
Synthesizing, Correcting and Improving Code,

Using Model Checking-Based Genetic
Programming

Gal Katz and Doron Peled

Department of Computer Science, Bar Ilan University
Ramat Gan 52900, Israel

Abstract. The use of genetic programming, in combination of model
checking and testing, provides a powerful way to synthesize programs.
Whereas classical algorithmic synthesis provides alarming high complex-
ity and undecidability results, the genetic approach provides a surpris-
ingly successful heuristics. We describe several versions of a method for
synthesizing sequential and concurrent systems. To cope with the con-
straints of model checking and of theorem proving, we combine such
exhaustive verification methods with testing. We show several examples
where we used our approach to synthesize, improve and correct code.

1 Introduction

Software development is a relatively simple activity: there is no need to solve
complicated equations, to involve chemical materials or to use mechanical tools;
a programmer can write tens of lines of code per hour, several hours a day.
However, the number of possible combinations of machine states in even a very
simple program can be enormous, producing frequently unexpected interactions
between tasks and features. Quite early in the history of software development, it
was identified that the rate in which errors are introduced into the development
code is rather high. While some simple errors can be observed and corrected by
the programmer, many design and programming errors survive shallow debug-
ging attempts and find themselves in the deployed product, sometimes causing
hazardous behavior of the system, injuries, time loss, confusion, bad service, or
massive loss of money.

A collection of formal methods [20] were developed to assist the software devel-
opers, including testing, verification and model checking. While these methods
were shown to be effective in the software development process, they also suffer
from severe limitations. Testing is not exhaustive, and frequently, a certain per-
centage of the errors survive even thorough testing efforts. Formal verification,
using logic proof rules, is comprehensive, but extremely tedious; it requires the
careful work of logicians or mathematicians for a long time, even for a small
piece of code. Model checking is an automatic method; it suffers from high com-
plexity, where memory and time required to complete the task are sometimes
prohibitively high.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 246–261, 2013.
c© Springer International Publishing Switzerland 2013

Synthesizing, Correcting and Improving Code 247

It is only natural that researchers are interested in methods to automatically
convert the system specification into software; assuming that formal specifica-
tion indeed represents the needed requirements fully and correctly (already, a
difficult task to achieve), a reliable automatic process would create correct-by-
design code. Not surprisingly, efficient and effective automatic synthesis methods
are inherently difficult. Problems of complexity and decidability quickly appear.
Unless the specification is already close in form to the required system (e.g., one
is an automaton, and the other is an implementation of this automaton), this is
hardly surprising. One can show examples where the required number of states
of a reactive system that is described by a simple temporal specification (using
Linear Temporal Logic) grows doubly exponential with the specification [16].
This still leaves open the question of whether there is always a more compact
representation for such a specification, a problem that is shown [6] to be as hard
as proving open problems about the equivalence of certain complexity classes.

Software synthesis is a relatively new research direction. The classical Hoare
proof system for sequential programs [7] can be seen not only as a verification
system, but also as an axiomatic semantics for programs, and also as a set of rules
that can be used to preserve correctness while manually refining the requirement
from a sequential system into correct code. The process is manual, requiring the
human intuition of where to split the problem into several subparts, deciding
on where a sequential, conditional or iterating construct needs to be used, and
providing the intermediate assertions. Manna and Wolper [17] suggested the
transformation of temporal logic into automata, and thence to concurrent code
with a centralized control. A translation to an automaton (on infinite sequences)
provides an operational description of these sequences. Then, the operations that
belong, conceptually, to different processes, are projected out on these processes,
while a centralized control enforces globally the communication to occur in an
order that is consistent with the specification.

More recent research on synthesis is focused on the interaction between a sys-
tem and its environment, or the decomposition of the specified task into different
concurrent components, each having limited visibility and control on the behav-
ior of the other components. The principle in translating the given temporal
specification into such systems is based on the fact that the components need
to guarantee that the overall behavior will comply with the specification while
it can control only its own behavior. This calls for the use of some intermediate
automata form. In this case, it is often automata on trees, which include the
possible interactions with the environment. In addition, synthesis includes some
game theoretical algorithms that refine the behaviors, i.e., the possible branches
of the tree, so that the overall behavior satisfy the specification. The seminal
work of Pnueli and Rosner [22] shows that the synthesis of an open (interac-
tive) system that satisfies LTL properties can be performed using some game
theoretical principles. On the other hand, Pnueli and Rosner show [23], that syn-
thesis of concurrent systems that need to behave according to given distributed
architecture (as opposed to centralized control) is undecidable.

