
Backbones for Equality

Michael Codish1, Yoav Fekete1, and Amit Metodi2,�

1 Department of Computer Science, Ben-Gurion University, Israel
{mcodish,fekete}@cs.bgu.ac.il

2 Cadence Israel Development Center, Israel
ametodi@cadence.com

Abstract. This paper generalizes the notion of the backbone of a CNF
formula to capture also equations between literals. Each such equation
applies to remove a variable from the original formula thus simplifying
the formula without changing its satisfiability, or the number of its sat-
isfying assignments. We prove that for a formula with n variables, the
generalized backbone is computed with at most n+1 satisfiable calls and
exactly one unsatisfiable call to the SAT solver. We illustrate the integra-
tion of generalized backbone computation to facilitate the encoding of
finite domain constraints to SAT. In this context generalized backbones
are computed for small groups of constraints and then propagated to sim-
plify the entire constraint model. A preliminary experimental evaluation
is provided.

1 Introduction

The backbone of a search problem is a fundamental notion identified to explain
why certain problem instances are hard. The term originates in computational
physics [8,17,16]. It identifies decisions which are fixed in all solutions, and so
need to be made correctly. Typically, a decision is the value of a variable, and if
that value is fixed in all solutions then the variable is called a backbone variable.
If a problem has a backbone variable, an algorithm will not find a solution to
the problem until the backbone variable is set to its correct value. Therefore,
the larger a backbone, the more tightly constrained the problem becomes. As a
result, it is more likely for an algorithm to set a backbone variable to a wrong
value, which may consequently require a large amount of computation to recover
from such a mistake [20].

For SAT, the backbone of a satisfiable propositional formula ϕ is the set of
variables which take the same truth value in all satisfying assignments of ϕ. In
this case, the backbone can also be seen as the set of literals which are true
in all satisfying assignments of ϕ. Computing the backbone of a propositional
formula is intractable in general [7]. Janota proves that deciding if a literal
is in the backbone of a formula is co-NP [6] and Kilby et al. show that even
approximating the backbone is intractable [7].

� This research was carried out while the third author was a graduate student at
Ben-Gurion University.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 1–14, 2013.
c© Springer International Publishing Switzerland 2013

2 M. Codish, Y. Fekete, and A. Metodi

Backbones appear in a number of practical applications of SAT. If a backbone
is known, then we can simplify a formula without changing its satisfiability, or
the number of satisfying assignments. Assigning values to backbone variables
reduces the size of the search space while maintaining the meaning of the orig-
inal formula. On the other hand, computing the backbone of a SAT problem is
typically at least as hard as solving the SAT problem itself. Investing the cost of
computing a backbone (or part of it) can pay off when the application must solve
the same formula many times. Typical examples are model enumeration, mini-
mal model computation, prime implicant computation, and also in applications
which involve optimization (see for example, [12]). Another useful application,
examplified in [10], is when SAT solving is incremental, and a backbone can be
computed for a small portion of the CNF but used to simplify the whole CNF.

Backbones are often computed by iterating with a SAT solver. For a satisfiable
propositional formula ϕ and literal x, if ϕ ∧ ¬x is not satisfiable, then x is in
the backbone. For a formula with n variables and a backbone consisting of b
literals, a naive approach requires 2n calls to the SAT solver from which b are
unsatisfiable and typically more expensive. In [12], the authors survey several
less naive options and introduce an improved algorithm. For a formula with n
variables and a backbone with b literals their algorithm requires at most n − b
satisfiable calls and exactly one unsatisfiable call to the SAT solver.

This paper generalizes the notion of the backbone of a CNF formula ϕ to
capture all equations of the form x = � implied by ϕ where x is a variable, and
� is either a truth value or a literal. In this case we say that x is a generalized
backbone variable. The (usual) backbone of ϕ is the subset of these equations
where � is a truth value. The motivation for generalized backbones is exactly
the same as for backbones: each implied equation represents a decision which is
fixed in all solutions, and if we know that x = � is implied by the formula then
all occurrences of x can be replaced by � thus fixing the decision and simplifying
the formula without changing its satisfiability, or the number of its satisfying
assignments.

We prove that generalized backbones (with equalities) are not much more
expensive to compute than usual backbones. We show that for a formula with n
variables the generalized backbone is computed with at most n+1 satisfiable calls
and exactly one unsatisfiable call to the SAT solver. We also illustrate through
preliminary experimentation that computing generalized backbones does pay off
in practice.

