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Abstract. The problem of solving string constraints together with nu-
meric constraints has received increasing interest recently. Existing meth-
ods use either bit-vectors or automata (or their combination) to model
strings, and reduce string constraints to bit-vector constraints or au-
tomaton operations, which are then solved in the respective domain.
Unfortunately, they often fail to achieve a good balance between effi-
ciency, accuracy, and comprehensiveness. In this paper we illustrate a
new technique that uses parameterized arrays as the main data structure
to model strings, and converts string constraints into quantified expres-
sions that are solved through quantifier elimination. We present an effi-
cient and sound quantifier elimination algorithm. In addition, we use an
automaton model to handle regular expressions and reason about string
values faster. Our method does not need to enumerate string lengths (as
bit-vector based methods do), or concrete string values (as automaton
based methods do). Hence, it can achieve much better accuracy and effi-
ciency. In particular, it can identify unsatisfiable cases quickly. Our solver
(named PASS) supports most of the popular string operations, including
string comparisons, string-numeric conversions, and regular expressions.
Experimental results demonstrate the advantages of our method.

1 Introduction

A string solver is used to determine the satisfiability of a set of constraints involv-
ing string operations. These constraint can be mixed with numeric constraints,
in which case we call them hybrid constraints. This paper is about how to solve
hybrid constraints efficiently using SMT solving and automaton approximation.

Hybrid constraints may be produced by a static analyzer or a symbolic ex-
ecutor. For example, a symbolic executor for web applications may produce
thousands of path conditions containing non-trivial hybrid constraints. Solving
these constraints efficiently is the key for the tool to be scalable and practical. A
typical web application takes string inputs on web pages and performs a lot of
string operations such as concatenation, substring, >, and matches. There are
also three more typical requirements: (1) strings are converted into numeric val-
ues for back-end computations; (2) string values are constrained through regular
expressions; and (3) unsatisfiable hybrid constraints should be identified quickly.
This poses unique challenges to many symbolic execution tools [5,12,13,17] which
usually handle only numeric constraints well.
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While there are some external string solvers [2,20,8,18,15,9] available, none of
them meets our need to obtain a good balance between efficiency, accuracy, and
comprehensiveness. Roughly, existing solvers can be divided into two categories:
(1) bit-vector (BV) based methods, which model a string with a fixed-length
bit-vector; and (2) automaton based methods, which model a string with an
automaton. A BV method needs to compute the lengths of all strings before
constructing bit-vectors, hence it may enumerate all possible length values in
order to prove or disprove a set of constraints. Such enumeration often leads to
exponential numbers of fruitless trials. In contrast, an automaton method models
a string with an automaton capturing all possible values of this string. String
automata can be refined according to the relation of the strings. Essentially, an
automaton is an over-approximation of string values, and the refinement is often
insufficient, requiring the enumeration of concrete string values and/or string
sequences to find out a valid solution. The methods combining these two models
inherit many of the disadvantages while circumvent some.

In this paper we propose a new way to model strings so as to avoid brute-force
enumeration of string lengths or values. We model a string with a parameterized
array (parray for short) such that (1) the array maps indices to character values,
(2) both the indices and the characters can be symbolic, and (3) the string
length is pure symbolic. With this model, string constraints are converted into
quantified constraints (e.g. ∃ and ∀ expressions) which are then handled through
our quantifier elimination scheme. Our conversion scheme follows a declarative
and non-recursive style. The produced quantified constraints are often beyond
the capacity of modern SMT solvers such as Yices [19] and CVC [1]. To handle
them, we propose an efficient quantifier elimination algorithm. This conversion
scheme is our first contribution. It precisely models string operations and string-
numeric conversions. The quantifier eliminator is our second contribution.

Our third contribution is to use interval automata to build an extra model for
strings, and reason about string values via automata. We use automata to not
only handle regular expressions (RegExps), but also enhance the solving of non-
RegExp cases. We demonstrate how to refine the automata through deductive
reasoning and fixed-point calculation.

Our fourth contribution is to combine the parray and automaton model to
determine satisfiability efficiently. For example, when the automaton domain
finds unsat, the solver can safely claim unsat. While the automaton model is
mandatory in modeling RegExps, we can use the automata to refine the parray
model for locating a solution fast.

We perform preliminary experiments to compare different methods, and show
that our method outperforms existing ones in general.

As far as we know, our P-Array based String Solver (PASS) is the first to ex-
plicitly use parameterized arrays to model strings and apply quantifier elimina-
tion to solve string constraints. It is also the first to combine interval automaton
and parray for fast string solving. As for comprehensiveness, it handles virtually
all Java string operations, regular expressions, and string-numeric conversions.
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String s1, s2; int i; // symbolic

if (s1.beginsWith("a1")) {

if (s2.contains("12")) {

if ((s1 + s2).endsWith("cd"))

...; // path 1

else ...; // path 2

}

else if (s2.toLower() > s1)

{ ...; return; } // path 3

int j = parseInt(s2.substring(i,i+2));

if (j == 12) ...; // path 4

else (toString(i) == s2)

...; // path 5

else ...; // path 6

}

else ...; // path 7

(a)

String s; // symbolic input

if (s[0] == ‘-’) {

if (s.match(".\d+,\d{3}"))

...; // path 1

else {

int i = s.lastIndexOf(‘,’);

if (i == -1) ...; // path 2

else {

String s1 = s.substring(i+1);

int x = parseInt(s1);

if (x > 100 + i)

...; // path 3

else if (s1 < "1000")

...; // path 4

else ...; // path 5

}}}

else ...; // path 6

(b)

Fig. 1. Two example programs producing hybrid constraints

2 Motivating Examples and Background

Figure 1 shows two Java examples. The first one contains string operations
substring, beginsWith, >, etc.. Inputs s1 and s2 are symbolic strings, and i is
a symbolic integer. Consider the path conditions (PC) of Path 1 and Path 4. A
possible solution for PC1 is s1 = “a1” ∧ s2 = “12cd”. PC4 is unsatisfiable since
constraint ¬s2.contains(“12”) contradicts with the “toInt . . . ” constraint. Here
numeric and strings may be converted back and forth.

