.

In the context of nonautonomous systems which is the main topic of this book,
the goal would be to understand how the system responds over time given a time-
varying input concentration. Although such time-varying inputs are ubiquitous
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in nature, the majority of experimental data in signal transduction measures the
response of the system to a constant input concentration. A preliminary goal that is
the focus of this chapter is to understand the so-called dose response of the system,
that is, the steady state value of the output as a function of the input (assuming
such a steady state is uniquely defined). A special case of high interest to many
experimental biologists is that of ultrasensitive, or all-or-none behavior (Fig. 6.1b).
Imagine that a cell is intended to divide in response to a sufficiently large egf
stimulus, and to do nothing for a low egf stimulus. This essentially transforms
a continuous egf input signal into a binary, all-or-none output, which should be
reflected in the concentration of the output protein of this system, the protein
MAPK. The all-or-none conversion of a continuous input into a binary output is
quite common, not only in cell communication but also for the internal components
of biochemical pathways such as the cell cycle, and simple networks that achieve it
would likely be favored by evolution.

The most well-known mechanisms for ultrasensitivity involve multisite systems,
in which one of the proteins has many identical modification sites. For instance, a
very common protein modification known as phosphorylation involves the covalent
attachment of a phosphate group to a specific location in the protein. Many proteins
have not only one but multiple specific locations that can be phosphorylated at
any given time (Fig. 6.1c). Multisite phosphorylation can cause dramatic changes
to the shape and properties of the protein, to the point that it can effectively
activate an otherwise inactive protein (or vice versa) [60]. In fact, the egf signal
transduction cascade in Fig. 6.1a contains several proteins that are activated through
multisite phosphorylation as indicated. Proteins can also be covalently modified
in other ways, for instance they can be acetylated or methylated, also in very
specific locations. These can act as the modification sites in other mathematical
models [64].

An entirely different category of multisite protein modification is multisite
ligand binding (Fig. 6.1d). For example, a group of membrane receptors can cluster
together and trigger a downstream signal only when sufficiently many of them are
bound to some signaling molecule [9,19,74]. A protein may bind to multiple nearby
sites on a DNA molecule, in order to promote or prevent the expression of a gene
[11,28]. The direction of rotation of the flagellar motor in E. coli is controlled by
the binding of a protein to one of 34 sites on a ring around the motor [20]. More
often than not it is still unknown exactly how the different sites interact with each
other and why there are many sites and not just fewer sites or even one.

This chapter will review the main mechanisms known to create ultrasensitive
dose responses in biochemistry, as well as some newer mechanisms (some devel-
oped recently by the author) that have not been directly tested experimentally. The
focus will be on multisite ultrasensitivity, but other well known mechanisms will
also be discussed in a separate section. See also the lively review on cooperativity
by Ferrell [25], and the recent more general review on signal transduction, including
ultrasensitive responses, by Bluthgen et al. [7].



202 G.A. Enciso

O

1
wn ' lun E
A ; ung .
h=4 '
(%]
Q0
T 06
e
5
o 04 ! !
O | H
=3 ;189 :

0.2 ' '
o H
0 25 50 75

O, concentration (torr.)

Fig. 6.2 (a) The structure of the hemoglobin protein as it binds to four O, molecules. From
Biology by Brooker, Widmaier, Graham, and Stiling, copyright McGraw-Hill. (b) Hemoglobin
has a high affinity to O, under high O, concentrations (such as in the lung) and a low affinity in
low concentrations (such as in distant tissues), which allows for an efficient O, transport in the
blood

6.2 Hemoglobin and Hill Functions

Early work on ultrasensitive behavior in biochemistry appears to have focused on
hemoglobin, the molecule that transports much of the oxygen in the bloodstream
(Fig. 6.2a). Physiologists were puzzled about the behavior of this protein: when
oxygen concentration is low, it has a low binding affinity to oxygen. But when
oxygen concentration increases, the affinity to oxygen grows fairly dramatically.
This makes physiological sense: when the blood is in the lung, where oxygen
abounds, hemoglobin captures as much of it as it can. When it is in the far reaches
of the body (e.g. in a leg), the oxygen concentration is low and hemoglobin unloads
its cargo (Fig. 6.2b). This leads to a much more efficient transport of oxygen than
merely binding and unbinding at random times.

The open question was how hemoglobin can work in this efficient way. In 1910,
a 23-year old scientist called A.V. Hill proposed a simple hypothetical reaction that
could explain this [Hill, 36]. Each hemoglobin molecule would have n O,-binding
sites rather than one, and they would bind or unbind at the same time:

H+nO,—-C, C— H+nO.. 6.1)
Using mass action reaction kinetics [22, 23], the differential equation for the

complex C is

dc
— =eHO} —pC.
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where o and § are the binding and unbinding reaction rates respectively. One mass
conservation law that holds for this system is the preservation of the total amount of
hemoglobin, whether bound or unbound to oxygen: H + C = H,,. At steady state,
one can set « {0} = BC and replace H by Hy, — C in order to solve for C as a
function of the oxygen concentration:
n
C = Htot%‘ (62)
« T O3

As O; increases, the amount of oxygen bound to hemoglobin increases in an
ultrasensitive way. The function x" /(K" + x") became known as a Hill function,
and it is one of the most important functions in mathematical biology. The exponent
n in this function is known as the Hill coefficient, and it is a measure of the
ultrasensitivity of the function (Fig. 6.1b). Incidentally, A.V. Hill went on to receive
a Nobel prize in 1922 for his work on muscle physiology, and he is considered one
of the founders of biophysics.

One should actually not take (6.1) too seriously, because a reaction involving
such a large number of molecules is highly unlikely to take place. At most,
this reaction can be thought of as a shorthand version of a reaction involving
multiple steps. Depending on how the different steps are specifically spelled out,
the high ultrasensitive behavior may or may not be preserved. Nevertheless this is
an illustrative example of how one can derive a Hill function from first principles,
involving the collective action of multiple individual sites. Hill functions are used in
many contexts in mathematical biology, see for instance their application to PK-PD
modeling in Chap. 7 of the present book by Koch and Schropp, as well as in Chap. 8
by Herrmann and Asai.

6.3 Cooperativity and the Adair Model

A ubiquitous concept in the study of multisite ultrasensitivity is that of cooperativity.
A multisite protein is said to be cooperative if the modification of one of its
sites (phosphorylation, ligand binding, etc) increases the rate of modification of
its neighboring sites. The general idea is that cooperativity leads to ultrasensitive
behavior, which is illustrated quantitatively in this section.

Suppose that a protein with n sites can be in states Sy through S,, where S;
represents the concentration of protein with exactly i modified sites. .S; turns into
Si+1 at a linear rate equal to a; E'S;, where E is the input concentration (enzyme,
ligand, etc) (Fig. 6.3a). Assume that S;; turns back into S at a rate of b; 4 S;. The
differential equation for this system is
S/ =a;ESi—1 —b;iSi —ait1ES; + bi11Si41. (6.3)

1
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Fig. 6.3 (a) General sequential modification model. The corresponding ODE can be derived from
the linear flow rates. (b) Adair model. In the special case K; = 1, this model replicates a
nonsequential ligand binding model with n independent sites. (¢) Simulation of the Adair model
forn = 4. If all K; = 1, the fraction of bound sites is equal to cE/(cE + 1), plotted (dashed)
for ¢ :=kou/koy = 1.If K| = K, = K3 = 1, K4 = 1000, and ¢ = 0.2, a more ultrasensitive
behavior is obtained (solid)

fori =1...n—1.Fori = 0andi = n simply omit the first and last two terms,
respectively. At steady state one can prove that S; = Z—jE Si—ifori =1...n (prove
first for i = 1, then through induction on 7). Therefore

ai . .
S, = ES, i=1...n.
’b%h ’
Defining the new parameters
ay...d;
Ag:=1, A; = ,i=1...n,
‘ bi...bi

the total substrate concentration can be calculated as
Sir =So+...8 =S Y AE".
i=0
Solving for Sy it follows that

AE!
Sizsmt s i=0,...,
Ao+ A\E + A E?2 + ...+ A E"

s

(6.4)
A simple assumption made often in the literature is that the protein S is only active

when it is fully modified. In that case, the dose response function is

A, E"
Ao+ A\E + AyE?2 + ...+ A, E"

f(E) = St



6 Multisite Ultrasensitivity 205

By exploring different values for the parameters, one can observe that the
ultrasensitive behavior of this dose response increases when the last few net
modification constants a; /b; are larger than the first. This is because the middle
terms in the denominator have a smaller influence and the function becomes similar
to a Hill function with Hill coefficient n. For instance, setn = 3,b; = b, = b3 =1,
anda; =¢,a, =1,a3 = 1/efore < 1.Then A; = ¢, Ay =¢, A3 = 1,and

E3

E) = .
J(E) 1+ ¢E +€eE*?+ E3

The so-called Adair model attempts to replicate the nonsequential behavior of
multisite systems within the above framework (Fig. 6.3b). There is usually no order
in which to modify or de-modify the sites, and any of the 2" possible configurations
can be found at any time. Suppose that each of the sites binds at a rate of k,, £ and
unbinds at a rate of k.. Then the rate at which Sy flows into S; can be described as
nk,, E, since there are n possible locations at which the modification can happen.
Protein S; can be de-modified at i different locations, so one can set b; 1= ikgy.
Similarly, set a; := nko,,as = (n — Dkon, ..., an := kop. If ¢ 1= kon/ kog, then
A; = (§)c’. Also, at steady state

S, = ('7)&15"50. (6.5)
1

Using the binomial formula one also obtains
c"E"

Sp=——.
(14 cE)"

In the case of transport molecules such as hemoglobin, one might want to define
another output such as the fraction of bound ligand, Y (E). A calculation shows that
at steady state

Si+28+...+nS, cE

Y E - = .
( ) nSmt cE + 1

This is consistent with the idea of n sites independently binding and unbinding
to the ligand, and it further confirms the intuition behind this particular choice of
parameters.

Notice that in that model the sites are reacting with the ligand independently of
each other. In the more general case of the Adair model, the sites are allowed to
interact by setting a1 := nk,,Ki,....a, := kouK,, and b; = ik,y. The abstract
parameter K; > 1 is intended to represent the cooperative effect of binding i sites
beyond what would be expected from independent binding. Once again, it can be
observed computationally that when the last few K; are larger than the rest the
ultrasensitive behavior increases. See Fig. 6.3c for a quantitative comparison of the
system for n = 4 and K4 = 1 as well as K4 = 1000.
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Fig. 6.4 (a) According to the MWC model, all four hemoglobin sites can change simultaneously
from a low affinity (tense) state to a high affinity (relaxed) state. Oxygen binding traps the molecule
in the relaxed state, allowing other oxygen molecules to bind at a higher rate. (b) Wire diagram of
the MWC model. Here L > 1 and ¢ < 1. (¢) Simulation of the model for » = 4 and L = 100.
For ¢ = 1 the dynamics corresponds to that of the Adair model and the dose response is £ /(E +1)
(dashed). For ¢ = 0.01 the ultrasensitivity increases (solid)

6.4 Allostery and the MWC Model

The contemporary theory of multisite ultrasensitivity was founded with an influen-
tial 1965 paper by Monod, Wyman and Changeux (MWC) [52]. To this day this
paper receives around 200 citations every year according to Google scholar, and it
has profoundly affected the way that biologists think of multisite interactions.

The main assumption in the paper is that the hemoglobin protein as a whole
can spontaneously jump between a “tense” state of low O, affinity and a “relaxed”
state of high O, affinity (Fig. 6.4a). The state is a global property of the protein, i.e.
there cannot be both tense and relaxed sites simultaneously in the same protein. This
invokes the concept of allostery, or the idea that there are strong internal interactions
among the sites of a protein, such that changes in one site affect other sites as well.

The model reactions are described in Fig. 6.4b. T; represents the concentration
of the tense hemoglobin protein with exactly i bound oxygen ligands, and similarly
R; represents the relaxed protein with i bound ligands. The oxygen concentration
is represented with the variable E. The relaxed molecule R; has n — i binding sites
left and therefore its binding rate is (n — i) E. Its rate of unbinding is i, since each
of its i sites are equally likely to unbind. This is reminiscent of the Adair model
in the previous section, except that K; = 1 in the MWC model. We are also using
kon = koy = 1 for notational convenience.

A similar argument applies for the tense protein 7;, except that the binding rate
is multiplied by a small number &, which is intended to model the fact that the tense
protein 7; cannot bind oxygen as well as R;. Ry spontaneously turns into 7} at rate
L, and back at rate 1. It is believed that for hemoglobin L =~ 100, i.e. in the absence
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of oxygen most of the protein is in the tense state. The remaining rates of exchange
between R; and T; are determined by the detailed balance principle [22,23].

At steady state, the detailed balance principle allows us to assume that each of
the individual reactions is in equilibrium with its reverse reaction. So for instance,

(n—0ER; = (+DRit1, (n—0EeT; =@+ DTi41,

fori = 1...n. It follows that

R, = (,)E’RO, T; = (,)E’S’To.
i i

By the binomial formula Ry + ...+ R, = Ro(E + 1)",and Ty + ...+ T, =
To(Ee+1)". With some additional work one can also prove R| +2R,+...+nR, =
RonE(E + 1)"~! by factoring out n E from each of the terms of the left hand side.
Similarly for tense variables 7;. The total fraction of occupied sites (i.e. the output
of this model) can then be computed as a function of E,

Y iR+ Y ;iT;  E(E+1)""'+ LEs(Ee+1)"""
SonR +3,nTi (E+ 1)+ L(Ee+ 1)~

Y(E) =

where L = Ty/Ry. This function is fairly ultrasensitive for small ¢ or for large n.
In fact one can consider the limit case when the tense protein does not bind oxygen
at all, i.e. ¢ = 0, in which case

n—1
Y(E) = E(E+1) .
(E+1D)"+L
This is similar to a Hill function with Hill coefficient n [41]. See Fig. 6.4c for a
comparison of the dose response using € = 1 or ¢ = 0.01.

The Monod-Wyman-Changeux model has proved hugely popular in pharma-
cology and molecular biology ever since its publication, because of its wide
applicability in many enzymatic and other biophysical systems. In the mind of many
biologists, multisite ultrasensitivity goes hand in hand with allostery and the MWC
model, along with the concept of cooperativity.

6.5 The KNF Cooperative Model

The model by Koshland et al. [44], also known simply as KNF and the second of
the two classical models in the field, is a spiritual heir to the Adair model described
in Sect. 6.3. It also attempts to describe how cooperative interactions between sites
can affect the dose response of a multisite biochemical system. But while the Adair



208 G.A. Enciso

c

p @(A)_)@)/@@\._>
T 00 00 gqu r00

ONC)

% bound sites

i
'

' E

1

o 1 2
ECI0 EC90

Fig. 6.5 (a) In the KNF model, sites are represented as nodes on a graph, and edges represent
direct interactions between sites. (b) Given a configuration of unbound (A) and bound (B) sites,
each edge is labeled as AA, BB, or AB. The AB and BB edges lower the overall energy of the
molecule by K,, and K}, respectively, increasing its concentration at steady state relative to the
fully unbound molecule. (¢) The different conformations of a square molecule. (d) Simulation of
the KNF model forn = 4, K, = 1. If Ky, = 1, the system reduces to the Adair model and
the dose response is cE /(1 4 cE), displayed here for ¢ = 1 (dashed). For Ky, = 1000 the
dose response becomes ultrasensitive, here shown for ¢ = 0.001 (solid). For this second graph
the inputs EC10 and EC90 are shown, which yield a 10 and 90 % response respectively and can
be used to quantify ultrasensitive behavior. (e) According to the induced fit hypothesis, the shape
of the binding site changes upon binding, increasing its affinity. This in turn changes the shape of
neighboring sites as well

model introduces cooperativity in the form of abstract constants K; > 1, the KNF
model has the advantage of increased molecular detail. On the other hand, the
geometric detail makes it rather tedious to use, which is why many discussions of
cooperativity in the literature still remain at the abstract level of Sect. 6.3.

In the KNF model the multisite substrate is described as a graph, with nodes
representing the different sites, and edges representing which pairs of sites can
directly interact with each other. For instance, if n = 4 and all pairs of sites are
allowed to interact, the corresponding graph is a tetrahedron, as shown in Fig. 6.5a.
In the case of the hemoglobin molecule, the graph is rather a square with four nodes
and four edges, and each site can only directly interact with two neighbors.

Suppose that in the absence of interactions among sites, the on-rate of binding
of the ligand E to a given site is k,, £, and the off-rate is k,y. Say that A and
B represent unbound and bound sites respectively. If B; is the concentration of
substrate with i out of # bound sites, then at steady state

n .
B,‘ = ( CIEIB().
1
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This equation was shown in (6.5) of the Adair model with independent sites.
Here ¢ = kou/koy is the net affinity rate. In fact, ¢! E' By is the concentration of
each molecule given a specific subset of i out of the n ligands bound, and B; adds
together all () of them.

Now, in the presence of interactions among neighboring sites, the geometry of
the specific molecule matters considerably. Suppose given a square geometry and
the molecule B, that has two adjacent bound sites. Out of the four edges, two of
them are of type AB, one of type AA, and one of type BB (Fig. 6.5b).

The key assumption of the KNF model is that edges involving bound ligands
lower the overall chemical energy of a molecule through their interaction, helping
to increase the molecule concentration at steady state. Suppose that K5, Kpp > 1
represent the contribution of AB and BB edges to the lower energy of the molecule,
respectively. In the case of the square molecule B, ,4; with two adjacent bound sites,
the new concentration at steady state is

By gy = 4cE*K2, Ky Bo.

The factor 4 represents the number of different specific ligand configurations that
have two adjacent bound sites, and the factor K(fbeb represents the increased
reactivity towards this state due to internal site interactions.

The concentration of a molecule B ,,, with two opposite bound sites is B3 ,,, =
2¢°E ZKjb By. Using the same logic, one can calculate the concentration of squares
with one, three, and four bound sites (Fig.6.5c) as By = 4cEK§bBO, B; =
4C3E3K3b Kgb By, By = c4E4K§b By. Now the total substrate B, is calculated as

Biot = Bo + B1 + By opp + B agj + B3 + By

B = Bo[l + 4cEK, +2c*E*(2K2, Ky + K1) + 4 EPK2 K7y + ¢*E* K}y
(6.6)
This way one can solve for By as a function of E. Similarly B; ,,, and the remaining
states can be written in terms of £ and the model parameters.
One can also compute the fraction of bound ligands in this model using (6.6) and
canceling out By in the numerator and denominator:

By + ZBZ,OM, + ZBz,adj + 3B; + 4B,

Y(E) = 4B
tot

_ CEKZ + CEQK2 Ky + KY) + 3 EPKL K}, + ¢ E*K},
T 1+ 4cEK2 + 2¢2E2(2K2, Ky + K2,) + 43 E3K2, K2 + A EAK},

Once again, large values of K,; and especially of Kj; translate into a higher
ultrasensitive behavior in the system. See Fig. 6.5d for graphs of this output in the
case n = 4 and two different values of K.

The KNF model is an implementation of the concept of induced fit, originally
proposed by Koshland in the late 1950s. Binding sites are usually believed to be
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rigid and have just the right shape for a ligand to bind. Under the induced fit
scenario, a binding site is flexible, and when unbound it does not have a very
good affinity to the ligand. However, when bound, the binding site adapts its shape
around the ligand, increasing its affinity. When the shape of the site changes, it also
allosterically changes the shape of the neighboring sites, so that they also have a
higher affinity to the ligand. See Fig. 6.5e.

In this way one can say that ligands have, like the MWC model, two different
configurations, one with low affinity and one with high affinity. However the high
affinity state is only found when the ligand is bound, so from a mathematical point
of view one can simply refer to the bound and unbound states. Also importantly,
the KNF model allows for different ligands to be in different states simultaneously,
which is ruled out in the MWC model.

6.6 Generalized Hill Coefficients

For Hill functions x" /(K" + x"), the Hill coefficient n is a quantitative measure
of the extent to which the function is ultrasensitive: the larger n, the stronger the
all-or-none behavior. But if a dose response function f(x) is not a Hill function,
this definition cannot be used. Often biologists will measure the approximate Hill
coefficient by carrying out a least squares minimization to find the best fitting Hill
function, then use the resulting value for / as an estimate of ultrasensitive behavior.
However this procedure is ill-posed for carrying out mathematical estimates.

A more useful formula was proposed by Goldbeter and Koshland [27] for use in
more general sigmoidal functions:

. In(81)
" In(EC90/EC10)’

where EC10 and EC90 are the inputs that produce 10 % and 90 % of the maximal
response, respectively (Fig. 6.5d). The more ultrasensitive the function, the smaller
the ratio EC90/EC10 > 1, and the larger H becomes.

What is interesting about this particular way of quantifying ultrasensitive behav-
ior is that in the special case of Hill functions f(x) = x" /(K" + x"), it holds that
n = H. In that sense H is a generalization of the concept of Hill coefficient for
arbitrary sigmoidal functions. To see this, set u = EC10 and v = EC90, so that

n N

u Vv

—— =0.1, —— =0.9.
Kn + u" Kn + i
Inverting both sides of the first equation,
KVI n
0= T8 gmynyg,

ul’[
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or 9 = K"u™". For v, the corresponding equation is 1/9 = K"v~™". Dividing the
two equations one obtains

by

Taking natural logarithm on both sides one obtains n = In81/1In(%) = H.

6.7 Nonessential Modification Sites

After a tour of the classical models, we discuss more recent work carried out in
the field by the author and his colleagues. In model MWC as well as KNF, the
basis for ultrasensitive behavior is the assumption of internal allosteric interactions
among the individual sites, either to force the system to switch globally between
two states (MCW), or so that the modification of one site positively affects the
rate of modification of its neighbors (KNF). In the new work we have focused on
altering instead the definition of the output of the system, to encourage ultrasensitive
behavior.

In the different models of oxygen transport discussed, the natural output is the
fraction of bound ligand at steady state, or Z?:o iS;/(nSw:), as a function of the
input E£. However in signal transduction cascades it is not so much the amount of
modification that matters, but the activity level of the multisite substrate. For such
models, the standard output in the literature is simply the concentration S, of the
most modified protein, under the assumption that only a fully modified protein is
considered active.

