
Valeria Bertacco
Axel Legay (Eds.)

 123

LN
CS

 8
24

4

9th International Haifa Verification Conference, HVC 2013
Haifa, Israel, November 2013
Proceedings

Hardware and Software:
Verification and Testing

Lecture Notes in Computer Science 8244
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Valeria Bertacco Axel Legay (Eds.)

Hardware and Software:
Verification andTesting
9th International
Haifa Verification Conference, HVC 2013
Haifa, Israel, November 5-7, 2013
Proceedings

13

Volume Editors

Valeria Bertacco
University of Michigan
Department of Electrical Engineering and Computer Science
BBB4645, 2260 Hayward Avenue
Ann Arbor, MI 48109-2121, USA
E-mail: valeria@umich.edu

Axel Legay
Inria Rennes, Campus de Beaulieu
263, Avenue du Général Leclerc
35042 Rennes, France
E-mail: axel.legay@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03076-0 e-ISBN 978-3-319-03077-7
DOI 10.1007/978-3-319-03077-7
Springer Cham Heidelberg New York Dordrecht London

CR Subject Classification (1998): D.2.4-5, D.3.1, F.3.1-2, D.2.11, I.2.2-3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 9th Haifa Verification Conference
(HVC 2013). The conference was hosted by IBM Research - Haifa and took
place during November 5–7, 2013. It was the ninth event in this series of annual
conferences dedicated to advancing the state of the art and state of the practice
in verification and testing. The conference provided a forum for researchers and
practitioners from academia and industry to share their work, exchange ideas,
and discuss the future directions of testing and verification for hardware, soft-
ware, and complex hybrid systems. This year HVC introduced a special track
on software testing. This track, which was chaired by Amiram Yehudai and Itai
Segall, expands the scope of HVC and attracted 11 submissions from a broader
community.

Overall, HVC 2013 attracted 49 submissions in response to the call for pa-
pers. Each submission was assigned to at least three members of the Program
Committee and in many cases additional reviews were solicited from outside ex-
perts. The Program Committee conferred about the submissions, judging them
on their perceived importance, originality, clarity, and appropriateness for the
expected audience. The Program Committee selected 23 papers for presentation,
including five from the software testing track, resulting in an acceptance rate of
47%.

Complementing the contributed papers, the conference featured five invited
keynote talks: “EDA in the Cloud” by Leon Stok, “Challenges in Enabling the
Next Generation Mobile Experience: Are You Ready?” by Scott Runner, “Recent
Advances in Model Checking” by Robert Brayton, “Synthesis of Concurrent Pro-
grams Using Genetic Programming” by Doron Peled, and “Opportunities and
Challenges for High Performance Microprocessor Designs and Design Automa-
tion” by Ruchir Puri.

The conference itself started with a tutorial day including tutorials on: “Hard-
ware Functional Verification - Present and Future” by Yuval Caspi; “SystemVer-
ilog Assertions for Formal Verification” by Dmitry Korchemny; “Verification and
Performance Analysis of Interconnects Within the SoCs” by Mirit Fromovich;
“SAT, CSP, and Proofs” by Ofer Strichman; and “The System Simulation as a
Tool for Development and Validation of Complex Systems” by Racheli Kenigs-
buch.

We would like to extend our appreciation and sincere thanks to Sivan Ra-
binovich for serving as General Chair and handling the conference details so
successfully. Our thanks also go to Arkadiy Morgenshtein for arranging the tu-
torials day. Finally, we would like to thank our arrangements support team:
Eti Jahr for managing the technical aspects of the conference, Ettie Gilead and
Chani Sacharen for handling communication, Yair Harry for web design, and
Tammy Dekel for graphic design. HVC 2013 received sponsorships from IBM,

VI Preface

Cadence, Mellanox, Jasper, Quallcom, and Mentor Graphics. Submissions and
evaluations of papers, as well as the preparation of this proceedings volume, were
handled by the EasyChair conference management system.

September 2013 Valeria Bertacco
Axel Legay

Organization

Program Committee

Valeria Bertacco University of Michigan, USA
Armin Biere FMV
Roderick Bloem Graz University of Technology, Austria
Hana Chockler King’s College London, UK
Myra Cohen University of Nebraska, USA
Alexandre David Aalborg University, Denmark
Giuseppe Di Guglielmo Columbia University, USA
Harry Foster Mentor Graphics
Alex Goryachev IBM Israel
Ian Harris University of California, Irvine, USA
Michael Hsiao Virginia Tech, USA
Alan Hu University of British Columbia, Canada
Axel Legay Inria, France
Jeff Lei The University of Texas at Arlington, USA
João Lourenço Universidade Nova de Lisboa, Portugal
Rupak Majumdar Max Planck Institute, Germany
Oded Maler Verimag, Grenoble, France
Leonardo Mariani University of Milan, Italy
Amir Nahir IBM, Israel
Preeti Panda IIT Delhi, India
Hiren Patel University of Waterloo, Canada
Itai Segall IBM, Israel
Martina Seidl FMV, Linz, Austria
Mark Trakhtenbrot Holon Institute of Technology, Israel
Shobha Vasudevan University of Illinois at Urbana-Champaign,

USA
Sergiy Vilkomir East Carolina University, USA
Ilya Wagner Intel
Li-C. Wang University of California, Santa Barbara, USA
Elaine Weyuker DIMACS, Rutgers University, USA
Amiram Yehudai Tel Aviv University, Israel

VIII Organization

Additional Reviewers

Amin, Mohamed Ferrere, Thomas

André, Étienne Gladisch, Christoph
Chen, Wen Heule, Marijn
Dimitrova, Rayna Kaushik, Anirudh
Khalimov, Ayrat Poetzl, Daniel
Kloos, Johannes Prähofer, Herbert
Könighofer, Bettina Sharma, Namita
Lanik, Jan Shomrat, Mati
Liffiton, Mark Strichman, Ofer
Meller, Yael Tyszberowicz, Shmuel
Mens, Irini Vale, Tiago
Mishra, Prabhat

Keynotes

EDA in the Cloud

Leon Stok

Electronic Design Automation Technologies, IBM

Abstract. A large number of compute intensive applications are moving
to the cloud at a fast pace. EDA, has been on the forefront of computing
for the last 25 years and should certainly be one of them. How come this
has not happened yet at a noticeable scale? In surveying the attendees
to the 50th Design Automation Conference cloud and IT was certainly
at the forefront of their thoughts for the future of EDA. This talk will
describe why EDA has not taken off in the cloud, but why it is inevitable
to happen and what needs to be done to bring real value to the design
and verification teams.

Opportunities and Challenges

for High Performance Microprocessor Designs
and Design Automation

Ruchir Puri

IBM Research

Abstract. With end of an era of classical technology scaling and expo-
nential frequency increases, high end microprocessor designs and design
automation methodologies are at an inflection point. With power and
current demands reaching breaking points, and significant challenges in
application software stack, we are also reaching diminishing returns from
simply adding more cores. In design methodologies for high end micropro-
cessors, although chip physical design efficiency has seen tremendous im-
provements, strong indications are emerging for maturing of those gains
as well. In order to continue the cost-performance scaling in systems in
light of these maturing trends, we must innovate up the design stack,
moving focus from technology and physical design implementation to
new IP and methodologies at logic, architecture, and at the boundary
of hardware and software, solving key bottlenecks through application
acceleration. This new era of innovation, which moves the focus up the
design stack presents new challenges and opportunities to the design and
design automation communities. This talk will motivate these trends and
focus on challenges for high performance microprocessor design, verifica-
tion, and design automation in the years to come.

Recent Advances in Model Checking

Robert K. Brayton

Uniersity of California, Berkeley

Abstract. Model checking, either for property checking or equivalence
checking, continues to advance towards shorter runtimes and the ability
to handle larger problem instances. These advances have been due to:
1. improved underlying engines such as SAT solvers, BMC, and semi-

formal simulation,
2. new methods such as property directed reachability - IC3/PDR,
3. improved data structures for representing logic,
4. improved synthesis methods, such as signal correspondence, retim-

ing, reparametrization, use of isomorphism
5. improved abstraction methods, such as localization and speculation,
6. use of parallelism and general availability of multi-core servers.

This progress is partially documented by the annual hardware model
checking competitions and the growing set of competition categories,
such as the liveness checking and multi-output categories. These com-
petitions have also encouraged contributions of challenging industrial
examples, all of which has greatly stimulated research and development
in the model checking area.
This talk will discuss the various advances of the past few years and give
examples of the progress made.

Synthesis of Concurrent Programs

Using Genetic Programming

Doron Peled

Bar Ilan University

Abstract. We present a method to automatically generate concurrent
code using genetic programming, based on automatic verification. As
the problem of constructing concurrent code is in general undecidable,
the user needs the intervene by tuning various parameters and supplying
specification and hints that would steer the search for correct code in the
right direction. We demonstrate how various hard-to-program protocols
are generated using our method and our developed tool. We show how
a commonly used protocol for coordinating concurrent interactions was
found to be incorrect using our tool, and was then subsequently fixed.

Challenges in Enabling the Next Generation

Mobile Experience: Are You Ready?

Scott Runner

Qualcomm

Abstract. In the next decade, consumers are going to be treated to an
array of new use case experiences in mobility that one can only dream
of today. The HW and SW IP and systems integration that will enable
these experiences are prodigious. The design and verification challenges
which must be surmounted to enable such high levels of integration and
functionality are daunting. And doing so in the timeframes required to
satisfy the appetites of smartphone and tablet customers, while deliv-
ering to cost, power, performance and quality targets demands novel
approaches. We will explore these challenges in the design of the most
popular devices in the wireless world.

Table of Contents

Session 1: SAT and SMT-Based Verification

Backbones for Equality . 1
Michael Codish, Yoav Fekete, and Amit Metodi

PASS: String Solving with Parameterized Array and Interval
Automaton . 15

Guodong Li and Indradeep Ghosh

Increasing Confidence in Liveness Model Checking Results
with Proofs . 32

Tuomas Kuismin and Keijo Heljanko

Speeding Up the Safety Verification of Programmable Logic Controller
Code . 44

Tim Lange, Martin R. Neuhäußer, and Thomas Noll

Session 2: Software Testing I

Modeling Firmware as Service Functions and Its Application to Test
Generation . 61

Sunha Ahn and Sharad Malik

Symbolic Model-Based Testing for Industrial Automation Software 78
Sabrina von Styp and Liyong Yu

Session 3: Software Testing II

Online Testing of LTL Properties for Java Code . 95
Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

Modbat: A Model-Based API Tester for Event-Driven Systems 112
Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon,
Martina Seidl, Yoshinori Tanabe, and Mitsuharu Yamamoto

Predictive Taint Analysis for Extended Testing of Parallel
Executions . 129

Emmanuel Sifakis and Laurent Mounier

Continuous Integration for Web-Based Software Infrastructures:
Lessons Learned on the webinos Project . 145

Tao Su, John Lyle, Andrea Atzeni, Shamal Faily, Habib Virji,
Christos Ntanos, and Christos Botsikas

XVIII Table of Contents

Session 4: Supporting Dynamic Verification

SLAM: SLice And Merge - Effective Test Generation for Large
Systems . 151

Tali Rabetti, Ronny Morad, Alex Goryachev, Wisam Kadry, and
Richard D. Peterson

Improving Post-silicon Validation Efficiency by Using Pre-generated
Data . 166

Wisam Kadry, Anatoly Koyfman, Dmitry Krestyashyn,
Shimon Landa, Amir Nahir, and Vitali Sokhin

Development and Verification of Complex Hybrid Systems Using
Synthesizable Monitors . 182

Andreas Abel, Allon Adir, Torsten Blochwitz, Lev Greenberg, and
Tamer Salman

Assertion Checking Using Dynamic Inference . 199
Anand Yeolekar and Divyesh Unadkat

Session 5: Specification and Coverage

Formal Specification of an Erase Block Management Layer for Flash
Memory . 214

Jörg Pfähler, Gidon Ernst, Gerhard Schellhorn,
Dominik Haneberg, and Wolfgang Reif

Attention-Based Coverage Metrics . 230
Shoham Ben-David, Hana Chockler, and Orna Kupferman

Keynote Presentation

Synthesizing, Correcting and Improving Code, Using Model
Checking-Based Genetic Programming . 246

Gal Katz and Doron Peled

Session 6: Abstraction

Domain Types: Abstract-Domain Selection Based on Variable Usage . . . 262
Sven Apel, Dirk Beyer, Karlheinz Friedberger,
Franco Raimondi, and Alexander von Rhein

Efficient Analysis of Reliability Architectures via Predicate
Abstraction . 279

Marco Bozzano, Alessandro Cimatti, and Cristian Mattarei

Lazy Symbolic Execution through Abstraction and Sub-space Search . . . 295
Guodong Li and Indradeep Ghosh

Table of Contents XIX

SPIN as a Linearizability Checker under Weak Memory Models 311
Oleg Travkin, Annika Mütze, and Heike Wehrheim

Session 7: Model Representation

Arithmetic Bit-Level Verification Using Network Flow Model 327
Maciej Ciesielski, Walter Brown, and André Rossi

Performance Evaluation of Process Partitioning Using Probabilistic
Model Checking . 344

Saddek Bensalem, Borzoo Bonakdarpour, Marius Bozga,
Doron Peled, and Jean Quilbeuf

Improving Representative Computation in ExpliSAT 359
Hana Chockler, Dmitry Pidan, and Sitvanit Ruah

Author Index . 365

Backbones for Equality

Michael Codish1, Yoav Fekete1, and Amit Metodi2,�

1 Department of Computer Science, Ben-Gurion University, Israel
{mcodish,fekete}@cs.bgu.ac.il

2 Cadence Israel Development Center, Israel
ametodi@cadence.com

Abstract. This paper generalizes the notion of the backbone of a CNF
formula to capture also equations between literals. Each such equation
applies to remove a variable from the original formula thus simplifying
the formula without changing its satisfiability, or the number of its sat-
isfying assignments. We prove that for a formula with n variables, the
generalized backbone is computed with at most n+1 satisfiable calls and
exactly one unsatisfiable call to the SAT solver. We illustrate the integra-
tion of generalized backbone computation to facilitate the encoding of
finite domain constraints to SAT. In this context generalized backbones
are computed for small groups of constraints and then propagated to sim-
plify the entire constraint model. A preliminary experimental evaluation
is provided.

1 Introduction

The backbone of a search problem is a fundamental notion identified to explain
why certain problem instances are hard. The term originates in computational
physics [8,17,16]. It identifies decisions which are fixed in all solutions, and so
need to be made correctly. Typically, a decision is the value of a variable, and if
that value is fixed in all solutions then the variable is called a backbone variable.
If a problem has a backbone variable, an algorithm will not find a solution to
the problem until the backbone variable is set to its correct value. Therefore,
the larger a backbone, the more tightly constrained the problem becomes. As a
result, it is more likely for an algorithm to set a backbone variable to a wrong
value, which may consequently require a large amount of computation to recover
from such a mistake [20].

For SAT, the backbone of a satisfiable propositional formula ϕ is the set of
variables which take the same truth value in all satisfying assignments of ϕ. In
this case, the backbone can also be seen as the set of literals which are true
in all satisfying assignments of ϕ. Computing the backbone of a propositional
formula is intractable in general [7]. Janota proves that deciding if a literal
is in the backbone of a formula is co-NP [6] and Kilby et al. show that even
approximating the backbone is intractable [7].

� This research was carried out while the third author was a graduate student at
Ben-Gurion University.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 1–14, 2013.
c© Springer International Publishing Switzerland 2013

2 M. Codish, Y. Fekete, and A. Metodi

Backbones appear in a number of practical applications of SAT. If a backbone
is known, then we can simplify a formula without changing its satisfiability, or
the number of satisfying assignments. Assigning values to backbone variables
reduces the size of the search space while maintaining the meaning of the orig-
inal formula. On the other hand, computing the backbone of a SAT problem is
typically at least as hard as solving the SAT problem itself. Investing the cost of
computing a backbone (or part of it) can pay off when the application must solve
the same formula many times. Typical examples are model enumeration, mini-
mal model computation, prime implicant computation, and also in applications
which involve optimization (see for example, [12]). Another useful application,
examplified in [10], is when SAT solving is incremental, and a backbone can be
computed for a small portion of the CNF but used to simplify the whole CNF.

Backbones are often computed by iterating with a SAT solver. For a satisfiable
propositional formula ϕ and literal x, if ϕ ∧ ¬x is not satisfiable, then x is in
the backbone. For a formula with n variables and a backbone consisting of b
literals, a naive approach requires 2n calls to the SAT solver from which b are
unsatisfiable and typically more expensive. In [12], the authors survey several
less naive options and introduce an improved algorithm. For a formula with n
variables and a backbone with b literals their algorithm requires at most n − b
satisfiable calls and exactly one unsatisfiable call to the SAT solver.

This paper generalizes the notion of the backbone of a CNF formula ϕ to
capture all equations of the form x = � implied by ϕ where x is a variable, and
� is either a truth value or a literal. In this case we say that x is a generalized
backbone variable. The (usual) backbone of ϕ is the subset of these equations
where � is a truth value. The motivation for generalized backbones is exactly
the same as for backbones: each implied equation represents a decision which is
fixed in all solutions, and if we know that x = � is implied by the formula then
all occurrences of x can be replaced by � thus fixing the decision and simplifying
the formula without changing its satisfiability, or the number of its satisfying
assignments.

We prove that generalized backbones (with equalities) are not much more
expensive to compute than usual backbones. We show that for a formula with n
variables the generalized backbone is computed with at most n+1 satisfiable calls
and exactly one unsatisfiable call to the SAT solver. We also illustrate through
preliminary experimentation that computing generalized backbones does pay off
in practice.

In previous work described in [14,13,15], we take a structured approach to
solve finite domain constraint problems through an encoding to SAT. With this
approach we partition a CNF encoding into smaller chunks of clauses, determined
by the structure of the constraint model, and we reason, one chunk at a time,
to identify (generalized) backbone variables. Clearly, any (generalized) backbone
variable (or an implied equation) of a single chunk is also a (generalized) back-
bone variable (or an implied equation) of the entire CNF. Moreover, a backbone
variable identified in one chunk may apply to simplify other chunks. In [14], we
termed the process of identifying such equations, and propagating them to other

Backbones for Equality 3

chunks, equi-propagation. We introduced a tool called BEE (Ben-Gurion Equi-
propagation Encoder) which applies to encode finite domain constraint models to
CNF. During the encoding process, BEE performs optimizations based on equi-
propagation and partial evaluation to improve the quality of the target CNF.
However, equi-propagation in BEE is based on ad-hoc rules and thus incomplete.

In this paper we describe the extension of BEE to consider complete equi-
propagation (CEP) which is about inferring generalized backbones for chunks
of the CNF encoding and propagating them to simplify the entire CNF. In this
setting, chunks of CNF designated for complete equi-propagation are specified by
the user in terms of sets of constraints. For each such specified set, an algorithm
for generalized backbone computation is applied to its CNF encoding. For typical
constraint satisfaction problems, removing some of the constraints renders a
CNF which is much easier to solve. Hence, here too, the cost of computing the
(generalized) backbone of an individual chunk can pay off when applied in the
global context to solve the whole CNF.

2 Related Work

Simplifying CNF formula prior to the application of SAT solving is of the utmost
importance and there are a wide range of preprocessing techniques that can be
applied to achieve this goal. See for example the works of [9], [2], [4], and [11], and
the references therein their work. Detecting unit clauses and implications (and
thus also equalities) between literals is a central theme in CNF preprocessing.
The preprocessor described in [5] focuses on detecting precisely the same kind
of equations we consider for generalized backbones: unit clauses and equalities
between literals.

There are also approaches [9] that detect and use Boolean equalities during
run-time, from within the SAT solver. Perhaps the most famous example is the
SAT solver of St̊almark [19] which has extensive support for reasoning about
equivalences and where formulae are represented in a form containing only con-
junctions, equalities and negations [18].

The approach taken in this paper is different from these works. The above
mentioned works apply various techniques (resolution based and others) to track
down implications. They are not complete techniques. Ours is a preprocessing
technique with a focus on the computation of complete equi-propagation im-
plemented using a backbone algorithm (with equalities). A key factor is that
by considering only a small fragment of a CNF at one time enables to apply
stronger, and even complete, reasoning to detect generalized backbones in that
fragment. Once detected, these apply to simplify the entire CNF and facilitate
further reasoning on other fragments.

When compiling finite domain constraints to CNF using the BEE compiler,
the structure of the constraints can be applied to induce a partition of the target
CNF to such fragments.

4 M. Codish, Y. Fekete, and A. Metodi

3 Backbones and Equalities

In this section we first describe an algorithm for computing backbones and then
detail its application to compute generalized backbones (with equality). Our
approach is essentially the same as Algorithm 4 presented in [12].

To compute the backbone of a given formula ϕ, which we assume is satisfiable,
we proceed as follows: the algorithmmaintains a table indicating for each variable
x in ϕ for which values of x, ϕ can be satisfied: true, false, or both. The algorithm
is initialized by calling the SAT solver with ϕ1 = ϕ and initializing the table
with the information relevant to each variable: if the solution for ϕ1 assigns a
value to x then that value is tabled for x. If it assigns no value to x then both
values are tabled for x.

The algorithm iterates incrementally. For each step i > 1 we add a single
clause Ci (detailed below) and re-invoke the same solver instance, maintaining
the learned data of the solver. This process terminates with a single unsatisfiable
invocation. In words: the clause Ci can be seen as asking the solver if it is possible
to flip the value for any of the variables for which we have so far seen only a single
value. More formally, at each step of the algorithm, Ci is defined as follows: for
each variable x, if the table indicates a single value v for x then Ci includes ¬v.
Otherwise, if the table indicates two values for x then there is no corresponding
literal in Ci. The SAT solver is then called with ϕi = ϕi−1 ∧ Ci. If this call is
satisfiable then the table is updated to record new values for variables (there
must be at least one new value in the table) and we iterate. Otherwise, the
algorithm terminates and the variables remaining with single entries in the table
are the backbone of ϕ.

In [12] the authors prove1 that for a formula with n variables and a backbone
with b literals the above algorithm requires at most n − b satisfiable calls and
exactly one unsatisfiable call to the SAT solver. The following example demon-
strates the application of the backbone algorithm.

θi︷ ︸︸ ︷
x1 x2 x3 x4 x5 ϕi

i=1 1 1 0 0 1 ϕ
i=2 1 0 0 1 0 ϕ1 ∧ ¬θ1
i=3 unsat ϕ2 ∧ (¬x1 ∨ x3)

Fig. 1. Demo of backbone algorithm (Example 1)

Example 1. Assume given an unspecified formula, ϕ, with 5 variables. Figure 1
illustrates the iterations (three in this example) of the backbone algorithm: one
per line. The columns in the table detail the iteration number i (left), the the
formula ϕi provided to the SAT solver (right), and the model θi obtained (mid-
dle). The example illustrates that ϕ1 = ϕ has a model θ1 depicted in the first

1 See Proposition 6 in http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

Backbones for Equality 5

line of the table, and that requesting a second (different) model, by invoking the
SAT solver with the formula ϕ2 = ϕ1 ∧¬θ1, results in the model θ2. Notice that
the variable x1 takes the same value, true, in both models, and that the variable
x3 takes the same value, false. In the third iteration, the call ϕ3 = ϕ2∧(¬x1∨x3)
requests a model which is different from the first two and which flips the value
of (at least) one of the two variables x1 (to false) or x3 (to true). Given that
this call is not satisfiable, we conclude that x1 and x3 comprise the backbone
variables of ϕ.

Now consider the case where in addition to the backbone we wish to derive
also equations between literals which hold in all models of ϕ. The generalized
backbones algorithm applied in BEE is basically the same algorithm as that
proposed for computing backbones. Given formula ϕ, generalized backbones are
computed by extending ϕ to ϕ′ as prescribed by Equation (1). This is straight-
forward. Enumerating the variables of ϕ as

{
x1, . . . , xn

}
. One simply defines

ϕ′ = ϕ ∧
{
eij ↔ (xi ↔ xj)

∣∣ 0 ≤ i < j ≤ n
}

(1)

introducing θ(n2) fresh variables eij . If the literal eij is in the backbone of ϕ′

then xi = xj is implied by ϕ, and if the literal ¬eij is in the backbone of ϕ′

then xi = ¬xj is implied by ϕ. As an optimization, it is possible to focus in
the first two iterations only on the variables of ϕ. However, there is one major
obstacle. The application of backbones with equalities for ϕ with n variables
involves computing the backbone for ϕ′ which has θ(n2) variables. Consequently,
it is reasonable to assume that the number of calls to the SAT solver may be
quadratic. Below we prove that this is not the case, but first we present the
following example.

θi︷ ︸︸ ︷
x1 x2 x3 x4 x5 e12 e13 e14 e15 e23 e24 e25 e34 e35 e45 ϕi

i=1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 ϕ′

i=2 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 ϕ1 ∧ ¬θ1
i=3 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 ϕ2 ∧

(¬x1 ∨ x3 ∨ e13∨
¬e24 ∨ ¬e25 ∨ e45

)

i=4 unsat ϕ3 ∧ (¬x1 ∨ x3 ∨ e13 ∨ e45)

Fig. 2. Demo of the generalized backbones algorithm (Example 2)

Example 2. Consider the same formula ϕ as in Example 1. Figure 2 illustrates
the iterations, one per line, (four in this example) of the backbone algorithm
but extended to operate on ϕ′ as specified in Equation (1). The first two lines
of the table in Figure 2 detail θ1 and θ2 which are almost the same as the two
models of ϕ1 and ϕ2 from Figure 1, except that here we present also the values
of the fresh variables eij indicating the values of the equations between literals.
The two variables x1 and x3 (and hence also e13) take identical values in both

6 M. Codish, Y. Fekete, and A. Metodi

models, just as in Figure 1. This time, in the third iteration we ask to either flip
the value for one of {x1, x3} or for one of {e13, e24, e25, e45} and there is such
a model θ3 which flips the values of e24 and e25. In the first three models the
variables x1, x3, e13, and e45 take single values. Hence in the fourth iteration
the call to the SAT solver asks to flip one of them. Figure 2 indicates that this
is not possible and hence these four variables are in the generalized backbone.

We proceed to prove that iterated SAT solving for generalized backbones using
ϕ′ involves at most n+1 satisfiable SAT tests, and exactly one unsatisfiable test,
in spite of the fact that ϕ′ involves a quadratic number of fresh variables.

Theorem 1. Let ϕ be a CNF, X a set of n variables, and Θ =
{
θ1, . . . , θm

}
the sequence of assignments encountered by the generalized backbones algorithm
for ϕ and X. Then, m ≤ n+ 1.

Before presenting a proof of Theorem 1 we introduce some terminology. As-
sume a set of Boolean variables X and a sequence Θ =

{
θ1, . . . , θm

}
of models.

Denote X̂ = X ∪
{
1
}

and let x, y ∈ X̂. If θ(x) = θ(y) for all θ ∈ Θ or if
θ(x) �= θ(y) for all θ ∈ Θ, then we say that Θ determines the equation x = y.
Otherwise, we say that Θ disqualifies x = y, intuitively meaning that Θ disqual-
ifies x = y from being determined. More formally, Θ determines x = y if and
only if Θ |= (x = y) or Θ |= (x = ¬y), and otherwise Θ disqualifies x = y.

The generalized backbones algorithm for a formula ϕ and set of n variables
X applies so that each iteration results in a satisfying assignment for ϕ which
disqualifies at least one additional equation between elements of X̂. Although
there are a quadratic number of equations to be considered, we prove that the
CEP algorithm terminates after at most n+ 1 iterations.

Proof. (of Theorem 1) For each value i ≤ m, Θi =
{
θ1, . . . , θi

}
induces a

partitioning, Πi of X̂ to disjoint and non-empty sets, defined such that for each
x, y ∈ X̂ , x and y are in the same partition P ∈ Πi if and only if Θi determines
the equation x = y. So, if x, y ∈ P ∈ Πi then the equation x = y takes the
same value in all assignments of Θi. The partitioning is well defined because if
in all assignments of Θi both x = y takes the same value and y = z takes the
same value, then clearly also x = z takes the same value, implying that x, y, z
are in the same partition of Πi. Finally, note that each iteration 1 < i ≤ m
of the generalized backbones algorithm disqualifies at least one equation x = y
that was determined by Θi−1. This implies that at least one partition of Πi−1 is
split into two smaller (non-empty) partitions of Πi. As there are a total of n+1
elements in X̂, there can be at most n+ 1 iterations to the algorithm.

Example 3. Consider the same formula ϕ as in Examples 1 and 2. Figure 3
illustrates the run of the algorithm in terms of the partitioningsΠi from the proof
of Theorem 1 (in the right column of the table). There are four iterations, just
as in Figure 2, and ϕ1, . . . , ϕ4 and θ1, . . . , θ4 are the same as in Figure 2, except
that we do not make explicit all of the information in the table of Figure 3. To

Backbones for Equality 7

θi︷ ︸︸ ︷
x1 x2 x3 x4 x5 Πi

i=1 1 1 0 0 1
{
x1, x2, x3, x4, x5, 1

}
i=2 1 0 0 1 0

{
x1, x3, 1

}
,
{
x2, x4, x5

}
i=3 1 0 0 0 1

{
x1, x3, 1

}
,
{
x2

}
,
{
x4, x5

}
i=4 unsat

Fig. 3. Demo of the generalized backbone algorithm performing a linear number of
calls as in the proof of Theorem 1 (Example 3)

better understand the meaning of the partition observe for instance the second
iteration where Π2 indicates that the set Θ2 = {θ1, θ2}: (a) determines the
equations between {x1, x3, 1} (for both assignments, x1 = 1 is true, x3 = 1 is
false, and x1 = x3 is false), and (b) determines the equations between {x2, x4, x5}
(for both assignments, x2 = x4, x4 = x5, and x5 = x2 are false).

4 Complete Equi-propagation in BEE

BEE is a compiler which facilitates solving finite domain constraints by encod-
ing them to CNF and applying an underlying SAT solver. In BEE constraints
are modeled as Boolean functions which propagate information about equalities
between Boolean literals. This information is then applied to simplify the CNF
encoding of the constraints. This process is termed equi-propagation. A key fac-
tor is that considering only a small fragment of a constraint model at one time
enables to apply stronger, and as we argue in this paper, even complete reason-
ing to detect equivalent literals in that fragment. Once detected, equivalences
propagate to simplify the entire constraint model and facilitate further reasoning
on other fragments. BEE is described in several recent papers: [14], [13] and [15].

In BEE, each constraint is associated with a collection of simplification rules.
The simplification of one constraint, may result in that we derive an equality
of the form x = �, where x is a Boolean variable and � a Boolean literal or
constant, which is implied by one or more of the given constraints. The compiler
then propagates this equality to other constraints, which may in turn trigger
simplification rules for additional constraints. BEE iterates until no further rules
apply.

Figure 4 illustrates a constraint model in BEE for the Kakuro instance depicted
as Figure 5(a). In a Kakuro instance each block of consecutive horizontal or
vertical white cells must be filled with distinct non-zero digits (integer values
between 1 and 9) which sum to a given clue. For example, in the bottom row of
Figure 5(a) the four cells must sum to 14 and a possible solution is to assign them
the distinct values 5,1,6,2. The constraints in the left column of Figure 4 declare
the finite domain variables of the instance. Each cell is associated with a finite
domain variable taking values between 1 and 9. Each block of integer variables
(horizontal and vertical) in the instance is associated with a int array plus

constraint (middle column) and an allDiff constraint (right column).

8 M. Codish, Y. Fekete, and A. Metodi

The simplification rules defined in BEE consider each individual constraint to
determine (generalized) backbone variables in its underlying bit-level represen-
tation. These rules are “ad-hoc” in that they do not derive all of the equalities
implied by a constraint. Moreover if an equation is implied by a set of constraints
but not by an individual constraint, then BEE may not detect that equation.
Figure 5(b) illustrates the effect of applying BEE to the constraint model of
Figure 4 and demonstrates that 7 of the 14 integer variables in the instance are
determined at compile time.

In this paper we propose to enhance BEE to allow the user to specify sets of
constraints to which a generalized backbone algorithm is to be applied. We call
this process complete equi-propagation (CEP). Figure 5(c) illustrates the effect
of the enhanced BEE where each pair of constraints about a given block: one
int array plus and one allDiff are grouped for CEP. Here we see that all 14
integer variables in the instance are determined at compile time.

new int(I1, 1, 9) int array plus([I1, I2], 6) allDiff([I1 , I2])
new int(I2, 1, 9) int array plus([I3, I4, I5, I6], 17) allDiff([I3 , I4, I5, I6])
new int(I3, 1, 9) int array plus([I7, I8], 3) allDiff([I7 , I8])
new int(I4, 1, 9) int array plus([I9, I10], 4) allDiff([I9 , I10])
new int(I5, 1, 9) int array plus([I11, I12, I13, I14], 14) allDiff([I11 , I12, I13, I14])
new int(I6, 1, 9) int array plus([I3, I7], 11) allDiff([I3 , I7])
new int(I7, 1, 9) int array plus([I4, I8, I11], 8) allDiff([I4 , I8, I11])
new int(I8, 1, 9) int array plus([I1, I5], 3) allDiff([I1 , I5])
new int(I9, 1, 9) int array plus([I2, I6, I9, I13], 18) allDiff([I2 , I6, I9, I13])
new int(I10, 1, 9) int array plus([I10, I14], 3) allDiff([I10 , I14])
new int(I11, 1, 9)
new int(I12, 1, 9)
new int(I13, 1, 9)
new int(I14, 1, 9)

Fig. 4. Constraints for the Kakuro instance of Figure 5(a)

a. Kakuro Instance b. Specialized by BEE c. Specialized with CEP

Fig. 5. Applying complete equi-propagation to a Kakuro Instance

The compilation of a constraint model to a CNF using BEE goes through
three phases. In the first phase, bit blasting, integer variables (and constants) are
represented as bit vectors. Now all constraints are about Boolean variables. The

Backbones for Equality 9

second phase, the main loop of the compiler, is about constraint simplification.
Three types of actions are applied: ad-hoc equi-propagation, partial evaluation,
and decomposition of constraints. Simplification is applied repeatedly until no
rule is applicable. In the third, and final phase, simplified constraints are encoded
to CNF.

In order to enhance BEE with CEP we introduce syntax for users to specify
constraints or groups of constraints designated for CEP. We introduce a new
phase to the compilation process which is applied after the first phase (bit blast-
ing) and before the second phase. In the new phase, we first apply two types of
actions, ad-hoc equi-propagation and partial evaluation, repeatedly until no rule
is applicable. Then we apply generalized backbone computation on the CNF of
the user defined groups of constraints. If new equalities are derived from ap-
plying the CEP algorithm on one of the user defined groups, then these are
propagated to all relevant constraints and the simplification process is repeated
until no more equalities are derived.

At the syntactic level, we have added two constructs to BEE: cep(C) specifies
that the CEP algorithm is applied to the CNF of constraint C instead of the ad-
hoc rules in BEE; and cep group(G) specifies that CEP is applied to the conjunc-
tion of CNF’s corresponding to the constraints in a group G. For instance, the user
might specify cep group([int array plus([I1, I2], 6), allDiff([I1, I2])]) for
pairs of constraints in the Kakuro example.

5 Preliminary Experimental Evaluation

We demonstrate the potential of CEP with 2 experiments. Our goal is to il-
lustrate the impact of CEP on the BEE constraint compiler. We demonstrate
that, in some cases, enhancing the compilation of constraints to consider CEP
(using a SAT solver) at compile time leads to much better results than those
obtained when using BEE’s polynomial time compilation based on ad-hoc equi-
propagation rules. To this end we view CEP as yet one more compilation tool
that the user can choose to apply.

5.1 The First Experiment

We illustrate the impact of CEP with an application of extremal graph theory
where the goal is to find the largest number of edges in a simple graph with n
nodes such that any cycle (length) is larger than 4. The graph is represented as
a Boolean adjacency matrix A and there are three types of constraints:

1. Constraints about cycles in the graph: ∀i,j,k. A[i, j] + A[j, k] + A[k, i] < 3,
and ∀i,j,k,l. A[i, j] +A[j, k] +A[k, l] +A[l, i] < 4;

2. Constraints about symmetries: in addition to the obvious ∀1≤i<j≤n. (A[i, j] ≡
A[j, i] and A[i, i] ≡ false), we constrain the rows of the adjacency matrix
to be sorted lexicographically (justified in [1]); and

3. Constraints that impose lower and upper bounds on the degrees of the graph
nodes as described in [3].

10 M. Codish, Y. Fekete, and A. Metodi

Further details on this benchmark can be found in [1].
Table 1 illustrates results, running BEE with and without CEP. Here, we focus

on finding a graph with the prescribed number of graph nodes with the known
maximal number of edges (all instances are satisfiable). In our encoding, if CEP
is applied, then there is a single CEP group consisting of all of the constraints
related to symmetry breaking and node degrees (items 2 and 3 detailed above).
All of the other constraints related to graph cycles (item 1 detailed above) remain
ungrouped. The table details for each instance:

• in the first two columns: the number of nodes and edges;
• in the next two columns: the size of the single CEP group which is input to
the CEP algorithm (number of clauses and variables, after ad-hoc simplifi-
cation by BEE);

• in the next two sets of 4 columns: for each CEP choice: the BEE compilation
time, the (total) number of clauses and variables in the target CNF encoding,
and the subsequent sat solving time.

The table indicates that CEP increases the compilation time (within reason),
reduces the CNF size (considerably), and (for the most part) improves SAT
solving time.2 The CEP groups in this example involve, in average, about half
the number of variables and one third the number of clauses when compared
to the encoding without CEP, with up to 10,000 variables and 50,000 clauses.
We note, that as explained above, BEE iterates over CEP groups, propagating
equations learned from one group to simplify other groups which as a result may
yield further CEP information. The group sizes presented in Table 1 indicate
the initial group sizes. During iteration the size of the groups decreases.

5.2 The Second Experiment

We consider the 12 instances from the armies benchmark from category DEC-
SMALLINT-LIN of the PB’12 competition.3 Each instance consists of a set of
cardinality and pseudo Boolean constraints.

For this experiment we consider a grouping of the constraints into two (over-
lapping) groups. These are obtained by considering a connectivity graph where
the nodes are constraint variables. There is a weighted edge (u, v) with weight
dep(u, v) between variables u and v if their degree of dependency dep(u, v) > 0
which is defined as follows:

Given a set of constraints Cs . Let V be the set of (Boolean and integer)
variables occurring in Cs . For a variable v ∈ V , let C(v) denote the set of
constraints that involve v. For a pair of variables u, v ∈ V , dep(u, v) = |C(u) ∩
C(v)| is a simple measure on the potential dependency between u and v.

We also define level(v) = max
{
dep(u, v)

∣∣ u ∈ V
}
, a measure on the depen-

dencies of variable v: a variable v has a high dependency level if there is another

2 Experiments are performed on a single core of an Intel(R) Core(TM) i5-2400
3.10GHz CPU with 4GB memory under Linux (Ubuntu lucid, kernel 2.6.32-24-
generic).

3 See http://www.cril.univ-artois.fr/PB12/

http://www.cril.univ-artois.fr/PB12/

Backbones for Equality 11

Table 1. Search for graphs with no cycles of size 4 or less (comp. & solve times in
sec.)

group size with CEP without CEP

nodes edges clauses vars comp. clauses vars solve comp. clauses vars solve

15 26 8157 1761 0.24 13421 2154 0.07 0.10 23424 3321 0.08
16 28 10449 2200 0.26 18339 2851 0.19 0.12 30136 4328 0.34
17 31 11996 2558 0.39 21495 3233 0.07 0.16 37074 5125 0.12
18 34 14235 3030 0.49 26765 3928 0.12 0.21 45498 6070 0.13
19 38 16272 3433 0.46 30626 4380 0.11 0.22 54918 7024 0.15
20 41 21307 4354 0.55 43336 6005 5.93 0.25 68225 8507 12.70
21 44 24715 5037 0.77 52187 7039 1.46 0.31 81388 9835 69.46
22 47 28296 5762 0.88 61611 8118 71.73 0.35 96214 11276 45.43
23 50 32213 6556 1.10 73147 9352 35.35 0.38 113180 13101 27.54
24 54 35280 7278 2.02 81634 10169 96.11 0.50 130954 14712 282.99
25 57 40942 8344 1.40 99027 12109 438.91 0.53 152805 16706 79.11
26 61 44817 9208 4.58 110240 13143 217.72 0.73 175359 18615 815.55
27 65 50078 10282 2.16 127230 14856 35.36 0.75 201228 20791 114.55

variable u such that u and v occur together in a large number of constraints.
For a grouping, we first take all of the constraints which contain a variable of
maximal level. Denote max = max

{
level(v)

∣∣ v ∈ V
}
and define

G1 =
{
c
∣∣ v ∈ V, level(v) = max, c ∈ C(v)

}
G2 = Cs \G1

In the context of our experiments G1 was small in comparison to G2, and we
extended it by defining

G′
1 =

{
c
∣∣ v ∈ V, level(v) ≥ k, c ∈ C(v)

}
for a suitable value k < max such that the size of G′

1 and G2 are more or less
equal. Note that we did not redefine G2 so the two groups overlap. We found
this redundancy useful.

Table 2 illustrates the encoding sizes for the instances of the armies bench-
mark. In the first 2 columns we indicate the instance name and the number
of original instance variables (ι-vars). Next we illustrate the encoding sizes for
three configurations: using BEE (with ad-hoc equi-propagation), using BEE with
a backbone algorithm, and using BEE with a CEP algorithm. For backbones and
CEP we group constraints into two groups (G′

1 and G2 described above), more
or less equal in size. For encoding sizes we indicate the number of CNF variables
and clauses as well as the percent of the original instance variables eliminated
during the compilation process (Δι). So in average, BEE with CEP eliminates
6.3% of the original instance variables, while BEE with backbones eliminates
3.7% and BEE alone (with its ad-hoc techniques) eliminates 2.0%. These reduc-
tions, although small, may be significant as we are eliminating variables on the
input to the SAT solver.

12 M. Codish, Y. Fekete, and A. Metodi

Table 2. The Army benchmarks — Encoding sizes

instance BEE (regular) BEE (backbones) BEE (CEP)

name ι-vars vars clauses Δι vars clauses Δι vars clauses Δι

8× 9ls 220 2136 8072 0.0 2136 8072 0.0 2096 7932 3.6
8× 9bt 220 2893 11567 5.0 2488 9962 10.5 2438 9784 15.0
9× 12ls 266 2778 11077 0.0 2778 11077 0.0 2738 10937 3.0
9× 12bt 266 3522 14441 4.5 3204 13101 7.1 3172 12994 10.2
10× 14ls 316 4008 14450 0.0 4008 14450 0.0 3978 14345 1.9
11× 17ls 370 4914 18447 0.0 4914 18447 0.0 4874 18307 2.2
10× 14bt 316 6433 25553 4.1 5711 22969 8.5 5657 22771 11.7
11× 17bt 370 7446 29425 3.8 6914 27290 5.9 6882 27183 8.1
13× 24ls 490 7240 28645 0.0 7240 28645 0.0 7210 28541 1.2
13× 24bt 490 15298 60988 3.3 13858 55675 5.1 13826 55568 6.7
12× 21bt 428 14094 55614 3.5 12515 49725 7.2 12457 49507 9.6
12× 21ls 428 5912 23144 0.0 5912 23144 0.0 5872 23004 1.9

Average 6390 25119 2.0 5973 23546 3.7 5933 23406 6.3

Table 3. The Army benchmarks — solving times (seconds) with 1800 sec. timeout

instance BEE (regular) BEE(Backbones) BEE (CEP)

name comp. solve total comp. solve total comp. solve total

8× 9ls 0.0 0.6 0.6 0.4 0.1 0.5 0.7 0.5 1.2
8× 9bt 0.1 1.0 1.1 0.7 0.6 1.3 1.3 0.7 2.0
9× 12ls 0.1 5.9 6.0 0.5 3.0 3.5 1.0 1.1 2.1
9× 12bt 0.1 3.4 3.5 1.0 7.5 8.5 1.4 1.7 3.1
10× 14ls 0.1 17.0 17.1 0.7 1.0 1.7 1.5 8.2 9.7
11× 17ls 0.1 4.5 4.6 0.9 65.4 66.3 1.8 8.1 9.9
10× 14bt 0.1 45.2 45.3 1.9 100.4 102.3 4.1 6.9 11.0
11× 17bt 0.2 267.8 268.0 2.5 344.0 346.5 4.0 26.9 30.9
13× 24ls 0.1 833.8 833.9 2.2 880.8 883.0 3.5 652.2 655.7
13× 24bt 0.3 1072.7 1073.0 8.9 ∞ ∞ 14.9 768.7 783.6
12× 21bt 0.3 ∞ ∞ 7.0 ∞ ∞ 18.9 ∞ ∞
12× 21ls 0.1 ∞ ∞ 1.7 ∞ ∞ 3.1 ∞ ∞

Table 3 details the solving times for the three encodings of the army bench-
marks: using BEE (with ad-hoc equi-propagation), using BEE enhanced with
backbones, and using BEE enhanced with generalized backbones (CEP). For
each encoding and instance we indicate the compile time, the SAT solving time,
and the total solving time (sum of the previous two).

First, we comment on compile times. Compile times increase for backbones
and even more for generalized backbones. But this increase comes with a discount
in solving time. Consider the instance 13× 24bt. Compilation time for CEP goes
up from 0.3 sec. to 14.9 sec, but total solving time goes down from 1073 sec. to
784 sec.

These instances are hard, although they are relatively small. The largest in-
stance, 13×24bt, has only 490 (Boolean) variables and involves 1085 constraints.

Backbones for Equality 13

Only four out of the 42 solvers tested on these instances in the PB’12 compe-
tition manage to solve instance 13 × 24bt within the 1800 second timeout (the
same timeout is used in our experiments). From these four solvers, the two SAT-
based solvers require more or less 1600 seconds (on the competition machines)
whereas our solution for this instance is under 800 seconds.

6 Conclusion

This paper generalizes the notion of a CNF backbone to capture also equalities
between literals. We prove that computing generalized backbones, just as usual
backbones, involves only a linear number of calls to a SAT solver. We describe the
integration of backbones with equality to enhance the BEE constraint-to-CNF
compiler and demonstrate the utility of our approach through a preliminary
experimentation.

Acknowledgments: We thank Peter Stuckey for helpful discussions and
comments.

References

1. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

2. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

3. Garnick, D.K., Kwong, Y.H.H., Lazebnik, F.: Extremal graphs without three-cycles
or four-cycles. Journal of Graph Theory 17(5), 633–645 (1993)

4. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on bi-
nary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

5. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer,
Heidelberg (2005)

6. Janota, M.: SAT Solving in Interactive Configuration. PhD thesis, University Col-
lege Dublin (November 2010)

7. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in sat-
isfiability. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 1368–1373. AAAI
Press / The MIT Press (2005)

8. Kirkpatrick, S., Toulouse, G.: Configuration space analysis of traveling salesman
problems. J. Phys. (France) 46, 1277–1292 (1985)

9. Li, C.-M.: Equivalent literal propagation in the DLL procedure. Discrete Applied
Mathematics 130(2), 251–276 (2003)

10. Manolios, P., Papavasileiou, V.: Pseudo-boolean solving by incremental translation
to SAT. In: Bjesse, P., Slobodová, A. (eds.) FMCAD, pp. 41–45. FMCAD Inc.
(2011)

11. Manthey, N.: Coprocessor 2.0 - a flexible CNF simplifier - (tool presentation).
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441.
Springer, Heidelberg (2012)

14 M. Codish, Y. Fekete, and A. Metodi

12. Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional
theories. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Arti-
ficial Intelligence and Applications, vol. 215, pp. 15–20. IOS Press (2010), Extended
version: http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

13. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE.
TPLP 12(4-5), 465–483 (2012)

14. Metodi, A., Codish, M., Lagoon, V., Stuckey, P.J.: Boolean equi-propagation for
optimized SAT encoding. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 621–636.
Springer, Heidelberg (2011)

15. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

16. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity for characteristic phase transitions. Nature 400,
133–137 (1998)

17. Schneider, J.J.: Searching for backbones – an efficient parallel algorithm for the
traveling salesman problem. Comput. Phys. Commun. (1996)

18. Sheeran, M., St̊almarck, G.: A tutorial on st̊almarck’s proof procedure for propo-
sitional logic. Formal Methods in System Design 16(1), 23–58 (2000)

19. St̊almark, G.: A system for determining propositional logic theorem by applying
values and rules to triplets that are generated from a formula. US Patent 5,276,897;
Canadian Patent 2,018,828; European Patent 0403 545; Swedish Patent 467 076
(1994)

20. Zhang, W.: Phase transitions and backbones of the asymmetric traveling salesman
problem. J. Artif. Intell. Res. (JAIR) 21, 471–497 (2004)

http://sat.inesc-id.pt/~mikolas/bb-aicom-preprint.pdf

PASS: String Solving with Parameterized Array

and Interval Automaton

Guodong Li and Indradeep Ghosh

Fujitsu Labs of America, CA
{gli,ighosh}@fla.fujitsu.com

Abstract. The problem of solving string constraints together with nu-
meric constraints has received increasing interest recently. Existing meth-
ods use either bit-vectors or automata (or their combination) to model
strings, and reduce string constraints to bit-vector constraints or au-
tomaton operations, which are then solved in the respective domain.
Unfortunately, they often fail to achieve a good balance between effi-
ciency, accuracy, and comprehensiveness. In this paper we illustrate a
new technique that uses parameterized arrays as the main data structure
to model strings, and converts string constraints into quantified expres-
sions that are solved through quantifier elimination. We present an effi-
cient and sound quantifier elimination algorithm. In addition, we use an
automaton model to handle regular expressions and reason about string
values faster. Our method does not need to enumerate string lengths (as
bit-vector based methods do), or concrete string values (as automaton
based methods do). Hence, it can achieve much better accuracy and effi-
ciency. In particular, it can identify unsatisfiable cases quickly. Our solver
(named PASS) supports most of the popular string operations, including
string comparisons, string-numeric conversions, and regular expressions.
Experimental results demonstrate the advantages of our method.

1 Introduction

A string solver is used to determine the satisfiability of a set of constraints involv-
ing string operations. These constraint can be mixed with numeric constraints,
in which case we call them hybrid constraints. This paper is about how to solve
hybrid constraints efficiently using SMT solving and automaton approximation.

Hybrid constraints may be produced by a static analyzer or a symbolic ex-
ecutor. For example, a symbolic executor for web applications may produce
thousands of path conditions containing non-trivial hybrid constraints. Solving
these constraints efficiently is the key for the tool to be scalable and practical. A
typical web application takes string inputs on web pages and performs a lot of
string operations such as concatenation, substring, >, and matches. There are
also three more typical requirements: (1) strings are converted into numeric val-
ues for back-end computations; (2) string values are constrained through regular
expressions; and (3) unsatisfiable hybrid constraints should be identified quickly.
This poses unique challenges to many symbolic execution tools [5,12,13,17] which
usually handle only numeric constraints well.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 15–31, 2013.
c© Springer International Publishing Switzerland 2013

16 G. Li and I. Ghosh

While there are some external string solvers [2,20,8,18,15,9] available, none of
them meets our need to obtain a good balance between efficiency, accuracy, and
comprehensiveness. Roughly, existing solvers can be divided into two categories:
(1) bit-vector (BV) based methods, which model a string with a fixed-length
bit-vector; and (2) automaton based methods, which model a string with an
automaton. A BV method needs to compute the lengths of all strings before
constructing bit-vectors, hence it may enumerate all possible length values in
order to prove or disprove a set of constraints. Such enumeration often leads to
exponential numbers of fruitless trials. In contrast, an automaton method models
a string with an automaton capturing all possible values of this string. String
automata can be refined according to the relation of the strings. Essentially, an
automaton is an over-approximation of string values, and the refinement is often
insufficient, requiring the enumeration of concrete string values and/or string
sequences to find out a valid solution. The methods combining these two models
inherit many of the disadvantages while circumvent some.

In this paper we propose a new way to model strings so as to avoid brute-force
enumeration of string lengths or values. We model a string with a parameterized
array (parray for short) such that (1) the array maps indices to character values,
(2) both the indices and the characters can be symbolic, and (3) the string
length is pure symbolic. With this model, string constraints are converted into
quantified constraints (e.g. ∃ and ∀ expressions) which are then handled through
our quantifier elimination scheme. Our conversion scheme follows a declarative
and non-recursive style. The produced quantified constraints are often beyond
the capacity of modern SMT solvers such as Yices [19] and CVC [1]. To handle
them, we propose an efficient quantifier elimination algorithm. This conversion
scheme is our first contribution. It precisely models string operations and string-
numeric conversions. The quantifier eliminator is our second contribution.

Our third contribution is to use interval automata to build an extra model for
strings, and reason about string values via automata. We use automata to not
only handle regular expressions (RegExps), but also enhance the solving of non-
RegExp cases. We demonstrate how to refine the automata through deductive
reasoning and fixed-point calculation.

Our fourth contribution is to combine the parray and automaton model to
determine satisfiability efficiently. For example, when the automaton domain
finds unsat, the solver can safely claim unsat. While the automaton model is
mandatory in modeling RegExps, we can use the automata to refine the parray
model for locating a solution fast.

We perform preliminary experiments to compare different methods, and show
that our method outperforms existing ones in general.

As far as we know, our P-Array based String Solver (PASS) is the first to ex-
plicitly use parameterized arrays to model strings and apply quantifier elimina-
tion to solve string constraints. It is also the first to combine interval automaton
and parray for fast string solving. As for comprehensiveness, it handles virtually
all Java string operations, regular expressions, and string-numeric conversions.

PASS: String Solving with Parameterized Array and Interval Automaton 17

String s1, s2; int i; // symbolic

if (s1.beginsWith("a1")) {

if (s2.contains("12")) {

if ((s1 + s2).endsWith("cd"))

...; // path 1

else ...; // path 2

}

else if (s2.toLower() > s1)

{ ...; return; } // path 3

int j = parseInt(s2.substring(i,i+2));

if (j == 12) ...; // path 4

else (toString(i) == s2)

...; // path 5

else ...; // path 6

}

else ...; // path 7

(a)

String s; // symbolic input

if (s[0] == ‘-’) {

if (s.match(".\d+,\d{3}"))

...; // path 1

else {

int i = s.lastIndexOf(‘,’);

if (i == -1) ...; // path 2

else {

String s1 = s.substring(i+1);

int x = parseInt(s1);

if (x > 100 + i)

...; // path 3

else if (s1 < "1000")

...; // path 4

else ...; // path 5

}}}

else ...; // path 6

(b)

Fig. 1. Two example programs producing hybrid constraints

2 Motivating Examples and Background

Figure 1 shows two Java examples. The first one contains string operations
substring, beginsWith, >, etc.. Inputs s1 and s2 are symbolic strings, and i is
a symbolic integer. Consider the path conditions (PC) of Path 1 and Path 4. A
possible solution for PC1 is s1 = “a1” ∧ s2 = “12cd”. PC4 is unsatisfiable since
constraint ¬s2.contains(“12”) contradicts with the “toInt . . . ” constraint. Here
numeric and strings may be converted back and forth.

PC1 : s1.beginsWith(“a1”) ∧ s2.contains(“12”) ∧ (s1+s2).endsWith(“cd”)
PC4 : s1.beginsWith(“a1”) ∧ ¬s2.contains(“12”) ∧ s2.toLower() ≤ s1

∧ toInt(s2.substring(i, i+ 2)) = 12

The second example checks whether the symbolic input s starts with ’-’. If
yes, it checks whether s is of a popular format depicted by a RegExp (e.g.
starting with any character, followed by at least one digit, and a comma, and
then 3 digits). Then it checks whether ’,’ appears in s. If yes then the substring
after character ’,’ is taken and converted into an integer x, which is later com-
pared with 100+ i. This is a typical computation in web applications, e.g., first,
performing format checking, then, converting strings to numeric, and finally,
branching over the numeric. For example, a valid test case for path 3 is “-,103”.

The satisfiability of string+numeric constraints is an undecidable problem
in general (see [2] for some discussions). Hence practical solutions are impor-
tant to tackle string-intensive programs. Existing string solvers cannot fulfill
our needs. For example, Microsoft’s solver [2] encodes string operations with
bit-vector but does not support regular expressions. Hampi [8] and Kaluza [15]
also use bit-vector encoding and provide limited support for hybrid constraints

18 G. Li and I. Ghosh

and regular expressions. The Rex tool [18] uses automaton and an SMT solver,
and represents automaton transitions using logical predicates. Stranger [20] uses
an automaton-based method to model string constraints and length bounds for
abstract interpretation. A lazy solving technique [11] uses automaton with transi-
tions annotated with integer ranges. A good comparison of the automaton-based
approaches is given in [10]. Many of these solvers provide no support or only very
limited support for hybrid constraints (i.e. combinations of numeric constraints,
string constraints, and RegExp constraints). An interested reader may refer to
[9] for more discussions. Moreover, even for the supported features, they often
use iterations or brute-force enumerations, hence harming the performance. Now
we briefly introduce the two main existing string models.

Bit-Vector Based Model [2,8,15]. A string of length n is modeled by a bit-
vector of 8n (or 16n for Unicode) bits. Note that n has to be a concrete value
before the bit-vector can be instantiated. Hence, a BV method first derives length
constraints, then solves them to obtain a concrete assignment to the lengths,
and then instantiates the bit-vectors and builds value constraints whose solving
gives the final string values. For example, from constraints s1.beginsWith(“ab”)

∧ s1.contains(“12”) we can derive |s1| ≥ 2 (we use notation || for the length),
then obtain a concrete length value, e.g. |s1| = 2, then instantiate a 16b bit-
vector v and build value constraints extract(v, 0, 7) = ‘a’ ∧ extract(v,8, 15) =

‘b’ ∧ extract(v,0, 7) = ‘1’ ∧ extract(v,8, 15) = ‘2’, which is found unsat by the
SMT solver. Next, a new length constraint like |s1| > 2 is used to start a new
iteration. After a few trials a valid solution s1 = “ab12” is found with |s1| = 4.
Clearly, separating the solving of length constraints and value constraints may
result in wasted effort. This is also evidenced by the solving of PC1, where
the minimum lengths for s1 and s2 is 2 and 4 respectively. Since the length
constraints specify that |s1| ≥ 2 ∧ |s2| ≥ 2 ∧ |s1| + |s2| ≥ 2. there are 2 wasted
iterations before the right length values are reached.

The case of the unsatisfiable PC4 is worse. A BV method can infer |s1| ≥
i ∧ 2 ≤ i + 2 ≤ |s2|, then build the value constraints after assigning concrete
values to |s1|, |s2| and i. After the value constraints are found unsatisfiable,
new iterations are performed in an attempt to find a valid solution. Suppose
the lengths and i are bounded to 100, then O(1003) iterations may be needed
until time-out occurs. In contrast, our parray method requires no such fruitless
iterations and is able to return sat or unsat quickly.