PC1 : s1.beginsWith(“a1”) ∧ s2.contains(“12”) ∧ (s1+s2).endsWith(“cd”)
PC4 : s1.beginsWith(“a1”) ∧ ¬s2.contains(“12”) ∧ s2.toLower() ≤ s1

∧ toInt(s2.substring(i, i+ 2)) = 12

The second example checks whether the symbolic input s starts with ’-’. If
yes, it checks whether s is of a popular format depicted by a RegExp (e.g.
starting with any character, followed by at least one digit, and a comma, and
then 3 digits). Then it checks whether ’,’ appears in s. If yes then the substring
after character ’,’ is taken and converted into an integer x, which is later com-
pared with 100+ i. This is a typical computation in web applications, e.g., first,
performing format checking, then, converting strings to numeric, and finally,
branching over the numeric. For example, a valid test case for path 3 is “-,103”.

The satisfiability of string+numeric constraints is an undecidable problem
in general (see [2] for some discussions). Hence practical solutions are impor-
tant to tackle string-intensive programs. Existing string solvers cannot fulfill
our needs. For example, Microsoft’s solver [2] encodes string operations with
bit-vector but does not support regular expressions. Hampi [8] and Kaluza [15]
also use bit-vector encoding and provide limited support for hybrid constraints
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and regular expressions. The Rex tool [18] uses automaton and an SMT solver,
and represents automaton transitions using logical predicates. Stranger [20] uses
an automaton-based method to model string constraints and length bounds for
abstract interpretation. A lazy solving technique [11] uses automaton with transi-
tions annotated with integer ranges. A good comparison of the automaton-based
approaches is given in [10]. Many of these solvers provide no support or only very
limited support for hybrid constraints (i.e. combinations of numeric constraints,
string constraints, and RegExp constraints). An interested reader may refer to
[9] for more discussions. Moreover, even for the supported features, they often
use iterations or brute-force enumerations, hence harming the performance. Now
we briefly introduce the two main existing string models.

Bit-Vector Based Model [2,8,15]. A string of length n is modeled by a bit-
vector of 8n (or 16n for Unicode) bits. Note that n has to be a concrete value
before the bit-vector can be instantiated. Hence, a BV method first derives length
constraints, then solves them to obtain a concrete assignment to the lengths,
and then instantiates the bit-vectors and builds value constraints whose solving
gives the final string values. For example, from constraints s1.beginsWith(“ab”)

∧ s1.contains(“12”) we can derive |s1| ≥ 2 (we use notation || for the length),
then obtain a concrete length value, e.g. |s1| = 2, then instantiate a 16b bit-
vector v and build value constraints extract(v, 0, 7) = ‘a’ ∧ extract(v,8, 15) =

‘b’ ∧ extract(v,0, 7) = ‘1’ ∧ extract(v,8, 15) = ‘2’, which is found unsat by the
SMT solver. Next, a new length constraint like |s1| > 2 is used to start a new
iteration. After a few trials a valid solution s1 = “ab12” is found with |s1| = 4.
Clearly, separating the solving of length constraints and value constraints may
result in wasted effort. This is also evidenced by the solving of PC1, where
the minimum lengths for s1 and s2 is 2 and 4 respectively. Since the length
constraints specify that |s1| ≥ 2 ∧ |s2| ≥ 2 ∧ |s1| + |s2| ≥ 2. there are 2 wasted
iterations before the right length values are reached.

The case of the unsatisfiable PC4 is worse. A BV method can infer |s1| ≥
i ∧ 2 ≤ i + 2 ≤ |s2|, then build the value constraints after assigning concrete
values to |s1|, |s2| and i. After the value constraints are found unsatisfiable,
new iterations are performed in an attempt to find a valid solution. Suppose
the lengths and i are bounded to 100, then O(1003) iterations may be needed
until time-out occurs. In contrast, our parray method requires no such fruitless
iterations and is able to return sat or unsat quickly.

Automaton Based Model [16,21,18,20,11,9]. A string is modeled by an
automaton which accepts all possible values of this string. There are two kinds
of automata: (1) bit automaton, where each transition is labeled 0 or 1, and a
string value is represented by the bits from the start state to an accept state; (2)
interval automaton, where each transition represents a character whose value
is within an interval (or range) [lb, ub] for lower bound lb and upper bound
ub. Since bit automata [21,20] assembles bit-vectors, here we investigate only
interval automata. Note that a bit-automaton method may also require deriving
and handling lengths constraints separately from value constraints [21].
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Take PC1 for example. Initially, s1’s automaton accepts any string starting
with “ab”; s2’s automaton accepts any string containing “12”; and the automa-
ton concatenating s1 and s2, say s3, accepts any string ending with “cd”. We
can refine each automaton using the relation between the strings, e.g. s3’s au-
tomaton should also contain “ab” and “12”, and s2’s automaton should contain
“cd”. Then s2’s shortest solution is “12cd”, which is valid.