In previous work described in [14,13,15], we take a structured approach to
solve finite domain constraint problems through an encoding to SAT. With this
approach we partition a CNF encoding into smaller chunks of clauses, determined
by the structure of the constraint model, and we reason, one chunk at a time,
to identify (generalized) backbone variables. Clearly, any (generalized) backbone
variable (or an implied equation) of a single chunk is also a (generalized) back-
bone variable (or an implied equation) of the entire CNF. Moreover, a backbone
variable identified in one chunk may apply to simplify other chunks. In [14], we
termed the process of identifying such equations, and propagating them to other

Backbones for Equality 3

chunks, equi-propagation. We introduced a tool called BEE (Ben-Gurion Equi-
propagation Encoder) which applies to encode finite domain constraint models to
CNF. During the encoding process, BEE performs optimizations based on equi-
propagation and partial evaluation to improve the quality of the target CNF.
However, equi-propagation in BEE is based on ad-hoc rules and thus incomplete.

In this paper we describe the extension of BEE to consider complete equi-
propagation (CEP) which is about inferring generalized backbones for chunks
of the CNF encoding and propagating them to simplify the entire CNF. In this
setting, chunks of CNF designated for complete equi-propagation are specified by
the user in terms of sets of constraints. For each such specified set, an algorithm
for generalized backbone computation is applied to its CNF encoding. For typical
constraint satisfaction problems, removing some of the constraints renders a
CNF which is much easier to solve. Hence, here too, the cost of computing the
(generalized) backbone of an individual chunk can pay off when applied in the
global context to solve the whole CNF.

2 Related Work

Simplifying CNF formula prior to the application of SAT solving is of the utmost
importance and there are a wide range of preprocessing techniques that can be
applied to achieve this goal. See for example the works of [9], [2], [4], and [11], and
the references therein their work. Detecting unit clauses and implications (and
thus also equalities) between literals is a central theme in CNF preprocessing.
The preprocessor described in [5] focuses on detecting precisely the same kind
of equations we consider for generalized backbones: unit clauses and equalities
between literals.

There are also approaches [9] that detect and use Boolean equalities during
run-time, from within the SAT solver. Perhaps the most famous example is the
SAT solver of St̊almark [19] which has extensive support for reasoning about
equivalences and where formulae are represented in a form containing only con-
junctions, equalities and negations [18].

The approach taken in this paper is different from these works. The above
mentioned works apply various techniques (resolution based and others) to track
down implications. They are not complete techniques. Ours is a preprocessing
technique with a focus on the computation of complete equi-propagation im-
plemented using a backbone algorithm (with equalities). A key factor is that
by considering only a small fragment of a CNF at one time enables to apply
stronger, and even complete, reasoning to detect generalized backbones in that
fragment. Once detected, these apply to simplify the entire CNF and facilitate
further reasoning on other fragments.

When compiling finite domain constraints to CNF using the BEE compiler,
the structure of the constraints can be applied to induce a partition of the target
CNF to such fragments.

4 M. Codish, Y. Fekete, and A. Metodi

3 Backbones and Equalities

In this section we first describe an algorithm for computing backbones and then
detail its application to compute generalized backbones (with equality). Our
approach is essentially the same as Algorithm 4 presented in [12].

To compute the backbone of a given formula ϕ, which we assume is satisfiable,
we proceed as follows: the algorithmmaintains a table indicating for each variable
x in ϕ for which values of x, ϕ can be satisfied: true, false, or both. The algorithm
is initialized by calling the SAT solver with ϕ1 = ϕ and initializing the table
with the information relevant to each variable: if the solution for ϕ1 assigns a
value to x then that value is tabled for x. If it assigns no value to x then both
values are tabled for x.

The algorithm iterates incrementally. For each step i > 1 we add a single
clause Ci (detailed below) and re-invoke the same solver instance, maintaining
the learned data of the solver. This process terminates with a single unsatisfiable
invocation. In words: the clause Ci can be seen as asking the solver if it is possible
to flip the value for any of the variables for which we have so far seen only a single
value. More formally, at each step of the algorithm, Ci is defined as follows: for
each variable x, if the table indicates a single value v for x then Ci includes ¬v.
Otherwise, if the table indicates two values for x then there is no corresponding
literal in Ci. The SAT solver is then called with ϕi = ϕi−1 ∧ Ci. If this call is
satisfiable then the table is updated to record new values for variables (there
must be at least one new value in the table) and we iterate. Otherwise, the
algorithm terminates and the variables remaining with single entries in the table
are the backbone of ϕ.

In [12] the authors prove1 that for a formula with n variables and a backbone
with b literals the above algorithm requires at most n − b satisfiable calls and
exactly one unsatisfiable call to the SAT solver. The following example demon-
strates the application of the backbone algorithm.