Suppose instead that out of # sites, a protein only needs k modifications in order
to fully activate the protein [72]. At an intuitive level, this might be considered
equivalent to having k sites and requiring all k sites for activation. But as it turns out,
having so-called nonessential sites in the system can help increase its ultrasensitive
behavior.

First we consider the case of a simple sequential system of the type discussed
in (6.3) and Fig. 6.3a, setting simply a¢; = b; = 1. (In the original work [72] a
constant phosphatase concentration F is assumed, which is equivalent to b; = F
but can also be eliminated through a change of variables. See also the earlier work
by Gunawardena [29].) In that case A; = 1 for all i, and the new output can be
calculated from (6.4) as

EF 4+ ...+ E" Ef — Entl
S o+ S, =S =S .
Bt YT FE+ E 4.+ Ern T Eel

Figure 6.6a describes this dose response for n = 9 and several decreasing values
of k. By the standards of the previous sections, even the dose response with k =
n = 9 is ultrasensitive. But as k decreases, the ultrasensitivity clearly becomes
stronger.
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fully activate the protein. (b) Dose response Sy + ... 4+ S, for n = 9 and different values of k.
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One can show the ultrasensitive behavior of this dose response analytically for
the special case k = (n + 1)/2. In that case, n + 1 = 2k and

Sc+...+S, EY—E*  EY1-E") EF

Seor T1-E* 0+ EN(—EF 1+ EF

This is once again a Hill function, with Hill coefficient k. As n increases, so does k
and the ultrasensitivity increases arbitrarily.

In the paper [72] together with L. Wang and Q. Nie, we quantify the ultrasensitive
behavior of the dose response for different values of n and k, using the apparent Hill
coefficient defined above. We carry out an estimate to conclude that

k
Hn, k) ~ 2K(1 = ——). (6.7)

See Fig. 6.6b for a comparison of the estimated formula and the actual calculated
values. This formula shows that in fact the largest Hill coefficient for a given n is
found for k = (n + 1)/2, and that the Hill coefficient grows linearly with n given a
fixedratioow = k/(n + 1).

We also carried out a similar analysis in the nonsequential case using an
equivalent framework to the Adair model with K; = 1 and ¢ = 1 [note:
generalize to arbitrary c]. In that case the dose response follows from (6.5) and
Sior = So+ ... S

S ()

S, e+ S =S
K+ + Sn ”(E+1)”
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The Hill coefficient is also estimated in that case, and surprisingly, it is essentially
the square root of equation (6.7):

/ k

In this case the maximum value of H is also reached at (n + 1)/2. The Hill
coefficient is invariant under horizontal or vertical rescaling of the dose response.
In particular the same result will be obtained if, say, ¢ # 1 in the Adair model.

6.8 General Activity Gradients

In more recent work by Ryerson and the author, we set out to further generalize
the dose response under more natural assumptions. Suppose that S is a multisite
substrate with n sites, and that its activity as a signaling molecule increases
gradually as its sites are increasingly modified. This relaxes the previous assumption
that the protein is either completely active or completely inactive for different
number of modifications. To formalize this idea we define the activity gradient,
a function h(x) : [0,1] — [0, 1] representing the level of activity of a substrate
molecule that has a fraction x of its sites modified.

As it turns out, the two different cases treated in the previous section now have
a very different behavior. Given a fixed activity gradient /(x), in the sequential
case the ultrasensitivity increases arbitrarily for increasing values of n. But in
the nonsequential case, the dose response f(E) converges uniformly to a fixed
function as n — oo. In particular, its ultrasensitive behavior is bounded by
the ultrasensitivity of this bounded function. This framework can have multiple
applications, for example to the regulation of pheromone signaling [Strickfaden,
65] or DNA expression [Vignali et al. 71].

6.8.1 The Sequential Case

Consider again the sequential model in (6.3) and Fig. 6.3a, setting a; = b; = 1.
Given the activity gradient /2(x), suppose that activity of S; is /(;37). The dose
response at steady state can be written as

n . L 1 2 2 n n
f(E):Zh( i )S,-:S,,,,h(”+l)+h(”+1)E+h(”+1)E +o +hGEE |
i=0

n+1 1+ E+ ...+ E"
(6.8)

Figure 6.7a displays this dose response for the (non-ultrasensitive) activation
gradient i(x) = x/(1 + x). Notice that as n increases, this function is increasingly



214 G.A. Enciso

12

10

Active protein
Hill coefficient
(o))

0 5 10 15 20
Input concentration (E) Total number of sites (n)

(1]
Q

h(k)

Fractional activity
Active protein

Modified Sites (i) Input concentration (E)

Fig. 6.7 (a) Dose response (6.8) in the sequential case using the activation gradient h(x) =
x/(14x), for different values of n, illustrating that it becomes arbitrarily ultrasensitive as n — 0o.
(b) Estimated and exact Hill coefficient of the dose responses in (a). (¢) Ultrasensitive activation
gradient used for the nonsequential model (6.9). (¢) Dose responses of (6.9) for increasing n,
showing convergence towards S, (z(E))

ultrasensitive. In fact, the Hill coefficient of the response appears to increase
linearly, as shown in Fig.6.7b. The following lemma calculates the estimate
H ~ const.(n + 1) for this system.

Lemma 6.1. Suppose that h(x) is a piecewise continuous increasing function,
and that h(0) <0.1h(1). Then the Hill coefficient of equation (6.8) satisfies
H ~ c(n + 1), where the constant ¢ > 0 does not depend on n.

Proof. The dose response can be approximated by

+1
S hGEE Ay fyhG)EC D dy

S(E) ~ Si 0
” fon+l Evdx v fol EC+Dydy

X

after a change of variables y = -=7.

Defining the function

o h(y)e®dy

gla) =
fol e*dy
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it holds
f(E) ~ Siig((n +1)In E).

The values p := EC10, and ¢ = EC90, are well defined, since g(a) is a
continuous, monotone function approaching /(0) for « — —oo and (1) for o« — oo,
and 7(0) < 0.1A(1).

Then e 777 is approximately the EC10 of the function f(E) since

F@™ ) ~ Smg((n + 1) Ine ) = Spg(p) = 0.1gmaxSior = 0.1 finar

Likewise, e is the EC90 of f. The Hill Coefficient of f is therefore

In81 In81 In 81
Hy = EC50; ~ = —— (n+1).
Ingeo, mesl 97°
en+1

6.8.2 The Nonsequential Case

Under the Adair model with K; = 1, suppose that the activity of a substrate S;
is h(i/n). Then the dose response is defined as the total protein activity at steady
state, or

S(E) =) h(i/n)S:.

i=0

This expression generalizes both the output used for the transport system used in
the classical hemoglobin models, and the output Sy + ... + S, used in the previous
section. In the former case this follows from setting #(x) = x, and in the latter case
this corresponds to a Heaviside function /(x).

Now, recall that the Adair model replicates the behavior of a nonsequential
system with 7 individual sites that are modified at a rate of k,, E, and de-modified
at arate of k5. One can define the function z(£) as the overall fraction of modified
sites at steady state. It is easy to calculate that

cE

E)y= —,
«E) cE +1

where ¢ = K,/ kor. One can then write the steady state protein S; in terms of

z=2z(E):
{l CiEi . .
S = Srotc(l)— = Stor (?)Zl(l - Z)n_l-
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This leads to an expression for f(E) that can be approximated in surprisingly
simple terms:

JE) _ Zh(i/n)(’;)zi(l —2"" =~ h(z) (6.9)
i=0

The middle term above is the so-called Bernstein polynomial of the func-
tion h(x). For continuous A(x), the left hand side has been shown to converge
towards /(z) uniformly on z as n — oo [35]. Even for piecewise continuous
functions /(x), the left hand side converges pointwise towards /(z), which is useful
in the case of Heaviside functions. Either way we have the following interesting
formula,

S(E) ~ Siwih(z(E)).

If the function /(x) is itself ultrasensitive, then f(E) can also be an ultrasensitive
function. In the independent Adair case #(x) = x, we have already shown that
f(E)/Si,x = z(E), which is consistent with this equation. In this way, one can
think of the use of ultrasensitive activation functions as an alternative to the use of
K; > 1 in the Adair model, or to the corrections proposed in the MWC and KNF
models.

See Fig. 6.7d for the dose response in this model for increasing values of n, using
the activation function in Fig. 6.7c.

6.9 Other Forms of Ultrasensitivity

Although the focus of this review is on multisite mechanisms for ultrasensitivity,
other mechanisms have been discussed in the literature that can create ultrasensitive
responses. In some cases they are similar enough that the same system can be
interpreted by more than one such mechanism, however at the conceptual level they
are different enough to be distinguished.

6.9.1 Signaling Cascades

The reader may have noticed that the reaction described in Fig. 6.1a has multiple
steps, i.e. the receptor complex activates Ras, which activates Raf, which in turn
activates Mek, and Mek activates MAPK. Why not have the receptor activate MAPK
directly and eliminate the other proteins? Such long cascades are actually the rule
rather than the exception in signal transduction. For example, the last three steps
here are known as a MAP kinase cascade, and almost identical cascades can be
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found regulating widely diverse signals in mammals, plants, yeast, etc. [58]. There
are actually many reasons to have multiple cascades rather than a single regulatory
step. For instance, they can help amplify an originally weak signal, and they can
increase opportunities for feedback and cross-talk from other pathways [8].

Signaling cascades can also increase the ultrasensitive behavior of a response
[Hooshangi 37, Markevich 48]. If the output of an initial step is the input of a
second step, then at steady state in the simplest case the overall dose response is the
composition of both responses. If two mildly ultrasensitive functions are composed,
the result can be a more strongly ultrasensitive function. Notice that the two last
proteins of the reaction in Fig. 6.1a have two phosphorylation sites each. Each of
them constitutes a multisite system on its own, and the composition of several such
systems can lead to a much stronger ultrasensitive response.

In actual signaling cascades, one cannot simply compose the dose responses of
the individual steps to obtain the overall dose response. This is due to a retroactivity
effect, in which the output molecules of an upstream component are also affected
by the downstream molecules that interact with it. Huang and Ferrell investigated
the behavior of MAP kinase cascades as a whole and discovered that they can
be strongly ultrasensitive, even when the individual steps would not predict such
behavior [38]. See also more recent work by Sarkar and colleagues on the properties
of synthetically engineered cascades [55]. Also see the paper by del Vecchio, Ninfa,
and Sontag [17], a seminal work that has produced a growing literature by del
Vecchio and others [Vecchio 16, Ossareh 56, Vecchio 69].

6.9.2 Zero-order Ultrasensitivity

In 1981, Goldbeter and Koshland proposed an influential framework for ultrasen-
sitive dose responses using a single protein modification site [27] under saturating
conditions. In order to understand it, it is useful to describe some basic enzyme
biochemistry.

The process by which an enzyme modifies a substrate and converts it into a
product is usually modeled using the so-called Michaelis-Menten reactions [51]

S+E<C—P+E,

where S, E, P represent substrate, enzyme, and product respectively. The molecule
C represents a transient complex formed by the substrate and the enzyme. The
overall rate of conversion of substrate into product can be estimated as

dP S

— ~ kE;———. 6.10

7 MRS (6.10)
Here k is the rate parameter of the reaction C — P + E, E,, is the total
enzyme concentration, and K, is determined solely from the reaction parameters in
the system. The derivation generally uses the assumption E,,, < S, although other
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assumptions can lead to the same result [40]. This is one of the most basic formulas
in biochemistry, and it is the origin for many of the terms found in mathematical
models of protein interactions.

Suppose that the substrate concentration S in the environment is much larger
than K,,. Then the rate of flow of S into P can be approximated as k E ,o% =kE,,,
which is independent of S. In the enzyme biochemistry community this reaction is
described as zero-order, since in general an n-th order reaction nS — P would
have a rate proportional to S”, and this reaction seems to fit that description only
withn = 0.

Goldbeter and Koshland [27] proposed a situation in which one enzyme E mod-
ifies a substrate S, and another enzyme F eliminates this modification, assuming a
very large substrate concentration of S relative to the K,, of both reactions. Then
the rates of modification and de-modification are roughly independent of S, P and
the net flow of S into P is approximately k| E,; — ka Fiyr. If Fyy is left constant and
E,y 1s used as an input, then very minor differences in E;,, can result in either a net
positive or a net negative flow, resulting in a very large or very small steady state
concentration of P. In this way the dose response may become highly ultrasensitive
with respect to E,,. (Of course, the flow is not exactly constant, otherwise S
or P would become negative. Rather when one of them becomes very small the
assumptions break down and the system settles into steady state.)

Because of its simplicity, this mechanism has many potential applications. It
has been used in experimental studies to investigate glycogen metabolism [49]
and morphogen gradients in embryonic development [50], among others. From a
theoretical point of view, recent work has updated this system by taking into account
e.g. stochastic effects [6] and the reversibility of the product-formation reaction in
(6.10) [73].

6.9.3 Protein Relocalization

Another series of papers points to ultrasensitive behavior through mechanisms
using multiple compartments and the sequestration or relocalization of proteins. For
instance, Liu et al. consider a multisite protein system similar to those described in
previous sections, together with an additional protein that acts as a scaffold [47]. The
scaffold protein passively binds and unbinds the substrate, effectively relocalizing it
to a different position inside the cell. The relocalization of the substrate affects the
rates in which the enzymes can interact with it. Liu et al. show that under certain
conditions the presence of the scaffold can significantly improve the ultrasensitive
behavior of the dose response.

Perhaps the earliest sequestration mechanism was proposed by Ferrell in 1996
[24], in a system involving the competition of multiple different substrates for the
attention of the same enzyme E. The substrate S can be activated e.g. through
single-site modification by E. But other substrates are deployed as decoys to bind to
the enzyme more tightly than S itself, thus relocalizing it and making it inaccessible
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to S. The result is that the concentration of E needs to be high enough to bind to the
decoy substrates as well as S, leading to ultrasensitive behavior. This mechanism
was experimentally tested in 2007 in the context of regulatory proteins in the cell
cycle of frog eggs [42]. The enzyme Cdkl1 alters the activity of the substrate Weel
through phosphorylation in specific sites. But other Weel phosphorylation sites, as
well as other proteins in the cytoplasm, appear to bind Cdk1 and prevent it from
activating Weel.

In 2009, Buchler and Cross built a synthetic circuit inside a cell, also involving
protein sequestration by an inhibitor protein [10]. They were able to measure Hill
coefficients as high as 12 in this synthetic system and to replicate model predictions
on this experimental system.

6.9.4 Positive Feedback and Bistability

A more general way of approaching ultrasensitive behavior is through the use of
positive feedback interactions (although positive feedback underlies many of the
above examples). Such systems could for instance be bistable for a certain range of
the input values, leading to hysteresis [4, Ozbudak 57]. A hysteretic dose response
can be considered highly ultrasensitive, in the sense that a very small increase in
the input beyond the bifurcation point can bring about a very large increase in the
output.

Using bistability to create ultrasensitive responses presents a type of chicken
and egg problem. Positive feedback interactions are by themselves not sufficient
to create bistability, and usually some kind of ultrasensitive nonlinearity is also
required in at least one of the feedback interactions. The mechanisms described
in this chapter can precisely be used to create the nonlinear interactions necessary
for bistability.

That said, positive feedback interactions can be used to enhance dose responses
even when they do not lead to bistability. For instance, in a model of DNA
packaging regulation, Sneppen et al. assume a positive feedback interaction between
histone proteins and their respective enzymes, in order to obtain ultrasensitive dose
responses [64]. When a concrete biological system does not fit the framework of
any of the mechanisms above, one can also describe the dose responses in this way.

6.9.5 Allovalency and Entropic Multisite Models

Another mechanism involving the spatial distribution of proteins is known as
allovalency and was proposed by Tyers and colleagues in 2003 [43,46]. It describes
the binding of a multisite, disordered protein to a single binding site. An important
aspect of this model is that it distinguishes between three different locations of
the protein with respect to its binding site: it can be bound, proximal, and free
(i.e. far apart). A thermodynamic argument is used to calculate the resulting linear
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transition rates between these three states depending on the number n of sites, which
leads to a fair degree of ultrasensitivity for large n.

Disordered multisite proteins of course were also highly relevant in the dis-
cussion of independent ultrasensitive behavior in previous sections, and they are
predicted to be found commonly in nature [39]. Another thermodynamic derivation
of ultrasensitive behavior was developed by Lenz and Swain [45], using nonlinear
effects in the entropy configurations of disordered multisite systems. This mech-
anism results in a highly ultrasensitive function 2(x) (using our notation) and is
therefore complementary to the results described for independent multisite systems.

6.10 Discussion

There has been a lively debate in the quantitative biology community on possible
ways to construct switch-like responses at the molecular level. This question is
clearly of interest to experimental biologists trying to understand design principles
in cellular physiology. Contributions have been made for many years, and they
have been fueled more recently by advances in quantitative measurements that can
potentially distinguish between different models. Clearly, the models that will have
the strongest impact are the ones that actually take place in biological systems and
contribute to their conceptual understanding.

Either way, there is a clear need in biochemistry to create such switch-like or
sigmoidal behavior, not only for traditional signal transduction systems but also
in order to create nonlinear interactions that allow nontrivial qualitative behavior
such as bistability or oscillations. For instance, the oscillatory behavior of the
FitzHugh-Nagumo model (Chap. 3) is possible because of a cubic term that is likely
implemented biochemically using a bistable switch. The bistable switch in turn
is probably made possible through the combination of a positive feedback and a
sigmoidal nonlinearity.

As described in the introduction, signal transduction systems are intrinsically
nonautonomous since their behavior depends entirely on the concentration of the
outside input. Traditionally the outside concentration is held constant, but new
experimental techniques such as microfluidics are allowing to carry out time-
dependent input experiments. Recent work by Sontag et al. is already revealing some
exciting properties of time-dependent signals such as fold-change detection [63]. At
the same time, the stochastic properties of ultrasensitive networks have also been
explored, showing for instance that signaling cascades have the ability to attenuate
noise [67].

While the MCW and KNF models are extremely influential in theoretical
biology, biochemistry textbooks tend to provide only an intuitive description since
the mathematical details are beyond the scope of the text. A good description of
these models is the book by Cornish-Bowden [13], but it still falls short of sufficient
mathematical precision. I tried to strike a balance here between maintaining an
informal tone for readability, and sufficient mathematical detail and generality for
use as a reference.
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Chapter 7

Mathematical Concepts in Pharmacokinetics
and Pharmacodynamics with Application

to Tumor Growth

Gilbert Koch and Johannes Schropp

Abstract Mathematical modeling plays an important and increasing role in drug
development. The objective of this chapter is to present the concept of pharma-
cokinetic (PK) and pharmacodynamic (PD) modeling applied in the pharmaceutical
industry. We will introduce typically PK and PD models and present the underlying
pharmacological and biological interpretation. It turns out that any PKPD model
is a nonautonomous dynamical system driven by the drug concentration. We state
a theoretical result describing the general relationship between two widely used
models, namely, transit compartments and lifespan models. Further, we develop a
PKPD model for tumor growth and anticancer effects based on the present model
figures and apply the model to measured data.

Keywords Lifespan models ¢ Mathematical modeling ¢ Pharmacodynamics e
Pharmacokinetics ¢ Transit compartments ® Tumor growth

7.1 Introduction to Pharmacokinetic/Pharmacodynamic
Concepts

The development of new drugs is time-consuming (12—15 years) and costly. A study
from 2003 [9] reports costs of approximately US$ 800 million to bring a drug to the
market. It is further estimated that around 90 % of compounds (drug candidates) will
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fail during the drug development process [23]. Hence, the pharmaceutical industry
is in search of new tools to support drug discovery and development. It is stated by
the U.S. Food and Drug Administration that computational modeling and simulation
is a useful tool to improve the efficiency in developing safe and effective drugs, see
e.g. [16].

The development of a drug is usually divided into three categories. Firstly,
numerous compounds are developed and screened in vitro. Secondly, promising
compounds are tested for an effect in animals (in vivo). Here, the interest is also
in prediction of an appropriate dose for first in man studies. Finally, the drug is
tested in humans (phase I-1II).

In the drug discovery and development process, so-called pharmacoki-
netic/pharmacodynamic experiments are conducted, which consists of two parts:
The first part, called pharmacokinetics, deals with the time course of the drug
concentration in blood. The interest is on absorption, distribution, metabolism
and excretion of the drug in the body. The disease or more general the
biological/pharmacological effect is not considered. Roughly said, one observes
what the body does to the drug. The second part is the pharmacodynamics
which “can be defined as the study of the time course of the biological effects
of drugs, the relationship of the effects to drug exposure and the mechanism
of drug action”, see [14]. That means one observes what the drug does to the
body. Combining pharmacokinetics (PK) and pharmacodynamics (PD) gives an
overall picture of the pharmacological effect/response, where it is assumed that the
drug concentration is the driving force. In this work, the pharmacological effect is
understood as the measurable therapeutic effect of the drug on a disease. In [4] it is
stated: “Appropriate linking of pharmacokinetic and pharmacodynamic information
provides a rational basis to understand the impact of different dosage regimens on
the time course of pharmacological response.” Furthermore, it is believed “that by
better understanding of the relationship between PK and PD one can shed light
on situations where one or the other needs to be optimized in drug discovery
and development”, see [40]. Typically, “PKPD modeling is widely used as the
theoretical basis for optimization of the dosing regimen ...of drugs in Phase 11",
see [6]. Finally, it is stated in [34] about PKPD modeling: “When these insights are
obtained in early development they can be used in translational approach to better
predict efficacy and safety in the later stages of clinical development.”

From the mathematical point of view, linking of PK and PD leads to nonautono-
mous differential equations driven by the drug action.

Ideally, PKPD models are based on fundamental biological and pharmacological
principles to mimic the underlying mechanisms of disease development and drug
response. Models fulfilling these requirements are called (semi-) mechanistic.
Therefore, the development of such models is in general performed in an interdisci-
plinary collaboration between mathematicians, biologists, pharmacologists etc.

It is written in [6]: “Not surprisingly, PKPD modeling has developed from an
empirical and descriptive approach into a scientific discipline based on the (patho-)
physiological mechanisms behind PKPD relationships. It is now well accepted that
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mechanism-based PKPD models have much improved properties for extrapolation
and prediction.”