248 G. Katz and D. Peled

The approach presented here is quite different. Instead of using a direct al-
gorithmic translation, we perform a generate-and-check kind of synthesis. This
brings back to the playground the use of verification methods, such as model
checking or SAT solving, on given instances. An extreme approach would be to
generate all possibilities (if they can be effectively enumerated) and check them,
e.g., by using model checking, one by one. In the work of Bar-David and Tauben-
feld [3], mutual exclusion algorithms are synthesized by enumerating the possible
solutions and checking them. We focus on a directed search that is based on ge-
netic programming. In a nutshell, genetic programming allows us to generate
multiple candidate solutions at random and to mutate them, again as a stochas-
tic process. We employ enhanced model checking (model checking that does not
only produce an affirmation to the checked properties or a counterexample, but
distinguishes also some finer level of correctness) to provide the fitness level; this
is used by genetic programming to increase or decrease the chance of candidate
programs to survive. Our synthesis method can be seen as a heuristic search in
the space of syntactically fitting programs.

2 Genetic Programming Based on Model Checking

We present a framework combining genetic programming and model checking,
which allows to automatically synthesize software code for given problems. The
framework we suggest is depicted at Figure 1, and is composed of the following
parts:

– A user that provides a formal specification of the problem, as well as addi-
tional constraints on the structure of the desired solutions,

– an enhanced GP engine that can generate random programs and them
evolves them, and

– a verifier that analyzes the generated programs, and provides useful infor-
mation about their correctness.

The synthesis process generally goes through the following steps:

1. The user feeds the GP engine with a set of constraints regarding the pro-
grams that are allowed to be generated (thus, defining the space of candidate
programs). This includes:
(a) a set of functions, literals and instructions, used as building blocks for

the generated programs,
(b) the number of concurrent processes and the methods for process com-

munication (in case of concurrent programs), and
(c) limitations on the size and structure of the generated programs, and the

maximal number of permitted iterations.
2. The user provides a formal specification for the problem. This can include, for

instance, a set of temporal logic properties, as well as additional requirements
on the program behavior.

3. The GP engine randomly generates an initial population of programs based
on the fed building blocks and constraints.

Synthesizing, Correcting and Improving Code 249

User
Interface

1. Configuration 2. Specification 6. Results

Enhanced
GP

Engine

 3. Initial population

 5. New programs

Enhanced
Model

Checker

 4. Verification results

Fig. 1. The Suggested Framework

4. The verifier analyzes the behavior of the generated programs against the
specification properties, and provides fitness measures based on the amount
of satisfaction.

5. Based on the verification results, the GP engine then creates new programs
by applying genetic operations such as mutation, which performs small
changes to the code, and crossover, which cuts two candidate solutions and
glues them together, to the existing programs population. Steps 4 and 5 are
then repeated until either a perfect program is found (fully satisfying the
specification), or until the maximal number of iterations is reached.

6. The results are sent back to the user. This includes a program that satisfies
all the specification properties, if one exists, or the best partially correct
programs that was found, along with its verification results.

For steps 4 and 5 above we use the following selection method, which is similar
to the Evolutionary Strategies [24] μ+ λ style:

– Randomly choose at set of μ candidate solutions.
– Create λ new candidates by applying mutation (and optionally crossover)

operations (as explained below) to the above μ candidates.
– Calculate the fitness function for each of the new candidates based on “deep

model checking”.

250 G. Katz and D. Peled

– Based on the calculated fitness, choose μ individuals from the obtained set of
size μ+λ candidates, and use them to replace the old μ individuals selected
at step 2.

Programs Representation. Programs are represented as trees, where an in-
struction or an expression is represented by a single node, having its parameters
as its offspring, and terminal nodes represent constants. Examples of the instruc-
tions we use are assignment, while (with or without a body), if and block. The
latter is a special node that takes two instructions as its parameters, and runs
them sequentially.