θi
︷ ︸︸ ︷

x1 x2 x3 x4 x5 ϕi

i=1 1 1 0 0 1 ϕ
i=2 1 0 0 1 0 ϕ1 ∧ ¬θ1
i=3 unsat ϕ2 ∧ (¬x1 ∨ x3)

Fig. 1. Demo of backbone algorithm (Example 1)

Example 1. Assume given an unspecified formula, ϕ, with 5 variables. Figure 1
illustrates the iterations (three in this example) of the backbone algorithm: one
per line. The columns in the table detail the iteration number i (left), the the
formula ϕi provided to the SAT solver (right), and the model θi obtained (mid-
dle). The example illustrates that ϕ1 = ϕ has a model θ1 depicted in the first

1 See Proposition 6 in http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

Backbones for Equality 5

line of the table, and that requesting a second (different) model, by invoking the
SAT solver with the formula ϕ2 = ϕ1 ∧¬θ1, results in the model θ2. Notice that
the variable x1 takes the same value, true, in both models, and that the variable
x3 takes the same value, false. In the third iteration, the call ϕ3 = ϕ2∧(¬x1∨x3)
requests a model which is different from the first two and which flips the value
of (at least) one of the two variables x1 (to false) or x3 (to true). Given that
this call is not satisfiable, we conclude that x1 and x3 comprise the backbone
variables of ϕ.

Now consider the case where in addition to the backbone we wish to derive
also equations between literals which hold in all models of ϕ. The generalized
backbones algorithm applied in BEE is basically the same algorithm as that
proposed for computing backbones. Given formula ϕ, generalized backbones are
computed by extending ϕ to ϕ′ as prescribed by Equation (1). This is straight-
forward. Enumerating the variables of ϕ as

{
x1, . . . , xn

}
. One simply defines

ϕ′ = ϕ ∧ {
eij ↔ (xi ↔ xj)

∣
∣ 0 ≤ i < j ≤ n

}
(1)

introducing θ(n2) fresh variables eij . If the literal eij is in the backbone of ϕ′

then xi = xj is implied by ϕ, and if the literal ¬eij is in the backbone of ϕ′

then xi = ¬xj is implied by ϕ. As an optimization, it is possible to focus in
the first two iterations only on the variables of ϕ. However, there is one major
obstacle. The application of backbones with equalities for ϕ with n variables
involves computing the backbone for ϕ′ which has θ(n2) variables. Consequently,
it is reasonable to assume that the number of calls to the SAT solver may be
quadratic. Below we prove that this is not the case, but first we present the
following example.

θi
︷ ︸︸ ︷

x1 x2 x3 x4 x5 e12 e13 e14 e15 e23 e24 e25 e34 e35 e45 ϕi

i=1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 ϕ′

i=2 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 ϕ1 ∧ ¬θ1
i=3 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 ϕ2 ∧

(¬x1 ∨ x3 ∨ e13∨
¬e24 ∨ ¬e25 ∨ e45

)

i=4 unsat ϕ3 ∧ (¬x1 ∨ x3 ∨ e13 ∨ e45)

Fig. 2. Demo of the generalized backbones algorithm (Example 2)

Example 2. Consider the same formula ϕ as in Example 1. Figure 2 illustrates
the iterations, one per line, (four in this example) of the backbone algorithm
but extended to operate on ϕ′ as specified in Equation (1). The first two lines
of the table in Figure 2 detail θ1 and θ2 which are almost the same as the two
models of ϕ1 and ϕ2 from Figure 1, except that here we present also the values
of the fresh variables eij indicating the values of the equations between literals.
The two variables x1 and x3 (and hence also e13) take identical values in both

6 M. Codish, Y. Fekete, and A. Metodi

models, just as in Figure 1. This time, in the third iteration we ask to either flip
the value for one of {x1, x3} or for one of {e13, e24, e25, e45} and there is such
a model θ3 which flips the values of e24 and e25. In the first three models the
variables x1, x3, e13, and e45 take single values. Hence in the fourth iteration
the call to the SAT solver asks to flip one of them. Figure 2 indicates that this
is not possible and hence these four variables are in the generalized backbone.

We proceed to prove that iterated SAT solving for generalized backbones using
ϕ′ involves at most n+1 satisfiable SAT tests, and exactly one unsatisfiable test,
in spite of the fact that ϕ′ involves a quadratic number of fresh variables.

Theorem 1. Let ϕ be a CNF, X a set of n variables, and Θ =
{
θ1, . . . , θm

}

the sequence of assignments encountered by the generalized backbones algorithm
for ϕ and X. Then, m ≤ n+ 1.

Before presenting a proof of Theorem 1 we introduce some terminology. As-
sume a set of Boolean variables X and a sequence Θ =

{
θ1, . . . , θm

}
of models.