Following Mager et al. [32] and Danhof et al. [7] a PKPD model consists of four
parts:

(i) Modeling of pharmacokinetics to describe the drug concentration.
(i) Modeling the binding of drug molecules at the receptor/target to describe the
effect concentration relationship.
(iii) Transduction modeling, describing a cascade of processes that govern the time
course of pharmacological response after drug-induced target activation.
(iv) Modeling of the disease.

An important task of a PKPD model is to describe several dosing schedules
simultaneously (at least the placebo group and one dosing group) by one set of
model parameter obtained from an optimization process. In a PKPD model with an
estimated set of parameter only the dosing schedule is allowed to vary. Hence, a
PKPD model build without existing data is mostly useless in practice. Based on a
PKPD model with an appropriate amount of data, different dosing schedules could
be simulated and physiological model parameter could be inter-specifically (animals
to human) scaled to support e.g. first in man dose finding in early drug development.
A PKPD model could also be extended with a population approach to investigate
clinical data (phase I-11I), see e.g. [2]. However, this additional statistical approach
will not be treated in this chapter.

7.2 Pharmacokinetic Models

7.2.1 Introduction

The pharmacokinetics (PK) describes the behavior of an administered drug in
the body over time. In detail, the PK characterizes the absorption, distribution,
metabolism and excretion (called ADME concept, see e.g. [14]) of a drug.

First pharmacokinetic models representing the circulatory system were published
by the Swedish physiologist T. Teorell [39] in 1937. The German pediatrist
FH. Dost is deemed to be the founder of the term pharmacokinetics, see [41].
In his famous books “Der Blutspiegel” from 1953 [10] and “Grundlagen der
Pharmakokinetik” from 1968 [11], he presented a broad overview and analysis of
drug behavior in time based on linear differential equations.

In pharmacokinetic experiments the drug concentration in blood over time is
measured. In order to develop a PK model the body is typically divided into several
parts. In this work we focus on the widely used two-compartment model approach
dividing the body in a heavily with blood supplied part and the rest. Such a model
is based on linear differential equations and is from the modeling point of view an
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empirical approach to describe the drug concentration. However, the time course of
most drugs could be well described by such models.

Further note, that the PK model is the driving force in a full PKPD model and
therefore, a handy and descriptive representation of the solution is necessary from
the computational point of view.

7.2.2 Two-Compartment Models

In this work we focus on two-compartment pharmacokinetic models representing
the body based on linear differential equations. We consider oral absorption and
intravenous administration of a drug. In practice, for drug concentration mea-
surements, blood samples have to be taken from the patients and therefore, the
availability of data is limited due to ethical constraints. It turned out in application
that two compartments are sufficient to appropriate describe the time course in blood
for most drugs. For a more detailed overview of pharmacokinetic models see e.g.
the book from Gabrielsson [14].

A two-compartment model consists of two physiological meaningful parts (see

e.g. [28]):

— The central compartment is identified with the blood and organs heavily supplied
with blood like liver or kidney.

— The peripheral compartment describes for example tissue or more generally, the
part of the body which is not heavily supplied with blood.

The compartments are connected among each other in both directions and therefore,
a distribution between central and peripheral compartment takes place.
Main assumption in pharmacokinetics:

— The drug is completely eliminated (metabolism and excretion) from the body
through the central (blood) compartment.

In case of oral administration of a drug (p.o.), absorption through the gastrointestinal
tract takes place. Therefore, the distribution in the blood is not immediate and also
only a part of the drug will reach the blood circulation (called bioavailability). In
contrast, in case of intravenous dosing (i.v.) the drug is directly applied to the blood
circulation and it is assumed that the drug is immediately distributed in the body.

With the formulated assumptions a two-compartment model for oral drug
administration (p.o.) at time ¢ = 0 reads

xi = —kjox1 — kiax1 + ko1 x2 + k3 xs, x1(0) =0 (7.1

Xy = kipxi —kaxa, x2(0) =0 (7.2)
x:’,, = —k31X3 s X3(O) = f - dose (7.3)
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where 0 < f < 1 is a fraction parameter representing the amount of drug which
effectively reaches the blood. We set without loss of generality f = 1. The blood
compartment is described by (7.1), the peripheral compartment by (7.2) and (7.3)
describes the absorption. Note that Eq. (7.3) is not a part of the body. It is understood
as additional hypothetical compartment necessary to describe the absorption. The
model (7.1)—(7.3) has the parameters

0 = (k. k12, ka1, k31)

and the variable dose.

The parameter k1o > 0 describes the elimination rate from the body, k5, k21 > 0
stand for the distribution between central and peripheral compartment and k3; > 0
is the absorption rate. In case of i.v. administration k3; = 0 (no absorption) and
x1(0) = dose and therefore, the model reduces to (7.1)—(7.2).

In practice, the drug is measured as concentration in blood plasma. Therefore,
the parameter volume of distribution V; > 0 of the central compartment x;(¢) is
introduced to obtain the drug concentration

() = ’”7(:) (7.4)

In this work, c(¢) will always denote the drug concentration in blood.

The representation of the two-compartment model based on ordinary differential
equation is unhandy in application because in a full PKPD model the drug concen-
tration has to be evaluated many times. Also for multiple dosing the representation
is not appropriate. In order to reduce the computational effort the analytical solution
of the blood compartment is presented in the next section.

7.2.3 Single Dosage

Applying the Laplace transform to (7.1)—(7.3) gives for the blood compartment in
concentration terms for p.o. administration

w.gn _ doseks (ko — o) 3 doseks (ko) — B)

= oG- T Vo - pa—p)
doseksy (ka1 — k3p)

Vilks1 — B) (k31 — )

= doseAp, exp(—at) + doseB,, exp(—pt)

— dose(Apo + Bpo) exp(—kzit) (7.5)

exp(—p1)

exp(—kzit)
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where

1
a,p = 3 (k12 + kot + kio £V (kiz + ki + ki0)? — 4k21k10) .

The final parameterization of the two-compartment p.o. model with a given dose
reads

6 = (Ava Bpo,ol,,B,k31) (7.6)

and is called macro constant parameterization. Typically, (7.5)—(7.6) is used to fit
data. However, this parameterization is not physiological interpretable. Following
the clearance concept (see e.g. [14]), one obtains the physiological parameterization
(see e.g. [18]) standing in a one-to-one correspondence to (7.6)

0 = (CI, Cly, Vi, Vo, k1)

where CI = kol is the hepatitic clearance, Cl; = k;pVi = ko Vs the
intercompartmental clearance and V, the volume of distribution of the peripheral
compartment.

Finally, we give a short comment on classical allometric (inter-species) scaling of
physiological parameters like clearance or volume of distribution. First, to perform a
scaling, the underlying pharmacokinetic mechanism for the different species has to
be similar. Second, it is commonly believed that clearance or volume of distribution
depend on the body weight w, see [33]. A typical allometric model for scaling a
physiological parameter p is based on a power law and reads

p(w) = an’® (71.7)

where a, b > 0 are allometric parameters, see [14,33] or [42]. It is suggested that at
least 4 to 5 species are necessary to predict from mouse to human. A typical chain
is mouse, rat, rabbit, monkey and finally human.

7.2.4 Multiple Dosage

The next step to describe the pharmacokinetics of a drug is to handle multiple dosing
events, that means, a drug is administered several times to the body. Hence, one
has also to account the remaining drug concentration in the body from a previous
dosage.

A drug is often designed for equidistant administration, i.e. every day, every
second day, every week and so on. This makes the application of drugs more secure
for patients and therefore, increases the success on the market.
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Let t > 0 be the length of the dosing interval, m € N the maximal number of
doses and j € {1,...,m} denote the actual number of dosage. Using the super-
position principle one obtains the multiple dosing formula for p.o. administration
represented by a composed function. The drug concentration at time ¢ reads

P@E). t=jT+E. Eel0d] jell..om—1)

Cp.o.(t) = p.o . .
;). t=jr+E. §=0 j=m
with

1 —exp(—7jo)
p-o. =d Am—
¢ © o3¢ 1 —exp(—ta)

+ doseB I_L(_tm
P21 — exp(—1p)

1 —exp(—tjks1)
—d A, + Byy) ————————
03e(Apo + Bpo) 1 —exp(—7ks1)

exp(—aé)
exp(=p§)

exp(—k31§) (7.8)

see e.g. the book from Gibaldi [15]. We remark that for multiple p.o. administration,
cP(t) is a continuous function whereas in case of i.v., ¢/**(¢) is not continuous at
the dosing time points.

7.2.5 Discussion and Outlook

The pharmacokinetics describes the behavior of a drug in the body over time. Two-
compartment models are widely used in industry and academics to describe the
drug concentration in blood empirically because the time course of most drugs is
reflected quite well. Such models have an analytical representation and mainly serve
as input (driving force) in a full nonautonomous PKPD model. Also note that in
experiments often a sparse PK data situation exists because only a limited number
of blood samples can be taken from the animals or patients.

A mechanistic description of pharmacokinetic processes (ADME) to predict
the kinetics of drugs in the whole body is provided by physiologically based
pharmacokinetic models (PBPK), see [19]. Such models are composed of several
compartments representing relevant organs (like kidney, liver, lung, gut, etc.) and
tissues described by weight or volume and blood perfusion rates. PBPK models
admit a mechanistic understanding of the drug’s kinetics in the body and its
implication to toxicological assessment. It is commonly stated that these models are
superior when estimating human pharmacokinetic parameters based on animal data
in contrast to classical allometric approaches based on empirical compartment PK
models, see [19]. In addition, these models allow to differentiate for the prediction
in PK between children and adults, see [1]. Nevertheless, in this work we skip a
detailed description of PBPK because in a full PKPD model the drug concentration
is usually described by empirical models.
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7.3 Pharmacodynamic Models

7.3.1 Introduction

The pharmacodynamics (PD) “can be defined as the study of the time course of the
biological effects of drugs, the relationship of the effects to drug exposure and the
mechanism of drug action”, see [14].

Of major importance in PD is the binding of the drug at the receptor (target)
because “receptors are the most important targets for therapeutic drugs”, see [31].
For that purpose we introduce effect-concentration models (compare [14]). Such
models are typically used as subunits in larger systems describing the pharmaco-
logical effect/response on a disease provoked by the binding of the drug at the
receptor/target.

Hence, the next step is “the process of target activation into pharmacological
response. Typically, binding of a drug to its target activates a cascade of electrophys-
iological and/or biochemical events resulting in the observable biological response”,
see [6]. For that we consider models with a zero order inflow and first order outflow
and also focus on cascades of these models, so-called transit compartments.

Further, we present lifespan models to describe the lifespan of subjects in a
population, e.g. typically used to describe maturation of cells. Such models have
a zero order in- and outflow term, an explicit lifespan parameter and a description of
the past. Finally, we show an important relationship between transit compartments
and lifespan models.

From the mathematical point of view, the resulting pharmacodynamic models are
differential equations. In the following we understand the existence of the solution
in two different terms. If the right hand side is continuous (p.o. case) the existence
of the solution is understood in terms of Picard-Lindelof. If the right hand side is
piecewise continuous in time (i.v. case) we understand the existence in the sense of
Carathéodory, see [5].

7.3.2 Effect-Concentration Models

In Sect.7.2, pharmacokinetic models describing the time course of the drug
concentration c¢(¢) were introduced. Now we consider models that put the drug
concentration in relationship to an effect denoted by

e(o,c(t)) (7.9)
where we call o the drug-related parameter. The only requirement on (7.9) is

e(o,c) >0 and e(0,0)=0.
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The simplest approach for an effect of a drug is a linear term
e(kpol‘v c(t)) = kpotc @) (7.10)

where k,,, > 0 describes the drug potency. Such a parameter could be used to
rank different compounds among each other in preclinical screening. The approach
(7.10) is also useful if only few dosing groups are available for a simultaneous fit.
For more dosing groups this approach is only locally true because the effect of a
drug is in the majority of cases only linear in a small range of different doses.

The classical drug-receptor binding theory states that the amount of binding
possibilities at the receptor is limited. Therefore, the effect of a drug will saturate
and more drug will not lead to more effect. The most common nonlinear model to
relate drug concentration and effect is

Emaxc(t)h

O By v ew?

(7.11)

with 0 = (Eux, ECs0, h), see [31]. E,ae > 0 is the maximal effect, EC5y > 0 is
the concentration needed to produce the half-maximal effect and # > 0 is the Hill
coefficient. Equation (7.11) is one of the basic principles in PKPD and called the
E,..x model, see also Chap. 6.

7.3.3 Indirect Response Models

In pharmacodynamics, one is often faced with a so-called indirect drug response,
that means, the drug stimulates or inhibits factors which control the response, see
[8]. Further, one often assumes that the system describing the pharmacological
action is in a so-called baseline condition. For example, think of heart rate, blood
pressure, biomarkers etc. . The aim is to describe a perturbation of the baseline by
a drug c(¢). Moreover, if the perturbation vanishes, it is pharmacological assumed
that the response runs back into its baseline.

The basic equation of an indirect response model (IDR) with constant inflow
ki, > 0 and outflow k,,; > 0 reads

X' = kip — koux x(0)=x">0. (7.12)

For the baseline condition the initial value is set equal to the steady state x* =
lim x(z),
—>0o0

k()l/tt
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In nonautonomous indirect response models, the drug effect is often described by
an E,,, term modulating the in- and outflow. Depending on which rate is stimulated
or inhibited, one obtains four possible models, see originally Jusko and coworkers
[8] or summarized in [14], presented here in compact form

l Laxc (t)h Smax¢ (t)h
X { ( ICZO 4 C(l‘)h) ( + Sclslo 4 C’(Z)h)} ( )

IWICIX 3 Z h SWI(IX 3 Z h
e A 1= L@ )y Sec@” AL

with the initial value

kin

x(0) = 7
out

where 0 < I,,,c < 1. IDRs of the form (7.13) are one of the most popular models in
PKPD and are extensively studied and applied in the last 20 years.

7.3.4 General Inflow—Outflow Models

Consider a state x : R>¢o — R controlled by two processes, namely, an inflow
into the state and an outflow from this state. A reasonable realization is by a zero-
order inflow and a first-order outflow. Let ki, : R>o — R and ko, @ Rso — Ry
be piecewise continuous and bounded functions with

lim k(1) =k >0 and lim k,, (1) =k, >0
—>00 —>00
describing inflow and outflow, respectively. We call
X () = kin(t) — ko)X (@), x(0)=x">0 (7.14)

an inflow—outflow model (IOM). Model (7.14) has an asymptotically stable station-
ary point

*

k;
* s _ in
x* = tl_lglox(t) = _k:m . (7.15)

Note that indirect response models are a special case of IOMs.
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7.3.5 Transit Compartment Models

Widely used models in PKPD are transit compartment models (TCMs). Such
models are chains of inflow—outflow models where the inflow in the j-compartment
is just the outflow of the j — 1. The corresponding equations read

X} = kin(t) — kxy, x1(0) =x¥ >0 (7.16)
xh = kxy — kxa, x2(0) = x9 >0 (7.17)
x! = kxy— — kxy, x,(0) = x>0 (7.18)

where ki, : R>9 — Ry is a piecewise continuous and bounded function. For
example, k;,(¢) could describe the PK and therefore, in case of i.v. discontinuities
exist. The transit rate between the compartments is k¢ > 0. Roughly said, the states
Xx2(t), ..., x,(¢) can be viewed as delayed versions of x; ().

The application of (7.16)—(7.18) is versatile in PKPD modeling. TCMs can
be motivated by signal transduction processes, see [38], and therefore, mimic
biological signal pathways. But TCMs are also often used to just produce delays, see
[30] (delayed drug course) or [12] (delayed cytokine growth). Hence, the states x; (¢)
often lose their pharmacological interpretation and the TCM concept is downgraded
to a help technique. Historically, Sheiner was the first in 1979, see [36], who
suggested to apply a TCM with n = 1 to describe a delay between pharmacokinetics
and effect which is also called an effect compartment.

TCMs are also applied to describe populations, see e.g [37]. When looking at
a TCM one sees that one could assign a mean residence/transit time of % for an
individual to stay in the i -th compartment,i € 1,...,n, see e.g. [38]. In this sense, a
TCM could be reinterpreted as a model describing an age structured population and
x; () describes the number of individuals with age a;, where ¢; € (“*, £]. Hence,
spoken in terms of population, the x;(¢), ..., x,(¢) describe the age distribution of
a total population

ya(t) = x1(t) + -+ + xa (1)

Therefore, the secondary parameter

r= k
describes the mean transit/residence time needed for an object created by k;, to pass
through all states x; (¢) fori = 1,...,n.
However, in most cases it is obvious that the choice of the number of compart-
ments 7 is somehow arbitrary. In application, n is often chosen in such a way that
the final PKPD model fits the data best. For example, Savic and Karlsson [35] used
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a TCM to describe an absorption lag which is often seen in PK p.o. data because
“some time passes before drug appears in the systemic circulation.” They calculated
the optimal number of compartments based on fitting results for different drugs.

A reasonable extension of (7.16)—(7.18) is to use a time-variant transit rate
satisfying kg (¢) > 0. This leads to

xy = kin(1) — kg(t)x1, x1(0) =x) >0 (7.19)
xh = kg(t)x; — kg(t)xa, x2(0) = xJ >0 (7.20)
X, = kg(t)Xn—1 — kg(1)x. %, (0) = x> 0 (7.21)

where g : R — R, is a piecewise and bounded function with finitely many
discontinuity points. We call (7.19)—(7.21) a generalized TCM and will have a closer
look at it in Sect. 7.3.7.

7.3.6 Lifespan Models

Another class of pharmacodynamic models are lifespan models introduced by
Krzyzanski and Jusko in 1999 [26] to PKPD. Generally, such models describe
populations where the individuals have a certain lifespan. Krzyzanski and Jusko
applied this approach to hematological cell populations in the context of indirect
response models.

Let y : R>o — Rx( be a state controlled by production (birth of individuals) and
loss (death of individuals). The general form of a lifespan model (LSM) is

yl(l) = kin(t) - koul‘(t) ’ y(O) = yO (722)

where k;, and k,,, are piecewise continuous and bounded functions.

In this chapter we consider two different cases. First, we present LSMs with
a constant lifespan, that means every individual in the population has the same
lifespan 7" > 0. This approach is first of all an idealized situation. However, this
assumption is reasonable in most applications due to the data situation. Second, we
additionally consider distributed lifespans.

7.3.6.1 Constant Lifespan

Assuming a constant lifespan 7, the outflow from state y at time ¢ is equal to the
inflow at time  — T and we obtain the relation

Kou(t) = kin(t = T) fort>0.
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Hence, the LSM for constant lifespan reads

V' (t) = kin(t) —kin(t = T), y(0)=y°. (7.23)

In applications one has seldom the freedom of choosing the initial value y(0) = y°
arbitrarily. For example, in populations the initial value y° has to be set in such a
way that it describes the amount of individuals already born and also died in the
interval [—T, 0]. Therefore, we obtain

0
V0 = / kin(s) ds . (7.24)
-T

The solution of (7.23)—(7.24) reads

t
y() = /k,-,,(s)ds fort > 0.

t—=T

An important situation in application is a constant production in the past (e.g. in
context of cell production)

kin(s) =k, fors <0.
Then the initial value (7.24) is

O =Tk .

m

7.3.6.2 Distributed Lifespan

Let X be a random variable with a probability density function/ : R — R where
[(s) = 0 for s < 0 describes the lifespan of individuals and 7 = E[X]. The outflow
term then reads

[e,]

k(1) = / Kinlt = D@7 = (ki % 1)(0)

0

see e.g. [25],[27]. The LSM is

V' () = kin(t) — (kin % D)(2),  y(0) = »°. (7.25)

Again the initial value y° has to be chosen in such a way that it describes the amount
of individuals already born and died. One obtains
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oo 0
y0 = / / kin(s)ds 1(v) dt (7.26)

0 —t1

see [20]. The solution of (7.25)—(7.26) reads

y(t)://km(s)ds [(t)dt fort=>0.

01—t

For constant past k;,(s) = k;, for s < 0 we have y* = Tk;,.

7.3.7 General Relationship Between Transit Compartments
and Lifespan Models

In this section we present an important relationship between transit compartments
and lifespan models with constant lifespan. Roughly said, if the number of
compartments tends to infinity and the parameter

n
r= k
is fixed, then in the limit the sum of all compartments is a lifespan model with
constant lifespan 7" > 0.

An initial result was presented by Krzyzanski in 2011, see [24]. He investigated
equal initial values for the generalized TCM (7.19)—(7.21) and constant past for the
LSM (7.23)—(7.24).

Here, we consider (7.19)—(7.21) with arbitrary initial values x? >0,... ,x,? >
0 and look for the corresponding generalized LSM with arbitrary past. This
generalization covers more pharmacological situations. An important role plays

t

r(t):/g(s)ds, teR.

0

Note that 7 is a strongly increasing function with 7(0) = 0 and inverse 7~ !.

Furthermore, 7(¢) could be interpreted as a time-transformation.

Theorem 7.1. Consider the generalized transit compartment model
X} = kin(t) — kg(t)x1, x1(0) = x) >0 (7.27)
xh = kg(t)x; — kg(t)xa, x2(0) = x93 >0 (7.28)
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x;, = kg(t)xn—1 — kg(t)xn, xn(0) = x,? >0, (7.29)

where ki, : R — Rsg and g : R — R.g are piecewise continuous and
bounded functions with finitely many discontinuity points and k > 0. Again let
t

©(t) = [g(s)ds and let h : [0,1] — Rxg be an arbitrary piecewise continuous

0
Sunction with h(0) = k;,(0). Assume that the initial values of (7.27)—(7.29) satisfy

5(0) = L (’—) fori=1,....n. (7.30)
k n
Let

T=->0

n
k
be an arbitrary but fixed value. Further consider the total population based on
(7.27)—(7.29)

Ya(t) = x1(t) + -+ + % (1)

Then the limit

y(@) = lim y,(t) fort=0 (7.31)
Sulfills the lifespan model
kin
Y = k) =02 ) = 0 (132)
g(2)
7= @, 2(0) = 7 1(=T) (7.33)
g(2)
provided the input function k;, satisfies
kin (T_l (t)) _ t

The initial value of (7.32) reads

1
V=T / h(s)ds. (7.35)
0
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Proof. The matrix notation of (7.27)—(7.30) is
1
x' = g(O)Ax + kin(t)e',  x(0) = E)eo (7.36)

with £ = h(L),i =1,...,n and

—k
k —k
A= o e R"".
k —k
Consider in addition
kin(t™' (1)) 1,
W =Au+ ———— !, u(0) = —x° (7.37)
g(@= (1)) k
where the time dependency of the transit rate is shifted into the inflow term. Note
that u;(¢), ..., u,(t) describe a TCM with constant transit rate k and inflow
~ kin - t
kin(t) = # (7.38)
g(@=1(1)
It is obvious that the solutions of (7.36) and (7.37) are linked via
x(t) = u(z(?)). (7.39)

Next we use (7.39) and obtain
Yu(0) = X{(1) + -+ + 2, (1) = kin(t) — kg(O)un (¢ (1)) .