A strongly-typed GP [18] is used, which means that every node has a type,
and also enforces the type of its offspring.
Initial Population Creation. At the first step, an initial population of can-
didate programs is generated. Each program is generated recursively, starting
from the root, and adding nodes until the tree is completed. The root node is
chosen randomly from the set of instruction nodes, and each child node is chosen
randomly from the set of nodes allowed by its parent type, and its place in the
parameter list. A “grow” method [15] is used, meaning that either terminal or
non-terminal nodes can be chosen, unless the maximum tree depths is reached,
which enforces the choice of terminals. This method can create trees with various
forms. Figure 2(i) shows an example of a randomly created program tree. The
tree represents the following program:

while (A[2] != 0)

A[me] = 1

Nodes in bold belong to instructions, while the other nodes are the parameters
of those instructions.
Mutation. Mutation is the main operation we use. It allows making small
changes on existing program trees. The mutation includes the following steps:

1. Randomly choose a node (internal or leaf) from the program tree.
2. Apply one of the following operations to the tree with respect to the chosen

node:
(a) Replace the subtree rooted by the node with a new randomly generated

subtree.
(b) Add an immediate parent to the node. Randomly create other offspring

to the new parent, if needed.
(c) Replace the node by one of its offspring. Delete the remaining offspring

of that node.
(d) Delete the subtree rooted by the node. The node ancestors should be

updated recursively (possible only for instruction nodes).

Mutation of type (a) can replace either a single terminal or an entire subtree.
For example, the terminal “1” in the tree of Fig. 2(i), is replaced by the grayed
subtree in 2(ii), changing the assignment instruction into A[me] = A[0]. Muta-
tions of type (b) can extend programs in several ways, depending on the new
parent node type. In case a “block” type is chosen, a new instruction(s) will be

Synthesizing, Correcting and Improving Code 251

while

!= assign

A[] 0

2

A[]

me

(i)

1

while

!= assign

A[] 0

2

A[]

me

(ii)

A[]

0

Fig. 2. (i) Randomly created program tree, (ii) the result of a replacement mutation

inserted before or after the mutation node. For instance, the grayed part of Fig.
3 represents a second assignment instruction inserted into the original program.
Similarly, choosing a parent node of type “while” will have the effect of wrap-
ping the mutation node with a while loop. Another situation occurs when the
mutation node is a simple condition which can be extended into a complex one,
extending, for example, the simple condition in Fig. 2 into the complex con-
dition: A[2] != 0 and A[other] == me. Mutation type (c) has the opposite
effect, and can convert the tree in Fig. 3 back into the original tree of Fig. 2(i).
Mutation of type (d) allows the deletion of one or more instructions. It can
recursively change the type, or even cause the deletion of ancestor nodes.

The type of mutation applied on candidate programs is randomly selected, but
all mutations must obey strongly typing rules of nodes. This affects the possible
mutation type for the chosen node, and the type of new generated nodes.
Crossover. The crossover operation creates new individuals by merging building
blocks of two existing programs. The crossover steps are:

1. Randomly choose a node from the first program.
2. Randomly choose a node from the second program that has the same type

as the first node.
3. Exchange between the subtrees rooted by the two nodes, and use the two

new programs created by this method.

While traditional GP is heavily based on crossover, it is quite a controversial
operation (see [2], for example), and may cause more damage than benefit in the
evolutionary process, especially in the case of small and sensitive programs that
we investigate. Thus, crossover is barely used in our work.
The Fitness Function. Fitness is used by GP in order to choose which pro-
grams have a higher probability to survive and participate in the genetic

252 G. Katz and D. Peled

while

!= block

A[] 0

2

assign assign

A[] other

2

A[]

me

1

Fig. 3. Tree after insertion mutation

operations. In addition, the success termination criterion of the GP algorithm is
based on the fitness value of the most fitted individual. Traditionally, the fitness
function is calculated by running the program on some set of inputs (a train-
ing set) which suppose to represent all of the possible inputs. This can lead to
programs that work only for the selected inputs (overfitting), or to programs
that may fail for some inputs, which might be unacceptable in some domains. In
contrast, our fitness function is not based on running the programs on sample
data, but on an enhanced model checking procedure. While the classical model
checking provides a yes/no answer to the satisfiability of the specification (thus
yielding a two-valued fitness function), our deep model checking algorithm gen-
erated a smoother function by providing several levels of correctness. In fact, we
have four levels of correctness, per each specification property, written in Linear
Temporal Logic:

1. None of the executions of the program satisfy the property.
2. Some, but not all the executions of the program satisfy the property.
3. The only executions that do not satisfy the property must have infinitely

many decisions that avoid a path that does satisfy the property.
4. All the executions satisfy the property.