Denote X̂ = X ∪ {
1
}

and let x, y ∈ X̂. If θ(x) = θ(y) for all θ ∈ Θ or if
θ(x) �= θ(y) for all θ ∈ Θ, then we say that Θ determines the equation x = y.
Otherwise, we say that Θ disqualifies x = y, intuitively meaning that Θ disqual-
ifies x = y from being determined. More formally, Θ determines x = y if and
only if Θ |= (x = y) or Θ |= (x = ¬y), and otherwise Θ disqualifies x = y.

The generalized backbones algorithm for a formula ϕ and set of n variables
X applies so that each iteration results in a satisfying assignment for ϕ which
disqualifies at least one additional equation between elements of X̂. Although
there are a quadratic number of equations to be considered, we prove that the
CEP algorithm terminates after at most n+ 1 iterations.

Proof. (of Theorem 1) For each value i ≤ m, Θi =
{
θ1, . . . , θi

}
induces a

partitioning, Πi of X̂ to disjoint and non-empty sets, defined such that for each
x, y ∈ X̂ , x and y are in the same partition P ∈ Πi if and only if Θi determines
the equation x = y. So, if x, y ∈ P ∈ Πi then the equation x = y takes the
same value in all assignments of Θi. The partitioning is well defined because if
in all assignments of Θi both x = y takes the same value and y = z takes the
same value, then clearly also x = z takes the same value, implying that x, y, z
are in the same partition of Πi. Finally, note that each iteration 1 < i ≤ m
of the generalized backbones algorithm disqualifies at least one equation x = y
that was determined by Θi−1. This implies that at least one partition of Πi−1 is
split into two smaller (non-empty) partitions of Πi. As there are a total of n+1
elements in X̂, there can be at most n+ 1 iterations to the algorithm.

Example 3. Consider the same formula ϕ as in Examples 1 and 2. Figure 3
illustrates the run of the algorithm in terms of the partitioningsΠi from the proof
of Theorem 1 (in the right column of the table). There are four iterations, just
as in Figure 2, and ϕ1, . . . , ϕ4 and θ1, . . . , θ4 are the same as in Figure 2, except
that we do not make explicit all of the information in the table of Figure 3. To

Backbones for Equality 7

θi
︷ ︸︸ ︷

x1 x2 x3 x4 x5 Πi

i=1 1 1 0 0 1
{

x1, x2, x3, x4, x5, 1
}

i=2 1 0 0 1 0
{

x1, x3, 1
}

,
{

x2, x4, x5

}

i=3 1 0 0 0 1
{

x1, x3, 1
}

,
{

x2

}

,
{

x4, x5

}

i=4 unsat

Fig. 3. Demo of the generalized backbone algorithm performing a linear number of
calls as in the proof of Theorem 1 (Example 3)

better understand the meaning of the partition observe for instance the second
iteration where Π2 indicates that the set Θ2 = {θ1, θ2}: (a) determines the
equations between {x1, x3, 1} (for both assignments, x1 = 1 is true, x3 = 1 is
false, and x1 = x3 is false), and (b) determines the equations between {x2, x4, x5}
(for both assignments, x2 = x4, x4 = x5, and x5 = x2 are false).

4 Complete Equi-propagation in BEE

BEE is a compiler which facilitates solving finite domain constraints by encod-
ing them to CNF and applying an underlying SAT solver. In BEE constraints
are modeled as Boolean functions which propagate information about equalities
between Boolean literals. This information is then applied to simplify the CNF
encoding of the constraints. This process is termed equi-propagation. A key fac-
tor is that considering only a small fragment of a constraint model at one time
enables to apply stronger, and as we argue in this paper, even complete reason-
ing to detect equivalent literals in that fragment. Once detected, equivalences
propagate to simplify the entire constraint model and facilitate further reasoning
on other fragments. BEE is described in several recent papers: [14], [13] and [15].

In BEE, each constraint is associated with a collection of simplification rules.
The simplification of one constraint, may result in that we derive an equality
of the form x = �, where x is a Boolean variable and � a Boolean literal or
constant, which is implied by one or more of the given constraints. The compiler
then propagates this equality to other constraints, which may in turn trigger
simplification rules for additional constraints. BEE iterates until no further rules
apply.

Figure 4 illustrates a constraint model in BEE for the Kakuro instance depicted
as Figure 5(a). In a Kakuro instance each block of consecutive horizontal or
vertical white cells must be filled with distinct non-zero digits (integer values
between 1 and 9) which sum to a given clue. For example, in the bottom row of
Figure 5(a) the four cells must sum to 14 and a possible solution is to assign them
the distinct values 5,1,6,2. The constraints in the left column of Figure 4 declare
the finite domain variables of the instance. Each cell is associated with a finite
domain variable taking values between 1 and 9. Each block of integer variables
(horizontal and vertical) in the instance is associated with a int array plus

constraint (middle column) and an allDiff constraint (right column).