Because (7.37) is a TCM with constant transit rate k and inflow Ig,-,, () (see (7.38)),
we can apply the convergence result from [21]. This yields

kin(z™' (s — T))
g (s =T1))

provided that (7.34) holds. Hence, the equation for the limit (7.31) reads

lim ki, (s) = kin(s — T) = fors eR
n—>o00

kin(t”! (z(1) = 7))

V(0 = ka(0) = g(0) lim kn(2(0) = kin(8) = g0~ oS
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with the initial value

Furthermore,
() =7z ()= T)
satisfies
1 g) _
/ / 1
(1) = T()=—"—+. 20)=1(-T).
(7 (z(t) = T)) g(z(1))
Summarizing, we obtain the stated result. O
Remark 7.1. (a) Incaseof g = 1in(7.27)—(7.29), the lifespan model (7.32)—(7.33)
reduces to

V(0 = k() =kt =T), yO) =), z)=t-T

which is well known from [21].

(b) The assumption g : R — R.( is pharmacological reasonable. For example,
g could describe a stimulation or inhibition term depending on the drug
concentration as applied in (7.13).

(c) The solution of (7.32)—(7.33) reads

t

V() = / kn(s)ds. 2(t) =7 (c(t) = T) .
z(1)

7.3.8 Discussion and Outlook

Typical (semi-) mechanistic pharmacodynamic models describing the pharmacolog-
ical effect applied in academics and industry were presented. We introduced models
to describe the effect-concentration relationship, stated inflow/outflow models typ-
ically applied to describe perturbations of a baseline and finally, presented lifespan
models for populations. In Theorem 7.1 we presented an important relationship
between general transit compartments and lifespan models.

In the next section we will develop a model for a disease progression (tumor
growth) and the effect of drug on the disease. For that we apply an effect
concentration term and mimic the dying of proliferating cells by either transit
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compartments or lifespan models. For another application of PKPD see Chap. 8§ in
this volume.

For further reading about PKPD modeling we recommend the books from
Gabrielsson and Weiner [14], from Bonate [2] for a more statistical oriented data
analysis and also from Macheras and Iliadis [31] for a more general biologi-
cal/mathematical point of view. Finally, several excellent review articles about
PKPD modeling were published in the last years where we like to highlight the
manuscripts from Danhof et al. [6, 7] or Mager et al. [32].

7.4 Pharmacokinetic/Pharmacodynamic Tumor Growth
Model for Anticancer Effects

In this section we develop a PKPD model to describe tumor growth and the anti-
cancer effects of a drug along the guideline (i)—(iv) listed in Sect.7.1. We firstly
model the disease development (iv) without drug action, here called unperturbed
tumor growth. Then we present the modeling of the drug effect on the disease
(compare (ii)—(iii)) called perturbed tumor growth. Finally, we include the phar-
macokinetics of a specific drug into the model, see (i).

7.4.1 Introduction and Experimental Setup

It is generally stated that the work of Laird [29] “Dynamics of tumor growth”
published in 1964 initiated the mathematical modeling of tumor growth. Laird
applied the Gompertz equation (here presented in the original formulation)

K — eg(l—e_‘”)
Wo

to describe unperturbed (no drug administration) tumor growth. W denotes the
tumor size in time, W, is the initial tumor size and A, o are growth related
parameters. This model realizes a sigmoid growth behavior and therefore, describes
the three significant phases of tumor growth. First, a tumor grows exponentially,
after a while the tumor growth becomes linear due to limits of nutrient supply and
finally, the tumor growth saturates. Laird applied the Gompertz equation to data
from mice, rats and rabbits.

In the book from Wheldon [43] it is stated that the saturation property of tumors
could seldom be measured in patients because the host dies in the majority of cases
before saturation begins. Also in preclinics, the experiments have to be terminated
when a critical tumor size is reached due to ethical constraints and according to the
animal welfare law. Hence, in this work we present a tumor growth model without
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saturation and focus on the first two tumor growth phases, namely exponential
growth followed by linear growth.

We consider experiments performed in xenograft mice. Such mice are
applied as a model for human tumor growth. It is stated by Bonate in [3]: “Most
every drug approved in cancer was first tested in a xenograft model to determine its
anticancer activity”. Xenograft mice develop human solid tumors based on
implantation of human cancer cells. The tumor grows in the flank of the mice and its
volume is measured by an electronic caliber and recalculated to weight based on
tissue consistency assumptions. Roughly said, the tumor size could be measured
“from the outside” without stressing the animals in contrast to PK where blood sam-
ples have to be taken. Therefore, in general more data is available in PD in contrast
to PK.

However, we also mention two disadvantages of xenografts formulated by
Bonate, see [3]: “First, these are human tumors grown in mice and so the mice
must be immunocompromised for the tumor growth in order to prevent a severe
transplant reaction from occurring in the host animal. Second, since these tumors
are implanted in the flank, they do not mimic tumors of other origins, e.g. a lung
cancer tumor grown in the flank may not representative for a lung cancer tumor in
the lung.”

7.4.2 Unperturbed Tumor Growth

The growth of a tumor without an anticancer drug is called unperturbed growth. The
aim of this section is to model this behavior with a realistic right hand side of the
differential equation

w = f(w), w(0) = wy (7.40)

where wy > 0 is the inoculated tumor weight, more precisely, the amount of
implanted human tumor cells into the xenograft mouse. The tumor weight is denoted
by w(t).

In 2004, Simeoni et al. [37] presented a model consisting of an exponential and a
linear growth phase in order to describe the tumor growth in xenograft mice in time
by the function

Aow. < A
g(wy = 70 wEm (7.41)
/\1 s w > Wy, /\0

for (7.40). In (7.41), the parameter 1o > 0 describes the exponential growth rate
and A; > O the linear growth rate. If the weight w reaches a threshold wy,, then the
exponential growth switches immediately to linear growth in (7.41). This produces



244 G. Koch and J. Schropp

a fast transition between the exponential and linear phase in w(¢). It is suggested by
Simeoni to apply the approximation

ga(w) =

for (7.41) in practice.
Another growth function for (7.40)

glw) = ——>— (7.42)

was presented in [22] which is based on the Michaelis—Menten approach and
produces a longer transition between these two essentially different growth phases.
The parameter in (7.42) have the same meaning as in Simeoni’s model, see [22] for
argumentation and derivation.

In this work we use the disease progression model

2)&0)&1w
= 0) = 7.43
Y AL+ 240w w(0) =wo (7.43)

for unperturbed tumor growth w(#) with the three parameter
0 = (Ao, A1, wo) .

In Fig. 7.1, measurements from four different human tumor cell lines in xenograft
mice, namely RKO (cancer of the colon), PC3 (prostate cancer), MDA (breast
cancer) and A459 (lung cancer) were fitted with (7.43).

7.4.3 Perturbed Tumor Growth Based on Transit
Compartments

The next step towards a PKPD tumor growth model is to include the pharmacoki-
netics of a drug, or more precisely, the perturbation of the tumor growth by an
anticancer agent. It is generally observed that the anti-cancer effect is delayed due
to the drug concentration. Hence, the attacked tumor cells could be considered as a
population with a lifespan. Simeoni and co-workers applied a transit compartment
model and assumed that proliferating cells attacked by the drug will pass through
different damaging stages until the cells finally and irrevocably die, see [37].
We apply the linear effect-concentration term

e(kporv c(t)) = kpotc (®)
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Fig. 7.1 Different human tumor cell lines (RKO, PC3, MDA and A549) in xenograft mice fitted
with model (7.43)

to describe the action of the drug at the target (proliferating cells). The pharmacoki-
netics is denoted by c(¢) and k,,, > 0 describes the potency parameter of a drug.
The PK ¢(t) is a two-compartment model with either p.o. or i.v. administration.
In our performed experiments we have two dosing groups, namely, a placebo and a
drug administration group. Therefore, the linear effect term is an appropriate choice.

In a first approach we also apply a transit compartment model to describe the
different stages of dying non-proliferating tumor cells initiated by the drug action.
We denote by p(¢) the amount of proliferating tumor cells and by d;(¢), ..., d,(t)
the different stages of dying tumor cells attacked by an anticancer agent. Since,
the non-proliferating cells dj, ..., d, still add to total tumor mass, the total tumor
w is the sum of proliferating tumor cells p and non-proliferating tumor cells
di,...,d,.Only proliferating cells that are not affected by drug action contribute to
the tumor growth. Therefore, the growth function g(w) of the total tumor consisting
of proliferating and non-proliferating cells is slowed down by the factor £.

The PKPD model with transit compartments reads

/ 20A1p P

=_"""F  kuc()p, 0) = 7.44
P=7 T+ 2h0p WD) porC () p P(0) = wy (7.44)
d| = kpoc(t) p — kdi, di(0) =0 (7.45)
dy = kd| — kds, d>(0) =0 (7.46)
d = kd,— — kd,, d,(0) =0 (7.47)

w(t)=p@t)+di@t)+---+d,(t) (7.48)
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4 25
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35 X Drug A1 180 mg/kg| { DrugB 100 mgikg

Tumor weight w(t) (cm3)
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Fig. 7.2 In every plot the unperturbed and perturbed tumor growth data was simultaneously fitted

with (7.44)—(7.48) and n = 3. In the left panel the drug A1 was administered at day 15, 16, 17 and
18 and in the right panel the drug B was administered at day 12, 13, 14, 15 and 16

with the model parameter
9 = (A,(), Alv wo, kp()ts k) .

The total tumor weight is denoted by w(¢). The average lifespan of attacked tumor
cells is computed after a fitting process by

T — (7.49)

n
-
In Fig. 7.2 we present two simultaneous fits of unperturbed and perturbed data with
(7.44)—(7.48)and n = 3.

7.4.4 Perturbed Tumor Growth Based on the Lifespan
Approach

In this section we apply Theorem 7.1 to the tumor growth model based on transit
compartments. From a schematic point of view the model (7.44)—(7.48) can be
regarded as a system with a TCM represented by (7.16)—(7.18) with input

kin(1) = e(o, (1)) p(t). (7.50)
On the way to a description of the pharmacological process with an LSM we set

d(t) = di(t) + -+ du(1)
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representing the totality of cells attacked by the anticancer agent and replace the
TCM (7.45)—(7.47) by a LSM for the population d (). Using (7.50) this leads to

d'(t) = kin(t) —kin(t = T) = e(0,c(t))p(t) —e(o.c(t =T))p(t —T)
completed by the initial condition d(0) = 0 and the past
e(o,c(s))p(s) =0, —-T <s5<0. (7.51)

In applications, (7.51) is fulfilled because no drug is administered before inoculation
of the tumor cells.
Then the reformulation of (7.44)—(7.48) in the lifespan model context reads

) = 2XoA1p() p(2)
P = o 2200 (1) wit)
d'(t) = e(o,c()p(t) —e(o,c(t = T))pt —T), d0)=0 (7.53)
w(t) = p(t) +d(1). (7.54)

—e(0,c()p(0), p(O)=wo (752

In the LSM formulation (7.51)—(7.54) we have exactly two differential equations,
one for the proliferating cells p(¢) and one governing the population of the attacked
tumor cells d(¢). Note that it is not necessary to provide information about p(s) for
—T < s < 0dueto (7.51). The parameters are

0 = (Ao, A1, wo. kpor, T)

where T is the lifespan of the dying tumor cells which is now fitted directly from
the data.

The sum of squares and parameter estimates of (7.51)—(7.54) and (7.44)—(7.48)
are similar. The new formulation (7.51)—(7.54) is also from the modeling point of
view a serious alternative to the classical formulation. Here the number of dying
tumor stages is reduced to exactly one stage for the total population of cells attacked
by the anticancer agent. This coincides with the situation in practice, where the
choice of the number of compartments n is more or less arbitrary because the
different stages could not be measured.

7.4.5 Discussion and Outlook

It is estimated that every third European develops cancer once in life time. Hence,
mathematical modeling of tumor growth data is an important task to support drug
development. The PKPD model structure presented by Simeoni et al. in 2004 [37]
is one of the most applied tumor growth models in the last years.
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In this work we focused on administration of one single drug. However, an
important topic in anticancer drug development is the combination of different drugs
and the search of synergistic effects in order to maximize the pharmacological
effect. Based on a synergistic combination of drug effects the dosage could be
reduced to minimize the side effects in patients. Hence, a new direction in tumor
growth modeling is the development of realistic and mechanistic models for drug
combination approaches. In [22] an approach which explicitly quantifies the synergy
by a parameter and also describes combination therapy data was presented. The
model could be used to rank different combination therapies. Nevertheless, this
modeling field is subject of active research, see e.g. [17] for preclinical and [13]
for clinical phase. To our knowledge no widely accepted mechanistic PKPD tumor
growth combination therapy model is developed yet.
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Chapter 8
Viral Kinetic Modeling of Chronic Hepatitis
C and B Infection

Eva Herrmann and Yusuke Asai

Abstract Chronic infection with hepatitis C or hepatitis B virus are important
world-wide health problems leading to long-term damage of the liver. There are,
however, treatment options which can lead to viral eradication in hepatitis C or
long-term viral suppression in hepatitis B in some patients. Nevertheless, there is
still room for improvement. Mathematical compartment models based on ordinary
differential equation systems have successfully been applied to improve antiviral
treatment. Here, we illustrate how mathematical and statistical analysis of such
models influenced clinical research and give an overview on the most important
models for hepatitis C and hepatitis B viral kinetics.

Keywords Models in medicine ¢ Parameter estimation * Ordinary differential
equations * PKPD models

8.1 Basic Viral Kinetic Models

There are various mathematical approaches to model acute or chronic viral infec-
tions. The scale of these models ranges from modeling viral infection and/or
replication on cell level (see, e.g., as a recent example, [18]) up to epidemiological
models on the world-wide spread of viral infections which may even account for
modern air traffic data, see, e.g., [6]. Nevertheless, an accepted tool to optimize
treatment for some important acute and chronic infections bases on modeling the
viral dynamics inside a single infected patient which is referred to as viral kinetics.
This is especially true for chronic infections with the human immunodeficiency
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virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). In the following,
we will focus on such models and their impact on clinical research.

The most important basic viral kinetic model is described by a three-dimensional,
nonlinear and autonomous ordinary differential equation system (ODS) given by

V =pl—cV (8.1)
[ =BTV =61 (8.2)
T =s—dT —BTV. (8.3)

It was proposed by [20] but some earlier approaches on defining compartment
models in viral infections had already been published.

The compartments here are a compartment of circulating virus V, productively
infected cells / and non-infected target cells 7. The parameters of the model are
the production rate of infected cells p, the clearance rate of circulating virus ¢, the
de-novo infection rate §, the death rate of infected cells §, a production rate of target
cells s as well as a death rate of target cells d.

A detailed description of this model and early applications and generalizations
when model HIV and HBV viral kinetics can be found in [21]. This model and
slightly modified versions has found many applications to model HIV, HBV and
HCV viral kinetics.

The model is easiest to interpret if infected cells continuously produce and
release virus in contrast to releasing a certain amount of virus while dying. Fur-
thermore, the amount of virus that infects cells is typically negligible in comparison
to the amount of virus that is cleared. Therefore, typically, a term of the form — TV
is ignored in Eq. (8.1).

This basic model can be seen as an adaptation of the epidemiological basic
SIR model (see Chap. 1 of Kloeden and Potzsche in this volume) which describes
the population dynamics of infections and goes back to W.O. Kermack and A.G.
McKendrick in the twenties of the last century [14], see also [16, Sects. 10.1-10.3]
for an overview. It also still forms the basis of highly advanced models for describing
global spread of emergent diseases, e.g. the models accounting for international air
transport data and allowing predictions in [6].

The basic viral kinetic model was initially proposed to model chronic viral
infection. Such chronic infections can run over months and years without obvious
damage to the infected patient besides physiological stress. Therefore, as long as
there is a stable and untreated chronic infection, the compartment model can be
assumed to be in a steady state. This is a special technical feature of such modeling
approaches and allow to reduce the number of parameters describing the model
characteristics by steady state assumptions. Obviously, if V'*, I* and T* describe
the steady state levels of the corresponding compartments during such a chronic
phase, we obtain

* *

7o B=8y s, and s =dT7 461

p=c
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Then we can normalize the ODS and obtain

X =cy—cx (8.4)
y = dtxz— 8y (8.5)
z=s"—dz—8txz (8.6)
: _ v _ 1 _ T
withx = 3%,y = 7z andz = 4.
The normalized parameter s* = 7% = % + § characterizes the production or
regeneration rate of the normalized z compartment whereas the additional parameter
T = % characterizes the status of infection. High levels of t indicate a high

proportion of infected cells and, therefore, a more active infection.

In particular, when modeling HCV and HBV kinetics and fitting the model
to clinical data, the normalized version of the differential equation system by
Egs. (8.4)—(8.6) has the advantage, that there is no need to specify the true amount
of infected and uninfected cells 7* and T*. Indeed, typically, we just monitor the
viral load in blood described by V(¢) = V*-x(t) but it is not possible to monitor the
dynamics of the cell compartments or the total amount of cells or even the steady
state level of infected or uninfected liver cells.

Thus, the remaining parameters describing the dynamics of the V' compartment
only are V*, ¢, 8, d and t.

8.2 Assessing Treatment Effects from HCV Kinetics

The basic viral kinetic model was first proposed to model chronic viral infection.
Starting from Eqs. (8.4)—(8.6), several viral kinetic models were developed and used
to analyze treatment effects.

Note, that chronic infection with hepatitis C is an important health problem and
affects around 150 million people worldwide. Although the virus was identified in
the late 1980s, treatment of chronic HCV infection even started before the virus was
characterized. In those days, chronic infection was typically characterized as non-A
non-B hepatitis.

Development of more effective treatments was successfully done by a combina-
tion of different approaches: Just exploring the efficacy of several general antiviral
treatments, designing specific inhibitors of HCV proteins but also optimizing and
quantifying treatment effects by mathematical modeling approaches.

8.2.1 Modeling Treatment Effects of Interferon

First treatment schedules comprise treatment with standard interferons alone or in
combination with ribavirin. These general antivirals lead to a sustained virological
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response in 20 %, nearly none, and around 40 % of patients when treated with
interferon, ribavirin and a combination of both, respectively.

A benchmarking publication of A.U. Neumann et al. in 1998 [19] used the basic
viral kinetic model and assumed different possible treatment effects for fitting data
in a dose-escalating trial. In contrast to earlier publications, they assumed a single
but only partial treatment effect on several potential pathways: viral production, de
novo infection, infected cell loss and viral clearance, respectively. Mathematically,
such an effect can be introduced by a factor 1 — ¢ € [0, 1] in the term of the
ODS where a blocking should be modeled or as an inflation factor M > 1 when
an inflation should be modeled. For example, modeling a partial blocking of viral
production with an efficiency factor of ¢ € [0, 1] would then change Eq. (8.4) of the
normalized ODS (8.4)—(8.6) to

xX(t)=(1—¢)cy —cx 8.7

and uses the steady state initial values as x(0) = y(0) = 1 and z(0) = %

Of course, treatment effect should be stronger, i.e., ¢ would be greater in the
higher dosing regimes.

A partial effect on de novo infection and infected cell loss, respectively, would
lead to viral dynamics which differ from the observed ones as then viral decline
would start slowly and become faster afterwards, see the top panels in Fig. 8.1.

In contrast, a partial effect on viral production lead to a biphasic decline with a
steep first phase and a slower second phase of decline where the extend of the first
phase is dose-dependent, see Fig. 8.1. This fits very well to observed clinical data
[19]. Furthermore, in contrast to an effect on the viral clearance rate, the decay rate
of the first phase is nearly unchanged.

8.2.2 Estimation of Kinetic Parameters

The individual viral kinetic function can be fitted in the framework of nonlinear
parametric regression.

Even so the basic model is relatively simple, estimation of kinetic parameters
from sequential quantifications of viral load in blood is still challenging for the
following reasons.

- We can typically only observe data from one compartment, in particular the
parameters d and 7 do not have much influence on short-term viral kinetics.
Both parameters mainly describe if the dynamics is not completely biphasic but
slows down after some time, see Fig. 8.2.

- Nevertheless, it is relatively easy to assess two of the clinical important
parameters: the efficiency factor ¢ and the infected cell loss § as the first
characterizes the amount of decay during the first phase and the second is the
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Fig. 8.1 Modeling HCV kinetics for 7 days with a dose-dependent treatment effect on infected
cell loss (left above panel), viral de novo infection (right above panel), clearance of virus (left
below panel, same inflations as the panel above) and viral production (right below panel, same
efficiency factors as the panel above)

main contributor to the second phase decline. Unfortunately, both parameters are
highly variable between patients and different patient groups.

It has been proven to be suitable to fit log values of viral quantifications to
logarithmically transformed model function of the viral load compartment.
Furthermore, logarithmic transformations for the viral kinetic parameters Vj, c,
8, d and t and probit transformations for the efficacy parameter ¢ should be used.

If there is an effective treatment, viral load may not be observable soon during
therapy. Detection and quantification limits (lower as well as upper limits) are
problematic within a least squares approach but can be solved with a more
advanced maximum likelihood approach. A description of the approach can be
found in Guedj et al. [10]. The approach can easily be extended to the situation
where one has to account for a combination of such limits.