Unfortunately, although automaton refinement can narrow down the possible
values of the strings, it may fail to capture precisely the relation between strings.
Consider the following path condition.

PC3 : s1 + s2 + s3 = “aaaa” ∧ s1 ≥ s2 ≥ s3

Obviously, after some (imperfect) refinement we can infer that s1’s value can
be “”, “a”, ..., “aaaa”. The next step is to assign concrete values to s1, s2
and s3. Suppose we starts with s1 = “”, then the second constraint enforces
s2 = s3 = “”, which falsifies the first constraint. Similarly s1 = “a” does not
work. It may take multiple trials before we reach a valid solution like s1 = “aa”
and s2 = s3 = “a”. One main problem here is that an automaton represents
a set of possible string values, but not the exact relation between strings, e.g.
only when s1 = “” do we know that s2 = s3 = “”. While such a relation can be
encoded in a production of two automata [21], the product-automaton may be
too large. Searching strategies and heuristics [11] may help, but are too ad-hoc.
We show in this paper a more general and comprehensive technique.

Moreover, the connection between strings modeled by automata and the nu-
meric constraints may be weak. Consider the unsat PC4, where s2.substring(i, i+
2) is converted to an integer for numeric computations. Since both s2 and i are
symbolic, the values of this expression comprise an infinite set, and encoding
them symbolically is not trivial (see Section 4 for more details). As a conse-
quence, an automaton method may find it hard to disprove PC4. In our parray
method, no automaton is required to handle PC4, and the unsat result can be
obtained without enumerating string lengths or numeric values.

Nevertheless, the automaton model is extremely useful to handle RegExps.
We propose a technique to convert automaton representation to parray represen-
tation parameterizedly after performing a sophisticated automaton refinement
scheme. This scheme is crucial for both the accuracy and the performance.

This work is largely motivated when we built string solvers for Java and
JavaScript Web applications. Our automaton-based solver in [9] suffers from
above-mentioned issues, which are addressed by PASS.

Overview of Our Parray Based Model. A string is modeled by a parray of
symbolic length. The main procedure to solve a set of hybrid constraints is:

1. All string constraints not involving regular expressions are converted into
equivalent quantified parray constraints (Section 3).

2. If a string is constrained by a regular expression, build a string relation graph
for all string variables in the constraints, perform refinement to infer more
relations and possible values of the strings (Section 4).
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3. For each string associated with a regular expression, build extra parray con-
straints from this string’s automaton (Section 4). If no regular expression is
involved in the original hybrid constraints, we can skip steps 2 and 3.

4. Perform quantifier elimination to remove quantifiers iteratively, solve the
remaining numeric+array constraints (Section 3.1). This overcomes the lim-
itations of modern SMT solvers like Yices [19].

3 Parameterized Array Based Model

A parameterized array (parray) maps symbolic indices (natural numbers) to
symbolic characters. Unquantified parray constraints can be solved by an SMT
solver supporting the array theory and the numeric theory. We convert string
constraints into quantified parray constraints. Figure 2 shows some simple cases,
where the conversions are mostly self-explanatory. Take lastIndexOf for example,
integer i marks c’s last position in the string. i is either -1 or < |s|. If i = −1,
then c /∈ s; otherwise, s[i] = c. Each character after index i does not equal to c,
which is modeled by ∀n. i < n < |s| ⇒ s[n] �= c.

All exists constraints can be eliminated by introducing fresh variables. Thus
all remaining quantified constraints are of format ∀n. n < l ⇒ P (n) where
P is an unquantified constraint or a simple exists constraint. One main rule
here is that we avoid using recursions in the conversion. For instance, we may
introduce a helper function indexOf’ to model indexOf: s.indexOf’(i, c) = ite(s[i] =

c, i, s.indexOf’(i + 1, c)). However this recursive form may bring difficulties in
quantifier elimination. Another example is s > s1, whose recursive encoding is
easy to specify but hard to solve. We describe below a novel way to encode it.

Figure 3 shows the conversions for some tricky cases, which represent our
novel encoding. For i = s.indexOf(s1), if i �= −1 then i is the first position in
s such that s1 appears, hence s1 will not appear in any prior position m. The
i = −1 case is the same as ¬s.contains(s1).

Consider s1 = s.trim(), i.e. s1 is obtained from s by removing all blank
characters from the beginning and ending of s. As shown below, we introduce
a natural number m to mark the first non-blank character in s. The conversion
reads: all characters before m and after m+ |s1| are blank, others are shared by
s and s1 in the same order, with the characters at two ends are not blank.

s[0] . . . s[m− 1] s[m] . . . s[m+ |s1| − 1] s[m+ |s1|] . . .

‘ ’ . . . ‘ ’ s1[0] . . . s1[|s1| − 1] ‘ ’ . . .