8 M. Codish, Y. Fekete, and A. Metodi

The simplification rules defined in BEE consider each individual constraint to
determine (generalized) backbone variables in its underlying bit-level represen-
tation. These rules are “ad-hoc” in that they do not derive all of the equalities
implied by a constraint. Moreover if an equation is implied by a set of constraints
but not by an individual constraint, then BEE may not detect that equation.
Figure 5(b) illustrates the effect of applying BEE to the constraint model of
Figure 4 and demonstrates that 7 of the 14 integer variables in the instance are
determined at compile time.

In this paper we propose to enhance BEE to allow the user to specify sets of
constraints to which a generalized backbone algorithm is to be applied. We call
this process complete equi-propagation (CEP). Figure 5(c) illustrates the effect
of the enhanced BEE where each pair of constraints about a given block: one
int array plus and one allDiff are grouped for CEP. Here we see that all 14
integer variables in the instance are determined at compile time.

new int(I1, 1, 9) int array plus([I1, I2], 6) allDiff([I1 , I2])
new int(I2, 1, 9) int array plus([I3, I4, I5, I6], 17) allDiff([I3 , I4, I5, I6])
new int(I3, 1, 9) int array plus([I7, I8], 3) allDiff([I7 , I8])
new int(I4, 1, 9) int array plus([I9, I10], 4) allDiff([I9 , I10])
new int(I5, 1, 9) int array plus([I11, I12, I13, I14], 14) allDiff([I11 , I12, I13, I14])
new int(I6, 1, 9) int array plus([I3, I7], 11) allDiff([I3 , I7])
new int(I7, 1, 9) int array plus([I4, I8, I11], 8) allDiff([I4 , I8, I11])
new int(I8, 1, 9) int array plus([I1, I5], 3) allDiff([I1 , I5])
new int(I9, 1, 9) int array plus([I2, I6, I9, I13], 18) allDiff([I2 , I6, I9, I13])
new int(I10, 1, 9) int array plus([I10, I14], 3) allDiff([I10 , I14])
new int(I11, 1, 9)
new int(I12, 1, 9)
new int(I13, 1, 9)
new int(I14, 1, 9)

Fig. 4. Constraints for the Kakuro instance of Figure 5(a)

a. Kakuro Instance b. Specialized by BEE c. Specialized with CEP

Fig. 5. Applying complete equi-propagation to a Kakuro Instance

The compilation of a constraint model to a CNF using BEE goes through
three phases. In the first phase, bit blasting, integer variables (and constants) are
represented as bit vectors. Now all constraints are about Boolean variables. The

Backbones for Equality 9

second phase, the main loop of the compiler, is about constraint simplification.
Three types of actions are applied: ad-hoc equi-propagation, partial evaluation,
and decomposition of constraints. Simplification is applied repeatedly until no
rule is applicable. In the third, and final phase, simplified constraints are encoded
to CNF.

In order to enhance BEE with CEP we introduce syntax for users to specify
constraints or groups of constraints designated for CEP. We introduce a new
phase to the compilation process which is applied after the first phase (bit blast-
ing) and before the second phase. In the new phase, we first apply two types of
actions, ad-hoc equi-propagation and partial evaluation, repeatedly until no rule
is applicable. Then we apply generalized backbone computation on the CNF of
the user defined groups of constraints. If new equalities are derived from ap-
plying the CEP algorithm on one of the user defined groups, then these are
propagated to all relevant constraints and the simplification process is repeated
until no more equalities are derived.

At the syntactic level, we have added two constructs to BEE: cep(C) specifies
that the CEP algorithm is applied to the CNF of constraint C instead of the ad-
hoc rules in BEE; and cep group(G) specifies that CEP is applied to the conjunc-
tion of CNF’s corresponding to the constraints in a group G. For instance, the user
might specify cep group([int array plus([I1, I2], 6), allDiff([I1, I2])]) for
pairs of constraints in the Kakuro example.

5 Preliminary Experimental Evaluation

We demonstrate the potential of CEP with 2 experiments. Our goal is to il-
lustrate the impact of CEP on the BEE constraint compiler. We demonstrate
that, in some cases, enhancing the compilation of constraints to consider CEP
(using a SAT solver) at compile time leads to much better results than those
obtained when using BEE’s polynomial time compilation based on ad-hoc equi-
propagation rules. To this end we view CEP as yet one more compilation tool
that the user can choose to apply.