Furthermore, fitting viral kinetic parameters cannot be done with standard
routines and needs an iterated approach of maximizing the likelihood while
solving the nonlinear differential equation system numerically at each iteration
step.
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Fig. 8.2 HCYV kinetic model functions for 12 weeks using different values of the parameter d on
the left and of the parameter 7 on the right. Note that, in contrast to Fig. 8.1, simulations do not
assume a treatment effect on the varied parameter but of blocking 80 % of viral production

Table 8.1 Typical (mean or median) viral kinetic parameters estimated from clinical trials in
patients chronically infected with HCV

Treatment & ¢ (per day) & (perday) Patients Reference
Interferon monotherapy 0.81-0.96 6.2 0.14 23 [19]
(different doses)
Interferon monotherapy 0.64-0.88  2.12-3.90 0.22-0.88 16-17 [36]
(different genotypes,
formulations)
Interferon plus ribavirin 0.67 4.7 0.05-0.55 10 [12]
(HCV genotype 1 only,
different phases)
Interferon plus ribavirin 0.92 8.0 0.14 31 [9]
Interferon plus ribavirin 0.77 8.0 0.35 30 [34]

(HCV genotype 1 only)

Typical values of estimated viral kinetic parameters can be found in Table 8.1. Note
that patient groups and treatments slightly differ.

Parameter estimates from the biphasic viral kinetic model also reflected very
well easy versus difficult to treat patients groups (e.g., mono-infected patients vs.
patients coinfected with HBV and/or HIV, white Americans vs. African Americans)
with slower or faster viral declines already in the first weeks of therapy, see, e.g.,
[13] for an overview on the impact of such standard host factors on viral kinetics and
[7] for additional comments on the association between HCV kinetics and IL28B
polymorphism. This important host factor was detected in 2009. It can explain at
least part of the observed differences between human races.
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Overall, patient groups with lower response rates to antiviral treatment for 24—
48 weeks consistently showed slower viral kinetics in the first weeks described by
lower efficiency factors ¢ or slower infected cell loss 8. This coincidence and the fact
that the basic viral kinetic model is still quite easy to understand helped to establish
the use of viral kinetic models for clinical research.

Interestingly, as early viral kinetics already reflects differences in treatment
response of the most important viral and host factors, their additional predictive
values decrease if viral kinetics is already known. Therefore, it may suffice to
adapt individualized treatment optimization according to viral kinetics instead of
accounting for a variety of different factors. Nevertheless, individualization of
treatment is complicated but see, e.g., [27] for a successful sophisticated approach.

8.2.3 Optimizing Interferon Dosing Regimes Using PK-PD
Models

The viral kinetic analysis of Neumann et al. [19] and others illustrates a high activity
during chronic infection in spite of the equilibrium. Each day, a large amount
of virus is cleared and newly produced. Furthermore, they quantified the main
important rates of viral infection.

Even turnover rates of infected liver cells are much larger than was previously
thought. Therefore, doubts occur if the trice weekly injections with standard
interferon can be optimal because of the short half-life of standard interferon of only
a few hours. Modeling results as the relatively short duration of the viral replication
cycle as well as the short infected cell half-life strongly support the development
of long-acting interferons. Pegylation of interferon was successfully developed and
lead to peginterferons which need only to be applied once weekly and still have a
more constant drug level than standard interferons. This property does also translate
in improved sustained virological response rates. The varying drug profiles even of
pegylated interferons also cause doubts if the basic model with a constant efficacy
is indeed appropriate. Therefore, full PK-PD models for interferon were developed.
General forms of PK-PD models are discussed in detail in Chap.7 of Koch and
Schropp in this volume.

Note that interferon is given by injections and that pegylated interferons have
a relatively slow PK profile. Therefore, a simple Bateman-function suffices to
describe the PK of interferon. The drug concentration as a function of time after
a single injection at time #; can then be modeled by

D
C@)= Vot —k) (exp(—k1(t — 11)) — exp(—ka(t — 11)))

fort > t; and C(t) = O for ¢ < t,. Here, D is the dose of interferon, V,; the volume
of distribution, and k; and k, describe the drug absorption and degradation rates,
respectively.
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As we have weekly injections during therapy, let T = {1, ..., t,} describe the set
of dosing times with #; as starting time of treatment, we can assume a PK function of

D
coy= ), Vot =y @R =) —exp(hat =) (B8

ti€Tti<t

forallz > 0.
The Hill function (see Chap. 6 of Enciso in this volume) can be used to model
the treatment efficacy as function of the drug concentration

C(l‘)h

‘0= 0 + 10

(8.9)

where / is the Hill parameter and 7 Cs gives the drug concentration leading to a
50 % blocking of viral production.

Therefore, the efficacy is now time-dependent and smaller at the end of each
dosing period. The efficacy function can easily be inserted in Eq. (8.7) of the ODS.
The additional parameters k1, k, and D/ V, can be fitted to serial observations of
the individual pharmacokinetics. The parameters 4 and I Csy can be assessed from
the viral quantifications instead of fitting a constant drug efficacy ¢.

A first publication of this modeling approach was described in [23], see also
[22] for an overview. The advantage of such an approach is that we can explore the
expected treatment response by varying dose or dosing schedule.

This model approach also allows the comparison of the two available peginterfer-
ons which differ in their pharmacokinetics. It is also possible to explain the response
to an induction therapy. From the basic viral kinetic model, clinicians learned that
the extent of the first phase is a marker of drug efficacy. Therefore, it was explored if
a higher dose in the first few weeks of treatment would improve treatment response.
Unfortunately, this could not be confirmed in clinical trials. Analogously, it is also
obvious from the PK-PD model that a higher efficacy of an increased initial dose
(e.g., double dose) will soon nearly be lost after switching back to standard dose. See
Fig. 8.3 for an illustration of the model predictions and [3] for a clinical trial with
relative frequent observations during an induction dosing scheme which behave as
predicted.

8.2.4 HCYV Kinetic Models Including Cell Proliferation

Clinical data with detailed data from antiviral treatment and using interferons in
combination with ribavirin, still show some systematic deviations from the basic
model or the PK-PD model. This is especially true in cases with relatively low
efficacy (e.g., in coinfected patients or in African American patients). One can
observe a flat intermediate phase between the fast first phase of viral decay and
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Fig. 8.3 Simulated viral kinetic curve of an induction dose (double dosing regime) during the first
14 days (gray line) in comparison to a standard dose (black line) for 28 days

the final viral decay phase more frequently as can be expected from just random
variations in the quantifications. There are different approaches to explain this effect
in a more descriptive effect [12] or a mechanistic way [8].

The mechanistic model explanation of Dahari et al. [8] includes proliferation
terms of infected and non-infected cells in the model. As in [9], the treatment effect
of ribavirin is assumed to be independent of the interferon treatment effect and is
modeled by rendering a fixed proportion p € (0, 1) of newly produced virus as being
noninfectious. The ODS then includes a new compartment N of noninfectious virus
and is given by

V=>_0-e(1-p)pl—cV (8.10)
N = (1 —¢)ppl —cN (8.11)
. T+1

P =BTV + pi1 (1— + )—51 (8.12)
. T+1

T =s+pT (1— T+ )—dT—,sTV, (8.13)

where pr and p; denote the proliferation rates of non-infected and infected cells,
respectively.

In [28], this model was used to fit and derive parameter estimates with a
population data approach to a large data base and predict long-term treatment
response.

Nevertheless, this model can have unexpected dynamics. If there is a low
efficacy of interferon, i.e., € is small, the total number of observed cells 7 + [
can dramatically increase. This does not really reflect the true situation where the



260 E. Herrmann and Y. Asai

size of the liver does not change. In some low efficacy cases, the model does not
predict a virus eradication for long enough treatment but viremia converges to a
during treatment steady state level. This coincides well with clinical data of slow or
partially responding patients. To be more explicit, this will happen if

(I-e)1-p) <

C
5 (8.14)

The new steady state level can be calculated as a function of the other viral kinetic
parameters. Surprisingly, this level can even be greater than the steady state level
before treatment [31]. This is not really plausible and seems to indicate a deficiency
of the model. It can be overcome by simplifying the model equation of target cells
in the system.

The liver has in general a strong regeneration property that lead to a quite fast
regeneration, e.g., after resection or even a decay of liver volume if a too large liver
is transplanted in animal experiments. Therefore, it is reasonable just to model the
target cell compartment according to an easy dynamics towards a fixed number of
liver cells T,y In this model variant, Eq. (8.13) will be replaced by

T:yT(l—T+I). (8.15)

max

This model based on Egs. (8.10) to (8.12) and (8.15), which may also include a time-
dependent interferon efficacy, is flexible enough to fit a broad variety of clinical data
and allows reasonable clinical interpretations (see, e.g., [17]).

8.2.5 Modeling Quasispecies Dynamics and Resistance

New treatment options comprise direct-acting inhibitors of viral proteins as, e.g.,
HCV protease and polymerase. These drugs are typically highly effective but can
lead to very fast resistance already during the first week of monotherapy in nearly
all patients.

A mechanistic model of such resistance development is described in [1]. It
differentiates between different viral strains Vj, ..., Vi as well as the respective
infected cell compartments Iy, ..., Ix. Here, Vj and Iy denote the wild type virus
and the infected cells infected by wild type virus, respectively.

Additional parameters are the mutation rate between the different viral strains
m;j,i =0,....k,j =0,....k,i # jandm;i = I—ijo ..... kiji Mij for all
i = 0,...,k. Furthermore, there are fitness parameters fi, ..., fy which describe
the deficiency of the mutated viral strains in the replication cycle compared with
wild type virus (set to fo = 1) in the absence of treatment.

Of course, each viral strain also has a different drug efficacy (e, . . ., ;) to model
resistance.
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The model in [1] has another interesting feature. It assumes that infected cell
loss will increase somewhat during highly efficient treatment as this seems to be
reflected in such data. It may be explained by the infected cell loss due to intra-cell
viral eradication as additional treatment effect. Then the model equations can be
summarized as

k
j=0
I = BTV, — (8 — 81 log,p(1 —e) I;, i =0,....k (8.17)
k
T=s—dT—BT Y V. (8.18)

i=0

In [1], the authors were able to fit this complex model to detailed data during
and after short-term monotherapy with an HCV protease inhibitor. Besides serial
quantifications of overall viral load, the data set comprises serial sequence data,
which monitors the relative frequency of wild type and 7 mutant strains which were
already known to be resistant to this protease inhibitor from in vitro experiments.

There is also another sophisticated approach to explain the relatively large
infected cell loss § observed during highly effective antiviral treatment using also
a mechanistic approach for intracellular viral degradation and, therefore, infected
cell cure [11] without accounting for full quasispecies dynamics. They base on the
model including proliferation rates but do not use a compartment of noninfectious
virus as they do not model combination treatment with ribavirin. Instead, they
use two additional compartments: compartment U which models the intra-cellular
replication units and compartment R, which describes the intracellular RNA. Using
appropriate rate for proliferation of the replication units py, intracellular viral
replication « and intracellular degradation of replication units and viral RNA y and
o, respectively, they derive at the following differential equation system

V = pIR—cV (8.19)
R=(1-¢aU—oR (8.20)
U= puR (1 — ) —yU (8.21)
[ =BTV —§1 (8.22)
T = prT (1 - TT:;;) _dT —BTV. (8.23)

They also propose an extension of this model including two viral compartments, a
wild type virus as well as one general compartment of resistant strains. Of course,
the same differentiation has to be made for intracellular RNA and replication units,
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but not necessarily for infected cells. Therefore, the straight-forward modification
lead to an ordinary differential equation system with 8 differential equations. These
models were, however, only evaluated qualitatively and have not yet be used for
fitting clinical data.

A similar approach as in [1] was used in [33] for less detailed data for a
related drug. In this analyses, resistance parameters were obtained from in vitro
data whereas fitness parameters of the single mutated strains were estimated by a
sophisticated statistical approach from relatively sparse clinical data.

Another detailed theoretical and qualitative analysis of such models was pre-
sented in [26]. Using variants similar to that from Eqs. (8.16)—(8.18). Besides such a
full mutant model, a simplified version with only two virus compartments (wild type
and one compartment of resistant virus) was assessed. Furthermore, also models
including proliferation terms were analyzed. They focus on the velocity of resistance
development in comparison with clinical data.

See also [5] for further future challenges in hepatitis C viral kinetic models in the
context of new drug developments.

8.2.6 Stochastic Models

In contrast to some approaches of modeling in vitro viral kinetics or intracellular
viral kinetics as well as in modeling the acute phase of viral infection (see, e.g.,
[25]), there are only few approaches to include further stochastic terms in the
viral kinetic model equations when modeling HCV viral kinetics in chronically
infected patients. One reason may be that the residual variance when fitting
deterministic models is already within the limit of the variance for the quantification
assays. Therefore, parameters directly influencing viremia as drug efficacy and
viral eradication do not seem to include much random variation. Nevertheless, the
situation may be different for parameters with more indirect effects as, especially,
infected cell loss 6. This parameter reflects the individual patient immune response.
Here, random variations are highly reasonable. In [2], an approach for including
such a variation within fixed bounds (§ £+ §; with § > §;) may be included in
a random ordinary differential equation system and compares explicit numerical
algorithms to simulate viral kinetics. The system base on the basic viral kinetic
model described by Egs. (8.1)—(8.3) and is given by

V=>_0-¢epl—cV

. 2

I =BTV — (8+81—arctanW,) 1
T

T =s5s—dT - BTV,
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Fig. 8.4 Sample paths of the
random ordinary differential 10°
equation system described in
[2] in comparison with the
deterministic viral kinetic
model functions using § £ §;

Simulated viral load [IU/mL]

Time [days]

where W, denotes a Wiener process. In Fig. 8.4, sample paths of this model are
compared with deterministic model functions.

A very different situation and a different model is used in [4] which may be
seen as a first model addressing a topic with increasing clinical relevance. A major
problem with chronic infection is the increased risk for hepatocellular carcinoma.
Chakrabarty and Murray [4] use a standard viral kinetic model supplemented by a
differential equation for a single immune response compartment to assess steady
state levels. Later, a stochastic model basing on birth and death poisson processes
for the development of hepatocellular carcinoma is used. Here, the risk of cancer
is simulated with respect to years from infection. The birth process depends on
immune response and viremia.

Much more modeling approaches exist for modeling infection with HIV. The
approaches comprise stochastic differential equations and stochastic processes for
acute and chronic infection and resistance development. A recent overview as well
as a thorough analysis of some stochastic differential equation systems is given
in [35].

8.3 Modeling HBV Kinetics

Clinically, chronic infection with HBV has some important differences in com-
parison with chronic HCV infection. First of all, in contrast to HCV, an effective
vaccine is available which can prevent HBV infection. Nevertheless, there are still
around 300 million of patients chronically infected with HBV, especially in Asia,
Northern Africa, and South America. After infecting liver cells, HBV as a DNA
virus implements itself inside the nucleus and initiates production of viral proteins
and viral replication. Chronic HBV is characterized by different phases of disease
including an immune tolerant phase with minor liver injury and no necessity of
antiviral treatment as well as immune clearance phases with risk of worsening liver
disease.
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There are mainly two HBV core proteins which help to diagnose and characterize
HBYV infection. The most basic protein is the HBV s-antigen (HBsAg) which serves
as marker of ongoing chronic infection. Furthermore, HBV e-antigen (HBeAg) may
be lost during therapy and the loss of HBeAg as well as the detection of anti-
HBeAg serves as marker of successful treatment and typically characterizes less
active chronic phases.

Sometimes HBeAg is also lost by mutation. Therefore, HBeAg negative patients
prior to antiviral treatment are typically just patients infected with a different type
of HBV. Hence, it is not surprising that also treatment response can differ in these
patients.

In general, HBV kinetics is less intensively studied than HCV kinetics. This may
simply reflect the less active clinical research in these patients during the last decade.

Several treatment options are, however, available in patients chronically infected
with HBV.

- Patients during the immune tolerate phase may not need treatment at all.

- Patients with more active disease can be treated by some nucleoside or nucleotide
analogs as lamivudine or tenofovir. These treatments are typically well tolerated
and effective in most patients and lead to a viral decay under the detection limit.
If treatment is stopped, however, nearly all patients show a rapid viral rebound,
so these kinds of drugs are considered for long-term treatment. Sometimes,
after long-term treatment, resistance can occur. Therefore, patients are typically
monitored every 3 months. For viral kinetic analyses, such clinical data is too
sparse to allow a detailed modeling approach as described in Sect. 8.2.5.

Unfortunately, even so viral production can be suppressed effectively, still a large
amount of viral proteins is produced and there is the possibility that they may
already cause long-term clinical complications as hepatocellular carcinoma.

- As in HCV infected patients, interferon may be used in patients chronically
infected with HBV. Due to side-effects, treatment is typically limited to 12—
48 weeks. Viral decay is typically much slower than during treatment with
nucleoside or nucleotide analogs but in around 10 % of patients even suppression
of HBsAg under detection limit and seroconversion to positive detection of anti-
HBsAg can be observed. This is the best marker of successful treatment and may
really prevent an increased risk of liver damage.

8.3.1 Basic Modeling Approaches

Standard models of viral kinetics can also be used for treatment of patients chron-
ically infected with HBV. Similarly to HCV, all available treatment do suppress
production of complete virus. Therefore, from monitoring viral load, models as
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described by Eqgs. (8.5)—(8.7) as well as models including proliferation terms can
be used to assess antiviral effectivity.

An up-to-date model without aiming to model quasispecies development and
resistance is

V=>_0-gpl—cV (8.24)
I =0 —-npTV =61 (8.25)
T:yT(l—T+I). (8.26)

where 7 € [0, 1] is an additional efficacy parameter on viral infection, see, e.g., [32].
Interestingly, viral decay as well as the development of resistance is much slower in
HBYV infection, see, e.g., [29]. Viral decay during effective treatment is around 5-10
times slower. When HCV has a fast first-phase of around 1 day, it takes around 1
week in HBV.

Some years ago, a high variability during viral decay was observed and dis-
cussed. But as viral quantification assays became more accurate, this effect vanishes
and therefore it may be mainly explained by a deficiency of the earlier laboratory
methods.

A detailed comparison of viral kinetic parameters is given in [24]. They show
that mean half-life of free virions was about 13.1 & 1.1 h and 252 + 1.7 h in
HBeAg-negative and HBeAg-positive patients, respectively. This corresponds to
viral clearance rates ¢ of 1.3 and 0.7 per day only. Also, half-life of infected cells
was 12.1 + 1.4 days and 16.0 £ 1.7 days in HBeAg-negative and HBeAg-positive
patients, respectively. This corresponds to infected cell loss rate § of 0.06 and 0.04
per day. Compare Table 8.1 for a comparison with the respective rates in HCV
infection.

Overall, they illustrate that viral kinetics is faster in HBeAg-negative patients
when compared with those in HBeAg-positive patients. This indicates also a more
active infection during the untreated chronic state in HBeAg-negative patients.

8.3.2 Combination Treatments and PK-PD

Even so, monotherapy is used typically when treating chronic HBV, combina-
tion treatment, especially combination of a nucleoside or nucleotide analog with
interferon may be considered. There are a few clinical trials which analyze this
combination also with viral kinetic models. Here, a PK-PD model for interferon
should be used as was pointed out in [30].

The PK of interferon can be assessed as previously described and again Eq. (8.9)
can be used to model interferon treatment efficacy. If there is a combination
treatment with a nucleoside or nucleotide analog, a further efficacy parameter &,
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can be included. Then Eq. (8.24) in the ordinary differential equation system (8.24)—
(8.26) can be replaced by

V = (1 _8([))(1 _snuc)pl —cV

for all instants ¢ during the combination treatment phase is used.

This modeling of the treatment effect can be easily extended to model sequential
therapy. In [15], a treatment schedule of first using 8 weeks of interferon monother-
apy, followed by 24 weeks of combination treatment of interferon and lamivudine
followed by 28 weeks of lamivudine. This approach enables to compare treatment
effects of different treatments in the same patient and allows a thorough assessment
of the advantage of combination treatment. Indeed, it was demonstrated that viral
decay of the combination treatment was significantly faster. Furthermore, such a
combination treatment allows to effectively reduce viremia from treatment with
lamivudine and to have also the chance for a decay of HBsAg.

As immune response to HBV infection is not homogeneous and might be
positively influenced by new treatment approaches, a future challenge of HBV
kinetic modeling may be the inclusion of further immune compartments as well
as of HBsAg or also HBeAg. Serial quantifications of HBsAg and HBeAg are now
possible at a sufficiently high accuracy, but it is still challenging to obtain them.
Therefore, it may be very interesting to define and fit long-term models including
the dynamics of these compartments.
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Chapter 9

Some Classes of Stochastic Differential
Equations as an Alternative Modeling
Approach to Biomedical Problems

Christina Surulescu and Nicolae Surulescu

Abstract Stochastic differential equations (SDEs) provide an appropriate frame-
work for modeling biomedical problems, since they allow detailed a priori biochem-
ical knowledge to be accounted for and at the same time are able to describe the
noise in the systems under investigation and in the data without excessively compli-
cating the settings. We present three application paradigms related to an intracellular
signaling pathway, to radio-oncological treatments, and to cell dispersal.

Keywords Cell dispersal * Intracellular signaling pathways ¢ Nonparametric esti-

mation * Stochastic differential equations * Stochastic processes * Tumor control
probability

9.1 Introduction

In the last decades differential equations have become the main ingredient of many
mathematical models. Typically, in the framework of ordinary differential equations
(ODEs) such a model takes the following form:

x = F(t,x, a), ©.1)
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where x denotes some vectorial state variable and a is a vector of parameters. In
more complex situations several variables (e.g., time and space) are conditioning
the dynamics of the quantity of interest and the models involve partial derivatives,
thus leading to partial differential equations (PDEs):

%(r,x) = Lu(t,x, a) 9.2)

with L denoting a partial differential operator whose precise form depends on the
process(es) to be modelled and usually accounts for diffusion and/or transport. The
PDE model class can be further extended to include integral operators, in which
case one has to deal with a partial integro-differential equation (PIDE). In this work
we focus on models relying on ODEs and P(I)DEs as starting points.