Automaton Based Model [16,21,18,20,11,9]. A string is modeled by an
automaton which accepts all possible values of this string. There are two kinds
of automata: (1) bit automaton, where each transition is labeled 0 or 1, and a
string value is represented by the bits from the start state to an accept state; (2)
interval automaton, where each transition represents a character whose value
is within an interval (or range) [lb, ub] for lower bound lb and upper bound
ub. Since bit automata [21,20] assembles bit-vectors, here we investigate only
interval automata. Note that a bit-automaton method may also require deriving
and handling lengths constraints separately from value constraints [21].

PASS: String Solving with Parameterized Array and Interval Automaton 19

Take PC1 for example. Initially, s1’s automaton accepts any string starting
with “ab”; s2’s automaton accepts any string containing “12”; and the automa-
ton concatenating s1 and s2, say s3, accepts any string ending with “cd”. We
can refine each automaton using the relation between the strings, e.g. s3’s au-
tomaton should also contain “ab” and “12”, and s2’s automaton should contain
“cd”. Then s2’s shortest solution is “12cd”, which is valid.

Unfortunately, although automaton refinement can narrow down the possible
values of the strings, it may fail to capture precisely the relation between strings.
Consider the following path condition.

PC3 : s1 + s2 + s3 = “aaaa” ∧ s1 ≥ s2 ≥ s3

Obviously, after some (imperfect) refinement we can infer that s1’s value can
be “”, “a”, ..., “aaaa”. The next step is to assign concrete values to s1, s2
and s3. Suppose we starts with s1 = “”, then the second constraint enforces
s2 = s3 = “”, which falsifies the first constraint. Similarly s1 = “a” does not
work. It may take multiple trials before we reach a valid solution like s1 = “aa”
and s2 = s3 = “a”. One main problem here is that an automaton represents
a set of possible string values, but not the exact relation between strings, e.g.
only when s1 = “” do we know that s2 = s3 = “”. While such a relation can be
encoded in a production of two automata [21], the product-automaton may be
too large. Searching strategies and heuristics [11] may help, but are too ad-hoc.
We show in this paper a more general and comprehensive technique.

Moreover, the connection between strings modeled by automata and the nu-
meric constraints may be weak. Consider the unsat PC4, where s2.substring(i, i+
2) is converted to an integer for numeric computations. Since both s2 and i are
symbolic, the values of this expression comprise an infinite set, and encoding
them symbolically is not trivial (see Section 4 for more details). As a conse-
quence, an automaton method may find it hard to disprove PC4. In our parray
method, no automaton is required to handle PC4, and the unsat result can be
obtained without enumerating string lengths or numeric values.

Nevertheless, the automaton model is extremely useful to handle RegExps.
We propose a technique to convert automaton representation to parray represen-
tation parameterizedly after performing a sophisticated automaton refinement
scheme. This scheme is crucial for both the accuracy and the performance.

This work is largely motivated when we built string solvers for Java and
JavaScript Web applications. Our automaton-based solver in [9] suffers from
above-mentioned issues, which are addressed by PASS.

Overview of Our Parray Based Model. A string is modeled by a parray of
symbolic length. The main procedure to solve a set of hybrid constraints is:

1. All string constraints not involving regular expressions are converted into
equivalent quantified parray constraints (Section 3).

2. If a string is constrained by a regular expression, build a string relation graph
for all string variables in the constraints, perform refinement to infer more
relations and possible values of the strings (Section 4).

20 G. Li and I. Ghosh

3. For each string associated with a regular expression, build extra parray con-
straints from this string’s automaton (Section 4). If no regular expression is
involved in the original hybrid constraints, we can skip steps 2 and 3.

4. Perform quantifier elimination to remove quantifiers iteratively, solve the
remaining numeric+array constraints (Section 3.1). This overcomes the lim-
itations of modern SMT solvers like Yices [19].

3 Parameterized Array Based Model

A parameterized array (parray) maps symbolic indices (natural numbers) to
symbolic characters. Unquantified parray constraints can be solved by an SMT
solver supporting the array theory and the numeric theory. We convert string
constraints into quantified parray constraints. Figure 2 shows some simple cases,
where the conversions are mostly self-explanatory. Take lastIndexOf for example,
integer i marks c’s last position in the string. i is either -1 or < |s|. If i = −1,
then c /∈ s; otherwise, s[i] = c. Each character after index i does not equal to c,
which is modeled by ∀n. i < n < |s| ⇒ s[n] 	= c.

All exists constraints can be eliminated by introducing fresh variables. Thus
all remaining quantified constraints are of format ∀n. n < l ⇒ P (n) where
P is an unquantified constraint or a simple exists constraint. One main rule
here is that we avoid using recursions in the conversion. For instance, we may
introduce a helper function indexOf’ to model indexOf: s.indexOf’(i, c) = ite(s[i] =

c, i, s.indexOf’(i + 1, c)). However this recursive form may bring difficulties in
quantifier elimination. Another example is s > s1, whose recursive encoding is
easy to specify but hard to solve. We describe below a novel way to encode it.

Figure 3 shows the conversions for some tricky cases, which represent our
novel encoding. For i = s.indexOf(s1), if i �= −1 then i is the first position in
s such that s1 appears, hence s1 will not appear in any prior position m. The
i = −1 case is the same as ¬s.contains(s1).

Consider s1 = s.trim(), i.e. s1 is obtained from s by removing all blank
characters from the beginning and ending of s. As shown below, we introduce
a natural number m to mark the first non-blank character in s. The conversion
reads: all characters before m and after m+ |s1| are blank, others are shared by
s and s1 in the same order, with the characters at two ends are not blank.

s[0] . . . s[m− 1] s[m] . . . s[m+ |s1| − 1] s[m+ |s1|] . . .

‘ ’ . . . ‘ ’ s1[0] . . . s1[|s1| − 1] ‘ ’ . . .

The conversion of s > s1 is through introducing a natural number m to mark
the first position where s and s1 differs. As shown below, the characters from 0
to m− 1 are the same. Next, if s1 is of length m and s’s length is greater than
s1’s, or s[m] �= s1[m], then s > s1. The case of s ≥ s1 is similar except that s
can equal to s1, e.g. |s| = |s1| = m. The conversions of s < s1 and s ≤ s1 are
done through s1 < s and s1 ≥ s respectively.

s[0] s[1] . . . s[m− 1] s[m]

s1[0] s1[1] . . . s1[|s1 − 1|]
Case 1: m = |s1|

s[0] s[1] . . . s[m− 1] s[m]

s1[0] s1[1] . . . s1[m− 1] s1[m]

Case 2: |s1| > m ∧ s[m] > s1[m]

PASS: String Solving with Parameterized Array and Interval Automaton 21

String Constraint P-Array Constraint

s1 = s2 (∀n. n < |s1| ⇒ s1[n] = s2[n]) ∧ |s1| = |s2|
s1 	= s2 (∃n. n < |s1| ∧ s1[n] 	= s2[n]) ∨ |s1| 	= |s2|
s = s1 + s2

(∀n. n < |s1| ⇒ s1[n] = s[n])∧
(∀n. n < |s2| ⇒ s2[n] = s[|s1|+ n]) ∧ |s| = |s1|+ |s2|

s1 = s.substring(n1, n2)
(∀n. n < |s1| ⇒ s1[n] = s[n1 + n])∧
n1 < n2 ≤ |s| ∧ |s1| = n2 − n1

i = s.lastIndexOf(c)
(i = −1 ∨ (0 ≤ i < |s| ∧ s[i] = c))∧
(∀n. i < n < |s| ⇒ s[n] 	= c)

i = s.indexOf(c) (i = −1 ∨ (0 ≤ i < |s| ∧ s[i] = c)) ∧ (∀n. n < i ⇒ s[n] 	= c)

s.beginsWith(s1) (∀n. n < |s1| ⇒ s1[n] = s[n]) ∧ |s| ≥ |s1|
¬s.beginsWith(s1) (∃n. n < |s1| ∧ s1[n] 	= s[n]) ∨ |s| < |s1|
s.endsWith(s1) (∀n. n < |s1| ⇒ s1[n] = s[|s| − |s1|+ n]) ∧ |s| ≥ |s1|
s.contains(s1)

(∃m.m ≤ |s| − |s1| ∧ (∀n. n < |s1| ⇒ s1[n] = s[m+ n]))∧
|s| ≥ |s1|

¬s.contains(s1) (∀m.m ≤ |s| − |s1| ⇒ (∃n. n < |s1| ∧ s1[n] 	= s[m+ n]))∨
|s| < |s1|

s1 = s.toUpperCase()
(∀n. n < |s| ⇒ s1[n] = ite(‘a′ ≤ s[n] ≤ ‘z′, s[n] + ‘a′ − ‘A′, s[n]))
∧ |s1| = |s|

Fig. 2. Conversion of simple cases (excerpt). Operator |s| denotes string s’s length. m
and n are natural numbers; i is an integer; c is a character.

String Constraint P-Array Constraint

i = s.indexOf(s1)
i 	= −1

i ≥ 0 ∧ i+ |s1| ≤ |s| ∧ (∀n. n < |s1| ⇒ s1[n] = s[i+ n])∧
(∀n. n < i ⇒ (∃m.m < |s1| ⇒ s1[n] 	= s[m+ n]))

s1 = s.trim()

∃m.m+ |s1| ≤ |s| ∧
(∀n. (n < m ∨ m+ |s1| ≤ n ≤ |s|) ⇒ s[n] = ‘ ’)∧
(∀n. n < |s1| ⇒ s[m+ n] = s1[n])∧
s[m] 	= ‘ ’ ∧ s[m+ |s1| − 1] 	= ‘ ’

s > s1
∃m.m ≤ |s1| ∧ (∀n. n < m ⇒ s1[n] = s[n])∧

|s| > m ∧ (|s1| = m ∨ |s1| > m ∧ s[m] > s1[m])

s ≥ s1
∃m.m ≤ |s1| ∧ (∀n. n < m ⇒ s1[n] = s[n])∧

(|s| = |s1| = m ∨ |s1| = m ∨ |s1| > m ∧ s[m] > s1[m])

i = parseInt(s)∧
i ≥ 0

(|s| = 1 ⇒ i = s[0]− ‘0’) ∧
(|s| = 2 ⇒ i = (s[0]− ‘0’)× 10 + s[1]− ‘0’) ∧ . . . ∧
(|s| = 10 ⇒
i = ((s[0]− ‘0’)× 10 + (s[1]− ‘0’))× 10 · · ·+ (s[9]− ‘0’))

Fig. 3. Conversion of more tricky cases (excerpt)

The conversion of parseInt is one of the rare examples where the string length
has to be bounded concretely. Since a 32-bit integer can have up to 10 digits,
the conversion case splits over the possible length values to produce unquantified
constraints. The conversion of parseFloat is similar. In Section 4 we show the
automaton model can help infer possible lengths so as to simplify the encoding.

22 G. Li and I. Ghosh

3.1 Solving P-Array Constraints with Quantifier Elimination

The generated forall constraints conform to a specific form: ∀n. L(n) ⇒ P (s)
or ∀n. L(n) ⇒ ∃m.P (n), where P is a non-self-recursive predicate comparing
two corresponding elements in two parrays, and L constrains n with respect to
string lengths, e.g. n < |s|. In some cases, this simple format can be handled
by a modern SMT solver like Yices [19]. But this is not the case in general. For
instance, the most recent Yices version v1.0.36 cannot solve (in 10 minutes) the
following simple forall constraints produced from string constraint s + s = “aa”,
while it can solve s1 + s2 = “aa” ∧ |s1| = |s2| = 1.

2 = |s|+ |s| ∧ s0[0] = ‘a’ ∧ s0[1] = ‘a’ ∧
(∀n. n < |s| ⇒ s0[n] = s[n]) ∧ (∀n. n < |s| ⇒ s0[|s|+ n] = s[n]) .

Inspired by the work in [4], we propose an iterative quantifier elimination
(QElim) 1 algorithm for the generated constraints. Note that [4] cannot handle
most of our parray constraints, e.g. when an access’s index is m+ n or |s1|+ n.

The basic idea is to calculate an index set and use its elements to instantiate
forall constraints so as to eliminate the quantifiers. Given a set of constraints C,
parray s’s index set (IS) includes all the indices of the accesses to s not bounded
by a quantifier. By definition, {e | s[e] ∈ C ∧ qnt vars(e) �= φ} ⊆ IS(s), where
qnt vars gives the set of quantified variables. That is, for access s[e], if e does
not involve any quantifier, then e ∈ IS(s). In addition, for each constraint of
format ∀n. n < k ⇒ P (s[n]), the upper bound k − 1 is in IS(k). This is for
taking into the upper bound case into account.

Data: Quantified Constraints Cq + Unquantified Constraints Cuq

Result: Unquantified Constraints Cuq

forall s do ISold(s) = {}; calculate IS(s) end
while ∃s.ISold(s) 	= IS(s) do

forall the e ∈ IS(s) \ ISold(s) do
forall the (∀n.L(n) ⇒ P (s[f(n)])) ∈ Cq do

if sat(Cuq ∧ L(f−1(e)))
add L(f−1(e)) ⇒ P (s[e]) into Cuq

end

end
forall s do ISold(s) = IS(s); append new indices into IS(s) end

end
Algorithm 1. Basic QElim algorithm for P-Array Constraints

After s’s index set is calculated, we use each element e in it to instantiate
constraint ∀n. L(n)⇒ P (s[f(n)]) by replacing n with f−1(e), where f−1 is the
inverse function of f . If P is an exists constraint, then its quantifier is removed by
introducing a fresh variable. The intuition behind this is: if e matches f(n), then
we need to instantiate n with f−1(e), i.e. we should consider the special case

1 Strictly speaking, our algorithm is not a conventional QElim which converts quanti-
fied constraints to equivalent unquantified ones. Here we reuse this term to indicate
that our approach removes or instantiates quantifiers to find solutions.

PASS: String Solving with Parameterized Array and Interval Automaton 23

f−1(e) for the forall constraint. Note that f is a linear function whose inverse is
trivial to compute.

The next steps are described in Algorithm 1. For each new index e in IS(s)
but not in ISold(s), we use e to instantiate all forall constraints containing s. For
such a constraint, if its assumption is satisfiable upon the current unquantified
constraints Cuq, then this constraint is added into Cuq; otherwise it is ignored.
The algorithm continues until no more new indices are found, in which case we
remove all forall constraints, leaving a set of quantifier-free constraints.

Consider the above example, in the first round, s0’s index set is {0, 1, |s|−1}.
After instantiating the two forall constraints with this set, we obtain six new
constraints as following (note that |s| − 1 < |s| is always true).

(0 < |s| ⇒ s0[0] = s[0]) ∧ (1 < |s| ⇒ s0[1] = s[1]) ∧
(0 < |s| ⇒ s0[|s|] = s[0]) ∧ (1 < |s| ⇒ s0[|s|+ 1] = s[1]) ∧
(|s| − 1 < |s| ⇒ s0[|s| − 1] = s[|s| − 1]) ∧ (|s| − 1 < |s| ⇒ s0[|s|+ |s| − 1] = s[|s| − 1])

Since constraint 2 = |s| + |s| conflicts with 1 < |s|, we remove the two new
constraints with assumption 1 < |s|. In the next round, the remaining new
constraints give us updated index sets IS(s0) = {0, 1, |s|−1}∪{|s|} and IS(s) =
{0, |s| − 1}. The next index used for instantiation is |s|. Since |s| < |s| is false,
no new constraints will be added. Now there exists no new index, hence the
algorithm terminates. The two forall constraints are removed, resulting in the
following final constraints, whose valid solution is s = “a” (and s0 = “aa”).

2 = |s|+ |s| ∧ s0[0] = ‘a’ ∧ s0[1] = ‘a’ ∧
(0 < |s| ⇒ s0[0] = s[0]) ∧ (0 < |s| ⇒ s0[|s|] = s[0]) ∧
(s0[|s| − 1] = s[|s| − 1]) ∧ (s0[|s|+ |s| − 1] = s[|s| − 1])

The reduction of PC 1 results in the following constraints, which can produce
a valid solution n1 = 0 ∧ | s0| = 6 ∧ s1 = “a1” ∧ s2 = “12cd”.

|s1| ≥ 2 ∧ |s2| ≥ n1 + 2 ∧ | s0| = |s1|+ |s2| ∧
s0[0] = s1[0] = ‘a’ ∧ s0[1] = s1[1] = ‘1’ ∧ s0[| s0| − 2] = ‘c’ ∧ s0[| s0| − 1] = ‘d’ ∧
s0[|s1|+ n1] = s2[n1] = ‘1’ ∧ s0[|s1|+ n1 + 1] = s2[n1 + 1] = ‘2’ ∧
(s0[|s1| − 1] = s1[|s1| − 1]) ∧ (s0[|s1|+ |s2| − 1] = s2[|s2| − 1])

For a bounded string (i.e. whose length is bounded), its largest index set can
contain all indices up to the bound. Hence the algorithm, similar to BV methods,
always terminates (a careful reader can realize that our algorithm may termi-
nate faster due to its symbolic index calculation). The obtained Cuq are equiv-
satisfiable to the original (quantified + un-quantified) ones. More discussions on
the soundness and termination of Algorithm 1 are given in the Appendix. Note
that the soundness proof technique in [4] does not apply here since we (1) allow
arithmetic operations in array accesses, (2) calculate index-set iteratively, and
(3) permit array relations other than =.

Theorem. Algorithm1 terminates on bounded strings, and generates un-quantified
constraints equiv-satisfiable to the original (quantified + un-quantified) ones.

24 G. Li and I. Ghosh

An Optimized Version: Iterative Quantifier Elimination and Solving.
Algorithm 1 may unnecessarily compute too many index sets and terminate
slowly. Hence in practice we use a slightly revised version shown in Algorithm 2
that can prove sat or unsat much faster. The revisions are on the main procedure
of each iteration: (1) we record the new un-quantified constraints in Ccur and use
it to compute the new index sets IScur, and then use IScur to instantiate forall
constraints; (2) after the instantiation, solve all un-quantified constraints using
an SMT solver, if unsat then the algorithm terminates and safely reports unsat;
(3) otherwise we check whether the current solution solution(Cuq) satisfies the
original string constraints S. If yes then the algorithm terminates with a true
valid solution; otherwise go to the next iteration. If the bound limit is reached,
then return “unknown”. Note that the algorithm does not need to iterate over
string lengths. In practice only a couple of iterations are needed in most cases.

The soundness of this algorithm is straight-forward, e.g. the sat case is war-
ranted by the check on S. We give more details in the Appendix.

Data: Cq + Cuq + String Constraints S
Result: sat, unsat, or unknown
IScur = Cuq ;
for i = 0; i < limit; i++ do

calculate IScur w.r.t Ccur ;
Ccur = {} ;
forall the s forall e ∈ IScur(s) do

forall (∀n.L(n) ⇒ P (s[f(n)])) ∈ Cq

add L(f−1(e)) ⇒ P (s[e]) into Ccur

end
Cuq = Cuq ∪ Ccur ;
if unsat(Cuq) return unsat ;
if solution(Cuq) ⇒ sat(S) return sat ;

end
return unknown ;

Algorithm 2. Iterative QElim

Theorem. Algorithm 2 termi-
nates on bounded strings, and
reports sat (or unsat) when
the original constraints are in-
deed sat (or unsat).

4 Enhancement
with Automaton
Based Model

We use an interval automa-
ton to represent a string
such that all possible val-
ues of this string consti-
tutes the language accepted
by this automaton. Our im-
plementation is based on
the automaton package
dk.brics.automaton [6]. A
transition is labeled the lower
bound and upper bound of the associated character. For example, the automa-
ton for the regular expression “.\d+,\d{3}” in the motivating example is shown
below.

start
[min-max]

[‘0’,‘9’]

[‘0’,‘9’] ‘,’ [‘0’,‘9’] [‘0’,‘9’] [‘0’,‘9’]

The implementation of many operations is intuitive. For example, the
concatenation of s1 and s2 is implemented by adding ε transitions from all ac-
cepting states of s1’s automaton to all initial states of s2’s automaton, and then

PASS: String Solving with Parameterized Array and Interval Automaton 25

removing ε to make the resulting automaton deterministic. Many operations
such as intersection and minus are supported by the dk.brics.automaton

package.
However, we have to model more string operations such as trim, substring,

and toUpperCase. For example, substring(2,4) returns a substring from index
2 to index 4 (exclusive). To implement it, we first advance 2 transitions from
the start state q0, then mark the reached states as the new start state q′0, and
then identify all states reachable from q′0 in 2 transitions as new accepting states.
Finally, we intersect this automaton with the one accepting all words of length
2 to get the final automaton. Due to space constraint we will skip the details of
implementing the new operations, which we extend from [16,9].

Automaton Refinement. Given a set of string constraints, we build a relation
graph with the string automata as the nodes and string relations as the edges.
Then we perform iterative refinement to (1) refine each automaton so as to
narrow the possible values of the associated string, and (2) derive extra relations.

The first set of refinement rules, including the following, refine automaton val-
ues. For better readability, we reuse string names for the automata. Here notation
s′ denotes the new automaton for s. Operators ∩ and · denote intersection and
concatenation respectively. Automaton sany accepts all strings, and cany accepts
any character. We implement some helper operations: mk all accept(s) marks
all the states in s as accepting states, and mk all start(s) marks them as start
states. Operation first(s, s2) returns the automaton that accepts any string
whose concatenation with any string in s2 is accepted by s. It is implemented
over the production of s and s2 with time complexity O(n2) for n nodes.

relation =⇒ refinement

s = s1 s′ = s ∩ s1 ∧ s′1 = s1 ∩ s
s = s1 + s2 s′ = s ∩ (s1 · s2) ∧ s′1 = first(s, s2) ∧ s′2 = second(s, s1)
s.beginsWith(s1) s′ = s ∩ (s1 · sany) ∧ s′1 = s1 ∩ (mk all accept(s))
s.endsWith(s1) s′ = s ∩ (sany · s1) ∧ s′1 = s1 ∩ (mk all start(s))

s.contains(s1)
s′ = s ∩ (sany · s1 · sany)∧
s′1 = s1 ∩ (mk all accept(mk all start(s)))

|s| = n s′ = s ∩ (cany0 · . . . · canyn−1)

The refinements for substring, lastIndexOf and indexOf are similar to
that for contains. Some rules are effective with assumptions, e.g. length con-
straint |s| = n or |s| < n is performed only when n is constant. Similarly, we
refine some ¬ cases only when one of the strings are known to be constant, e.g.
¬s.contains(“abc”) =⇒ s′ = s − {“abc”}. The refinement process is fixed-point
calculation and will stop when no automaton can be refined further.

The second rule set is to refine the relations by inferring new facts from a
pair of relations. In general, we may apply source-to-source transformations [14]
to simplify the path conditions and then derive new facts. We present below
an excerpt of these inference rules, which are repeatedly applied until no more
new relation is inferred. They are particularly useful in finding some unsat cases

26 G. Li and I. Ghosh

early, e.g. s1 > s2 ∧ s2 ≥ s3 ∧ s3 ≥ s1 is unsat. We also define a consumption
relation to simplify the relations, e.g. with s.beginsWith(s1) we can safely remove
s.contains(s1).

relations =⇒ inferred relation

op ∈ {≥, >} : s1 > s2 ∧ s2 op s3 s1 > s3
op ∈ {≤, <,=} : s1 > s2 ∧ s1 op s2 false

s.beginsWith(s1) s ≥ s1
¬s.contains(s1) ∧ s.endsWith(s1) false

From Automaton to P-Array. For constraint s.matches(re), s’s automa-
ton is refined by regular expression re. When we encode this automaton in the
parray domain, the main challenge is on loops. For example, consider the follow-
ing automaton corresponding to RegExp “([l0-u0][l1-u1]. . . [ln−1-un−1])*”, which
accepts an infinite set of strings. Clearly, it is impossible to enumerate all the
possibilities.

start
[l0,u0] [l1,u1] . . . [ll−2,ul−2]

[ll−1,ul−1]

Here we propose a conversion which again uses forall constraints to encode the
loop: we introduce a new number m to specify the limit of loop iterations. For
each iteration, e.g. the nth one, we specify the value interval of each character,
e.g. the kth character is within [lk, uk]. Here n× l + k gives the position of this
character in s (l has to be a constant since we use the linear arithmetic of Yices).

∃m.∀n. n < m ⇒
l−1∧
k=0

(lk ≤ s[n× l + k] ≤ uk)

This encoding method can be generalized to handle well-formed loops. A loop
is well-formed if it contains no embedded loops and all its sub-sequences between
a fork node and the next join are of the same length. A well formed loop is shown
below on the left.

start

[l0,u0]

[l′0,u
′
0]

. . .

. . .

[li,ui]

[l′i,u
′
i]

[li+1,ui+1] . . .

. . .

[ll−1,ul−1]

start

[l0,u0] [l1,u1]

. . .

[l2,u2]

This loop can be encoded with the following parray constraint.

PASS: String Solving with Parameterized Array and Interval Automaton 27

Table 1. Experimental results on toy examples. Here pc marks the path condition
numbers. Time (T) is measured in seconds.

Program set 1 set 2 set 3 set 4 set 5 total

pc T. pc T. pc T. pc T. pc T. #pc T.

easychair 2,3,4 < 0.01s 5 0.03s 1,6,7 0.04s 8 0.06s 9 0.2s 9 0.4s
+our QElim 2,3,4 < 0.01s 1 0.07s 5,6 0.015s 7 0.02s 8,9 0.015s 9 0.2s

easychair* 1 0.04 2,5 0.003s 3,6,8 0.004s 4,7 0.005s 9 0.02s 9 0.1s
+our QElim 2,3,4 < 0.01s 1 0.05s 5,6 < 0.01s 7,8 0.01s 9 0.03s 9 0.12s

lastIndexOf 1 0.05s 2 0.01s 3,4 0.02s 5 0.1s 6 0.24s 6 0.5s
+our QElim 1,2 0.02s 3 0.015s 4 0.04s 5 0.11s 6 0.25 6 0.46s
+automaton 1 0.03s 2 0.2s 3 0.5s 4 0.35s 5,6 0.65s 6 2.34s

example (a) 1 1.02s 2 0.3s 3,7 0.01s 4 0.4s 5,6 0.8s,3.1s 7 7.3s
+our QElim 1 0.04s 2,3 < 0.01s 4,6 0.01s 5 0.1s 7 < 0.01s 7 0.16s

example (b) 1 0.23s 2 < 0.01s 3 0.02s 4,6 0.015s 5 0.15s 6 0.45s
+our QElim 1 0.23s 2 < 0.01s 3,4 0.015s 5 0.02s 6 0.01s 6 0.29s

∃m.∀n. n < m ⇒
(
∧i

k=0(lk ≤ s[n× l + k] ≤ uk) ∨ ∧i
k=0(l

′
k ≤ s[n× l + k] ≤ u′

k)) ∧
(li+1 ≤ s[n× l + i+ 1] ≤ ui+1) ∧ . . .

The loop on the right is not well-formed: path 1 [l0, u0] → [l1, u1] and path
2 [l2, u2] may alternate in the iterations, e.g. path 1 → path 1 → ... or path

2 → path 1 → For a non well-formed loop, we unroll the iterations to a
pre-defined limit and disjoint the paths to produce parray constraints.

Our encoding of a well-formed automaton is complete and sound; but it is
incomplete for non well-formed automata. Hence it is crucial to use refinements
described in Section 4 to refine the automaton. In many cases non well-formed
loops (e.g. embedded loops) are refined to well-formed ones. Even if a refined
loop is not well-formed, it contains more information for better unrolled paths.

Note that we only convert an automata related to a RegExp All others need
not to be converted since they have been modeled precisely in the parray domain.
For example, in the motivating example (b), s but not s1 will be converted. In
example (a), no automaton is needed to built at all (unless we want to use the
automaton domain to help the solving)!

The facts obtained from automata can be fed to the parray domain, e.g. the
minimal string lengths, the known values of the characters at some positions,
etc.. This can sometimes help the parray encoding and solving.

5 Evaluation Results

Our solver is written in Java. We run it on benchmark programs on a laptop
with a 2.40GHz Intel Core(TM)2 Duo processor and 4GB memory. We evaluate
the parray solution and the one with parray+automaton.

We first test the main benchmark programs in [2], easychair and
lastIndexOf, as well as the two motivating examples in Section 2. Table 1 shows
the results on these toy programs. This includes the results for the comparison

28 G. Li and I. Ghosh

with Microsoft’s BV-based solver. For easychair, with the parray encoding and
Yices we can solve all 9 valid paths in 0.4 second ([2] takes about 1 second 2,
but we do not include the exception paths that are trivial to compute). With
our QElim method (Algorithm 2) the time is reduced to 0.2 second. Since a
BV method needs only one iteration to handle these paths, we mutate them
by introducing tricky unsat cases, which a BV method may need many iter-
ations to disprove. Our pure parray method can prove sat or unsat for all of
them in 0.1s without any iteration. With our QElim method it is 0.14 second.
In the lastIndexOf example, string s is searched for different non-overlapping
substrings with a common long prefix (e.g. > 30 chars). As shown in [2], a BV
method may iterate on the lengths many times before finding out a solution.
Our pure parray method needs no iteration and solves all the cases in 0.5 sec-
ond, while the best method in [2] takes about 15 seconds (note that their input
substrings may be different from ours). Interestingly, this example can be solved
in the automaton domain too, i.e. after the automaton refinement, valid solu-
tions can be found in the automata. This takes 2.34 second in total. Clearly,
automaton building and refinement incur extra overheads. The pure automaton
method handles other examples poorly, hence the results are not shown.

Method set 1 (70) set 2 (30)

#solved T. #solved T.

Pure P-Array 53 17.6s 0 –
+ our QElim 55 4.1s 21 18.5s

Pure Automaton 34 72s 3 2.6s

P-Array+Autom. 68 20.4s 3 2.6s
+ our QElim 70 6.3s 26 28s

Fig. 4. Evaluating various methods on Bench-
mark set I. #solved gives the number the solved
cases (sat or unsat).

For these examples, our QE-
lim is not mandatory. But
applying it can improve the solv-
ing performance, e.g. reduce the
time of Example (a) from 7.3
second to 0.16 second. In addi-
tion, since Yices returns a partial
model which may be incorrect, we
need to double check this model
when Yices’s search is used. In
the appendix we show some re-
sults comparing Yices’s algorithm
with ours. It is apparent that our
QElim is essential in solving parray constraints.

Benchmark set I consists of 100 tricky path conditions collected from (1)
real Web applications, and (2) manual stress tests. It excludes those easy to
solve. These benchmarks are divided into two sets: set 1 that Yices can han-
dle forall constraints well, and set 2 where our QElim algorithm is required.
We evaluate the solutions with pure parray, with pure automaton, or with par-
ray+automaton, with results shown in Figure 4. The results also show the ad-
vantages of our method over automaton-based ones such as [9].

For set 1, Yices performs well, solving 55 cases quickly, but 2 of them are
incorrect partial models. The other 15 involve regular expressions and needs the
support of the automaton model, which allows the parray model to solve all
cases. However, using the pure automaton model only 34 cases can be solved
since this model handles pure string constraints better than hybrid constraints.

2 Time comparison is rough due to different evaluation environments.

PASS: String Solving with Parameterized Array and Interval Automaton 29

Set 2 demonstrates the effectiveness of our QElim algorithm and automa-
ton enhancement. Among these 30 cases, the “parray + automaton + QElim”
method can solve 26, and the remaining 4 fails because the QElim algorithm hits
the pre-defined limit (using a large limit can solve them). Missing any of these
three components will lead to much inferior results, e.g. the pure parray method
and pure automaton method can solve 0 and 3 respectively (time is counted for
successful cases only). A closer look reveals that these two pure methods can
prove unsat in short time, but are not good at finding solutions for sat cases.
The combination of them does not help either since Yices seems to get stuck in
handling the quantifiers.

Method Comparison. We compare PASS with two baseline implementations
by us: an automaton-based method and a BV-like method . The former mimics
the one in [9], with many details described in Section 4. The latter does not use
bit-vectors directly. Instead concrete arrays are used to simulate bit-vectors with
concrete lengths and indices. This can reuse our parray model and simplify the
implementation: we first derive lengths constraints, then solve them to obtain
length values, then instantiate the lengths in the forall constraints depicted in
Tables 2 and 3, and then unroll all these constraints. Note that we do not directly
compare PASS with existing tools since they assume different string operations
and running settings, e.g. they accept much more restrictive syntax.

We run the three methods on several hundred non-trivial path conditions.
Preliminary results indicate that PASS outperforms the simulated BV method
in ∼ 80% cases, and can be up to 150 times faster for some sat cases. For the rare
cases where PASS performs worse, it is up to 4 times slower than other methods.
Compared with the automaton-based method, PASS usually gains performance
improvement in a magnitude of 1 or 2 orders, although the automaton-based
method can sometimes (1) solve RegExp intensive path conditions faster, and
(2) prove unsat faster. However, this comparison might be neither accurate nor
conclusive since we simulate other methods and optimize PASS more. We leave
the experimental comparison with external tools such as [8] and [7,3] as future
work.

6 Conclusions

We propose modeling strings with parameterized arrays, applying quantifier
elimination to solve parray constraints, and using automata to model regular ex-
pressions and enhance the parray model. We show that all of these are essential
to construct an efficient and comprehensive solver for numeric-string constraints
with regular expressions.

The parray model needs much less enumeration of string lengths or values
than existing methods since it encodes the string values and relations using
quantified constraints of particular format. This format allows us to apply a
simple algorithm to handle the quantifiers. Other enhancements are possible, e.g.
more interactions between the parray and the automaton domains can further
improve the performance.

30 G. Li and I. Ghosh

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

3. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI (2008)

6. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, Springer, Heidelberg
(2003)

7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Ganesh, V., Kieżun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.: HAMPI: A
string solver for testing, analysis and vulnerability detection. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 1–19. Springer, Heidelberg
(2011)

9. Ghosh, I., Shafiei, N., Li, G., Chiang, W.-F.: JST: An automatic test generation
tool for industrial java applications with strings. In: ICSE (2013)

10. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011)

11. Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: ASE (2010)
12. Li, G., Ghosh, I., Rajan, S.P.: KLOVER: A symbolic execution and automatic test

generation tool for C++ programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 609–615. Springer, Heidelberg (2011)

13. Li, G., Li, P., Sawaga, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
Concolic verification and test generation for GPUs. In: PPoPP (2012)

14. Li, G., Slind, K.: Trusted source translation of a total function language. In: Ra-
makrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 471–485.
Springer, Heidelberg (2008)

15. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: S&P, Oakland (2010)

16. Shannon, D., Ghosh, I., Rajan, S., Khurshid, S.: Efficient symbolic execution of
strings for validating web applications. In: 2nd International Workshop on Defects
in Large Software Systems (2009)

17. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

PASS: String Solving with Parameterized Array and Interval Automaton 31

18. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic regular expression ex-
plorer. In: ICST (2010)

19. Yices: An SMT solver, http://yices.csl.sri.com
20. Yu, F., Alkhalaf, M., Bultan, T.: stranger: An automata-based string analysis

tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

21. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: Combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

http://yices.csl.sri.com

Increasing Confidence in Liveness Model
Checking Results with Proofs

Tuomas Kuismin and Keijo Heljanko

Aalto University School of Science
Department of Computer Science and Engineering

Abstract. Model checking is an established technique to get confidence
in the correctness of a system when testing is not sufficient. Validating
safety-critical systems is one of the use cases for model checking. As
model checkers themselves are quite complicated pieces of software, there
is room for doubt about the correctness of the model checking result.
The model checker might contain programming errors that influence the
result of the analysis.

When a model checker finds a counter-example, it is straightforward
to simulate the model and check that the counter-example is valid. Some
model checking algorithms are also capable of providing proofs of validity.
In this paper we describe a way to get proofs of correctness for liveness
properties. This works by transforming the liveness property into a safety
property using a reduction, and then getting a proof for that safety
property. This changes the need to trust the model checker into the
need to trust our reduction and a proof checker, which are much simpler
programs than model checkers. Our method is intended to be usable in
practice, and we provide experimental data to support this. We only
handle properties that hold: counter-examples should be detected with
other methods.

1 Introduction

Safety-critical automation systems, such as those deployed in e.g. nuclear fa-
cilities, need to be inspected for design errors. They tend to be complicated
systems, because they often need to react to multiple measurements as well as
inputs from the plant operators. It is therefore tedious and error-prone to anal-
yse them manually. Model checking has proven to be a valuable tool in becoming
more confident in the correctness of these designs. The use of model checking in
the nuclear context is described in e.g. [17].

Unlike testing and simulation, model checking goes through every possible
behaviour of the design, making sure that it conforms to its specifications. In
theory, if the model checker reports no errors, then all possible behaviours of the
design conform to their specifications. Because testing for all possible scenar-
ios is impossible in practice, model checking a design can significantly increase
confidence in it.

Since the model checker must verify that all behaviours of the design conform
to specifications, and since the number of behaviours is exponentially large, a

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 32–43, 2013.
© Springer International Publishing Switzerland 2013

Increasing Confidence in Liveness Model Checking Results with Proofs 33

model checker must use advanced optimisations to keep computing time and
memory usage within acceptable limits. Because of this, model checkers can
be quite complicated pieces of software. Therefore, they inevitably contain pro-
gramming errors, which could even affect the verification result. Especially when
checking safety-critical designs, one would like to alleviate this concern. We pro-
pose a practical solution for getting independently verifiable proofs for liveness
properties from the model checker.

1.1 System Models

In the context of this paper, models of systems are assumed to be finite logi-
cal circuits. The circuits may contain inputs from the environment and memory
(latches). They operate synchronously, i.e. all latches get their new value simul-
taneously based on the inputs and on the previous values of latches. Cycles in the
logical circuit are permitted only if they contain a latch. Inputs are considered
to be non-deterministic, i.e. they can take any value at any time-point.

A state of the system is a mapping that gives a boolean value for each latch. In
the initial state all latches have the value false. The transition relation determines
the successors of a state, i.e. which states are possible after one time step.

Our tool works with the AIGER [1] format, which is used in the Hardware
Model Checking Competition (HWMCC) [7]. It has good tool support because
of the competition, and many benchmark sets are available from the AIGER
and HWMCC web pages.

1.2 Liveness and Safety Properties

The formal properties in model checking can be divided into two main categories:
safety properties and liveness properties. Intuitively, a safety property states
that the system must not perform some bad action. A counter-example to such
a property is a finite sequence of system states. It begins with the system in its
initial state, and contains a sequence of states that corresponds to a bad action.
To prove that a safety property holds, it is necessary to prove that a bad action
can not be reached from the initial state.

Intuitively, a liveness property states that some event needs to take place.
An example of this would be that all requests must be answered eventually. A
counter-example to a liveness property is an infinite sequence of system states,
where the system starts in its initial state, but fails to produce the required
event. Verifying liveness properties is harder in general than verifying safety
properties. To prove that a liveness property holds, it is necessary to prove that
a bad cycle can not be reached from the initial state. A bad cycle is a sequence
of states that the system can repeat indefinitely without producing the required
event. Because systems can only have finitely many states, a bad cycle is needed
to form a counter-example. In the context of this paper, liveness properties are
represented as a set of justice signals that should not become true infinitely
often. If all of the signals do become true infinitely often, i.e. in a cycle, a
counter-example to the specification has been found.

34 T. Kuismin and K. Heljanko

A liveness to safety reduction is a way to transform a liveness checking problem
into a safety checking problem. The first such reduction was introduced in [5].
Reducing liveness checking to safety checking entails changing the model to
include some form of book-keeping. The burden of cycle detection is shifted
from the model checker to the book-keeping part in the resulting model.

1.3 Symbolic Model Checking and SAT-Based Model Checking

Model checking a design is hindered by the state explosion problem: a system
usually has exponentially many states with respect to its size. Representing each
of them separately in memory is likely to exhaust the available memory. To deal
with this problem, different symbolic model checking [10] techniques have been
developed. They use a compact way to represent a set of states in memory.

In addition to the method in [10], another way to represent a set of states
compactly is to use a propositional logic formula. A state belongs to the set iff the
formula becomes true when assigning the values of the state variables (latches).
Model checkers that use this technique usually make queries to propositional
satisfiability (SAT) solvers, i.e. tools that decide whether a given propositional
logic formula can be satisfied (made true). SAT-based model checking was first
suggested in [6]. Our implementation works with SAT-based model checking, but
the general idea does not depend on it.

1.4 Related Work

The IC3 [8] algorithm by Bradley, also known as property-directed reachability
(PDR), is a complete1, SAT-based algorithm for checking safety properties. One
of its advantages is that it can provide a proof of correctness when the system
meets the specification. The proof is an inductive invariant, i.e. a propositional
formula that must hold in the initial state, and that will not be changed from
true to false by the transition relation. If the model checker finds an inductive
invariant that implies the specification, the system necessarily meets the speci-
fication.

Biere et al. introduced a liveness to safety reduction in [5]. That reduction
changes the model to force a loop, and then checks whether a bad trace can be
found. Compared to that, ours makes for a simpler implementation, which we
consider to be important.

Claessen et al. describe an algorithm [11] for liveness checking that is based
on bounding the number of times a justice signal becomes true. Gan et al. inde-
pendently discovered this method in [15], where it is applied to model checking
software designs. We also use this idea, but [11] implements it in their own
specialised model checker, and they do not discuss proof generation. Moreover,
their implementation uses pre-processing, which they state is important for per-
formance. Using pre-processing adds more code to be trusted, which we try to
1 In the sense that given sufficient time and memory, it will always terminate with the

correct result.

Increasing Confidence in Liveness Model Checking Results with Proofs 35

avoid. Our implementation also differs from [11] in that they search for a bound
by incrementing it by one, whereas we, like [15], double the bound at each step.

Others have also studied the issue of trusting the model checker when it
claims correctness of a liveness property. Namjoshi takes a similar approach
to ours in [18], in that the paper also describes a way to get proofs from the
model checker. It does not make an implementation available, however, and
makes no experimental evaluation. The proofs in that paper explicitly enumerate
the states of the model, making them too big to verify in practice. Sprenger
describes in [20] a model checker for μ-calculus that is proven to be correct. The
model checker in that paper is verified using a theorem prover. Benchmarks or
applicability to real world models is not discussed. Esparza et al. also describe a
verified model checker in [13]. They first prove a simple model checking algorithm
to be correct, and then make provably correct refinements to make it faster.
Their implementation is not comparable to the state-of-the-art tools in efficiency,
however. They describe it as a reference implementation against which optimised
tools can be tested.

Compared to the model checkers above, our tool is designed to work with
the same models that can be checked with the state-of-the-art tools. Our ap-
proach can work together with any PDR-based model checker that supports the
AIGER-format, which includes many state-of-the-art model checkers thanks to
the HWMCC. Moreover, improvements to those model checkers also benefit our
tool.

2 Liveness to Safety Reduction

The key to getting better confidence in the result of the model checking algorithm
is the liveness to safety reduction. Our reduction is as simple as possible, which
makes it easy to understand and thoroughly test. This is crucial because the
benefits of proof checking are lost if our implementation is suspected to be faulty.
Because of the safety-critical context, we wish to get a high degree of certainty in
the correctness of the model checking result. One key concern is the possibility of
programming errors in model checkers. Requiring a proof from the model checker
and validating it will increase confidence in the model checker, but it does not
exclude the possibility of an error in our implementation. Therefore there is a
great burden on our implementation to demonstrate reliability. We believe that
a very simple algorithm is necessary for that.

Algorithm 1 shows the pseudo-code for our liveness to safety reduction.
It expects as input a boolean circuit and a liveness property, expressed as
a set of justice signals. The variable count_latches is an array of latches,
and we use count_latchesi to denote the ith element of the array. The vari-
able wait_latches is a mapping from bits in the justice-set to latches, and
we use wait_latchesbit to denote the element that corresponds to bit, where
bit ∈ justice. We use the latch itself, e.g. count_latchesi, to denote the the
value of the latch, and add .input to it, e.g. count_latchesi.input, to denote the
wire that gives the next value of the latch.

36 T. Kuismin and K. Heljanko

The property is violated iff the circuit gives a true value for each of the justice
signals infinitely often. In other words the property holds if there is a point in
time after which at least one of the justice signals will stay false forever. Our
algorithm assumes that the property is true, and tries to prove that. It should
therefore be used when the system design is likely to be correct, and a proof of
correctness is desired.

To deal with multiple justice signals, we first condense them into a single
signal. Each signal in the original justice set will be assigned a latch that waits
for it to become true. When all of these latches have been set to true, they will
all be reset, and will start waiting again. The conjunction of all these latches
will be true infinitely often iff all of the signals in the original justice set are true
infinitely often. Lines 5–7 in the algorithm handle this part. An example of two
latches waiting for two justice signals is shown in Figure 1.

Algorithm 1. Algorithm for getting a proof of a liveness property
1: function live2safe-check(circuit, justice)
2: count_latches � n-bit counter
3: wait_latches � each latch waits for a bit in the justice-set
4: increment ← ∧

b

wait_latchesb � when to increment the counter

5: for all bit ∈ justice do
6: wait_latchesbit.input ← ¬increment ∧ (bit ∨ wait_latchesbit)
7: end for
8: for n = 1 → ∞ do
9: carry ← increment

10: for i = 0 → n− 1 do
11: count_latchesi.input ← carry ⊕ count_latchesi
12: carry ← carry ∧ count_latchesi
13: end for
14: bad ← count_latchesn−1

15: if model-safe?(circuit ∪ count_latches ∪ wait_latches, bad) then
16: return proof
17: end if
18: end for
19: end function

If the increment -signal will be true only finitely many times, the liveness
property holds. To get proof of this, the algorithm uses a binary counter to keep
track of the number of times it has become true. Lines 10–13 in the algorithm
build the counter, line 14 defines the signal that denotes a bad state, and line
15 calls the safety property model checker. Figure 2 shows an example of a
two-bit counter. If the counter never overflows, the increment -signal does not
become true infinitely often, and the property must hold. On the other hand,
if an overflow of the counter is detected, we assume that a larger counter is
required, and restart the proof search with one more latch in the counter. The
for-loop on line 8 of the algorithm implements this.

Increasing Confidence in Liveness Model Checking Results with Proofs 37

justice0

justice1

Latch

Latch

increment

Fig. 1. Latches that wait for two justice bits to become true

increment

Latch Latch

bad

Fig. 2. Binary counter with two latches

38 T. Kuismin and K. Heljanko

If the circuit meets the specification, the algorithm will eventually generate a
counter that is large enough to contain all the times the justice signals become
true, after which the safety property checker will provide a proof of correctness.
On the other hand, if the specification is not met, larger and larger counters are
generated, and the algorithm will not terminate. It is therefore advisable to run
a counter-example finding tool in parallel with our algorithm.

2.1 Implementation

We have implemented the algorithm in Racket [3], which is a dialect of the
Scheme programming language family. Manipulating the AIGER file is done
through the C API of the official AIGER distribution [1]. Verification of the
transformed models is done by calling the ABC/ZZ-tool by Niklas Eén [14],
which contains an implementation of PDR [8]. More specifically, we run the
ABC/ZZ command bip ,pdr2 on the modified AIGER model. Our implemen-
tation is available as a binary package and as source code at [16].

3 Verifying the Proof

If our algorithm is successful in finding a proof for a property, the next step is
to verify it. The proof given by the model checker is an inductive invariant, i.e.
it satisfies all of the following conditions:

– it is true in the initial state of the system,
– if it is true in a state, it will also be true in every successor (according to

the transition relation), and
– it can not be true in a bad state.

The conditions above imply that no bad state can be reached from the initial
state, and therefore the system meets its specification. The bad state in this case
is the one our algorithm produces, i.e. the overflow of the counter we generate
(see Algorithm 1).

The three conditions can be verified with a SAT solver2. Suppose that I is
the invariant given by the model checking algorithm, S0 is the boolean formula
encoding of the initial state of the system, and B is the boolean formula encoding
of the bad states of the system. Recall that a boolean formula encodes a set of
states whose latch values make the formula true. Suppose further that R is the
boolean formula encoding of the transition relation, where a plain variable (e.g.
v) denotes a latch value in the current state, and the corresponding primed
variable (e.g. v′) denotes the latch value in a successor state. We generalise this
notation to boolean formulae: adding a prime to a formula means adding a prime
to every latch variable in it. We can now encode the conditions for the inductive
invariant as boolean formulae, respectively:
2 This is not limited to SAT-based techniques: any model checking method that can

provide an inductive invariant as above could be used.

Increasing Confidence in Liveness Model Checking Results with Proofs 39

– S0 ⇒ I
– (I ∧R)⇒ I ′

– I ⇒ ¬B

The validity of the above formulae can be checked with the SAT solver by negat-
ing it. If the solver reports that the negation of the formula is unsatisfiable, the
formula itself must hold.

To get further proof that no error has been made, even the SAT solver may
be requested to give a proof of unsatisfiability. The SAT solver competition [4]
features a track for solvers that provide such proofs. Many of the solvers are
freely available for download, and many also provide their source code.

4 Experiments

We have evaluated the practicality of our tool by testing it on models with
liveness properties available from the AIGER [1] and the HWMCC [7] web sites.
We dropped out models for which a counter-example was found, as our tool
would not terminate on those. We compared our implementation against three
other model checkers: ABC/ZZ [14], which to the best of our knowledge uses [5]
combined with PDR, IImc [2], whose liveness algorithm is described in [9], and
tip [12], which to the best of our knowledge uses [11] combined with PDR. The
latter two placed first and second in the liveness track of the HWMCC [7]. All
the tests were run on a Linux machine with an Intel 2.83GHz processor and
8GiB memory. A time-out of 10 minutes was used.

The run-time of our algorithm includes the transformation of the model and
all of the model checking work. Verifying the proof is not included. We anticipate
that the proof verification time is small compared to the actual model checking.

The run-times are plotted against our algorithm in Figures 3, 4, and 5. Each
figure plots the run-times of one algorithm against the run-times of another
algorithm. A data point in the south-east half of the figure means our algorithm
was faster, and a data point in the north-west half means our algorithm was
slower. A data point on the inner border means a time-out occurred, and a data
point on the outer border means that memory was exhausted.

Figure 3 shows the run-times of our algorithm compared against ABC/ZZ.
We used a version that was retrieved from the code repository on June 24 2013.
ABC/ZZ was run with the command bip ,live -k=l2s -eng=treb, which also
employs a liveness to safety reduction. There are quite many data points on both
sides of the figure, meaning that neither algorithm is consistently better than
the other.

Figure 4 shows the run-times of our algorithm compared against IImc. We
used version 1.2 of IImc with the default options. The figure shows that our
algorithm is faster in many cases, but also runs out of time in many cases where
IImc does not. Again, neither algorithm seems to be a clear winner.

Figure 5 shows the run-times of our algorithm compared against tip. We used
a version that was retrieved from the code repository on July 17 2013, with the
default options. The figure shows that tip is faster than our algorithm is the

40 T. Kuismin and K. Heljanko

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

ou
r a

lg
or

ith
m

ABC/ZZ

Fig. 3. Run-times (in seconds) of our algorithm and ABC/ZZ

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

ou
r a

lg
or

ith
m

IImc

Fig. 4. Run-times (in seconds) of our algorithm and IImc

Increasing Confidence in Liveness Model Checking Results with Proofs 41

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

ou
r a

lg
or

ith
m

tip

Fig. 5. Run-times (in seconds) of our algorithm and tip

majority of cases, although our algorithm wins in a few cases, even proving two
where tip ran out of time.

While it is clear that our algorithm does not beat the state of the art ones
in speed, it still manages to prove many of the benchmarks. We argue that the
simplicity combined with the proofs from PDR make it a practical way to become
more confident in the correctness of models with liveness properties.

5 Conclusion and Discussion

Our approach to getting more confidence in model checking results relies firstly
on a simple liveness to safety reduction, and secondly on getting an indepen-
dently verifiable proof from the safety model checker. Our main contribution is
the use of the simple reduction algorithm in a way that gives good performance
and still results in proofs of correctness.

Model checkers are very complex pieces of software, and therefore are liable
to contain programming errors. It is conceivable that they might claim to have
proven a property that in reality does not hold. When applying model check-
ing to safety-critical systems, it is desirable to alleviate this concern. We argue
that our approach increases confidence in the model checking result, because our
algorithm is very simple. It is therefore relatively simple to inspect our imple-
mentation and become convinced that it does not contain errors.

Our approach can not eliminate all concerns of whether the model checking
result actually applies to the real system. Even if the model corresponds to the

42 T. Kuismin and K. Heljanko

physical system, it is likely that the AIGER-file that we analyse is programmat-
ically converted from a more human-friendly form.3 When checking the proof
from the model checker, it is also necessary to extract information from the
AIGER-file. Both of the above steps might include errors. The actual model
checking algorithm is much more complicated than these tasks, however, and
typically going through changes more often. It is therefore more likely to contain
errors, which is why we focus on the correctness of that part.

Our experiments show that our approach can be used in practice. While it is
not faster than the state-of-the-art liveness model checkers, many of the prop-
erties that were proven with ABC/ZZ, IImc and tip were also proven with our
tool. The tool is available under a liberal license at [16].

Acknowledgements. We would like to thankfully acknowledge the funding of
the SAFIR 2014 project, Helsinki Institute for Information Technology, and the
Academy of Finland project 139402.

References

1. AIGER: A format, library and set of utilities for And-Inverter Graphs (AIGs),
http://fmv.jku.at/aiger/

2. The IImc model checker, http://ecee.colorado.edu/~bradleya/iimc/
3. The Racket programming language, http://racket-lang.org/
4. Balint, A., Belov, A., Heule, M., Järvisalo, M.: The international SAT competition,

http://satcompetition.org/
5. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.

Notes Theor. Comput. Sci. 66(2), 160–177 (2002)
6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

7. Biere, A., Heljanko, K., Seidl, M., Wieringa, S.: Hardware model checking compe-
tition 2012 (2012), http://fmv.jku.at/hwmcc12/

8. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

9. Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to
model checking progress properties. In: Bjesse, P., Slobodová, A. (eds.) FMCAD,
pp. 144–153. FMCAD Inc. (2011)

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

11. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Cabodi,
G., Singh, S. (eds.) FMCAD, pp. 52–59. IEEE (2012)

12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

13. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

3 For an example on work that encompasses higher level descriptions of systems,
see [19], which discusses formalisation of a hardware description language.

http://fmv.jku.at/aiger/
http://ecee.colorado.edu/~bradleya/iimc/
http://racket-lang.org/
http://satcompetition.org/
http://fmv.jku.at/hwmcc12/

Increasing Confidence in Liveness Model Checking Results with Proofs 43

14. Eén, N.: The ABC/ZZ verification and synthesis framework,
https://bitbucket.org/niklaseen/abc-zz

15. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to ver-
ifying satellite onboard software. Science of Computer Programming (2013),
http://www.sciencedirect.com/science/article/pii/S0167642313000658

16. Kuismin, T.: Liveness to safety reduction, implementation,
http://users.ics.aalto.fi/tlauniai/live2safe/

17. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.: Model
checking of safety-critical software in the nuclear engineering domain. Rel. Eng. &
Sys. Safety 105, 104–113 (2012)

18. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

19. Ray, S., Hunt Jr., W.A.: Mechanized certification of secure hardware designs. In:
Abadir, M.S., Wang, L.C., Bhadra, J. (eds.) MTV, pp. 25–32. IEEE Computer
Society (2007)

20. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998)

https://bitbucket.org/niklaseen/abc-zz
http://www.sciencedirect.com/science/article/pii/S0167642313000658
http://users.ics.aalto.fi/tlauniai/live2safe/

Speeding Up the Safety Verification

of Programmable Logic Controller Code

Tim Lange1, Martin R. Neuhäußer2, and Thomas Noll1

1 RWTH Aachen University, Germany
{tim.lange,noll}@cs.rwth-aachen.de

2 Siemens AG, Germany
martin.neuhaeusser@siemens.com

Abstract. Programmable logic controllers (PLC) are widely used in in-
dustries ranging from assembly lines, power plants, chemical processes to
mining and rail automation. Such systems usually exhibit high safety re-
quirements, and downtimes due to software errors entail intolerably high
economic costs. Hence, their control programs are particularly suited for
applying formal methods; in particular, bounded model checking (BMC)
techniques based on satisfiability modulo theories promise to be highly
beneficial in this domain.

In this paper, we investigate adaptations and extensions of property
dependent static analyses which operate on a novel form of intermediate
code and which are tailored specifically to model checking PLC programs.
In our experiments, our program transformations drastically reduce the
size of formulae for BMC and speed up the verification times by orders
of magnitude.

Keywords: Programmable logic controllers, Bounded model checking,
SMT-based verification algorithms, Static analysis.

1 Introduction

Programmable logic controllers are embedded systems specifically designed to
control automation processes. As such, they are at the heart of all major indus-
tries, controlling manufacturing, logistics, chemical, oil & gas, energy, and rail
automation tasks.

A PLC and its control algorithm constitute a reactive system with a cyclic
execution scheme: At the beginning of each cycle, the operating system reads
inputs from sensor in the physical environment. The PLC program then operates
on the inputs and its internal state to produce outputs that are sent to actuators
upon termination of the PLC program. This scheme is repeated cyclically. As
each cycle is highly time-critical, its execution is required to terminate within
a pre-defined cycle time. Due to this strict bound on the execution time, PLC
programs usually exhibit statically predetermined control flows. In particular,
dynamic heap structures and loops whose number of iterations is determined
dynamically are avoided, if possible.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 44–60, 2013.
c© Springer International Publishing Switzerland 2013

Speeding Up the Safety Verification of Programmable Logic Controller Code 45

Many automation systems have high safety requirements. Errors in their con-
trol programs lead to intolerably high economic costs due to downtimes or the
destruction of the automation system. Even worse, they may constitute threats
to the life of workers and the environment. Hence, the correctness of such control
programs is of utmost importance, making the use of formal methods advisable.

In this paper, we propose model checking (MC) of safety properties of the
control program and focus on its logical correctness. In particular, we do not
model time or the PLC’s physical environment. As MC is mostly automatic, it
can easily be used by non-experts, making it applicable in practice. Moreover,
given the execution model and the simple control flow of PLC programs, bounded
symbolic model checking (BMC) of safety properties — and especially simple
assertions — promises to be highly beneficial. We focus on the verification of
safety properties of the PLC program logic For example, an assertion could
state that upon termination of the cycle, a flag must be set iff the speed of a
drive is outside its admissible range.