5.1 The First Experiment

We illustrate the impact of CEP with an application of extremal graph theory
where the goal is to find the largest number of edges in a simple graph with n
nodes such that any cycle (length) is larger than 4. The graph is represented as
a Boolean adjacency matrix A and there are three types of constraints:

1. Constraints about cycles in the graph: ∀i,j,k. A[i, j] + A[j, k] + A[k, i] < 3,
and ∀i,j,k,l. A[i, j] +A[j, k] +A[k, l] +A[l, i] < 4;

2. Constraints about symmetries: in addition to the obvious ∀1≤i<j≤n. (A[i, j] ≡
A[j, i] and A[i, i] ≡ false), we constrain the rows of the adjacency matrix
to be sorted lexicographically (justified in [1]); and

3. Constraints that impose lower and upper bounds on the degrees of the graph
nodes as described in [3].

10 M. Codish, Y. Fekete, and A. Metodi

Further details on this benchmark can be found in [1].
Table 1 illustrates results, running BEE with and without CEP. Here, we focus

on finding a graph with the prescribed number of graph nodes with the known
maximal number of edges (all instances are satisfiable). In our encoding, if CEP
is applied, then there is a single CEP group consisting of all of the constraints
related to symmetry breaking and node degrees (items 2 and 3 detailed above).
All of the other constraints related to graph cycles (item 1 detailed above) remain
ungrouped. The table details for each instance:

• in the first two columns: the number of nodes and edges;
• in the next two columns: the size of the single CEP group which is input to
the CEP algorithm (number of clauses and variables, after ad-hoc simplifi-
cation by BEE);

• in the next two sets of 4 columns: for each CEP choice: the BEE compilation
time, the (total) number of clauses and variables in the target CNF encoding,
and the subsequent sat solving time.

The table indicates that CEP increases the compilation time (within reason),
reduces the CNF size (considerably), and (for the most part) improves SAT
solving time.2 The CEP groups in this example involve, in average, about half
the number of variables and one third the number of clauses when compared
to the encoding without CEP, with up to 10,000 variables and 50,000 clauses.
We note, that as explained above, BEE iterates over CEP groups, propagating
equations learned from one group to simplify other groups which as a result may
yield further CEP information. The group sizes presented in Table 1 indicate
the initial group sizes. During iteration the size of the groups decreases.

5.2 The Second Experiment

We consider the 12 instances from the armies benchmark from category DEC-
SMALLINT-LIN of the PB’12 competition.3 Each instance consists of a set of
cardinality and pseudo Boolean constraints.

For this experiment we consider a grouping of the constraints into two (over-
lapping) groups. These are obtained by considering a connectivity graph where
the nodes are constraint variables. There is a weighted edge (u, v) with weight
dep(u, v) between variables u and v if their degree of dependency dep(u, v) > 0
which is defined as follows:

Given a set of constraints Cs . Let V be the set of (Boolean and integer)
variables occurring in Cs . For a variable v ∈ V , let C(v) denote the set of
constraints that involve v. For a pair of variables u, v ∈ V , dep(u, v) = |C(u) ∩
C(v)| is a simple measure on the potential dependency between u and v.

We also define level(v) = max
{
dep(u, v)

∣
∣ u ∈ V

}
, a measure on the depen-

dencies of variable v: a variable v has a high dependency level if there is another

2 Experiments are performed on a single core of an Intel(R) Core(TM) i5-2400
3.10GHz CPU with 4GB memory under Linux (Ubuntu lucid, kernel 2.6.32-24-
generic).

3 See http://www.cril.univ-artois.fr/PB12/

http://www.cril.univ-artois.fr/PB12/

Backbones for Equality 11

Table 1. Search for graphs with no cycles of size 4 or less (comp. & solve times in
sec.)

group size with CEP without CEP

nodes edges clauses vars comp. clauses vars solve comp. clauses vars solve

15 26 8157 1761 0.24 13421 2154 0.07 0.10 23424 3321 0.08
16 28 10449 2200 0.26 18339 2851 0.19 0.12 30136 4328 0.34
17 31 11996 2558 0.39 21495 3233 0.07 0.16 37074 5125 0.12
18 34 14235 3030 0.49 26765 3928 0.12 0.21 45498 6070 0.13
19 38 16272 3433 0.46 30626 4380 0.11 0.22 54918 7024 0.15
20 41 21307 4354 0.55 43336 6005 5.93 0.25 68225 8507 12.70
21 44 24715 5037 0.77 52187 7039 1.46 0.31 81388 9835 69.46
22 47 28296 5762 0.88 61611 8118 71.73 0.35 96214 11276 45.43
23 50 32213 6556 1.10 73147 9352 35.35 0.38 113180 13101 27.54
24 54 35280 7278 2.02 81634 10169 96.11 0.50 130954 14712 282.99
25 57 40942 8344 1.40 99027 12109 438.91 0.53 152805 16706 79.11
26 61 44817 9208 4.58 110240 13143 217.72 0.73 175359 18615 815.55
27 65 50078 10282 2.16 127230 14856 35.36 0.75 201228 20791 114.55

variable u such that u and v occur together in a large number of constraints.
For a grouping, we first take all of the constraints which contain a variable of
maximal level. Denote max = max