However, the deterministic settings e.g., with ordinary differential equations
(ODEs) cannot accommodate the random effects which are often encountered in
biological systems. The sources of stochasticity are manifold, depending on the
concrete problem under consideration. For instance, stochastic variation is an
inherent property of any particle interactions, since not every species involved in
the reaction kinetics is present in such abundant quantities that the corresponding
temporal variations are continuous and deterministic (intrinsic noise, caused by
probability events among the small numbers of molecules in the cell). Moreover, the
environmental conditions, cell-to-cell differences, and the phenotype of an organism
can also trigger randomness (extrinsic noise). For a very informative discussion on
the role and nature of intrinsic/extrinsic noise we refer e.g., to the review article by
Qian [67].

When starting from an ODE setting, these considerations lead to a more realistic
model of the following form:

x = F(z,x,a) + “noise”, (9.3)

where “noise” denotes the stochastic part capturing the previously mentioned
random effects in the system. Hence, the noise is a kind of “black box”, nevertheless
it needs to have a certain mathematical structure. This is a nontrivial issue and one
of the reasons which have prevented the more widespread use of such modeling
approaches.

Stochastic differential equations (SDEs) [44, 60] and random differential equa-
tions! [72] provide an adequate tool for handling this issue. In the present work we
focus on the potential of some classes of SDE in modeling several problems from
biology and medicine.

'Random ODEs are ODEs that include random variables or stochastic processes in their coef-
ficients. Unlike SDEs they can be handled pathwise using deterministic rather than stochastic
calculus, see e.g., [37].
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In the framework of Itd calculus the noise can be modeled with the aid of
Brownian motions, leading to mathematical expressions of the form

dx(t) = F(¢,x(¢),a)dt + X' (t,x(t),a) dW,, 9.4)
or in the more general form of a nonlocal SDE [42,43,50]
dx(t) = F(t,x(t), E(x(2)),a)dt + X (t,x(t),E(x(t)),a) dW,, 9.5)

where W; is a (multivariate) Brownian motion and X' denotes the diffusion matrix.
This description is however formal, since the trajectories of the Brownian motion
are nowhere differentiable in the usual sense, but a rigorous characterization can be
given with the concept of stochastic integration. For a general theory of systems of
the type (9.4) including existence and uniqueness results we refer e.g., to [44,52,60]
and for (9.5) to [42, 43, 50]. In [81] such nonlocal SDEs have been deduced as
asymptotic limits of SDEs characterizing the dynamics of the membrane potentials
for a neuron network (under the assumption of a large enough number of involved
neurons), upon relying on a probabilistic approach.

Of course, the noise in the systems mentioned above can be modelled more gen-
erally by using extensions of the Brownian motion like Lévy processes or fractional
Brownian motions. However, the detailed description of the corresponding models
involving SDEs driven by such processes would go beyond the scope of this chapter.

Here we present three applications of modeling with SDEs or SDE-like pro-
cesses; they are related to intracellular signaling pathway, to radio-oncological
treatments, and to cell dispersal, respectively. For the last of these problems (to be
addressed in Sect. 9.4) the modeling via SDEs or simply via stochastic processes’
offers an alternative to the PIDE approach enabling to numerically handle complex,
more realistic (even multiscale) situations which cannot be treated in the PDE
framework.

The system set up in Sect. 9.3 will allow to describe the evolution of the number
of cancer cells affected by irradiation, individually for each patient, which is a
modeling novelty. A particular class of SDEs in this context will be specified below
and relies on generalizations of the classical geometric Brownian motion given by

dx(t) = ax(t)dt + px(t)dW,, t>0, a B> 0. (9.6)

This offers a new modeling framework for fumor control probability (TCP)
problems, which is able to account for much more effects, inaccessible by the usual
ODE models (e.g., the evolution of the illness is treatment and patient specific).
For some other biological problems the past dynamics are relevant for the
evolution of a system, for instance in the maturation of one or several populations

2 All these models can actually be put in the framework of SDEs, some of which are however driven
by jump processes and not by Brownian motions.
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(see e.g. [58]), in pharmacokinetics and pharmacodynamics [7], immune responses
[53], gene expression or feedback control in signal transduction networks. Delay
differential equations (DDEs) are the classical framework to account for such phe-
nomena explicitly and the mathematical equipment for their analysis and numerics
is well developed [1, 20, 25,31, 47]. In this context the special class of stochastic
differential delay equation (SDDE) models can be used in order to accommodate
randomness which cannot be described with deterministic delay equations. In the
SDDE framework the drift and diffusion coefficients supplementary depend e.g.,
on x(¢ — ) with t denoting the (constant) delay. However, the issues of parameter
inference and numerical simulations for SDDEs where one or several states are
directly depending on the time lag are highly challenging and—as far as parameter
estimation is concerned—still open. Such difficulties can be eluded through an
appropriate modeling of the relevant phenomena so as to keep the delay in the
system, but being able to handle it deterministically, preserving the stochasticity
only on the states which do not explicitly involve delay. This will be illustrated in
Sect.9.2 on a problem related to intracellular signaling. An alternative handling of
the delay in the SDDE context has been proposed in [75]. We recall that model
in Sect.9.2 too: it extends previous (S)DDE settings by using a classical idea in
continuous time series analysis (see e.g., [77] and the references therein) which
suggests the use of deterministic time varying instead of constant coefficients. The
same idea is taken up again in one of the nonlocal SDE models for the signaling
dynamics.
Finally, the potential of the new settings will be addressed in Sect. 9.5.

9.2 Intracellular Signaling: The JAK-STAT Pathway

Cells continuously communicate with each other and with their environment
through signals and messages. Signal transduction is concerned with the study of
the biochemical information used by the cells to interact, with the methods for its
detection, and with the investigation of the cellular mechanisms for transferring this
information, as well as decoding and responding to signals. The understanding of
these complex mechanisms is motivated by the role they play in the functioning of a
biological system; defective signaling is at the origin of many diseases, like cancer,
diabetes, achondroplasia a.o. [22].

Until a few decades ago the main research efforts were directed towards estab-
lishing diagrams describing the qualitative behavior of the interacting components
of a signaling pathway. These static graphical schemes, however, cannot provide
information about the dynamics of such a system. The latter is essential in the
quest for characterizing life: the aim is to comprehend the way this dynamics
emerges and how it can be controlled. Since nature is too complex to be accurately
described, one needs to make drastic simplifications and the result are more or less
realistic mathematical models. Most of them involve ordinary differential equations
(ODEs) along with the relationship between input and output data. Life is highly
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Fig. 9.1 The JAK-STAT signaling pathway (after [78])

erratic, however, and one cannot expect an assembly of deterministic equations to
give a faithful characterization of processes happening in living organisms. These
random effects are inherent in each biological system [56] and a current way to
modeling them is the use of stochastic differential equations (SDEs) instead of
ODEs. As already mentioned in Sect. 9.1, these equations are obtained by allowing
for randomness in the coefficients of ODEs, which clearly provides more realistic
modeling of the actual phenomenon.

The modeling ideas presented in the Introduction are now applied in the concrete
context of signaling pathways, in order to extend the classical settings in this area.
As an illustration we will consider the JAK-STAT signaling pathway.

The family of STATs (Signal Transducers and Activators of Transcription)
comprises cytoplasmic transcription factors, which are responsible for cellular func-
tions like growth, development, division, metabolism and apoptosis. Stimulation by
extracellular signals (like cytokines and hormones) leads to transient activation of
the STATs by phosphorylation through receptor-bound Janus kinases (JAKSs); the
activated STATs are released, the phosphorylated monomeric STATs form dimers
and migrate to the nucleus to activate transcription. Figure 9.1° shows a cartoon
of the JAK-STATS signaling pathway where the stimulus is the Erythropoietin
(Epo) hormone binding to the Epo receptor. For more details about the JAK—STAT
signalling pathways we refer to [15,65] and the references therein.

3Taken from [75].
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In the nonlinear deterministic models developed for the JAK-STAT signal
transduction pathway in [78] the dynamics were established upon using some
empirical facts and prior biochemical knowledge only, which makes the description
quite uncertain; this explains the variety of existing deterministic models. More
realistic settings are those where some of the equation coefficients are random.

Assuming mass-action kinetics, Timmer et al. [78] gave a mathematical tran-
scription of the feed-forward cascade in the figure above:

)'61 = —klxlEpoR + 2k4)€4
)'62 = klxlEpoR — kzxg (97)

1
X3 = —k3x3 + Ekzxg
)'C4 = k3)€3 — k4)€4

with corresponding initial conditions and ¢ € [0, T},,.x], where T, represents the
maximum duration of the experiment. Here EpoR is the amount of activated Epo-
receptors, x; is the unphosphorylated monomeric STATS, x; is the phosphorylated
monomeric STATS, x3 stands for the phosphorylated dimeric STATS in the cyto-
plasm, while x4, means phosphorylated dimeric STATS in the nucleus; k; to k7 are
parameters.

This description was then improved [78] by allowing for nucleocytoplasmic
cycling and taking into account the sojourn time 7 of STATS in the nucleus,
modelled by a fixed time delay. This led to the following system of delay differential
equations (DDEs):

X = —klxlEpoR + 2](4)63(1‘ - 1)

)'Cz = klxlEpoR — kzxg (98)
1

X3 = —k3x3 + Ekzxg

X4 = k3xz — k4)€3(l — ‘L’).

again with appropriate initial conditions. Applying the modeling ideas from
Sect.9.1 we deduce from the previous DDE system an SDDE system for the
JAK-STAT pathway:

dx) = [ — kyx1 EpoR + 2ksx;(t — r)]dl oy (1) AW, (2) (9.9)
dxs = [klxlEpoR - kzxg]dt + oa(t) dWs (1) (9.10)
dyy = [— ksxs + ékzxg]dt + a3(r) W5 (1) ©.11)
dxy = [k3x3 — ka3 (1 — t)]dt + ou(t) dWa(1), 9.12)
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where 0;(t) (i = 1,2,3,4) are some stochastic processes. Their precise form has
to account for the specific biological problem to be modeled. An adequate choice
would be to take these diffusion coefficients proportionally to the corresponding
states i.e. 0;(f) = o0;x;(t) for some nonnegative constants o;, hence considering
multiplicative noise. A simpler option would have been to take them constants
(additive noise), however this is an unrealistic choice, since it would mean that the
states have no influence on the biochemical processes which have been ignored
in the deterministic description. Moreover, when the diffusion coefficients o; (¢)
do not depend on the states x; the solutions may become unrealistically negative.
Actually, it is reasonable to assume that the amplitude of the random fluctuations is
proportional to the level of the concrete state variables, which motivates our choice.

In practice, however, only combinations of the states x;, x», X3 can be observed,
since individual STAT5 populations are experimentally difficult to access [78].
Thus, the measurements in the cytoplasm include the amount of tyrosine phospho-
rylated STATS:

1 = ks(xz 4 2x3)
and the total amount of STATS:
y2 = ke(x1 + x2 + 2x3),

with k5 and k¢ some scaling parameters. The measurements for y; and y, have been
made in an interval of 60 min on an unequally spaced grid of time points [78]. In
such a context of partial observations the above system (9.9)—(9.12) is statistically
hardly (if at all) tractable.

One way to avoid this difficulty has been proposed in [75], where relying on the
idea of a delay chain approach [55, 68], the system (9.9)—(9.12) has been replaced
with classical SDEs including a single supplementary state equation allowing for a
time-varying delay:

dx, = [ — kyx1EpoR + 2k4zl]dt + o1 x1dWi (1) 9.13)
dx, = [klxlEpoR — kzxg]dt (9.14)
dxs = [— ksxs + %kzxg]dr 9.15)
dxy = [k3x3 - k4z1]dt 9.16)
dzy = 0(t)[x3 — z1]dt, (9.17)

with 6(-) an appropriate positive continuous deterministic function, a concrete
parametric form of which can be for instance 6(t) = «/(1 — A% exp(—at)) for
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t € [0, Tyua], with A € (0, 1) a constant, and 0 < «. The initial conditions are as

for all systems in this section x;(0) = x(l), x;(0) = 0 (i = 2,3,4)* and thus also

21(0) = 0. By using this and from the last equation above, the function z; can be

expressed explicitly w.r.t. x3, which allows to verify easily that e.g., for 6 = —In A

and forallz > Owehavez;(¢) € [ er{liglt] x3(s), g[lag( : x3(s)]. Since x3 is a stochastic
SE€|—o, s€|[—o.t

process with continuous trajectories it follows that for all # > 0 there exists another
stochastic process {7(?) };>o with ©(¢) € [0, 4 §] and such that it is the smallest one
for which z;(t) = x3(¢ — 7(¢)) holds. Observe that t(¢) describes a time-varying
delay and z; depends on the whole trajectory of state x3 (up to the current time ?),
which renders the dependence on the past more flexible that in the setting of (9.9)—
(9.12). This also makes the drift of x; depend on the entire history of x3. Moreover,
notice that for this new model the classical nonlinear filtering theory can be applied
to solve the inference problem in the mentioned context of partial observations.> For
further details to this model and some numerical simulations see [75].

Another way to deal with the above statistical tractability problem is to extend
the model (9.8) in the sense of nonlocal SDEs of the type (9.5), see [42,43,50]. In
this spirit we propose two extensions of the DDE system (9.8). Since the cartoon
presented in Fig. 9.1 only includes the states x; to x4 of the pathway and ignores
all other interactions (e.g., activation of receptors and of their domains, cross talk
with other pathways) it can be conceived that the process x; itself is not prone to
participate entirely in a deterministic way to the formation of x,, but influences its
dynamics by the time-varying mean level E(x;). Therefore, a first nonlocal SDE
model accounting for this feature can be

dxi (1) = [ — kyx1 (£)EpoR + 2kaxs (1 — r)]dt Foxi (AW (@) (9.18)

Ao (t) = [klE(xl (t))EpoR — kzxg(z)]dt (9.19)
dxs(t) = [ ~ ksxs(t) + %kzxg(t)]dt (9.20)
dra(t) = [k3x3 (1) — kaxs(t — t)]dt, 9.21)

where the random effects for the state variables x;,, x3 (the last equation can be
simply decoupled) are ignored and the focus is instead on the random effects for x;.

4We used that x3(0) = 0 and extended x3 by this value on the interval [—§, 0].

SDue to the nonlinearity of the system, the large number of parameters to be estimated, and the
rather small amount of available data, however, the practical handling of this issue is still not
feasible.
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Fig. 9.2 Numerical simulations of model (9.18)-(9.21) and of model (9.23)—(9.26). (a) Concen-
tration of x; (for model (9.18)—(9.21)). (b) Concentration of x; (for model (9.23)-(9.26)). (¢) and
(d) Concentration of x, and of x3, respectively

Equation (9.18) is affine in x; and can be solved explicitly to yield

0,2
x1(1) = x1(0) exp ( ~ (5 +kiEpoR)i + o, m(t)) (9.22)

t

+ 2ky / x3(s — 1)
0

0.2
exp ( — (3 + KiEpoR)(t —$) + o1 (Wi(1) = Wi (s)))ds,

which is obviously positive as long as x3 it is.

Numerical simulations for the system (9.18)—(9.21) have been performed upon
using the Euler-Maruyama scheme (see e.g., [44]) with a time step of 0.001 and
the following parameters: k; = 0.02, k, = 0.0235, k3 = 0.7494, k4, = 0.7492,
o1 = 0.0491, x1(0) = 2.3, x;(0) = 0 (i = 2,3,4), 7 = 6min. The results are
illustrated in Fig. 9.2 below.
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Further extensions of both ODE and SDE models can be obtained upon letting
the coefficients of the respective systems depend on the states. This can be seen
as having certain similarities with the idea of using random ODEs or DDEs to
go beyond the classical settings. Following the deterministic modeling process for
the JAK-STAT pathway it can be seen that in (9.7) it was the term involving the
conversion rate k4 of state x4 which had to be changed to get a better model. This
indicates that the rate k4 should receive more attention when trying to achieve an
enhanced modeling. In this sense we propose a further nonlocal SDE model of the

type (9.18)—(9.21), but with the coefficient k4 now depending on the state x; e.g., in
kax1(t)

et EG(0)?’

constants. The resulting system takes the form

the following way: ks = ka(x1(2)) = with k4 and o some positive

dxi (1) = [ — kyx1(£)EpoR + 2k4(x1 (1))x3(t — t)]dt

+o1x1(2) dW,(¢) (9.23)
dxy(t) = [klE(xl (1) EpoR — kx> (t)]dt (9.24)
dxs(t) = [ ~ ksxs(t) + %kzxg(t)]dt (9.25)
dxy(1) = [Kaxs(t) — ka1 ()33t — 1), (9.26)

whereby 124 < k3. A representation similar to (9.22) above can be obtained for the
solution of (9.23) as well. The theoretical aspects related to existence and positivity
of solutions to the systems (9.18)—(9.21) and (9.23)-(9.26) above are future work.
The setting (9.23)—(9.26) amounts to seeing now the conversion rate of phos-
phorylated dimeric STATS in the cytoplasm into unphosphorylated monomeric
STATS as a function depending on the expulsion rate k4 of x3 from the nucleus
and on the state x; (scaled by its expectation, in order to allow capturing nonlocal
information about its unknown current condition). The new rate thus implicitly
accounts for the processes related to recycling of phosphorylated STATS dimers
from the nucleus, their splitting into phosphorylated monomers, and the subsequent
dephosphorylation, which are prone to random perturbations and have not been
explicitly modelled in the previous versions of the system. Also, the rate k4 =
kax1 (1)

A/ @t (E(x1 (1))

the production of x; by influence of x3 (with the corresponding delay for nuclear
expulsion). It is again the expectation of the stochastic process x;(¢) being involved
in the production of x;: this nonlocality suggests an averaging over the influences of
possible conditions of x| on the growth dynamics of x;. Observe as before that the

can be interpreted as a Michaelis—Menten-like saturation® [57] in

SHereby the growth limiting is realized by the expectation of the stochastic process of the relevant
concentration.
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Fig. 9.3 Dynamics of variable delay 7(¢) (a) and concentration of x; for the system with variable
and constant delay, respectively (b). The mean reverting rate in (9.27) is « = 1 and the diffusion
coefficient is § = 0.5

last equation in systems (9.18)—(9.21) and (9.23)—(9.26) above is decoupled from
the rest and can be solved separately, after having solved the remaining equations in
the above systems.

The advantage of the new models is that the time delay now enters the equations
in a deterministic way, which enables its handling even in the framework of SDEs.
Moreover, observe that the DDE system proposed by Timmer et al. in [78] can be
reobtained in the limit taking oy — 0 and then @ — 0.

Numerical simulations for the system (9.23)—(9.26) have been performed as
above upon using the Euler—Maruyama scheme with a time step of 0.001 and the
same parameters as for system (9.18)—(9.21), with additionally @ = 1073. The
results are illustrated in Fig. 9.2 above (the concentrations x, and x3 do not change).

It can be observed that the trends of the states x; to x3 are similar to those of the
corresponding ones from the deterministic case (see [78]). More accurate shapes
will be made possible after estimating the model parameters from data. This is
ongoing work.

The above idea of making k4 a stochastic process can be used, of course, for
other system parameters as well. For instance, one can choose 7(¢) to be a mean
reverting stochastic process given by

dt(t) = a(tm — t(0)dt + Br(t)dV,, 9.27)

where V; is a Brownian motion independent on W (¢) in (9.23), 7, the mean delay,
and o and B denote a positive mean reverting rate and some positive constant
diffusion coefficient, respectively. Simulations of such a process are illustrated in
Fig.93 fora = 1, 8 = 0.5, 7, = 6, ©(0) = 6, and respectively in Fig. 9.4 for
a =0.3,8 =0.9and 7, = 6, 7(0) = 6. The parameter inference for the system
(coupled to (9.27)) is ongoing work, too.
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9.3 Radiation Therapy

In this section’ we provide a further example where modeling with SDEs can lead
to a more realistic setting allowing to enhance the level of information that can be
captured about the phenomenon of interest.

Radiation therapy is one of the most common methods for cancer treatment. It
consists in using ionizing radiation to affect the viability of neoplastic cells, while
trying to spare the surrounding healthy tissue. A quantity of interest for assessing the
success of a treatment schedule is the tumor control probability (TCP), which gives
the probability that no clonogenic cells survive the radiation treatment. It is deter-
mined by complex interactions between tumor biology, tumor microenvironment,
radiation dosimetry, and patient-related variables. The complexity of these joint
factors constitutes a challenge for building predictive models for routine clinical
practice.

Most TCP models rely on simple statistics in connection to cell survival. A model
class very popular for its straightforwardness is the one considering a discrete
distribution (Poisson or binomial) for the number of cells surviving radiation
treatment [11, 14, 49, 80]. These settings, however, are not able to capture in
satisfactory detail the effect of the treatment schedules on cancer cell dynamics like
cell repair, proliferation, sensitivity to radiation etc. Instead, cell population models
have been proposed, which describe the evolution of the number of cancer cells
via differential equations. The proliferation is, thereby, modeled via exponential,
logistic or Gompertzian growth (see e.g., [45,46]), possibly also accounting for the
effects of the cell cycle upon dividing the cell population into several compartments.

See [75].
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Such standard proliferation functions, however, prescribe monotonically increasing
growth and can fail to model unexpected changes in growth rates, while an approach
involving stochastic differential equations (SDEs) as in [21] can handle these
variations.

Furthermore, deterministic models involving differential equations are adequate
for large cell populations. By radiation treatment such a population is supposed to
shrink drastically, so that only a small number of cells remains. This renders the
use of a deterministic model problematic, thus calling for the accommodation of
stochasticity in the modeling process. To this purpose previous models consider
stochastic birth and death processes (see e.g., Zaider and Minerbo [84]), however
they again lead eventually to a system of ODEs, which are the mean field equations
for the expected cell number and where the effect of the birth and death processes
is captured via a hazard function. Subsequent models involving cell cycle dynamics
[16, 34] are extensions of Zaider and Minerbo’s model. Here we propose a new
class of models relying on stochastic jump processes and which is more flexible
than previous approaches, since it allows to account for interesting features like the
probability distribution of the time it takes for patients to get rid of their cancer cells
under a certain treatment schedule.