The conversion of s > s1 is through introducing a natural number m to mark
the first position where s and s1 differs. As shown below, the characters from 0
to m− 1 are the same. Next, if s1 is of length m and s’s length is greater than
s1’s, or s[m] �= s1[m], then s > s1. The case of s ≥ s1 is similar except that s
can equal to s1, e.g. |s| = |s1| = m. The conversions of s < s1 and s ≤ s1 are
done through s1 < s and s1 ≥ s respectively.

s[0] s[1] . . . s[m− 1] s[m]

s1[0] s1[1] . . . s1[|s1 − 1|]
Case 1: m = |s1|

s[0] s[1] . . . s[m− 1] s[m]

s1[0] s1[1] . . . s1[m− 1] s1[m]

Case 2: |s1| > m ∧ s[m] > s1[m]



PASS: String Solving with Parameterized Array and Interval Automaton 21

String Constraint P-Array Constraint

s1 = s2 (∀n. n < |s1| ⇒ s1[n] = s2[n]) ∧ |s1| = |s2|
s1 �= s2 (∃n. n < |s1| ∧ s1[n] �= s2[n]) ∨ |s1| �= |s2|
s = s1 + s2

(∀n. n < |s1| ⇒ s1[n] = s[n])∧
(∀n. n < |s2| ⇒ s2[n] = s[|s1|+ n]) ∧ |s| = |s1|+ |s2|

s1 = s.substring(n1, n2)
(∀n. n < |s1| ⇒ s1[n] = s[n1 + n])∧
n1 < n2 ≤ |s| ∧ |s1| = n2 − n1

i = s.lastIndexOf(c)
(i = −1 ∨ (0 ≤ i < |s| ∧ s[i] = c))∧
(∀n. i < n < |s| ⇒ s[n] �= c)

i = s.indexOf(c) (i = −1 ∨ (0 ≤ i < |s| ∧ s[i] = c)) ∧ (∀n. n < i ⇒ s[n] �= c)

s.beginsWith(s1) (∀n. n < |s1| ⇒ s1[n] = s[n]) ∧ |s| ≥ |s1|
¬s.beginsWith(s1) (∃n. n < |s1| ∧ s1[n] �= s[n]) ∨ |s| < |s1|
s.endsWith(s1) (∀n. n < |s1| ⇒ s1[n] = s[|s| − |s1|+ n]) ∧ |s| ≥ |s1|
s.contains(s1)

(∃m.m ≤ |s| − |s1| ∧ (∀n. n < |s1| ⇒ s1[n] = s[m+ n]))∧
|s| ≥ |s1|

¬s.contains(s1) (∀m.m ≤ |s| − |s1| ⇒ (∃n. n < |s1| ∧ s1[n] �= s[m+ n]))∨
|s| < |s1|

s1 = s.toUpperCase()
(∀n. n < |s| ⇒ s1[n] = ite(‘a′ ≤ s[n] ≤ ‘z′, s[n] + ‘a′ − ‘A′, s[n]))
∧ |s1| = |s|

Fig. 2. Conversion of simple cases (excerpt). Operator |s| denotes string s’s length. m
and n are natural numbers; i is an integer; c is a character.

String Constraint P-Array Constraint

i = s.indexOf(s1)
i �= −1

i ≥ 0 ∧ i+ |s1| ≤ |s| ∧ (∀n. n < |s1| ⇒ s1[n] = s[i+ n])∧
(∀n. n < i ⇒ (∃m.m < |s1| ⇒ s1[n] �= s[m+ n]))

s1 = s.trim()

∃m.m+ |s1| ≤ |s| ∧
(∀n. (n < m ∨ m+ |s1| ≤ n ≤ |s|) ⇒ s[n] = ‘ ’)∧
(∀n. n < |s1| ⇒ s[m+ n] = s1[n])∧
s[m] �= ‘ ’ ∧ s[m+ |s1| − 1] �= ‘ ’

s > s1
∃m.m ≤ |s1| ∧ (∀n. n < m ⇒ s1[n] = s[n])∧

|s| > m ∧ (|s1| = m ∨ |s1| > m ∧ s[m] > s1[m])

s ≥ s1
∃m.m ≤ |s1| ∧ (∀n. n < m ⇒ s1[n] = s[n])∧

(|s| = |s1| = m ∨ |s1| = m ∨ |s1| > m ∧ s[m] > s1[m])

i = parseInt(s)∧
i ≥ 0

(|s| = 1 ⇒ i = s[0]− ‘0’) ∧
(|s| = 2 ⇒ i = (s[0]− ‘0’)× 10 + s[1]− ‘0’) ∧ . . . ∧
(|s| = 10 ⇒
i = ((s[0]− ‘0’)× 10 + (s[1]− ‘0’))× 10 · · ·+ (s[9]− ‘0’))

Fig. 3. Conversion of more tricky cases (excerpt)

The conversion of parseInt is one of the rare examples where the string length
has to be bounded concretely. Since a 32-bit integer can have up to 10 digits,
the conversion case splits over the possible length values to produce unquantified
constraints. The conversion of parseFloat is similar. In Section 4 we show the
automaton model can help infer possible lengths so as to simplify the encoding.
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3.1 Solving P-Array Constraints with Quantifier Elimination

The generated forall constraints conform to a specific form: ∀n. L(n) ⇒ P (s)
or ∀n. L(n) ⇒ ∃m.P (n), where P is a non-self-recursive predicate comparing
two corresponding elements in two parrays, and L constrains n with respect to
string lengths, e.g. n < |s|. In some cases, this simple format can be handled
by a modern SMT solver like Yices [19]. But this is not the case in general. For
instance, the most recent Yices version v1.0.36 cannot solve (in 10 minutes) the
following simple forall constraints produced from string constraint s + s = “aa”,
while it can solve s1 + s2 = “aa” ∧ |s1| = |s2| = 1.

2 = |s|+ |s| ∧ s0[0] = ‘a’ ∧ s0[1] = ‘a’ ∧
(∀n. n < |s| ⇒ s0[n] = s[n]) ∧ (∀n. n < |s| ⇒ s0[|s|+ n] = s[n]) .

Inspired by the work in [4], we propose an iterative quantifier elimination
(QElim) 1 algorithm for the generated constraints. Note that [4] cannot handle
most of our parray constraints, e.g. when an access’s index is m+ n or |s1|+ n.