We provided several methods for generating the various fitness levels:

– Using Streett Automata, and a strongly component analysis of the program
graph [10].

– A general deep model checking logic and algorithm. [9,19].
– A technique inspired by probabilistic qualitative LTL model checking [13].

We use a fitness-proportional selection [8] that gives each program a proba-
bility of being chosen that is proportional to its fitness value. In traditional GP,

Synthesizing, Correcting and Improving Code 253

after the μ programs are randomly chosen, the selection method is applied in
order to decide which of them will participate in the genetic operations. The
selected programs are then used in order to create a new set of μ programs that
will replace the original ones.

3 Finding New Mutual Exclusion Algorithms

The first problem for which we wanted to synthesize solutions was the classical
mutual exclusion problem [4]. The temporal specification (in Linear Temporal
Logic) for the problem are given in Table 1.

Table 1. Mutual Exclusion Specification

No. Type Definition Description

1 Safety �¬(p0 in CS ∧ p1 in CS) Mutual Exclusion

2,3 Liveness �(pme in Post → �(pme in NonCS)) Progress
4,5 �(pme in Pre ∧ �(pother in NonCS)) →

�(pme in CS))
No Contest

6 �((p0 in Pre ∧ p1 in Pre) → �(p0 in
CS ∨ p1 in CS))

Deadlock Freedom

7,8 �(pme in Pre → �(pme in CS)) Starvation Freedom

9 Safety �¬(remote writing) Single-Writer

10 Special Bounded number of remote operations Local-Spinning

Initially, we tried to rediscover three of the classical mutual exclusion al-
gorithms - the one bit protocol (a deadlock-free algorithm for which we used
properties 1 − 6 from the above specification), and two starvation-free algo-
rithms (satisfying also properties 7 − 8) - Dekker’s and Peterson’s algorithms.
Our framework (and tool) successfully discovered all of these algorithms [9], and
even some interesting variants of them.

Inspired by algorithms developed by Tsay [25] and by Kessels [14], our next
goal was to start from an existing algorithm, and by adding more constraints
and building blocks, try to evolve into more advanced algorithms.

First, we allowed a minor asymmetry between the two processes. This is done
by the operators not0 and not1, which act only on one of the processes. Thus,
for process 0, not0 (x) = ¬x while for process 1, not0 (x) = x. This is reversed
for not1 (x), which negates its bit operand x only in process 1, and do nothing
on process 0.

As a result, the tool found two algorithms which may be considered simpler
than Peterson’s. The first one has only one condition in the wait statement,
written here using the syntax of a while loop, although a more complicated
atomic comparison, between two bits. Note that the variable turn is in fact A[2]
and is renamed here turn to accord with classical presentation of the extra global
bit that does not belong to a specific process.

254 G. Katz and D. Peled

Pre CS

A[me] = 1

turn = me

While (A[other] != not1(turn));

Critical Section

A[me] = 0

The second algorithm discovered the idea of setting the turn bit one more
time after leaving the critical section. This allows the while condition to be
even simpler. Tsay [25] used a similar refinement, but his algorithm needs an
additional if statement, which is not used in our algorithm.

Pre CS

A[me] = 1

turn = not0(A[other])

While (A[2] != me);

Critical Section

A[me] = 0

turn = other

Next, we aimed at finding more advanced algorithms satisfying additional
properties. The configuration was extended into four shared bits and two private
bits (one for each process). The first requirement was that each process can
change only its 2 local bits, but can read all of the 4 shared bits (the new
constraint was specified as the safety property 9 in the table above). This yielded
the following algorithm.

Pre CS

A[me] = 1

B[me] = not1(B[other])

While (A[other] == 1 and B[0] == not1(B[1]));

Critical Section

A[me] = 0

As can be seen, the algorithm has found the idea of using 2 bits as the “turn”,
were each process changes only its bit to set its turn, but compares both of them
on the while loop. Finally, we added the requirement for busy waiting only on
local bits (i.e. using local spins). The following algorithm (similar to Kessels’)
was generated, satisfying all properties from the table above.