For a correctness proof, all reachable states of the PLC program must be
checked for violations of the assertion. In a classical setting, this can be accom-
plished by explicitly representing all reachable states of the system in terms of
program locations and variable valuations. However, explicit state model check-
ing generally suffers from the state space explosion problem, i.e. the exponential
increase of the number of states depending on the input variables. One successful
approach that mitigates this problem are symbolic representations of the state
space as used in, e.g. BMC. Here, both the executions of the program (up to a
pre-determined number of steps) and the safety property are encoded as propo-
sitional formulae which are input to a propositional satisfiability (SAT) solver
that searches for program runs violating the property. BMC is generally incom-
plete due to the bound on the length of executions that are considered. However,
this restriction fits very well with the cyclic execution scheme of PLC programs.

The contributions of this paper are twofold: Firstly, we further mitigate the
state space explosion problem by adapting program transformations from op-
timizing compilers to minimize the size of the input program. In particular,
we compile PLC programs written in the Instruction List (IL) language into a
simple intermediate code which is subsequently minimized by constant folding,
property dependent program slicing, and a new variant of forward expression
propagation. Due to the redundant semantics of IL, the minimized intermediate
code programs are much simpler and substantially easier to verify. Secondly, we
define a formal semantics of our intermediate code by means of quantifier free
first order formulae over the array and bit vector theories. To decide the satis-
fiability of such formulae, we use a satisfiability modulo theories (SMT) solver
instead of a SAT solver. This allows us in particular to reason about simple
dynamic addressing in the PLC programs — something that can hardly be done
in the purely propositional fragment.

We evaluate our approach on several case studies, including safety-critical
industrial PLC programs and hand-written artificial code. The empirical evalu-
ation employing a prototypical tool implementation shows promising results.

46 T. Lange, M.R. Neuhäußer, and T. Noll

The remainder of this paper is organized as follows. First, Sect. 2 compares
our approach to existing work. Sect. 3 introduces the intermediate code on which
our formal analyses build. Sect. 4 presents the model minimization techniques for
mitigating the state-space explosion problem. Sect. 5 provides a formal semantics
for the intermediate code and defines the structure of the BMC formulae. In
Sect. 6, we evaluate the impact of our model minimizations on the verification
times by means of a number of case studies. Finally, Sect. 7 concludes the paper.

2 Related Work

Several attempts to applying formal methods to PLCs have been made; a survey
can be found in [1,2].

For verifying railway interlockings, [3] model checks ladder logic diagrams,
applies simple program slicing to the Boolean formulae, and verifies invariants
with HeerHugo [4]. Verification of correct signalling in railways based on SAT is
described in [5]. Both approaches differ considerably from ours, as the verification
does not incorporate control flow and focuses only on Boolean conditions.

Symbolic model checking of IL programs based on binary decision diagrams
(BDDs) is proposed in [6], where the transition relation is directly derived from
the input program without any optimizations. No benchmarks or remarks on the
scalability of the approach are provided. The papers [7,8,9,10,11] address verifi-
cation of instruction list programs based on propositional satisfiability. None of
these approaches use static analyses for model minimization; [8] requires manual
tuning to obtain manageable state spaces (even for an eight-bit input), and [7]
does not allow for loops in the input program. An operational semantics of a
subset of IL can be expressed in the higher order theorem prover Coq [12]; also
here, no model minimization techniques have been applied.

This paper presents techniques that reduce the number of program locations
that need to be considered in (bounded) model checking. A similar approach also
involving SMT reasoning has been investigated in [13] where single transitions
represent larger portions of the program under consideration.

3 Intermediate Code

Instruction List (IL) is the low-level language among the five programming lan-
guages defined for PLCs in the IEC 61131-3 standard [14]. It strongly resembles
an assembly language of a complex instruction set computer (CISC). In particu-
lar, the semantics of an IL instruction generally depends strongly on the values
of the processor flags and is best described by a sequence of simpler operations
that affect a variety of registers and memory cells.

Whereas previous approaches to IL code verification derived models directly
from the IL code [7,8,9,10], we first compile the input program into a simple
intermediate code (IC), making all registers and side effects explicit. This has
many advantages: Firstly, IL consists of approx. 170 instructions with intricate

Speeding Up the Safety Verification of Programmable Logic Controller Code 47

semantics and handling each of them explicitly in a verification tool is an ex-
tremely tedious task. Even worse, the complex instruction semantics effectively
prevents any data flow analyses on IL code. Surprisingly, the IL semantics turns
out to be highly redundant and inefficient. In fact, our experiments show that al-
most all register operations performed in the original IL code can be removed by
static analysis of the intermediate code without altering the program semantics.

To enable strong model minimization, IC modifies at most one variable at
a time and allows for arbitrarily nested arithmetic and Boolean expressions.
IC consists of seven instructions: (1) a skip command that does not modify
control flow or variables; (2) a stop command, indicating the end of a program
execution path; (3) an unconditional jump to a program label; (4) a conditional
jump to a program label equipped with a Boolean guard; (5) an assignment of
an expression to a variable; (6) a call statement to invoke a procedure, and (7)
a return statement to exit a procedure.

Definition 1 (Data types). Data types of IC are defined by the following
context free grammar:

DataType := Ref (DataType) | Bool |Word | . . .
Definition 2 (Domains). The domains of the data types are as follows:

DWord := {−215, 215 − 1}
DBool := {true, false}

DMemLoc ⊆ {(seg, offset , dt) | seg, offset ∈ IN, dt ∈ DataType}
DRef (dt) := {enc(seg , offset , dt) | (seg, offset , dt) ∈ DMemLoc}

D :=
⋃
{Ddt | dt ∈ DataType}

where DMemLoc is the set of typed memory locations, and enc : DMemLoc →
DWord is an injective encoding function.

Definition 3 (Intermediate code). The complete grammar of intermediate
code is given by:

Const := DWord

Bool := true | false
MemLoc := (Const ,Const ,DataType)

Loc := MemLoc | deRef (Ref)
Ref := getRef (Loc) | Read(Loc)
Exp := Const | Bool | Ref | Exp + Exp | Exp ∨ Exp | . . .
Cmd := Skip | Stop | Jump(Const) | CJump(Exp,Const) |

Assign(Loc,Exp) | Call(Const ,Exp∗) | Return
Proc := Procedure Const(DataType Const)∗ is Cmd∗

An IC program P is defined as a tuple P = (P, i), where P is the set of procedures
defined in P, and i denotes the start procedure.

When compiling IL programs into IC, all internal flags and processor regis-
ters are represented by memory locations of the respective data types and the
semantics of each IL instruction is formalized by an equivalent sequence of IC
instructions.

48 T. Lange, M.R. Neuhäußer, and T. Noll

4 Model Minimizations

The number of program locations, followed by the number of variables define
the size of an IC program. Hence, we aim at program transformations that yield
equivalent IC programs with fewer program locations and fewer variables. For
the sake of verification, we relax the equivalence condition and only require
each minimization step to yield an IC program that is equivalent w.r.t. the
properties that need to be verified. As our experiments and the results in [13]
show, minimizing the number of program locations and simplifying the control
flow speeds up verification times tremendously. Hence, in our optimization, we
trade more complex expressions in the IC code for smaller IC programs.

In Sect. 4.1 we present constant folding; Sect. 4.2 shortly describes a program
slicing technique that removes irrelevant code, and Sect. 4.3 defines the forward
expression substitution which enables us to reduce the number of program loca-
tions even further. Section 4.4 explains the fixed point iteration used to obtain
the minimized IC program. All transformations are based on dataflow analy-
ses [15]. A dataflow system is essentially given by a tuple (L, F, (D,�), {ϕl | l ∈
L}) with

– a finite set of program labels L,
– a flow relation F ⊆ L× L,
– a complete lattice (D,�), given by a domain D and an ordering relation �

with least upper bound � and least element ⊥, and
– a collection of monotonic transfer functions {ϕl | l ∈ L} of type ϕl : D → D.

As is well known, computing the solution of a dataflow system amounts to solving
the corresponding equation system over a collection of variables {AIl | l ∈ L}
for obtaining the analysis information using fixpoint iteration.

4.1 Constant Folding

The first optimization to be applied is constant folding, in order to simplify
expressions. It is based on a standard interval analysis [15], which additionally
offers more opportunities for subsequent optimization steps, e.g., to statically
evaluate inequations and to compute results of pointer arithmetic. To enable
constant folding using the results of interval analysis, we use degraded intervals
covering only a single value. This analysis is defined as follows.

Definition 4 (Domain of intervals). The complete lattice (Int ,�) is given by
Int := {[x, y] | x ∈ Z∪{−∞}, y ∈ Z∪{+∞}, x ≤ y}∪{⊥} with ⊥ := ∅. It is par-
tially ordered by ⊥ � [x, y] � � (where � := [−∞,+∞]) and [x1, y1] � [x2, y2]
iff x2 ≤ x1 and y1 ≤ y2, entailing [x1, y1]� [x2, y2] = [min{x1, x2},max{y1, y2}].

Note that this domain exhibits infinite ascending chains. In order to ensure
the ascending chain condition (ACC) which guarantees termination of the fixed
point iteration, widening is required. However, the standard widening operator
[x1, y1]�[x2, y2] (which sets the lower/upper bound x1/y1 of the first interval to

Speeding Up the Safety Verification of Programmable Logic Controller Code 49

−∞/+∞ when it is underrun/exceeded by the next iteration x2/y2) often leads
to imprecise results when joining the analysis information coming from different
predecessor branches in the control flow graph (CFG). This problem is usually
solved by narrowing. But in contrast to widening, narrowing does not necessarily
terminate due to the presence of infinite descending chains [15].

To circumvent the overhead of obtaining imprecise results at first and trying
to make them more precise afterwards, we introduce the lazy widening operator
�Prel . It is parametrized with a set of predecessors of label l in the CFG and
allows each incoming edge to trigger one precise meet operation before applying
widening. This way for loop-free code, we obtain the same precision as applying
standard widening followed by standard narrowing without the additional over-
head induced by narrowing. For code containing loops, we get the same results
as applying standard widening.

Definition 5 (Lazy Widening). Let l ∈ L, and let Prel ⊆ {l ′ ∈ L | (l′, l) ∈ F}
be a subset of the predecessors of l . The lazy widening operator �Prel : Int ×
Int → Int is applied when re-computing the analysis information at label l after
an update at label l ′: AIl := AIl �Prel ϕl′(AIl′) with

[x1, y1]�Prel [x2, y2] :=

{
[x1, y1] � [x2, y2] if l ′ ∈ Prel

[x1, y1]�[x2, y2] otherwise.

Here, Prel is initialized with {l ′ ∈ L | (l′, l) ∈ F}, and set to Prel \ {l ′} after
each update.

4.2 Program Slicing

The next step in minimization is to remove all program instructions that do
not have any effect on the validity of the properties under consideration. Tech-
nically, a standard needed variables analysis is applied, starting with the ini-
tial information of all variables occurring in the assertions at each label [15].
The desired result is the least set of needed variables, as we want to remove
as many computations as possible, keeping only these which contribute to the
values of needed variables. Based on this set, we check for every element of
{l ∈ L | cmd l = Assign(x , exp)} whether x is needed at the exit of l . If this is
not the case, l can be removed from program p.

4.3 Forward Expression Propagation

In most cases, the IC program that results from constant propagation and slicing
of irrelevant code fragments is already smaller than the original IL program. In
addition, it employs a much simpler instruction set. Thus, a first improvement
has already been achieved. However, due to the assembly-like structure of IL,
all remaining assignments have small right-hand sides, such that complex ex-
pressions are still computed by a sequence comprising multiple IC instructions.
But IC supports arbitrarily nested expressions. To further reduce the number

50 T. Lange, M.R. Neuhäußer, and T. Noll

of program locations, we combine multiple assignments into one by propagat-
ing expressions forward. Note that standard compiler optimization aims for the
opposite: By introducing new assignments for expressions that are repeatedly
evaluated (“available expressions”), one usually tries to reduce the overall num-
ber of evaluation steps at the expense of the number of program locations.

To propagate expressions forward from the point of their assignment, an avail-
able expression analysis (AvExp) is applied, which records the variable on the
left hand side of the originating assignment [15]. Propagation is complicated by
programs that exhibit a control flow as in Fig. 1. Here, we aim at propagating
the expressions on the right-hand side of line 1 to the read access in line 2, as
well as combining the expressions from lines 6, 9, and 14 with the assignments
in lines 11 and 15. At line 2, however, expression “counter+1” is not available
because of the assignment to variable counter in line 1. We refer to such critical
assignments as recursive assignments.

1 counter=counter+1
2 CJump (counter>n) 16
3 CJump (s t a t e =1) 13
4 CJump (s t a t e =2) 8
5 { c on t r o l speed}
6 overpow=overpow∨(speed>max)
7 Jump 11
8 { speed up}
9 overpow=overpow∨(speed>max)

10 CJump (speed=ta rg e t) 15
11 warning=overpow∨emergency
12 Jump 16
13 { i n i t i a l i z e motor}
14 overpow=fal se
15 warning=overpow
16 Stop

Fig. 1. Recursive propagation blocked

counter=counter+1
CJump (counter>n) 16
CJump (s t a t e =1) 13
CJump (s t a t e =2) 8
{ c on t r o l speed}
overpow=overpow∨(speed>max)
Jump 11
{ speed up}
overpow=overpow∨(speed>max)
CJump (speed=ta rg e t) 15
warning=overpow∨emergency
Jump 16
{ i n i t i a l i z e motor}
overpow=overpow∨(speed>max)
warning=overpow
Stop

Fig. 2. Recursive propagation safe

1 CJump (counter+1>n) 16
2 CJump (s t a t e =1) 13
3 CJump (s t a t e =2) 8
4 { c on t r o l speed}
5 Jump 11
6 { speed up}
7 CJump (speed=ta rg e t) 15
8 warning=overpow∨(speed>max)∨emergency
9 Jump 16

10 { i n i t i a l i z e motor}
11 warning=overpow∨(speed>max)
12 Stop

Fig. 3. Result of propagation

1

2

3

4

1385

1496

107

1511

12

16

Fig. 4. CFG of Fig. 1 and Fig. 2

Speeding Up the Safety Verification of Programmable Logic Controller Code 51

Definition 6 (Recursive assignments). An assignment Assign(x , exp) is re-
cursive if x ∈ V (exp), where V (exp) is the set of all variables occurring in exp.

For forward expression propagation, we first need AvExp to handle recursive
assignments. By slight abuse of notation, we sometimes refer to an expression
as being recursive if it originates from a recursive assignment. In the standard
approach, these expressions are excluded by the gen function [15], as they are
not available in subsequent lines. Therefore, simply propagating them would not
preserve the semantics of the code. In this case, termination of propagation is
not guaranteed as propagating the assignment Assign(x , exp) to an expression
exp′ replaces the occurrence of x in exp′ by exp and keeps x in exp′, making the
original assignment live. This results in a cycle, where in each iteration, exp is
propagated. Thus, AvExp does not suffice for forward expression propagation.

The key to a semantics-preserving propagation of recursive assignments is
the insight that replacing a variable with the assigned recursive expression is
only allowed if the original assignment can be removed. To be able to remove a
recursive assignment Assign(x , exp) while preserving the semantics, every read
of x which can be reached from the assignment must be replaced by exp. For
this purpose we need to extend AvExp by a label information to determine the
origin of an expression. To maintain the original behaviour of AvExp, we define
the partial order by applying the standard one of AvExp to the projection on
variables and expressions.

Definition 7 (Extended available expressions analysis). The extended
available expressions analysis is given by

– the complete lattice (D,�) with D := 2L×V×Exp and A � B iff for each
(l, v, e) ∈ B there exists (l′, v, e) ∈ A (which yields A �B =

⋃
{(l, v, e),

(l′, v, e) | (l, v, e) ∈ A, (l′, v, e) ∈ B} and ⊥ = D) and
– the transfer functions {ϕl | l ∈ L} given by

ϕl (T) := (T \ kill l) ∪ gen l with

gen l :=

{
{(l , x , exp)} if cmd l = Assign(x , exp)

∅ otherwise

kill l :=

⎧⎪⎨⎪⎩
{(l ′, x ′, exp′) ∈ D |
x ∈ Var(exp′) or x′ = x}

if cmd l = Assign(x , exp)

∅ otherwise

The corresponding analysis information is denoted by {AEl ∈ D | l ∈ L}.

For additional information about dependencies between reading and writing
accesses to variables we employ a standard reaching definitions analysis [15].
Following the notion of reaching definitions, we call an assignment a definition
or short def and a read of the assigned variable a use.

Definition 8 (Reaching definitions). Let {RDl | l ∈ L} with RDl ⊆ V ×
(L ∪ {?}) be the information obtained from reaching definitions analysis. Here

52 T. Lange, M.R. Neuhäußer, and T. Noll

(x , ?) ∈ RDl means that the input value of x possibly reaches l without being
overwritten. For x ∈ V and l ∈ L, we let RDx

l := RDl ∩ ({x} × (L ∪ {?})) be the
reaching definitions of x in l .

Definition 9 (Filtered available expressions information). Given {AEl |
l ∈ L}, we let AE x

l := AEl ∩ L× {x} × Exp.

Let us characterize the conditions for propagating an expression from an as-
signment to a use of the corresponding variable: At label l ∈ L, variable x ∈ V
can be replaced by expression exp ∈ Exp if

– there exists (l ′, x , exp) ∈ AE x
l such that x /∈ V (exp) (non-recursive assign-

ment) or
– there exists (l ′, x , exp) ∈ AE x

l such that x ∈ V (exp) (recursive assignment)
and for all (l ′′, x , exp) ∈ AE x

l , the assignment cmd l′′ = Assign(x , exp) can
be removed.

The second condition holds if the assignment can be propagated to every use,
i.e. if in every label m ∈ L with l ′′ ∈ RDx

m , x can be replaced by exp.
Note that this definition is recursive, meaning that it amounts to computing

the greatest solution of the constraint system. The following paragraphs describe
the implementation of the corresponding fixpoint algorithm. Its pseudo code is
given in Fig. 5.

To keep track which labels can be removed and which cannot, we maintain
two sets of labels: a set of blocked labels, which cannot be removed because at
least one use cannot be replaced, and a set of possibly safe labels, which can
be propagated into all uses that have been inspected so far. Thus, blocking a
label, we add it to the blocked set and remove it from the possibly-safe set.
Analogously, if we mark a label as safe we add it to the possibly-safe set.

First, we check for every element l ∈ ExpL := {l | ∃x , exp, l ′′ : cmd l =
Assign(x , exp)∨cmd l = CJump(exp, l ′′)} and every variable x ′ ∈ V (exp) whether
l is not reached by any existing definition of x ′, i.e., whether RDx ′

l = {(x′, ?)}. If
this is the case, x ’ is not written on any path leading to l , i.e., x ’ is an input and
we proceed with the next l ∈ ExpL. Otherwise we can distinguish three cases:

1. There exists no AvExp information for variable x ’, i.e., AE x ′
l = ∅. For all

recursive assignments to x ’ at l ’ with use in l , i.e., (x ′, l ′) ∈ RDx ′
l with cmd l′

a recursive assignment, we mark l ’ as blocked. As the value assigned to x ’ at
l ’ can reach l , but the assigned expression does not according to AvExp, it
cannot be propagated. Therefore not all reads of x ’ can be replaced by the
corresponding expression and the original assignment at label l ’ cannot be
removed. This can trigger a ”domino” effect of blocking recursive definitions
through the corresponding def-use chains.

2. There exists exactly one entry in AE x ′
l , e.g., (l ′, x ′, exp′). If cmd l′ is recursive

and l ’ is not blocked, we mark l ’ as possibly safe.
3. There exists more than one entry in AE x ′

l . Then every entry must assign
the same expression exp’ to x ’ but from differing labels, in the following

Speeding Up the Safety Verification of Programmable Logic Controller Code 53

Input: RDx ′
l ,AE x ′

l

Output: safe, block

1 For l ∈ ExpL do
2 For x ∈ V (expl) do

3 I f (RDx ′
l 	= {(x′, ?)}) then

4 I f (AE x ′
l = ∅) then

5 For (x ′, l ′) ∈ RDx ′
l do

6 b lock := block ∪ {l ′} ;
7 EndFor

8 E l s e I f (AE x ′
l = (l ′, x ′, exp ′) && exp ′ . i sR e cu r s i v e (x ′)) then

9 I f (! i sB locked (l ′)) then
10 s a f e := s a f e ∪ {l ′} ;
11 EndIf
12 Else

13 I f (i sB locked (AE x ′
l)) then

14 For (x ′, l ′) ∈ AE x ′
l do

15 b lock := block ∪ {l ′} ;
16 EndFor
17 Else

18 For (x ′, l ′) ∈ AE x ′
l do

19 s a f e := s a f e ∪ {l ′} ;
20 EndFor
21 EndIf
22 EndIf
23 EndIf
24 EndFor
25 EndFor

Fig. 5. Computing safe recursive expressions for propagation

referred to as L’. If the assignment Assign(x ′, exp′) is recursive and there
exists no l ′ ∈ L′ which is blocked, then we can mark all l ′ ∈ L′ as possibly
safe, otherwise we block all l ′ ∈ L′.

When executing the above algorithm starting with the possibly-safe and
blocked sets of the previous iteration until reaching a fixpoint, the result is the
greatest set of safe recursive assignments. Iterating multiple times is necessary
as the ”domino” effect of blocking labels cannot be handled in a single iteration.
For example, consider Fig. 1 where the occurrence of overpow in label 15 cannot
be replaced due to conflicting AE and thus blocks the propagation of label 9.
However, label 11 has marked label 6 and 9 as possibly safe before. Therefore in
the next run, label 11 will see the blocking of label 9 and also block label 6.

When reaching a fixpoint, the resulting safe recursive assignments are not
blocked by any other assignment and can therefore be propagated and removed
without altering the semantics. Note that when replacing some variable in an

54 T. Lange, M.R. Neuhäußer, and T. Noll

expression at some label l” with a safe recursive expression, we have to block l”
in order not to propagate wrong expressions.

4.4 Combining the Optimizations

In order to obtain the “best” program with regard to our optimizations that
preserves the semantics of the original program with respect to the verification
property, it is not sufficient to run the previously presented analyses and opti-
mizations just once, as some optimization potential is only enabled by subsequent
program transformations.

The obvious solution to obtain a minimal program is to execute the optimiza-
tions in an iteration until a fixpoint is reached. This procedure terminates as
each optimization reduces the number of code lines. When we reach a fixpoint,
i.e., the program does not change after optimizations, no optimization potential
is identified and the result is the best program w.r.t. our optimizations.

While some of the analyses could benefit from using static single-assignment
(SSA) form [16], e.g. constant folding or reaching definitions, for the common
case of loop-free PLC code the time complexity of computing a fixpoint is linear
in the size of the program, as is the conversion to SSA form. Thus the effect
would be negligibly small in comparison to the verification time (see Table 2).

5 Bounded Model Checking

In principle, a PLC executes a main routine which computes a set of output
signals based on dedicated input signals and internal state variables cyclically
ad infinitum. Accordingly, the set of program variables V is partitioned into the
sets V in , V out , and V mem of input, output, and persistent variables, respectively.
The state space is given by S = {s : V → D}; adopting the notation from [17],
we define V ′ = {v′ | v ∈ V } and Vi = {vi | v ∈ V } to refer to the next state and
the i-th step variables, respectively.

We use post(s) to denote the successor states of state s and FO(V) to refer to
the set of quantifier-free first order formulae over variables in V .

5.1 Bounded Model Checking

The transition relation ψ of a PLC program P is derived as a first order formula
over free variables V ∪V ′ such that two states s, s′ satisfy ψ (denoted (s, s′) |= ψ)
iff s′ ∈ post(s). Intuitively, ψ is satisfied by s and s′ iff executing one step of P
starting in state s may yield state s′. The control flow is modeled explicitly in ψ
by a special variable pc ∈ V mem , representing the program counter. Moreover,
the initial states of P can be constrained via a state predicate I over V ; in
particular, I = (pc = 0) specifies that any valid execution starts at the first
instruction in P . For simplicity, we assume that all call instructions in P have
been inlined.

Speeding Up the Safety Verification of Programmable Logic Controller Code 55

Table 1. First order semantics of inlined intermediate code instructions

�Jump(j)� =
(
pc′ = j

) ∧ trans ({pc})
�CJump(b, j)� =

(
�b� ∧ (

pc′ = j
) ∨ ¬�b� ∧ (

pc′ = pc + 1
)) ∧ trans({pc})

�Assign(x, exp)� =
(
x′ = �exp�

) ∧ (
pc′ = pc + 1

) ∧ trans ({x,pc})
�Skip� =

(
pc′ = pc + 1

) ∧ trans ({pc})
�Stop� =

(
pc′ = term

) ∧ trans ({pc})

trans : 2V → FO(V ∪ V ′) : X �→
∧

v∈V \X

(
v = v′

)
.

For a PLC program of length n, we define the transition formula ψ over free
variables in V ∪ V ′:

ψ = ψterm ∧
∧

0≤l<n

(pc = l→ �instr l�) (1)

where ψterm = (pc = term)→ trans(∅). As formally defined in Tab. 1, trans(X)
transfers the values of all variables apart from those in X to the next state.

Each subformula �instr l� formalizes the semantics of the instruction at pro-
gram label l by encoding the state transformation from variables in V to variables
in V ′. The subformula ψterm corresponds to a self-loop once P has terminated.
Table 1 defines the semantics of each intermediate code instruction, where term
is a special program label representing termination. The expression semantics is
omitted for brevity.

We verify invariants ϕ ∈ FO(V) over the current state’s variables.

Definition 10 (BMC formula, [17]). Let P be a PLC program, I ∈ FO(V)
an initial constraint, k ∈ � be a bound, and ϕ ∈ FO(V). The bounded model
checking formula for P, I, k, and ϕ is defined as

Ψk
ϕ = I(s0) ∧

∧
0≤i<k

ψ(si, si+1) ∧
∨

0≤i≤k

¬ϕ(si). (2)

Proposition 1. Ψk
ϕ is unsatisfiable iff ϕ holds in P up to k steps.

If Ψk
ϕ is satisfiable, P satisfies the negation of the property along one of its

computation paths, starting in an initial state satisfying I, and after at most k
steps. If η |= Ψk

ϕ, then η is a counterexample, i.e., a satisfying assignment which
corresponds to a computation path in P violating ϕ.

5.2 Termination

Checking the satisfiability of the formulae Ψ0
term , Ψ1

term , . . . , where

Ψk
term = I(s0) ∧

∧
0≤i<k

ψ(si, si+1) ∧ (pck �= term) (3)

56 T. Lange, M.R. Neuhäußer, and T. Noll

yields a semi-decision procedure for termination of P under initial constraints I.

Proposition 2. Execution of P terminates after at most k steps starting in
states satisfying I if Ψk

term is unsatisfiable.

Using assumption literals and an incremental SMT solver, termination can
be detected during bounded model checking with low additional overhead. The
execution model of a PLC requires any PLC program to terminate within a short
cycle time (e.g. 0.1s); complex control structures are generally avoided, which
renders a semi-decision procedure for termination viable in practice.

5.3 Pruning Formulae

Most PLC programs have a very simple control flow due to their cyclic execution
model, where inputs are read, processed, and outputs are generated. When de-
ciding the satisfiability of Ψk

term and Ψk
ϕ, the SMT solver constructs the control

and data flow of the PLC program. The complexity of this task can be reduced
considerably by pruning the subformulae ψ in (2) and (3). We reduce the size of
Ψk
ϕ and Ψk

term by precomputing the set of feasible program paths. Therefore, let

succ(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{l′} if instr l = Jump(l′)
{l + 1, l′} if instr l = CJump(exp, l′)
{term} if l = term ∨ instr l = Stop

{l + 1} otherwise.

be the set of successor labels for a given program label l. The sets Πi ⊆ L of
program labels reachable in i steps are inductively defined by

Π0 = {l ∈ L | ∃s ∈ S : s |= I ∧ s(pc) = l} and

Πi+1 =
⋃
l∈Πi

succ(l).

The sets Π0, . . . , Πk allow us to prune infeasible computation paths from Ψk
ϕ.

Lemma 1 (Pruning formulae). Let P , ϕ, k, and the sets Πi be as before, and
define

ψi
opt =

∧
{(pc = l→ �instr l�) | l ∈ Πi, l �= term}∧∧
{ψterm | term ∈ Πi} and

(4)

Ψk
ϕ,opt = I(s0) ∧

∧
0≤i<k

ψi
opt (si, si+1) ∧

∨
0≤i≤k

¬ϕ(si). (5)

Then Ψk
ϕ ≡ Ψk

ϕ,opt .

Note that analogously to Lemma 1, restricting to program labels in Πi yields a
formula Ψk

term,opt which is equivalent to the termination check in (3).

Speeding Up the Safety Verification of Programmable Logic Controller Code 57

5.4 Multiple Cycles

Conceptually, variables in V in and V out correspond to sensor and actuator sig-
nals. Hence, they can only be read or written to, respectively. On the other hand,
elements from V mem are variables that reside in the PLC’s memory which keep
their values from one cycle to the next.

Upon termination of P , the values of the output variables v ∈ V out control
actuators which affect the automation environment. Thereby, they indirectly
determine the inputs for the next execution of P . As the environment is not
modeled anywhere in the input program, we consider the map from output
variables of cycle k to the inputs of cycle k + 1 as underspecified.

Replacing all occurrences of ψterm by

ψglue = (pc = term)→ (pc′ = 0) ∧ trans
(
V in ∪ {pc}

)
in the transition formula ψ and ψi

opt from (1) resp. (4) formalizes a non-termina-
ting loop where P is executed infinitely often; requiring v′ = v for all except the
next cycle’s input variables and the program counter transfers the internal state
and the output values to the next cycle while leaving its input variables uncon-
strained. As free variables are existentially quantified in satisfiability checking,
this corresponds to a non-deterministic abstraction from the effect of the envi-
ronment on the next cycle’s input variables.

Note that although our verification approach abstracts from concrete timing,
considering multiple cycles allows to draw restricted conclusions of the system’s
temporal behaviour by taking the cycle time into account.

6 Evaluation

Correctness properties of two types of IL programs are formally verified using
Z3 [18] to handle the BMC formulae. Firstly, we consider safety related control
programs which monitor the speed and direction of a drive, check that its position
is outside a pre-defined danger range and detect standstill, respectively; these
programs contain no loops and have a simple control flow but exhibit large
state spaces due to their unconstrained input variables. Secondly, we verify some
non-trivial properties of a greatest common divisor and a Fibonacci number
implementation.

Table 2 lists the verification times1 for each input program along with the
number of instructions and variables (in brackets) in its original version and
intermediate representation, both before and after model minimization. Most IL
instructions have a complex semantics which often affects many processor reg-
isters. Generally, each IL instruction is transformed into an equivalent sequence
of IC instructions; moreover, all registers are treated as variables. Therefore, the
number of instructions and variables increases drastically by the first transfor-
mation step. However, given the simple control flow and the highly redundant

1 All times are averages measured on a Core i5 processor with sufficient memory to
avoid swapping.

58 T. Lange, M.R. Neuhäußer, and T. Noll

Table 2. Number of program locations and variables (in parentheses) in each trans-
formation step, and the model minimization and verification times

PLC program verification property SMT IL IC opt
time

min BMC

danger range flags ok (pre-release) SAT 247(26) 792(42)
5(10) 0.2s <0.1s

monitoring flags ok (release) UNSAT 255(26) 821(42)

speed control control flags correct UNSAT 116(17) 362(27) 3(10) 0.7s 0.9s

direction detection
flags ok (error) SAT

88(11) 287(23) 3(7) <0.1s <0.1s
flags ok (release) UNSAT

standstill detection flags set correctly UNSAT 112(15) 347(29) 3(9) 0.5s 0.6s

gcd(a, b), a, b ≤ 10 gcd(a, b) divides a, b UNSAT
21(5) 50(15) 10(4) <0.1s

27.7s
gcd(a, b), a, b ≤ 50 gcd(a, b) divides a, b UNSAT 863.3s

Fibonacci
∀x<12. fib(x)<100 UNSAT

26(4) 57(14) 11(4) <0.1s
7.7s

∀x<13. fib(x)<100 SAT 8.6s

semantics of IL, the model minimization techniques from Sec. 4 reduce the size
of the IC program drastically and restrict to the relevant variables. On the one
hand, this is due to constant folding and program slicing; on the other hand,
our intermediate code allows for complex Boolean and arithmetic expressions
whereas IL is assembler-like. Using forward expression propagation extensively,
we eliminate temporary variables and trade more complex expressions for reduc-
ing the number of program locations. In our experiments, almost all basic blocks
of the resulting control flow automaton consist of a single IC instruction.

The effect on the verification times of a semantics preserving transformation
into our intermediate code and strong model minimizations becomes obvious
when comparing to an earlier implementation which directly translates the IL
code into a BMC problem. It finds the error in the pre-release version of the
danger range program after 57s; the correctness proof of the released version
takes 364s.

The greatest common divisor and the Fibonacci examples are hard to verify
due to their complex control flow and the properties that are verified. While
being atypical for PLC programs, such algorithms provide an interesting bench-
mark. As can be seen from Table 2, model minimization is still effective; it
reduces the number of program locations by half, removes temporary variables
in the gcd example, and yields an equivalent program expressed in a semanti-
cally much simpler intermediate code. Proving and disproving simple properties
such as gcd(45, 27) = 9 and gcd(45, 27) �= 9 completes in 0.1s and 0.2s, resp.
However, even though the more complex properties listed in Table 2 yield the
same optimized IC program, their verification by the SMT solver takes expo-
nentially longer. On the one hand, this is due to the larger bound required for
completeness of BMC in these cases; on the other hand, in the gcd example,
the runtime of the SMT solver grows rapidly for the same BMC formula if the
restrictions on the input values are loosened only slightly.

Speeding Up the Safety Verification of Programmable Logic Controller Code 59

7 Conclusions

We presented and evaluated an approach to optimize the verification of safety
critical PLC code. By bringing advanced BMC techniques involving SMT-based
reasoning to PLCs, we enable engineers to verify safety properties in a more
complete way than testing allows, and to efficiently find counterexamples. By
introducing a new intermediate code and by presenting successful adaptations
and extensions of compiler optimization techniques to improve SMT solving, we
highly improved usability of automatic verification using BMC techniques for
PLC code. The evaluations show that for large industrial PLC programs, the
verification time can easily be improved by three orders of magnitude.

In future work, we intend to investigate more advanced verification techniques,
such as inductive reasoning [19,20,21] and interpolation techniques [22].

References

1. Frey, G., Litz, L.: Formal methods in PLC programming. In: Systems, Man, and
Cybernetics, vol. 4, pp. 2431–2436. IEEE Computer Society (2000)

2. Younis, M.B., Frey, G.: Formalization of existing PLC programs: A survey. In:
CESA, pp. 234–239 (2003)

3. Fokkink, W., Hollingshead, P.: Verification of interlockings: From control tables to
ladder logic diagrams. In: FMICS, pp. 171–185 (1998)

4. Groote, J.F., Warners, J.P.: The propositional formula checker HeerHugo. Journal
of Automated Reasoning 24(1-2), 101–125 (2000)

5. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in
railway interlocking systems. ENTCS 250(2), 19–31 (2009)

6. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of PLC programs written in Instruction List. In: 2000 IEEE Int.
Conf. on Systems, Man, and Cybernetics, pp. 2449–2454. IEEE (2000)

7. Meulen, M.: Verification of PLC source code using propositional logic. Master’s
thesis, Technical university of Eindhoven (2010)

8. Pavlovic, O., Pinger, R., Kollmann, M.: Automation of formal verification of PLC
programs written in IL. In: Verification Workshop. CEUR Workshop Proceedings,
vol. 259 (2007)

9. Loeis, K., Younis, M.B., Frey, G.: Application of symbolic and bounded model
checking to the verification of logic control systems. In: ETFA, pp. 247–250 (2005)

10. Pavlovic, O., Ehrich, H.D.: Model checking PLC software written in function block
diagram. In: ICST, pp. 439–448 (2010)

11. Sülflow, A., Drechsler, R.: Verification of PLC programs using formal proof tech-
niques. In: FORMS/FORMAT, pp. 43–50 (2008)

12. Blech, J.O., Ould Biha, S.: Verification of PLC properties based on formal seman-
tics in Coq. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS,
vol. 7041, pp. 58–73. Springer, Heidelberg (2011)

13. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD 2009, pp. 25–32. IEEE (2009)

14. John, K., Tiegelkamp, M.: IEC 61131-3: Programming Industrial Automation Sys-
tems. Springer (2010)

60 T. Lange, M.R. Neuhäußer, and T. Noll

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

16. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

17. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

18. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

19. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD, pp. 173–180. IEEE (2007)

20. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

21. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

22. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

Modeling Firmware as Service Functions
and Its Application to Test Generation

Sunha Ahn and Sharad Malik

Princeton University, NJ, USA

Abstract. The term firmware refers to software that is tied to a specific hardware
platform, e.g., low-level drivers that physically interface with the peripherals.
More recently, this has grown to include software that manages critical hardware
platform functions such as power management. This growing firmware needs to
be shipped with the hardware and shares many of the same critical design con-
cerns as the hardware. The two that we address in this paper are: co-design with
the other system components, and validation of the firmware interactions with
the connected hardware modules. To this end we introduce a specific Service-
Function Transaction-Level Model (TLM) for modeling the firmware and inter-
acting hardware components. A service function provides a service in response
to a specific trigger, much like an interrupt-service routine responding to an inter-
rupt. While TLM has been used in the past for HW-SW codesign, we show how
the particular structure of the proposed service function based model is useful
in the context of firmware design. Specifically, we show its application in au-
tomatic test generation. Recently concolic testing has emerged as an automated
technique for test generation for single-threaded software. This technique cannot
be used directly for firmware, which, by definition, runs in parallel with the in-
teracting hardware modules. We show how the service function model proposed
here can be used to analyze these interactions and how single-threaded concolic
testing can still be used for an important class of these interaction patterns. The
model and the test generation are illustrated through a non-trivial case study of
the open-source Rockbox MP3 player.

1 Introduction

Firmware is the specialized class of software that directly accesses hardware. It can be
in the form of software semi-permanently embedded in chips, drivers for specific phys-
ical components, or low-level OS code that directly interacts with hardware. In each
case, the firmware is placed between the hardware and higher-level software (OS or
applications) as in Fig. 1, thereby enabling them to communicate, via firmware, with
each other. More recently, this category has grown to include software that manages
critical hardware platform control functions such as power and even security manage-
ment. These functions were previously implemented in dedicated hardware controllers,
but their increasing complexity, coupled with the increasing availability of on-chip pro-
cessing cores, has led to their migration to firmware [1]. This growing firmware needs
to be shipped with the hardware and thus shares many of the same critical design con-
cerns as the hardware. The two that we address in this paper are: co-design with other
system components, and validation of the firmware interactions with the hardware.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 61–77, 2013.
c© Springer International Publishing Switzerland 2013

62 S. Ahn and S. Malik

Application SW/OS

Firmware

Physical Environment

Hardware

Fig. 1. Computer System Components

In a system-on-a-chip design the firmware needs to be developed at the same time
as the hardware it interacts with. Thus, at the least, a model is needed for the firmware-
hardware interface that correctly captures the interactions. The firmware also needs to
be validated in the context of this interface model. Often the hardware model is miss-
ing, and only a natural-language specification is available in the early stages of design
development. When available, the model is written in a hardware design language such
as Verilog. However, the firmware itself is developed largely in a high-level language
such as C/C++ with some assembly code to access specific registers/memory/pins that
connect with the hardware. Validating a C/C++/Assembly program in the context of
Verilog is challenging. One way this has been overcome in practice is by developing
early design models for both the firmware and hardware in a common modeling lan-
guage such as System-C that enables their co-simulation. These System-C level models
are generally Transaction-Level Models (TLMs) [2,3,4], i.e., a functional model that
captures the interaction between components without necessarily providing all the low-
level details. Co-simulation of the firmware and hardware TLMs is then the workhorse
for validating the firmware and hardware. However, the main challenge associated with
this methodology is that the System-C scheduler typically does not/cannot consider the
prohibitively large number of possible interleavings between the concurrent hardware
and firmware. Thus, this simulation is incomplete with an unknown coverage of inter-
leavings.

We address these challenges through the use of a specific TLM that captures some
high-level information in the hardware and firmware transactions. Specifically, a
firmware transaction is a service function in response to an input from the hardware or
the higher-level application/OS software. Similarly a hardware transaction is a service
function in response to an input from the physical environment or the firmware (Fig.
1). A service function provides a service in response to a specific trigger, much like an
interrupt-service routine responding to an interrupt. In structuring the transactions in
the form of service functions, we can exploit specific interaction patterns between the
transactions to address the validation challenges mentioned above. These patterns can
be used to automatically derive tests using concolic testing [5] based methods. Con-
colic (= concrete + symbolic) testing has recently emerged as a promising technology
for automatically developing test cases for unit testing of software. Concolic testing
uses symbolic analysis of the software to generate concrete tests that test specific code
paths. Current concolic testing techniques and test generation tools (e.g., KLEE [6],
DART [7]), yet, are limited to single threaded code. However, a firmware thread runs
concurrently with hardware and possibly other firmware threads, which would preclude
the direct use of single-threaded concolic testing. We show how the interaction pat-
terns enable single-threaded concolic testing to be used for multi-threaded testing for a

Modeling Firmware as Service Functions and Its Application to Test Generation 63

large and important class of interaction patterns (the stateless producer-consumer case
discussed in this paper). This paper makes the following contributions:

– It presents a novel service function based transaction-level model for the co-design
of firmware and its interacting hardware components and shows how this model
enables a useful characterization of their interactions. (§ 3.1-3.2 §)

– It shows how specific interaction patterns (the stateless producer-consumer case)
enable the use of a single-threaded concolic testing framework to generate a com-
plete test set for a firmware thread even when it is interacting with other concurrent
firmware/hardware threads. (§ 4.1-4.2 §)

– It demonstrates the practical applicability of the proposed modeling methodology
through its application to a non-trivial public domain Rockbox MP3 player sys-
tem and the practical applicability of the proposed concolic test generation tech-
nique through the use of a public domain concolic test generator, KLEE [6], on the
firmware threads in Rockbox [8]. (§ 3.3,4.3 §)

Overall this paper takes an important step towards bringing high-level functional mod-
eling techniques to firmware/hardware modeling and exploiting the interaction patterns
between the concurrent firmware and hardware threads for automatic test generation.

2 Rockbox Case Study

Our running example Rockbox [8] is composed of application code and firmware code
including device driver threads which access the hardware device using assembly level
driver APIs. These APIs are device-specific since Rockbox supports wide range of MP3
players. We use iAudio X5 device as an example in this work. The main Rockbox
firmware is the device driver threads: the power thread for power management, the
USB thread handling USB insertion/removal events, the backlight handling thread, the
ATA disk management thread, etc. Each thread executes its service function in response
to an input from the hardware or application level software. As an example of a service
function, the power thread’s job in each call is to (1) update the charger connection
status, and (2) keep watching the battery level by reading the device (PCF50606 con-
troller chip [9]) status. Hence, these service actions in each call depend on the inputs
from the PCF50606 device. Similarly, the hardware device provides service functions
in response to the firmware. For instance, one of the iAudio X5 chips [10], PCF50606,
which manages the physical power supply provides a number of services. One example
service of this chip is converting the analog battery level to digital and updating the
value on the shared register in response to the physical voltage level change. Another
service is to update the charger connection status. In the next section, we explain our
novel service function based TLM with this example.

3 Transaction Level Model

3.1 Model Definition

Definition 1. A High-Level State Machine (HLSM) [11] is defined as
(S, I, O, V, s0, v0, ω, ν, δ) where S is a set of states, I is a set of inputs, O is a

64 S. Ahn and S. Malik

set of outputs, V is a set of storage values, s0 ∈ S is the initial state, v0 ∈ V is the
initial storage value, ω : S × I × V → O is the output function, ν : S × I × V → S is
the state transition function, and δ : S × I × V → V is the storage update function.

HLSM extends the Finite State Machine by treating the data state V as separate from the
control state S. This allows the HLSM to describe algorithmic computation as a series
of data updates (possibly conditional). In the following, s ∈ S (possibly subscripted)
represents a specific value of state. v represents a variable that can take values from V .

Definition 2 (Transaction). A transaction T is an HLSM with a start state ss ∈ S with
no incoming transition and an end state se ∈ S with no outgoing transition.

These characteristics are important to capture the service function nature of our transac-
tions. A firmware service function starts in response to an external input from hardware
or application/OS and ends at the completion of the service task. This is modeled by
means of a single departure from the start state, and a terminating end state.

For a transaction, V represents both data values that are local to the transaction and
data values that are shared with other transactions. Thus, V = L×G where L is the set
of local storage values and G is the set of shared storage values. Equivalently, v = (l, g)
where v, l, g represent variables that take values from V , L, G respectively. Note that
V may be composed of several different sets of storage values V1, V2, . . . , Vk, . . . , Vp,
i.e., V = V1 × V2 . . . × Vk . . . × Vp. Equivalently, v = (v1, v2 . . . , vk . . . , vp), where
vk represents a (either local or shared) variable that takes a value from Vk. Different
transactions communicate through these shared storages. A state s in a transaction reads
variable vk if some storage update in s depends on vk, or some transition from s depends
on vk. s writes vk if it modifies the value of vk.

To illustrate this model through the Rockbox example, the service function of the
power thread can be modeled as one transaction which starts by updating the charger
connection status and ends by reading the battery level in order to receive the physical
status.

Definition 3 (Transaction Execution Model). A transaction instance ti is an execu-
tion of a transaction T . When T executes, ti starts from the start state ss and continues
execution till it reaches the end state se. ti is followed by the next instance ti+1.

Depending on the values of i and v, a transaction instance may follow different paths
through the transaction. Also, only one instance of a transaction can be active at a time
while instances of different transactions can be executed concurrently.

Definition 4. A Transaction Level Model (TLM) T is a set of concurrent transactions.

A TLM can consist of both firmware and hardware transactions where each trans-
action is a specific service function. Their interactions are captured through the shared
variable g. For instance, the two services of the PCF50606 chip can be modeled as two
hardware transactions providing the physical battery level and the charger status to the
power firmware transaction through the shared variables. These three transactions run
concurrently. This uniform modeling of the hardware and software as transactions pro-
vides a uniform analysis framework for studying their interaction patterns as well as a
consistent modeling method for both firmware and hardware.

Modeling Firmware as Service Functions and Its Application to Test Generation 65

The shared variables g provide the interactions between concurrent transactions.
However, concurrency can result in many possible interleavings between the transac-
tions that can impact the values of g and thus the paths taken in the transaction instances.
Consider two concurrent transactions T1 and T2 where T1 reads v, and T2 writes v in
every instance. Note that, in our TLM model, individual reads/writes to shared variables
are atomic, but the entire transaction is not. In this example, t1 (an instance of T1) reads
the value updated by the last instance of T2 executed before t1. This last instance of
T2 is determined by the relative speed of T1’s instances and T2’s instances and their
interleaving. Thus, to get the complete set of possible behaviors of the transactions, all
possible interleavings need to be considered.

3.2 Analyzing Data Dependencies between Transactions

We now show how specific interaction patterns between transactions can be exploited
to reduce the number of interleavings. In Rockbox, we observed that there are a few
interesting interaction patterns between transactions based on the data dependencies.
We first define the notions of data dependence and data dependence graph and describe
the specific interaction patterns of interest based on this. While these terms are well
known in the compiler context it is useful to define them in the current TLM context.

Definition 5 (Data Dependence). Variable vl in state sm in transaction Tn is data
dependent on variable vi in state sj in Tk if sj updates vi, and this update determines
the update of vl in sm.

Definition 6 (Data Dependence Graph). The data dependence graph D for a given
TLM, T , is a directed graph with vertices (v, s, T) where v, s ∈ T and T ∈ T and v is
updated in s in T . Edge ((vi, sj , Tk), (vl, sm, Tn)) ∈ D if and only if vl in sm in Tn is
data dependent on vi in sj in Tk.

In Fig. 2a, vl in sm is data dependent on vi in sj . Note that the above definition is
not constructive, i.e. it does not provide an algorithm for determining data dependence.
That is beyond the scope of this paper1. In the above, Tk and Tn may be the same
transaction and vl is updated by a transaction instance subsequent to when vi is updated
in a previous instance. This form of data dependence is referred to as a cross-instance
data dependence. Different interaction patterns within and across transactions can now
be defined in terms of data dependence and the data dependence graph.

Definition 7 (Transaction Independence). Transaction Tn is independent of transac-
tion Tk iff for each (vi, sj , Tk) there is no path to any (vl, sm, Tn) in D.

Thus, for validating Tn, Tk is immaterial. This happens often in firmware transactions.
Many firmware transactions are independent of the hardware transactions they interact
with when they are only responsible for setting the state of the hardware transactions.

Definition 8 (Producer Transaction). Let U = (v, sj , T) be the set of all vertices in
D with a write to v in T . Further, for each u ∈ U , the only vertices in D with paths to
u are in T . In this case T produces v.

1 Available in the compiler literature [12].

66 S. Ahn and S. Malik

b

Sk

Sj

b

b

Sm

Tk Tn

a = 3

vi = a vl = vi

(a) Producer Tk and Consumer Tn

b

Sj

Sm

b

b

Sq

T Tr

a = b
if (a > 5)

a = b
if (a > 5)

b = a + 1

(b) Stateful transactions T and Tr

Fig. 2. (dashed arrow: a transaction instance, solid arrow: edge of the dependence graph)

Intuitively, in this scenario T produces data that is independent of other transactions.
Thus, we do not need to consider the interleaving of other transactions with T in com-
puting this data. In Fig. 2a, the variable vi is only written in sj , and the only edge to sj
is from sk, which is within Tk. Thus, Tk produces vi.

Definition 9 (Producer Consumer Interaction). Let ((vi, sj , Tk), (vl, sm, Tn)) be an
edge in D and let Tk produce vi. In this case Tn is said to consume vi.

In Fig. 2a, Tk are the producer and Tn are the consumer of vi. Note that a producer
consumer interaction is defined specific to the value produced. Thus, it may be possible
for T1 to produce x and consume y and T2 to produce y and consume x. Thus, neither
of the threads in a producer consumer relationship may be independent of the other.

Definition 10 (Stateful Transactions). A transaction, T is said to be stateful iff (1)
there is a cross-instance edge ((vi, sj , T), (vl, sm, T)) ∈ D or (2) there is a path from
(vi, sj , T) to (vl, sm, T) that goes through some vertex (vp, sq, Tr) and T �= Tr.

Intuitively the first case in this definition corresponds to vl using a value written to vi
in a previous instance of T . In the second case, since vp is from some other transaction,
depending on the relative speeds of the execution of individual instances, vl can use a
value that is written to vi in a previous instance of T . In Fig. 2b, both T and Tr are
stateful. In a stateful transaction, an instance of the transaction depends on previous
instances and provides values for future instances. Thus, multiple transaction instances
need to be unrolled to cover all possible scenarios for this transaction. (Assuming the
initial states of both a and b are zero, without unrolling T and Tr multiple times, the
condition (a > 5) will never be explored.)

A transaction is said to be stateless if it is not stateful. Intuitively, the values pro-
duced by a transaction instance of a stateless transaction do not depend on any previous
instance of the transaction. Hence, in a stateless transaction, only one instance of the
transaction is needed to cover all possible scenarios for that transaction. This is quite
common with a service function based TLM. Each instance of a service function for
the firmware is in response to some input from the application/OS software or from the
hardware. Similarly, each instance of a service function for the hardware is in response
to an input from the firmware or the physical environment. These responses are typi-
cally independent of previous invocations of this service function. In the next section,

Modeling Firmware as Service Functions and Its Application to Test Generation 67

we examine the practical prevalence of the statelessness and the producer-consumer
relationship.

3.3 Prevalence of the Interaction Patterns in Practice

We developed the Rockbox TLM model using the service function based TLMs pro-
posed in this paper. It consists of a set of firmware transactions and a set of hardware
transactions that the firmware transactions depend on in SystemC. For the firmware we
used reverse engineering to model the TLM specification out of the C/assembly open-
source firmware implementation. The hardware transactions were written by manual
analysis of the relevant datasheets [13,9,10]. We modeled 6 firmware and 3 hardware
transactions (Table 1a) and observed the model’s interaction patterns. To show that these
patterns are not only observed in the specific Rockbox case but are meaningful in gen-
eral cases, we studied the interaction patterns of several Linux device drivers [14] and
the corresponding x86 QEMU device emulator code [15] as well. Table 1c shows the
different types of peripherals emulated in x86 QEMU and how many specific devices
are emulated for each category. (Here, we selected some important representative cat-
egories from QEMU. The complete list is over 53 devices and more than 91961 lines
of code, and thus a full analysis of QEMU interaction patterns is beyond the scope of
this paper.) We chose one device per each category and analyzed its interaction patterns
with the corresponding Linux device driver.

Independence: Often the transaction interaction is one-way, i.e. one is independent
of the other when the two transactions are interacting. For example, in the backlight
thread, the function setting the backlight brightness only writes to the hardware device
but does not read from it. Thus the backlight thread is independent of the LCD device. 6
of 7 Rockbox transactions (third column of Table 1b) are independent of the interacting
firmware transactions (first column). For QEMU, 7 of the 15 Linux transactions are
independent of the QEMU transactions.

Producer-Consumer Relationship: The most common case in both Rockbox and
Linux-QEMU is that a shared variable is shared only between one firmware and one
hardware transaction, or one firmware and another firmware transaction, and this shar-
ing has the producer-consumer interaction pattern. In these cases the shared variables
are I/O pins or registers in a device that are shared with a dedicated device driver, or
global variables across the firmware transactions. This pattern is easy to find in em-
bedded systems since many I/O pins or registers are dedicated to a specific purpose
and written by a master module. In fact, 6 of 7 pairs of interacting transactions in the
Rockbox and 6 of 9 devices in Linux-QEMU are in the producer-consumer relationship.

Statelessness: As shown in Table 1b and 1c, stateless transactions occur frequently
since a firmware transaction instance tends to be interested in only the current status of
the device and hence processes a fresh set of device input values in each instance. For
example, the power thread reads the current battery level, which is naturally stateless
because the past battery level does not decide the current value. In Table 1a, 8 of 9
transactions are stateless, and 19 of 30 Linux or QEMU transactions are stateless.

68 S. Ahn and S. Malik

Table 1. Interaction Patterns of Practical Examples

Transaction Type Main Functionality
Power FW Monitor charger connection and battery level
USB FW Monitoring USB status

Backlight FW Manage to turn on/off the LCD backlight
ATA FW Stop or restart the ATA bus

depending on the USB status
Button FW Post the button value to other threads

Charger stat HW Provide the physical charger status [9]
Battery level HW Convert the analog battery level to digital [9]
USB detect HW Detect the physical USB presence [13]

ATA transfer FW Transfer data from/to the disk

(a) Rockbox transactions and their functionality
(FW: Firmware, HW: Hardware)

Trans- Shared Related
Relationship

action storage Transaction

Power
batvolts Battery level Both stateless & p-c
GPI56 Charger status Both stateless & p-c

usb state USB Both stateless & p-c

USB id
USB detect Both stateless & p-c
Backlight Both stateless & p-c

Backlight
remote hold

Button Stateless-stateful & p-c
button

ATA
sleeping ATA transfer Not p-c
spinup ATA transfer Both stateless & p-c

Button - - Stateful

(b) Relationship of the interacting Rockbox trans-
actions (p-c means producer-consumer)

Category
of devices Representative

Linux Transaction Related QEMU Transaction
Relati-

supported device onship
Storage 5 ATAPI IDE ide transfer pc(SF) cmd read(SL) p-c

Graphics 2 Cirrus CLGD 54xx VGA cirrusfb bitBLT(SL) cirrus vga iowrite(SF) not p-c
Network 5 Ne2000 ethernet card block input(SL), block output(SL) ne2000 iowrite(SL),ne2000 ioread(SL) p-c

Port 2 16550A UART rx chars(SL),tx chars(SF) serial iowrite(SF), serial ioread(SL) not p-c
Bus 13 USB UHCI uhci readw (SL), uhci writew(SL) uhci iowritew(SF),uhci ioreadw(SL) not p-c

Input 4 Microsoft serial mouse sermouse interrupt(SF) msmouse event(SL) p-c
Sound 4 Intel 82801AA codec read(SL),codec write(SL) nabm read(SL),nabm write(SF) p-c
Clock 2 i8253 PIT i8253 read (SF) pit iowrite(SF),pit ioread(SF) p-c

Interrupt
3 i8259 interrupt handler

irq pending(SL),mask irq(SL),
pic iowrite (SF),pic ioread(SL) p-c

handler unmask irq(SL)

(c) Linux-QEMU pair (p-c : producer-consumer, SL : stateless, SF : stateful)

4 Using Transaction Interaction Patterns in Firmware Testing

This section shows how the transaction interaction patterns presented in the previous
section can be exploited to simplify test generation as well as increase test coverage.
We show how the interaction patterns can be analyzed, and the results of the analysis
can be encoded as constraints to be used during concolic test generation. This enables
using a single threaded test generator such as KLEE to generate tests for a firmware
transaction while accounting for other interleaving hardware and firmware transactions.

4.1 Automatic Test Generation Using KLEE

Concolic Testing: Concolic testing [5] combines symbolic execution [16] with concrete
execution. It uses a constraint solver with the symbolic execution to cover all feasible
paths related to the given symbolic variables. The user is responsible for identifying a
set of variables as symbolic and instrumenting her test code. Then the concolic testing
tool executes the code concretely except for branches controlled by the symbolic vari-
ables. For these branches, the tool explores both paths while attaching the corresponding
constraints of the symbolic inputs for each path. At the end of each path, the tool asks
its solver to generate the concrete values, or test cases, satisfying the constraints. In our
work we chose to use KLEE [6] since it is open and well-maintained.

Code 1.1 is an instrumented test code for KLEE. KLEE executes the code as usual
until it hits a symbolic value (line 4). Then, it forks execution and adds the constraint

Modeling Firmware as Service Functions and Its Application to Test Generation 69

1 void main(void){
2 unsigned int i, ret;
3 make_symbolic(&i);
4 if(i > 0) ret = i;
5 else ret = 1/i;
6 }

Code 1.1: Instrumented code for KLEE

i > 0

add i > 0 add i ≤ 0

test1.out :
 i = 10

add i == 0

i == 0

add i != 0

test2.out :
 i = -10

error1.out :
 i = 0

Fig . 3a. Generated test cases

i > 0 on the true path and i ≤ 0 on the false path (Fig. 3a). The true path ends after
line 4, and the solver picks a random value, say 10, for i among those values satisfying
i > 0. On the false path with the path constraint i ≤ 0, KLEE continues execution,
eventually reaches line 5, and detects a dangerous operation, division by zero. Now,
KLEE adds i == 0 as a constraint to the solver, and generates the error case. KLEE
continues the other path, i ≤ 0∧i �= 0, and generates the test case i == −10 at the end.
As shown, KLEE explores all feasible paths for this case and generates the interesting
test cases.