The basic idea is to calculate an index set and use its elements to instantiate
forall constraints so as to eliminate the quantifiers. Given a set of constraints C,
parray s’s index set (IS) includes all the indices of the accesses to s not bounded
by a quantifier. By definition, {e | s[e] ∈ C ∧ qnt vars(e) �= φ} ⊆ IS(s), where
qnt vars gives the set of quantified variables. That is, for access s[e], if e does
not involve any quantifier, then e ∈ IS(s). In addition, for each constraint of
format ∀n. n < k ⇒ P (s[n]), the upper bound k − 1 is in IS(k). This is for
taking into the upper bound case into account.

Data: Quantified Constraints Cq + Unquantified Constraints Cuq

Result: Unquantified Constraints Cuq

forall s do ISold(s) = {}; calculate IS(s) end
while ∃s.ISold(s) �= IS(s) do

forall the e ∈ IS(s) \ ISold(s) do
forall the (∀n.L(n) ⇒ P (s[f(n)])) ∈ Cq do

if sat(Cuq ∧ L(f−1(e)))
add L(f−1(e)) ⇒ P (s[e]) into Cuq

end

end
forall s do ISold(s) = IS(s); append new indices into IS(s) end

end
Algorithm 1. Basic QElim algorithm for P-Array Constraints

After s’s index set is calculated, we use each element e in it to instantiate
constraint ∀n. L(n) ⇒ P (s[f(n)]) by replacing n with f−1(e), where f−1 is the
inverse function of f . If P is an exists constraint, then its quantifier is removed by
introducing a fresh variable. The intuition behind this is: if e matches f(n), then
we need to instantiate n with f−1(e), i.e. we should consider the special case

1 Strictly speaking, our algorithm is not a conventional QElim which converts quanti-
fied constraints to equivalent unquantified ones. Here we reuse this term to indicate
that our approach removes or instantiates quantifiers to find solutions.
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f−1(e) for the forall constraint. Note that f is a linear function whose inverse is
trivial to compute.

The next steps are described in Algorithm 1. For each new index e in IS(s)
but not in ISold(s), we use e to instantiate all forall constraints containing s. For
such a constraint, if its assumption is satisfiable upon the current unquantified
constraints Cuq, then this constraint is added into Cuq; otherwise it is ignored.
The algorithm continues until no more new indices are found, in which case we
remove all forall constraints, leaving a set of quantifier-free constraints.

Consider the above example, in the first round, s0’s index set is {0, 1, |s|−1}.
After instantiating the two forall constraints with this set, we obtain six new
constraints as following (note that |s| − 1 < |s| is always true).

(0 < |s| ⇒ s0[0] = s[0]) ∧ (1 < |s| ⇒ s0[1] = s[1]) ∧
(0 < |s| ⇒ s0[|s|] = s[0]) ∧ (1 < |s| ⇒ s0[|s|+ 1] = s[1]) ∧
(|s| − 1 < |s| ⇒ s0[|s| − 1] = s[|s| − 1]) ∧ (|s| − 1 < |s| ⇒ s0[|s|+ |s| − 1] = s[|s| − 1])

Since constraint 2 = |s| + |s| conflicts with 1 < |s|, we remove the two new
constraints with assumption 1 < |s|. In the next round, the remaining new
constraints give us updated index sets IS( s0) = {0, 1, |s|−1}∪{|s|} and IS(s) =
{0, |s| − 1}. The next index used for instantiation is |s|. Since |s| < |s| is false,
no new constraints will be added. Now there exists no new index, hence the
algorithm terminates. The two forall constraints are removed, resulting in the
following final constraints, whose valid solution is s = “a” (and s0 = “aa”).

2 = |s|+ |s| ∧ s0[0] = ‘a’ ∧ s0[1] = ‘a’ ∧
(0 < |s| ⇒ s0[0] = s[0]) ∧ (0 < |s| ⇒ s0[|s|] = s[0]) ∧
( s0[|s| − 1] = s[|s| − 1]) ∧ ( s0[|s|+ |s| − 1] = s[|s| − 1])

The reduction of PC 1 results in the following constraints, which can produce
a valid solution n1 = 0 ∧ | s0| = 6 ∧ s1 = “a1” ∧ s2 = “12cd”.

|s1| ≥ 2 ∧ |s2| ≥ n1 + 2 ∧ | s0| = |s1|+ |s2| ∧
s0[0] = s1[0] = ‘a’ ∧ s0[1] = s1[1] = ‘1’ ∧ s0[| s0| − 2] = ‘c’ ∧ s0[| s0| − 1] = ‘d’ ∧
s0[|s1|+ n1] = s2[n1] = ‘1’ ∧ s0[|s1|+ n1 + 1] = s2[n1 + 1] = ‘2’ ∧
( s0[|s1| − 1] = s1[|s1| − 1]) ∧ ( s0[|s1|+ |s2| − 1] = s2[|s2| − 1])

For a bounded string (i.e. whose length is bounded), its largest index set can
contain all indices up to the bound. Hence the algorithm, similar to BV methods,
always terminates (a careful reader can realize that our algorithm may termi-
nate faster due to its symbolic index calculation). The obtained Cuq are equiv-
satisfiable to the original (quantified + un-quantified) ones. More discussions on
the soundness and termination of Algorithm 1 are given in the Appendix. Note
that the soundness proof technique in [4] does not apply here since we (1) allow
arithmetic operations in array accesses, (2) calculate index-set iteratively, and
(3) permit array relations other than =.