Non Critical Section

A[other] = 1

B[other] = not1(B[0])

T[me] = not1(B[other])

While (A[me] == 1 and B[me] == T[me]);

Critical Section

A[other] = 0

Synthesizing, Correcting and Improving Code 255

4 Synthesizing Parametric Programs

Our experience with genetic program synthesis quickly hits a difficulty that
stems from the limited power of model checking: there are few interesting fixed
finite state programs that can also be completely specified using pure temporal
logic. Most programming problems are, in fact, parametric. Model checking is
undecidable even for parametric families of programs (say, with n processes,
each with the same code, initialized with different parameters) even for a fixed
property [1]. One may look at mutual exclusion for a parametric number of
processes. Examples are, sorting, where the number of processes and the values
to be sorted are the parameters, network algorithms, such as finding the leader
in a set of processes (in order to reinitialize some mutual task), etc. In order
to synthesize parametric concurrent programs, in particular those that have a
parametric number of processes, and even a parametric architecture, we use a
different genetic programming strategy.

First, we assume that a solution that is checked for a large number of in-
stances/parameters is acceptable. This is not a guarantee of correctness, but
under the prohibitive undecidability of model checking for parametric programs,
at least we have a strong evidence that the solution may generalize to an arbi-
trary configuration. In fact, there are several works on particular cases where one
can calculate the parameter size that guarantees that if all the smaller instances
are correct, then any instance is correct [5]. Unfortunately, this is not a rule that
can be applied to any arbitrary parametric problem. We apply a co-evolution
based synthesis algorithm: we collect the cases that fail as counterexamples, and
when suggesting a new solution, check it against the collected counterexamples.
We can view this process as a genetic search for both correct programs and
counterexamples. The fitness is different, of course, for both tasks: a program
gets higher fitness by being close to satisfying the full set of properties, while a
counterexample is obtaining a high fitness if it fails the program.

One way to observe this kind of co-evolution also as using model checking
for instance of the parameters. For example, consider seeking a solution for the
classical leader election in a ring problem, where processes initially have their
own values that they can transfer around, with the goal of finding a process that
has the highest value. Then, the parameters include the size of the ring, and
the initial assignment of values to processes. While we can check solutions up
to a certain size, and in addition, check all possible initial values, the time and
state explosion is huge, for both size and permutation of initial values. We can
then store each set of instances of the parameters that failed some solution, and,
when checking a new candidate solution, check it against the failed instances.

In this sense, the model checking of a particular set of instances can be con-
sidered as a generalized testing for these values: each set of instances of the
parameters provides a single finite state systems that is itself comprehensively
tested using model checking. This idea can be used, independently, for model
checking: for example, consider a sorting program with a parametric set of values
and initial values to be sorted; for a particular size and set of values, the model

256 G. Katz and D. Peled

checking provides automatic and exhaustive test, but the check is not exhaustive
for all the array sizes or array values, but rather samples them.

5 Correcting Erroneous Program

Our method is not limited to finding new program that satisfy the given spec-
ification. In fact, we can start with the code of an existing program and try to
improve or correct it. When our initial population consists of a given program,
which is either non optimal, or faulty, we can start our genetic programming
process with it, instead of with a completely random population. If our fitness
measure includes some quantitative evaluation, the initial program may be found
inferior to some new candidates that are generated. If the program is erroneous,
then it would not get a very high fitness value by failing to satisfy some of the
properties.

In [12] we approached the ambitious problem of correcting a known protocol
for obtaining interprocess interaction called α-core [21]. The algorithm allows
multiparty synchronization of several processes. It needs to function in a system
that allows nondeterministic choices, which makes it challenging, as processes
that may consider one possible interaction may also decide to be engaged in
another interaction. The algorithm uses asynchronous message passing in order
to enforce live selection of the interactions by the involved processes. This non-
trivial algorithm, which is used in practice for distributed systems, contains an
error. The challenges in correcting this algorithm are the following:

Size. The protocol is quite big, involving sending different messages between
the controlled processes, and new processes, one per each possible multi-
party interaction. These messages include announcing the willingness to be
engaged in an interaction, committing an interaction, cancelling an interac-
tion, request for commit from the interaction manager processes, as well as
announcement that the interaction is now going on, or is cancelled due to
the departure of at least one participant. In addition to the size of the code,
the state space of such a protocol is obviously high.