Concolic Testing and Concurrency: Concolic testing has been used largely for
unit testing single-threaded code, not a multi-threaded program. 2 There have been
approaches to extend concolic testing to multi-threaded programs [19,20]. These in-
volve searching for all possible interleavings (or equivalently, schedules) of concurrent
threads. However, due to the large number of possible interleavings, this tends not to
scale. Partial Order Reduction (POR) [21] can help mitigate this. It generates only one
representative interleaving among all interleavings which result in the same state. How-
ever, even with POR the number of interleavings can still be very large. In this work we
show how the transaction interaction patterns can be used to address this issue.

4.2 Test Case Generation for Stateless Producer-Consumer Transactions

As seen in the previous section, stateless transactions and producer consumer inter-
action pattern are prevalent. Also, as discussed, if the firmware is the producer, the
firmware thread is independent of the hardware thread. Hence, the most interesting case
is when the firmware thread is the consumer. Here, what/when the hardware thread pro-
duces can impact the paths that the firmware thread takes, and thus impact the test cases
of the firmware. We now show how the interactions of the hardware thread can be mod-
eled through additional constraints provided to the constraint solver used for test case
generation of the firmware thread. The overall procedure is as follows. The transactions
to be tested are minimally instrumented manually for two purposes. The first is to iden-
tify certain variables as symbolic. These are the variables that need to be explored to
cover various program paths in the firmware. This is standard in concolic testing. The
second is to add constraints that capture the producer consumer interaction among the
transactions. This is specific to our methodology. As we will show, these constraints
completely eliminate the need to consider interleavings for this interaction pattern.

2 The survey paper [17] on concolic testing tools indicates that only jCUTE [18] supports con-
current programs, but it is not open source.

70 S. Ahn and S. Malik

1 void T1(){
2 int rand, result;
3 klee_make_symbolic(&rand);
4 if(rand < 0){ x = 1; }
5 else
6 { x = 2;
7 x = 3; }
8 result = y; // error if result is

0
9 }

Code 1.2: Producer for x / consumer for y

1 void T2(){
2 int r1, r2;
3 r1 = x;
4 r2 = x;
5 if(r1<0 || r2<0)
6 y = 0; //error
7 else
8 y = 7;
9 }

Code 1.3: Consumer for x / producer for y

Example Transaction: We will illustrate the procedure using a simple example that
captures the essence of the procedure. (This example focuses on two different producer
consumer interactions, each with one shared variable, between two transactions. How-
ever, the procedure can extend to producers sharing multiple variables with multiple
consumers.) In Code 1.2 and 1.3, T 1 is a producer for x and a consumer for y at the
same time. T 2, on the other hand, consumes x and produces y. In the Code 1.2, the
variable rand is used to take either one of the paths in each execution. If result is 0,
it is considered to be an error. While these transactions, as constructed, are not compu-
tationally very meaningful, their structure has been selected to illustrate the key points
of the test generation procedure while keeping the transactions themselves small. By
manual analysis, we can easily conclude that in the concurrent execution of T 1 and T 2,
each of r1 and r2 could independently store 1, 2, or 3. The order of write does not
matter, i.e. r1 = 3, r2 = 2 is possible in an instance of T 2, since a new instance of T 1
keeps getting executed and T 2 can read any of the value produced by the new instance.
Note that r1 = 0 or r1 = r2 = 0 is also possible in case T 2 executes first before T 1
ever executes. Accordingly, we see that the condition in line 5 in Code 1.3 will never be
true. This means T 1 will not read 0 from y. It is important that the transaction instances
do not have to be unrolled for testing since T 1 and T 2 are stateless. We now show how
the results of this analysis can be captured through instrumenting the code in KLEE.

Instrumenting the Input Code: The overall goal of instrumenting the producer
is tracking the different values that could be produced by the producer for use by its
consumer. In the instrumented version, T1, the producer for x, takes an integer pointer
∗wx as an argument in Code 1.4 (wx is short for writex). The value of x updated by
T 1 will be stored in wx later, so that the test generator code (Code 1.5) which calls T 1
can access this value. In line 1, w[NUM WRITE] saves all values of x written by T 1
during the execution of an instance. write len tracks the number of multiple writes on
x during the instance, and it can be either 1 or 2 at the end of a path taken. Lines 12-14
let KLEE pick a constrained-random number between 0 to write len− 1, to pick one
of the written values during the path. Thus, w[c] can be either 1, 2, or 3. In other words,
every time T 1 is called, wx will record one of the three values. Note that, in general, the
producer transaction may have many possible paths, and each of these paths may have
many possible writes to the shared variable. With this instrumentation, for each path,
we gather only one of the written values during the path. Similarly, T 2 (Code 1.4), the
producer of y, is instrumented in the same way in terms of y (line 23-24). We directly

Modeling Firmware as Service Functions and Its Application to Test Generation 71

1 v o i d T1 (i n t ∗wx , i n t ∗ry){
2 i n t w[NUM WR] , rand , c , temp , w r i t e l e n =0 ;
3 k l e e m a k e s y m b o l i c(& ran d) ;
4 i f (rand >0){
5 w[w r i t e l e n] = 1 ; w r i t e l e n ++; / / w r i t e x
6 }e l s e{
7 w[w r i t e l e n] = 2 ; w r i t e l e n ++; / / w r i t e x
8 w[w r i t e l e n] = 3 ; w r i t e l e n ++; / / w r i t e x
9 }

10 k l e e m a k e s y m b o l i c(&temp) ;
11 ∗ry = temp ; / / r ea d y
12 k l e e m a k e s y m b o l i c(&c) ;
13 k l e e a s s u m e (0≤c<w r i t e l e n) ;
14 ∗wx = w[c] ;
15 }
16 v o i d T2 (i n t ∗rx1 , i n t ∗rx2 , i n t ∗wy){
17 i n t temp1 , temp2 ;
18 k l e e m a k e s y m b o l i c(&temp1) ;
19 ∗r x 1 = temp1 ; / / r ea d x
20 k l e e m a k e s y m b o l i c(&temp2) ;
21 ∗r x 2 = temp2 ; / / r ea d x
22 i f (temp1<0||temp2<0)∗wy = 0 ; / / w r i t e y (e r r o r)
23 e l s e ∗wy = 7 ; / / w r i t e y
24 }

Code 1.4: Instrumented T1

1 i n t main (){
2 i n t s t x = 0 ; / / i n i t i a l s t a t e o f x
3 i n t n u m st ;
4 i n t wx1 , wx2 , wx3 , wy ; / / p o i n t e r s f o r w r i t e s
5 i n t rx [2] ; / / p o i n t e r s f o r rea d x
6 i n t ry1 , ry2 , ry 3 ; / / p o i n t e r s f o r rea d y
7 i n t r e a d l e n = 2 ;
8 T1(&wx1 , &ry 1) ;
9 T1(&wx2 , &ry 2) ;

10 T1(&wx3 , &ry 3) ;
11 T2(& rx [0] , &rx [1] , &wy) ;
12 k l e e m a k e s y m b o l i c(& n u m st) ;
13 k l e e a s s u m e (0 <= n u m st <= r e a d l e n) ;
14 i n t i ;
15 f o r (i =0 ; i<n u m st ; i ++)
16 i f (rx [i] != s t x) k l e e s i l e n t e x i t (0) ;
17 f o r (i = n u m st ; i<r e a d l e n ; i ++)
18 i f (rx [i] ! = wx1&&rx [i] ! = wx2&&rx [i] ! = wx3)

k l e e s i l e n t e x i t (0) ;
19 i f (ry 1 !=wy) k l e e s i l e n t e x i t (0) ;
20 i f (ry 2 !=wy) k l e e s i l e n t e x i t (0) ;
21 i f (ry 3 !=wy) k l e e s i l e n t e x i t (0) ;
22 }

Code 1.5: Test Generator Code

store the written value in wy rather than introducing write len and c here because
T 2 only writes y once along any of the feasible paths. In the above instrumentation,
w[] stores all possible values written to the shared variable. As we saw in Code 1.2,
this set of values, not the order in which they were written, is what matters in terms
of interaction with the consumer. The consumer can read any one of these values with
every read. Also, the size of w[] is known statically in this case. If this is not the case,
then w[] can be dynamically allocated.

On the other hand, in the instrumented consumer Code 1.4, the consumer of x, T2,
takes integer pointers rx1 and rx2 as arguments for every read of x in the transaction
(rx is short for readx). The pointers rx1 and rx2 are to store the values that the transac-
tion reads in order to deliver them to the test generator code. Every time the transaction
is supposed to read from x, the value is instead read from a symbolic variable, e.g.,
temp1 or temp2 (line 19,21). This forces the read value to explore all possible val-
ues as it is symbolic. Later, as shown in the next section, this symbolic value will be
constrained to the possible written values gathered from the instrumented producer.

The Test Generator: In Code 1.5, the test generator code combines T 1 and T 2 into
a single thread and adds some constraints that connect the values shared by the producer
and consumer. This code first executes T 1, the producer of x, as many times as the total
number of writes to x in T 1. This allows KLEE to assign independent values for each
write. From each call of T 1, it collects one of the write values from the producer in wx1,
wx2, and wx3. Next, the consumer of x, T 2, is called in line 11. Now, what we want
is to make T 2 read one of the collected values written by T 1. In line 18, if r[i], one of
the read values, is not the same as one of the collected values of x, KLEE exits without
generating any case for that path. This forces KLEE to select one of the collected values.
Also, the case that T 1 is not even executed before T 2 executes, is covered with T 2
reading from the initial state of x. KLEE picks the number of how many times the
consumer reads from the start state, num st, again randomly but constrained by the
total number of reads (line 12, 13), and forces rx[0] to rx[num st− 1] to read from the
start state as in line 16. Similarly, matching values for y works in the same way except

72 S. Ahn and S. Malik

that we omitted the start state of y here for brevity. Note that there are multiple paths
in the consumer of x, T 2. As the values written by the producer T 1 are stored in the
symbolic variables wx1, wx2, and wx3, KLEE will try and find all possible values that
can be written to wx1, wx2, or wx3 in order to exercise all the paths in the consumer.
It may be possible that there is no value for wx1, wx2, nor wx3 that can exercise some
path, in that case no test case will be generated for that path. In this example, since T 1
only produces 1, 2, or 3, for x of which the initial value is 0, the true path in T 2 can never
be exercised. In contrast, if the consumer was unit tested alone, then this path would be
exercised by assigning some value to x, even though that value could never be produced
by the producer. This may result in some undesirable result, and thus be classified as a
bug, but it would be a false positive as this path cannot be exercised in the full system
context. This is the key value of this integrated testing procedure. Note also that the
service function aspect of the transactions was key to enable the characterization of the
transaction interaction pattern as stateless producer consumer, which was critical to
completely capture the space of shared values needed for the test case generation.

General Algorithm: Code 1.6 is the general algorithm for generating test cases
of stateless consumer transaction with multiple producer transactions. Here, T1 is the
target firmware transaction, and T2, . . . , Tn are the producer transactions of T1 where
each transaction is instrumented as explained in the previous section. vijk represents
the k-th variable among the shared variables produced by Ti and consumed by Tj . We
use fresh variables for multiple readings on the same variable, i.e., rvijk1 and rvijk2 are
multiple readings (r stands for read) on vijk . In contrast, we gather only one value of
vijk written by Ti for multiple times during an instance, and save into wvijk . Note that
we assume that static analysis of the data dependence graph is already able to determine
the interaction patterns. For example, nwijk , the total number of writes on vijk in all
paths of its producer Ti, or read lenijk, how many times vijk is read during an instance
of its consumer, are given. Lines 2-5 in the Code 1.6 runs all transactions including
T1 and its producers. Each runs as many times as the maximum number of writes on
its shared variables. This forces generating of all possible write values since KLEE
tries to assign different values as much as possible for the wvijkx of each instance
(x represents each instance). Lines 7-8 decide among multiple reads from the same
variable vijk during an instance, how many read from its initial states, not from its
producer. Lines 9-11 force the variables to have the corresponding initial values as
decided. Line 10 drives KLEE to generate results only satisfying desired conditions by
killing the cases satisfying the negative conditions. The rest of the code matches values
of all rvijk and wvjik . A fresh variable rvijklx can read from any values of wvjikx
generated from all producer instances. This algorithm forms the template which can be
automatically instantiated with specific instances. To automate the algorithm, tracking
accesses to the shared variables in both producer and consumer code and instrumenting
the code to store the set of values are needed. To sum up, the algorithm executes the
producer transactions as many times as they can generate all possible values for the
shared variables thus the target transaction can consume these values where each case
corresponds to a feasible path. This algorithm guarantees the complete coverage of
the consumer since it collects all values of shared variables written by the producers.
Also, the testing result is sound since we constrain the consumer with only realizable

Modeling Firmware as Service Functions and Its Application to Test Generation 73

1 t e s t G e n e r a t o r (T1, . . . , Tn){
2 f o r each Ti where 1 ≤ i ≤ n{
3 f o r (x =0 ; x < max (nwijk∀j, k) ; x++)
4 Ti(. . .&wvijkx, . . .&rvjiklx, . . .) ; / / The i n d e x x r e p r e s e n t s t h e p a r t i c u l a r

i n s t a n c e
5 }
6 f o r each rvijkx{
7 k l e e m a k e s y m b o l i c (&num st ijkx) ;
8 k l e e a s s u m e (0 ≤ num st ijkx ≤ read lenijkx) ;
9 f o r (l = 0; l < read lenijkx ; l++){

10 i f (rvijklx �= INITijk) k l e e s i l e n t e x i t (0) ; / / INITijk i s t h e i n i t i a l v a l u e o f
vijk

11 }
12 f o r (l = num st ijkx; j < read lenijkx ; j + +){
13 i f (rvijklx �= wvjik 1 &&rvijklx �= wvjik 2 && . . . rvijklx �= wvjik max(nwjik∀j, k))

k l e e s i l e n t e x i t (0) ;
14 }
15 }
16 }

Code 1.6. Test Generator Algorithm

values from the producers. Lastly, in case only a subset of the interaction patterns among
transactions are the stateless producer-consumer relationship, this algorithm can be used
to partially test the system.

Limitations: This paper focuses on the stateless-producer-consumer pattern as this
is the most common. The procedure presented here will need to be extended to other
interaction patterns. We expect to add complexity as it will require exploring some
transaction interleavings and unrollings. Further, determining the interaction patterns
and the set of readers and writers in the interacting transactions required data depen-
dence analysis. While this is a well studied area, practical data dependence is often
not complete due to incomplete alias analysis. Another limitation lies on the manual
instrumentation process. For our Rockbox study we were able to analyze data depen-
dence manually. This needs to be replaced by coupling with an automated analysis in a
compiler framework such as LLVM [22].

4.3 Experimental Results

We applied the proposed procedure to the set of the producer-consumer stateless trans-
actions listed in Table 1b. For fair experiments, we only tried to extract a unit of work,
or a transaction, from Rockbox but did not change its code and functionality. (In this
work, the physical input values such as physical battery value are made symbolic. Also,
since KLEE only allows C input, we made a C version of the Rockbox transactions.)
For comparison, we performed unit testing using KLEE on the consumer transaction by
itself first. For instance, unit testing of the Power transaction in Table 2 resulted in 800
test cases. For unit testing, initial values of the inputs and the shared/local storages were
made as symbolic. Next, we performed the testing with the producer transactions. The
Power transaction has three producer transactions; three shared storages constrained
randomly in the unit testing are now to be constrained by the producers. We gradually
introduced the producers one by one to see the effect of introducing these. For example,

74 S. Ahn and S. Malik

Table 2. Test cases of Rockbox transactions

Consumer
LOC # of test Run # of

Producer
LOC # of test cases Run # of

(Original/ cases of unit time symbolic (Original/ with the time symbolic
Instrumented) testing (sec) variables Instrumented) producers (sec) variables

Power 973/991 800 302.56 8
Battery level 89/105 404 241.00 4

Charger status 129/141 404 252.71 2
USB 807/824 128 39.82 3

USB 807/821 18 1.86 6
USB detect 21/30

14 1.97
1

Backlight 1003/1017 3
ATA 1538/1568 14 1.78 7 ATA transfer 226/243 19 2.36 3

we tested the power transaction only with the battery level transaction first while still
making the shared variables with charger status and USB transaction symbolic. As a
result, we got 404 cases. Next, we tested the power transaction (consumer) and the two
producers, battery level and charger status, together and got the same 404 cases. Finally,
we tested with all three of the producers and got 128 cases. By adding the producers,
the test cases decrease since the producers restrict the possible values of shared storages
more accurately than how the concolic testing tool constrained them during unit testing.
For ATA, the number of test cases increased slightly when we tested with the producer
transaction. This is because some of the values written by the producer are read multiple
times along the same path in the consumer. With the producer, these values can be dis-
tinct. However, when unit-testing with KLEE alone, they will all be the same as KLEE
does not consider the volatility of the shared variable. Thus, in this case, integrating the
producer and the consumer during test generation provides for increased coverage.

5 Related Work

Firmware: Recently, many works have emphasized the importance of the high-level
specification modeling of firmware and hardware for their concurrent development. Jer-
raya et al. [23] introduced high level programming model for HW/SW interface, and
Heinen [24] et al. introduced formal specification of the HW/FW interface for consis-
tency in system verification.

Transaction Level Models: There are a variety of notions of transactions used in
hardware/software modeling. Among the earliest uses is in the context of databases
where a transaction is an atomic execution of operations accessing a shared database
[25]. In the hardware modeling context, Ghenassia [3] defined a transaction as data
exchange between modules at the high level, replacing low-level signals or buses to
raise the design abstraction level. Cornet [26] enriched [3] by adding a novel synchro-
nization principle and a micro-architecture level TLM with timing. Many TLM mod-
els used SystemC OSCI [27], the SystemC library allowing standard TLM modeling.
Perhaps closest in spirit to our TLM is the micro-architecture level TLM by Maha-
jan et al. [4] where a transaction is a unit of work performing data computation with
clearly defined functionality. This shares the explicit start and end characteristics of
our service function based TLM. However, their model is suitable for hardware rather

Modeling Firmware as Service Functions and Its Application to Test Generation 75

than firmware/software as their detailed semantics match the underlying hardware
components.

Testing Concurrent Programs: Testing concurrent programs is difficult due to the
large space of interleavings. Previous works [28] [29] have used POR to cover complete
interleavings of asynchronous SystemC models. SCOOT [28] used the commutativity
of transitions between processors to reduce unnecessary interleaving in SystemC. Edel-
stein et al. [30] used a heuristic to increase the probability of observing race conditions
by injecting seeded delays instead of exploring all interleaving. In contrast, our work
directly uses the interaction patterns to add constraints to a single threaded concolic
testing program to capture the effect of all interleavings. Also related is the work on
formal verification of device drivers [31,32] but beyond the testing focus of this work.

Concolic Testing for Concurrent Programs: There has been some work in extending
concolic testing to support concurrent programs. Sen et al. [20] combined POR with
concolic testing to reduce all redundant paths which result in the same states. Rungta
et al. [19] takes possible error states of the target concurrent system as an input, and
uses guided symbolic execution to check reachability of the error states with continuous
refinements. In contrast our work directly uses the interaction patterns to add constraints
to a single threaded concolic testing program to capture the effect of all interleavings.

6 Conclusions and Future Work

Validating firmware poses several key challenges: (1) it is inherently hard to validate
due to the higher complexity of software verification relative to hardware verification,
(2) it inherently executes concurrently with hardware modules that it interacts with and
this concurrency adds additional complexity to the validation task, and (3) the firmware
and hardware have inherently different computation models, and thus their concurrent
validation needs unified models for these heterogenous components. In this work we ad-
dress these challenges by developing a novel TLM for modeling both the firmware and
hardware components where the transactions correspond to service functions. We show
how this notion of service functions naturally captures typical firmware-hardware inter-
actions. Further, we show how this model allows for analyzing the interaction patterns
between different transactions. Among the different interaction patterns, we observe
that the stateless producer-consumer interaction pattern is most common. We then show
how single threaded concolic testing generation tools such as KLEE can be used to gen-
erate tests for firmware with this interaction pattern. This test generation can potentially
generate a complete test set with no false positives. We demonstrate the applicability of
this modeling and testing methodology through a non-trivial practical case study of the
Rockbox MP3 player. We model 3 hardware and 6 firmware transactions, characterize
their interaction patterns, and generate complete test cases for the 6 pairs that have the
stateless producer-consumer interaction pattern.

While the test generation part of this paper focused on the stateless producer-consumer
case, it underlines a broader principle that can be brought to bear to simplify test gen-
eration for concurrent execution. The main idea exploited here is the higher level in-
formation captured by the service function transaction model which enabled static code

76 S. Ahn and S. Malik

analysis to determine the various interaction patterns. The next step in this research is to
explore the cases that, unlike the clean stateless producer consumer case, require explo-
ration of transaction unrolling and interleaving. We suspect that further analysis of the
data-dependences for these cases can help bound the unrolling/interleavings needed.

References

1. Straunstrup, J., Andersen, H., Hulgaard, H., Lind-Nielsen, J., Behrmann, G., Kristoffersen,
K., Skou, A., Leerberg, H., Theilgaard, N.: Practical verification of embedded software.
Computer 33(5), 68–75 (2000)

2. Cai, L., Gajski, D.: Transaction level modeling: an overview. In: Proceedings of the Int.
Conference on HW/SW Codesign and System Synthesis, pp. 19–24. ACM (2003)

3. Ghenassia, F.: Transaction-level modeling with SystemC: TLM concepts and applications
for embedded systems (2005)

4. Mahajan, Y., Chan, C., Bayazit, A., Malik, S., Qin, W.: Verification driven formal architecture
and microarchitecture modeling. In: IEEE/ACM MEMOCODE, pp. 123–132 (2007)

5. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference on Soft-
ware Engineering, ICSE 2007, pp. 416–426 (2007)

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, pp. 209–224 (2008)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. ACM Sig-
plan Notices 40, 213–223 (2005)

8. Rockbox - Free Music Player Firmware, http://www.rockbox.org
9. http://www.rockbox.org/wiki/pub/Main/DataSheets/pcf50606.pdf

10. http://www.rockbox.org/wiki/IaudioX5HardwareComponent
11. Vahid, F., Wiley, J.: Digital design. Wiley (2006)
12. Kuck, D.L.: Structure of Computers and Computations. John Wiley & Sons, Inc. (1978)
13. http://www.rockbox.org/wiki/pub/Main/DataSheets/CY7C68310.pdf
14. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux device drivers. O’reilly (2009)
15. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual Technical

Conference, FREENIX Track, pp. 41–46 (2005)
16. King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
17. Qu, X., Robinson, B.: A case study of concolic testing tools and their limitations. In: Inter-

national Symposium on ESEM, pp. 117–126. IEEE (2011)
18. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path model-checking

tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423. Springer,
Heidelberg (2006)

19. Rungta, N., Mercer, E.G., Visser, W.: Efficient testing of concurrent programs with
abstraction-guided symbolic execution. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS,
vol. 5578, pp. 174–191. Springer, Heidelberg (2009)

20. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of multi-
threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383,
pp. 166–182. Springer, Heidelberg (2007)

21. Godefroid, P., van Leeuwen, J., Hartmanis, J., Goos, G., Wolper, P.: Partial-order methods for
the verification of concurrent systems: An approach to the state-explosion problem. LNCS,
vol. 1032. Springer, Heidelberg (1996)

22. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis trans-
formation. In: International Symposium on Code Generation and Optimization, pp. 75–86
(2004)

http://www.rockbox.org
http://www.rockbox.org/wiki/pub/Main/DataSheets/pcf50606.pdf
http://www.rockbox.org/wiki/IaudioX5HardwareComponent
http://www.rockbox.org/wiki/pub/Main/DataSheets/CY7C68310.pdf

Modeling Firmware as Service Functions and Its Application to Test Generation 77

23. Jerraya, A.A., Bouchhima, A., Pétrot, F.: Programming models and hw-sw interfaces abstrac-
tion for multi-processor soc. In: Proceedings of DAC, pp. 280–285. ACM (2006)

24. Heinen, S., Joost, M.: Firmware development for evolving digital communication technolo-
gies. In: Hardware-dependent Software, pp. 151–171. Springer (2009)

25. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems, vol. 370. Addison-wesley New York (1987)

26. Cornet, J.: Separation of functional and non-functional aspects in transactional level models
of systems-on-chip. Grenoble INP Group, PhD thesis (2008)

27. Rose, A., Swan, S., Pierce, J., Fernandez, J.M., et al.: Transaction level modeling in systemc.
Open SystemC Initiative 1(1.297) (2005)

28. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES) 15(3), 21 (2010)

29. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L.: Full simulation coverage for SystemC
transaction-level models of systems-on-a-chip. Form. Methods in Systs. Des. 35(2) (2009)

30. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded java program test gener-
ation. IBM Systems Journal 41(1), 111–125 (2002)

31. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: Technology
transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.)
IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)

32. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. ACM SIGPLAN Notices 39 (2004)

Symbolic Model-Based Testing

for Industrial Automation Software

Sabrina von Styp1 and Liyong Yu2

1 Software Modeling and Verification
Department of Computer Science

2 Chair of Process Control Engineering
RWTH Aachen University Germany

Abstract. In industrial automation software controls systems whose
failure can be critical and expensive. Testing this software is very crucial
but so far done manually, an expensive and not very thorough method.
Model-based testing is an emerging concept in computer science for au-
tomatically testing a real implementation. It uses a formal specifica-
tion describing the system behaviour. This specification is the blue print
against which an implementation is tested. This paper presents how to
use model-based testing in industrial automation. In detail it shows how
the known concepts such as sequential function charts, used in industrial
automation to describe a system, can be translated to a format that is
required for model-based testing, including an automatic derivation of
test-cases and its execution. A concrete case study illustrates the strength
of this approach.

1 Introduction

Software testing is crucial especially for safety critical systems such as con-
trollers in industrial automation. Unexpected execution results can be caused
by semantical inconsistencies among requirements defined by function design-
ers, comprehension on part of human programmers, and runtime characteristics
of hardware. Considering the last aspect, automation functions are generally
implemented on Programmable Logic Controllers (PLCs) or PLC-based Decen-
tralised Control Systems (DCSs). PLC programs are characterised by their cyclic
execution. Single PLC programs are cyclically executed without supporting mul-
titasking, meaning that components of a program (e.g. steps and transitions of
the same procedure) are not executed simultaneously, but sequentially. As a
result, execution results can be influenced by scheduling of program parts, for
instance function blocks within a function block network, actions of procedure
step, steps and transitions of a procedure. Discussions with more details can be
found in [3],[11] and [29]. PLCs and DCSs often control plants whose failure can
be expensive and dangerous. Thorough testing therefore is crucial but also time
consuming and expensive.

One attractive method to automate the test process, and therefore reduce
time and cost, is model-based testing [6]. Model-based testing is a so-called black

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 78–94, 2013.
c© Springer International Publishing Switzerland 2013

Symbolic Model-Based Testing for Industrial Automation Software 79

box testing technique, which automatically derives the test-cases from a formal
specification describing the desired behaviour of the implementation under test
(IUT). These test-cases are then executed against the real IUT by stimulating
the IUT and observing its output. The underlying notion of correctness of an
implementation, with respect to its specification, allows to show that testing can
not yield false alarms.

One well-known theory for model-based testing is the ioco framework [26],
where the specification is given as a labelled transition system (LTS) with input
and output actions. The conformance relation, called ioco, describes that after
a trace an implementation may only produce outputs or be silent if the same
outputs or silence are also produced by its specification. Several tools exist for
the derivation of ioco test-cases, e.g. JTorX [5], AGEDIS TOOLSET [10] and
TGV [18]. The disadvantage of using an LTS as a specification is the state space
explosion that occurs when using variables with larger domains, i.e. integers. To
avoid this problem, the sioco framework [7,8], using symbolic transition systems
(STS) as specification, has been developed. STSs allow a symbolic representation
of data as well as a data dependent control flow, and therefore avoid the problem
of infinite branching and infinite state space. The notion of symbolic testing has
been implemented in the test tool JTorX [5].

There exists two approaches [16,17] to apply model-based testing in industrial
automation engineering. Both approaches use the modelling language UML and
only work for special application cases. Even though symbolic model-based test-
ing has been successfully applied in many areas, to the best of our knowledge
it never has been used in industrial automation engineering using sequential
functional charts (SFC s), a well-known formalism which formally describes the
steps a system can execute and under which circumstances it has to change into
a different step. Bauer et al. [2] have successfully applied formal verification, pre-
cisely model-checking, in industrial automation. They used SFC as modelling
language and provided a translation from SFC s to timed automata and used
the tool UPPAAL [27] for model checking. Their approach can be used to verify
the correctness of the provided formal specification, but does not verify if the
real implementation is correct to its specification. For model-based testing only
observable in- and outputs are of interest and therefore the approach of [2] is
not suitable for model-based testing. There is also no notion of handling vari-
ables symbolically, leading to the state space explosion problem when handling
variables domains such as reals or integers. To circumvent this problem Bornot
et al. [4] used symbolic modelling verification [19] for applying model-checking
on SFC . Their work also considers internal behaviour of the SFC and is there-
fore not suitable for model-based testing. Hence, we provide a new translation
from SFC s to symbolic transition systems, where only observable behaviour is
considered. In previous work [25], a translation of SFC to LTS has been in-
troduced. This approach encounters a state space explosion when testing larger
variable domains. To circumvent this state space explosion this paper provides a
translation from SFC to STS and presents two case studies, showing how to do
model-based testing with the sioco framework in industrial automation. The case

80 S. von Styp and L. Yu

studies demonstrate that real errors such as an imprecision in representing floats
can be found by our approach. The first case study of this paper was inspired
by previous work [25].

First, this paper gives an introduction on functional description methods in
industrial automation. Then the underlying theory of the sioco framework is
introduced. Section four presents the translation of SFC to STS . Section five
describes the environment used for the case studies. Section six presents two
case studies and demonstrates how to apply the introduced concept in practice.
Finally, the paper is concluded in the last section.

2 Sequential Function Charts as Functional Description

The clear description of requested functions, especially the internal discrete logic
(e.g. state machines and sequential procedures), is a logical prerequisite to the
test of PLC-implementations. In todays industrial automation, there still exists
no standardised description method. Discrete logics on PLCs can be described in
various forms, for instance in Petri nets, UML/Statecharts or Procedure Func-
tion Charts (PFCs)[14]. Although existing methods with different expressive
power can well represent functions in specific application domains, most of them
do not consider execution semantics on PLCs. In order to ensure a consistent
implementation, many automatic code generators have been presented in a se-
ries of research works. However, mapping rules that have been taken are usually
developer-specific, and are often only suitable for hardware from certain vendors.

In the landscape of description methods for discrete logics, SFC is an ap-
proach that provides standardised graphical description and vendor-neutral im-
plementation technique at the same time. SFC follows the specification language
GRAFCET [12], which is based on Petri nets. SFC is proven to have the po-
tential of being developed to a general description method [29][28].

Sequential functions of any complexity can be precisely described by simple
graphical elements: steps and transitions between steps. All SFC s begin with an
initial step (marked with a double boundary line), and they can either end with
a final step or jump back to a previous step at the end of the chain. The former
design is normally used to describe chemical production procedures, which only
need to be worked through once. In turn, the latter one can describe a per-
manently active state machine. A discrete function described in SFC language
can be directly implemented in a PLC. However, there are also systems that
do not support graphical SFC programming, or whose implementation should
not be programmed in SFC . For instance, the function block for a single motor
controller discussed later in this paper is coded in most automation systems by
using a textual programming language. Nevertheless in these cases, the internal
execution progress and state machines of the encapsulated function block can
also be intuitively and exactly described by using SFC . In this way, the program-
ming engineer can exactly understand requirements given by the designer with
the help of the SFC graphic; on the other hand, if an existing implementation
needs to be optimised, its SFC description can help the engineer to understand

Symbolic Model-Based Testing for Industrial Automation Software 81

the working principle and define solutions. In this paper, we show how SFC de-
scriptions can also be used for automatic testing by automatically deriving and
executing test-cases from them.

As a programming language, specifications of SFC in IEC 61131-3 [13] are not
suitable to be directly applied as a description language. Improving SFC is part
of a further research work [29], which intends to develop a general description
method for discrete functions in a wide range of automation domains. For this
paper, we consider a simplified SFC with the following features:
– Inspired by UML/Statechart, only three alternative action qualifiers for con-

trolling action occurrences are applied: P1, N and P0. Their semantics cor-
respond respectively to entry, do and exit.

– Actions of the same steps are executed sequentially from top to bottom (cf.
the example SFC in Figure 9).

– Simultaneous sequences are not allowed. Only one step can be activated, and
it represents the overall execution progress of the SFC .

– Only one alternative sequence can be chosen (compare Figure 9). In case of
branching, transitions are evaluated from left to right.

– The SFC precedes its execution by the sequence in which the transition is
evaluated as switchable at first.

3 Testing with Symbolic Transition Systems

Model-based testing is a well known technique for automatically generating test-
cases and its execution. It is based on a conformance relation, e.g ioco [26]
for labelled transition systems and sioco [7,8] for symbolic transition systems
(STS), which formally defines when an implementation is correct with respect
to a given specification. For the conformance relation it is assumed that the
real IUT could theoretically be described by a transition system, see Figure 1.

Implementation

Implementation
Model I

formal
Specification S

conformance relation

test execution

test-case
generation

test suite

pass/fail

Fig. 1. Overview of model-based testing

The conformance relation formally
describes when an implementation is
correct with respect to its specifica-
tion. The ioco-relation basically re-
quires that an implementation may
only produce an output if the speci-
fication can produce the same output
after executing the same trace. Based
on this, the test-cases can automati-
cally be generated from the specifica-
tion and build a so-called test suite.
These test-cases are used to test the

real IUT . The verdict is either fail together with a trace leading to the error,
or pass, provided the state space is finite. In case of an infinite state space,
which mostly is the case, the implementation is tested until an error is found.
Although this procedure is not complete, the advantage of model-based testing
over manual testing is, that the implementation can be tested without any hu-
man interaction. After the execution of a certain amount of test-cases it could

82 S. von Styp and L. Yu

also be considered to test a copy of the implementation in the background while
already using the implementation, to find additional errors.

Most controllers in industrial automation use variables of large, or even infi-
nite domains such as integer or real numbers. In order to allow these variable
domains and a data control flow without state space explosion, symbolic testing
is indispensable. For symbolic model-based testing, symbolic transition systems
(STS s) are used. STSs introduced by Frantzen et al. [7,8], are labelled transi-
tion systems extended with in- and output gates omitting interaction variables,
guards over variables mostly written in first-order-logic (FO-logic) and variable
updates, which manipulate the values of variables while performing transitions.

3.1 Symbolic Transition System

A symbolic transition system consists of locations including a initial location,
interaction variables, location variables, in- and output gates containing inter-
action variables and an edge relation. Interaction variables are used in in- and
output gates to transmit values. Location variables are internal variables and
can be used to store the value of interaction variables, which can be edited from
outside the system.

Definition 1 (Symbolic Transition System). A symbolic transition system
STS is a tuple S = (L, l0,V , I,G,→), where

– L is a finite set of locations where l0 ∈ L is the initial location
– V is a finite set of location variables
– I is a finite set of interaction variables, where I ∪ V = Var and I ∩ V = ∅
– G = Gout ∪ Gin is a finite set of gates, where every gate has a tuple of

interaction variables of certain length. Gout is the set of output and Gin the
set of input gates, where Gout ∩ Gin = ∅;

– →⊆ L× G × F(V)×
⋃

V ⊆V T(Var)V × L is the edge relation.

The notation F(Var) denotes the set of FO-formulas over all interaction- and
location variables. T(Var)V denotes the set of mappings of interaction vari-

able to variables of Var . As usual we write l
g,ϕ,ρ−−−→ l′ to denote an element of

(l, g, ϕ, ρ, l′) ∈→, where g is a gate with interaction variables, ϕ a guard over
variables and ρ a mapping of interaction variables to location variables.

l0

l1 l2
?choice〈y〉, change< q beverage �→ y

!serve〈y, c〉, y = beverage ∧ c = change

change �→ 0, money �→ 0,
q �→ q−change

?money〈x〉, x ≥ 1
!return〈x〉

change≥ q ∧ x = money

change �→ 0, money �→ 0,

q �→ q−money

money �→ x, change �→ x−1

Fig. 2. A sample STS-beverage-vending-machine

Example 1. Figure 2 shows an STS with the locations l0, l1, l2 modelling a
beverage vending machine. The machine expects money in bills (parameter x
of input ?money), a choice for a beverage and returns change (parameter c of

Symbolic Model-Based Testing for Industrial Automation Software 83

output !serve). If there is not enough change in the machine on a bill, the bill
is returned (output !return). Otherwise, the user can choose a beverage for the
cost of one unit, the change is returned and the beverage served (parameter y of
output !serve). Parameters x, y, c are so-called interaction variables. Variables
q, change, beverage, money are so-called location variables. Interaction variables
represent the possible values that can be passed during input and output.

The symbolic trace semantics is defined by Frantzen et al. [8] and expressed by

transition relation l
σ,ϕ,ρ
===⇒ l′ where σ is a sequence of gates that are executed

on the trace from l to l′, ϕ is a conjunction of constraints over variables that
need to be satisfied to reach location l′, and ρ is a concatenation of variable
mappings denoting the possible variable valuation after l′ has been reached.
Frantzen et al. [8] also define a conformance relation sioco describing when an
implementation is correct to a specification. The conformance relation is based
on ioco, introduced by Tretmans [26], and describes that an implementation
can only produce an output, after executing a trace σ, if the specification can
produce the same output after executing σ. Quiescence of the implementation is
only allowed if the specification is also quiescent after executing the same trace.
Going into further details would go beyond the scope of this paper and we refer
to Frantzen et al. [8] for more details.

3.2 Testing with JTorX

The test-tool JTorX [5] is a platform-independent tool for model-based testing.
It automatically derives test-cases from a given specification using the sioco
relation. It therefore considers the traces in the specification and instantiates
the input variables with concrete values regarding to the corresponding guard.
Outputs are verified by checking if the output gate can also be mimicked by the
specification and if the variable values satisfy the corresponding guard.

The specification of the program is provided to JTorX in XML format. In order
to communicate with the IUT , JTorX supports standard input and output as
well as the network protocol TCP/IP. JTorX requires these inputs and outputs
to have the same format as the one given by the specification. Therefore, it is
common to provide an adaptor that coordinates the different input and output
formats. The test-case generation in JTorX happens on-the-fly, meaning that
test-case generation and execution are done at the same time. Only the next
steps that are needed are computed, and the information, which has already
been traced, is stored in a log file and can be executed again if requested later.
For modelling the STS , JTorX uses the STSimulater -framework [22].

4 Translation of SFC to STS

The previous section shows that for model-based testing with data the specifica-
tion has to be a symbolic transition system. However, in industrial automation
SFC s are used to formally describe the system behaviour. Therefore, this sec-
tion addresses the translation of SFC s into STSs. Since model-based testing is

84 S. von Styp and L. Yu

a form of black-box testing, the translation only focuses on observable actions,
such as inputs and outputs. In an SFC , variables are changed by the system
when executing a step, while requirements for a transition are usually changed
by some external components. As the transitions control which step is executed,
and therefore how variables change, the variables enabling the transition are
considered as input variables and the variables changed by the implementation,
when executing a step, are considered as output variables. In theory it is possible
that variables can be used for input and for output, as allowed in the following
theory, but in practice it might be necessary to prohibit this.

4.1 Formal Description of SFC

In order to provide a translation from SFC to STS we first give a formal defini-
tion of SFC . As only observable actions are of interest, the definition is restricted
to those. An SFC has a set of steps that can be executed and end with a set
of observable variable configurations. The execution of an SFC is cyclic. This
means every step and therefore all actions in one step are executed within one
cycle. At the end of every cycle it is checked if one of the following transitions is
enabled. Subsequently, the transition which is satisfied is taken and its successor
step executed in the next cycle. In case more than one transition is enabled, the
one with the highest order, the left most in a drawn graph, is taken.

Definition 2 (Sequential Function Charts). A Sequential Function Chart
(SFC) is a tuple S = (S, T,X ,Y,R,→SFC) where:
– S is a finite set of steps containing actions, e.g., set variables, over output

variables
– T is a finite set of transitions containing FO-formulas over input variables

as guards
– Y is a finite set of output variables and X is a finite set of input variables
– R ⊆ T × T is a total ordering on the set T .
– →⊆ S × T × S an edge relation
In a step sk, variables yk1, . . . , ykn are set to certain values. Such a setting is

of the form yij := a⊕b, where ⊕ ∈ {∗,−,+, /} and a, b ∈ X∪R. The execution of
a step s is repeated until a following transition t is enabled, written as t ∈ en(s).
A transition tl has conditions cl1, . . . , clm over input variables xl1, . . . , xlp. They
are concatenated by disjunctions or conjunctions, where cij is of the form a⊗ b
with ⊗ ∈ {<,>,≤,≥,=} and a, b being arithmetic expression over the set X∪R.
If more than one transition is enabled, transition t with the highest order wrt.
≺, written as ∀t′∈T,t�=t′en(t

′) : t′ ≺ t ∧ en(t), is taken.

Fig. 3. Tank System

We write trans(s) to denote all tran-
sitions that can be enabled after step s.
Let us consider a simple example. Figure 3
shows a tank system for some fluid. The
input can be controlled by valve Y1 and
the output by valve Y2. Is the fluid level
above sensor L1, the value of L1 is true.
The same holds for sensor L2 if the fluid
level is below L2.

Symbolic Model-Based Testing for Industrial Automation Software 85

Start

S1

S2 S3

true

L1 =true L2 =true

L1 =false L2 =false

P1 Y1 := 1

P1 Y2 := 1

P1 Y1 := 0.5

P1 Y2 := 1

P1 Y1 := 1

P1 Y2 := 0.5

Fig. 4. SFC of tank system

Figure 4 shows the SFC of the
controller for the tank system. The
steps of this SFC are S1, . . . , S3
and the transitions are the condi-
tions between the steps, e.g. L1 =
true. On the right side of every step
the boxes describe the actions that
are executed if the step is active,
e.g. in step S3 the variables Y1 := 1
and Y2 := 0.5 are set. P1 in front of
the actions stands for exactly one
execution of the following action,
see also Section 2. In the beginning

both valves are 100% open. In case the fluid level is above L1 valve Y1 is set to
50% and valve Y2 to 100%. Is the fluid level to low and L2 is true, step S3 is
executed.

4.2 From SFC to STS

The formal definition of an SFC now allows to define the translation to an STS .
The idea is to consider the variables of a step as outputs and the ones at the
transitions as input, as they allow to control the flow of the system. In an SFC
every step is followed by at least one transition. This yields that in the STS every
output is followed by one input, representing all possible inputs. Executing a step
more than once can be accomplished if the input does not enable any guard of
edges representing next steps. The only guard that then is enabled is the guard of
the edge representing the previous output. Inputs have no guards, since the input
values are usually changed by some external events and cannot be controlled.
Every input action is followed by at least one output action. Every output action
has a guard making sure the correct previous transition has been enabled before
and the variable output is correct. An STS T = (L, l0,V , I,G,→) obtained from
an SFC S = (S, T,X ,Y,R,→SFC) is defined as follows:

– L = {ls|s ∈ S} ∪ {l̂s|s ∈ S} set of locations with initial location l0, repre-
senting the edges between location and steps of the SFC

– V location variables
– I = X ∪ Y interaction variables
– G set of in- and output gates containing interaction variables

– → a edge relation where every s
t−→ SFC s′ induces

1. ls
g,true,ρ−−−−−→ l̂s

g′,ϕ′,ρ′
−−−−−→ ls′ where

• g =?in〈x〉,
• ρ = (vin := x),
• g′ =?out〈y〉,
• ϕ′ = (

∧
t∈en(s),t≺t′

¬F (t′)) ∧ F (t) ∧ F (s) and

• ρ′ = (vout := y)

2. l̂s
g′,ϕ′′,ρ′
−−−−−→ ls, where ϕ′′ = (

∧
t∈trans(s)

¬F (t)) ∧ F (s)

86 S. von Styp and L. Yu

The location ls represents that the step s in the SFC has been executed and
next it is checked which transition after s is enabled, represented by l̂s. We
write x to denote the vector x = x1, . . . , xn and vin := x to assign vini := xi.
The FO-formula F (s) describes the effects of executing step s. It is the con-
junction of all variable settings (see Definition 2) occurring in s combined with∧
1<i≤n

yi == vouti where yi is not changed in s. The last part ensures that vari-

ables that are not changed, remain their current values.
The FO-formula F (t) represents the condition that enables transition t. The

second clause in the definition above models that in an SFC , the execution of
a step is repeated until one of the transitions afterwards is enabled. In case no
condition for the next output edge in the STS is satisfied, the STS goes back,
with the same output as before, to location s.

Example 2.

start ˆstart S1 Ŝ1

S3

S2

Ŝ3

Ŝ2

?in < x > !out < S1 >

?in < x >

!out < S′
1 >

!out < S2 >

!out < S3 >

?in < x >

!out < S′
2 >:

?in < x >

!out < S′
3 >

!out< S′′′
1 >

!out< S′′′
1 >

Fig. 5. STS obtained from the tank system SFC
?in < x >: ?in< x1, x2 >, lx1 = x1, lx2 = x2

!out < S1 >: !out< y1, y2 >, y1 == 1 ∧ y2 == 1, ly1 = y1, ly2 = y2

!out < S′
1 >: !out< y1, y2 >, y1 == 1 ∧ y2 == 1 ∧ ¬lx1 == 1 ∧ ¬lx2 == 1,

ly1 = y1, ly2 = Y2

!out < S2 >: !out< y1, y2 >, lx1 == 1 ∧ y1 == 0.5∧y2 == 1,
ly1 = y1, ly2 = y2

!out < S3 >: !out< y1, y2 >, ¬lx1 == 1 ∧ lx2 == 1 ∧ Y1 == 0 ∧ Y2 == 1, ly1 = y1, ly2 = y2

!out < S′
2 >: !out< Y1, Y2 >, lx1 == 1 ∧ Y1 == 0.5 ∧ Y2 == 1, lY 1 = Y1, lY 2 = Y2

!out < S′
3 >: !out< Y1, Y2 >, lx2 == 1 ∧ Y1 == 0 ∧ Y2 == 1, lY 1 = Y1, lY 2 = Y2

!out < S′′
1 >: !out< Y1, Y2 >, lx1 == 0 ∧ Y1 == 1 ∧ Y2 == 1, lY 1 = Y1, lY 2 = Y2

!out < S′′′
1 >: !out< Y1, Y2 >, lx2 == 0 ∧ Y1 == 1 ∧ Y2 == 1, lY 1 = Y1, lY 2 = Y2

Figure 5 shows the STS obtained from the SFC in Figure 4. The edge from
start to ˆstart is an input for enabling t0, the first transition in the SFC . All input
edges consist of a gate with the interaction variables x1, x2, standing for the level
sensors. These variables are mapped to location variables lx1 and lx2 . All output
edges have a gate with the variables y1, y2 for the valves, a guard and a mapping
of interaction variables to location variables. The edge from ˆstart to S1 is the
output, namely the observable result, of step S1 in the SFC . S1 to Ŝ1 is an input
representing possible enabling of t1 or t2. If none of the guards, representing the
transitions in the SFC , is enabled, output !out < S′

1 >, leading back to location

Symbolic Model-Based Testing for Industrial Automation Software 87

S1, has to be observed. This models the behaviour of the SFC repeating a
step if no transition afterwards is enabled. If a transition t1 or t2 is enabled
!out < S2,3 >, depending on the previously enabled transition, is executed. Is
more than one transition enabled the one with the lower index is taken, as this is
the transition order. After that output the system is in state S2 or S3 depending
which t1,2 has been enabled. Then a repetition of the execution of the state is
possible if the transition afterwards is not enabled. This is modelled by the edge
!out < S′

2,3 >. Is the required edge constraint satisfied the output !out < S′′
1 > or

!out < S′′′
1 > can be observed. S′′

1 and S′′′
1 both have a guard requiring the correct

execution of step S1 in the SFC , but their condition regarding the previously
enabled edges differs as required by the SFC .

5 Case-Study Set-Up

The previous section described the usage of SFC as a formal description language
and its translation to STS . This is presented in the upper part of Figure 6.
The formal description, given as an SFC , describes the desired behaviour of
the implementation. The implementation itself runs in an industrial operative
environment (e.g. a runtime server on a PLC), and is cyclically executed with
a predefinable and constant cycle time. Industrial communication protocols like
OPC UA [15] and ACPLT/KS [1] allow standardised and system-neutral access
(e.g. get and set of variables) to the current datas from external clients. The
cyclic execution of the implementation can be controlled by a certain variable.
It allows the general starting and stopping as well as exactly one cyclic execution.
The feature of executing exactly one cycle is crucial for the test case execution.

The STS is obtained from the SFC before the testing process is started. It is
then provided to JTorX [5], which uses it as a basis to generate test-cases. The
adapter handles the communication between JTorX and the operative environ-
ment. It receives the input from JTorX, sets the corresponding variable values
while the implementation is offline and executes the implementation exactly one
cycle. When the implementation is offline again, the adapter gets the values of
the variables and passes them on to JTorX, which interprets them as an output
by the implementation.

5.1 Operative Environment

Fig. 6. Application Structure

PLCs from different
vendors often pro-
vide different soft-
ware and hardware
structure as well as
execution behaviours.
In order to develop
a generic testing ap-
proach without de-
pendence on specific

88 S. von Styp and L. Yu

execution platforms, we have applied a generic operative environment named
ACPLT/OV [20]. ACPLT/OV is an open-source object management and run-
time environment which permits the development of reference models and object-
oriented applications that can be operated in real-time industrial automation.
ACPLT/OV provides an object-oriented API for ANSI C, and allows a platform-
independent evaluation of different models and execution behaviours. So far, an
OV-server can be installed on industrial PCs supporting Linux and Windows and
some micro controllers. An ACPLT/OV application is hosted on a server, which
contains the executed program as well as object models. An OV-server can be
directly applied as operative environment, but may also be set up on a conven-
tional computer to act as an emulator of the industrial operative environment
in prototyping tasks.

OV-servers offer an ACPLT/KS [1] interface for the information exchange
with external servers and clients. ACPLT/KS is an open-source client/server
communication protocol designed for decentralised control systems (DCS) and
related applications. It uses object-oriented meta-modelling, where the prede-
fined elements of the communication protocol (variables, domains, links, etc.)
are generic, and can be used to manipulate virtually any concrete object model
of a control system. ACPLT/KS clients have been developed in C++, Tcl/Tk,
JavaScript and VB at present.

In our case study, every function that has to be implemented is programmed
manually and encapsulated in a function block according to the IEC 61131-3
standard [13]. Internal logic of one function block is cyclically executed as far
as the function block is activated (i.e. enabled). Information exchange with the
environment is realised by input and output variables.

5.2 Client-Server Communication
The input and output vectors that are provided and observed – respectively –
by JTorX, are given by the SFC specification. JTorX does not have a direct
way of setting or getting variable values of the tested system, but the OV server
provides the means to set and get these values exclusively through ACPLT/KS.
Additionally, it has to be ensured that input variables are set at the right time
on the server, and that JTorX always receives the current variable values, i.e.
JTorX and the tested system have to be synchronised. This requires an adapter
that sends and receives values in between JTorX and the server, and which also
performs the required synchronisation by starting and stopping the IUT. The
adapter is written in Java and communicates via standard input and output
with JTorX, while interacting with the server through ACPLT/KS.

6 Case Studies

In order to demonstrate the practical feasibility of our approach we conducted
two case studies. The first one is a function block that controls a motor. The
second case study is a function block controlling a heat exchanger. Here, the
variables are reals representing the temperature, and therefore symbolic testing

Symbolic Model-Based Testing for Industrial Automation Software 89

is inevitable. For both case studies, the translation from PLCopen XML, an XML
format for IEC 61131-3 languages [21] to .sax was done manually. A program
for automatic translation is currently developed. For more detailed information
about the case studies we refer to [23].

6.1 Case Study Motor

Fig. 7. SFC specification for the simpleMotor function block

For our case study, we chose a simple function block that controls an on/off
motor with five steps. The function block has the following Boolean inputs: Con
and Coff indicate that the motor should be switched on and off, respectively;
CACK indicates that the user has acknowledged an error; and chkbOn indicates
that the motor has confirmed that it has switched itself on, known as check back.
In turn, the Boolean outputs are: ACT signals the motor to switch on (true) or
off (false); DriveOn indicates that the motor is on; DriveOff indicates that the
motor is off; and ERR indicates that an error has occurred.

The intended behaviour of the function block is described as follows. The
motor is initially switched off, and the user may set Con to TRUE in order to
start the motor. The function block then sets ACT to TRUE in order to switch
the motor on, and waits for a confirmation signal with the value TRUE from
the motor on chkbOn. If the confirmation signal arrives, the DriveOn indicator
is set to TRUE and the function block stays in this state until the user sets
Coff to TRUE in order to stop the motor. In this case, the function block sets
ACT to FALSE in order to switch the motor off, and waits for a confirmation
signal with the value FALSE from the motor on chkbOn. When this occurs, the
function block returns to its initial state. In any case, an error state may be
reached whenever an unexpected confirmation signal from the motor is received.
In this case, the function block sets ERR to TRUE and stays in this state until
the user acknowledges the error by setting CACK to TRUE, which clears the error
indicator and returns to the function block’s initial state.

The control logic for the simpleMotor function block has been specified by the
SFC in Figure 7. Here, the steps DriveOff, ToOn, DriveOn, ToOff and Error

90 S. von Styp and L. Yu

represent the different states of the simpleMotor function block, and their cor-
responding actions set the function block outputs to the expected values. Fur-
thermore, the transitions evaluate the conditions for a step change which depend
on the function block inputs. Based on the SFC specification, the simpleMotor
function block was implemented in C. In addition to this object class, five test
classes were produced as exact copies of the original class, but with manually
introduced errors, with the purpose of validating the model-based testing ap-
proach.

Since JTorX works on STS , we first derive the STS from the SFC specification
as defined in Section 4. The STS for the simpleMotor has 13 locations and 21
transitions.

In the first phase, the transition system and the simpleMotor function block
were used. The system under test was executed for 100,000 steps which took 13
hours. Still this is faster than testing manually and less expensive. Most of the
time is due to the tree solver used in JTorX for generating the test-cases from the
STS . The same case study in [25] with concrete labels took only 190 minutes as
no transition guard had to be solved. The implementation received 50,000 inputs
and the same number of outputs were observed and validated by JTorX. In the
second phase, five mutants of the implementation were tested. They were tested
without knowing the error manipulation. All errors were found within two hours
using JTorX. There were no false alarms.

6.2 Case Study Heat Exchanger

Fig. 8. Control units for the heat exchanger

Symbolic Model-Based Testing for Industrial Automation Software 91

Fig. 9. SFC specification of the function block
class HeatExchanger (simplified)

Figure 8 illustrates the struc-
ture of a water cooling system for
a metallurgical furnace. The core
of this cooling system is a heat
exchanger composed of pipelines,
four identical ventilators and one
temperature sensor. Every venti-
lator can be operated in three
modes: stop, slow and quick. By
applying different combinations of
ventilators, the water tempera-
ture can be kept in a certain
range.

The control logic of the heat ex-
changer is described as an SFC,
see Figure 9. Altogether 8 con-
trol levels (i.e. control states) are
defined. According to the mea-
sured temperature, the control
logic moves to the correspond-
ing control level and operates the
ventilators differently. The con-
trol program was programmed in
ANSI C and executed on an in-

dustrial PC from a commercial vendor. It has about 1400 lines of code, excluding
header classes and the server it is running on. During a typical production, tem-
perature in the furnace is over 3000◦C, while temperature of the cooling water
should be kept under 55◦C. Considering production safety, the heat exchanger
should be operated in a reliable manner.

In the control program, 4 ventilator controllers and one group controller for
the whole heat exchanger have been used. The group controller is implemented
as a function block that realises the control logic in Figure 9. The main inputs
and outputs of this block are declared as follows:

Name data type variable type description
NxOrder STRING output commando for ventilator Nx (x=1,2,3,4.)
NxOcSt UINT input occupancy state of Nx

(10=free, 20=hand, 30=automatic)
NxWoOcSt UINT input working state of Nx

(10=off, 20=starting up, 30=stationary,
40=stopping)

NxErSt UINT input error state of Nx

(20=undifined, 20=good, 30=alarm, 40=warning)

Test-Case Execution. The STS obtained from the SFC has 22 states and 63
transitions. The highest limit in the heat exchanger is 50◦C, after which all four
ventilators have to run. To avoid that JTorX tests arbitrary high temperature
values and to speed up the test process, the maximal temperature value was
restricted to 100◦C and was chosen randomly by JTorX.

92 S. von Styp and L. Yu

Testing the heat exchanger with JTorX revealed three errors. One error was
due to an imprecision in the fourth decimal after the comma when representing
floats, e.g. 23.99998 was shown by the server the implementation was running on.
This problem could not be fixed and such an accuracy is not needed in practice
most times, so the model was changed to accept a tolerance of 0.0001 for further
tests. The other two errors were errors made by the programmer and could have
resulted in a system state were all ventilators were switched off even though the
temperature exceeded 50◦C. All observed errors were errors that were not found
when intensively testing the system manually.

7 Conclusion

This paper proposed to automatically test controllers in industrial automation
by using symbolic model-based testing. Due to the popularity of SFC in indus-
trial automation our testing approach is based on SFC specification. We have
implemented our approach and conducted two case studies. In the first case-
study, a controller for a motor, all errors could be found automatically within
two hours. This shows that model-based testing for a relatively small system is
profitable. The second case-study was done on a larger system and three errors
where found. These errors were not found by manual testing. This shows that
model-based testing in industrial automation is useful and saves costs and time.
It is also more thorough than manual testing.

Future work will focus on incorporating real-time aspects in this setting using
the theory in [24].

Acknowledgement. The authors wish to thank Prof. Dr. Ir. Joost-Pieter Ka-
toen for comments on an earlier version of this paper.