Theorem. Algorithm1 terminates on bounded strings, and generates un-quantified
constraints equiv-satisfiable to the original (quantified + un-quantified) ones.
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An Optimized Version: Iterative Quantifier Elimination and Solving.
Algorithm 1 may unnecessarily compute too many index sets and terminate
slowly. Hence in practice we use a slightly revised version shown in Algorithm 2
that can prove sat or unsat much faster. The revisions are on the main procedure
of each iteration: (1) we record the new un-quantified constraints in Ccur and use
it to compute the new index sets IScur, and then use IScur to instantiate forall
constraints; (2) after the instantiation, solve all un-quantified constraints using
an SMT solver, if unsat then the algorithm terminates and safely reports unsat;
(3) otherwise we check whether the current solution solution(Cuq) satisfies the
original string constraints S. If yes then the algorithm terminates with a true
valid solution; otherwise go to the next iteration. If the bound limit is reached,
then return “unknown”. Note that the algorithm does not need to iterate over
string lengths. In practice only a couple of iterations are needed in most cases.

The soundness of this algorithm is straight-forward, e.g. the sat case is war-
ranted by the check on S. We give more details in the Appendix.

Data: Cq + Cuq + String Constraints S

Result: sat, unsat, or unknown
IScur = Cuq ;
for i = 0; i < limit; i++ do

calculate IScur w.r.t Ccur ;
Ccur = {} ;
forall the s forall e ∈ IScur(s) do

forall (∀n.L(n) ⇒ P (s[f(n)])) ∈ Cq

add L(f−1(e)) ⇒ P (s[e]) into Ccur

end
Cuq = Cuq ∪ Ccur ;
if unsat(Cuq) return unsat ;
if solution(Cuq) ⇒ sat(S) return sat ;

end
return unknown ;

Algorithm 2. Iterative QElim

Theorem. Algorithm 2 termi-
nates on bounded strings, and
reports sat (or unsat) when
the original constraints are in-
deed sat (or unsat).

4 Enhancement
with Automaton
Based Model

We use an interval automa-
ton to represent a string
such that all possible val-
ues of this string consti-
tutes the language accepted
by this automaton. Our im-
plementation is based on
the automaton package
dk.brics.automaton [6]. A
transition is labeled the lower
bound and upper bound of the associated character. For example, the automa-
ton for the regular expression “.\d+,\d{3}” in the motivating example is shown
below.

start
[min-max]

[‘0’,‘9’]

[‘0’,‘9’] ‘,’ [‘0’,‘9’] [‘0’,‘9’] [‘0’,‘9’]

The implementation of many operations is intuitive. For example, the
concatenation of s1 and s2 is implemented by adding ε transitions from all ac-
cepting states of s1’s automaton to all initial states of s2’s automaton, and then
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removing ε to make the resulting automaton deterministic. Many operations
such as intersection and minus are supported by the dk.brics.automaton

package.
However, we have to model more string operations such as trim, substring,

and toUpperCase. For example, substring(2,4) returns a substring from index
2 to index 4 (exclusive). To implement it, we first advance 2 transitions from
the start state q0, then mark the reached states as the new start state q′0, and
then identify all states reachable from q′0 in 2 transitions as new accepting states.
Finally, we intersect this automaton with the one accepting all words of length
2 to get the final automaton. Due to space constraint we will skip the details of
implementing the new operations, which we extend from [16,9].

Automaton Refinement. Given a set of string constraints, we build a relation
graph with the string automata as the nodes and string relations as the edges.
Then we perform iterative refinement to (1) refine each automaton so as to
narrow the possible values of the associated string, and (2) derive extra relations.

The first set of refinement rules, including the following, refine automaton val-
ues. For better readability, we reuse string names for the automata. Here notation
s′ denotes the new automaton for s. Operators ∩ and · denote intersection and
concatenation respectively. Automaton sany accepts all strings, and cany accepts
any character. We implement some helper operations: mk all accept(s) marks
all the states in s as accepting states, and mk all start(s) marks them as start
states. Operation first(s, s2) returns the automaton that accepts any string
whose concatenation with any string in s2 is accepted by s. It is implemented
over the production of s and s2 with time complexity O(n2) for n nodes.

relation =⇒ refinement

s = s1 s′ = s ∩ s1 ∧ s′1 = s1 ∩ s
s = s1 + s2 s′ = s ∩ (s1 · s2) ∧ s′1 = first(s, s2) ∧ s′2 = second(s, s1)
s.beginsWith(s1) s′ = s ∩ (s1 · sany) ∧ s′1 = s1 ∩ (mk all accept(s))
s.endsWith(s1) s′ = s ∩ (sany · s1) ∧ s′1 = s1 ∩ (mk all start(s))

s.contains(s1)
s′ = s ∩ (sany · s1 · sany)∧
s′1 = s1 ∩ (mk all accept(mk all start(s)))

|s| = n s′ = s ∩ (cany0 · . . . · canyn−1)

The refinements for substring, lastIndexOf and indexOf are similar to
that for contains. Some rules are effective with assumptions, e.g. length con-
straint |s| = n or |s| < n is performed only when n is constant. Similarly, we
refine some ¬ cases only when one of the strings are known to be constant, e.g.
¬s.contains(“abc”) =⇒ s′ = s − {“abc”}. The refinement process is fixed-point
calculation and will stop when no automaton can be refined further.