Varying architecture. The protocol can run on any number of processes, each
process with arbitrary number of choices to be involves in interactions, and
each interaction includes any number of processes.

These difficulties make also the model checking itself undecidable [1] in gen-
eral, and the model checking of a single instance, with fixed architecture, hard.
In fact, we use our genetic programming approach first to find the error, and
then to correct it. We use two important ideas:

1. Use the genetic engine not only to generate programs, but also to evolve
different architectures on which programs can run.

2. Apply a co-evolution process, where candidate programs, and test cases (ar-
chitectures) that may fail these programs, are evolved in parallel.

Synthesizing, Correcting and Improving Code 257

Specifically, the architecture for the candidate programs is also represented
as code (or, equivalently, a syntactic tree) for spanning processes and their in-
teractions, which can be subjected to genetic mutations. The fitness function
directs the search into program that may falsify the specification for the current
program. After finding a “bad” architecture for a program, one that causes the
program to fail its specification, our next goal is to reverse the genetic program-
ming direction, and try to automatically correct the program, where a “correct”
program at this step, is one that has passed model checking against the archi-
tecture. Yet, correcting the program for the first found wrong architecture only,
does not guarantee its correctness under different architectures. Therefore, we
introduce a new algorithm (see Algorithm 1) which co-evolves both the candidate
solution programs, and the architectures that might serve as counterexamples
for those programs.

Algorithm 1: Model checking based co-evolution
MC-CoEvolution(initialProg, spec, maxArchs)
(1) prog := initialProg
(2) InstantList := ∅
(3) while |archList| <maxArchs
(4) arch := EvolveArch(prog, spec)
(5) if arch = null
(6) return true // prog stores a “good” program
(7) else
(8) add arch to archlist
(9) prog := EvolveProg(archlist, spec)
(10) if prog is null
(11) return false // no “good” program was found
(12) return false // can’t add more architectures

The algorithm starts with an initial program initProg. This can be the existing
program that needs to be corrected, or, in case that we want to synthesize some
code, a randomly generated program. It is also given a specification spec which
the program to be corrected or generated should satisfy. The algorithm then
proceeds in two steps. First (lines (4)− (8)), the EvolveArch function is called.
The goal of this function is to generate an architecture on which the specification
spec will not hold. If no such architecture is found, the EvolveArch procedure
returns null, and we assume (though we cannot guarantee) that the program is
correct, and the algorithm terminates. Otherwise, the found architecture arch is
added to the architecture list archList, and the algorithm proceeds to the second
step (lines (9)− (11)).

In this step, the architecture list and the specification are sent to the Evolve-
Prog function which tries to generate programs which satisfy the specification
under all of the architectures on the list. If the function fails, then the algorithm
terminates without success. Since the above function runs a Genetic Program-
ming process which is probabilistic, instead of terminating the algorithm, it is
possible to increase the number of iterations, or to re-run the function so a new

258 G. Katz and D. Peled

search is initiated. If a correct program is found, the algorithm returns to the
first step at line (4), on which the newly generated program is tested. At each
iteration of the while loop, a new architecture is added to the list. This method
serves two purposes. First, once a program was suggested, and refuted by a new
architecture, it will not be suggested again. Second, architectures that were com-
plex enough to fail programs at previous iterations, are good candidates to do
so on future iterations as well. The allowed size of the list is limited in order to
bound the running time of the algorithm.

Both EvolveProg and EvolveArch functions use genetic programming and
model checking for the evolution of candidate solutions (each of them is equipped
with relevant building blocks and syntactic rules), while the fitness function
varies. For the evolution of programs, a combination of the methods proposed
in [10,11] is used: for each LTL property, an initial fitness level is obtained by
performing a deep model checking analysis. This is repeated for all the archi-
tectures in archList, which determines the final fitness value. For the evolution
of the architectures, we reverse the goal of the fitness function, and give higher
score for architectures that are having a better chances to falsify the program.
At the end, the smallest architecture that manifested the failure included two
processes, with two alternative communication between both of them.

6 A Tool for Genetic Programming Based on Model
Checking

We constructed a tool, MCGP [13], that implements the our ideas about model
checking based genetic programming. Depending on these setting, the tool can
be used for several purposes:

– Setting all parts as static will cause the tool to just run the deep model
checking algorithm on the user-defined program, and provide its detailed
results.