References

1. Albrecht, H.: On Meta-Modeling for Communication in Operational Process Con-
trol Engineering VDI-Verlag (2003), VDI Fortschritt-Bericht, Series 8, No. 975,
Düsseldorf, Germany, 3-18-397508-4, RWTH Aachen University

2. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-
berg, O.: Verification of PLC Programs Given as Sequential Function Charts.
In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 517–540. Springer, Heidel-
berg (2004)

3. Bauer, N., Huuck, R., Lukoschus, B., Engell, S.: A Unifying Semantics for Sequen-
tial Function Charts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif,
W., Schnieder, E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 400–418.
Springer, Heidelberg (2004)

4. Bornot, S., Huuck, R., Lukoschus, B., Lakhnech, Y.: Verification of Sequen-
tial Function Charts Using SMV. In: PDPTA 2000: International Conference
on Parallel and Distributed Processing Techniques and Applications, Las Vegas,
pp. 2987–2993 (2000)

Symbolic Model-Based Testing for Industrial Automation Software 93

5. Belinfante, A.: JTorX: A Tool for On-Line Model-Driven Test Derivation and Ex-
ecution. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 266–270. Springer, Heidelberg (2010)

6. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

7. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test Generation Based on Symbolic
Specifications. In: Grabowski, Nielsen (eds.) [19], pp. 1–15

8. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

9. Grabowski, J., Nielsen, B. (eds.): FATES 2004. LNCS, vol. 3395. Springer, Heidel-
berg (2005)

10. Hartman, A., Nagin, K.: The AGEDIS Tools for Model Based Testing. SIGSOFT
Softw. Eng. Notes 29(4), 129–132 (2004)

11. Hellgren, A., Fabian, M., Lennartson, B.: On the Execution of Sequential Function
Charts. Control Engineering Practice 13, 1283–1293 (2004)

12. IEC International Electrotechnical Commission. IEC60848: GRAFCET Specifica-
tion Language for Sequential Function Charts (2002)

13. IEC International Electrotechnical Commission. IEC 61131-03: Programmable
Controllers - Part 3: Programming Languages, 2nd edn. (2003)

14. IEC International Electrotechnical Commission. IEC61512-2: Batch Control - Part
2: Data Structures and Guidelines for Language (2001)

15. ICE International Electrotechnical Commission. IEC62541-5: OPC Unified Archi-
tecture (2001)

16. Iyenghar, P., Pulvermueller, E., Westerkamp, C.: Towards Model-Based Test Au-
tomation for Embedded Systems using UML and UTP. In: ETFA 2011. IEEE
(2011)

17. Kumar, B., Czybik, B., Jasperneite, J.: Model Based TTCN-3 Testing of Industrial
Automation Systems - First results. In: ETFA 2011. IEEE (2011)

18. Jard, C., Jéron, T.: TGV: Theory, Principles and Algorithms: A Tool for the Au-
tomatic Synthesis of Conformance Test Cases for Non-Deterministic Reactive Sys-
tems. J. STTS 7(4), 297–315 (2005)

19. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
20. Meyer, D.: Objektverwaltungskonzept für die operative Prozessleittechnik. VDI-

Verlag (2002), VDI Fortschritt-Bericht, Series 8, No. 940, Düsseldorf, Germany,
3-18-394008-6, RWTH Aachen University

21. PLCopen. Technical Committee 6 Technical Paper: XML Formats for IEC 61131-3.
Version 2.01 - Official Release (2009)

22. STSimulator homepage, http://java.net/projects/stsimulator/
23. von Styp, S., Yu, L.: Two Case Studies for Applying Model Based Testing in

Industrial Automation, AIB-2013-11, RWTH Aachen (2013)
24. von Styp, S., Bohnenkamp, H., Schmaltz, J.: A Conformance Testing Relation for

Symbolic Timed Automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS
2010. LNCS, vol. 6246, pp. 243–255. Springer, Heidelberg (2010)

25. von Styp, S., Yu, L., Quiros, G.: Automatic Test-Case Derivation and Execution
in Industrial Control. In: iATPA 2011: First Workshop on Industrial Automation
Tool Integration for Engineering Project Automation. CEUR-WS, pp. 7–12 (2011)

http://java.net/projects/stsimulator/

94 S. von Styp and L. Yu

26. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive quiescence.
Software - Concepts and Tools 17(3), 103–120 (1996)

27. UPPAAL homepage, http://www.uppaal.org
28. VDI/VDE Society for Measurement and Automatic Control. VDI/VDE 3681

Guideline: Classification and Evaluation of Description Methods in Automation
and Control Technology (2005)

29. Yu, L., Quirós, G., Grüner, S., Epple, U.: SFC-Based Process Description for
Complex Automation Functionalities. In: EKA 2012: Entwurf Komplexer Automa-
tisierungssysteme, 12. Fachtagung, pp. 13–20. ifak, Magdeburg, Germany (2012)

http://www.uppaal.org

Online Testing of LTL Properties for Java Code�

Paolo Arcaini1, Angelo Gargantini2, and Elvinia Riccobene1

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
{paolo.arcaini,elvinia.riccobene}@unimi.it

2 Dipartimento di Ingegneria, Università di Bergamo, Italy
angelo.gargantini@unibg.it

Abstract. LTL specifications are commonly used in runtime verification
to describe the requirements about the system behavior. Efficient tech-
niques derive, from LTL specifications, monitors that can check if system
executions respect these properties. In this paper we present an online
testing approach which is based on LTL properties of Java programs. We
present an algorithm able to derive and execute test cases from monitors
for LTL specifications. Our technique actively tests a Java class, avoids
false failures, and it is able to check the correctness of the outputs also
in the presence of nondeterminism. We devise several coverage criteria
and strategies for visiting the monitors, providing different qualities in
terms of test size, testing time, and fault detection capability.

1 Introduction

In the software system life cycle, program requirements are often given as proper-
ties using a declarative approach. In this paper we assume that these properties
are formally specified in Linear Temporal Logic (LTL) [19], which often provides
an intuitive and compact means to specify system requirements, especially in
the presence of nondeterminism due, for instance, to underspecification. In this
context, LTL declarative specifications can be easier to write than operational
ones, such as finite state machines (FSM) and labeled transition systems (LTS).

The use of declarative specifications and nondeterminism poses several chal-
lenges to testing. For instance, it is well known that derivation of tests from
nondeterministic models is computationally more difficult than from determinis-
tic models, or even impossible [1]. In most cases, developers limit the use of LTL
properties to runtime verification or passive testing, where a monitor observes
the execution of the system to check that the behavior conforms to the specifi-
cation. The use of LTL for runtime monitoring is well known, see for instance
JavaMOP [5], LTL3 [4], and LIME [13].

In this paper we focus on active online testing of Java programs starting
from their LTL properties. In online (on-the-fly) testing, test generation and test
execution are performed at the same time: a test is applied to the implementation
under test (IUT) while it is generated. We propose to re-use the LTL properties

� This work is partially supported by GenData 2020, a MIUR PRIN 2010-11 project.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 95–111, 2013.
c© Springer International Publishing Switzerland 2013

96 P. Arcaini, A. Gargantini, and E. Riccobene

of the program, not only for runtime verification but also for test generation and
we are able to address the following issues.

Oracle problem: Our methodology is able to assess if the outputs produced during
testing by the program under test, given in terms of return values of certain
methods, are the expected ones.

Nondeterminism: Specification nondeterminism can be due to i) the restricted
predictability of the systems, ii) underspecification because some implementa-
tion choices are left abstract, iii) abstractions used to reduce complexity or to
remove aspects which can be (initially) ignored (e.g., time metrics aspects). Our
methodology deals with both external and internal nondeterminism. External
nondeterminism is limited to monitored (external) quantities (e.g., which method
has been called or what values have been used as actual parameters); it is only
due to the unknown usage of the code by a user. Internal nondeterminism refers
to the fact that the same method call, executed in the same state, can produce
different outputs at different times. In this case, techniques based on the“capture
and replay” approach, like [20], or off-line testing approaches which produce test
sequences together with oracles [10], generate tests which may fail because of the
nondeterministic behavior of the implementation. Online testing approaches, like
ours, which combine test generation and test execution, are more suitable [27].

No separate behavioral model: Our approach does not require the tester to write a
separate operational model (e.g., a Kripke structure) besides the LTL properties
which are directly linked to the code. This assumption is similar to the “Single
Product Principle” of the design by contract [15].

Method call ordering: Our methodology deals with requirements about the order
in which methods must be called. Sometimes a specific order among methods
is required. For instance, the subject-view pattern is characterized by required
calls from the subject to the view, and potential callbacks from the view to the
subject, with a required order among the calls. In these cases, the traditional
design-by-contract concepts of pre- and post-conditions [15], which refer to single
methods, are not enough, while (P)LTL properties can describe correct sequences
of method calls with ease. The problem of monitoring sequences of Java method
calls is tackled also in [16]. Methodologies that ignore the requirement about
methods’ call order may generate many tests that fail only because they do not
respect the ordering, and such false positives are a burden for testers which must
manually discard tests that falsely fail [12].

Coverage: Our methodology is able to give feedback on how much properties are
covered (as in LTL3). This can be useful also in the case of passive testing, since
it gives a measure of the adequacy of the testing activity.

Our online testing approach tackles all the issues mentioned above by intro-
ducing methodologies and techniques: a) to specify the behavior of Java pro-
grams by means of LTL properties, b) to translate all the LTL properties into
one monitor (similar to a Büchi automata), c) to monitor if the program behaves

Online Testing of LTL Properties for Java Code 97

correctly, and d) to generate online the test sequences by visiting the monitor
with several policies.

Points a-c have been addressed in the past using several approaches. The
original contribution of this paper consists in devising a technique for online
test generation (point d), and an annotation-based technique for linking method
calls and their return values (if any) to LTL properties (point a). A further
contribution is the integration of these techniques into one single process.

Sect. 2 introduces the necessary background. The following sections present
the proposed approach: Sect. 3 introduces some formal definitions, Sect. 4
presents a case study we use throughout the paper, Sect. 5 describes how a
monitor is derived from an LTL specification, Sect. 6 introduces some coverage
criteria for LTL monitors, and Sect. 7 describes how to perform the online test-
ing. Sect. 8 presents the experiments we made to validate the approach. Sect. 9
relates our work with similar contributions, and Sect. 10 concludes the paper.

2 Background

For the sake of brevity, we assume that the reader is familiar with the use of
Linear Temporal Logic (LTL) [19]. There is an extended literature on how an
LTL specification can be converted to a Büchi automaton and this automaton
to a monitor. Typically, a monitor is an automaton used to check system runs:
in each state the monitor can show that (i) the corresponding LTL specification
has been violated (a bad prefix is found [14]), (ii) any continuation of the run
can not violate the specification (a never violate state is reached [6]), (iii) there
exist continuations of the run that may or may not violate the specification.

In our approach we use minimal deterministic monitors as proposed by
Tabakov and Vardi [22] and implemented in SPOT [7]. The monitors are ob-
tained by determinizing and minimizing a Büchi automaton using several tech-
niques like state minimization and alphabet minimization. The final monitor
guarantees to reject minimal bad prefixes, i.e., to detect wrong behaviors as
early as possible.

3 Formal Definitions

Given a Java class C, let M be the set of methods of C the user wants to monitor.
For each method mi ∈M , let Di be the set of all its possible return values (for
void methodsDi = {void}). We consider only Boolean and enumerative types for
the return value, but the approach can be extended to other types (see below).
Moreover, we also assume that methods in M have no parameters.

We need to introduce suitable labels (atomic propositions) each univocally
identifying a method call and its return value. To this purpose we define the
finite set MD =

⋃n
i=1{mi} ×Di, and we introduce a set of atomic propositions

AP = {ap1, . . . , apr}, r = |MD |, such that there exists a bijective function
id : MD → AP identifying each monitored method and its return value by a
unique atomic proposition. AP is built as follows: for void methods, the atomic

98 P. Arcaini, A. Gargantini, and E. Riccobene

proposition is the name of the method (i.e., id(mi, void) = mi); for non-void
methods, an atomic proposition is built for each return value dji ∈ Di and it is
obtained by concatenating the name of the method with the return value (i.e.,
id(mi, d

j
i) = mid

j
i).

Inverting the function id leads to the definition of the function met : AP →M
and the function eo : AP →

⋃n
i=1 Di associating an atomic proposition with,

respectively, the method and its return value representing the expected output.

Dealing with Large Domains. The suggested construction method for AP is
not feasible when types of return values contain many values (e.g., integers) or
are infinite (e.g., some reference types). In this case we should relax the condition
that the function id is injective, so different return values can be represented by
the same proposition, and/or assume that the function could be partial, so some
return values are not considered – e.g., an atomic proposition getValueGT0 can
be used to indicate that a method getValue returns a value greater than 0.

Trace Semantics. The semantics of the labels is the following: ap (with m =
met(ap) and v = eo(ap)) means that the method m has been called and returns
the value v (if it is not void). On the contrary, the label ¬ap means:
– for void methods: “the method m is not called”;
– for non-void methods: “the method m either is not called or it is called but

it returns a value different from v”.
Since we assume that at every instant only one method is called, we have to add
an assumption on traces. Usually [19], a trace is a word ω = σ(0)σ(1) . . . over
the alphabet 2AP where a letter σ(i) is a set of atomic propositions representing
their truth evaluations (i.e., σ(i) ∈ 2AP). However, since we assume that only
one method is called in each time instant, we consider a trace valid only if one
proposition in AP is true in every letter, so that a trace is a sequence of atomic
propositions in AP .

A test is a finite sequence of methods calls and their expected values, so
formally a test is a valid trace.

4 Running Case Study

Fig. 1. Battery

As a running example we use the simple case
study of a battery (class), whose schema is
shown in Fig. 1: the method init initialises
the battery; charge and discharge are called
to charge/discharge the battery; isC checks if
the battery is charged or not. All methods are void, except isC that returns a
boolean.

The set of monitored methods and the set of atomic propositions (computed
as suggested in Sect. 3) are M = {init, charge, discharge, isC} and AP =
{init , charge , discharge , isCfalse , isCtrue}.

The requirements on the correct usage and behavior of the battery can be
captured by LTL properties exploiting classical patterns as those in [8].

The following requirements regard the correct methods invocation:

Online Testing of LTL Properties for Java Code 99

S0 S1

¬discharge ∧ ¬charge
∧¬init

init

1

S0 S1 S2

¬isCfalse ∧ ¬isCtrue
∧¬charge 1

isCfalse∧
¬isCtrue ∧ ¬charge charge ∧ ¬isCtrue

¬isCtrue ∧ ¬charge

charge ∨ isCtrue

Fig. 2. Monitors for Pa (left) and for Pd init (right)

a) charge and discharge can not be executed before executing init;
b) init must be called only once.
They can be easily specified in LTL as follows.

Pa) (¬ discharge ∧ ¬ charge) W init and Pb) G(init → X(G(¬ init)))

The following requirements concern the correct battery behavior.
c) After executing discharge, any invocation of isC can not return true until

charge is called:

Pc) G(discharge → (¬ isCtrue W charge))

d) Anytime the battery is uncharged, it stays that way until it is charged.
To model requirement (d), let us introduce the temporal formula f equal to
(¬ charge W isCtrue) → (¬ isCfalse W isCtrue). f means that if no charge
is issued before the battery is observed charged, it cannot happen that the
battery is uncharged and charged again thereafter. This formula f must be
true initially and always after the battery has been observed charged:

Pd init) f and Pd G) G(isCtrue → X(f))

e) The charging operation (after the execution of the charge method) is not
instantaneous and, when the battery becomes charged, it can spontaneously
loose the charge over time. So, repeatedly calling method isC after method
charge can either return true or false, but it will eventually return true.

Pe) G((charge ∧ X(G(isCfalse ∨ isCtrue)))→ F(isCtrue))

5 Monitor Construction

Given a Java class C, the user selects some methods M = {m1, . . . ,mn} rep-
resenting the behavior of C to be tested. Then, the set of atomic propositions
AP = {ap1, . . . , apr} is derived as described in Sect. 3. Using AP , the user can
write several LTL properties of the expected behavior of the class methods and,
if necessary, of the correct method invocation order.

The first step of our approach consists in automatically deriving a monitor
from every property by using the technique proposed in [7,22]. Two monitors for
the battery properties are shown in Fig. 2.

We then add to these monitors the trace assumption that at every step only
one atomic proposition in AP is true, and then we use SPOT [7] to build the
product monitor PM among all the single monitors. Although computing the

100 P. Arcaini, A. Gargantini, and E. Riccobene

s0 s1 s2 s3

s4

charge

isCtrue isCfalse
discharge

charge ,
isCfalse

charge

init
discharge , isCfalse

isCtrue
isCtrue

discharge ,
isCfalse

isCfalse init

Fig. 3. Product monitor PMbatt for the battery case study

product can be time-consuming, PM is built only once and it provides a useful
global view of the system behavior. Every trace that is accepted by PM is also
accepted by all the monitors and respects the trace semantics. In PM, every
transition is labeled with a list of atomic propositions, each representing one
possible action (method call and return value) causing the state transition.

Fig. 3 shows the product monitor derived from the monitors for the LTL
battery specifications.

Note that obtaining the PM from LTL properties offers several advantages
w.r.t. directly writing it as an automaton (e.g., FSM or LTS). First, the user can
adopt a declarative notation like LTL.Writing the complete monitor from scratch
may be more difficult than writing single LTL properties and then automatically
deriving the PM. Moreover, the user can proceed incrementally adding new LTL
properties and enriching the behavior, while being always sure that the PM still
formalizes all the requirements given so far.

6 Coverage Criteria over the Monitor

In the literature, monitors have been used for runtime verification purposes:
while the monitored program is running, the monitor checks that the program
is used and behaves correctly. The monitor, at each step, observes the invoked
method and the returned value, and changes its current state accordingly.

In this paper we extend the use of the monitor to testing. We devise the
following coverage criteria over the product monitor for measuring the testing
activity. These criteria work regardless the way the monitor is built.
– State Coverage (SC): each state of the monitor must be visited.
– Method Coverage (MC): for each state of the monitor, each exiting

method must be visited. It means that, for each atomic proposition ap of
each exiting transition, the corresponding method mi (i.e., met(ap) = mi)
must be executed.

– Transition Coverage (TC): each transition of the monitor must be taken.
TC does not imply MC because a transition could be labeled by more than
one atomic proposition (identifying different methods), and MC does not
imply TC because the same method could appear on different transitions
outgoing from the same state (but only one transition is taken).

– Atomic Proposition Coverage (APC): each atomic proposition ap on
each transition of the monitor must be covered. Covering ap requires to

Online Testing of LTL Properties for Java Code 101

execute the related method mi (i.e., met(ap) = mi) and that the returned
value v is the expected one (i.e., eo(ap) = v). It implies both method and
transition coverage.

– n−Transition Coverage (TCn): every transition of the monitor must be
covered at least n times.

– n−Atomic Proposition Coverage (APCn): every atomic proposition on
each transition of the monitor must be covered at least n times.

Given a monitor, a criterion identifies a set of goals. For instance, the state
coverage identifies the set of states to be covered.

Fig. 4. Criteria hierarchy

Criteria hierarchy A partial order exists among
the coverage criteria, as shown in Fig. 4. p-atomic
proposition coverage implies q-transition coverage
when p ≥ q.

Coverage criteria for runtime monitoring The
aim of runtime verification techniques is to ob-
serve a system while it runs and determine if it
assures some properties expressed, for example,
in LTL. Empirically, the more the system is executed and monitored, the higher
is the confidence that the system is correct. But, how to measure such degree of
confidence? To do this we can use the coverage criteria previously defined. The
percentage of covered goals is as an indicator of how much the system has been
monitored; the user could decide, when coverage reaches a threshold K, to stop
monitoring, because (s)he is confident enough that the system is correct. Using
Büchi automata or LTL properties for measuring the coverage has been already
proposed in several works [24,23].

7 Online Testing of LTL Properties

We now describe the approach we propose for online testing Java code starting
from its LTL properties. The coverage criteria defined in Sect. 6 are used to
measure the testing activity and to address the generation of tests.

The overall process is depicted in Fig. 5. Given a Java class, the user selects
the set of methods to be monitored, derives the atomic propositions, writes the
LTL specifications and automatically obtains the product monitor from them.

Fig. 5. Proposed approach – Online testing of LTL properties

102 P. Arcaini, A. Gargantini, and E. Riccobene

Algorithm 1. Visiting algorithm of the monitor using the guided walk

Require: coverage criterion CRIT , class C
1: while existsNotCoveredGoal(CRIT) do � check if CRIT is achieved
2: currS ← initState
3: currObject ← new C() � create a new object of class C
4: while existsReachableGoal(currS,CRIT) do
5: path ← computePath(currS,CRIT) � compute the path to the next goal
6: for all (ap, s) ∈ path do
7: v ← currObject .met(ap) � execute the method associated with the ap
8: if v = eo(ap) then � check if the result is the expected one
9: currS ← s
10: updateCoverage(CRIT ,currS , ap)
11: else � check if the returned output is still correct
12: if ∃(ap′, s′) ∈ out(currS) : met(ap) = met(ap′) ∧ v = eo(ap′) then
13: currS ← s′

14: updateCoverage(CRIT ,currS , ap′)
15: if s 	= s′ then � check if there is a deviation from the path
16: break
17: end if
18: else
19: throwException � the LTL specification has been violated
20: end if
21: end if
22: end for
23: end while
24: end while

The test sequences are built by visiting the monitor with the aim of achieving
the full coverage of a given criterion CRIT. We identify two kind of visits:
– Random walk: the criterion CRIT is only used as stopping rule, but it is

not considered to drive the monitor visit, since each step is randomly chosen.
– Guided walk: the criterion CRIT is also considered when computing the

paths to execute.
The visiting procedure in case of guided walk is shown in Alg. 1. Until all the

goals of the selected criterion CRIT are covered:
1. It starts the visit from the initial state of the monitor (the initial state is the

current state currS), and creates the object currObject of the Java class C;
2. Until no goals are reachable from the current state, it computes the shortest

path to the nearest uncovered goal (line 5) using a standard greedy algorithm.
A path is a sequence of couples (ap, s), being ap an atomic proposition and
s the target state. For each (ap, s):
(a) It executes the corresponding method (i.e., met(ap), line 7);
(b) If the returned result v is the expected one (i.e., v = eo(ap), line 8), it

updates the current state to s and the coverage information;
(c) If not, it checks if there exists an exiting transition of the current state,

labeled with an atomic proposition ap′ that identifies the same method

Online Testing of LTL Properties for Java Code 103

and the returned result (i.e., met(ap) = met(ap′)∧v = eo(ap′), line 12).
To check the existence of ap′ we make use of the set out(s) containing
all the couples (api , si), where api is an atomic proposition occurring
in a label of an exiting transition of s, and si the target state of the
transition.
i. If a label ap′ is detected, it takes the corresponding transition and it

updates the coverage info. Then, it checks if the expected path has
not been followed, i.e., if the reached state is different from the ex-
pected one. Note that ap′ could indeed belong to the same transition
of ap. If the path is not followed, its execution is interrupted.

ii. Otherwise, it throws an exception stating that the LTL specification
has been violated.

A single test is the sequence of the atomic propositions selected along the
paths built for the object currObject, i.e., a test is built during the iteration of
the inner loop of Alg. 1.

In case of random walk, computePath (line 5) randomly chooses a transition
exiting from the current state and the check at line 15 is not executed since any
transition taken is acceptable.

Example 1. Let us consider the visit of the monitor in Fig. 3 following the state
coverage and using the guided walk. (1) In s0 the path [(init , s4)] is produced
to cover s4. Since the method is void, the method execution surely brings to
s4. (2) From s4, the path [(isCfalse , s2)] is produced to reach s2. Consider the
method execution returns true, which is not the expected output, but it is correct.
So, the loop transition is taken and s4 remains the current state. (3) From s4, the
path [(charge , s3)] is produced to reach s3. Since the method is void, s3 is surely
reached. (4) In the same way, s2 is reached from s3 with the path [(discharge , s2)].
(5) Since there are no more uncovered states reachable from s2 but there are still
uncovered states, the visit restarts from the initial state. (6) For covering s1, the
path [(isCfalse , s1)] is produced. The method execution returns the expected
output, so reaching s1. (7) Since there are no more uncovered states, the visits
terminates, achieving the full state coverage with the test suite T={[init, isCfalse,
charge, discharge], [isCfalse]}.

Limiting the Unsuccessful Retries. Covering a test goal could be very dif-
ficult because the expected output of a given atomic proposition is seldom pro-
duced. Indeed, if a method is nondeterministic, one given value may be returned
with very low probability or, if the implementation is faulty, it may never be
returned. In order to avoid to continuously try to cover a difficult or unreachable
goal, in Alg. 1 we can impose a limit to the number of unsuccessful attempts. For
the guided walk, the limit is the maximum number of times k that the algorithm,
for each goal, can build a path for it; when the limit k is reached, the goal is
discarded. For the random walk, instead, the limit is given by the couple (m, t):
– m is the maximum number of consecutive steps during which any goal is not

covered; when, during a test, m is reached, the test execution is terminated;
– t is the maximum number of tests that can be executed.

104 P. Arcaini, A. Gargantini, and E. Riccobene

Fault Detection Capability Our monitors guarantee to catch a wrong be-
havior (called bad prefix [14]), i.e., a violation of an LTL specification, as soon
as it occurs. However, if no violation occurs, we cannot exclude the presence of
faults since there exist properties for which a finite observation is not sufficient
to draw an affirmative verdict. For instance, non-monitorable [4] properties can
never be violated by a finite trace. Moreover, even for monitorable properties,
it is always possible to build a program that behaves correctly until the moni-
toring is finished and it starts a wrong behavior only afterwards. However, for
some properties, we can stop the testing activity at some point and exclude that
continuing testing would find any fault. For instance, for the property Pa and
its monitor given in Fig. 2, if the visit reaches state S1, further testing would be
useless. That state is also called never violate [6] and we can affirm that, if the
monitor stops in a never violate state, no further activity from that state would
find any fault. We suspect that unfortunately, states of this kind are quite rare
(for instance, PMbatt does not have never violate states), especially for reactive
systems, but we plan to perform further experiments in this direction.

8 Experiments

We have implemented a prototype based on the use of Java annotations for
specifying the set of monitored methods M and the LTL properties. The tool
exploits SPOT for monitor generation and composition. We have run all the
experiments on a Linux machine, Intel(R) Core(TM) i7, 4 GB RAM. All the
reported experiments data are the average of 2000 runs.

8.1 Coverage Criteria Evaluation

We here want to experiment the coverage criteria described in Sect. 6.

Criteria and Walk Comparison.We apply our approach using all the criteria
over a correct implementation of the battery case study, always obtaining the
full coverage of the goals. Table 1 reports, for each coverage criterion, the results
of the experiment in terms of number of goals it requires to cover, time taken
to cover all the goals, number of tests executed, and total number of methods
executed. We experiment the two kind of visits that can be used in Alg. 1, i.e.,
guided (G. in the table) or random (R. in the table).

As expected, the time, the number of tests, and the number of methods grow
with the number of goals to achieve (with both kind of visits).

Since we want to compare the two kind of visits, we also report the percentage
change between the data in the two visits (being the guided visit the basis of
the comparison). The random walk always obtains worse results for the three
indicators. This means that computing the shortest path for achieving a given
goal is more successful than visiting the monitor randomly. In the experiments
regarding the fault detection we use the guided walk.

Online Testing of LTL Properties for Java Code 105

Table 1. Criteria comparison (achieved full coverage with minimum limit) – The
acronyms of the criteria have been introduced in Sect. 6

Criterion # goals Time (ms) # tests executed # methods executed

G. R. ± % G. R. ± % G. R. ± %

SC 5 0.007 0.013 86 1.87 2.02 8.2 6.3 15.4 143

MC 13 0.052 0.101 92 2.5 4.68 87 25.9 92.1 256

TC 13 0.058 0.094 61 3.48 6.05 74 26.9 76.2 183

APC 16 0.098 0.182 85 3.89 6.03 55 35.3 146.8 316

TC2 26 0.113 0.159 41 5.41 9.04 67 50.6 129.0 155

TC3 39 0.164 0.24 47 7.49 11.71 57 74.4 184.5 148

TC10 130 0.52 0.604 16 21.54 29.17 35 234.9 528.2 125

TC50 650 2.571 2.829 10 101.17 119 18 1155.3 2481.4 115

TC100 1300 5.138 5.692 11 201.02 227.36 13 2313.3 4892.1 112

APC2 32 0.193 0.373 93 5.93 9.21 55 69.8 263.2 277

APC3 48 0.28 0.532 90 7.88 11.83 50 104.8 395.0 277

APC10 160 0.926 1.664 80 21.59 29.45 36 348.9 1221.8 250

APC50 800 4.593 10.292 124 101.08 118.89 18 1746.6 6062.7 247

APC100 1600 9.11 19.221 111 201 226.96 13 3496 12021 244

Maximum number of tests built for covering a goal (k)

C
o
v
e

ra
g

e
 a

c
h

ie
v
e

d
 (

%
)

1 5 10 15 20

6
0

7
0

8
0

9
0

1
0
0

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● SC

MC

TC

APC

TC3

TC10

TC50

TC100

Maximum number of tests built for covering a goal (k)

C
o
v
e

ra
g

e
 a

c
h

ie
v
e

d
 (

%
)

1 100 200 300 400 450

1
2
0

4
0

6
0

8
0

1
0
0

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

APC3

APC10

APC50

APC100

Fig. 6. Limit of unsuccessful retries – Guided walk

Limiting the Unsuccessful Retries. In the experiment above, we have not
limited the number of attempts to achieve a goal: so, testing a correct imple-
mentation, we have always been able to obtain the full coverage. To investigate
how limiting the number of attempts in achieving a goal influences the obtained
coverage, we apply our approach to the correct implementation of the battery,
using an increasing limit to the number of attempts. Fig. 6 shows the relation,
for the different criteria, between the coverage and the limit of attempts using
the guided walk. Weak criteria (e.g., state coverage) require a low limit to obtain
the full coverage, since they are easy to achieve. Strong criteria (e.g., 100-atomic
proposition coverage), instead, require a higher limit, since they are difficult to
achieve and so several attempts must be made.

Subsumption Relation. Our experiments confirm the expected hierarchy
among the coverage criteria (Fig. 4). Moreover, they reveal that, in practice, there
exists a relation of subsumption between some criteria: n-transition

106 P. Arcaini, A. Gargantini, and E. Riccobene

Table 2. Faulty implementations of the battery case study

Fault Description

F1 The battery is always discharged and so isC always returns false.

F2 isC returns a random value, not related with the actual status of the battery.

F3 Sometimes it is charged even if no charge method has been called.

F4 Not charging battery: the charge method does nothing.

F5 Not discharging battery: the discharge method does nothing.

F6 The discharge method charges the battery (like charge method were called).

F7 Before the init method execution, the battery is always charged.

Table 3. Fault detection capability (% of failing tests over 2000 test executions)

Fault Coverage Criteria

S
C

M
C

T
C

A
P
C

T
C
2

T
C
3

T
C
1
0

T
C
5
0

T
C
1
0
0

A
P
C
2

A
P
C
3

A
P
C
1
0

A
P
C
5
0

A
P
C
1
0
0

F1 − F4 −F7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F2 0 75.1 63 75.5 86.1 95 100 100 100 93.1 98.7 100 100 100

F3 0 38.8 29.5 38 49.9 64.2 96.1 100 100 61.6 75.9 99.1 100 100

F5 0 23.8 21.1 41.2 30.9 42 85.9 99.9 100 48.5 60.5 94.8 100 100

F6 0 18.1 8.3 19.3 17 25.2 62.1 99.6 100 35.3 48 89.9 100 100

Avg. 0 22.3 17.4 24.9 26.3 32.3 48.5 57.1 57.1 33.9 40.4 54.8 57.1 57.1

coverage subsumes both method and atomic proposition coverage if n is suf-
ficiently large. In our experiments, this happens with n ≥ 50.

8.2 Fault Detection Capability

To measure the fault detection capability of our approach, we produce seven
possible faulty implementations (described in Table 2) of the battery case study,
and apply the approach to each faulty implementation with all the criteria.

Table 3 shows, for each faulty implementation, how the different criteria are
able to detect the fault, and their average fault detection.

We found that three faults (F1, F4, and F7) can not be detected: their resulting
behavior is still acceptable by the given specification. These faults can not be
detected by finite monitoring by any specification. In fault F4, for example, the
chargemethod never charges the battery, instead of charging it eventually in the
future. The specification Pe describing the behavior of charge is non-monitorable
and it can never be violated by a finite trace.

Note that, also when no fault is found, one can suspect that the implemen-
tation is faulty by observing the coverage obtained by the criteria. Indeed, if
a coverage remains low, it may mean that some parts of the monitor can not
be reached because the behavior of the faulty implementation does not exercise
them. For the three faulty implementations we are not able to discover (F1, F4,
and F7), we achieved lower coverage than that obtained for the correct version;
in particular, the stronger the criterion is, the lower the achieved coverage is.

Online Testing of LTL Properties for Java Code 107

Table 4. JTorX experiments

Stopping criteria (# tests - # steps)
1-5 1-30 1-50 8-25 10-5 10-30 10-50 20-5 20-30 20-50

Fault Detection (%) 2.1 25 37.1 57.1 15.7 56.4 57.1 19.3 57.1 57.1

Testing Time (ms) 2017 7790 13541 53723 15620 82813 132957 29152 162276 272652

Among the faults that can be detected, some are easier to catch than others.
In fault F2, when the method isC is called, it returns a random value. This fault
can be detected in all the states of the monitor in which method isC can be
called and it is expected to return only a given value (states s1 and s2 where it
can only return false). Such kind of faults are quite easily detected also by weak
criteria as transition coverage (63 % in the table).

Some faults are more difficult to detect. In fault F6, the method discharge

behaves as the method charge. A necessary (but not sufficient) condition to de-
tect such a fault is that the method discharge is called (from state s3, s4 or s2),
and then (from state s2) the method isC is called: the fault is actually detected
only if isC returns true. However, since the charging is not immediate, isC could
return false without revealing the fault. Only strong criteria (n-transition and
n-atomic proposition coverage with n ≥ 10) have a good fault detection.

8.3 Comparison with LTS

We initially compared our approach with classical off-line test generation tech-
niques. We chose two tools, namely EvoSuite [9] and Randoop [17], which gen-
erate test cases with oracles for Java classes. However, since both frameworks
build test suites recording the current behavior, they produced many falsely
failing tests (tests that may fail when replayed) because of the nondetermin-
ism of the case study, leading to an unfair comparison. Therefore, we focus on
techniques able to explicitly deal with nondeterministic systems. Among them,
one of the most used is the Labelled Transition Systems (LTS) [26] (that are
sometimes also called I/O automata).

In order to test a Java class, the user has to write an LTS specifying the
program behavior and connect methods with LTS inputs and outputs. Inputs
could be method calls while outputs the return values (if any). Tests check if the
implementation satisfies a conformance relation (e.g., ioco) w.r.t. its LTS spec-
ification. In the LTS approach, a test case is a particular tree-like deterministic
LTS with finite behavior leading to a verdict.

The LTS approach is suitable for online testing and for this reason we compare
our approach with LTS and its supporting tool JTorX. We have run JTorX over
the correct and faulty batteries implementations for 2000 runs. Since JTorX
does not use coverage criteria for stopping testing, we have to fix the number of
tests to execute and the length of such tests (couple of values (# tests, # steps)).
Selected experiments data are reported in Table 4, including the experiment that
obtained the best fault detection in the minimum time (in grey in the table).

108 P. Arcaini, A. Gargantini, and E. Riccobene

Fault detection capability is the same as ours (see Table 3), while the testing
time is several orders of magnitude greater than the time needed by our tests (see
Table 1). Moreover, while we exploit coverage criteria also for testing guidance,
JTorX randomly traverses the LTS representing the tests (also called synthesis),
possibly leading to longer tests.

9 Related Work

Although monitoring of programs can be performed by means of behavioral spec-
ifications, like Abstract State Machines in [2], the use of temporal properties is
more widespread. In order to link the Java program with the LTL specifica-
tion, several approaches as J-LO [21], JavaMOP [5], and LIME [13] use Aspect
Oriented Programming (AOP): the atomic propositions are pointcuts that can
represent complex events related to method calls and fields accesses. In terms of
JavaMOP, for example, the proposition isCtrue would be

event isCtrue after(Battery batt) returning(boolean b):
call(∗ Battery.isC()) && target(batt) && condition(b) {}

Thanks to AOP, these approaches can monitor a wider set of events than ours
since we target only method calls. However, it would be very difficult to generate
tests from AOP pointcuts, although we plan to investigate this possibility.

The use of requirements given as LTL properties for test generation has been
proposed by several approaches, especially in the model-based testing (MBT).
In [24] the authors propose a property coverage metric which measures the qual-
ity of test sequences in terms of the coverage they provide over the LTL prop-
erties of the model; in [18] the notion of MCDC has been extended to temporal
formulas. They both use a classical approach based on model checking for test
generation. However, the tests they generate are abstract test sequences, i.e.,
sequences of values for atomic propositions, leaving unresolved the use of such
tests to test implementations. Indeed, in case of nondeterminism, implementa-
tions can diverge from the test sequences generated in advance [10].

Another difference of our technique with classical MBT [24,18] is that we do
not need the operational description of the system, since we directly derive the
tests from LTL specifications. Moreover, they derive tests according to some
criteria on the syntactical/semantic structure of the LTL specification, whereas
our coverage criteria are defined over the monitor of the specification.

The idea of reusing runtime verification techniques for testing purposes has
been proposed also in [3]. From a model of the input domain, a test generator
produces, with the model checker Java PathFinder, input sequences for the ap-
plication together with temporal properties that must be guaranteed during the
execution. The runtime verification framework Eagle checks that the properties
are satisfied during the execution of the application over the generated inputs.

An online testing approach has been also proposed in [27], where testing of
reactive systems is seen as a game between the tester and the IUT. The con-
formance between a IUT and its operational specification is given in terms of
alternating simulation.

Online Testing of LTL Properties for Java Code 109

In [25], in the context of hardware Assertion-Based Verification, the authors
introduce a way to measure the coverage of properties and to generate test
sequences from assertions.

10 Conclusion and Future Work

We presented an online testing approach in which system requirements are spec-
ified in LTL. We identified some coverage criteria for LTL monitors, i.e., au-
tomata used to check the conformance of system runs with their LTL formal
specifications. The procedure we propose builds test sequences by visiting an
LTL monitor with the aim of achieving the full coverage of a given criterion.
The approach is online since tests are executed as they are built.

In the future we plan to devise other criteria addressing the interaction of
methods calls; for example, we could introduce a criterion that requires that
each couple of consecutive transitions are executed in sequence.

Our approach could have the disadvantage that, since non-monitorable be-
haviors are not considered in the monitor, we may not test some behaviors that,
although they can not influence the evaluation of the specification, could how-
ever produce some faults (e.g., NullPointerException). As future work we plan
to derive the test sequences using some criteria over the specification, and use
the monitor only as oracle during testing.

Another future work is to ascertain which LTL property is violated when an
error occurs. In order to do this, we should monitor the program execution using
also each individual monitor of each LTL property. A weakness of our approach
is that creation of LTL formal specifications may be difficult, also because little
tool support exists. We plan to combine our approach with assisting LTL creation
tools like Prospec [11], pattern based techniques [8], or tools for finding software
properties automatically like Daikon. This will permit us to experiment our
approach over real-world case studies.

In our approach, monitored methods can have parameters, which, however,
are currently ignored. We plan to deal with them in the future.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-
istic and probabilistic machines. In: Proc. of the 27th Annual ACM Symposium on
Theory of Computing, STOC 1995, pp. 363–372. ACM, New York (1995)

2. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: Conformance Monitoring of Java
Programs by Abstract State Machines. In: Khurshid, S., Sen, K. (eds.) RV 2011.
LNCS, vol. 7186, pp. 223–238. Springer, Heidelberg (2012)

3. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.,
Pasareanu, C., Roşu, G., Sen, K., Visser, W., Washington, R.: Combining test
case generation and runtime verification. Theoretical Computer Science 336(2-3),
209–234 (2005)

110 P. Arcaini, A. Gargantini, and E. Riccobene

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software and Methodology (TOSEM) 20 (2011)

5. Chen, F., Roşu, G.: Java-MOP: A monitoring oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 546–550. Springer, Heidelberg (2005)

6. d’Amorim, M., Ros↪u, G.: Efficient monitoring of ω-languages. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg
(2005)

7. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83
(October 2004)

8. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proc. of ICSE 1999, pp. 411–420 (May 1999)

9. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented
software. In: Proc. of ACM SIGSOFT ESEC/FSE, pp. 416–419 (2011)

10. Fraser, G., Wotawa, F.: Nondeterministic testing with linear model-checker coun-
terexamples. In: Proc. of the 7th International Conference on Quality Software,
QSIC 2007, pp. 107–116. IEEE Computer Society, Washington, DC (2007)

11. Gallegos, A., Ochoa, O., Gates, A., Roach, S., Salamah, S., Vela, C.: A property
specification tool for generating formal specifications: Prospec 2.0. In: Proceedings
of SEKE, Los Angeles, CA (2008)

12. Gross, F., Fraser, G., Zeller, A.: Search-based system testing: high coverage, no
false alarms. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pp. 67–77. ACM, New York (2012)

13. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface speci-
fication language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.)
RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009)

14. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

15. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40 (1992)
16. Nobakht, B., Bonsangue, M.M., de Boer, F.S., de Gouw, S.: Monitoring method

call sequences using annotations. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010.
LNCS, vol. 6921, pp. 53–70. Springer, Heidelberg (2012)

17. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java. In:
OOPSLA 2007 Companion, pp. 815–816. ACM, New York (2007)

18. Pecheur, C., Raimondi, F., Brat, G.: A formal analysis of requirements-based test-
ing. In: Proc. of ISSTA 2009, pp. 47–56. ACM, New York (2009)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977,
pp. 46–57. IEEE Computer Society, Washington, DC (1977)

20. Steven, J., Chandra, P., Fleck, B., Podgurski, A.: jRapture: A capture/replay tool
for observation-based testing. In: Proceedings of ISSTA 2000, pp. 158–167. ACM,
New York (2000)

21. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: 5th Workshop on
Runtime Verification. ENTCS, vol. 144, pp. 109–124. Elsevier (July 2005)

22. Tabakov, D., Vardi, M.Y.: Optimized temporal monitors for systemC. In: Bar-
ringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 436–451. Springer, Heidelberg
(2010)

Online Testing of LTL Properties for Java Code 111

23. Tan, L.: State coverage metrics for specification-based testing with Büchi automata.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 171–186. Springer,
Heidelberg (2011)

24. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic.
In: Proc. of Information Reuse and Integration, pp. 493–498. IEEE (2004)

25. Tong, J., Boulé, M., Zilic, Z.: Defining and providing coverage for assertion-based
dynamic verification. Journal of Electronic Testing 26(2), 211–225 (2010)

26. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

27. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: ESEC/SIGSOFT FSE, pp. 273–282. ACM (2005)

Modbat: A Model-Based API Tester
for Event-Driven Systems

Cyrille Valentin Artho1, Armin Biere2, Masami Hagiya3, Eric Platon4,
Martina Seidl2, Yoshinori Tanabe5, and Mitsuharu Yamamoto6

1 Nat. Ins. of Advanced Industrial Science and Technology (AIST), Amagasaki, Japan
2 Johannes Kepler University, Linz, Austria
3 The University of Tokyo, Tokyo, Japan

4 KVH, Inc., Tokyo, Japan
5 National Institute of Informatics (NII), Tokyo, Japan

6 Chiba University, Chiba, Japan

Abstract. Model-based testing derives test executions from an abstract
model that describes the system behavior. However, existing approaches
are not tailored to event-driven or input/output-driven systems. In par-
ticular, there is a need to support non-blocking I/O operations, or oper-
ations throwing exceptions when communication is disrupted.

Our new tool “Modbat” is specialized for testing systems where these
issues are common. Modbat uses extended finite-state machines to model
system behavior. Unlike most existing tools, Modbat offers a domain-
specific language that supports state machines and exceptions as first-
class constructs. Our model notation also handles non-determinism in
the system under test, and supports alternative continuations of test
cases depending on the outcome of non-deterministic operations.

These features allow us to model a number of interesting libraries
succinctly. Our experiments show the flexibility of Modbat and how lan-
guage support for model features benefits their correct use.

Keywords: Software testing, model-based testing, test case derivation.

1 Introduction

Software testing executes parts of a system under test (SUT) [20]. A series of
inputs is fed to the SUT, which responds with a series of outputs. In model-based
testing, test cases are derived from an abstract model rather than implemented
directly as code. This approach has several advantages: A high-level model is
easier to develop and understand than program code; and partially specified
behaviors give rise to many possible combinations, from which many concrete
test cases can be derived.

Many existing test generation tools are designed to generate test data to
test a given function or method [9,17,21]. Our work covers test actions instead,
spanning sequences of multiple function calls.

Existing tools to generate test actions [9,15,16,21,28,29] define a programming
interface against which the model is coded; the programmer defines classes and

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 112–128, 2013.
c© Springer International Publishing Switzerland 2013

Modbat: A Model-Based API Tester for Event-Driven Systems 113

stop shutdown

reconfigure
start

init active end

Fig. 1. A finite-state machine modeling component behavior

functions that implement the semantics of the model. It was shown that this
introduces a layer of abstraction in the model that makes it difficult to clearly
express the behavior of event-driven systems, which include databases, file sys-
tems, and cloud computing middleware [2]. Such systems also often depend on
possibly unreliable hardware or communication links, which introduce possible
delays and failures.

Our tool Modbat provides a domain-specific language to model test executions
in such systems succinctly. In Modbat, system behavior is described using ex-
tended finite-state machines (see Figure 1). They provide a graphical, intuitive
base of the model, which can be refined using a domain-specific language pro-
vided by Modbat. For example, the user can add additional preconditions about
when given events are permissible. Results can be checked using assertions, or
stored in model variables to be used in subsequent calls.

1.1 Usage of Modbat

Modbat strives to simplify test modeling by offering a flexible modeling platform.
A tester uses Modbat as follows:

1. The tester defines a model as an extended finite-state machine. The model
is compiled against a library provided by Modbat. For example, a transition
from Figure 1 could be written as
"init" -> "active" := { c = new Component; c.start }.

2. The tester runs Modbat against the compiled model. Modbat explores the
possibilities defined by the model (the state space) using a random search,
executing the SUT in tandem. After each completed test, the model and the
SUT are reset to their initial state.

3. Modbat either executes a predefined number of tests, or it runs until a failure
is found. A failure is detected when a test run violates a property. When a
failure is found, Modbat writes an error trace to a file, giving the necessary
information to analyze the error. For debugging, a failed test can be replayed.

1.2 Outline

This paper is organized as follows: Section 2 gives the necessary background and
describes related work. Section 3 presents our modeling notation, and Section 4
describes our tool Modbat. Section 5 covers projects carried out with Modbat.
Section 6 concludes and outlines future work.

114 C.V. Artho et al.

2 Background

2.1 Terminology

A system under test (SUT) exposes its functionality to other software via an
application programming interface (API). APIs may be organized in libraries.

Testing executes parts of the SUT [20]. A test trace, implemented as a test
case, is a series of function calls (method invocations in object-oriented lan-
guages). A test run is the execution of a test case at run-time. The test harness
serves to set up and manage test execution. A test suite is a set of test cases.

Our test model is based on extended finite state machines (EFSM) [8]. For-
mally, an EFSM is defined as a 7-tuple M = (I, O, S,D, F, U, T) where

– S is a set of states, I is a set of input symbols, O is a set of output symbols;
– D is an n-dimensional vector space D1 × . . .×Dn,
– F is a set of enabling functions fi : D → {0, 1},
– U is a set of update functions ui : D → D, and
– T is a transition relation T : S × F × I → S × U ×O [8].

In an EFSM, D models the internal state of the model; the enabling functions
describe when transitions are enabled; and update functions change the internal
state of the model based on the outcome of a function call to the SUT.

In the formal definition, D is a vector space of fixed dimension. In our tool
(see Section 3), we allow dynamic memory allocation, but for the purpose of
describing the tool behavior, this difference is not important.

A test model usually has a large degree of uncertainty so that it can describe
many possible test executions. Test derivation (test generation) describes the
action of deriving individual concrete test cases from the abstract test model.

Techniques that rely solely on the specification of a system are called black-box
techniques, while approaches that consider the implementation during analysis
are known as white-box techniques. In our case, the specification is sufficient to
write a test model; hence we consider our approach black-box.

2.2 Online vs. Offline Testing

Test derivation techniques can be divided into online testing and offline test-
ing [28]. In online testing, the test generation (derivation) tool connects directly
to the SUT. Each test is directly executed while it is generated (see Figure 2).

In offline test generation (see Figure 3), the test derivation tool does not
execute the SUT directly. Instead, it generates an intermediate representation of
test cases that is turned into executable tests later [28]. Existing literature also
covers generation of manually deployable tests, which is elided in this paper [28].

Online testing is more efficient than offline testing, as no test code needs to
be generated and compiled. A model can be set up to handle non-determinism
in the SUT (also see Section 3), and may even dynamically fine-tune the test
model based on earlier test executions.

Modbat: A Model-Based API Tester for Event-Driven Systems 115

Test
requirements

Test
derivation

IXIT

Model

Test execution Report

SUT

Fig. 2. Online testing. Test requirements include configuration options for the test
tool, such as the number of tests to be generated; IXIT refers to implementation extra
information, which is information needed to derive executable test cases [28]. Such
information includes system configuration (such as library locations).

Test
req.

Test
derivation

IXIT
Executable
test suite

compilation

Model

Abstract
test suite SUT

Test exec. Report
Executable
test suite

Fig. 3. Offline testing: Abstract tests are turned into executable tests later

Offline testing has the advantage that the test execution platform does not
depend on the test derivation tool. The execution platform is therefore simpler
and has a higher chance of not introducing unwanted behavior. Offline testing
is also applicable when test cases have to be executed on a platform that is not
supported by the test derivation tool. Modbat supports both online and offline
testing, so it can handle a large set of use cases and platforms.

2.3 Related Work

Unit testing experienced a widespread rise in software development in the late
1990s [6,7,19]. In particular, JUnit is widely used for Java programs [19]. Modbat
supports offline code generation for JUnit, allowing it to complement legacy test
suites with automatically generated tests.

Many model-based testing tools allow a model to be defined against a pro-
gramming interface (API). Such tools include QuickCheck [9] and ScalaCheck
[21], which generate data based on predicate constraints; that data is then used
to execute a given function in the SUT. One of the earliest practical model-based
test tools that generates test sequences was ModelJUnit [28], which is also based
on extended finite state machines. In ModelJUnit, a lot of the structure of the
EFSM is implemented by the user (also see Section 3). A tool that motivated
Modbat was actually implemented as a preprocessor to ModelJUnit [2]. Osmo

116 C.V. Artho et al.

and NModel also use state machines and take a similar approach as ModelJUnit;
the structure of the model is defined via annotated methods [15,16]. NModel and
its successor SpecExplorer [29] also distinguish themselves by splitting the model
into a scenario model (generating the tests) and a contract model (verifying the
outcome), while most other tools combine both aspects in one model.

Model-free test case generation techniques require no user-defined model. Ran-
domized testing is such a white-box technique, which executes the SUT without
any specification. Instead, it explores possible test actions and tries to execute
as many aspects of the SUT as possible. Such testing may be primarily random-
ized [10,24] or more systematic and coverage-driven [11].

Concolic testing tools also optimize test coverage by keeping track of (sym-
bolic) constraints that describe if a code branch can be taken; these constrains
are then refined with current values during concrete test execution [13,27].

Model-free approaches essentially reverse engineer the models from the code.
Full automation comes at the expense of having no output oracle is available,
limiting detectable failures to executions that result in a fatal outcome (typically
a crash or unhandled exception).

3 Modeling Notation

We address the problems listed in Section 1 by the following design decisions:

1. The underlying model is an extended finite state machine (EFSM), which
is well understood by the formal methods community and developers alike.
Transitions in the EFSM are directly linked to program code.

2. The model is not expressed as a program, but in a domain-specific language
(DSL). Our DSL supports non-determinism both in the specification (to sim-
ulate faults or non-deterministic events) and in handling the resulting SUT
behavior (to handle faults or exceptions). It is, to our knowledge, the only
tool both supporting non-determinism and exceptions as primary constructs.

Figure 4 shows an example. Class SimpleCounter offers two methods that can
increase its counter value (initially 0). The first method has the added property
that a successful outcome depend on a flag (initially true). If the flag is set to
false by calling toggleSwitch, then calling inc does not change the counter
value. A corresponding test model calls the given methods in random order until
value 2 is reached. In doing so, it does not take the side-effect of toggleSwitch
into account. Modbat finds sequences of actions in the model that result in
violating the assertion in the model, such as toggleSwitch, inc, inc, assert.

Note that a labeled state in an EFSM does not reflect the full model state; in
our example, states correspond to the counter value but do not include the state
of the switch in the counter (see Figure 5). This design is deliberate: The choice
of a more abstract model state keeps the model size small. Model variables are
used instead to define details matching the precise system state [28].

As a consequence of this design approach, different paths resulting in the
same model state may correspond to different system states. In other words,

Modbat: A Model-Based API Tester for Event-Driven Systems 117

public class SimpleCounter {
int count = 0;
boolean flag = true;

public void toggleSwitch() {
flag = !flag;

}
public void inc() {

if (flag) {
count += 1;

}
}
public void inc2() {

count += 2;
}
public int value() {

return count;
}

}

class CounterModel extends Model {
var counter = new SimpleCounter()
// transitions
def instance() = { new MBT (
"zero" -> "zero" := {

counter.toggleSwitch
},
"zero" -> "one" := {

counter.inc
},
"one" -> "two" := {

counter.inc
},
"zero" -> "two" := {

counter.inc2
},
"two" -> "end" := {

assert (counter.value == 2)
})}}

Fig. 4. Example system (left) and Modbat model (right)

zero

toggleSwitch
one

inc

twoinc2

inc

end
assert

Fig. 5. Visualization of example model

model state 〈s,D〉 and SUT state do not necessarily match for two traces where
s = s′ due to abstractions in the model. We are not aware of an established
best practice for choosing the best level of abstraction, but it is well-known that
choosing the right level of abstraction is a challenging task [18].

3.1 ESFM Notation

The notation of our model is motivated by previous work [2], which used a
model that is based on graphs expressed in the notation used by Graphviz [12].
We decided to move to a new notation, because the Graphviz format is not
extensible and not designed for model-based testing, but for visualization.

Our notation is designed as an embedded DSL [31] on top of the Scala pro-
gramming language [22]. Transitions are declared with a concise syntax:

"pre_state" -> "post_state" := { transition_action }.1
Transition actions include calls to the SUT API, and assertions that check

return values against given properties. Transition actions can be modified by
adding declarations on exceptional or non-deterministic behavior.
1 The first declared state automatically constitutes the initial state of the model.

118 C.V. Artho et al.

Exceptions can be specified succinctly in Modbat. If an exception of a given
type is always expected, throws("ExceptionType" {, "ExcType"}) gives a list
of possible exceptions, where one of them must occur during the transition. If
an exception may occur, catches can be used, which specifies the target state
for the model if the exception occurs:

"pre" -> "post" := { action } catches ("Exception" -> "errorState").
Related to the formal definition of ESFMs in Section 2, Modbat does not

use explicit input and output symbols; input/output functions of Java’s libraries
are available instead. D is represented by model variables. F is implemented by
Modbat itself as a check of the predecessor state, and whether declared precondi-
tions evaluate to true. Update functions U are transition actions as shown above;
and the transition relation T , implemented by Modbat, takes into account the
given successor states, exceptions, and the semantics of nextIf as shown below.

Modbat also supports some shorthand definitions, for example to model a set
of transitions with the same action and end state, and to model multiple tran-
sitions with the same predecessor and successor states but different actions. We
believe that automatically combining user-defined annotations for preconditions
and exceptions with transitions derived from the EFSM, is a key to making a
test derivation tool both expressive and easy to use. Earlier work has shown that
managing the model state as user-defined code is tedious and error-prone [2].

3.2 Comparison to API-Driven Test Derivation Tools

Existing tools like ModelJUnit [28] or ScalaCheck [21] require user-defined code
to manage the model state. To show the benefit that Modbat provides, we com-
pare the necessary code to manage the model state for normal transitions and
transitions throwing exceptions. The overhead of user-defined code becomes par-
ticularly high when exceptions have to be managed. Figure 6 shows, for different
tools, the code for managing the model state, and for ensuring that an exception
always occurs (for example, when action is executed in the wrong system state).
Code to manage optional exceptions is similar in ModelJUnit and ScalaCheck;
it updates the next state instead of a boolean and contains no assertion.

Compared to other tools, Modbat’s notation is more concise (see Table 1).
When counting the additional code to handle certain features, we assume a non-
trivial EFSM with non-empty preconditions and do not count the action function
itself, or lines containing only curly braces. We also count a state transition in
Modbat as two lines, as it is usually formatted as such (see Figure 4). We can
see that our notation reduces the amount of model code by 75 % for each tran-
sition while also eliminating error-prone repetitive code that manages internal
information.2

Preconditions (which may not contain side-effects) are supported by all tools
in similar ways. In Modbat, preconditions are declared using require, using the
same syntax as in normal Scala code.

2 Defining additional helper functions in ScalaCheck could partially alleviate the over-
head of exception checking, but not of state management.

Modbat: A Model-Based API Tester for Event-Driven Systems 119

Modbat ModelJUnit ScalaCheck
"pre" -> "post" :=
{ action }

boolean action0Guard() {
::return state == 0; }
@Action void action0() {
::action();
::state = 1; }

case object Transition0
::extends Command {
preConditions += (s==...)
def run(s: State) = action
def nextState(s:State)=...

Modbat ModelJUnit ScalaCheck
{ action }
throws("Exception")

{ boolean ok = false;
try {
action();

} catch(Exception e) {
::ok = true; }
::assert (ok); }

{ var ok = false
try {
action

} catch { case e:
::Exception => ok=true }
::assert (ok) }

Fig. 6. State transitions (top) and exception handling (bottom) in different tools

Table 1. Lines of additional code needed (per use) to handle certain model features

Feature Modbat ModelJUnit ScalaCheck
State transition 1 4 4
Precondition 1 1 1
Expected exception 1 5 5
Optional exception 1 4 4

As can be seen, Modbat’s embedded DSL supports model constructs efficiently
while still leveraging the host language, Scala. Other related tools also use mod-
els defined in program code against a given API (see Section 2.3); the coding
overhead compared to our DSL-based approach is similar to the cases shown in
Table 1.

3.3 Advanced Modeling Features: Non-determinism and
Annotations

We consider non-determinism a powerful modeling feature and therefore support
multiple operators that deal with different types of non-determinism:

Choose returns a random number in a given range. It is intended to cover
relatively simple use cases. We do not model complex data such as sup-
ported by generator functions in ScalaCheck [21], because the generators
from ScalaCheck can be combined with Modbat as long as replay and offline
testing (see below) are not used.

Maybe executes code probabilistically, with default probability of 0.5. This is
useful when testing SUT functionality that is expected to fail sometimes
(such as input/output). In a normal test setup, failure probability may be
too low to be observed. With maybe, faults can be simulated (injected) on
the model level.