The second rule set is to refine the relations by inferring new facts from a
pair of relations. In general, we may apply source-to-source transformations [14]
to simplify the path conditions and then derive new facts. We present below
an excerpt of these inference rules, which are repeatedly applied until no more
new relation is inferred. They are particularly useful in finding some unsat cases
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early, e.g. s1 > s2 ∧ s2 ≥ s3 ∧ s3 ≥ s1 is unsat. We also define a consumption
relation to simplify the relations, e.g. with s.beginsWith(s1) we can safely remove
s.contains(s1).

relations =⇒ inferred relation

op ∈ {≥, >} : s1 > s2 ∧ s2 op s3 s1 > s3
op ∈ {≤, <,=} : s1 > s2 ∧ s1 op s2 false

s.beginsWith(s1) s ≥ s1
¬s.contains(s1) ∧ s.endsWith(s1) false

From Automaton to P-Array. For constraint s.matches(re), s’s automa-
ton is refined by regular expression re. When we encode this automaton in the
parray domain, the main challenge is on loops. For example, consider the follow-
ing automaton corresponding to RegExp “([l0-u0][l1-u1]. . . [ln−1-un−1])*”, which
accepts an infinite set of strings. Clearly, it is impossible to enumerate all the
possibilities.

start
[l0,u0] [l1,u1] . . . [ll−2,ul−2]

[ll−1,ul−1]

Here we propose a conversion which again uses forall constraints to encode the
loop: we introduce a new number m to specify the limit of loop iterations. For
each iteration, e.g. the nth one, we specify the value interval of each character,
e.g. the kth character is within [lk, uk]. Here n× l + k gives the position of this
character in s (l has to be a constant since we use the linear arithmetic of Yices).

∃m.∀n. n < m ⇒
l−1∧

k=0

(lk ≤ s[n× l + k] ≤ uk)

This encoding method can be generalized to handle well-formed loops. A loop
is well-formed if it contains no embedded loops and all its sub-sequences between
a fork node and the next join are of the same length. A well formed loop is shown
below on the left.

start

[l0,u0]

[l′0,u
′
0]

. . .

. . .

[li,ui]

[l′i,u
′
i]

[li+1,ui+1] . . .

. . .

[ll−1,ul−1]

start

[l0,u0] [l1,u1]

. . .

[l2,u2]

This loop can be encoded with the following parray constraint.
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Table 1. Experimental results on toy examples. Here pc marks the path condition
numbers. Time (T) is measured in seconds.

Program set 1 set 2 set 3 set 4 set 5 total

pc T. pc T. pc T. pc T. pc T. #pc T.

easychair 2,3,4 < 0.01s 5 0.03s 1,6,7 0.04s 8 0.06s 9 0.2s 9 0.4s
+our QElim 2,3,4 < 0.01s 1 0.07s 5,6 0.015s 7 0.02s 8,9 0.015s 9 0.2s

easychair* 1 0.04 2,5 0.003s 3,6,8 0.004s 4,7 0.005s 9 0.02s 9 0.1s
+our QElim 2,3,4 < 0.01s 1 0.05s 5,6 < 0.01s 7,8 0.01s 9 0.03s 9 0.12s

lastIndexOf 1 0.05s 2 0.01s 3,4 0.02s 5 0.1s 6 0.24s 6 0.5s
+our QElim 1,2 0.02s 3 0.015s 4 0.04s 5 0.11s 6 0.25 6 0.46s
+automaton 1 0.03s 2 0.2s 3 0.5s 4 0.35s 5,6 0.65s 6 2.34s

example (a) 1 1.02s 2 0.3s 3,7 0.01s 4 0.4s 5,6 0.8s,3.1s 7 7.3s
+our QElim 1 0.04s 2,3 < 0.01s 4,6 0.01s 5 0.1s 7 < 0.01s 7 0.16s

example (b) 1 0.23s 2 < 0.01s 3 0.02s 4,6 0.015s 5 0.15s 6 0.45s
+our QElim 1 0.23s 2 < 0.01s 3,4 0.015s 5 0.02s 6 0.01s 6 0.29s

∃m.∀n. n < m ⇒
(
∧i

k=0(lk ≤ s[n× l + k] ≤ uk) ∨ ∧i
k=0(l

′
k ≤ s[n× l + k] ≤ u′

k)) ∧
(li+1 ≤ s[n× l + i+ 1] ≤ ui+1) ∧ . . .

The loop on the right is not well-formed: path 1 [l0, u0] → [l1, u1] and path
2 [l2, u2] may alternate in the iterations, e.g. path 1 → path 1 → ... or path

2 → path 1 → .... For a non well-formed loop, we unroll the iterations to a
pre-defined limit and disjoint the paths to produce parray constraints.

Our encoding of a well-formed automaton is complete and sound; but it is
incomplete for non well-formed automata. Hence it is crucial to use refinements
described in Section 4 to refine the automaton. In many cases non well-formed
loops (e.g. embedded loops) are refined to well-formed ones. Even if a refined
loop is not well-formed, it contains more information for better unrolled paths.

Note that we only convert an automata related to a RegExp All others need
not to be converted since they have been modeled precisely in the parray domain.
For example, in the motivating example (b), s but not s1 will be converted. In
example (a), no automaton is needed to built at all (unless we want to use the
automaton domain to help the solving)!

The facts obtained from automata can be fed to the parray domain, e.g. the
minimal string lengths, the known values of the characters at some positions,
etc.. This can sometimes help the parray encoding and solving.

5 Evaluation Results

Our solver is written in Java. We run it on benchmark programs on a laptop
with a 2.40GHz Intel Core(TM)2 Duo processor and 4GB memory. We evaluate
the parray solution and the one with parray+automaton.