– Setting the init process as static, and all or some of the other processes as
dynamic, will order the tool to synthesize code according to the specified
architecture. This can be used for synthesizing programs from scratch, syn-
thesizing only some missing parts of a given partial program, or trying to
correct or improve a complete given program.

– Setting the init process as dynamic, and all other processes as static, is
used when trying to falsify a given parametric program by searching for a
configuration that violates its specification (see [12]).

– Setting both the init and the program processes as dynamic, is used for syn-
thesizing parametric programs, where the tool alternatively evolves various
programs, and configurations under which the programs have to be satisfied.

7 Conclusions

We suggested the use of a methodology and a tool that perform a genetic pro-
gramming search among versions of a program by code mutation, guided by

Synthesizing, Correcting and Improving Code 259

Fig. 4. User interface during synthesis of a mutual exclusion algorithm

model checking results. Code mutation is at the kernel of genetic programming
(crossover is also extensively used, but we did not implement it). Our method
can be used for

– synthesizing correct-by-design programs,

– finding an error in protocol with complicated architecture (where the archi-
tecture can also undergo genetic mutation),

– automatically correcting erroneous code with respect to a given specification,
and

– improve code, e.g., to perform more efficiently.

We demonstrated our method on the classical mutual exclusion problem, and
were able to find existing solutions, as well as new solutions.

In general, the verification of parametric systems is undecidable, and in the few
methods that promise termination of the verification, quite severe restrictions
are required. The same apply to code synthesis. Nevertheless, we provide a co-
evolution method for synthesize parametric systems based on accumulating cases
to be checked: architectures on which the synthesis failed before, or test cases
based on previous counterexamples are accumulated to be checked later with new
candidate solutions. As the model checking itself is undecidable, we finish if we
obtain a strong enough evidence that the solution is correct on the accumulated
cases.

Although our method does not guarantee termination, neither for finding the
error, nor for finding a correct version of the algorithm, it is quite general and
can be fine tuned through provided heuristics in a convenient human-assisted
process of code correction.

An important strength of the work that is presented here is that it was im-
plemented and applied on a complicated published protocol to find and correct
an actual error.

260 G. Katz and D. Peled

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming –
An Introduction. In: On the Automatic Evolution of Computer Programs and its
Applications, 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)

3. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In: PODC, p. 305 (2003)

4. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

5. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
6. Fearnley, J., Peled, D., Schewe, S.: Synthesis of succinct systems. In: Chakraborty,

S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 208–222. Springer, Hei-
delberg (2012)

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

9. Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing
new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. Katz, G., Peled, D, vol. 5311, pp. 33–47.
Springer, Heidelberg (2008)

10. Katz, G., Peled, D.: Model checking-based genetic programming with an applica-
tion to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

11. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

12. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010)

13. Katz, G., Peled, D.: MCGP: A software synthesis tool based on model checking and
genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 359–364. Springer, Heidelberg (2010)

14. Kessels, J.L.W.: Arbitration without common modifiable variables. Acta Inf. 17,
135–141 (1982)

15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

17. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

18. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

19. Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. Niebert, P., Peled, D., Pnueli, A, vol. 5123, pp. 504–516.
Springer, Heidelberg (2008)

20. Peled, D.: Software Reliability Methods. Springer (2001)

Synthesizing, Correcting and Improving Code 261

21. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implement-
ing multiparty synchronization. Concurrency - Practice and Experience 16(12),
1173–1206 (2004)

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190 (1989)

23. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757 (1990)

24. Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., New York (1993)

25. Tsay, Y.-K.: Deriving a scalable algorithm for mutual exclusion. In: Kutten, S.
(ed.) DISC 1998. LNCS, vol. 1499, pp. 393–407. Springer, Heidelberg (1998)

	Synthesizing, Correcting and Improving Code,
Using Model Checking-Based Genetic
Programming

	1 Introduction
	2 Genetic Programming Based on Model Checking
	3 Finding New Mutual Exclusion Algorithms
	4 Synthesizing Parametric Programs
	5 Correcting Erroneous Program
	6 A Tool for Genetic Programming Based on Model Checking
	7 Conclusions
	References