120 C.V. Artho et al.

NextIf models alternative outcomes on the SUT side. For instance, non-
blocking input/output (I/O) operations return immediately but may be in-
complete. Using nextIf, the model can account for both possible outcomes
of such an operation.

When using non-blocking I/O, a failed or partial I/O operation usually has
to be retried later. In Modbat, nextIf overrides the normal successor state if
its predicate is true. The following code models a non-blocking accept call in
ServerSocketChannel, which is part of package java.nio in the standard Java
library [23]:
..."accepting" -> "connected" := {
.....connection = ch.accept()
...} nextIf ({ () => connection == null} -> "accepting").3

The documentation of accept states that the non-blocking variant immedi-
ately returns a new connection handle if it is successful and null otherwise [23].
The normal successor state in the model (connected) covers the case where the
operation is successful, but nextIf defines an alternative to remain in the current
model state otherwise.

Using nextIf allows exhaustive testing of component-based systems which are
often I/O-driven and have to be able to continue after communication problems.
It is similar to next-state declarations in modeling languages such as Promela [14]
used for the exhaustive verification of algorithms. As Modbat tests implementa-
tions, exhaustive verification cannot be attained directly. To observe all possible
outcomes, either a large number of test runs is needed, or a platform that can
simulate delays, such as Java PathFinder [30]; also see Section 5.

As our modeling language is embedded in Scala, all Scala language features
are available. In particular, longer blocks of code can be written as separate
functions. Functions may also be annotated so they have a special significance
outside a test run: Functions annotated with @init and @shutdown are executed
before the first and after the last test run, respectively. In our case studies, we
used these annotations to run a server in the background while client tests were
being executed, and to shut the server down cleanly at the end. While this
task could also be handled externally (e. g., by shell scripts), having a built-in
mechanism allows us to refer to model data. Similarly, annotations @before and
@after execute a function before and after each test. Such functions set up and
tear down auxiliary data structures without complicating the test model itself.

3.4 Other Features

Modbat records any decisions taken by its own random number generator (RNG),
so tests can be replayed in full (with a given random seed) or partially (with
a subset of the trace of random numbers generated). Unfortunately, replaying
currently does not support third-party data generators such as ScalaCheck’s.

3 The parentheses followed by the arrow, () =>, are a Scala syntax artifact to encap-
sulate the condition in an anonymous function, which is then passed to Modbat.

Modbat: A Model-Based API Tester for Event-Driven Systems 121

Test 1 • → ◦ → ◦ → ◦
↓

Test 2 • → ◦ → ◦ → . . .
↓

...
...

Fig. 7. Master (filled circle)/slave (unfilled circle) RNG usage in Modbat

Modbat uses random numbers in a tree-like fashion: Instead of one RNG, a
master RNG and a slave RNG are maintained (see Figure 7). The master is
advanced by one step at the end of each test run and only used to seed the slave
RNG for a new test run. Because the RNG is restored to a new seed before a
new test is started, changes in the number of (slave) RNG calls in previous test
cases do not affect the new state at the beginning of a new test. This keeps test
runs within a test suite consistent across minor modifications of the model (such
as adding an extra choice that does not affect the outcome of most test runs).
Precomputing master RNG states even allows parallelization of test executions.

Modbat supports multiple ESFMs, which are executed using an interleaving
semantics. Modbat starts a given state machine first, which then uses the launch
function of Modbat to launch a (parametrized) instance of another ESFM.

Modbat supports both online and offline testing, even when random numbers
are used. For offline testing, the trace of random numbers is recorded for each
transition, so test case minimization can be performed later [32].

Modbat also supports coverage measurement; currently, state and transition
coverage are measured. Coverage can be visualized (along with the test model)
using Graphviz [12].

4 Implementation Architecture

Modbat’s test models are defined in an embedded DSL [31] on top of Scala [22].
Scala was chosen for its extensible syntax (allowing the definition of domain-
specific languages on top of Scala) and its compatibility with Java. We use the
Scala compiler to parse the test model and compile it against a model library
that defines the syntax of our DSL and its operators (see Figure 8).

Modbat supports a variety of configuration options. Test requirements include
the total number of tests and the option to abort after a failure. The length of
test runs can also be limited by setting a probability to abort a test after each
step. Implementation-specific information (IXIT in Figure 2) includes library
locations, log file locations, and the option to set a random seed.

Modbat loads the compiled model and tests it against the SUT. Normally,
Modbat runs in the normal Java Virtual Machine (JVM), and executes test cases
online against the test specification. Failed tests are reported and can optionally

122 C.V. Artho et al.

Compiled
model

SUT

S
ca

la
 c

om
pi

le
r

Test model

Model library

M
od

ba
t

Fig. 8. Implementation architecture (online testing)

be written to a Java or Scala source file as unit tests. Modbat supports JUnit-
style test code generation or a stand-alone format that uses its own test harness.

Offline test code is compiled against the test model for later execution. Both
the compiled unit tests (defining the test traces) and the test model are used for
offline testing, as the latter holds model variables and state transition functions.

5 Usage of Modbat in Software Development

To find defects in Modbat itself, Modbat is tested internally against a number
of test models. Tests range from parsing command line arguments to online and
offline test derivation. About 200 such tests are used as regression tests during
development, to validate Modbat itself. Online test case generation is tested by
running Modbat on the compiled test model, and observing the outcome (test
coverage reported, number of failures found, contents of error traces). For offline
testing, two more stages are added: First, the generated source code is compiled
and compared against a previous run; then, the output of the executed offline
tests is also verified.

5.1 Testing the SAT Solver Lingeling with Modbat

Our first project illustrates how Modbat is used to test SAT solvers, which are
very complex and highly optimized programs. As SAT solvers often serve as
reasoning backends in verification frameworks, their correctness is of particular
importance. In general, efficiently implemented SAT solvers are too complex to
be fully verified themselves, so testing approaches like model-based testing are
required to ensure their robustness. Previous work [3] shows how model-based
testing compares to standard testing techniques for the SAT solver Lingeling,
which is the winner of several major tracks at the SAT solver competition 2013.
Besides standard reasoning techniques found in almost all recent SAT solvers,
Lingeling additionally implements several preprocessing rules which are very
effective, but which also increase the complexity of the solver’s code and API.

An earlier testing framework [3] realizes a model-based testing approach where
the model is expressed in plain C code. The generation of the test cases based
on this model was also manually implemented in C, requiring about 650 lines of
code. We formulated the same model, consisting of 12 states with 18 transitions,

Modbat: A Model-Based API Tester for Event-Driven Systems 123

in Modbat with only 300 lines of code for the same functionality. As Lingeling
is written in C, we used the Java Native Access (JNA) framework to make
Lingeling’s API accessible in Modbat. We did not experience any restrictions
concerning the expressiveness of neither Modbat nor Scala used for describing
the generation of the input data. Because each test run consists of hundreds
of transitions with almost equally many (uncovered) branches, 99.98 % of all
generated paths by Modbat were unique after 100,000 tests.

We performed a similar experiment as described in earlier work [3], applying
our tests to 373 different defective versions of Lingeling. The faults were ran-
domly seeded into Lingeling’s code by removing arbitrary lines or by introducing
abort-statements. Each generated test case was then applied to each defective
version, with a timeout of 100 seconds per test case (on a given instance of Lin-
geling). In our setup, 55 % of the defects were found with the model written in
C [3] within that timeframe. With Modbat we found 60 % of the defects. When
looking at the execution performance, we experienced that the hand-coded model
in C is only twice as fast as the generic Modbat framework.

5.2 Java PathFinder

To evaluate Modbat to an input/output (I/O) driven system, we applied it to an
implementation of java.nio, Java’s network library for non-blocking, selector-
based I/O. This library is used in Java PathFinder (JPF) [30], which is a soft-
ware model checker for Java bytecode. In a concurrent SUT, JPF explores the
outcomes of all possible thread interleavings by backtracking executions to a pre-
viously stored program state, and exploring the other remaining outcomes from
that point. By itself, JPF cannot handle network I/O, because backtracking the
SUT causes it to be out of sync with its environment [5].

In JPF, a model library can provide the missing functionality that JPF does
not support. Other work describes the implementation of java.nio in JPF and
its application to a web server in depth, along with a preliminary evaluation of
an earlier model [4]. In this work, we describe our enhancements to the earlier
model [4], the new defects that Modbat revealed, and its behavior in JPF in
more depth.

JPF implements software model checking by running the SUT in its own
virtual machine (VM) that is capable of backtracking the entire SUT state. JPF
currently supports only the execution of entire programs; therefore, the test
harness also needs to be executed inside JPF, even if it is entirely deterministic.
In our case, Modbat is the test harness, and the java.nio library is the SUT.

5.3 Evaluation of Models for Non-blocking I/O

Non-blocking I/O is difficult to test: A non-blocking operation returns imme-
diately, but the result may be incomplete. The correct use of non-blocking I/O
therefore requires state and buffer management code to ensure completion of an
operation. While more difficult to implement than blocking I/O, it often provides
better performance and has become prevalent in modern servers [26].

124 C.V. Artho et al.

Table 2. Experiments on testing the java.nio client API in JPF

tests Model coverage JPF states other JPF statistics
states # trans. new visited ins. [1,000s] mem. [MB] time

100 5 13 1,070 5 11,667 616 0:15
200 6 15 2,142 3 23,316 1,173 0:31
300 6 19 6,256 24 68,312 2,913 1:51
400 6 20 16,302 61 177,605 4,802 6:03
500 6 20 26,054 121 283,699 6,127 10:20

Table 3. Experiments on testing the java.nio server API in JPF

tests Model coverage JPF states other JPF statistics
states # trans. new visited ins. [1,000s] mem. [MB] time

100 7 17 676 0 7,185 294 0:16
200 7 17 4,798 223 52,128 551 1:10
400 7 17 6,917 230 74,823 1,131 1:46
800 7 17 11,973 273 128,910 2,607 3:37

1,200 7 17 14,760 282 158,872 4,396 5:33
1,600 7 17 20,194 338 217,039 5,996 9:57

We applied Modbat to three related models: one for the server API that
focuses on accepting connections on an open port, and two for the client API
that model connection usage and selectors, respectively. Out of these models,
the server model is the smallest (having fewer states and less inherent non-
determinism than the client models), and the client model that includes selector
usage is the largest.

Modbat is first applied to our test model on the normal Java VM, taking
the standard implementation of java.nio as a reference implementation. The
model is written such that no (false) positives are reported in that case. Model
execution in this case is very fast; for models without external communication,
we measured 3,000 test per second on an 8-core Mac Pro workstation running
Mac OS 10.7.

Execution in JPF is much slower than in the normal Java VM. The overall
architecture remains the same, but Modbat and the SUT run inside JPF instead
of the normal Java VM to analyze non-deterministic operations. While Modbat
itself is deterministic, non-determinism in non-blocking I/O generates multiple
possible successor states. When the outcome of a given test case is analyzed
exhaustively (in JPF) rather than for only one execution (in the normal Java
VM), coverage information maintained by Modbat diverges as well. This causes
a state space explosion across multiple test executions (see Tables 2 and 3). In
that table, the number of “visited” states in JPF indicates the effect of non-
determinism on coverage information, and thus a super-linear increase in the
state space.

Because of this growing memory usage by the state space generated JPF,
generating a large number of test runs in a single execution is not possible. We

Modbat: A Model-Based API Tester for Event-Driven Systems 125

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
um

be
r

of
 p

at
hs

Number of test runs

Server API
Client API

Client API with select

Fig. 9. Paths covered (out of infinitely many possible paths) during 100,000 test runs

solve the problem by splitting 100,000 tests into small test suites, and multiple
executions of Modbat in JPF. Taking advantage of our random number generator
(see Section 3), we use the successor of the master random seed of the last test
run in the next execution of Modbat. Coverage information is aggregated by
post-processing the log files.

Full state and transition coverage was reached quickly in all models, after
fewer than 1,000 test runs.4 As the models include loops, the number of possible
paths is infinite. However, most tests reach an end state after ten or fewer transi-
tions. Due to this, the probabilistic test exploration of Modbat ends up covering
previously derived test traces (see Figure 9). After 1,000 tests, between 13.7 and
21.3 % of all generated traces are unique; after 10,000 tests, that number drops
to 4.4–12.2 %; after 100,000 tests, to 1.6–7.0 %. We consider these diminishing
returns not to be a huge problem: Similar case studies have shown that a large
number of significant SUT behaviors is covered after 2,000–5,000 cases [3].

5.4 Defects Found

We found two previously unknown defects in our java.nio library for JPF:

1. The wrong exception was thrown when finishConnect was invoked after
close. This scenario is easily overlooked as manually written tests and (even
our own earlier models) tend to focus on key operations of the SUT and
neglect operations that come after “difficult” ones [25]. The bug was found
after introducing a short-hand in Modbat to model similar transitions more

4 We found that for a large number of models, state and transition coverage was even
easier to obtain. However, a model state may reflect many system states, depend-
ing on the level of abstraction. Therefore, we think that more complex coverage
metrics [1] are needed; their usage is future work.

126 C.V. Artho et al.

connected

read() == 0

read_1
read() == 1

read() == 0

read_2
read() == 1

read() == 0

eof
read() == -1

read() == -1

Fig. 10. Model of end-of-file semantics; dashed transitions are incomplete reads

succinctly, made it expedient to include the scenario that triggered the defect.
Manually written unit tests with exception checking code (see Figure 6) did
not implement the exception check correctly, underscoring the importance
of supporting such features with a DSL. From this we conclude that it is
conceivable that a developer using other test tools (without DSL support)
may have missed this bug.

2. It was possible to read spurious data after an end-of-file (EOF) token had
been received. The test case for this includes a server that sends two bytes
and then closes its connection. The model has to verify correct reception of
data in the presence of possibly incomplete reads. The defect in the library
related to a mismatch between the EOF event and its internal state when
non-blocking reads are used. The problem was found thanks to improved
monitoring code in the model. In this case, the property to be monitored
was expressed programmatically, and was initially too weak. In hindsight,
using extra model states and Modbat’s nextIf feature would have expressed
the same property more succinctly and clearly (see Figure 10).

From these case studies, we conclude that Modbat is effective at modeling APIs
of I/O-driven systems. The fact that it allows to express certain features directly
was related to finding defects that were not detected by manually written tests
(because of faulty checking code) and earlier models (because of a less expressive
DSL available then). Still, we also concur that creating a succinct and correct
model of system states and actions as a compact EFSM is a challenge. The
choice of appropriate model states and variables at the right level of abstraction
requires experience and precise reasoning about the system specification.

6 Conclusions and Future Work

Modbat is a model-based tester based on extended finite-state machines. It differs
from existing test generation tools by providing a domain-specific language that
assigns system actions to transitions between model states. Modbat directly
supports exception handling and non-deterministic system actions such as non-
blocking input/output.

Our experience with Modbat shows that its notation is very versatile and
allows the developer to focus on the system semantics and properties. Using
Modbat, we successfully found previously unknown defects in a complex system.
This was made possible because Modbat allows one to easily express a variety of
system actions, including non-deterministic operations. The fact that previous

Modbat: A Model-Based API Tester for Event-Driven Systems 127

attempts missed these defects suggests that model expressiveness is an important
factor for the effectiveness of model-based testing.

Our current approach to test case derivation uses only a random seed as per-
sistent state. This allows for parallelization of the search, but limits the number
of unique paths found for a given number of test cases. In future work, we would
like to investigate coverage-driven approaches, in a way that still allows splitting
large test suites into small parts. We also plan to integrate Modbat with other
test data generation tools, and consider searching finite models exhaustively.

Acknowledgements. This work is supported by kaken-hi grant 23240003.
We would like to thank Dimitra Giannakopoulou, Falk Howar, Richard Pot-
ter, Rudolf Ramler, and Franz Weitl for their suggestions and feedback during
our discussions.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Artho, C.: Separation of transitions, actions, and exceptions in model-based testing.
In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 279–286. Springer, Heidelberg (2009)

3. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer,
Heidelberg (2013)

4. Artho, C., Hagiya, M., Potter, R., Tanabe, Y., Weitl, F., Yamamoto, M.: Software
model checking for distributed systems with selector-based, non-blocking commu-
nication. In: Proc. 28th Int. Conf. on Automated Software Engineering (ASE 2013),
Palo Alto, USA. IEEE Computer Society (to be published, 2013)

5. Artho, C., Leungwattanakit, W., Hagiya, M., Tanabe, Y.: Efficient model checking
of networked application. In: Paige, R.F., Meyer, B. (ed.) TOOLS EUROPE 2008.
LNBIP, vol. 11, pp. 22–40. Springer, Heidelberg (1974)

6. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley Long-
man Publishing Co., Inc. (2000)

7. Beck, K.: Test driven development: By example (2002)
8. Cheng, K., Krishnakumar, A.: Automatic functional test generation using the ex-

tended finite state machine model. In: Proc. 30th Int. Design Automation Confer-
ence, DAC 1993, pp. 86–91. ACM, New York (1993)

9. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. SIGPLAN Not. 35(9), 268–279 (2000)

10. Forrester, J., Miller, B.: An empirical study of the robustness of Windows NT
applications using random testing. In: 4th USENIX Windows System Symposium,
Seattle, USA, pp. 59–68 (2000)

11. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2013)

12. Gansner, E., North, S.: An open graph visualization system and its applications to
software engineering. Software—Practice and Experience 30(11), 1203–1233 (2000)

13. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
SIGPLAN Not. 40(6), 213–223 (2005)

128 C.V. Artho et al.

14. Holzmann, G.: The SPIN Model Checker. Addison-Wesley (2004)
15. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing

and Analysis with C#, 1st edn. Cambridge University Press (2007)
16. Kanstrén, T., Puolitaival, O.: Using built-in domain-specific modeling support to

guide model-based test generation. In: Proc. 7th Workshop on Model-Based Testing
(MBT 2012). EPTCS, vol. 80, pp. 58–72 (2012)

17. Kitamura, T., Do, N.T.B., Ohsaki, H., Fang, L., Yatabe, S.: Test-case design by fea-
ture trees. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 458–473. Springer, Heidelberg (2012)

18. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42
(2007)

19. Link, J., Fröhlich, P.: Unit Testing in Java: How Tests Drive the Code. Morgan
Kaufmann Publishers, Inc. (2003)

20. Myers, G.: Art of Software Testing. John Wiley & Sons, Inc. (1979)
21. Nils, R.: ScalaCheck, A powerful tool for automatic unit testing (2013),

https://github.com/rickynils/scalacheck
22. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive

Step-by-step Guide, 2nd edn. Artima Inc., USA (2010)
23. Oracle. Java Platform Standard Edition 7 API Specification (2013),

http://docs.oracle.com/javase/7/docs/api/
24. Pacheco, C., Ernst, M.: Randoop: feedback-directed random testing for Java. In:

OOPSLA 2007 Companion, Montreal, Canada. ACM (2007)
25. Ramler, R., Winkler, D., Schmidt, M.: Random test case generation and manual

unit testing: Substitute or complement in retrofitting tests for legacy code? In: 36th
Conf. on Software Engineering and Advanced Applications, pp. 286–293. IEEE
Computer Society (2012)

26. Reese, W.: Nginx: the high-performance web server and reverse proxy. Linux Jour-
nal 173 (2008)

27. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C.
SIGSOFT Softw. Eng. Notes 30(5), 263–272 (2005)

28. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers, Inc., San Francisco (2006)

29. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

30. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2), 203–232 (2003)

31. Wampler, D., Payne, A.: Programming Scala. O’Reilly Series. O’Reilly Media
(2009)

32. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. Soft-
ware Engineering 28(2), 183–200 (2002)

https://github.com/rickynils/scalacheck
http://docs.oracle.com/javase/7/docs/api/

Predictive Taint Analysis for Extended Testing
of Parallel Executions

Emmanuel Sifakis and Laurent Mounier

VERIMAG laboratory – University of Grenoble
2 Av. Vignate, 38610 Gieres, France
{esifakis,mounier}@imag.fr

Abstract. Dynamic information flow analysis is utterly useful in several con-
texts. Its adaptation to parallel executions of multi-threaded programs has to
overcome the non-deterministic serialization of memory accesses. We propose
an offline sliding window-based prediction algorithm for taint analysis. It infers
explicit taint propagations that could have occurred under plausible serializations
of an observed execution.

1 Introduction

Over the past ten years parallel platforms, especially multi-cores, have invaded every
aspect of computing. Their capability to increase performance of concurrent applica-
tions did not come for free. The parallel execution model introduced by these platforms
raises some new challenges to the (static and dynamic) analysis of (concurrent) pro-
grams executing on such platforms.

1.1 Executing Multi-threaded Applications in Parallel

Concurrency is often exposed to programmers through the notion of threads, which
are schedulable streams of code. With the introduction of multi-cores, the execution
model of multi-threaded programs switched from sequential, where the threads were
serialized by the operating system, to parallel, where threads are executed simultane-
ously, and conflicting memory accesses are serialized by the execution platform. Fig. 1
illustrates an abstract view of a sequential and parallel execution of two threads. In the
sequential case, on the left, the order in which instructions are executed is clear and it is
guaranteed that thread B will assign variable y the value 0, since x=0 precedes. Dually,
in the parallel case, on the right, threads A and B are executed simultaneously and it is
uncertain if y is assigned value 1 or 0.

This uncertainty in the ordering of memory accesses is caused by the execution plat-
form. More precisely, processing units of the architecture may issue simultaneously
memory accesses which are eventually serialized on the physical memory. Also, for
performance reasons, almost all architectures implement some type of relaxed mem-
ory model1, where a thread A may observe a different ordering of memory accesses
than that observed by a simultaneously executing thread B. All these elements intro-
duce some non-determinism at the execution level of applications, which impacts the
classical validation techniques.

1 [1] provides a thorough presentation of relaxed memory models.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 129–144, 2013.
c© Springer International Publishing Switzerland 2013

130 E. Sifakis and L. Mounier

sc
he

du
le

r

A

B A

x=1

B

y=x

A

x=0

CPU

M
E

M
O

R
Y

Multi-threaded execution on mono-processor

sc
he

du
le

r

A

B

A

x=1 x=0

B

y=x

CPU1

CPU2 M
E

M
O

R
Y

IN
T

E
R

C
O

N
N

E
C

T

M
E

M
O

R
Y

IN
T

E
R

C
O

N
N

E
C

T

Multi-threaded execution on multi-processor

Fig. 1. Execution of multithreaded application

1.2 Concurrency Bug Analysis

The situation described on Fig. 1 is a typical example of a race, occurring when the
outcome of a program depends on the order some shared resources (e.g., memory lo-
cations, files) were accessed. Races are a fundamental complication of concurrent pro-
grams. Their effect is also observable on sequential executions, when a schedule that
triggers the race is executed. Because the scheduling of concurrent programs is (in gen-
eral) non-deterministic, races are hard to detect and reproduce. Thus, to eliminate them
synchronization mechanisms such as mutexes are used. The misuse of synchroniza-
tion mechanisms may reduce performance, or introduce other concurrency bugs such
as deadlocks and starvation. Therefore, (supposedly) benign races are often allowed in
programs

As a result, identification of concurrency bugs has been widely studied in the litera-
ture. Many analyzes have been proposed to expose data races or synchronization issues
such as deadlocks. Static approaches [2,3] provide global results, i.e. concerning all ex-
ecutions of a program, but they tend to produce many false positives due to necessary
abstractions. On the other hand, dynamic analyses [4,5,6] are much more precise, since
they are based on finite concrete executions, but their verdict holds only for the (very
small) subset of observed executions, depending on the chosen program inputs.

In the case of parallel executions on a multicore architecture, this later point becomes
even more critical. Indeed, the non-determinism introduced by the execution platform
(in addition to the one produced by the interleaving between threads) further reduces
the coverage level of a dynamic analysis (re-playing the application with the same input
may lead to a different ordering access on shared resources, and drastically change the
programs behavior). Moreover, observing a parallel execution is a very challenging task.
This is usually achieved either by (arbitrarily) producing some particular serialization,
or by using specialized hardware e.g, [7,8]. Note that the same problem occurs from
a testing point of view: repeated executions of a same test case may produce different
verdicts.

To overcome this limitation, a technique called runtime prediction has emerged over
the past years. It consists in collecting sufficient information while observing a single
execution to infer concurrency bugs that could occur in other plausible executions. This
can be achieved using either algorithms operating on abstract program representations
(as in [9,10]), or more sophisticated ones based on symbolic computations to better take

Predictive Taint Analysis for Extended Testing of Parallel Executions 131

into account data assignments (e.g., [11]). Our objective in this paper is to apply this
technique on a specific information flow analysis.

1.3 Taint Analysis

Taint analysis is a very popular dynamic information flow analysis. It is widely used in
several contexts such as vulnerability detection, information policy enforcement, test-
ing and debugging. A significant effort has been put on optimizing taint analysis for
sequential programs. However, adapting taint analyses to programs executing in paral-
lel is utterly difficult due to non-deterministic memory accesses.

Taint analysis consists into marking/tainting data associated to a memory location/
variable and tracking them as they propagate inside a program. A taint analysis is char-
acterized by (i) taint sources, which specify what data should be tracked; (ii) taint
propagation policy, which specifies how taintness propagates between memory loca-
tions; and (iii) taint sanitizers, indicating when data can be considered as un-tainted.
In the context of vulnerability detection, user input and network traffic are most com-
monly designated as taint sources. The propagation of taintness occurs either explicitly
through direct copy of data, or implicitly through some covert channel (e.g., control
flow). Un-tainting (i.e., sanitization) occurs when a static value (i.e., user independent)
is assigned to a variable. Implicit flows are very tedious to track dynamically and are
often dropped in the literature. Similarly, in our work we focus exclusively on explicit
taint propagations.

Most existing dynamic taint analyses [12,13,14,15] are implemented using some dy-
namic binary instrumentation framework [16,17]. The instrumentation code aims to
maintain a so-called shadow memory, i.e., a mapping between each memory location
accessed and a “taint value” in {T (tainted), U (untainted)}. Note that, to track taintness
correctly, the instruction that taints or un-taints a memory location and the update of the
shadow memory must be performed atomically.

1.4 Objectives and Contribution

The objective of this work is to propose a predictive dynamic taint analysis for parallel
executions of multi-threaded applications. More precisely, it consists in extending the
results obtained by observing a single parallel execution to the set of all plausible
serializations that could have occurred at the memory level (and were not necessarily
observed along this execution).

Our main contribution is therefore to provide a dynamic taint-analysis addressing
the following issues: (i) it does not require a sequential execution of the application,
i.e., the results are obtained without constraining its parallel execution on a multi-core
platform; (ii) it takes into account the non-determinism introduced by the execution
platform, i.e., the results obtained are valid for a larger set of plausible executions than
the one being observed; this allows to increase the confidence level provided by a given
test or dynamic analysis campaign; (iii) it preserves the semantics of critical sections
implemented by means of synchronization primitives (like mutexes).

The rest of the paper is structured as follows. In section 2 we give a general overview
of the analysis technique we propose. Taint analysis with respect to a sequentially con-
sistent memory model is described in section 3, and it is then extended in section 4 to

132 E. Sifakis and L. Mounier

take into account synchronization primitives. In section 5 we show that our results also
hold for a weaker and more commonly used memory model (TSO). Finally, section 6
makes a short comparison with related work and section 7 concludes and gives some
perspectives.

2 An Offline Window-Based Analysis

In this section we present our offline sliding window-based analysis for taint prediction.
Fig. 2 illustrates an overview of our approach which consists of two phases:

online phase: execute the target application, on a given set of inputs, without any
scheduling restrictions. The execution produces a set of log files (one per thread);

offline phase: analyze the log files to predict taint propagations that could occur on
plausible serializations of the observed execution.

The logged information consists of all program statements involving some memory
access (to a shared or private location) in the form of use/def relations, as well as the
locking/unlocking operations on mutexes. Each log entry is associated with a times-
tamp, allowing to identify offline the “simultaneous” memory accesses. The lower part
of Fig. 2 presents the offline processing which consists into:

1. slicing the logs into epochs (dotted boxes)
2. predicting taint propagation inside a window (W), consisting of two consecutive

epochs, and
3. summarizing the execution down to the analyzed window (STW).

We introduce hereafter some notations used in the remaining of the document as
illustrated on Fig. 2. First, each log entry corresponds to a runtime observation of a
use-def relation between memory locations initiated by a thread. We denote log entries
as events eAk where A is the thread identifier and k is a thread specific counter used to
infer the observed program order. We introduce the functions Def(e),Used(e) which
return the set of defined/written and used/read variables respectively, for an event e.
The logs are sliced into epochs which we refer to as li. The currently analyzed window
W = {lb, lt} consists of two specially labeled epochs, where lb is the body and lt the
tail epoch respectively 2. The preceding window is called W ′ = {lh, lb}, where lh
stands for the head epoch.

2.1 Slicing the Log Files

As mentioned earlier, our goal is to infer plausible serializations from a parallel exe-
cution. Thus, we slice the logs into uncertainty epochs of fixed time intervals τ . The
period τ is platform dependent, such that each epoch contains a set of events “poten-
tially executed in parallel”. Thus, each epoch not only contains events occurring strictly
at the same timestamp, but a set of events occurring within a “small” temporal window
corresponding to some possible execution overlaps. Note that if this period is too large

2 Label names are inherited from [18].

Predictive Taint Analysis for Extended Testing of Parallel Executions 133

A.log B.log C.log D.log

l1

l2

l3

l4

lh =

lb =

lt = eAk

eBk

eBm
eCk

eDk

W ANALYSIS

STATE STW′

STATE STW

execute

Fig. 2. Overview of our approach

it may also encompass event overlaps caused by the inter-thread scheduling. These in-
terleaving also correspond to valid executions. The effect of the epoch size is illustrated
through a handcrafted example in [19].

To simplify the presentation of our prediction analysis we assume first that the pro-
gram order is not necessarily respected: events produced by a same thread can be inter-
leaved. This (irrealistic) assumption will be dropped on section 3.2. Moreover, because
the slicing of epochs is done arbitrarily i.e., there is no runtime synchronization to guar-
antee a happens before relation between events, we extend the interleaving assumption
to events of two consecutive epochs.

Fig. 2 illustrates this point by depicting several events connected with a bidirectional
edge denoting they can interleave (under the current assumption). The dashed edge
connecting event eBk to eDk although valid, since these events belong to adjacent epochs,
concerns the preceding window W ′ = {lh, lb}. There is no possible interleaving be-
tween eDk and eCk (as shown by the crossed out edge connecting them) because they
do not belong to adjacent epochs. Denoting event eAk occurring in epoch l as (l, A, k),
we define a binary operator cr to express that an event (l, t, i) may precede an event
(l′, t′, j) under the current assumption of completely relaxed (cr) interleaving of events,
and a binary operator cr which restricts cr to events belonging to the same thread.

– (l, t, i) cr (l
′, t′, j) ≡ l′ ≥ l − 1)

– (l, t, i) cr (l
′, t′, j) ≡ t = t′ ∧ (l, t, i) cr (l

′, t′, j)

2.2 Sliding Window Prediction

We apply our analysis using a sliding window consisting of two adjacent epochs. The
window slides over epochs, thus all interleavings of an event with events in its preceding

134 E. Sifakis and L. Mounier

and succeeding epochs are explored. The analysis identifies potential taint propagations
inside the currently analyzed window W by inferring all valid serializations of events
with respect to the completely relaxed interleaving assumption. The predictions are then
summarized in a state ST, which acts as the shadow memory. That is, all variables in
ST are considered as tainted.

3 Window-Based Taint Prediction

Hereafter we present our taint prediction algorithm operating at the window level. We
start with a simple case where we assume (i) the completely relaxed interleaving as-
sumption (even events of a single thread can be arbitrarily interleaved) and (ii) un-
tainting of variables is ignored, i.e., once a variable is tainted it remains so until the
end of the execution. Next, we refine prediction by using sequentially consistent inter-
leaving assumptions (program order is respected) and taking into account un-tainting
of variables.

Fig. 3 illustrates the definition of window-based taint prediction for the completely
relaxed interleaving assumption. As illustrated, taint predictions down to the preceding
window are summarized in STW′ . The prediction algorithm must infer taint propaga-
tion for all valid serializations of events in the currently analyzed window. That is, for
all predicted x ∈ STW there exists a valid serialization σi

W = (e1, ..ej , ..ek, ..en) of
all events in W such that taint(σi

W , last(σi
W), x) holds, where last(σi

W) is the last
event of σi

W and taint is a predicate that indicates if variable x is tainted at event ek
after executing σi

W . We consider here the usual taint propagation policy telling that a
variable defined (i.e., assigned) at ek is tainted as soon as one of the variables used to
define it is tainted. The predicate taint is then defined recursively as follows:

taint(σi
W , ek, x) ≡

⎧⎨⎩
x = T

∨
x ∈ STW′

∨
∃j ≤ k such that: Def(ej) = x ∧

∃y ∈ Used(ej) . taint(σ
i
W , ej, y)

start

STW′={T , z}

σi
W

ej : y=z em: y=U ek: x=y last(σi
W)m: y=U

Fig. 3. Window-based taint prediction

Predictive Taint Analysis for Extended Testing of Parallel Executions 135

3.1 Iterative Taint Prediction

A straightforward way to predict taint propagation for a window is to compute explicit
taint propagation (Algorithm 1) for each of its valid serializations. Recall that state ST
contains tainted variables. Thus, the condition on line 3 asserts there exists a tainted
variable in the used set of the current event. Note that, in the case of un-tainting no
action is taken, which conforms to our current assumption.

Algorithm 1.
In: σi

W , STW′

1: ST i
W ← STW′

2: for all e ∈ σi
W do

3: if Used(e) ∩ ST i
W �= ∅ then

4: ST i
W ← ST i

W ∪Def(e)
5: end if
6: // ignore kills, do nothing
7: end for

Out: ST i
W

Algorithm 2.
In: σi

W , STW′
1: STW ← STW′

2: for all e ∈ σi
W do

3: tv = TaintingV ars(e);
4: if tv �= ∅ then
5: THW ← THW ∪ {(Def(e) , (e, tv)

)};
6: STW ← STW ∪Def(e);
7: end if
8: // ignore kills, do nothing
9: end for

Out: STW

The enumerative approach we just presented is illustrated in the left side of Fig. 4.
It necessitates the processing of |W|! serializations, where |W| denotes the number of
events inW . This is not acceptable considering windows containing hundreds of events.
However, we propose an alternative algorithm sketched on Fig. 4 (right). It consists in
iterating Algorithm 1 on an arbitrary serialization of W until STW is stable (hence in
at most |W| iterations).

ST i
WST 1

W ST
|W|!
W

STW′

σ1
W σi

W σ
|W|!
W

STW =
⋃

i∈[1,|W|!]
ST i

W

Enumerative approach

STW

STW′

σi
W

STW =STW′

false

STW′ ← STW

max number of
iterations |W|

Iterative approach

Fig. 4. Enumerative prediction of taint propagation

136 E. Sifakis and L. Mounier

We show hereafter how to extend this solution considering interleaving of events that
respect sequential consistency and how to take into account un-tainting operations.

3.2 Iterative Taint Prediction under Sequential Consistency

According to sequential consistency program order should be respected. That is, events
of a single thread cannot be interleaved. We define here the precedence operator for
sequential consistency sc which restricts the interleaving of events accordingly:

(l, t, i) sc (l′, t′, j) ⇒ (t = t′ ∧ (
l < l′ ∨ (l = l′ ∧ i < j)

)
) ∨ (t 	= t′ ∧ l′ ≥ l− 1)

Then, we say that a serialization σ = (e1, . . . en) is sequentially consistent, and we
note isSC(σ) if and only if for all 1 ≤ i ≤ j ≤ n we have ei sc ej .

To ensure that all predicted taint propagations respect sequential consistency, we
maintain a taint history. The taint history is associated to the currently analyzed window,
and maps each memory location x to a set of pairs (e, V). The information captured
in taint history makes taint propagation more explicit. Each pair (e, V) associated to
x indicates that e taints x (Def(e) = x) through a (tainted) variable y ∈ V where
V ⊆ Used(e). More formally, we define the taint history mapping function as follows:

THW (x) = {(e, V) | e ∈ W ∧ Def(e) = x ∧
V = {y | y ∈ Used(e) ∧ ∃σi

W s.t. taint(σi
W , e, y)}}

Detailed information maintained in taint history allows us to compute taint
dependency paths (TDP) for a given memory location. A taint dependency path P =
(e1, . . . , en) specifies the execution ordering of a subset of events in the current win-
dow allowing to taint Def(en). That is, taintness is propagated from the source event
e1 (tainted from STW′) to the destination event en, through successive propagations
from ek to ek+1. Here is the definition of such a path:

P = {(e1, . . . , en) | ∀k ∈ [1, n] : ek ∈ W ∧ Used(e1) ∩ STW′ �= ∅ ∧
∀k ∈ (1, n] : ∃ (y, em, V) s.t. y ∈ Used(ek) ∩Def(ek−1) ∧

(em, V) ∈ THW (y) ∧ em = ek−1 }

In the example of Fig. 3 the path that taints variable x is P = (ej , ek). Assuming
ek sc ej , this serialization is not valid under sequential consistency because it violates
program order.

To update the taint history of a window and check that only sequentially consistent
taint propagations are inferred, we need to modify the processing algorithm. We intro-
duce Algorithm 2 which updates accordingly both the state of the current window but
also the taint history. Note that, the check of whether the variable defined by an event
gets tainted or not depends on the outcome of TaintingV ars. This function returns the
set of variables that propagate taintness to Def(e).

Predictive Taint Analysis for Extended Testing of Parallel Executions 137

Algorithm 3 sketches the implementation of TaintingV ars. For each variable y
used in event e it collects all taint dependency paths P that can be inferred in THW for
y (line 3). Next, the function isV alid is applied to each path P to assert all propagation
restrictions. At this stage, isV alid is equivalent to just calling isSC(P)

Algorithm 3. TaintingV ars(e) return tainting variables
In: e

1: tv ← ∅
2: for all y ∈ Used(e) do
3: for all P ∈ TDP (THW , y) do
4: P ← e .P // add event e as first event of P
5: if isV alid(P) then
6: tv ← y ∪ tv; break;
7: end if
8: end for
9: end for

Out: tv

3.3 Taking Un-tainting into Account

Un-tainting of variables affects taint prediction in two ways: (i) it prevents taint propa-
gation by breaking a TDP and (ii) it removes (untainted) variables from STW .These
two points are handled separately.

To verify a path is not broken by an un-tainting we re-enforce isV alid by adding
the predicate noKill(P) which asserts events P ∪ {ek | ∃em ∈ P s.t. ek sc em} can
produce a sequentially consistent serialization σP such that (i) the ordering of events in
P is respected and (ii) the variable that propagates taintness between two consecutive
events of the path is not re-defined in-between.

A formal definition and representative examples of noKill(P) are presented in sec-
tion 4.2.1 of [20]. Hereafter, we present the principle of the checks through the examples
of Fig. 5. In the upper part of Fig. 5(a) we illustrate the tainting path P using labeled
edges, where the label corresponds to the variable that propagates taintness between
events. In the lower part of the figure we juxtapose the tainting path P which is used as
the back-bone of the serialization that noKill(P) must infer. At the bottom, we denote
as σP \ P the events that must be positioned on P to produce σP . The arrows illustrate
where each event can be positioned while respecting sequential consistency. In this ex-
ample the events can only be placed on a single position, thus we must check eA2 and eB1
do not define y and w respectively. In the example of Fig. 5(b) while the events breaking
the path could be individually placed on P such that they do not break the path. These
choices are not compatible as denoted by the crossing dashed arrows. Thus the path is
inevitably broken.

Variables that end up un-tainted on all valid serializations of events in W should be
removed from STW . For instance, in the example of Fig. 5(b) while y is successfully

138 E. Sifakis and L. Mounier

eA1
eA2
eA3
eA4

eB1
eB2
eB3

STW′={ T ,w }

W y
z w

P = (eB2 , eA1 , eA3)

σP \ P = (eB1 , eA2)

(a) from TDP to σi
W

eA1 : z=T ;

eA2 : z=U ;

eA3 : y=U ;

eA4 : x=y;

eB1 : y=z;

eB2 : y=U ;

STW′={ T }

W

y

z
T

(b) no valid serialization exists

Fig. 5. Inferring a valid serialization for a path P

tainted at event eB1 , it is subsequently un-tainted on all sequentially consistent serializa-
tions of W . Thus y should be excluded from the summarization of the window. Note
that, due to the sliding of windows, variables un-tainted by events in the tail epoch of a
window should be kept in STW . These un-tainting events have not yet been interleaved
with events in the tail epoch of the next window, and thus un-tainting these variables
could under-approximate taint propagation.

3.4 Precision of the Analysis

We presented so far an iterative algorithm that predicts explicit taint propagations within
a window, while respecting sequentially consistent interleavings of events and the un-
tainting of variables. There are two sources of over-approximation in our analysis. First,
we might consider infeasible paths with respect to data valuations.

The second source of over-approximation is the sliding of windows which allows
to propagate taintness through incompatible serializations. Fig. 6 illustrates such an
example. In the first windowW ′ = {lh, lb} variable x is tainted throughP1 = (eA1 , e

A
3 ,

eC1 , e
B
1) traced with a solid line. The summary STW′ correctly contains x as there exists

a serialization which taints it. Sliding to the next window, W = {lb, lt}, variable x
can be used to propagate taintness. In this example, it taints variable y through P2 =
(eB3 , e

A
2 , e

A
4), illustrated with a dashed line. Taint dependency path P2, although valid

in W , it is not compatible with the one that initially tainted x (which is the tainting
source for variable y). Namely, the two TDP s cannot be merged and hence they do not
provide a concrete serialization demonstrating how y gets tainted.

Merging TDP s computed in different windows is not always feasible. However,
TDP s indicating why a variable is tainted within a window are not unique (although
finding a single path is sufficient with respect to our taint propagation policy). For in-
stance, with a closer look at Fig. 6 we can identify a second path P3 = (eA1 , e

B
2) (illus-

trated with dash-dotted edges) for variable x which is compatible with P2.
The incompatibility of TDP s over-approximates our predictions. To reduce the

number of false positives we can classify the tainted variables into two categories strong
and weak. Strongly tainted variables are those for which taintness propagation occurred

Predictive Taint Analysis for Extended Testing of Parallel Executions 139

W ′

W

eA1 : d=T ;

eA2 : q=p;
eA3 : c=d;

eA4 : y=q;

eB1 : x=b;

eB2 : x=d;

eB3 : p=x;

eC1 : b=c;

STW′′ = { T }

STWTT ′ = { T,d,c,b,x }

STWTT == { T,d,c,b,x,pp,q,y }

lh

lb

lt

Thread A Thread B Thread C

Fig. 6. Propagating taintness through incompatible TDPs

through mergeable tainting paths. Dually, weakly tainted variables are those for which
non-mergeable tainting paths may exist. For the strongly tainted variables a witness
execution can be constructed.

We provide hereafter two heuristics that can be used to identify strongly tainted vari-
ables without exhaustively exploring all paths:

1. If a tainting path P contains only events from the window’s body and its tainting
source variable is strongly tainted, then it defines a strongly tainted variable as well.
Since P contains only instructions in body epoch it has no conflicts with paths in
the succeeding window.

2. If a variable x is tainted in two consecutive epochs and (i) there is no kill of this
variable in the common epoch and (ii) the variable that made it tainted in the first
epoch is strongly tainted, then x is strongly tainted.

4 Respecting Synchronization Mechanisms

To control the execution of a multi-threaded application several synchronization mech-
anisms are provided. Mutexes are binary semaphores defining a lock and un-lock oper-
ation to respectively obtain and release exclusive access to a shared resource. Mutexes
are widely used to implement critical sections, portions of code that must be executed
atomically, by surrounding them with lock/un-lock operations on the appropriate mu-
tex. Hereafter, we briefly explain how logged information on mutexes is used to refine
taint propagations.

140 E. Sifakis and L. Mounier

According to mutex semantics 3, the timestamps of events associated to locking/un-
locking operations on mutexes allow to infer the possible execution orderings between
events of two critical sections. More precisely, if the the lock and un-lock events of
two critical sections cannot interleave i.e., they do not reside in the same window then
events of critical sections must respect the observed ordering.

In the example of Fig. 7(a) the observed ordering of critical sections is cs1, cs2, cs3.
Because the un-locking event of cs3 occurs outside the scope of the window events in
cs3 cannot precede events in cs1 or cs2. Dually, events of cs1 and cs2 can be re-ordered
while respecting mutual exclusion. That is, (i) events of a taint dependency path should
not bounce between critical sections and (ii) events of critical sections must be serialized
respecting the implicit order defined by the taint dependency path crossing them.

W

A B C

eA1

eA5 eB2

eB7

eC3

eC6

cs1

cs2

cs3

(a) Precedence of CS

A B C

STW′ = { T }

eAk : x=y;

eBk : f=T;

eBm: y=z;
eCk : w=f;

eCm: z=w;

eC
n : z=U;

(b) Serializing events of CS

Fig. 7. Respecting mutex synchronization

In the example of Fig. 7(b) the tainting path designated by the solid edges implies the
critical section of thread C was executed prior to that of B. Thus, all events of critical
section in C are executed before executing B. The corresponding possible serialization
is therefore (eBk , eCk , eCm, eCn , eBm, eAk). Variables x and y cannot be tainted since event
eCn always “breaks” the taint dependency path.

5 Taint Analysis and TSO Memory Model

All the results we presented so far are based on the assumption that program excution
respects sequential consistency. However, for efficiency considerations, current multi-
core architectures usually implement weaker memory models, potentially leading to a
larger set of valid serializations of a parallel execution. We discuss in this section how
our results are impacted when considering TSO (“total store ordering”), one of the most
commonly used memory model4.

3 At any time at most one thread may hold a given mutex.
4 e.g, on Intel x86 machines.

Predictive Taint Analysis for Extended Testing of Parallel Executions 141

The main characteristic of TSO is that it allows the write to read relaxation: a read
operation may complete prior to a preceding write operation to a different memory lo-
cation. To formalize the precedence operator for TSO (tso) we need to reason at the
level of individual read/write operations. Thus, we now consider events being either
R(x, reg) (read variable x into register reg) or W(x, v) (write imediate value or reg-
ister v to variable x). We introduce the functions R(e) and W (e) which return respec-
tively the variable read or written by event e. The precedence operator tso between
events of the same thread (and the corresponding predicate isTSO over serializations)
is defined as follows:

tso ≡ sc ∪ {(em, ek) | ek sc em ∧ (∀k ≤ j < m. R(ej) = ∅ ∧ W (ej) 	= R(em)}

A natural question is now to check if considering TSO executions may impact taint
propagation, and, if yes, how our algorithm could deal with this memory model. How-
ever, as expressed by Property 1, it happens that, under our taint propagation hypoth-
esis, if a valid TSO serialization σi

W taints a variable x at event ek, then there also
exists a valid SC serialization σj

W tainting x at event ek. Thus, considering sequen-
tial consistency is sufficient to predict taint propagation of parallel executions on TSO
architectures.

Property 1. For a window W containing an event ek, and for each variable x, we have:

(∃σi
W . isTSO(σ

i
W) ∧ taint(σi

W , ek, x))⇒ (∃σj
W . isSC(σ

j
W) ∧ taint(σj

W , ek, x))

Proof. (Sketch). First of all, if isSC(σ
i
W), then the property trivially holds. Otherwise,

it is sufficient to show that introducing a valid TSO re-ordering (but not valid w.r.t. SC)
in the events of a given thread does not change the taint value of the variables. Without
loss of generality, lets assume that a thread T contains a sequence of events of the form
(. . . , ek, ek+1, . . . , ek+n, e

′
k, . . .) such that, for all 0 ≤ i ≤ n: ek+i is a write event; e′k

is a read event, R(e′k) = x, and W (ek+i) �= R(e′k).
In a valid TSO serialization σi

W , event e′k may precede events ek+i (e′k tso ek+i),
whereas it must follow them in any valid SC serialization (¬ e′k sc ek+i). But:

– variable x is not modified by events ek+i (W (ek+i) �= R(e′k));
– if variable x is modified by another thread T ′, i.e., there exists an event el such that
W (el) = x and el precedes e′k in σi

W , then it is always possible to build another
serialization σj

W such that isSC(σ
j
W) and el precedes e′k in σj

W (since el and e′k do
not belong to the same thread).

Consequently the value read by e′k on σi
W and σj

W corresponds.
�

It is worth noting that Property 1 is no longer valid when a stronger taint propagation
policy is considered. Lets assume for instance that a variable defined by a statement
i becomes tainted if and only if all variables used to define it are tainted (e.g., if i is
x=y+z then x is tainted iff both y and z are tainted). The example below shows that,
under this assumption, considering TSO or SC memory models does not produce the
same sets of tainted variables.

142 E. Sifakis and L. Mounier

Example 1. Let us consider 3 threads A, B and C executing respectively :

A B C
x = U ; y = U ; z = a + b ;
a = y ; b = x ;

When individual read/write events are considered, the log file obtained is the
following:

A.log B.log C.log

eA1

eA2

eA3

eB1

eB2

eB3

eC1

eC2

eC3

W(x, U)

R(y, eax)

W(a, eax)

W(y, U)

R(x, eax)

W(b, eax)

R(a, eax)

R(b, ebx)

W(z, ecx)

STW′ = { x, y }

Fig. 8. Log files produced from Example 1

According to TSO definition, event eA2 (resp. eB2) and eA1 (resp. eB1) can be swapped.
Thus, the following serialization is valid under TSO: (eA2 , e

B
2 , e

A
1 , e

B
1 , e

A
3 , e

B
3 , e

C
1 , e

C
2 ,

eC3). This serialization taints variable z. However, there exists no valid serialization
under SC able to taint z with respect to this strong taint propagation hypothesis: a and
b cannot be simultaneously tainted when event eC3 is executed.

6 Related Work

Several dynamic taint analysis tools handle multi-threaded programs by serializing their
execution. To the best of our knowledge the only works considering parallel executions
of multi-threaded programs are [18], which inspired us, and [15]. In [18] they focus on
implementing lifeguards for simpler data-flow problems such as undefined variables,
reaching expressions etc. and provide technical details on how to implement taint anal-
ysis. The taint analysis they propose does not take into account any type of synchroniza-
tion primitives and it is unclear whether they consider un-tainting of memory locations
or not. Finally, their work is based on a specialized architecture which slices the execu-
tion into epochs at runtime. Their analysis uses a sliding window of three epochs which
in our opinion makes the algorithms more complicated without any gain in precision.

In [15] they propose a two-phase taint analysis to reduce information recorded by re-
players. Initially, they perform thread-local taint analysis at execution time. That is, each
thread tracks taint propagation independently and logs the memory accesses uniquely
to shared memory locations along with their thread-local taint status. Next in the of-
fline phase, they analyze the logs to predict taint propagations. Their prediction aims to

Predictive Taint Analysis for Extended Testing of Parallel Executions 143

identifying the effect of different schedules. Thus, they do not account for un-tainting
of variables since any inter-thread interleaving could occur. However, they use happens
before relations to refine their predictions. Finally, their logs are more concise than ours
since they only log accesses to shared variables, but this implies they cannot precisely
predict taint propagation offline.

7 Conclusion

In this work we addressed the problem of dynamic taint analysis for parallel execu-
tions of multi-threaded programs. We proposed a sliding-window based analysis which
allows the prediction of taint propagations that could have occurred under plausible se-
rializations of an observed execution. Prediction of taint propagation inside a window
uses an iterative algorithm which avoids an explicit enumeration of all serializations.
This algorithm holds when we assume a completely relaxed interleaving of instructions
and a propagation of taintness through a single variable. We adapted this algorithm to
sequentially consistent interleaving of instructions and proved that it is also capable of
capturing taint propagations for TSO executions.

Our prediction algorithm has been implemented in a proof of concept tool chain.
The tool chain consists of a front-end which instruments, statically, programs written
in C that use the Pthreads library. The instrumenter is developed in Java on top of the
CETUS [21] library. It adds the necessary logging instructions to capture the Use/Def
relations required by the analysis, but also all mutex locking and un-locking events.
The input accepted by the instrumenter is a sub-set of the C language. Note that the
limitations are purely syntactical, yet they restrict the experimentations to hand-crafted
examples. The back-end consists of a slicer (Perl script) which marks the epochs in-
side log files and the analyzer itself which parses the log files and performs the iter-
ative analysis. We have three types of prediction implemented (i) completely relaxed
interleaving assumption; (ii) sequentially consistent interleaving and (iii) sequentially
consistent with synchronization restrictions. Apart the computation of taint propagation
the analyzer also produces a visualization of taint propagations inside a window which
facilitates back-tracking of taintness.

Initial experimentations on some hand-crafted examples allowed to infer correct taint
propagations that were not observed at execution time. The execution time overhead for
producing the logs is only 50% (which is quite reasonable regarding classical dynamic
information-flow analysis). The performance of the offline phase is encouraging as well.

Several perspectives are envisioned for this work. At the theoretical level, it would
be interesting to consider other propagation policies e.g., like the one mentioned in sec-
tion 5. This would allow to adapt our algorithm to other information flow properties
such as non-interference. At the practical level, the log files could be produced at the
binary level which would increase analysis precision and allow arbitrary applications to
be analyzed (even when the source code is not available). Moreover, we could introduce
the classification of strongly and weakly tainted variables in our analysis, to reduce the
number of false positives. Finally, the resulting tool could be integrated into some ex-
isting testing and vulnerability detection platform, making this plateform able to handle
multi-threaded parallel executions.

144 E. Sifakis and L. Mounier

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: A tutorial. Com-
puter 29(12) (December 1996)

2. Pratikakis, P., Foster, J., Hicks, M.: Locksmith: Practical static race detection for c. ACM
Trans. Program. Lang. Syst. 33(1) (January 2011)

3. Engler, D., Ashcraft, K.: Racerx: effective, static detection of race conditions and deadlocks.
In: SOSP 2003. ACM, NY (2003)

4. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race conditions via
adaptive tracking. In: SOSP 2005. ACM, NY (2005)

5. Jannesari, A., Bao, K., Pankratius, V., Tichy, W.: Helgrind+: An efficient dynamic race de-
tector. In: IPDPS 2009. IEEE Computer Society (2009)

6. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4) (1997)

7. Ozsoy, M., Ponomarev, D., Abu-Ghazaleh, N., Suri, T.: Sift: a low-overhead dynamic in-
formation flow tracking architecture for smt processors. In: Proceedings of the 8th ACM
International Conference on Computing Frontiers, CF 2011, pp. 37:1–37:11. ACM, New
York (2011)

8. Dalton, M., Kannan, H., Kozyrakis, C.: Raksha: a flexible information flow architecture for
software security. In: Proceedings of the 34th Annual International Symposium on Computer
Architecture. ISCA 2007, pp. 482–493. ACM, New York (2007)

9. Wang, L., Stoller, S.: Runtime analysis of atomicity for multithreaded programs. IEEE Trans.
Softw. Eng. 32(2) (February 2006)

10. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose atomicity
violations. In: FSE 2010. ACM, NY (2010)

11. Wang, C., Ganai, M.: Predicting concurrency failures in the generalized execution traces
of x86 executables. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 4–18.
Springer, Heidelberg (2012)

12. James, N., Dawn, X.: Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software. In: NDSS (2005)

13. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: Tainttrace: Efficient flow tracing with dynamic
binary rewriting. In: ISCC 2006. IEEE Computer Society (2006)

14. Zhu, D.Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Tainteraser: protecting sensitive data
leaks using application-level taint tracking. SIGOPS Oper. Syst. Rev. 45(1) (February 2011)

15. Ganai, M., Lee, D., Gupta, A.: Dtam: Dynamic taint analysis of multi-threaded programs for
relevancy. In: FSE 2012. ACM, New York (2012)

16. Bruening, D.L.: Efficient, transparent and comprehensive runtime code manipulation. Tech-
nical report (2004)

17. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumenta-
tion. In: PLDI 2005, NY, USA (2005)

18. Goodstein, M., Vlachos, E., Chen, S., Gibbons, P., Kozuch, M., Mowry, T.: Butterfly analysis:
adapting dataflow analysis to dynamic parallel monitoring. In: ASPLOS 2010. ACM, New
York (2010)

19. Sifakis, E.: Towards efficient and secure shared memory applications. PhD thesis, University
of Grenoble (2013)

20. Sifakis, E., Mounier, L.: Offline taint prediction for multi-threaded applications. Technical
Report TR-2012-08, Verimag Research Report (2012)

21. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-to-source
compiler infrastructure for multicores. Computer 42, 36–42 (2009)

Continuous Integration

for Web-Based Software Infrastructures:
Lessons Learned on the webinos Project

Tao Su1, John Lyle2, Andrea Atzeni1, Shamal Faily3, Habib Virji4,
Christos Ntanos5, and Christos Botsikas5

1 Dip. di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy
{tao.su,shocked}@polito.it

2 Department of Computer Science, University of Oxford, UK
johnplyle@gmail.com

3 School of Design, Engineering & Computing, Bournemouth University, UK
sfaily@bournemouth.ac.uk
4 Samsung Electronics, UK
habib.virji@samsung.com

5 National Technical University of Athens, Greece
{cntanos,cbot}@epu.ntua.gr

Abstract. Testing web-based software infrastructures is challenging.
The need to interact with different services running on different devices,
with different expectations for security and privacy contributes not only
to the complexity of the infrastructure, but also to the approaches nec-
essary to test it. Moreover, as large-scale systems, such infrastructures
may be developed by distributed teams simultaneously making changes
to APIs and critical components that implement them. In this paper, we
describe our experiences testing one such infrastructure – the webinos
software platform – and the lessons learned tackling the challenges faced.
While ultimately these challenges were impossible to overcome, this pa-
per explores the techniques that worked most effectively and makes
recommendations for developers and teams in similar situations. In par-
ticular, our experiences with continuous integration and automated test-
ing processes are described and analysed.

Keywords: continuous integration, automated testing, web-based soft-
ware infrastructure, functional testing.

1 Introduction

As web-apps become more pervasive, the reliance on web-based software in-
frastructures, such as middleware products and libraries, is growing. However,
because end-users do not interact directly with such infrastructures, then devis-
ing appropriate strategies for detecting and preventing hidden software defects
is challenging.

Four complementary approaches are typically used to identify such defects.
Unit tests target isolated modules, integration tests target the integration of

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 145–150, 2013.
c© Springer International Publishing Switzerland 2013

146 T. Su et al.

components, functionality tests target source code functions, and system tests
target high level functionality. Carrying out these tests sequentially can be time-
consuming as developers need to wait for the results of these tests before they
can continue working. Moreover, integration problems of the source code of dif-
ferent contributors commonly occur for a myriad of reasons. To address these
problems, Fowler [1] introduced the idea of continuous integration. This entails
continuously downloading, integrating, and testing the source code and project
libraries contributed by each developer. Following this approach, software can be
tested for defects that might not otherwise be noticed by an individual developer.