We first test the main benchmark programs in [2], easychair and
lastIndexOf, as well as the two motivating examples in Section 2. Table 1 shows
the results on these toy programs. This includes the results for the comparison
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with Microsoft’s BV-based solver. For easychair, with the parray encoding and
Yices we can solve all 9 valid paths in 0.4 second ([2] takes about 1 second 2,
but we do not include the exception paths that are trivial to compute). With
our QElim method (Algorithm 2) the time is reduced to 0.2 second. Since a
BV method needs only one iteration to handle these paths, we mutate them
by introducing tricky unsat cases, which a BV method may need many iter-
ations to disprove. Our pure parray method can prove sat or unsat for all of
them in 0.1s without any iteration. With our QElim method it is 0.14 second.
In the lastIndexOf example, string s is searched for different non-overlapping
substrings with a common long prefix (e.g. > 30 chars). As shown in [2], a BV
method may iterate on the lengths many times before finding out a solution.
Our pure parray method needs no iteration and solves all the cases in 0.5 sec-
ond, while the best method in [2] takes about 15 seconds (note that their input
substrings may be different from ours). Interestingly, this example can be solved
in the automaton domain too, i.e. after the automaton refinement, valid solu-
tions can be found in the automata. This takes 2.34 second in total. Clearly,
automaton building and refinement incur extra overheads. The pure automaton
method handles other examples poorly, hence the results are not shown.

Method set 1 (70) set 2 (30)

#solved T. #solved T.

Pure P-Array 53 17.6s 0 –
+ our QElim 55 4.1s 21 18.5s

Pure Automaton 34 72s 3 2.6s

P-Array+Autom. 68 20.4s 3 2.6s
+ our QElim 70 6.3s 26 28s

Fig. 4. Evaluating various methods on Bench-
mark set I. #solved gives the number the solved
cases (sat or unsat).

For these examples, our QE-
lim is not mandatory. But
applying it can improve the solv-
ing performance, e.g. reduce the
time of Example (a) from 7.3
second to 0.16 second. In addi-
tion, since Yices returns a partial
model which may be incorrect, we
need to double check this model
when Yices’s search is used. In
the appendix we show some re-
sults comparing Yices’s algorithm
with ours. It is apparent that our
QElim is essential in solving parray constraints.

Benchmark set I consists of 100 tricky path conditions collected from (1)
real Web applications, and (2) manual stress tests. It excludes those easy to
solve. These benchmarks are divided into two sets: set 1 that Yices can han-
dle forall constraints well, and set 2 where our QElim algorithm is required.
We evaluate the solutions with pure parray, with pure automaton, or with par-
ray+automaton, with results shown in Figure 4. The results also show the ad-
vantages of our method over automaton-based ones such as [9].

For set 1, Yices performs well, solving 55 cases quickly, but 2 of them are
incorrect partial models. The other 15 involve regular expressions and needs the
support of the automaton model, which allows the parray model to solve all
cases. However, using the pure automaton model only 34 cases can be solved
since this model handles pure string constraints better than hybrid constraints.

2 Time comparison is rough due to different evaluation environments.
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Set 2 demonstrates the effectiveness of our QElim algorithm and automa-
ton enhancement. Among these 30 cases, the “parray + automaton + QElim”
method can solve 26, and the remaining 4 fails because the QElim algorithm hits
the pre-defined limit (using a large limit can solve them). Missing any of these
three components will lead to much inferior results, e.g. the pure parray method
and pure automaton method can solve 0 and 3 respectively (time is counted for
successful cases only). A closer look reveals that these two pure methods can
prove unsat in short time, but are not good at finding solutions for sat cases.
The combination of them does not help either since Yices seems to get stuck in
handling the quantifiers.

Method Comparison. We compare PASS with two baseline implementations
by us: an automaton-based method and a BV-like method . The former mimics
the one in [9], with many details described in Section 4. The latter does not use
bit-vectors directly. Instead concrete arrays are used to simulate bit-vectors with
concrete lengths and indices. This can reuse our parray model and simplify the
implementation: we first derive lengths constraints, then solve them to obtain
length values, then instantiate the lengths in the forall constraints depicted in
Tables 2 and 3, and then unroll all these constraints. Note that we do not directly
compare PASS with existing tools since they assume different string operations
and running settings, e.g. they accept much more restrictive syntax.

We run the three methods on several hundred non-trivial path conditions.
Preliminary results indicate that PASS outperforms the simulated BV method
in ∼ 80% cases, and can be up to 150 times faster for some sat cases. For the rare
cases where PASS performs worse, it is up to 4 times slower than other methods.
Compared with the automaton-based method, PASS usually gains performance
improvement in a magnitude of 1 or 2 orders, although the automaton-based
method can sometimes (1) solve RegExp intensive path conditions faster, and
(2) prove unsat faster. However, this comparison might be neither accurate nor
conclusive since we simulate other methods and optimize PASS more. We leave
the experimental comparison with external tools such as [8] and [7,3] as future
work.

6 Conclusions

We propose modeling strings with parameterized arrays, applying quantifier
elimination to solve parray constraints, and using automata to model regular ex-
pressions and enhance the parray model. We show that all of these are essential
to construct an efficient and comprehensive solver for numeric-string constraints
with regular expressions.

The parray model needs much less enumeration of string lengths or values
than existing methods since it encodes the string values and relations using
quantified constraints of particular format. This format allows us to apply a
simple algorithm to handle the quantifiers. Other enhancements are possible, e.g.
more interactions between the parray and the automaton domains can further
improve the performance.
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