{
level(v)

∣
∣ v ∈ V

}
and define

G1 =
{
c
∣
∣ v ∈ V, level(v) = max, c ∈ C(v)

}

G2 = Cs \G1

In the context of our experiments G1 was small in comparison to G2, and we
extended it by defining

G′
1 =

{
c
∣
∣ v ∈ V, level(v) ≥ k, c ∈ C(v)

}

for a suitable value k < max such that the size of G′
1 and G2 are more or less

equal. Note that we did not redefine G2 so the two groups overlap. We found
this redundancy useful.

Table 2 illustrates the encoding sizes for the instances of the armies bench-
mark. In the first 2 columns we indicate the instance name and the number
of original instance variables (ι-vars). Next we illustrate the encoding sizes for
three configurations: using BEE (with ad-hoc equi-propagation), using BEE with
a backbone algorithm, and using BEE with a CEP algorithm. For backbones and
CEP we group constraints into two groups (G′

1 and G2 described above), more
or less equal in size. For encoding sizes we indicate the number of CNF variables
and clauses as well as the percent of the original instance variables eliminated
during the compilation process (Δι). So in average, BEE with CEP eliminates
6.3% of the original instance variables, while BEE with backbones eliminates
3.7% and BEE alone (with its ad-hoc techniques) eliminates 2.0%. These reduc-
tions, although small, may be significant as we are eliminating variables on the
input to the SAT solver.

12 M. Codish, Y. Fekete, and A. Metodi

Table 2. The Army benchmarks — Encoding sizes

instance BEE (regular) BEE (backbones) BEE (CEP)

name ι-vars vars clauses Δι vars clauses Δι vars clauses Δι

8× 9ls 220 2136 8072 0.0 2136 8072 0.0 2096 7932 3.6
8× 9bt 220 2893 11567 5.0 2488 9962 10.5 2438 9784 15.0
9× 12ls 266 2778 11077 0.0 2778 11077 0.0 2738 10937 3.0
9× 12bt 266 3522 14441 4.5 3204 13101 7.1 3172 12994 10.2
10× 14ls 316 4008 14450 0.0 4008 14450 0.0 3978 14345 1.9
11× 17ls 370 4914 18447 0.0 4914 18447 0.0 4874 18307 2.2
10× 14bt 316 6433 25553 4.1 5711 22969 8.5 5657 22771 11.7
11× 17bt 370 7446 29425 3.8 6914 27290 5.9 6882 27183 8.1
13× 24ls 490 7240 28645 0.0 7240 28645 0.0 7210 28541 1.2
13× 24bt 490 15298 60988 3.3 13858 55675 5.1 13826 55568 6.7
12× 21bt 428 14094 55614 3.5 12515 49725 7.2 12457 49507 9.6
12× 21ls 428 5912 23144 0.0 5912 23144 0.0 5872 23004 1.9

Average 6390 25119 2.0 5973 23546 3.7 5933 23406 6.3

Table 3. The Army benchmarks — solving times (seconds) with 1800 sec. timeout

instance BEE (regular) BEE(Backbones) BEE (CEP)

name comp. solve total comp. solve total comp. solve total

8× 9ls 0.0 0.6 0.6 0.4 0.1 0.5 0.7 0.5 1.2
8× 9bt 0.1 1.0 1.1 0.7 0.6 1.3 1.3 0.7 2.0
9× 12ls 0.1 5.9 6.0 0.5 3.0 3.5 1.0 1.1 2.1
9× 12bt 0.1 3.4 3.5 1.0 7.5 8.5 1.4 1.7 3.1
10× 14ls 0.1 17.0 17.1 0.7 1.0 1.7 1.5 8.2 9.7
11× 17ls 0.1 4.5 4.6 0.9 65.4 66.3 1.8 8.1 9.9
10× 14bt 0.1 45.2 45.3 1.9 100.4 102.3 4.1 6.9 11.0
11× 17bt 0.2 267.8 268.0 2.5 344.0 346.5 4.0 26.9 30.9
13× 24ls 0.1 833.8 833.9 2.2 880.8 883.0 3.5 652.2 655.7
13× 24bt 0.3 1072.7 1073.0 8.9 ∞ ∞ 14.9 768.7 783.6
12× 21bt 0.3 ∞ ∞ 7.0 ∞ ∞ 18.9 ∞ ∞
12× 21ls 0.1 ∞ ∞ 1.7 ∞ ∞ 3.1 ∞ ∞

Table 3 details the solving times for the three encodings of the army bench-
marks: using BEE (with ad-hoc equi-propagation), using BEE enhanced with
backbones, and using BEE enhanced with generalized backbones (CEP). For
each encoding and instance we indicate the compile time, the SAT solving time,
and the total solving time (sum of the previous two).