One of the classical models describing cancer population growth has the form

C=((b-d-h()C, (9.28)

where C(t) denotes the number of clonogenic cells at time ¢, the constants b and
d are per capita rates representing birth and death, respectively, and /(¢) denotes
the hazard function characterizing the radiation induced cell death depending on the
cumulative dose (see e.g., [34]). However, such a description with an explicit hazard
function is rather artificial; below we propose instead a model where the role of the
hazard function is implicitly accounted for.

Furthermore, the previous setting has to be adapted to some patient dependent
model for tumor evolution and able to include random effects like e.g., patient
positioning errors or organ motion. This could be realized by an appropriate
stochastic perturbation of the above ODE, but the resulting SDE is still not flexible
enough to capture the usual succession of irradiation treatments. Therefore it would
be more realistic to describe the evolution of clonogens with the aid of some
stochastic process C),(t)8 such that each of its trajectories describes the tumor
growth dynamics for a specific patient. Thereby, one appropriate choice can be
given by:

C,(t)=(mo+y)Np(t)—y, t=0,y>0 (9.29)

8Characterizing the evolution of the number of clonogens w.r.t. the standard reference population of
N,y individuals (usually in literature N,y = 10°) after the moment of the illness detection. Hence
t represents the time passed since the diagnosis of cancer has been set. A patient is considered to
be cured at the first time 7. when C, (z.) = 0.
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with Np(#) a geometric Brownian motion defined by
dNp(t) = RpaNp(t)dt+ Np(t)opdW,, t >0, op >0, Np(0)=1, (9.30)

where ng is a random variable independent of the standard Brownian motion W;
representing the fraction of tumor cells at the moment where the illness has
been detected. Rj,; is some positive constant denoting the analogue of the net
population growth (difference between birth and death rates) in the classical models.
The positive parameter y characterizes how curable the cancer is (if y =0, then
C,(¢t) >0 with probability 1, meaning that the tumor cannot be exhaustively
eliminated). Here we consider y to be a constant, however it could also be a random
variable like ny. Note that (9.29) corresponds to the case without treatment. The
current setting will be extended below to a model accounting for treatment effects.

From a mathematical point of view the above process C,(¢) is defined on a
probability space (§2, ¢, P), where §2 denotes e.g., the set of cancer patients being
considered, under the assumption of each patient having only one tumor. However,
this setting can also be extended to more complex situations where a patient can
have several tumors or for an arbitrary cardinality of £2.

If we denote by 7. the random time indicating the moment where C, (¢) first
becomes zero, then the tumor control probability is given by

TCP(t) = P(x. <t). >0 (9.31)

i.e. the TCP is the cumulative distribution function (cdf) of the random variable z..

In order to render the distribution of 7. more realistic we allow the diffusion
coefficient o of Np(t) to be a stochastic process e.g., of the form o = f(Y}),
with f some positive, smooth function and ¥; an Ornstein—Uhlenbeck (OU) process
given by

dY, = ay(my — Y,)dt + Byd Z,, t>0, (9.32)

where Z ¢ denotes another Brownian motion, possibly correlated with W;. The
positive constants ay and Sy denote the rate of mean reversion of the process Y;,
respectively the diffusion coefficient, and my is the long run mean value of Y;.

In the following we assume for the sake of simplicity that all patients follow the
same treatment schedule (for instance, daily irradiations with breaks on weekends),
however the models can be easily adapted to more general (e.g., Poissonian)
schedules.

Let us denote a time sequence {f;};=1,.. y With0 < ¢; < #; < --- < ty modeling

of i.i.d. positive random variables describing the radiation effect on tumor cells
(&x corresponds to the treatment at the moment #;). The mean value of these r.v.
is positive and can be chosen e.g., to be a nondecreasing function of the radiation
dose D.
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The process L, describing the effect of treatment can now be given by

0 , 0<t<t,
L= > B, t>1.
{k <t}

(9.33)

Thus, in order to account for the treatment effects the previously introduced process
C, () has to be correspondingly modified. The resulting model incorporating all
these features can be now summarized as follows:

Cy(t) = (no + y)Np(t) exp(—L,) — y.
dN (1)

dY[ aY(mY - Y[)dl + ﬂYdZt,

Ry Np(t)dt + Np(t) f(Y;) dW;,

t>0.

(9.34)
(9.35)

(9.36)

This model is illustrated in Fig. 9.5 with a simulation result. Where applicable,
we chose the parameters according to [9, 69]. We simulated two patients receiving
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a daily treatment (except on weekends), starting with 7, = 2. The fraction of
initially available clonogens was chosen to be 0.01 and for the rest of the parameters
we took the values y = 0.8, Ry = 0.0491, my = 0.15, By = 2.2361,
ay = 60. The simulation of the process Np(¢) has been carried out with the classical
Euler—Maruyama scheme (see e.g., [44]) and we chose f = exp. The treatment
effect was modeled by choosing for £ a rescaled noncentered y* distribution

(.e., & ~ 012))(2(1, M)), where op = 0.1, D = 2 Gy, a = 0.145 Gy_l,
9p

B = 0.0353 Gy~2. The choice of the noncentral parameter is motivated by studying
the connection between the mean value of & and the dose D: clearly, they are pro-
portional, which means that this dependence is analogous to the one for the survival
probability. Here we used the linear quadratic (LQ) function, which is so far the
most popular one in radiation treatment (see, e.g., [59] and the references therein?).

Observe a certain periodicity in the decay of the clonogens, which is in
accordance to the treatment schedules and captures the effects of no irradiation on
weekends (the cancer cells start to recover during these breaks and are hit again on
mondays etc.).

Since our setting is more complicated than the classical ones, we cannot
explicitly compute the formula of the TCP for the general model (9.34)—(9.36),
however, it can be assessed numerically for any time moment of interest with the
aid of simulations of the kind described above.

Starting from (9.31) we can compute the TCP upon using a large enough number
S of simulations for the process C, (¢). For instance, denoting by 7., (¢) the number
of simulations for which t. < ¢, then the estimated TCP will be given by

ne (1)

TCPs(1) = S

t>0

and converges in probability to TCP(t) for S — oo.

“However, it can also have some drawbacks (see, e.g., [32,41]).
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Using this estimator and the same parameters as above we illustrate with Fig. 9.6a
the evolution of the TCP for a sample size of S = 1,000 patients.

Supplementary information on the TCP can, of course, be obtained by estimating
the density of the random time .., but this is a nontrivial issue. In Fig. 9.6b we plot
the relevant part of the nonparametric estimation of this density on the time interval
of interest ¢ € [0, 3]. Hence, TCP(¢) can be characterized alternatively as being the
area under the curve up to ¢.

More details on the nonparametric method used for the density estimation are
given in Sect. 9.4.3.

Observe again the consequence of the weekend breaks during the treatments:
they make up the periodic larger gaps in the density of the random time 7', while the
spikes represent the effects of the irradiation. A noticeable impact of the radiation
treatment can thus be seen after more than one month of treatment for a daily
schedule (excepting weekends) and with the prescribed doses given above.

9.4 Cell Dispersal

We now analyze a multiscale model for cell dispersal in the framework of partial
(integro-) differential equations and present an alternative approach starting from
the underlying stochastic processes for the velocity jump movement of cells under
the influence of a chemoattractant signal and of the intracellular dynamics. The
latter can be put in the form of SDEs driven by jump processes (see Sect.9.5 for
more comments on this issue), which motivates the title of the present section. This
new approach will be handled via a nonparametric density estimation method that
will be recalled shortly. Here we are mainly concerned with bacterial motion as a
paradigm, however, the methods can be applied to investigate the motility of any
random walker biasing its behavior according to biochemical or physical cues.

The motion of most unicellular organisms can be characterized as a random walk
through physical space. For instance, flagellated bacteria like E.coli or Salmonella
typhimurium alternate a smooth, rather straight swimming (runs) with a brief and
abrupt reorientation tumbling, which, however, does not cause a significant change
in its location [3, 4]. Their motion can be biased by environmental signals: for
instance, the chemotactic behavior enables such organisms to approach advanta-
geous locations and to avoid hostile ones in response to chemical stimuli. So far
chemotaxis phenomena have been mainly investigated either from a macroscopic
(Patlak—Keller—Segel and its variants, see e.g. [40,48]) or a mesoscopic (kinetic)
viewpoint, without accounting for the inner dynamics on which the entire motility
related processes—and thus also the behavior of the chemotactically moving
population—are relying. Among the first multiscale settings we mention that pro-
posed by Firmani, Guerri and Preziosi [29] in the context of tumor immune system
competition with medically induced activation/disactivation and those aligning to
the general kinetic theory of active particles (KTAP) proposed by Bellomo et al.,
see e.g., [2] and the references therein. The same idea has been exploited in a more
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recent model by Erban and Othmer [26, 27] dealing with the multiscale aspects
of chemotaxis and where the density function of bacteria obeys a Boltzmann-
like equation coupled to a reaction-diffusion equation for the chemotactic signal,
while the internal dynamics are described by an evolutionary system. The global
existence of solutions for the resulting chemotaxis model has been shown in [28]
(one-dimensional case, incomplete assumptions) and in [5] (higher dimensions),
the latter with the aid of dispersion and Strichartz estimates under some borderline
growth assumptions on the turning kernel. In [76] we proposed a model where
the evolution of the bacterial population density is characterized with the aid of
an integro-differential transport equation coupled to a reaction-diffusion equation
for the chemoattractant and involving as in [5,26-28] intracellular dynamics, whose
influence is stated in an explicit way. A simple and natural proof of global existence
of a unique solution to this system was given for all biologically relevant dimensions
and under usual assumptions on the involved turning kernel. The framework also
allows for kernels which are more general than in previous works and also for
weakening the assumptions made on the chemotactic signal. We shortly recall the
model'® and the idea of the proof, referring to [76] for further details.

9.4.1 Problem Setting and Modeling Aspects in the PDE
Framework

Let f(z,x,v,y) be the density function of bacteria in a (2N + d )-dimensional phase
space (N = 1,2,3,d > 1) with coordinates (x, v, y), where x € RY is the position
of a cell, v € RY its velocity, and y € R the vector characterizing its internal
state. The components y;,i = 1,...,d of y are concentrations of chemical species
involved in intracellular signaling pathways controlling the motion of the cell. Thus
f(t,x,v,y)dxdvdy is the number of cells at time ¢ with position between x and
X + dx, velocity between v and v 4+ dv and internal state between y and y + dy.

The macroscopic density of individuals at the position x € R" and at the time ¢
is given by

n(l,x)z/l//yf(t,x,v,y)dvdy, 9.37)

where V C R is the set of velocitiesand Y C R‘i denotes the set of internal states.

10For a comprehensive deduction of a corresponding model in a related, but much more complex
framework (cancer cell migration through a tissue network) we refer to [38,39].
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The density f of particles satisfies a Boltzmann like integro-differential equation
[62], where the integral operator in the right hand side describes the turning events
instead of the usual collisions [10]'!:

0 f(t. %, v,y) + V- Vo f(1.X,V,y) + Vy - (F(S(1.%).y) /) (9.38)

= /V AWK[SIv. V. Yf (2, x, ¥, y) = f(t.x,v,y)]dV,
with the initial condition

fO.x,v,y) = fo(x,v.y). (9.39)

Here K[S](v,V',y) stands for the turning kernel and gives the likelihood of a

velocity jump from the v/ to the v regime. The reorientations are modelled with

a Poisson process with intensity A, which is usually taken to be a positive constant,

but should actually depend on the dynamics of intracellular signaling pathways.
The evolution of the inner dynamics is characterized by the ODE system

d
d—f =F(SEx).y),  y0) =y (9.40)

An explicit form for these equations has been given e.g., in [26,27] for a simplified
excitation—adaptation mechanism responsible for the activation of the flagellar rotor.
However, in order to allow for true excitability that form has been replaced in [5] by
a FitzHugh—Nagumo type system:

_ 1 o

91 = z_(h(S) —q(y1) — ) (excitation) (9.41)
. 1 :

Yy = t_(h(S) + y1— ) (adaptation),

where 7, and 7, denote the excitation, respectively adaptation time, the saturating
ligand function A(S) = HLS illustrating the fact that the signal is transmitted via
receptors and that binding equilibrates rapidly. g is a cubic function of the form
q(u) = u(u — y1)(u — y»2), with y; and y, positive constants.

Further, we allow the kernel K[S](v,V’,y) to depend explicitly on the output
of the excitation—adaptation mechanism and on the chemoattractant concentration

S(z,x). The evolution of the latter is described by the reaction-diffusion equation

39, S(1.x) = AS(t,x) — BS(t.x) + n(1.x),  S(0.x) = Sp(x). (9.42)

Following the terminology in literature, we shall say that equation (9.37) characterizes the
mesoscopic scale of cell dispersal.
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with B >0 a constant quantifying the consumption of S. For other choices of S
we refer to e.g., [61] (time-independent Gaussian kernel) and [26, 27] (linear,
respectively piecewise linear function of the position).

We characterize the dependence of the turning kernel on the intracellular
dynamics by'?

K[S](v.V.y) = ai(y) K(v.V) + a2 (y) K(v, VS), (9.43)

with o1 (y) + a2(y) = 1, where o;(y) (i = 1,2) are the probabilities of bacteria
choosing the motion dictated by the reorientation kernel K (v, V') for the unbiased
case, respectively, by K (v, VS) in presence of a chemoattractant gradient, where
we can choose, for instance,

_ 1 , — ,
KW, V)= — 2O 0Y) e RN, (9.44)

2m+/detXk

with X g € RV*N a given diffusion matrix for the corresponding stochastic velocity
process.

Concerning the weights o; we may choose e.g., ; (y) = %)

ar(y)+az(y)’
exp(c; |y|2), i = 1, 2, where the constants ¢; € R are such that ¢ - ¢, < 0.

Alternatively, the influence of the subcellular dynamics can also be described by
taking the kernel K to be the probability density function of a random variable,
which is normally distributed with a given (constant) mean and a y-dependent
covariance matrix e.g., of the form Var (y) = ¢y, - exp(cza|y|2), with ¢, > 0,
Crs € R.

with @ (y) =

9.4.2 Existence and Uniqueness Result for the Mesoscopic
Model
Explicitly solving equation (9.42) for S gives the solution [66]

t

S(t,x)=e P /RN So(€)G(1,x,E)d & +/e—ﬂ<’—~"> /RN n(s, £)G(t —s,x, £)d &ds,
0

(9.45)

120bserve that this is a mixture of two simpler (Gaussian) kernels, whereby its weights may vary
with the cell’s inner dynamics. Thus, the cell motion experiences a higher bias in the direction
of the chemoattractant gradient VS if the weight a,(y) outperforms its unit conjugate o (y). In
[38,39] the same type of turning kernel has been used in a multiscale model for tumor cell migration
through tissue network. Unlikely most of the turning kernels proposed so far in the literature (see
e.g., [28]) it explicitly involves the gradient of the chemoattractant.



9 SDEs as an Alternative Modeling Approach to Biomedical Problems 289

with Green’s function

1 g
Cux8= oy . N=23
The characteristics of equation (9.38) are
dx dv dy - .
ac - v({). ac - 0, ac- F(S(8,%(£)).¥(0)) (9.46)

and the back-in-time characteristics starting in (¢, X, v, y) are

X(&t,x,v,y) =x—v({t —0) 9.47)

y(it.x,v.y.§) =y— /F(S(EsX—V(f —§)).¥(©)dE. (9.48)
¢

We also denote y(0) =: ¥o(z,x,Vv,y, S).
Then relying on the method of characteristics we deduce the integral form

fE.x,v,y) = fox—vt,v,¥o(t,X,v,y,5))

t

xexp(—/a(C,X—V(f =0,y t,x,v,y, S))dé')

0

t
+/H(s,x—v(t—s),v,i(s;t,x,v,y, S)) (9.49)
0

t—s

xexp(—/a(é‘,x—v(t—é‘),i(Q;t,x,v,y,S))di)ds,

0

where we denoted
a(8,x(8),¥(8)) == A(¥($) + Vy - F(S(£.x(£)). ¥(0)), (9.50)
H(.x.v,y.5) == A(y) / K[SI(v.V.y) f(t.x. V., y)dV. 9.51)
v
Using the notation u = (£, S)7, let us also denote the right hand side of our

integral system (9.45), (9.49) by «/u. As for the initial condition observe that we
have

U(O, X,V, Y) = (fO(Xv v, Y)7 SO(X))T'
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Definition 9.1. The function u € C(0,T;L'(RY x V x Y) x L'(R")) whose
components satisfy the integral system (9.45), (9.49) is called a mild solution to our
PDE system for the cell density and the chemotactic signal.

Further we make the following
Assumption 4.

(A1) There exist positive constants m) and M) such that 0 < m, < A(y) < M),
forally €Y.

(Az) The sets V and Y are bounded. Moreover, we assume Y to be a domain in R’j_
such that there exist some linear forms [y, . .. i, on RY with

Y={yeR’: ui(y)>0..... 0 (y) > 0}

Forally* € Y and j = 1,...,r such that u;(y*) = 0, the inequality
w; (F(S,y%)) > 0 is satisfied on Ry x RV,

(A3) K satisfies the conservation condition Iy K(v,w)dv = 1 and for all v,w €
RY and a generic constant C > 0

K(,v) <Clp(v)| on RN (9.52)
|K(.v) = K(.w)| < Clp(v) —p(w)| on RY (9.53)

with ¢ : RN — V smooth enough e.g., ¢ € C'(RY) and bounded. 3
(As) Vy -F(S(,X(-)),¥(-)) is integrable on [0, T].

The following result ensures the existence of a unique mild solution to our
multiscale system.

Theorem 9.1. Let fo € L'(RY xV xY)NL®RY xV xY)and Sy € L'RY) N
L®RN). Then under Assumptions 4 the system (9.37)—(9.42) has a unique mild
solution (f,S) € C(0,T; X), forany T > 0.

Proof. For the detailed statements and proofs of this and the needed auxiliary results
we refer to [76].

Let § € (0,1) to be specified later and X = X; x X,, with X; = L'(RV x
VxY)NL®RY x V xY)and X, = L'(RY) N L®(R"Y). We prove that the
application #ys > u > &/u € .#y s is a contraction, where

3For instance, it could be defined as in [39] by ¢ (§) := £ fors; < |£] < 55 and ¢ (£) := xz% for

|&] > s,, respectively ¢ (€) := sy % for |£] < s1, whereby the set V of velocities is assumed to be

symmetric, of the form V = [s, 55] X $"~ 1.
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oy = fu e CO.8X) [0 - [ Si©6Cx 8N,

+[1f(1) = fo(x—vt,v,¥0(2: S))

t

xexp(— [ a@x=vie = 0.5 SNAE) lusgererar) < 1.1 € 0.5

0

The rest of the local existence and uniqueness proof follows by applying
Banach'’s fixed-point theorem.

Upon iterating this reasoning the existence of the mild solution on each interval
(0,5 j) follows, with t5 ; Stso, s, which proves the global existence. Hence, a
bootstrap argument is used: the time interval on which the solution exists (locally)
is successively extended, eventually yielding existence on an interval [0, T') for any
T > 0. |

The multiscale model introduced and analyzed above accommodates the relevant
levels of dynamics, however, its high dimensionality (2N 42 independent variables)
renders its direct numerical simulation unfeasible, a problem which is further
impaired by the necessity of handling different time scales for the (fast) intracellular
dynamics, the kinetic motion of cells and the (slow) diffusion of chemotactic signal.
One option would be to deduce some macroscopic (parabolic or hydrodynamic)
limit for our system involving integro-differential equations and to perform the
numerical simulations for the equations obtained in this way. This has been done
for a similar system e.g., in [26] (in one dimension) and [27] for higher dimensions,
however, under the assumption of a shallow chemoattractant gradient in order to
ensure moment closure and by considering turning kernels that do not depend on
the internal dynamics. Moreover, due to the complexity of the problem all those
deductions of macroscopic limits are merely heuristic. The few rigorous results (see
e.g., [35, 63]) have been obtained for drastically simplified settings and required
rather restrictive conditions on the involved turning kernels. For instance, such an
assumption is

/ Kwv,vV)dv =1, (9.54)
%

which is not fulfilled by many reorientation kernels, among others the one based
on the von Mises distribution proposed in [12] and which relies on experimental
evidence. This is the case, too, for all mixture-based kernels like the one proposed
above in (9.43) or below in Example 9.2.

Since to our knowledge, there are so far no reliable numerical methods for
handling the genuine multiscale model, in order to illustrate numerically the
behavior of the cell population when accounting for all relevant scales we will
use a nonparametric technique, which was applied in [73, 74] in a related context.
This method avoids the use of differential equations for the cell density; instead,
independent bacteria trajectories are simulated on the interval of interest by directly
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starting from the primary description of the involved biological processes. The data
sets obtained in this way are then used to estimate the cell population density at an
arbitrary time moment 7.

The method allows for a great modeling flexibility, since it relies on simulations
performed upon employing the stochastic processes which characterize the motion
along with its triggering factors (e.g., intracellular events and chemoattractant).

9.4.3 Numerical Treatment: A Nonparametric Technique

We present a new approach to the numerical handling of some classes of biomedical
problems.'* As mentioned above, the classical techniques are not appropriate for
systems of such complexity. In [73, 74] we proposed the use of a nonparametric
method which we shortly describe in the following and which can be seen as a
numerical approach to a large class of PDEs deduced from a stochastic framework.
It also works for more complicated models—Ilike those presented in the rest of this
section—which are set up without involving PDEs.

The kernel density estimation technique is widely used for estimating complex
density functions due to its flexibility and the fact that its consistency for various
rates of convergence is already well established [70, 71]. The method uses com-
puting power to allow a very effective handling of complicated structures. Often
it is desirable to simply let the data speak for itself i.e., to look for an estimator
of the population density, unconstrained (or as loosely as possible) by an a priori
(parametric) form. This is in fact the aim of nonparametric density estimators. In
the following we apply this method for independent simulations, however, it also
works under fairly general conditions for dependent data, see e.g., [64, 83].

Starting from the model for cell movement, we simulate U independent bacterial
trajectories on the interval of interest [0, 7] and we use the data sets obtained in this
way to estimate the cell population density at an arbitrary moment of time ¢ € [0, T].
More details on how these simulations are performed are provided below.