A continuous integration strategy is difficult to devise when testing distributed
software infrastructures because it needs to simulate all required devices and
services. In this paper, we describe our experiences developing and applying
continuous integration to test the webinos platform. webinos provides an overlay
network between an individual user’s set of personal devices, including their PC,
smartphone and TV, and then allows web applications to access services on these
devices through a set of standard JavaScript APIs. The complex interactions
between web-based devices through browsers make webinos particularly hard to
effectively test from one side, and particularly interesting as a case study from
the other.

2 Related Work

Most web-based application testing researches focus on client-server applications
that implement a strictly serialised model of interactions, generating test cases
based on user-session profiling [2][3], or on testing the correct functioning on the
client side or the server side separately [4][5].

Currently, there are no similar methods to test web-based software infrastruc-
tures like webinos, which appears to be the first platform for sharing services
from different types of devices through browsers. One approach for using conti-
nuous integration testing is described in [6]. The authors presented a neat plug-in
for Selenium implemented on a continuous integration server; this hooks every
AJAX call made by the tested web application to verify requested data before
application processing. This helps narrow down the location of a fault irrespec-
tive of whether it is situated in server- or client-side code. However, compared
with our approach, this work only narrows the error position, and it is already
covered by available functionality tests.

3 webinos Architecture

webinos is a secure platform which can be accessed by multiple types of web-
enabled devices. In its life cycle, more than 30 organizations, mostly based in
Europe, contributed to its development. It introduces the Personal Zone con-
cept, where all the devices (Personal Zone Proxies) belonging to the same zone
support and expose standard JavaScript APIs for accessing services such as de-
vice features (cameras, geolocation, networking and etc).

Continuous Integration for Web-Based Software Infrastructures 147

Fig. 1. webinos architecture

As shown in Figure 1, the Personal Zone Hub (PZH) is the focal point of the
personal zone. The interactions might take place between PZHs and PZPs in the
same zone or from different zones in different modes, when they try to share the
resources or communicate with each others.

4 Testing webinos

As a web-based software infrastructure, webinos is designed to work on dif-
ferent browser-enabled systems and devices. This makes the testing extremely
challenging. The interpretations of different browsers for the same JavaScript
code are not identical, especially for browsers with different JavaScript engines.
Implementing the same testing code on device with different architectures and
computing power, is also challenging. For example, modules accessing OS specific
functionality such as accessing path or network connectivity, provide different
responses.

To simplify the development process, the platform was modularised; this
meant that each API had its own git repository. This also made testing more
complex. Since the APIs and core components are under continuously develop-
ment by groups which apply rapid development methodology, it would be very
easy for certain API to break other components and even the whole platform
despite having passed its own unit test.

The testing infrastructure was created relatively late in the project. This
meant that testing engineers were busy catching up with the developed compo-

148 T. Su et al.

nents, and needed to generate multiple levels of tests to ensure their components
worked correctly independently and when integrated with webinos.

4.1 Approach

To overcome the challenges listed above, we introduced the continuous integra-
tion technique, which means downloading source code, integrating and running
various levels of tests continuously. Five levels of tests are performed, the API
unit tests, integration tests, functionality tests, system tests and APIs’ integrate-
with-webinos tests.

The API unit tests are executed first to test only the module and its dependen-
cies. After that, the integration tests, functionality tests and the system tests are
executed to thoroughly test the integrated platform. The functions in the source
code are called directly in functionality tests, and the results are generated by
comparing the returned with the predefined values. This step requires the help
of a JavaScript test framework. The system tests are executed in a higher level,
mimicking user interactions. Thus, to simulate real case operations, a headless
browser is used to automate this step. After the unit tests and platform tests,
the APIs are integrated with the webinos platform one after another, testing if
they can work correctly after integration.

Setting the order as mentioned is to make the discovery of errors easier: each
unit test is delimited to a specific module, so the test failure means the problem
is circumscribed to the module or its dependencies. The integration tests and
functionality tests are executed before the system tests for similar reason, since
they are more comprehensive and can provide more information on why the test
fails.

To minimise the testing work, the tests are integrated with continuous inte-
gration servers. They are set to download the newest source code, execute the
listed tests one after another in the defined order, and notify the testing engi-
neers if error happens. For unit tests which only take a short time, the continuous
integration server is set to perform the tests after the developer commits, while
the other tests which take longer time are performed in the middle of the night.

4.2 Lessons Learned

The sub-sections below characterise three lessons learned in developing and ap-
plying our continuous integration system for webinos.

Continuous Integration Is Shaped by the Revision Control System
Used. In webinos project, git is chosen to revision control source code. In the
github model, developers build components within their own sandboxes and once
the components are stable, they ask for pull request to the official repository run-
ning on github. Automated tests of pull requests minimises the time that main-
tainers spend reviewing submissions, but delays accepting pull requests cause
merge conflicts, means that multiple incompatible pull requests occur. There-
fore, open source development approaches using systems like github need very

Continuous Integration for Web-Based Software Infrastructures 149

active maintainers and prioritise accepting contribution. For the maintainer who
is also a developer, the rule of ”you should not merge your own pull request” is
effective to avoid errors brought by blind confidence, but causes the mentioned
problem.

As an example, several thumb developers worked together and updated the
webinos-pzh module, but according to the rule, they can not merge their pull
request themselves. Therefore discussions were held on this pull request. How-
ever, at the same time the other pull requests were merged directly. After the
discussion, the pending request was merged, caused a lot of failed tests, these de-
velopers had to rework the updates to incorporate with the new merged changes.

Maintaining the Test Infrastructure Is Harder Than Maintaining the
System. For webinos, a comprehensive testing system may be more difficult to
create than the infrastructure itself.

As an example, to test webinos on various OSes, we use three different conti-
nuous integration servers: one cloud-based infrastructure, one self-hosted infras-
tructure and one self-developed node.js module. The infrastructures focus on
Linux platforms, which do not work very well on proprietary platforms. There-
fore the node.js module is developed to cover this inadequacy. Beside that, the
tests also break frequently because of rapid development of the components.

From the webinos experience, we believe the best option should start testing
from low level to up level as state in section 4.1. The test cases for individual
components can be generated by the developers, this way may fasten the testing
procedure. Also in the most cohesive and loosely coupled components, fairly
good unit tests would help to discover some problems which should be found in
the integration tests. Integration and functional tests work better if it is possible
to assign several developers who have detailed knowledge of the source code to
write these test cases, as these tests are the most important part for testing a
modularised system like webinos. Even if this would require a quite large amount
of resources, bugs raised in the cooperation with other modules are exactly the
kind of problem that an individual developer can not find out. Generating the
system test cases is easier, the developers of these test cases only need to know
how to operate with the webinos platform and use a headless browser to simulate
the operations.

Thus, in our opinion, the best way to assign the resources and speed up the
testing procedure is to assign developers the individual component test respon-
sibility. Also system tests can be generated by single developers, while more care
and resources are needed for integration and functional tests, requiring cooper-
ation from different modules developers.

Developers Only Test for a Single Platform. Developing webinos for mul-
tiple platforms raised several issues that were hard to overcome. Ideally, the
dependencies and modules should be tested on all the platforms before further
implementation and development. For the reason that dependencies or modules
may behave differently on each platform at runtime. Similarly, the binaries for

150 T. Su et al.

native modules should be compiled separately on all platforms. In reality most
developers worked only on a single platform at a time, and tend to only concern
the tests passed on their own systems. This may led to subsequent bugs and
incompatibilities piling up on other platforms.

For example, webinos widget packaging required the zipfile library; which was
included and built on Linux developer’s machines. Although fully functional at
runtime on both Linux and Windows machines, the library failed to be built
on Windows. Even though the testing system was totally functioning, this error
remained undetected for several months until a Windows developer tried to
compile it. This subsequently led to several days being spent re-adapting this
library.

5 Conclusion and Future Work

Using continuous integration system to automate various levels tests increases
development efficiency, it also increases our confidence about the quality of we-
binos platform. However, the testing system has its own limitations. At present,
the system is unable to cover all of webinos ’ supported operating systems. Since
webinos applies security as a pre-requisite, security tests are being introduced
as an important part of our testing approach in the future.

Acknowledgements. The research described in this paper was funded by the
EU FP7 webinos project (FP7-ICT-2009-05 Objective 1.2).

References

1. Fowle, M.: Continuous integration in martin fowler’s blog (2000),
http://martinfowler.com/articles/continuousIntegration.html

2. Sampath, S., Sprenkle, S., Gibson, E., Pollock, L., Greenwald, A.S.: Applying con-
cept analysis to user-session-based testing of web applications. IEEE Transactions
on Software Engineering 33(10), 643–658 (2007)

3. Elbaum, S., Rothermel, G., Karre, S., Fisher, M.: Leveraging user-session data to
support web application testing. IEEE Transactions on Software Engineering 31(3),
187–202 (2005)

4. Di Lucca, G.: Testing web-based applications: the state of the art and future trends.
In: 29th Annual International Computer Software and Applications Conference,
COMPSAC 2005, vol. 2, pp. 65–69 (2005)

5. Marin, B., Vos, T., Giachetti, G., Baars, A., Tonella, P.: Towards testing future
web applications. In: 2011 Fifth International Conference on Research Challenges
in Information Science (RCIS), pp. 1–12 (2011)

6. Falah, B., Hasri, M., Schwaiger, S.: Continuous integration testing of web appli-
cations by sanitizing program input. Cyber Journals: Multidisciplinary Journals in
Science and Technology 3(2) (2013)

http://martinfowler.com/articles/continuousIntegration.html

SLAM: SLice And Merge -

Effective Test Generation for Large Systems

Tali Rabetti1, Ronny Morad1, Alex Goryachev1, Wisam Kadry1,
and Richard D. Peterson2

1 IBM Research - Haifa, Israel
{talis,morad,gory,wisamk}@il.ibm.com

2 IBM Systems & Technology Group, Austin, TX
petersn@us.ibm.com

Abstract. As hardware systems continue to grow exponentially, ex-
isting functional verification methods are lagging behind, consuming a
growing amount of manual effort and simulation time. In response to
this inefficiency gap, we developed SLAM, a novel method for test case
generation for large systems. Our verification solution combines several
scenarios to run in parallel, while preserving each one intact. This is
done by automatically and randomly slicing the system model into sub-
systems termed slices, and assigning a different scenario to each slice.
SLAM increases simulation efficiency by exercising the different system
components simultaneously in varied scenarios. It reduces manual effort
of test preparation by allowing reuse and mix of test scenarios. We show
how to integrate SLAM into the verification cycle to save simulation
time and increase coverage. We present real-life results from the use of
our solution in the verification process of the latest IBM System p server.

Keywords: Functional verification, Test generation, Verification IP reuse.

1 Introduction

The ever-increasing demand for higher performance computer systems is driving
digital designs to become increasingly complex. Advances in process technology
are making it possible to squeeze more logic into a single chip, enabling the
growth of the multi-core trend. This, in turn, is helping achieve better through-
put with less power consumption. Today, it is common to find computer systems
with hundreds of components, including processors, I/O bridges, and special
purpose hardware units.

The functional verification of these larger systems is one of the most time- and
resource-consuming aspects of a system’s development cycle. The main portion
of this effort is pre-silicon verification, which is performed before the chip is
fabricated. Pre-silicon verification relies heavily on simulation-based techniques.

In pre-silicon verification, engineers seek good coverage of the design function-
ality. This can only be achieved by creating high-quality stimuli. Hence, test case
development is a key activity for ensuring successful verification of the system.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 151–165, 2013.
c© Springer International Publishing Switzerland 2013

152 T. Rabetti et al.

To increase productivity and reduce effort, many chip development companies
use test generators that are based on test templates [2,9] as the main vehicle
for creating test cases. A test template is a description of a verification scenario,
written by the verification engineer in a high level language. The test generator
uses these templates to create random test cases that match the high level sce-
nario. Most test templates are developed to verify a specific functionality and
therefore exercise only a subset of the full system.

When it comes to the system-level verification of large systems, verification
needs to target the various interactions between the numerous components, and
the stress on common resources (i.e., caches, buses) as a result of their simulta-
neous work.

Verification engineers can choose one of several practices to verify such large
systems. One approach is to run individual test cases separately on a full system
model, with each test case covering a different part of the system. This approach
suffers from low utilization of system resources, since many of the components
are idle during the execution of one test case. This approach is also limited when
it comes to stressing the system.

Another option for verification engineers is to construct a smaller model that
better fits a particular scenario. While this approach increases simulation utiliza-
tion, it involves a large effort to build and maintain numerous models. Moreover,
it cannot reach the level of stress on resources that is reached when all the com-
ponents of the full system work together.

Verification engineers can also develop test cases that target the full system.
However, in large systems with many components, it is difficult to come up with
scenarios that truly exercise all the components in an interesting way. Therefore,
this approach requires a lot of effort and tends to miss important corner cases.

In this paper, we introduce SLAM, a novel method for effective test genera-
tion for large systems. In this method, the system components are divided into
groups, called slices. Each slice is assigned with a different test template. The
test generator then generates a specific test case for the full system, in which
the components in each slice exercise stimulus that matches the test template
assigned to the slice.

SLAM overcomes many of the limitations of current practices for verifying
large systems. It achieves better utilization of resources, since most of the system
components are exercised by the various test cases. It stresses the system more
intensively, since more stimuli are being simultaneously driven into the system.
Moreover, the interactions among the test cases and the collisions on system
resources can lead to interesting corner cases.

From a methodological perspective, we demonstrate that SLAM integrates
well with the verification cycle, and in fact enhances it, while significantly re-
ducing the manual effort involved in test case generation.

We successfully integrated SLAM into an IBM System-Level Test-Generator
[9], which has been used to verify several generations of IBM System p servers [11].
We evaluated our method experimentally with real test templates on actual sys-
tem models. Our results show that the SLAM method achieves better and faster

SLAM: SLice And Merge 153

coverage for large systems than other approaches, and that it hits interesting
events otherwise not verified.
Our Contributions Are:

1. A novel method for verifying large systems, while boosting coverage and
reducing manual effort.

2. Practical guidelines for implementing this method and integrating it into the
verification cycle.

3. Experimental results from evaluating the method on an industrial high-end
design.

The rest of the paper is organized as follows. We describe our method in
Section 2 and how it fits into verification cycle in Section 3. Section 4 presents our
experimental evaluation. Section 5 summarizes the related work, and Section 6
presents our conclusions.

2 Partitioning Method

The SLAM method is based on dividing the components in a system into several
groups, called slices, and assigning a different scenario for each slice.

Figure 1 illustrates slicing of a multi-core, multi-threaded system. In the exam-
ples, the system was divided into two slices. The dark gray components belong
to one slice and the light gray ones to the other. The white components are
shared by the two slices.

CHIP

BUS

Thread 0

CORE 0

Thread 1

Thread 2 Thread 3

Thread 0

CORE 1

Thread 1

Thread 2 Thread 3

Bridge

IO BUS

IO 0 IO 1

Memory

Controller

Memory

(a)

CHIP

BUS

Thread 0

CORE 0

Thread 1

Thread 2 Thread 3

Thread 0

CORE 1

Thread 1

Thread 2 Thread 3

Bridge

IO BUS

IO 0 IO 1

Memory

Controller

MemoryMem

(b)

Fig. 1. Sample system and two possible slicing results

As shown in Figure 1, some components are divided between the slices while
others are shared. Hardware threads and I/O components usually have their own
instruction streams and therefore are more naturally divided. Buses, I/O bridges,

154 T. Rabetti et al.

and memory controllers are common resources needed by all the components in
the system, and therefore cannot be divided.

The memory’s address space can either be divided between the slices or shared
between them. Shared address space can result in collisions between addresses
used by the different test templates, which will create interactions between the
scenarios. This enhances the simulation with events that would not have hap-
pened by running each of the test cases alone. On the other hand, dividing the
address space will limit the interactions between scenarios, when such interac-
tions are not desired.

In Figure 1a, the slicing was done on the basis of thread granularity, so threads
from the same core belong to different slices. Each I/O component belongs to a
different slice, and the memory is shared. This slicing results in more interactions
(e.g., sharing internal core resources, cache lines, etc.) between the test cases of
the different slices than the slicing in Figure 1b. In Figure 1b, the components
are divided on the basis of core granularity, and the memory is divided between
the slices. All I/O components belong to the light gray slice. This can be done
if the test case assigned to the dark gray slice does not include any stimuli for
I/O components. There is no preferred slicing method. The verification engi-
neers should choose the degree of separation between the slices, based on the
verification goals and the test templates used.

2.1 Slicing Techniques

We describe several approaches to the actual slicing of the system:
Pre-defined Slicing: The simplest way of slicing a system is to manually

assign a subset of the components to each test case. This allows control over the
validity of the slicing, ensuring that each slice has enough components of each
type as required by its assigned test template. invalid slicing will typically result
in test case generation failure. However, statically defining slices limits flexibility
and requires defining new slicing for each model and for different test templates.

Random Slicing: The system can be sliced randomly, by taking all the
dividable system components, and the memory, and dividing them to groups
according to the number of required test templates to include in the SLAM test
case. This approach can be automated to get many different slicing combinations.
The randomness might improve the quality of the verification by using different
slices each time we generate a test case. For example, a scenario that involves
two hardware threads might reach different corner cases when the two threads
are from the same core and when they are from two different cores. We can use
this technique to get combinations that the verification engineer did not think
of in advance, and would not have created manually.

Constrained-Random Slicing: Random slicing may result in choosing in-
valid subsets of the components. For example, there might be subsets that do
not include enough components to run the scenario required by the test tem-
plate. Constraint-random slicing overcomes this limitation by constraining the
division process to a valid result. It can also be used to let the verification engi-
neers control the division process by adding constraints of their own. This way,

SLAM: SLice And Merge 155

the simulation can be directed to more interesting scenarios or scenarios that
were not reached so far.

2.2 Integration into Test Generators

In this section we demonstrate how SLAM can be integrated into an existing
system level test generator.

High-end systems typically have numerous configurations, which may include
different numbers of cores, chips, I/O bridges, and so on. Consequently, in many
test generators there is a separation between the system description and the sce-
nario description. This improves the efficiency of high end systems verification,
since this way, the same test template can be used to generate test cases for
different system configurations.

The separation between the system configuration and the test template is a
key aspect that enables the implementation of the SLAM method. When the two
are separated, it is the test generator’s role to match between the components
and the scenario described by the test template.

The test template consists of statements. Each statement represents a hard-
ware transaction, (e.g., CPU accesses to memory or interrupt from an external
I/O device to a CPU). The test generator parses the statements in the test tem-
plate. For each statement it chooses system components that will participate
in it, and generates a corresponding valid stimulus for these components. For
example, stimulus may be an instruction stream for processors or a sequence of
commands for I/O behavioral (which imitates the behavior of an external I/O
device).

For SLAM, we extend the test generator to receive more than one test tem-
plate as input. The components in the configuration are divided according to the
number of input test templates and each group is assigned one test template.
This is done either manually or automatically by the test generator, based on
the techniques discussed in Section 2.1.

The generation of the test case is done by alternately parsing statements
from each of the test templates. For each statement, participating components
are chosen only from its assigned slice or from the shared components. During
generation, the test generator maintains a generation state that contains the
history of the generated statements, the current stimuli being generated, and
the current state of the components in the system. This allows the generator
to prevent contentions between the slices on important resources. For example,
this can prevent a translation table used by CPU on one slice from being over-
written by another CPU from another slice. It also allows the test generator to
create interactions between the slices. For example, this may include accesses to
different addresses within the same cache line, which will enhance the resulting
test case with interesting corner cases.

156 T. Rabetti et al.

3 Adding SLAM to the Verification Cycle

SLAM offers two principle benefits to the verification process: reduced manual
effort for test case creation and less time required for running regressions. In this
section we suggest how to integrate SLAM into the verification methodology to
exploit these benefits.

3.1 Reducing Manual Effort

In the first stage of verification, the verification team usually focuses on specific
function in a system. A function might be a unit, such as a new I/O bridge,
or a feature, such as cache coherency. The verification team starts testing basic
usage of the function and bringing up the environment. They focuses on writing
specific test templates, each exercising one aspect of the function under test.
With SLAM, the same test templates will be reused in later stages in combination
with other test templates to create more complex test cases, so planning ahead
and preparing a set of high-quality test templates is important.

The next step involves performing more thorough testing of the individual
functions. In this stage, the test scenarios are more sophisticated. The current
practice in this stage involves writing complicated test templates that target
specific scenarios. As we show in the experimental section, complex scenarios
can be achieved by combining several simple test templates into a SLAM test
case, without the need to write new test templates. This reuse reduces manual
effort in covering complex scenarios. It also allows generating tests cases with
many different combinations of directed scenarios without any additional effort.

In more advanced steps of the verification, once each function has been tested
on how it operates individually and the system-level environment is stable, the
verification is targeted at the various interactions between components and func-
tionalities, and the stress on common system resources as a result of their si-
multaneous work. The current practice is to write test templates that combine
several scenarios that have already been running. This is labor-intensive and
only covers a subset of the possible combinations.

Using SLAM, the existing test templates from the previous stages can be
combined without any additional effort to produce a rich variety of test cases
that exercise the whole system in many different ways. As part of this stage,
it is also useful to generate SLAM test cases from random test templates of
the various units. This helps catch bugs by running unplanned and unexpected
scenarios.

3.2 Saving Regression Time

As part of the verification process, the verification team collects a set of impor-
tant scenarios, and runs all of them each time the design is changed, in addition
to running them periodically. This technique is known as regression testing.
With large systems, running regression takes a long time and occupies precious
simulation resources.

SLAM: SLice And Merge 157

SLAM dramatically speeds up this process by running several scenarios in
parallel. As we show in the experimental results section, with large enough sys-
tems, running a scenario on a subset of a system would still fulfill its original
intent. However, with SLAM test cases a trade-off exists between gaining speed
and reaching new corner cases, since many contentions on resources cause delays
in the execution of each scenario. For example, false sharing, which is sharing of
addresses that are mapped to the same cache row, can cause data, brought to
cache by CPU from one slice, to be evicted from the cache by CPU from another
slice. This enhances the scenario with interesting new events. On the other hand,
it also slows it down since the first CPU will have to fetch the data back from
memory for the next time it is used.

4 Experimental Evaluation

We implemented SLAM in IBM System-level Test-Generator, which is used in
the verification of IBM System p design. The method is already in extensive
use in the verification of the next System p generation, but its effect on the
verification was not empirically measured. We conducted a series of experiments
to evaluate it.

The verification teams maintain a vast library of test templates that is updated
for various hardware projects. From these test templates, the test generator
creates numerous test cases that run on a hardware model. The library includes
many test templates targeting different functions of a design. SLAM is being
used as part of the verification of many different functions, including multi-core
features and various I/O interfaces. In this experiment we focused on multi-core
features. We used the following subset of test templates:

– CACHE—target various aspects of different cache levels across the system by
moving cachelines from cache to cache, causing cacheline evictions, etc.

– RESERVATION—focused on the reservation mechanism, implemented in the
POWER architecture[13] by load-link/store-conditional instructions.

– PREFETCH—exercise various automatic as well as software-triggered hard-
ware prefetch mechanisms (e.g., “data cache block touch” instruction and
its variants).

– NEW FEATURE—aimed at a new feature of POWER architecture, related to
multi-core behavior.

We measured our results by counting coverage events that were collected as
part of RTL simulation. We used the same coverage model used by the System
p verification teams. This model has more than 400,000 events, divided into
more than 8,000 classes. Examples of classes are: branch-related events, L2 state
changes, fixed-point unit events, floating point, etc. It is important to note that
while we used multi-core and multi-chip models, we counted each event only once,
independent of the core or chip on which it was reached. On the other hand,
we counted separately events that pertain to different threads, since in this case
they are associated with different pieces of logic. We ignored the number of times

158 T. Rabetti et al.

each event was hit and simply counted whether it was hit or not. The coverage
events were only collected from passing test cases.

Some simulations were done on a software simulator (usually each run is a
few hundred thousand to one million cycles) and some on a hardware accelerator
platform, a special purpose hardware that speeds up RTL simulation and allows
simulations of up to several billion cycles. Our experiments ran on the same
simulation resources used by the verification teams; therefore, the actual simu-
lation time was affected by the changing workloads of the machines. To avoid
this effect, we present the events as a function of simulation cycles.

The goal of the experiments was to verify the assumptions we based on when
using SLAM: (1) exercising a stimulus on a subset of the model does not under-
mine its effectiveness, (2) SLAM achieves coverage faster than running individual
test cases, and (3) using SLAM allows hitting events that are impossible to hit
by each one of individual test cases.

4.1 Simulating a Subset of the System

SLAM relies on the assumption that exercising a stimulus on a subset of the
model does not undermine its effectiveness. In the first part of the experiment
we validate this assumption by comparing coverage obtained by running stimulus
on a full system to running the same stimulus on a subset of the system - in this
case, a subset of the hardware threads.

We used a large system model composed of several multi-core, multi-threaded
chips, with a total of 64 hardware threads. We chose a CACHE test template in
which all participating hardware threads perform various memory accesses and
cache maintenance operations on a fixed set of cache lines. We generated several
test cases from the same test template, with a varying number of participat-
ing threads. In each simulation, the threads that did not participate were idle.
The participating threads were selected randomly from the entire model, not
necessarily from the same core or chip.

We ran simulations of the generated test cases, and measured the coverage
reached by the different test cases as a function of the number of participating
threads. The results showed that the test template has a “saturation” point, at
which adding more agents to participate in the scenario will not contribute to
higher coverage.

The coverage is affected by many parameters such as test generator random-
ization and environment settings, which are random for each simulation run. To
neutralize the great variance caused by that, we collected several simulation runs
for each number of participating threads. We built the results graph by serially
concatenating simulation results to each other. This gave us the accumulated
coverage as a function of accumulated cycles

The order of concatenation was according to an events per cycle metric, which
measures the efficiency of the simulation. The simulations were concatenated by
order of events per cycle, from high to low, to create fair comparison of the
graphs. The results are presented in Figure 2.

SLAM: SLice And Merge 159

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4

Millions

accumulated cycles

ac
cu

m
u

la
te

d
 e

ve
n

ts

1

2

4

8

16

21-30

31-40

41-50

51-64

(a) CACHE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4

Millions

accumulated cycles

ac
cu

m
u

la
te

d
 e

ve
n

ts 3

4

10

21-30

31-40

41-50

51-64

(b) RESERVATION

Fig. 2. Coverage of simulations with increasing number of participating threads for
CACHE and RESERVATION test templates. Each line in the graphs represents the ac-
cumulated coverage achieved by a series of simulations with the specified number of
participating threads.

We repeated the experiment with two test templates: CACHE and RESERVATION.
The results show that as we increase the number of participating threads, we
get higher coverage. But, there is a saturation point where the coverage stops
growing, even as we add more and more threads until we add all 64. With the
CACHE test template, the saturation point was at around 20 threads, while with
the RESERVATION test template, it was at around 30 threads.

Beyond the saturation point, we sometimes even see that simulations with
fewer threads achieve higher coverage. For example, in the RESERVATION graph
we can see that both lines of 31-40 threads and of 41-50 threads are getting
higher coverage than the 51-64 line. One possible explanation is that when most
of the threads in each core are participating in the same scenario, we get similar
behavior across the units of the system. But when in each core there is a different
number of active threads, the asymmetry creates more events.

While the exact number of hardware threads at the saturation point might
change with a different system model and different test template, the importance

160 T. Rabetti et al.

of these results is in showing that a subset of the model is sufficient to extract
all the coverage points that can be reached by the test template.

These results indicate that SLAM’s approach is based on a true assumption
and indeed has the potential to increase coverage obtained by simulations. In
the following subsections we present the results of comparisons between coverage
obtained by SLAM tests and coverage obtained in a traditional way.

4.2 Reaching Coverage Faster

Because simulating large models is very slow, verification engineers always seek
to optimize the simulation efficiency with test cases that reach high coverage in
minimum simulation cycles. In the second part of the experiment, we show that
running test cases using SLAM helps reach high level of coverage faster.

The idea is to take two test templates and compare the combined coverage
we get by running each of the two templates several times, separately, on the
full system, to the coverage we get by running the same number of simulations
with SLAM test cases, generated from the same two test templates. We used two
combination of test templates: NEW FEATURE with PREFETCH and NEW FEATURE

with RESERVATION. For each test template, we generated 6 test cases. In addition,
we generated 12 SLAM test cases, by using SLAM with the combination of the
two test templates. We ran simulations of the resulting test cases. We then
compared the combined coverage of individual test cases to the coverage of the
SLAM test case.

Since running many simulations of a large model on a software simulator takes
weeks, this experiment was done on an acceleration platform1. Each simulation
was limited to one million cycles to get results typical for a software simulation
platform. Because of the limited availability of the accelerators during the exper-
iment period, we used a smaller multi-core, multi-threaded model, with a total
of 32 hardware threads.

We built the results graph by serially concatenating simulation results to each
other. This gave us the accumulated coverage as a function of accumulated cycles,
similar to the way they were built in Section 4.1. However, here we wanted to
compare how quickly the coverage increased, and this is affected by the order
of the simulations. To overcome this, for each graph we took 10 random orders
and built a graph based on their average.

Figure 3 shows only the NEW FEATURE related events. The dashed lines are the
average results of running 6 simulations of each test template. The solid lines
are the average results of running 12 simulations of SLAM test case of each of
the combinations. We can see that although after 12 million cycles, the coverage
reached by each setting is similar, the SLAM test cases graph grows much faster.
For example, after around 3 million cycles it reaches the same coverage level
reached by the individual simulations after 6 or 7 million cycles.

This shows that when limited to a small number of simulation cycles, SLAM
achieves higher coverage than a combination of the individual test cases.

1 An acceleration platform is a dedicated hardware, used for RTL simulation, which
is much faster than traditional software simulation.

SLAM: SLice And Merge 161

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14

Millions
accumulated cycles

ac
cu

m
u

la
te

d
 e

ve
n

ts
new feature+prefetch individual

new feature+prefetch partitioned

new feature+reservation individual

new feature+reservation partitioned

Fig. 3. NEW FEATURE related events covered by individual test cases vs. SLAM test
cases

Figure 4 shows only the RESERVATION related events. We can see that even
after 12 million cycles, the SLAM test case obtained more coverage than the
original test cases running individually. This added coverage may indicate that
the combination of the NEW FEATURE with RESERVATION triggers more events,
which were not reached by the individual targeted reservation test. We expand
on this topic in Section 4.3. Here also, we see that the individual test cases takes
6 million cycles to reach the same coverage attained by the SLAM test cases in
only 2 million cycles.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

Millions

accumulated cycles

ac
cu

m
u

la
te

d
 e

ve
n

ts

new feature+reservation individual

new feature+reservation partitioned

Fig. 4. RESERVATION related events covered by individual test cases vs. SLAM test
cases

Figure 5 shows only the PREFETCH related events. There is a small number of
events in this class. There is no visible difference between the PREFETCH related
events obtained by SLAM test cases and individual test cases. We attribute this
to the fact that the NEW FEATURE does not have much relevance to the PREFETCH
mechanism. Recall that when we took the same combination of test cases and
compared NEW FEATURE related events in Figure 3, we reached higher coverage
more quickly. In this case, running the SLAM test case improved coverage of one
related class and did not damage the coverage of the second class.

162 T. Rabetti et al.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Millions

accumulated cycles

ac
cu

m
u

la
te

d
 e

ve
n

ts
new feature + prefetch individual

new feature + prefetch partitioned

Fig. 5. PREFETCH related events covered by individual test cases vs. SLAM test cases

Interestingly, when we compare the total number of events of all classes that
were hit by each setting, we can’t see a difference between the number and the
rate of event coverage for individual test cases compared to SLAM test cases.
This can be explained by the fact that the number of events in the model is huge
and our test cases cover less than 20% of them. Not all of the events are relevant
to the test templates we selected, and many of them can happen regardless of
the type of test case we are running. For example, the “instruction fetch” class
of events can be hit by any test case. As we run more and more cycles we keep
hitting more events, but they are not necessarily the ones we aim for in the test
templates.

4.3 Covering Unique Events

In the third part of the experiment, we show that SLAM allows us to reach
additional coverage events as compared to running individual test cases. We used
the following groups of test templates: CACHE, PREFETCH, and NEW FEATURE.

As in the previous section, we compared the coverage of individual and SLAM
test cases. To reduce the effects of random choices, we created several random
test cases and ran them on a hardware accelerator for one billion cycles each.
As in the previous section, we used a 32-thread model.

We analyzed the coverage results per class. Figure 6 shows the coverage levels
of a small subset of the classes. We averaged the number of coverage events hit
by different test cases (including CACHE with NEW FEATURE and PREFETCH with
NEW FEATURE). For most of the classes, the accumulated number of events hit
by individual test cases was similar to the number of events hit by SLAM test
cases.

However, we identified a class of events that were almost always hit by SLAM
test cases and never hit by individual test cases (marked by an oval in the figure).
These events were associated with a specific piece of logic in the design that dealt
with the TLBIE instruction when executed in conjunction with the NEW FEATURE.
(The TLBIE instruction invalidates an entry in a translation look-aside buffer.)
Apparently, the TLBIE instruction was never a part of the NEW FEATURE test
templates, but because of its unique system-wide effect, (TLBIE has an effect

SLAM: SLice And Merge 163

0

10

20

30

40

50

60

70

80

90

100

cl
as

s1

cl
as

s2

cl
as

s3

cl
as

s4

cl
as

s5

cl
as

s6

cl
as

s7

cl
as

s8

cl
as

s9

cl
as

s1
0

cl
as

s1
1

cl
as

s1
2

cl
as

s1
3

cl
as

s1
4

cl
as

s1
5

classes

%
 o

f c
o

ve
re

d
 fr

o
m

 to
ta

l c
la

ss
 e

ve
n

ts

individual

partitioned

Fig. 6. Compared coverage of different classes

above the scope of the thread and the core that executed it) was included in
PREFETCH and CACHE test templates as part of the scenario.

Although the reader may argue that it was possible to create a test template
for the NEW FEATURE that would include TLBIE, this was not done; unless the
SLAM test cases caught it, this would result in a coverage hole. This result
demonstrates that with SLAM, simple test templates can be combined to create
new scenarios that would otherwise require writing new test templates. More-
over, SLAM will lead to events that the verification engineer did not think of in
advance, which may results in uncovering hidden bugs.

5 Related Work

Building a test case from several components is a known approach to verifica-
tion. Modern verification languages and methodologies support this by allowing
a “top-level” scenario (coined sequence in some languages) to be composed of
several component sequences (e.g., [1,6,10,12]). This approach is commonly used
to build a complex scenario from several simpler steps or to execute several in-
dependent agents (e.g., PCIe, UART, Ethernet controller) in parallel on a test
bench. Alternatively, we provide both a method and a methodology for slicing
a large system for running several (possibly complex) scenarios in parallel. Fur-
thermore, our technique can be used on top of these languages and methodologies
to address this challenge.

Another known technique of combining several scenarios involves using an
Operating System (OS). This is either a special-purpose OS built for verifica-
tion purposes (e.g., Test Operating System [8]) or a real OS. The latter case is
described in many works on hardware/software co-verification (e.g., [4,5]). Our
approach does not require an OS, thus saving the overhead for both booting
and running time. In addition, the OS-based approach can only be used on a
fast (e.g., acceleration) platform, while our method can be used in a simulation
environment.

Interleaving [7] is another known method for combining several scenarios into
a single test case. Using this approach several scenarios can be intermixed to run

164 T. Rabetti et al.

on the same components of the system. To use it, the scenarios must either be
specified in a way that would allow for a generator to intermix them, or originally
written for different components in a system. Our method does not impose either
of these restrictions. In addition, when combining two scenarios, interleaving
breaks the flow of each one of them to insert parts of another. Thus, this method
is not applicable when the scenario flow is important. The SLAM approach, on
the other hand, preserves the original scenarios intact. Lastly, interleaving does
not divide the system into parts per test template, rather, every test template
will occupy the entire system. This is exactly what we try to avoid with SLAM
method in order to effectively use scarce simulation resources.

Another technique is irritation (e.g., [3]). Here, one or more components of
a system under test are reserved to run (usually) a short code sequence in a
loop in parallel to the other components executing the main scenario. The idea
is to interfere (“irritate”) with the main scenario to create interesting events.
Irritation can be considered as a special case of SLAM. In our method, we allow
any scenarios to run in parallel.

6 Conclusion

We presented SLAM, a method for test generation for large systems. With this
method, a system is divided into several parts and each is assigned a different
test template. Our approach achieves better utilization of simulation resources
and allows reaching additional coverage events without defining new scenarios.
Experimental results from a real-life verification project support our claims.

Our method was successfully integrated into the IBM System-level Test-
Generator and is being used as part of the system level verification methodology
for the IBM System p servers.

References

1. Accellera: UVM - Universal Verification Methodology, http://uvmworld.org/

2. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-Pro: Innovations in test program generation for functional processor ver-
ification. IEEE Design and Test of Computers 21(2), 84–93 (2004)

3. Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous
multithreading testcase generation methods. In: Raz, O. (ed.) HVC 2010. LNCS,
vol. 6504, pp. 146–160. Springer, Heidelberg (2010)

4. Altera: Hardware/Software co-verification using FPGA platforms,
http://www.altera.com/literature

5. Andrews, J.: Co-verification of Hardware and Software for ARM SoC Design. El-
sevier (2005)

6. Bergeron, J., Cerny, E., Hunter, A., Nightingale, A.: Verification Methodology
Manual for SystemVerilog. Springer-Verlag New York, Inc., Secaucus (2005)

7. Copty, S., Jaeger, I., Katz, Y., Vinov, M.: Intelligent interleaving of scenarios: A
novel approach to system level test generation. In: DAC, pp. 891–895 (2007)

http://uvmworld.org/
http://www.altera.com/literature

SLAM: SLice And Merge 165

8. Devins, R.: SOC verification software - test operating system. In: IEEE Electronic
Design Processes Workshop (2001)

9. Emek, R., Jaeger, I., Naveh, Y., Bergman, G., Aloni, G., Katz, Y., Farkash, M.,
Dozoretz, I., Goldin, A.: X-Gen: A random test-case generator for systems and
SoCs. In: IEEE International HLDVT Workshop, Cannes, France, pp. 145–150
(October 2002)

10. Glasser, M.: Open Verification Methodology Cookbook. Springer (2009),
http://books.google.com/books?id=X49tFORdBtAC

11. IBM: System, http://www-03.ibm.com/systems/p/
12. Planitkar, S.: Design verification with e. Prentice-Hall (2003)
13. Power.org: PowerISA v2.06, http://www.power.org/resources/downloads

http://books.google.com/books?id=X49tFORdBtAC
http://www-03.ibm.com/systems/p/
http://www.power.org/resources/downloads

Improving Post-silicon Validation Efficiency

by Using Pre-generated Data

Wisam Kadry, Anatoly Koyfman, Dmitry Krestyashyn,
Shimon Landa, Amir Nahir, and Vitali Sokhin

IBM Research – Haifa, Israel
{wisamk,anatoly,krest,shimonl,nahir,vitali}@il.ibm.com

Abstract. Post-silicon functional validation poses unique challenges
that must be overcome by bring-up tools. One such major challenge
is the requirement to reduce overhead associated with the testing proce-
dures, thereby ensuring that the expensive silicon platform is utilized to
its utmost extent. Another crucial requirement is to conduct high-quality
validation that guarantees the design is bug-free prior to its shipment to
customers. Our work addresses these issues in the realm of software-based
self-tests.

We propose a novel solution that satisfies these two requirements. The
solution calls for shifting the preparation of complex data from the run-
time to the offline phase that takes place before the software test is
compiled and loaded onto the silicon platform. This data is then vari-
ably used by the test-case to ensure high testing quality while retaining
silicon utilization.

We demonstrate the applicability of our method in the context of bare-
metal functional exercisers. An exerciser is a unique type of self-test that,
once loaded onto the system, continuously generates test-cases, executes
them, and checks their results. To ensure high silicon utilization, the ex-
erciser’s software must be kept lightweight and simple. This requirement
contradicts the demand for high-quality validation, as the latter calls
for complex test generation, which in turn implies extensive, complex
computation. Our solution bridges these contradicting requirements.

We implemented our proposed solution scheme in IBM’s Threadmill
post-silicon exerciser, and we demonstrate the value of this scheme in
two highly important domains: address translation path generation and
memory access management.

1 Introduction

In today’s state-of-the-art multi-processor and multi-threaded hardware systems,
eliminating all functional bugs in the design before the first tapeout is virtually
impossible. This is due to the intricacy of modern micro-architectures and the
complexity of the system topology. Consequently, the development stage known
as post-silicon validation [17,19,25], which is responsible for catching any remain-
ing functional bugs before they escape to the field, is of growing importance.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 166–181, 2013.
c© Springer International Publishing Switzerland 2013

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 167

Post-silicon validation uses implementations of the system on silicon running
at realtime speed. These platforms are relatively scarce and have high manu-
facturing costs. Moreover, when compared to simulation platforms, they offer
realtime execution speed, but low dynamic observability into the system’s state.
A related limitation is the high overhead for loading and offloading memory
and state information. These characteristics create challenges and impose trade-
offs that shape the way post-silicon platforms are used for functional valida-
tion. While post-silicon platforms offer a huge number of execution cycles, their
scarcity and high cost call for high machine utilization in terms of maximizing
the time spent in executing test-cases and minimizing overhead. The overhead
associated with loading a test-case image onto the platform and offloading its
results may become a bottleneck. Under such circumstances, the silicon platform
would be idle for a portion of the time.

A prominent technique of driving stimuli (as well as performing checking)
in post-silicon validation is that of Software-Based Self-Tests [26], or SBSTs.
SBSTs are actually simple programs that run on the silicon under test to verify
its behavior. This approach is highly advocated as it requires no additional
testing-specific instrumentation of the hardware.

A unique type of SBSTs is that of bare-metal exercisers [5, 29]. An exerciser
is an SBST that, once loaded onto the system, continuously generates test-cases,
executes them, and checks their results. (We omit the details involving the compi-
lation of the exerciser into a loadable executable image.) The generated test-cases
must be valid programs for the hardware threads to execute. They must also be
sufficiently complex, such that they stress the design and trigger meaningful
events in various areas.

We are, therefore, faced with two seemingly conflicting requirements when
designing the stimuli generator of a post-silicon validation exerciser. On the one
hand, achieving high machine utilization requires the exerciser’s stimuli genera-
tion engine to be fast and light. On the other hand, achieving high validation
quality requires that very same engine to be capable of generating complex test-
cases. Moreover, if a single exerciser image is to be loaded and run for a long
time on silicon at realtime speed, sufficient variability must exist among the
generated test-cases. Consequently, these requirements constitute a considerable
challenge to the design of a post-silicon exerciser.

Finally, an exerciser has to be simple. The low observability makes failures
extremely difficult to debug, and therefore, simple software must be used to
ease the effort. We also want to deploy the exerciser in the early stages of the
post-silicon validation efforts when the OS cannot yet be run on the system and
“complex” operations such as reading files from an I/O device are not supported.

Contributions. In this work, we address the problem of conducting high-
quality design validation without harming the utilization of the expensive silicon
platform under test in the realm of SBSTs. The novelty of our solution lies in
preparing the input data off the platform and efficiently integrating it into the
SBST. As the input data is prepared off platform, we can leverage sophisticated
(and highly complex) techniques to ensure the data is of high quality. The data

168 W. Kadry et al.

is formatted and structured in a way that enables the SBST to easily access it
with minimal overhead.

We demonstrate the effectiveness of the proposed method in the context of
bare-metal exercisers. Specifically, we implemented this approach in the IBM
Threadmill post-silicon exerciser [5] to address two complex stimuli generation
problems: the creation of address translation paths, and the selection of addresses
for memory access management.

We achieve the high quality of the off-platform generated data by using well-
established pre-silicon stimuli generation techniques. For this purpose, we em-
ployed the following pre-silicon tools: a) DeepTrans [4], a technology that spe-
cializes in generating sophisticated address translation paths for the functional
verification of processors and b) Constraint satisfaction problem solver (CSP
solver) [11], which takes the test-template and the system configuration as in-
put to allocate memory regions and create address tables that are used by the
exerciser during runtime. The solver outcome complies with memory require-
ments that are induced by the system configuration or specified by the user in
the test-template. The CSP solver we used is a well-established technology and
is used by IBM pre-silicon test-generators Genesys-Pro [2] and X-Gen [15]. We
conducted several experiments that demonstrate the effectiveness of this method
in the stimuli domains to which it was applied.

The rest of the paper is organized as follows: After discussing related work in
the next section, we describe the general solution scheme for exercisers in Sec-
tion 3. In Sections 4 and 5, we describe its implementation to address translation
paths and memory access management (respectively) with the experiments we
conducted and their results. Finally, we give our conclusions in Section 6.

2 Related Work

Post-silicon validation has been getting a lot of attention in recent years [22,23].
However, the majority of this attention has been directed towards construct-
ing efficient mechanisms for collecting runtime data from the chip to enhance
checking and debugging capabilities [1, 12–14,21].

More recently, other aspects of post-silicon validation have been attracting
research attention. In [3,27] an overall methodology for post-silicon is presented.
Singerman et al. [28] and [8] address the issue of coverage in post-silicon.

The main topic of this paper is that of stimuli generation for post-silicon val-
idation. Specifically, we focus on Software-Based Self-Tests, or SBSTs. In [26]
authors provide a comprehensive survey on the subject. Additional recent publi-
cations on this matter can be found in [30, 31]. In [10] the authors establish the
effectiveness of SBSTs for the validation of the processor’s memory model

The authors of [20] and [18] propose a variety of techniques to mutate failing
SBSTs in order to shorten the time between bug occurrence and its detection.

In [29], the author presents the concept of post-silicon exercisers along with
a simple generation technique.

Several papers describing Threadmill, its usage and internal mechanisms have
also been published. A pre- to post-silicon verification methodology is described

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 169

in [3], where Threadmill is presented as the tool enabling test-plan driven post-
silicon validation. Industrial experience of applying the unified methodology to
POWER7 R© processor chip is described in [6]. Some of the Threadmill genera-
tion techniques are presented in [5]. Specifically, a technique for floating-point
instruction generation is presented, which is similar in essence to the concept
presented in this paper, but is confined to floating-point. Adjusting stimuli gen-
erators to leverage the unique added value of different execution platforms is
described in [24].

Finally, a different mechanism for memory management is described in [7], in
which the selection of addresses is performed on-platform, in a more computa-
tionally expensive manner.

3 Solution Scheme

In this section we describe our high level approach to ensuring high quality of the
post-silicon validation effort while guaranteeing high silicon utilization. While we
focus on the implementation of the solution in the context of exercisers, we note
that the same approach can be easily applied to the general case of SBSTs. One
such example is described in Section 5.

The exerciser execution process consists of two consecutive parts: the off-
platform exerciser image build and the actual online run on the platform. At
the offline image build, the generator code as well as some data required for the
next phase are integrated into one executable image. Notably, no generation of
test-cases and instructions takes place during this offline phase. The second part
takes place when the image is loaded onto the platform and it starts generating
the test-cases, executing them, and checking their results.

To have high-quality test-cases, the exerciser needs to use interesting inputs
while generating the instructions. For example, when generating loads or stores,
the generator can pick random memory locations or, preferably, it might direct
the accesses toward more interesting areas, such as cache lines’ or pages’ bor-
ders’ affinities. One of our goals, along with high-quality tests, is to ensure high
utilization of the machine by maximizing the time spent in executing test-cases.
Therefore, the complex task of allocating these interesting memory areas should
be avoided at runtime and shifted to the offline phase, saving more cycles for
test-case executions.

Our method involves preparing interesting data whose preparation is a time-
consuming task at the off-platform phase and then integrating it into the exe-
cutable image. This data is needed when the exerciser generates the test-cases at
runtime. Such data examples are the memory intervals to select addresses from
and the translation paths. Having this data ready-to-use at runtime, enables
faster generation of test-cases. Also, we use well-established pre-silicon tools to
ensure that the off-platform generated data is of high quality.

In cases where pseudo-random techniques are used to generate the data, such
as the cases described in this paper, it is essential to rely on pseudo-random
methods, and to retain the list of seeds used to create the data. This is required

170 W. Kadry et al.

���������	
�� �������
���

��
�������	�
�
�

������������
��

�
�

����

��
�������	�

Fig. 1. Off-platform data preparation flow

so that if needed, during the debug process of a fail, the same test-case, including
initial values and instruction stream, can be reproduced.

We distinguish between two different stages of the off-platform data prepa-
ration: static-build and dynamic-build (see Figure 1). In the static-build stage,
we generate large amounts of data by using the relevant pre-silicon tools. This
data is filtered in the subsequent dynamic-build stage and are then used by the
exerciser. The static-build is an independent stage that does not require specific
inputs, such as the test-template and the system configuration. For example,
generating large amounts of possible translation paths for the entire physical
memory is independent of the number of threads in the system and of the re-
quired scenario in the test-template. Furthermore, this independence allows us
to employ sophisticated pre-silicon tools that have a long runtime.

On the other hand, the dynamic-build stage takes place every time we con-
struct an exerciser image. This stage takes, in addition to the data created at
the static build stage, the test-template and the system configuration as addi-
tional inputs. This stage must therefore be sufficiently efficient, enabling the
user to construct a new exerciser image in a reasonable amount of time. For
example, the verification engineer may have one test-template specifying mul-
tiple inter-thread collisions and another test-template targeting page-crossing
events. Each of these cases calls for different allocation of memory intervals, and
therefore, these intervals must be determined at the dynamic-stage in which the
test-template is available.

Overall, the dynamic-build stage has four main roles: a) filtering the relevant
data from the static-build stage; b) preparing new data based on new available
inputs, such as the test-template and the system configuration; c) organizing the
data created in both stages in structures that are optimized for efficient retrieval
by the exerciser during the on-platform runtime; and d) integrating the code and
the prepared data into one executable image.

Creating the efficient data structures depends on the data type and its usage.
For example, in the memory management case, we hold all the offline prepared
intervals in one primary table and sort it by certain translation properties, mem-
ory ownership, and size. A memory interval can cross a page or a cache line

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 171

borders. In these cases, accesses to such intervals will cause interesting events.
Our method enables the exerciser to do fast retrieval of these interesting intervals
by using auxiliary look-up tables per each event. Each auxiliary table contains
the indices of the entries from the primary table where the relevant interesting
intervals reside.

Using this method, all the exerciser has to do during runtime is to retrieve and
use the pre-made data structures for generating complex test-cases that trigger
interesting, meaningful events throughout the design.

4 Address Translation

Address translation is an integral part of all modern computer architectures. In
addition to supporting multiple virtual spaces, it commonly plays a part in mem-
ory protection and caching mechanisms by maintaining the related properties
for basic translated memory units, e.g., pages or segments. The growing demand
for performance complicates the address translation and memory management
mechanisms, thereby increasing the risk of bugs.

To thoroughly validate all translation-related hardware mechanisms an SBST
must support a large variety of events. These coverage requirements include the
ability to produce a set of valid translation paths that cover a large physical
memory region. This is required to ensure that the translation mechanisms are
stressed, triggering events such as TLB cast-outs and invalidations. In addition,
the randomization of the numerous translation path properties is desired. In
PowerPC, for example, this includes the segment size, page size, protection bits
and more. Finally, the SBST must generate translation paths that activate all
possible inter-thread and inter-processor memory sharing scenarios, including
translating different virtual pages into the same physical page, use of the same
translation table entries by different threads, and others.

The task of generating a valid translation path is a complex one. In addition
to ensuring the coverage of the different properties described above, a large set
of rules must be obeyed. In the PowerPC architecture, two such examples are
the rule requiring that each page starts at an address naturally aligned to its
size, and the rule requiring the consistency of the cachability attribute across
all translation paths. Every access to an address in physical memory can go
through the cache (termed a cachable access) or bypass it (termed a caching-
inhibited access). This caching property is an attribute of the page mapped to
the given physical address. Therefore, for every accessible address in physical
memory, the caching property must be consistent across all pages mapped to
that address.

To address the problem of translation path generation at the pre-silicon verifi-
cation stage a tool called DeepTrans [4] is used. DeepTrans contains rich built-in
testing knowledge enabling the generation of interesting translation paths with
or without specific user requests.

We propose to address the challenge of generating valid and interesting transla-
tion paths through a solution partitioned among the SBST run phases, namely,

172 W. Kadry et al.

Table 1. Distribution of page sizes and caching properties

Small Medium Large Huge

Cacheable 3230 3202 580 37
Caching-inhibited 386 380 62 36

the static-build stage, the dynamic-build stage, and the on-platform runtime
stage.

At the static-build stage we leverage DeepTrans [4] to construct a large set
of address translation paths for the entire physical memory. We iteratively ac-
tivate DeepTrans to generate, at each iteration, a new translation path. Each
of these translation paths is generated under different constraints. These con-
straints may request, for example, that the next translation path is generated
to create a 4KB page access in a caching-inhibited way, leaving many other at-
tributes for DeepTrans to randomize. By using these constraints we ensure that
every location in physical memory is accessible in every possible mode, through
more than one path. As DeepTrans has all PowerPC translation rules modeled
in it, all generated paths are legal and consistent with each other.

To evaluate the quality of our approach we ran DeepTrans to generate 7, 913
translation paths covering a physical space of 8GB. Overall, 20 hours were re-
quired to generate such a set of paths on a single Intel Xeon R© Linux server
running at 2.4GHz with 16GB of RAM.

Table 1 depicts the distribution of page sizes and the caching properties over
the generated set of translation paths. We strongly bias DeepTrans towards
generating pages that are accessed through the cache, as we wish to stress the
entire memory hierarchy. In addition, we bias DeepTrans towards generating
small or medium pages, as such pages provide us more freedom in triggering
some interesting events. For example, a page crossing access, i.e., a memory
access that spans more than one page, can only occur at the boundaries of
pages. Partitioning memory to small pages provides a larger set of addresses
where a page crossing event can be triggered.

A translation collision event occurs when same memory location is accessed
using different translation paths (either from the same or different hardware
threads). These accesses may vary in one (or more) of the different translation
attributes. Recall that some attributes, such as the caching property, must be
consistent across all paths accessing the same physical address.

We turn to evaluate the quality of the set of paths generated by DeepTrans
with respect to the potential of triggering a translation collision event1. Specif-
ically, we evaluate the potential of triggering a translation collision where the
translation paths differ in page size. We divide the available page sizes in the Pow-
erPC architecture into 4 categories: small (4KB and 16KB), medium (1MB),

1 The set of translation paths only describes the potential to trigger a translation
collision event; it is up to the memory management mechanism to create such events
through an intelligent selection of addresses to access within a test-case.

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 173

Table 2. Different page size collisions

Small Medium Large

Medium 203
Large 97 603
Huge 53 66 22

large (8MB), and huge (8GB). We measure the absolute number of cases when
a physical page covered by a translation path with a larger page size contains
a physical page covered by another translation path with a smaller page size.
Results are shown in Table 2. The numbers inside the table cells show the ab-
solute number of these cases; the corresponding row and column show the cor-
responding page sizes. As can be observed, we generated all possible collision
combinations. The bias toward the collision with large pages represents the in-
ternal DeepTrans expert knowledge that these collisions are more valuable than
the collisions with huge pages. For example, the number of collisions between
large pages and medium size pages (603) is almost ten times higher than the
number of collisions between huge pages and medium size pages (66).

At the dynamic-build stage the test-template and system configuration are
accessible, in addition to the complete set of pre-generated translation paths. We
use this data to pick and choose translations paths that best match the intent
expressed in the test-template. For example, if the test-template targets page
crossing accesses between caching-inhibited pages, we bias our path selection to
ensure a variety of matching paths are incorporated in the exerciser image.

In addition to the selection of paths, we also arrange the data in a way that
will facilitate an efficient access during runtime. For example, in our Threadmill
implementation of this approach, translation paths are arranged in two tables.
The first table is sorted by the test-case’s runtime mode and the physical address
– this is required to enable the memory management component (which selects
physical addresses) to effectively map them to virtual addresses. The second
table is sorted by the virtual address and is used by the translation exception
handlers in order to facilitate an effective installation of the translation path.

At runtime, the memory management component and the translation excep-
tion handlers access the tables to extract the required data as explained above.
Overall, about 9 seconds are needed for DeepTrans to generate a single transla-
tion path. Doing this on the silicon platform would sharply drop its utilization,
and the majority of the run time would be spent building translation paths
instead of actually executing test-cases. In addition, adding such complex algo-
rithms to the exerciser would make it far more complex and difficult to debug.

Using this method, a diverse set of test-templates targeting different aspects
of the translation mechanisms, coupled with several sets of pre-generated trans-
lation paths, enable us to address coverage holes and achieve an aggregated high
coverage.

174 W. Kadry et al.

5 Memory Management

Modern high-end multi-threaded systems rely on weak consistency memory mod-
els [9, 16] that make it easier to implement performance boosting mechanisms
such as caches, out-of-order, and speculative executions. Implementations of
these weak consistency models are highly error-prone and hard to verify due
to the vast test space and their distributed nature.

One desired attribute of SBSTs targeting the validation of the memory hierar-
chy is the ability to generate collision events. A collision event occurs when two
(or more) hardware threads access the same memory location. Modern proces-
sors manage data transition in cache line granularity, that is, regardless of the
size of the program access, the processor fetches data from memory in chunks of
fixed size. Therefore, to stress the memory hierarchy, it is often enough to have
the hardware threads access different locations within the cache line (termed
false sharing) rather than the exact same location (termed true sharing).

The generation of memory access collisions must take into account the check-
ing method. Threadmill employs a technique called multi-pass consistency check-
ing [5]. In this technique, a test-case is run multiple times with the same resource
initializations and verified to ensure that the same final values are produced each
time. However, the final value in the collision location in memory after a write-
write collision depends on the execution order of the write operations and may
differ for different executions of the same multi-threaded test-case. Similarly, a
write-read collision may result in different values in the target register of the read.
For this reason, Threadmill checks neither the memory used for write-write colli-
sions nor the registers used in write-read collisions. It still makes sense to generate
these unchecked collision events because they stress the hardware and may cause
failures that can be observed by other means (e.g., built-in hardware checkers).

Threadmill supports this by allocating, to each hardware thread, a number of
owned intervals. Only the “owner” thread is allowed to write to these intervals.
Additionally, all threads share read-only and unowned intervals. The unowned
intervals can be written to and read by all threads but are left unchecked, while
the read-only intervals are only read. This ownership scheme allows Threadmill
to produce different types of true-sharing and false-sharing collision events while
maintaining its checking method.