First, we comment on compile times. Compile times increase for backbones
and even more for generalized backbones. But this increase comes with a discount
in solving time. Consider the instance 13× 24bt. Compilation time for CEP goes
up from 0.3 sec. to 14.9 sec, but total solving time goes down from 1073 sec. to
784 sec.

These instances are hard, although they are relatively small. The largest in-
stance, 13×24bt, has only 490 (Boolean) variables and involves 1085 constraints.

Backbones for Equality 13

Only four out of the 42 solvers tested on these instances in the PB’12 compe-
tition manage to solve instance 13 × 24bt within the 1800 second timeout (the
same timeout is used in our experiments). From these four solvers, the two SAT-
based solvers require more or less 1600 seconds (on the competition machines)
whereas our solution for this instance is under 800 seconds.

6 Conclusion

This paper generalizes the notion of a CNF backbone to capture also equalities
between literals. We prove that computing generalized backbones, just as usual
backbones, involves only a linear number of calls to a SAT solver. We describe the
integration of backbones with equality to enhance the BEE constraint-to-CNF
compiler and demonstrate the utility of our approach through a preliminary
experimentation.

Acknowledgments: We thank Peter Stuckey for helpful discussions and
comments.

References

1. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

2. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

3. Garnick, D.K., Kwong, Y.H.H., Lazebnik, F.: Extremal graphs without three-cycles
or four-cycles. Journal of Graph Theory 17(5), 633–645 (1993)

4. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on bi-
nary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

5. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer,
Heidelberg (2005)

6. Janota, M.: SAT Solving in Interactive Configuration. PhD thesis, University Col-
lege Dublin (November 2010)

7. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in sat-
isfiability. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 1368–1373. AAAI
Press / The MIT Press (2005)

8. Kirkpatrick, S., Toulouse, G.: Configuration space analysis of traveling salesman
problems. J. Phys. (France) 46, 1277–1292 (1985)

9. Li, C.-M.: Equivalent literal propagation in the DLL procedure. Discrete Applied
Mathematics 130(2), 251–276 (2003)

10. Manolios, P., Papavasileiou, V.: Pseudo-boolean solving by incremental translation
to SAT. In: Bjesse, P., Slobodová, A. (eds.) FMCAD, pp. 41–45. FMCAD Inc.
(2011)

11. Manthey, N.: Coprocessor 2.0 - a flexible CNF simplifier - (tool presentation).
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441.
Springer, Heidelberg (2012)

14 M. Codish, Y. Fekete, and A. Metodi

12. Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional
theories. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Arti-
ficial Intelligence and Applications, vol. 215, pp. 15–20. IOS Press (2010), Extended
version: http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

13. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE.
TPLP 12(4-5), 465–483 (2012)

14. Metodi, A., Codish, M., Lagoon, V., Stuckey, P.J.: Boolean equi-propagation for
optimized SAT encoding. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 621–636.
Springer, Heidelberg (2011)

15. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

16. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity for characteristic phase transitions. Nature 400,
133–137 (1998)

17. Schneider, J.J.: Searching for backbones – an efficient parallel algorithm for the
traveling salesman problem. Comput. Phys. Commun. (1996)

18. Sheeran, M., St̊almarck, G.: A tutorial on st̊almarck’s proof procedure for propo-
sitional logic. Formal Methods in System Design 16(1), 23–58 (2000)

19. St̊almark, G.: A system for determining propositional logic theorem by applying
values and rules to triplets that are generated from a formula. US Patent 5,276,897;
Canadian Patent 2,018,828; European Patent 0403 545; Swedish Patent 467 076
(1994)

20. Zhang, W.: Phase transitions and backbones of the asymmetric traveling salesman
problem. J. Artif. Intell. Res. (JAIR) 21, 471–497 (2004)

http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

	Backbones for Equality
	1 Introduction
	2 Related Work
	3 Backbones and Equalities
	4 Complete Equi-propagation in
	5 Preliminary Experimental Evaluation
	5.1 The First Experiment
	5.2 The Second Experiment

	6 Conclusion
	References