The nonparametric estimators for the cell population density n at some moment
t are defined by (see [70]):

U
—~ 1 -1 N
(LX) = e ;%(H x—X;))., xeRV, (9.55)
or, in an analogous way, for other relevant densities like e.g., for f:

- 1 voo. . .
(X)) = —— > A x-X))), % e R?VY, 9.56
falt:%) = — detH; @'&-X)), % (9.56)

!“Some parts of this subsection have been reproduced from [74] with permission.



9 SDEs as an Alternative Modeling Approach to Biomedical Problems 293

where .# and ¢ denote general kernel functions, X = (X, V)T, 5(,- = (X, Vi)T,
X = X, Xin)', Vi = (Vir,....Vin)T, i = 1,...,U are the position,
respectively, the velocity at the moment ¢ of the simulated ith trajectory, while H
and H are the corresponding bandwidth matrices, which are usually taken to be
diagonal and invertible. For the concrete numerical applications here they are taken
to be of the form H = All, with I denoting the identity matrix and 7 > 0 being the
so-called bandwidth parameter.

One of the most frequently used kernels in the univariate case is the Gaussian
one, defined by K(u) = ﬁexp(—%uz), u € R. Other classical choices are:
Epanechnikov and its variants, triangular, rectangular etc [70]. In the multivariate
case the easiest form to be chosen for the kernel # is the multiplicative one:

N
J (x) = [] K(x;). Analogously for Va
=1

Thereb]y, the choice of the bandwidth matrix is important, whereas the choice
of the kernel function is not so crucial, since it is possible to rescale the kernel
function such that the difference between two given density estimators using two
different kernel functions is negligible [54].

The choice of the bandwidth matrix is one of the most difficult practical problems
in connection with the above method. The bandwidths are chosen according to
the available information about the density to be estimated. For example, if it is
known when the latter is very close to a normal density, then the bandwidths can be
optimally chosen with the so-called rule-of-thumb [70] giving an explicit expression
for the bandwidth matrix. However, this is rarely the case, so a more adequate choice
is to compute the bandwidth according to one of the data driven bandwidth selection
criteria. One of the most popular ones is the least-squares-cross-validation (LSCV),
which has the goal to estimate the integral squared error (ISE) defined by

ISE(H) = / [Am(r, x) — n(t, x)]>dx, (9.57)

where ng(, x) is the estimated density and n(z,x) is the true density being esti-
mated. The usual method for estimating ISE is the leave-one-out cross validation.
The minimization of the estimated ISE leads to an optimal choice of the bandwidth
matrix for a given kernel density function JZ". It is this bandwidth selection criterion
which we use in the present work. Alternatively, there is a plethora of other
bandwidth selectors in literature (see e.g., [19] and the references therein).

Several results on consistency of the kernel density estimators settling the
theoretical foundations of the nonparametric method have been derived e.g.,
by Cacoullos [8], Deheuvels [17], and Devroye and Gyorfi [18]. The issue of
convergence speed has been addressed among others by Devroye and Gyorfi [18]
and we refer for further, more specific convergence results and error estimates to
Holmstrom and Klemelé [36] and the references therein. Similar results for the case
with dependent data can be found e.g., in [83].

The computational cost of this method is tightly connected to the so-called curse
of dimensionality: the amount of data necessary for an accurate estimation grows
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exponentially with the spatial dimension of the phenomena of interest. However,
for the concrete biological problems handled in this work the spatial dimension is
maximum N = 3 when estimating the macroscopic cell density and thus the size of
the required data sets is a very reasonable one, for which the method performs well.

9.4.4 Extensions of the Classical Modeling Framework

The current models for describing cell dispersal rely on some classes of random
processes either giving a geometrical description of the motion or considering
stochastic increments of the cell velocity. The former build the class of so-
called velocity jump (VJ) models, while in the latter the particle velocity obeys a
multivariate Ornstein—Uhlenbeck (OU) process.

9.4.4.1 V] Type Models

In the models of this class the changes in the cell velocity are dictated by a turning
kernel. Based on particle kinetics one can deduce a Boltzmann like partial integro-
differential equation where the usual collision term is replaced by an integral
operator characterizing the turning events. A PIDE of this type has been deduced
e.g., by Othmer et al. [62] in the absence of cell—cell interactions and external stimuli
and has the form

9 f(t,x, V) +v-Vf(t,x,v) = —)kf(t,x,v)—f-)k/ Kv,¥) f(t,x,v)dv. (9.58)
v

Here, K(v,v’) denotes the turning kernel characterizing the likelihood of a cell
changing its velocity regime from v’ to v. The reorientations are modelled with a
Poisson process with intensity A, so the mean running time is 7 = 1/A. The kinetic
equation presented in Sect. 9.4.1 above aligns to this framework too, however, that
setting is more realistic, since it also accounts for the effects of the intracellular
dynamics and the chemoattractant concentration. These influences can be seen as
acting like conditionings on the turning kernel.

In the following we avoid the already mentioned numerical simulation problems
arising from the high dimensionality and the complexity of the kinetic formulation
by considering an approach in which the cell velocities are seen as stochastic
processes with dynamics characterized by the turning kernels. Their evolution—
together with the knowledge of time distribution of reorientations—will allow to
reconstruct the individual cell trajectories. These in turn will provide the data for
the nonparametric estimations of the densities of interest.'

150bserve that the method outlined in Sect. 9.4.3 enables to directly compute the macroscopic cell
density n(t, x), without needing to go through the intermediate step of assessing its mesoscopic
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We give here two examples of applying this method, both of which cannot be
handled numerically in the PDE framework. For models featuring further interesting
cell motion characteristics we refer to [73, 74]. For all simulations and estimations
in this subsection we take N = 2, since this situation is easier to visualize than the
3D case, however, this is no restriction to the method which works very well in 3D
too.

Example 9.1 (Multiscale model with intracellular dynamics). Consider the turning
kernel K[S](v, V', y) proposed in (9.43) above, which is allowed to explicitly depend
both on the intracellular dynamics and on the gradient of the chemoattractant. In
order to reduce the simulation effort we assumed (as in [26,27,61]) a given form of
the chemoattractant signal

1
(27r)N/2«/det X

where mg denotes the position of the signal source. In our simulations we take
mg = (55,55)7 and X5 = 1.8Iy. For the intracellular dynamics the equa-
tions (9.41) have been considered. The reaction-diffusion equation for S involving
the macroscopic cell density n could be solved as well in each time step, this being
only a matter of computation costs. For the same reason we choose a constant
turning rate A, however, there is no challenge in considering one having a known
form which depends on the intracellular dynamics and/or (possibly implicitly) on
the current position and the concentration of the chemoattractant.

The parameters used in the simulations are—where applicable—consistent with
those in literature [5, 12, 62]. Further parameter choices (for the weights in the
turning kernel) are ¢; = —5.2, ¢, = 3.75and Y = 121, y; = 1, y» = 0.2,
t, = 0.001 for the excitation time and 7, = 12 for the adaptation time in (9.41).

The simulation and estimation procedure then goes through the following
steps:

S(x) = em10mme)  Flems) -y o RNV (9.59)

1. solve the ODE system for the intracellular dynamics having as input the given
concentration of the chemoattractant;

2. simulate U cell trajectories upon making use of the turning kernel proposed in
(9.43);

3. estimate the macroscopic cell density with the nonparametric method.

All estimations have been performed using U = 10,000 simulations, though this
is far more than is actually needed in order to ensure good accuracy. For further
details on this issue we refer to [70, 74].

(higher dimensional) counterpart f(z,x,v,y) as e.g., in the PDE approach. Hence this implies a
dimension reduction from 2N + 2to N.
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Fig. 9.7 Typical cell
trajectory. Chemotactic signal
source is at (5.5, 5.5)"

20 traectory, V) with signal and internal dynamics
T T T T

Figure 9.7 below has merely illustrative purposes'® and shows a typical cell
trajectory for this model.

Figure 9.8'7 collects a sequence of estimated macroscopic cell densities'® at
consecutive times.

Observe that when many enough cells reach the (closer) neighborhood of the
signal source (at about ¢ = 10) the population begins to split into a faster and a
slower part. This can be clearly seen in Fig. 9.8d,e. Then the faster part seems to
adapt (starting with # = 12) to the chemotactic signal, allowing the slower part to
catch up before adapting itself. At about 1 = 14 the population has again the more
compact form it had before splitting and moves on as such towards the chemotactic
source, remaining for later times in its neighborhood and no longer splitting, which
might be caused by all cells having adapted to the chemotactic signal.

Example 9.2 (Model for a bacterial population avoiding a hostile region). '° Here
we consider a VJ model for a cell population which has to avoid a hostile circular
region of radius r centered at xp # my, where my denotes the mean of the initial
population density. A possible choice for the turning kernels would be to consider
mixtures similar to the one in (9.43). However, since here we want to focus on
featuring the avoidance of the unfavorable region the dependence on the chemotactic
signal and the intracellular dynamics will be turned off.

10f course, the influence of the subcellular dynamics cannot be seen on this level of a random
individual path.

"Taken from [76].
8More precisely their respective projections on the x; Ox; plane.
9See [73].
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Fig. 9.8 Estimated macroscopic density at several time moments. Inner dynamics given by (9.41).
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The corresponding weights p, g in the mixture characterizing the turning kernel
should also depend in this case on the cell position:

Kv,v.,x) = pX)K1(v,V) + ¢(x)Kz(v, V', X), (9.60)

where K| models a biased cell movement; e.g., it is a Gaussian kernel with
mean 5 vM( ™ + ﬁ) where vy is a known speed for which a biologically
relevant value 1s chosen (e.g., 10 — 20 pm/s, see [27]) and with a given covariance
matrix Yg,, while K, models the cell movement around a hostile region. Given
the previous Velocity v/, K; is the conditional density of the random variable
V =sign(< % Toxall ” ,V >)V, where V is a random vector having any type of density

which is suitable to describe a classical bacterial motion. For instance, it can be a
”v,”) and given covariance X', . Thereby

Gaussian vector with mean %v M (ﬁ

< -, > denotes the scalar product in RV,
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2D trajectory, velocity jump with an obstacle at (1.5, 1.5) cell density for t=45, velocity jump with an obstacle at (1.5,1.5) cell density for t=65, velocity jump with an obstacle at (1.5,1.5)
.
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Fig. 9.9 Cell population avoiding a hostile region (a): a typical trajectory. Start (magenta star),
end (red right pointer). Obstacle centered at (1.5, 1.5). (b) and (¢): estimated macroscopic density
att = 45, respectively t = 65

Concerning the weights, we can choose for instance

1
p() = [1 = exp(——Ix = oll* = + d)’ | lz-cuooran(®). xR,

and ¢(x) = 1 — p(x), where oo and d are some adequate positive parameters
controlling the influence of the kernel K, while 1} denotes the indicator function
of a set. The estimation results for the macroscopic cell density in this framework
are illustrated in Figs. 9.9 and 9.10 below.? Concerning the parameters involved in
the simulations, the obstacle is centered at xo = (1.5, I.S)T and has radius r = 0.7.
The kernels in the mixture are of Gaussian type, with covariance matrices X g, =
X k, = 0.011,, the mean velocity is vay = 20 um/s, and oo = 1, d = 0.001.

For a model describing the evolution of a cell population in a heterogeneous
medium with many (possibly randomly distributed) obstacles we refer to [74].

9.4.4.2 OU Type Models
The OU based models?! can be written in the general form

dx, = b(t,X,)dt + o (¢,X,)dB;, t >0 9.61)
where X, € R?V is the multivariate stochastic process with components x; and v;,
while B, is a multivariate Brownian motion in R?V . In this stochastic differential

equation the drift b € RV and the diffusion matrix ¢ € R?¥*2V are usually of the
form

20Figures reproduced from [73].
21See [73,74].
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a cell density for t=85,velocity jump with an obstacle at (1.5,1.5) b cell density for t=105,velocity jump with an obstacle at (1.5,1.5) C density for =125, velocity jump with an obstacle at (1.5,1.5)
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Fig. 9.10 Estimated macroscopic cell density at t = 85, ¢t = 105,¢ = 125, ¢t = 145,t = 165,
t = 185,¢t = 215, t = 235 respectively t = 255
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with ¥ e RVY  meRY,

(9.62)

where y/p denotes the rate of mean reverting for the velocity process v and is related
to the chemotactic sensitivity. m and ¥ are constant matrices or some functions of
stochastic processes. For X' constant, the random variables are Gaussian distributed,
which is often not realistic, see e.g., [13, 79, 82]. This problem, however, can be
overcome upon allowing X' to be a stochastic process of the OU type comprising
several stochastic effects in the biological system. Details will be provided below.
When the coefficients in (9.61) are sufficiently smooth it is well known that the
evolution of the density is described by the forward Kolmogorov equation (FKE)

N2 AR
= — —(b; X _ ikie =\ kg, =
tria)D aii(bl(t,x)fw2”;:1_%%((, DD ©6)

i=1
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where X = (x,v) € R?N, b = (b))1<i<on, 0 = (07)1<i j<on with b; and o
deterministic functions. For the model with nonsmooth coefficients to be presented
below, however, it would be technically quite elaborate to deal with this PDE
approach.

Example 9.3 (Model for a cell population inferring resting phases and switching
between a biased and an unbiased motion regime). The OU model in (9.61) can
be extended to allow for a random alternation between a motion biased in the
direction of an external signal (e.g., chemoattractant) and an unbiased one. The latter
is characterized by constant values of m and X', while the random switching can be
achieved by assuming them to be nonconstant.

To this purpose we choose m to be a stochastic process of the form m, =
g(t,Y;), with an appropriate function g and a stochastic process Y;, which can
be seen e.g., as an individual indicator of the internal dynamics of the cell as a
result of the influences of environmental factors like local abundance of nutrients
or chemorepellents. For example, one can model Y; as another OU process with
dynamics independent on the Brownian motion W;. In a more detailed description
it could also be the logarithm of some weighted mean over the outcomes of an
intracellular signaling pathway initiated by some input signal and modeled with
SDEs. A possible parametrization for g to be used in the following is g(¢, Y;) =
e "' 1¢y,<oym, where y > 0 is e.g., the decaying rate for the concentration of a
stimulus (or some other environmental influence).??

The Gaussianity assumed for the random variables involved in the model for the
case where the diffusion coefficient X' is constant can be alleviated as well upon
taking the volatility of the process W, to be stochastic e.g., of the form A (¢, 1;) X,
with X' being as before a constant matrix and & an appropriate real function. For
instance, one could make the choice i(t, ;) = ae "' + (1 —ce " )be™ (a,b > 0,
a’+b%>0,0<c <1),with y > 0 and Y, having the same significance as above.
Notice that the coefficient A (¢, Y;) of the covariance matrix directly influences the
velocity fluctuations: when the cell passes in a biased regime it reduces its velocity
variance, whereas the latter is increased in the unbiased regime.

The new class of models obtained in this way takes the form

pdv; = y(&(t, ) —v)di + h(t, T)EdW,, >0 (9.65)
th = OlT(mT — T{)dl + ﬁ’rdZ;, (966)

with W, and Z, independent Brownian motions, g : Ry x R — R and & : Ry x
R — R some given functions, and initial values v(0) = vy and Y (0) = Yy, where
v, Yo are random variables independent of W, and Z,. Here, p is a measure of
persistence, oy, By > 0, my € R.

22Qbserve that for y > 0 the bacterial population asymptotically goes over into an unbiased regime.
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The above choice of functions g and £ is particularly suited to capture more
features of the inter- and intracellular environments also in this framework,? where
the velocity changes are continuous in time and prescribed by the OU system,
unlikely the jumps dictated by a turning kernel of the type given in the previous
paragraph.

For a model of the form (9.64) the application of the nonparametric technique is
straightforward and includes the following steps:

1. solve the SDEs for the velocity process v;;

2. generate with the aid of v, analogously to the velocity jump case the cell
trajectories;

3. apply the nonparametric method to estimate the macroscopic cell density for the
population of interest.

The models of the previous type can be easily adapted to allow for resting phases,
a feature actually encountered in some bacteria species [23,24,30], but also in more
evolved cells like e.g., fibroblasts [6].

In the PDE framework a transport equation model characterizing bacterial move-
ment involving resting phase effects has been proposed in [62] under the assumption
of the cells leaving the resting phase at random times governed by a Poisson process.
A more recent transport based model with resting phases can be found in [33]. The
results, however, were of rather theoretical nature and no numerical simulations
have been performed yet to assess the behavior of cells predicted by any of those
models.

Here we propose a more flexible way to model stationary phases upon using an
OU driven stochastic switcher I3, + > 0. This idea allows us to adapt all model
classes presented above without PDEs (both for the cases OU and velocity jump) to
account for resting phases.

In the OU case the pausing can be easily modelled in a similar way to the previous
setting including environmental influences via stochastic processes:

dx; = v,dt (9.67)

pdv, = y(gt, ;) —v)dt + h(t, ;) X dW, (9.68)
dY, = ay(my — Yy)dt + BydZ~ (1) (9.69)
dly = ar(mp —I)dt+ BrdZr (1) (9.70)

Vi = lir<oy - Vi 9.71)

W,, Z~(t) and Z (¢) are independent Brownian motions, Y; has the same meaning
as above and [ is a classical OU process which is supposed to model the alternation
between the moving and the resting phases regimes. The coefficients, the variables,
and the functions g, & involved have the same significance as in (9.64).

ZThough not in an explicit way.
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Thus, the cell will be in a resting phase as long as its corresponding switcher I
takes positive values. Our choice of the switcher as an OU process was motivated
by the good statistical properties of the latter and is more appropriate when time
varying effects are to be included. Other choices are, however, possible as well.
Moreover, we considered here the processes I; and Y, to be uncorrelated, but this
assumption can be easily dropped to allow for the extension to more general cases.

In the velocity jump case one can follow the same idea in order to account for
resting phases: the new velocity after each reorientation is dictated by the turning
kernel, while an OU process I; allows switching between this new velocity and the
zero one in the resting phase.

9.5 Conclusions

In this chapter we proposed some approaches based on SDEs or SDE-like processes
to modeling biomedical problems which so far have been handled via ODEs or
P(I)DEs. These new approaches are able to enhance the description of the relevant
biological phenomena, while still keeping the corresponding settings manageable.
Moreover, they allow statistical methods like the nonparametric density estimation
for assessing the behavior of cell populations to be applied in a framework where
the deterministic methods fail or are inefficient. We illustrated the new classes
of models through three applications from biology and medicine: intracellular
signaling pathways (here in particular the JAK—-STAT signaling), evolution of tumor
cells in response to radiotherapy, and cell dispersal. However, the problems studied
here represent just a few paradigms and the model classes and methods for their
mathematical handling presented in this work have a much wider applicability.
Observe that some of these models can be set in the frame of nonautonomous
(stochastic) dynamical systems, for which methods handling the deterministic case
are provided in Chap. 1.

In Sect.9.2 we considered some extensions of mathematical models for intra-
cellular signaling. In doing so, we recalled the classical ODE and DDE settings by
Timmer et al. [78], as well as some recent SDE approaches introduced in [75],
and proposed some new models involving coefficients depending on stochastic
processes and nonlocal SDEs. The latter allowed the uncertainties of the dynamics
for the proteins interacting in the pathway to be captured and, at the same time, a
more convenient handling of the time lag in this context. This has been achieved by
treating the terms with delay in a deterministic way, while preserving the relevant
stochasticity for those without delay. This also opens the possibility for parameter
inference in this SDDE framework, an issue which is still out of reach in the
more classical SDDE settings. The estimation of parameters for the new models
is ongoing work.

The new model proposed in Sect. 9.3 for describing radiation therapy schedules
enables randomness to be accommodated both in the treatment and in the evolution
of the tumor. This also means that the commonly made (inadequate) assumption
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of a sufficiently large population of cells is no longer needed. Moreover, interesting
features like the probability distribution of the persistence time for tumor cells under
a certain treatment schedule (including the memory of treatment and repopulation
effects during radiation pauses) have also been accounted for. The model used for
describing the dynamics of the tumor cells under a specific treatment schedule
involved a jump process which is a particular case of a Lévy process. Hence, the
model (9.34)—(9.36) can be equivalently characterized by a system of SDEs driven
by Lévy processes.

Eventually, in Sect. 9.4 we introduced a multiscale model for cell dispersal, in
which the effects of subcellular dynamics on the behavior of the entire population
were accounted for. Both the approaches via PIDEs and via SDEs have been
considered. The former relies on the kinetic theory of (active) particles and leads
to a Boltzmann-like transport equation for the cell density, coupled with a reaction-
diffusion equation for the concentration of a chemoattractant and an ODE system
for the excitation—adaptation mechanism of intracellular dynamics.?* We provided
a global existence and uniqueness result for the solution to this coupled system,
however, due to the complexity and the high dimensionality of the problem, the
issue of numerical simulations is still inaccessible. This motivated the alternative
approach where we started from the underlying stochastic processes characterizing
the cell movements in the same multiscale context and proposed some models for
the evolution of their velocities, either driven by Brownian motions (the OU type
models) or accounting for jumps (the VJ models). The latter too, can be seen as
SDEs of the form (9.61), however, w.r.t. a pure jump Lévy process i.e. with dLL,
instead of d B, and of course with appropriate drift and diffusion coefficients. Then
cell trajectories have been simulated with the aid of these OU and VJ models,
which allowed for the estimation of the macroscopic cell density by using the
nonparametric technique recalled in Sect. 9.4.3. In [74] we offered a new perspective
to this method and interpreted it as a numerical procedure for solving PIDEs of the
type presented in Sect. 9.4.1. Its applicability and advantages are addressed in that
paper too. From a practical point of view one of its main assets is the fact that if real
data become available (in the form of sufficiently numerous cell trajectories), then
they can be directly used to assess the cell population density.

The high versatility of the method allows for handling a plethora of models
featuring a complexity and a detail level which cannot be achieved in the P(I)DE
framework. Section 9.4.4 provides merely a small selection; for further interesting
models we refer to [73,74].

Finally, in this chapter we assumed independent cell trajectories, however, the
nonparametric technique can also be applied under fairly general conditions even
in the case of correlated cell paths. We refer to e.g., [64] for the mathematical
framework of nonparametric estimation with dependent observations. This opens
the possibility of using this method also for self-organization models.

2*Related multiscale models in the much more complex framework of tumor cell migration through
a tissue network were addressed in [38,39,51].
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