A user can explicitly direct certain memory accesses, for example, to target
the same cache congruence class. This can be specified in the test-template by
defining a mask, which is a bit-vector with don’t-care (X) values for some of
its bits. Each mask represents the set of addresses that can be obtained by
determining don’t-care bits. For example, the mask 8b11XXXX00 represents
all the 8-bit addresses that start with two 1s and end with two 0s.

Threadmill strives to place the intervals at interesting locations to increase
the test-case quality. A memory location is considered interesting if accessing it
stresses the design. Such locations include a) cache line or page/segment crossing;
b) memory having certain attributes, for example, non-cacheable memory or
memory obeying different consistency rules; and c) various memory affinity, such
as memory located on a different chip.

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 175

We employ the CSP solver, feeding it with our requirements to produce the
memory intervals that the exerciser will use during runtime. Some inputs to the
solver, such as the test-template and the system configuration, are only available
in the dynamic-build stage, thus making executing the solver in the static-build
stage impossible. Our CSP technology proved to be time-efficient, taking less
than 10 seconds for 48 threads, which is a typical bring-up configuration that
satisfies the build time requirements of the dynamic-build stage. The resulting set
of memory intervals includes: memory for the code and data areas of the exerciser
application, memory for test-cases that will be generated during runtime, and
the memory accessed by the generated load/store instructions. The intervals
are embedded into the exerciser and organized such that they can be efficiently
retrieved by it during runtime.

As in the case of the address translation paths, conducting such computa-
tions would drop silicon utilization dramatically. Our solution calls for moving
this computation off to the dynamic-build stage. At runtime, the generator can
randomly select one of the available entries from the table to find a memory
location to access (details below).

�������	��
�����

����
�������� ����	�����	��

������
�������

��	����

�����	���
�����

������
��������

������
������
�����������������	��
���

����	��������
�����

������
�������	��
 �!����

Fig. 2. Memory management architecture

The high-level architecture of Threadmill’s memory management component
is depicted in Figure 2. This component consists of two sub-components: a builder
application and a memory access generator. The builder application runs during
the dynamic-build stage and allocates all the memory intervals. The chosen
intervals are incorporated into the exerciser image as tables organized for quick
retrieval. The memory access generator component executes during runtime. It
retrieves a matching interval address from the tables, based on the randomly
generated memory access. Note that the tables are built to ensure sufficient
variability in the address selection.

The builder retrieves the user requests from the test-template. It also retrieves
the system topology, the number of threads, and the available memories from

176 W. Kadry et al.

the system configuration. The builder then accordingly creates memory alloca-
tion requests and feeds them to the CSP solver. The memory allocation requests
consist of instruction stream locations (test-cases), user-defined memory alloca-
tions, and allocations for random loads and stores (collision areas). The CSP
solver also accepts a memory map produced by the address translation compo-
nent (see Section 4). The map describes page and segment boundaries as well as
page attributes, e.g., whether a page is cacheable or non-cacheable.

The CSP solver represents each memory allocation request as a pair of CSP
variables: interval start and interval length. There are two common mandatory
(also called hard) constraints: a) all intervals are disjoint and b) all intervals
reside in the available memory space. We also add specific hard constraints for
each memory allocation type. For example, for a user-defined memory allocation
request, the CSP solver must allocate an interval of the required size, starting at
an address that adheres to the specified mask. For random loads and stores, the
CSP solver must allocate the required number of intervals for each ownership
type (read-only, owned, and unowned). We also specify the size distribution of
the intervals, as well as the minimal number of cacheable and non-cacheable
intervals for random memory accesses, enabling Threadmill to find a matching
interval for any possible memory access. We allocate several intervals for each
request to ensure sufficient variability during runtime.

����������	
����

�
���������
�������
���������������
����

������

�
������������

���������������������
�
���

������������
�������
���������
���

��
����

����������������"�
#��$����
���

������������������
�%�
#��$����
���

&�������������������
#�
�
����

�����
�����������
���

'��

�����

(��)�

(��)�

(��)�

(��)�

Fig. 3. Random access flowchart

In addition to hard constraints, the CSP solver is also passed a number of non-
mandatory (also called soft) constraints to enable the generation of high quality
test-cases. These soft constraints are satisfied on a “best effort” basis and used to

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 177

direct interval allocation to interesting areas such as multiple intervals residing
within the same cache line. The builder creates data structures containing the
allocated addresses and incorporates them into the exerciser. The instruction
stream allocations and user-defined intervals are put into simple arrays. The
collision area, however, requires some organization to facilitate quick retrieval
during runtime. This is further explained below.

During runtime, the memory access generator first decides on the generated
instruction and then decides on the memory access address (see Figure 3).

With an instruction at hand, we know whether the memory access is cacheable
or non-cacheable, load or store. Cacheable and non-cacheable memory areas are
mutually exclusive, thus we divide the collision area table into two parts. We also
group all the memory intervals according to their ownership. Based on whether
our memory access is load or store, checked or unchecked, we can choose the
matching ownership regions and randomly select from them. We construct a
primary look-up table for each thread. This table allows for fast and simple ran-
dom choice (by just a single operation), while maintaining uniform distribution
amongst entries. This look-up table contains indices into the main collision area
table, grouped by access type (see Figure 4). Organizing the collision area tables
in this way enables fast and efficient data retrieval, resulting in high machine
utilization.

�������	�

�������	
�

�������	��

����

�������	��

�������

�������	�

�������	
�

����

�������

��
��

�
�
�
�
�
�
	 �

�
�
�
�
�
��
�
�
� �

��
�
�

��		�����������	��	�

�������	�

��������������

�
�
�
�
��

�
��
�
�
�
�
�
�
�

����	����������"

�����

�������

�
��

��
��

�
��
�
�
�
�
�
�
�

�
��

��
��

�
�
�
�
�
�

�
�
�
�
��

�
�
�
�
�
�

����

Fig. 4. Collision area tables

We also build auxiliary look-up tables per event. These table are used to
support fast retrieval of addresses when the generation of a specific event is
desired. These tables contain indices from the primary table that support the
required event. Consider, for example, the case of a page-crossing access event.
Only a subset of the chosen addresses may support this event, as it requires for
the memory interval to start “near” the end of one page, and be long enough
to cross into the next. All relevant memory intervals supporting this event are

178 W. Kadry et al.

Table 3. Average number of collisions

(a) Without collision bias

Threads Rd-Rd Wr-Wr Rd-Wr Total Intervals

2 17.2 0 0 40

4 74.6 0 0 60

8 508.6 0 0 100

(b) With collision bias

Threads Rd-Rd Wr-Wr Rd-Wr Total Intervals

2 35.6 33.6 53.8 40

4 147.6 80.8 156.2 60

8 714.2 207.4 420 100

identified at the dynamic-build stage, and their indices are places in the page-
crossing look-up table. The auxiliary look-up tables are sorted by index number,
and hence, by construction, maintain the same sorting attributes of the primary
table.

To demonstrate the effectiveness of our scheme, we conducted two experi-
ments. For both experiments, we ran Threadmill on 3 configurations: 2, 4, and
8 threads, all with 8GB of memory and 10 intervals allocated per ownership.
We generated 50 load/store instructions per thread and measured the number of
collision events generated for the checked accesses. A collision event is defined as
a pair of accesses by different threads that target (possibly different) locations in
the same cache line. For example, suppose thread 0 loads twice from some cache
line and thread 1 stores three times to the same cache line. This is counted as
six read-write collision events. The results of the experiments are presented in
Table 3, in which every row gives the average of five different runs. Every column
except the last one shows collisions between different types of memory accesses.
The last column shows the total number of intervals allocated. For example, for
8 thread configurations we allocated 100 intervals and 714.2 collisions occurred
between Read and 207.4 between Write accesses of different threads, as shown
in Table 3b.

In the first experiment, the intervals were allocated randomly and uniformly
distributed within the available memory. As the experiment results show, the
probability of generating colliding memory accesses for randomly allocated in-
tervals within a large memory space is negligible. Note that we still obtain Read-
Read collisions since read-only intervals are shared among all threads.

In the second experiment, we used our CSP solver to bias interval allocation
and increase the collision rate. We observe a considerable collision rate for all
collision types, as shown in Table 3b.

While the above describes an implementation specific to Threadmill, a similar
approach can be implemented to improve the quality of other tools. Consider,
for example, the Litmus system described in [10]. The developers of the Litmus

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 179

system acknowledge the need for multitude of address to efficiently utilize the
hardware platform. To address this need, they opt to allocate arrays in memory
(instead of a single address). However, compilers allocate arrays in contiguous
memory, that is, all addresses reside consecutively in memory. Alternatively,
applying our method and allocating multiple locations (and arranging their ad-
dresses in an array) would require a negligible addition to compilation time, and
just one additional pointer traversal at runtime to reach the desired address.

6 Conclusions

We introduced a novel method that bridges two conflicting requirement, namely,
to conduct high quality functional validation while ensuring high silicon utiliza-
tion. Our method calls for shifting the preparation of complex data from the
SBST’s runtime to the offline phase that takes place before the software test is
compiled and loaded onto the silicon platform.

We implemented this method in Threadmill and applied it to two domains:
address translation path generation and memory access management. We used
well-established pre-silicon technologies to ensure the quality of the generated
data. Our results indicate that we are able to guarantee a high level of coverage,
while keeping the on-platform complexity low. The addition of this method did
not change any of Threadmill’s attributes, specifically, its coverage (i.e., the type
of test-cases that can be generated by Threadmill) and the ability to reproduce
an exerciser image that re-generates the same test-cases.

While our results indicate a good balance between off-platform pre-
computation and on-platform data usage, many additional research questions
remain. One such question is the applicability of our proposed scheme when the
target platform is an accelerator or emulator, as opposed to real silicon. Since ac-
celerators/emulators are significantly slower than silicon, but significantly faster
than software simulation, we believe the tradeoff might be different.

References

1. Abramovici, M., Bradley, P., Dwarakanath, K.N., Levin, P., Memmi, G., Miller,
D.: A reconfigurable design-for-debug infrastructure for SoCs. In: DAC, pp. 7–12
(2006)

2. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-pro: Innovations in test program generation for functional processor veri-
fication. IEEE Design & Test of Computers 21(2), 84–93 (2004)

3. Adir, A., Copty, S., Landa, S., Nahir, A., Shurek, G., Ziv, A., Meissner, C., Schu-
mann, J.: A unified methodology for pre-silicon verification and post-silicon vali-
dation. In: DATE, pp. 1590–1595 (2011)

4. Adir, A., Emek, R., Katz, Y., Koyfman, A.: Deeptrans - a model-based approach to
functional verification of address translation mechanisms. In: MTV, pp. 3–6 (2003)

5. Adir, A., Golubev, M., Landa, S., Nahir, A., Shurek, G., Sokhin, V., Ziv,
A.: Threadmill: a post-silicon exerciser for multi-threaded processors. In: DAC,
pp. 860–865 (2011)

180 W. Kadry et al.

6. Adir, A., Nahir, A., Shurek, G., Ziv, A., Meissner, C., Schumann, J.: Leveraging pre-
silicon verification resources for the post-silicon validation of the IBM POWER7
processor. In: DAC, pp. 569–574 (2011)

7. Adir, A., Nahir, A., Ziv, A.: Concurrent generation of concurrent programs for post-
silicon validation. IEEE Trans. on CAD of Integrated Circuits and Systems 31(8),
1297–1302 (2012)

8. Adir, A., Nahir, A., Ziv, A., Meissner, C., Schumann, J.: Reaching coverage closure
in post-silicon validation. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp. 60–75.
Springer, Heidelberg (2010)

9. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

10. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: litmus: Running tests against
hardware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605,
pp. 41–44. Springer, Heidelberg (2011)

11. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formula-
tion and solution techniques for random test program generation. IBM Systems
Jouranl 41(3), 386–402 (2002)

12. Chen, K., Malik, S., Patra, P.: Runtime validation of memory ordering using con-
straint graph checking. In: HPCA, pp. 415–426 (2008)

13. De Paula, F.M., Gort, M., Hu, A.J., Wilton, S.J.E., Yang, J.: Backspace: formal
analysis for post-silicon debug. In: Proceedings of the 2008 International Conference
on Formal Methods in Computer-Aided Design, pp. 1–10 (November 2008)

14. Deorio, A., Li, J., Bertacco, V.: Bridging pre- and post-silicon debugging with
BiPeD. In: ICCAD (November 2012) (to appear)

15. Emek, R., Jaeger, I., Naveh, Y., Bergman, G., Aloni, G., Katz, Y., Farkash, M.,
Dozoretz, I., Goldin, A.: X-gen: a random test-case generator for systems and socs.
In: HLDVT, pp. 145–150 (2002)

16. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P.B., Gupta, A., Hennessy,
J.L.: Memory consistency and event ordering in scalable shared-memory multipro-
cessors. In: 25 Years ISCA: Retrospectives and Reprints, pp. 376–387 (1998)

17. Gray, R.: Post-silicon validation experience: History, trends, and challenges. In:
GSRC Workshop on Post-Si Validation (June 2008)

18. Hong, T., Li, Y., Park, S.-B., Mui, D., Lin, D., Kaleq, Z.A., Hakim, N., Naeimi, H.,
Gardner, D.S., Mitra, S.: QED: Quick error detection tests for effective post-silicon
validation. In: ITC, pp. 154–163 (2010)

19. Keshava, J., Hakim, N., Prudvi, C.: Post-silicon validation challenges: how EDA
and academia can help. In: DAC 2010, pp. 3–7. ACM (2010)

20. Lin, D., Hong, T., Fallah, F., Hakim, N., Mitra, S.: Quick detection of difficult
bugs for effective post-silicon validation. In: DAC, pp. 561–566 (2012)

21. Mitra, S., Lin, D., Hakim, N., Gardner, D.S.: Bug localization techniques for effec-
tive post-silicon validation. In: ASP-DAC, p. 291 (2012)

22. Mitra, S., Seshia, S.A., Nicolici, N.: Post-silicon validation opportunities, challenges
and recent advances. In: DAC, pp. 12–17 (2010)

23. Nahir, A., Ziv, A., Galivanche, R., Hu, A.J., Abramovici, M., Camilleri, A., Bentley,
B., Foster, H., Bertacco, V., Kapoor, S.: Bridging pre-silicon verification and post-
silicon validation. In: DAC, pp. 94–95 (2010)

24. Nahir, A., Ziv, A., Panda, S.: Optimizing test-generation to the execution platform.
In: ASP-DAC, pp. 304–309 (2012)

25. Patra, P.: On the cusp of a validation wall. IEEE Design and Test of Computers 24,
193–196 (2007)

Improving Post-silicon Validation Efficiency by Using Pre-generated Data 181

26. Psarakis, M., Gizopoulos, D., Sánchez, E.E., Reorda, M.S.: Microprocessor
software-based self-testing. IEEE Design & Test of Computers 27(3), 4–19 (2010)

27. Rotithor, H.G.: Postsilicon validation methodology for microprocessors. IEEE De-
sign & Test of Computers 17(4), 77–88 (2000)

28. Singerman, E., Abarbanel, Y., Baartmans, S.: Transaction based pre-to-post silicon
validation. In: DAC, pp. 564–568 (2011)

29. Storm, J.: Random test generators for microprocessor design validation (2006),
http://www.oracle.com/technetwork/systems/opensparc/

53-rand-test-gen-validation-1530392.pdf (accessed January 9, 2013)
30. Theodorou, G., Chatzopoulos, S., Kranitis, N., Paschalis, A.M., Gizopoulos, D.: A

software-based self-test methodology for on-line testing of data tlbs. In: European
Test Symposium (2012)

31. Theodorou, G., Kranitis, N., Paschalis, A.M., Gizopoulos, D.: Software-based self
test methodology for on-line testing of l1 caches in multithreaded multicore archi-
tectures. IEEE Trans. VLSI Syst. 21(4), 786–790 (2013)

http://www.oracle.com/technetwork/systems/opensparc/53-rand-test-gen-validation-1530392.pdf
http://www.oracle.com/technetwork/systems/opensparc/53-rand-test-gen-validation-1530392.pdf

Development and Verification of Complex

Hybrid Systems Using Synthesizable Monitors�

Andreas Abel2, Allon Adir1, Torsten Blochwitz2, Lev Greenberg1,
and Tamer Salman1

1 IBM Research - Haifa; Haifa, Israel
{adir,levg,tamers}@il.ibm.com

2 ITI GmbH, Webergasse 1, 01067 Dresden

Abstract. Using simulation monitors that are formally defined and au-
tomatically synthesized is already part of the standard methodology of
hardware design and verification. However, this is not yet the case in the
domain of systems engineering for cyber-physical systems. The grow-
ing trend towards model-based systems engineering is making the use
of simulation monitors more relevant and possible. Recent related work
focuses almost exclusively on the aspects of requirements specification.
In this work, we explain how monitors can play a much more pervasive
role in systems engineering, going beyond merely checking requirements.
We describe how monitors can be used along the entire product lifecycle,
from early design alternative analysis to final field testing. This work also
covers the special considerations that must be addressed when designing
a monitor specification language, specifically in the context of systems
engineering. Our focus is on the practical issues related to the use of
monitors and describes a prototype monitor specification and synthesis
platform applied to the hybrid simulation of an automotive subsystem.

Keywords: Simulation, Monitors, Cyber Physical Systems, Systems
Engineering.

1 Introduction

A simulation monitor is a device that observes the progress of simulation and can
detect and report specified behaviors of the simulated model. Its main purpose is
to check for possible illegal behaviors, but it can also keep track of test coverage
or collect data about a simulated system for later analysis. Simulation moni-
tors have long been in use as part of the hardware development and verification
methodology [1]. Industry-standard languages, such as Property-Specification-
Language (PSL) [2] or SystemVerilog Assertions (SVA) [3], are used to formally
specify the monitored behavior. Formal specifications in these languages can
be synthesized [4,5] into monitor implementations in hardware-description lan-
guages and form an integral part of the simulated hardware. These specifications

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2011-2014) under grant agreement n◦ 287716.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 182–198, 2013.
c© Springer International Publishing Switzerland 2013

Development and Verification of Complex Hybrid Systems 183

can also be synthesized into software that uses the software simulator interfaces
to keep track of the dynamic system state.

The development and common usage of such advanced monitoring technol-
ogy was possible in the hardware domain dues to the ubiquitous use of formal
models in the hardware development methodology. Today, the domain of sys-
tems engineering is undergoing a similar revolution as the use of formal models
increases. This use is termed Model Based Systems Engineering (MBSE). The
use of formally specified and automatically synthesizable monitors can now be
added to the list of its many benefits.

To understand the need for simulation monitors, we must start by examin-
ing the field of systems engineering in general. According to the International
Council on Systems Engineering (INCOSE), systems engineering is ”an interdis-
ciplinary approach and means to enable the realization of successful systems” [6].
The roles of the systems engineer correspond to the main stages in the prod-
uct lifecycle. This lifecycle is commonly charted with a V-Model, such as the
one shown in Figure 1. The process starts with the analysis and definition of
the system requirements, which are then propagated and refined for the various
subsystem and component design stages (occurring down the left side of the V).
The components are then implemented, integrated, and tested (up the right side
of the V-Model) so as to create a complete and verified system corresponding to
the requirements.

Fig. 1. The V-Model of a product development lifecycle

Many testing processes are carried out along the development lifecycle [7].
These include high-level early conceptual tests, testing the design, testing the
implementation of components (by component suppliers or customers), system-
integration-labs with hardware-in-the-loop simulators, and field testing environ-
ments for the final product. In all of these stages, monitors would be of great
benefit as requirement checkers. Indeed, requirement engineering forms a crucial
part of the systems engineer’s role. Most existing works that mention simula-
tion monitors in the context of systems focus on the requirement specification
and checking aspects. For example, the Contract Specification Language (CSL)

184 A. Abel et al.

developed in the SPEEDS [8] project was designed to be used to formally de-
fine properties of systems or components as part of contracts [9] (i.e., assume-
guarantee pairs of properties that serve in the compositional engineering of sys-
tems). Thus, the possible usage of CSL to specify monitors is only secondary,
and indeed we explain below that a property specification language like CSL is
limited when used to specify monitors. Maler and Nickovic also describe hybrid-
system simulation monitors [10] only as requirement checkers.

Consequently, a generic monitor-specification language (and accompanying
technology) is needed for the various uses of monitors. Furthermore, the needs
and skills of systems engineers are different from those of, for example, hardware
designers. Therefore, synthesizable specification languages like PSL cannot serve
systems engineers without appropriate adaptations.

In this paper, we show how monitors can serve the systems engineering pro-
cess in different stages of the development life cycle (Section 2). Section 3 pro-
vides observations and recommendations for the desired features of an industrial
monitor specification language for systems engineers. Section 4 focuses on the
considerations arising from hybrid simulation. Section 5 describes a prototype of
a monitor specification and synthesis platform developed to demonstrate some
of the ideas we presented here and Section 6 concludes the paper.

2 Performing Systems Engineering with Monitors

The definition and management of the requirements form a central part of the
systems engineer’s role. The high-level product requirements are reviewed and
defined together with the stakeholders through well-defined processes, such as
System-Requirement Specification (SysRS). This stakeholder-developer require-
ment based relationship is also repeated further down the sub-system hierarchy
when each subsystem is further decomposed into constituent components. Com-
plex multi-tiered supply chains are a universal feature in all the main industries
of complex hybrid systems, such as the automotive, and aerospace & defense
industries. Therefore, the formalization of requirements, which is the main fea-
ture needed to support a monitor-based systems engineering methodology, could
greatly support the supply-chain structure of complex system development.

Different synthesis technologies could be used to create monitors correspond-
ing to the same formal monitor definition but designed to be used in the various
testing platforms. For example, a formal requirement could be used to synthe-
size a software monitor for an early executable high-level analysis model. Other
monitors could be later synthesized to monitor the design simulations or in-
tegrated system simulation. Later in the product lifecycle, the same monitor
definition could be used to synthesize another piece of software to analyze traces
coming out of the system’s diagnostic components during field testing of the ac-
tual system. All of these monitors would be synthesized from the same monitor
specification and would use the same logic with different simulator interfaces.

Development and Verification of Complex Hybrid Systems 185

2.1 Analysis of Test Coverage Requirements

Test requirements are an additional kind of requirements during the product’s
lifecycle. These are carefully planned in a test plan that serves the test team. The
test plan can be authorized by the stakeholders of a particular lifecycle stage.
As in the case of the system requirements, test requirements are also commonly
defined in natural language and can be formal in the legal sense but are rarely
formal in the mathematical sense.

The test plan that includes the test requirements mainly serves as the working
document for the test team that actually conducts the testing. It also serves
as an important tool for management to keep track of the progress of testing
and decide when enough testing has been done. Monitors for test coverage are a
crucial tool in enabling such progress analysis. Monitors are defined for the tasks
in the test plan. These monitors would report that a testing task was covered
during simulation or during field testing. Coverage reports could be created and
used to evaluate the testing efficiency, progress, or to identify persistent coverage
holes that need to be directly targeted [11].

2.2 Requirement Traceability

An important issue relating to requirement management is requirement trace-
ability. Accepted safety standards, such as ISO 26262 [12] for automotive func-
tional safety, or DO-178 [13] variants for software reliability in airborne systems,
require explicit traceability between requirements and their hierarchic decom-
position for subcomponents. Requirements must also be traceable to the com-
ponents responsible for their implementation, and to the tests that are planned
to verify them. Monitor specifications can serve as the formal definition of the
system or test requirements. In such cases, the traceability information would
relate formal objects and could serve automatic tools that would exploit this
information for their analysis. For example, coverage monitors could be used
to track the testing progress in the various components. The traceability in-
formation could then be used to produce coverage reports for the higher level
subsystems, or to identify semantic coverage holes by considering the system’s
structure. For example, coverage hole analysis could detect that test objectives
relating to performance under extreme conditions are consistently uncovered by
tests traceable to the engine-control-unit. This could be due to defective testing
or simulation of this subsystem, for example.

2.3 Data Harvesting and Dynamic Optimization

An additional usage of monitors is gathering information about the behavior of
the model. The model can be an early analysis model or a later refined one. The
gathered information can then be analyzed by other tools for various purposes.
For example, monitors can gather overall system performance information, which
can be used to create a formal statistical model of the performance aspects of

186 A. Abel et al.

the system. A typical example is the generation of a statistical model of an emer-
gent behavior of a network system. This is carried out during the design space
exploration phase of the system to evaluate different topologies or component
selection. Other types of analysis could be carried out with the help of mon-
itors, including power usage analysis, cost-performance optimization analysis,
and usage patterns analysis. Such monitor measurements can be harvested from
the high-level executable models that are used by the systems engineer for early
analysis. This includes comparing alternative system functions, structures, or
configurations against various measures-of-effectiveness (MOEs), such as price,
performance, and time-to-market MOEs. The systems engineer optimizes the
planned system with respect to these MOEs by either assessing several man-
ually selected alternatives or by using automatic optimization tools. Dynamic
optimization refers to the method of performing such optimization using simu-
lation. Multiple simulations are performed for each of the various alternatives
and the empirical results are compared.

Monitors could obviously serve such a process very well. According to our
proposed monitor-based methodology, the monitors are formally defined and
automatically synthesized to enable the collection of the required information
from the simulator. Such automation supports the comparison of a greater num-
ber of alternatives. This is beneficial in cases in which static analysis tools are
unavailable or are unable to cope with the system’s complexity.

2.4 Use of Monitors in Hardware Development and Verification

Hardware design methods do not generally follow requirement engineering pro-
cesses as rigorously as in systems engineering. However, in practice today, a part
of the standard methodology for designers is to annotate their design code with
assertions and with coverage monitors. This is done directly in the hardware de-
scription language or with dedicated languages like PSL [2] or SVA [3], which can
be automatically synthesized into the hardware description language or to soft-
ware monitors [4,5]. This results in a great number of monitors (thousands) in a
typical hardware system, mostly on the low unit-level. Monitors for higher levels
(i.e., for hardware features involving multiple units, such as memory coherence)
are typically created separately by special verification experts.

A similar approach to monitor usage could also be taken by designers of
components of complex hybrid systems. We expect, however, that the monitor
definition languages would need to be adapted to the particular discipline of
the design (electronic, aerodynamic, software, etc.). We can take a lot from
the hardware monitoring domain and apply it to systems engineering, as was
done in the prototype described in Section 5, especially in relation to property-
specification languages and actual technologies used for automatic synthesis.

3 Language Considerations

Most languages in current use for hardware monitor specification were not pri-
marily designed for such usage. These languages include software languages such

Development and Verification of Complex Hybrid Systems 187

as C, hardware description languages such as VHDL, and even formal property-
specification-languages such as PSL. Properties defined in PSL could be for-
mally verified with model-checking or dynamically checked with automatically
synthesized checkers. However, as discussed in Section 2, the use of monitors
as property checkers is only one of several possible uses—other uses include test
coverage monitoring and data harvesting. Thus, a language designed for property
specification is not necessarily the best one for monitors in general.

A monitor’s specification should include (1) a specification of a behavioral
property to monitor, (2) a mapping between formal attributes appearing in the
monitored property and actual attributes of the system or model, and (3) the
action to take when the monitor detects the specified behavior. The first part
could use variants of existing property specification languages, like PSL or CSL.
The second part relates attributes to actual model signals. For example, in the
monitored behavior specified as ”Every request must be followed by an acknowl-
edgment after no more than 10 seconds”, the formal attributes ”request” and
”acknowledgment” should be mapped to specific signals in the simulated system
components. The mapping could be carried out with mapping tables or graphi-
cally using diagrams, e.g., with a UML profile that supports links between ports
of the monitor block and the monitored component attributes. The third part of
a monitor’s specification is the action to be taken when the monitor detects the
specified behavior. In the context of verification, the implied action is to declare
a failure when the property is disproved (formally or empirically).

For other monitor uses, the action would be different. For example, when mon-
itors are used for keeping track of test coverage, then the action would include
updates to a coverage report. When monitors are used for data harvesting, the
action may include updates to a statistics database or lead to an optimization
analysis when used for dynamic optimization.

Such general actions can be directly specified in software code. The monitor
specification platform could support a library of software utilities that can assist
the coding of the action software. For example, accessors to coverage tables, or
reporting utilities. However in specific systems engineering contexts, the possible
monitor actions would be limited, only allowing the user to select and configure
one of a short list of possible actions.

The monitor action specification should also indicate when the action is to
be taken. For test coverage monitors this happens when the specified behavior
occurs, while for checkers, when the behavioral property is violated. Omitting
this part of the monitor specification is possible by always performing the ac-
tion when the specified behavior occurs and to specify the negated behavior in
the case of checkers. However, the resulting properties could become counter-
intuitive. Properties for checkers are generally thought of as requirements and
are often indeed expressed as assertions. In this case, the monitor looks for a
violation of the specified behavior. Test coverage monitors are more intuitively
expressed as test requirements. In this case the monitor should look for the
occurrence of the specified behavior.

188 A. Abel et al.

This difference between properties of which either the occurrence or the viola-
tion should be detected leads to a slightly different ”flavor” in the way in which
the property is specified. Properties whose occurrence is monitored are more con-
veniently specified as sequences of (possibly complex) events. PSL, for example
includes a SERE style—Sequential-Extended-Regular-Expressions [2], in which
regular expressions are used to specify the sequences. UML sequence-diagrams
can also be used to define monitors with a sequence of occurrences—here the fo-
cus would be on the interactions between the system components. On the other
hand, properties for which the violation is monitored are more conveniently
expressed with some form of implication. This is because these properties orig-
inate from system requirements, which often take the form of ”whenever some
condition holds then some guarantee must also hold”. For example, ”Every re-
quest must be followed by an acknowledgment after no more than 10 seconds”.
With contract specifications [9], the assumptions and the guarantees are spec-
ified separately. The system or component requires that the assumptions hold
and guarantees that guarantees hold.

The CSL language, for example, focuses on properties with explicit or implied
implications. This is not surprising as it is designed to specify requirements.
Thus, it is ill-suited as a monitor specification language, as it is difficult to use
it to specify coverage monitors. On the other hand, languages that only focus on
event sequences, such as UML sequence-diagrams, are also ill-suited to serve as
monitor specification languages because of the difficulty of using them to define
checkers. Live-Sequence-Charts diagrams [14] are much more suitable, because
they include constructs of both ”flavors”.

The concept of vacuity [2] is relevant to the case of checker monitors keeping
track of requirements with implications. A monitor would normally declare that
a simulation run is consistent with the requirement even when the left side of the
implication never occurs during the run. Such vacuous passes indicate insufficient
testing and should be therefore be reported as such to the verification person.

3.1 Declarative vs. Operational Property Specification

The formal languages used to define properties for hardware verification (PSL
or SVA) are declarative. I.e., the property itself is described rather than the
operations that can be used to detect it. The description is formal and concise
and can be automatically synthesized into hardware or software. However, these
languages are geared to describe hardware properties. Moreover, writing prop-
erties in these languages requires some experience and a certain way of thinking
not always present even in hardware designers. The result is that more check-
ers are still written directly in the hardware description language, rather than
synthesized into the hardware description language from a declarative specifica-
tion. Popular software programming languages such as C or C++ are also very
commonly used for writing monitors. The simulator itself is a piece of software
and can easily provide hooks for the attachment of monitor software that could
observe the simulated behavior and detect violations or measure coverage. Fig-
ure 9 shows a declarative monitor specification and an operational specification

Development and Verification of Complex Hybrid Systems 189

of the same monitor. The operational specification is in C and uses the SIG
function to access the dynamic value of the system attributes. Automatically
synthesizing software (e.g., C code) from formally defined properties, such as in
PSL, is actually possible, but in practice, as we noted above, designers typically
prefer to write the monitor software directly.

We can expect to make the same considerations for using declarative prop-
erty definition languages or operational languages in the systems engineering
domain. In fact, in this domain, the problem would probably be more acute.
Hardware designers are often expected to write pieces of operational software
and even, sometimes though less frequently, might be willing to use formal prop-
erty definition languages. Such tendencies could be only rarely assumed in the
case of systems engineers. Systems engineers commonly come from one of the
disciplines used in the respective system design and only incidentally from the
software parts of the system. Moreover, the use of formal models is only recently
being driven by the movement towards MBSE. The willingness to learn new
sophisticated formal languages that can be used for requirement and monitors
definition could only be expected in the long run. We expect that the adoption of
formal languages for requirement and monitors definition depends on the success
of MBSE as a part of the mainstream systems engineering discipline.

A compromise is possible, however, between a rich formal declarative language
and an operational language. The idea is to come up with a short list of the
most useful properties expressed in the formal declarative language and then
to allow the user to configure or fill in the parameters of these ”templates”.
The list should be short enough so as not to deter users but strong enough so
as to be useful. This was the approach taken for the CSL language mentioned
above. The language was designed for the definition of properties of systems or
of components with contracts. The selection of the most useful templates was
done together with the industrial partners of the SPEEDS [8] project.

We believe that a tool that would support a monitor-based systems engineer-
ing methodology and aspires to popular demand would need to include at least
the option of selecting and configuring from such a list of most-commonly used
monitor templates. The list would serve most users most of the times. However,
as seen in Section 2, monitors can have very diverse usages by systems engineers.
The skill sets and the levels of detail and sophistication needed at these various
steps can be expected to differ. Some flexibility would need to thus be allowed
in the monitor specification language and tool so as also to support richer speci-
fication constructs or even operational specification when an occasional need for
greater detail is required. See Section 5 for an example.

4 Hybrid Simulation Monitors

In systems engineering, complex hybrid systems are modeled. In discrete systems
modeling, time is represented by a discrete monotonic ascending process. Each
signal representing a property of the model is assigned a value at each time step.
In hybrid systems modeling, on the other hand, time is a continuous monotonic

190 A. Abel et al.

ascending process. Hybrid models can include both discrete and continuous sig-
nals. Discrete signals belong to behaviors that are discrete in nature, such as a
signal representing a state of a switch that can be turned on and off. Continuous
signals, on the other hand, represent properties that are continuous in nature,
such as the temperature of a certain body.

The simulation of a hybrid system model involves sampling of the continuous
signals at finite points in time. However, the simulator must still be able to cap-
ture interesting behaviors that might occur at any point in time. Various meth-
ods are applied in these simulators to enable the identification of these events
and other interesting points in time, including the inspection of the signals’
derivatives and their zero-crossings. Among the well-known simulation tools for
hybrid models are MathWorks R© Simulink R© [15] and the Modelica R© modeling
language and tools [16]. These tools can simulate a hybrid model in two different
modes—a fixed time-step mode and a variable time-step mode. In the first case,
the simulation tool decides on a constant sampling rate, while in the second, the
sampling rate varies to capture important events in the signals’ behaviors.

The simulation-based verification process of hybrid models should take into
account the monitors defined on the model. These monitors might seek events
that are not necessarily captured in the simulation samples. This is due to the
fact that interesting behaviors sought by the monitors might have not been
considered interesting for the simulator. For example, the behavior of a contin-
uous signal representing the temperature of a certain object is sampled by the
simulation tool in accordance with the needs of the model and the simulation
process. A monitor defined on the behavior of this signal might need a different
sampling scheme and its results would be inaccurate with the existing samples.
Figure 2(a) demonstrates a possible behavior of a signal representing a temper-
ature over continuous time. The stars on the graph represent the sample points
that were selected by the simulation tool according to its need to best describe
the signal’s behavior. Assume that the user wants to monitor the first point in
time at which the temperature reaches 100◦. Figure 2(b) shows the same signal
in the vicinity of the required temperature (marked with a dashed ellipse in the
left-side graph). It can be seen that the point in time at which the temperature
equals 100◦ is not sampled, thus, inspection of the sample would not trigger the
monitor. A valid hybrid monitor would therefore have to take measures that take
into account the fact that the simulator works with samples. In the scope of this
work, we have investigated three methods for implementing hybrid monitors.
The first uses a restricted monitor language, the second manipulates monitors
to adapt to hybrid systems, and the third uses a monitor-aware simulation. The
three methods are presented in the following subsections.

4.1 Restricted Monitor Language

One method of dealing with hybrid monitors is the prohibition of writing moni-
tors that might lead to false detection or non-detection of intended behaviors. An
example of this would be to prohibit the use of the equality operator in hybrid
monitor specifications. In general, monitoring continuous behavior could cause

Development and Verification of Complex Hybrid Systems 191

Fig. 2. (a) A sampling of a continuous signal representing a temperature. (b) A zoomed
view of the signal. The point in time where the temperature reaches 100◦ is not sampled.

false reaction either with an equality or with a two-sided inequality using a small
enough range. For example, consider a detection monitor “a1 ≤ T ≤ a2”, where
T is the continuous temperature signal of figure 2, ascending from beneath a1 to
above a2. This monitor should be prohibited if the sampling of the temperature
is sparse enough to allow for the satisfaction of the property to go undetected.
A sufficient condition ensuring that this property is detected is given in Equa-
tion. 1, where dT

dt is the derivative of the signal and S is the set of sampling-step
sizes.

a2 − a1 ≥ max

∣∣∣∣dTdt
∣∣∣∣maxS (1)

This condition is conservative and can be used when the signal derivatives and
sampling rates cannot be determined before the simulation. However, monitoring
the actual derivatives and sample rates can relax this condition. The monitor
manager could give a warning in time zones in which the condition does not hold
during simulation, yet still allows the monitor to be used at other times.

4.2 Monitor Manipulation

A second method for dealing with hybrid monitors is the automatic manipulation
of the monitored properties to accommodate the continuous nature of the signals.
Each continuous signalX is assigned an inaccuracy parameter εX that represents
the error in the signal due to sampling. These values can be gathered offline
based on the derivative of the signal and the sample-step. Once the inaccuracy
parameters are known, each monitored expression can be manipulated to adapt
to the continuous system by error propagation techniques. The adaptation of the
monitored expression is intended to catch sampled occurrences of the monitored
expression as well as suspected occurrences. Let X and Y be two continuous
signals in the system with inaccuracy parameters εX and εY , respectively, and
A be a discrete signal with no inaccuracy. The error propagation in arithmetic
expressions can be computed as depicted in the following equations:

192 A. Abel et al.

ε (A±X) = εX
ε (AX) = |A| εX

ε (X ± Y) = εX + εY
ε (XY) = |X | εY + |Y | εX + εXεY

ε (X/Y) =
|X | εY + |Y | εX
Y 2 − |Y | εY

For each expression that can be manipulated into the form E = 0 in a moni-
tor, the expression is modified to accommodate for the possible inaccuracy into
−ε (E) ≤ E ≤ ε (E). Similarly, expressions of the form E < 0 or E > 0 are
modified into E < ε (E) or E > −ε (E), respectively. Such techniques may also
allow the monitor to produce two kinds of detections; definitive and potential,
where the latter is due to the manipulation of the monitored expression.

4.3 Monitor-Aware Simulation

Hybrid simulation tools use various techniques to determine the sample set dur-
ing simulation. These techniques are meant to allow the simulator to capture all
interesting events and behaviors in the system, according to the expressions and
subexpressions containing signals of the system. A monitor management system
could control the simulator’s sampling policy, when such controls are available,
so as to fit the needs of the monitors. Alternatively, the monitor logic could be
integrated into the simulated model, and thus the simulator would automatically
treat the monitor specification expressions as interesting to sample.

5 Monitor Specification and Synthesis Platform

In this section, we describe the prototype of a monitor specification and syn-
thesis platform for systems engineers that we designed. We developed this plat-
form to demonstrate the ideas and recommendations we presented in this paper.
For our demonstration, we used an executable model of an automatic transmis-
sion gearbox (ATG). Figure 3 depicts the ATG model composed of a driver,
engine, controller, gearbox and driveline components. The driver component
models the driver acceleration-pedal input. The engine component transforms
the acceleration-pedal input to mechanical torque. The controller component se-
lects the required gear using five corresponding output ports, and the gearbox
transforms mechanical torque from engine to driveline, according to the cur-
rently selected gear. Finally, the driveline component models the car dynamics.
The resulting ATG model exhibits hybrid dynamics that includes both con-
tinuous (e.g., acceleration of the car between gear changes) and discrete (e.g.,
dynamics during gear switching) behaviors. Modeling of complex systems re-
quires multiple engineering domains, each typically preferring its own modeling
languages and tools. In the ATG example, the Modelica R© language [16] in the

Development and Verification of Complex Hybrid Systems 193

SimulationX R© tool was used to model mechanical components (e.g., the gear-
box) and a SysML [17] statechart in the IBM R© Rational R© Rhapsody R© tool was
used to model the controller component. The FMI standard [18] was used to in-
tegrate models from different tools. This standard provides a simple interface for
the integration of models from different tools described by differential, discrete,
and algebraic equations. In this work we used the SimulationX simulation engine
to simulate and generate system signal traces.

Fig. 3. A hybrid model of an automatic transmission gearbox

We would like to use monitors throughout the product lifecycle and thus sev-
eral different simulation platforms would need to be monitored. We chose to
have our monitors track the simulation through the simulation logs rather than
directly from the simulator software interfaces. Every simulator can be expected
to produce some log of its run and these logs of various formats could then
be translated into traces of a standard form expected by the generic monitor-
ing platform. The standard trace gives the values of the system attributes at
any point in time, as reported by the simulator. Our prototype performed the
monitoring offline after the simulation log was available, but the platform could
easily be adapted to perform the monitoring online during simulation, by using
a pipeline starting with the dynamically appended log file, translated into the
standard trace, and ”fed” into the monitors producing their reports.

A formally defined monitor specification language is outside the scope of this
work, though we gave some recommendations in Section 3 for how such a lan-
guage should be designed for systems engineers.

In our prototype, we supported a simple monitor specification language with
a GUI for the specification and a back end for the automatic synthesis. This
specification language addresses most of the issues we raised in Section 3. We
would like our monitors to serve the different uses needed by systems engineers,

194 A. Abel et al.

as described in Section 2. Thus, the monitor-specification language would need
to support both requirement checking and test coverage. As we mentioned above,
CSL is based on a collection of useful templates but is focused on requirements.
We therefore created a coverage counterpart of a couple of CSL templates.

For example, the CSL template ”Whenever E occurs C holds during following
[I1,I2]” specifies the requirement that whenever an even E occurs then the condi-
tion C holds during the next interval defined by the start and end events I1 and
I2. Figure 4 depicts examples demonstrating use of the template. M1 specifies
a monitor that checks that the ATG can switch from gear 2 only to gears 1 or
3. M2, on the other hand, shows the coverage counterpart of M1, in which the
monitor should update the coverage report whenever a transition from gear 2 to
gear 1 is observed in the simulation log.

M1: Whenever gear==2 occurs (gear==1 || gear==3)

holds during following [gear!=2, gear!=2]

M2: Detect gear==2 followed by gear==1

during following [gear!=2, gear!=2]

Fig. 4. CSL template monitors

Our platform converts these CSL templates into PSL and then uses an existing
synthesizer from PSL to C (originally used for hardware simulation monitors)
to create the software monitors. Figure 5 shows the setup of our prototype.

Monitor
Manager

Monitor
Specification and

Report GUI

Verification
Engineer

Monitor
Synthesizer

(via PSL)
Executable

Monitor

Simulator Log File Standard
Trace

Detected
Coverage

Detected
Error

Monitor Specification
in High-Level

Language

Fig. 5. Monitor specification, synthesis, and usage flow

In our prototype’s monitor specification language, we can also specify moni-
tors with logical expressions using the standard arithmetic and logical operators

Development and Verification of Complex Hybrid Systems 195

(from C with the added operator implies for logical implication). For such mon-
itors, the user also indicates whether the monitor should report coverage when
the expression holds true (a coverage monitor) or to report an error when the
expression does not hold true (a requirement checker). Figure 6 shows exam-
ples of logical monitors. The checker monitor M3 reports an error whenever the
speed rises above 200. The coverage monitor M4 updates the coverage report
whenever the speed rises above 200. Figure 7 depicts additional CSL inspired
temporal functions that enrich the language.

M3: speed <= 200

M4: speed > 200

Fig. 6. Logical monitors

[]

HeldDuring(expression e, integer t): true whenever e is true for at least

t seconds.

Timeout(expression e, integer t): true t seconds after e is true.

Up(expression e): true when e becomes true.

Down(expression e): true when e stops being true.

Fig. 7. Additional temporal Templates

For example, in Figure 8, the monitor M5 checks the requirement that when
the gas pedal (a floating number between 0 and 1) is fully pressed for 10 seconds,
the car must reach at least 100 km/hr.

The monitors shown in Figure 7 are directly synthesized into C monitors,
without using intermediate PSL descriptions.

M5: HeldDuring(gas=1, 10) implies speed >= 100

Fig. 8. Temporal monitor example

Finally, our platform supports monitor specification using operational C code.
Figure 9 gives a specification of a checker monitor with equivalent behavior to
monitor M5, but in this case the monitor is specified with operational C code.
The monitor code is invoked on every simulation sampling as it is documented
in the simulation log. The values of the system attributes (and the time) at
the point of sampling can be accessed with the SIG function. This is a checker
monitor, so the code must return true if and only if no violation of the require-
ment was detected in the sampled time. This situation is reversed for coverage
monitors that must return true if and only if the desired specified event was

196 A. Abel et al.

Declarative: HeldDuring(gas=1, 10) implies speed>=100

Operational:
static int lastSampleTime = 0;
static int lastFullGas = 0;
static int count = 0;

if (lastFullGas && (SIG(gas)==100)
count += (SIG(time) - lastSampleTime);

else
count = 0;

lastSampleTime = SIG(time);
lastFullGas=(SIG(gas)==1);

return (count<10 || SIG(speed)>=100);

Fig. 9. A monitor specification with declarative and operational code

detected in the sampled time. Monitors that are specified with operational code
naturally require no synthesis, and they can be directly used by our monitoring
platform.

The monitors were specified using a GUI in which the user could fill in the
parameters of the CSL templates or specify monitors with logical expressions
or code. The GUI also indicated the current status of the monitors. Checker
monitors are either failed or are vacuously or non-vacuously passed. Coverage
monitors are either detected or not. A more complete textual report could also
be given with the number of failures/passes/detections.

During our work with the prototype, we adjusted and improved the monitor
specification language so as to conveniently serve the various monitor specifi-
cation types. We did not detect any actual violation of requirements with our
monitors, but we were able to correct the specification of the requirement itself.
This occurred through the use of the checker monitor M1 specified above. The
monitor detected a violation, but when debugging the failing trace it was found
that the ATG passes through a short intermediate neutral gear when shifting
between any two gears. For the same reason, the coverage monitor M2 never
reported coverage, even in simulation runs in which the car shifted from gear
2 to gear 1. Thus, we changed the requirement (and monitor) specification to
take this fact into account. This demonstrates that monitors can also be used in
the early requirement specification phase with high-level analysis models for the
purpose of refining the requirements and making their phrasing more precise.

6 Conclusions

In this paper, we showed that a monitor-based development and verification
methodology could benefit systems engineers in various different stages of the
product development lifecycle. The benefits of model-based development with

Development and Verification of Complex Hybrid Systems 197

its use of formal languages have long been evident in the hardware develop-
ment domain and have enabled the entire electronic design automation (EDA)
technology and industry. The same benefits could also be expected in systems
engineering, where monitors are a natural part of this expected revolution.

Our main claim is that monitor use could be pervasive along the entire product
lifecycle and not be limited only to requirement checking. Various uses, such as
requirement specification; early system alternative analysis; test coverage; data
harvesting; and naturally, requirement checking; can be made throughout the
development process. Many executable models, simulators, and testing platforms
are already used during the development of complex cyber physical systems.
These include high-level early analysis models, design and development models
for the system and its components, integrated system models, hardware-in-the-
loop models, and field testing environments.

Technology for automatic monitor synthesis is already available from the hard-
ware domain. Several languages have also been proposed for formal specification
of system requirements. We described how such languages should be extended
and adjusted to serve the various recommended uses by systems engineers, and
demonstrated our recommendations in a generally applicable monitor specifica-
tion and execution platform. However, an actual formal definition of a monitor
specification language was beyond the scope of this paper. The next step should
be the design of such a language. We believe that this effort should take our rec-
ommendations into account and be carried out together with practicing systems
engineers. The main challenge would be to come up with a language flexible
enough to support the various uses and user skills that could still maintain a
consistent interface and semantics.

Acknowledgments. The authors wish to thank Shinichi Hirose from IBM Re-
search - Tokyo for the fruitful discussions and the valuable advice.

References

1. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The
Complete Industry Cycle. Morgan Kaufmann (2005)

2. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer US (2006)
3. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-

tions. Springer (2005)
4. Boulé, M., Zilic, Z.: Automata-Based Assertion-Checker Synthesis of PSL Prop-

erties. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES) 13(1), 4 (2008)

5. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs - Automatic
Generation of Simulation Checkers from Formal Specifications. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 538–542. Springer, Heidelberg
(2000)

6. INCOSE: What is Systems Engineering?,
http://www.incose.org/practice/whatissystemseng.aspx

7. Engel, A.: Verification, Validation, and Testing of engineered Systems. Wiley (2010)

http://www.incose.org/practice/whatissystemseng.aspx

198 A. Abel et al.

8. SPEculative and Exploratory Design in Systems Engineering,
http://www.speeds.eu.com

9. Benveniste, A., Raclet, J.B., Caillaud, B., Nickovic, D., Passerone, R., Sangiovanni-
Vincentelli, A., Henzinger, T., Larsen, K.G.: Contracts for the Design of Embedded
Systems, Part II: Theory (2011) (submitted for publication)

10. Maler, O., Nickovic, D.: Monitoring Properties of Analog and Mixed-Signal Cir-
cuits. International Journal on Software Tools for Technology Transfer, 1–22 (2013)

11. Lachish, O., Marcus, E., Ur, S., Ziv, A.: Hole analysis for functional coverage data.
In: The 39th proceedings of Design Automation Conference. pp. 807–812. IEEE
(2002)

12. ISO 26262-1:2011 Road vehicels - Functional safety (2011),
http://www.iso.org/iso/catalogue_detail?csnumber=43464

13. StClair, B., King, T.: DO-178C brings modern technology to safety-critical software
development. Military Embedded Systems (March 2012)

14. Werner, D., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

15. Mathworks: MATLAB/Simulink, a tool for modeling, simulating and analyzing
multidomain dynamic systems, http://www.mathworks.com/products/simulink

16. Fritzson, P., Engelson, V.: Modelica - A Unified Object-Oriented Language for
System Modeling and Simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445,
pp. 67–90. Springer, Heidelberg (1998)

17. OMG Systems Modeling Language (2010), http://www.omgsysml.org
18. Functional Mock-up Interface, https://www.fmi-standard.org

http://www.speeds.eu.com
http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.mathworks.com/products/simulink
http://www.omgsysml.org
https://www.fmi-standard.org

Assertion Checking Using Dynamic Inference

Anand Yeolekar and Divyesh Unadkat

Tata Research Development and Design Centre, Pune
{anand.yeolekar,divyesh.unadkat}@tcs.com

www.tcs-trddc.com

Abstract. We present a technique for checking assertions in code that
combines model checking and dynamic analysis. Our technique first con-
structs an abstraction by summarizing code fragments in the form of
pre and post conditions. Spurious counterexamples are then analyzed
by Daikon, a dynamic analysis engine, to infer invariants over the frag-
ments. These invariants, representing a set of traces, are used to partition
the summary with one partition consisting of the observed spurious be-
haviour. Partitioning summaries in this manner increases precision of the
abstraction and accelerates the refinement loop. Our technique is sound
and compositional, allowing us to scale model checking engines to larger
code size, as seen from the experiments.

Keywords: Verification, Model Checking, Dynamic Inference,
Scalability.

1 Introduction

Embedded software that is classified safety- or business-critical needs to be rig-
orously analyzed for bugs before deployment. Over the years, many dynamic
and static approaches have been proposed to analyze software. Dynamic ap-
proaches scale to large-size code and may report test cases leading to bugs, but
are of little help in proving their absence, as stated by Dijkstra, so crucial for
safety-critical software. Static analysis techniques are sound and scale to large
size code, but may report many false positives. Model checking techniques are
precise and report traces violating assertions. These traces serve as valuable di-
agnostics for developers. Unfortunately, model checking algorithms run into the
state space explosion problem analyzing even moderately-sized code. Even with
SAT and SMT solvers scaling over the years [1] and abstraction techniques in
place, model checking has not scaled to the level of static analysis tools [2]. This
has led researchers to combine dynamic analysis and model checking in a variety
of ways.

An approach to scale model checking using dynamically computed procedure
summaries was proposed in [3]. This approach was limited to generating test
cases due to the unsound approximation constructed using Daikon’s [4] analysis.
In this paper, we present a CEGAR-based [5,6] technique for checking assertions
that overcomes this limitation by soundly constructing and refining procedure
summaries, using possibly unsound dynamic inference.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 199–213, 2013.
c© Springer International Publishing Switzerland 2013

200 A. Yeolekar and D. Unadkat

Figure 1 outlines our approach. We first decompose the code structurally
into its procedures, called units, based on the location of the assertion to be
checked. These units are summarized in the form of pre- and post-conditions.
We choose an unconstrained pre and post to form the initial sound abstraction of
the units. The given assertion is checked over the abstracted code. Following the
abstraction-refinement paradigm, spurious counterexamples are used to refine
the summary. We propose to refine the summary using dynamic analysis over
the spurious traces to infer likely invariants, that can be used to partition the
state space represented by the summary. The state space is partitioned into two
parts such that, the spurious traces represented by the invariants form one part,
with the remaining state space forming the second. Partitioning continues till
the assertion is violated in the original code or reported safe in the abstraction.
Iterative partitioning improves the precision of the summary and accelerates the
refinement process.

Dynamic analysis may infer unsound invariants at program locations. We
propose to overcome this limitation in the following way. The precondition in-
variants are cast as assumes and the post as assertions to be checked over the
unit. This annotated unit is analyzed using a model checker. Violated invariants
in the postconditions are dropped and counterexamples reported by the model
checker are used to improve Daikon’s inference over the unit. This is iterated
till the model checker reports safety i.e. a sound pre-post pair is obtained. This
pre-post pair is used to partition the summary, maintaining soundness of the
resulting abstraction. Note that running a model checker at this level usually
scales much better than at the application level.

We believe that our approach utilizing dynamic inference can discover stronger
program properties with fewer refinements, in contrast to static approaches
for abstraction refinement, such as predicate-refinement [5] and specification-
refinement [7]. The approach is fully compositional and takes advantage of mod-
ularity in the program structure.

Fig. 1. Outline of our approach

The contributions of this work are as follows:

– A compositional approach to scale model checking using dynamic inference

Assertion Checking Using Dynamic Inference 201

– A fully automated tool that demonstrates the approach
– Case studies showing scalability of the method on benchmark code

The rest of the paper is organized as follows. In section 2, we define the sum-
marization and refinement of code fragments, present an algorithm for assertion
checking, and address theoretical issues. Section 3 explains the implementation
of our algorithm in a tool called DIV. In section 4 we describe experiments con-
ducted with DIV, SatAbs and CBMC. We discuss work related to our approach
in section 5 and conclude in section 6.

2 Compositional Assertion Checking

In this section, we present the approach of computing and refining summaries
of code fragments using dynamic inference. Our approach builds on the work of
scaling test generation presented in [3] and overcomes the limitation of unsound
summaries, making it suitable for verification.

2.1 Dynamic Inference Using Daikon

Daikon implements dynamic detection of likely invariants. Daikon analyzes data
values from program traces to match a fixed template set of invariants. Invariant
templates include constants x = k, non-zero x �= 0, intervals a ≤ x ≤ b, linear
relationships y = ax+ b, ordering x ≤ y, containment x ∈ y, sortedness, size of
arrays size[arr] ≤ n and so on. Each invariant inferred is an (linear) expression
instantiated on program variables, and can be translated to statements in C
language. Invariants are reported at program points such as function entry and
exit, expressing the function’s preconditions and postconditions, respectively.

An invariant inferred by Daikon holds for traces seen so far. As trace data
accumulates, new invariants can be reported as well as, some invariants can be
dropped, due to the nature of the machine-learning algorithms of Daikon. With
more trace data, crossing the confidentiality threshold1 enables reporting of more
invariants, and those violated are withdrawn. In addition, Daikon implements
analysis to suppress redundant invariants, filter out non-useful ones and limit the
number of instantiations from templates. As with any other dynamic analyses,
Daikon’s inference is unsound and incomplete. Invariants inferred from program
traces, however, reveal useful information about the program behaviour, often
complementing static approaches [8,9]. We next explain how to generate sound
summaries of functions as abstraction units, with the inferred invariants as the
starting point.

2.2 Summarizing Functions

Let S be a program containing assertion φ to be checked. Let f be a candi-
date function to be summarized, such that the location of φ is not reachable

1 Minimum number of samples for an invariant to hold.

202 A. Yeolekar and D. Unadkat

from entry location of f . Let pre, post denote the set of pre and postcondition
invariants inferred by Daikon over f . The summary of f is defined as a set
f̂ = {〈pre0, post0〉, ..., 〈prek, postk〉}, with the restrictions that (i) the precondi-
tions are disjoint that is, prei ∧ prej = Φ, (ii) each pre-post pair forms a Hoare
triple {prei}f{posti}, and (iii) the set of states represented by the union of pre-
conditions over-approximates the set of states of S reachable at all call points of
f in S. The pre-post pairs of the summary partition the function’s input-output
space. The summary permits a non-deterministic mapping of input points to
output points within the state space defined by a pre-post pair.

int compare(int a,int b) {

1. if (sign(a)==sign(b))

2. if (abs(a)>abs(b)) return a;

3. else return b;

4. if (a>b) return a;

5. else return b; }

int main() {

6. unsigned int x=nondet;

7. assert(compare(x,-x)==x); }

(a)

int compare’(int a,int b) {

1. int ret;

2. ret=nondet;

3. return ret;

}

int main() {

4. unsigned int x=nondet;

5. assert(compare(x,-x)==x);

}

(b)

Fig. 2. Example code and the summarized version

Example 1. Consider the example code in figure 2(a), containing an assertion in
main to be checked. compare returns the smaller of a,b when both are negative,
otherwise the larger. Figure 2(b) illustrates a trivial summarization of compare
obtained with {〈true, true〉} as the summary that is, unconstrained pre and
postconditions. Newly introduced variable ret indicates the return value of the
function.

Abstraction. A trace is a finite sequence (..., 〈loc, s〉, ...) where s is the program
state at location loc in the source code. Let t = (〈l0, s0〉, 〈l1, s1〉, ..., 〈lk, sk〉) and
t̂ = (〈l0, ŝ0〉, 〈lk, ŝk〉) be traces of f and f̂ , respectively. For sequential code, the
traces are equivalent t ≈ t̂ if s0 = ŝ0 and sk = ŝk i.e. the input-output mapping
matches. Since the summary allows non-deterministic input-output behaviour,
the set of traces of f̂ , denoted as ‖f̂‖, over-approximates the set of traces of f

i.e., ‖f̂‖ ⊇ ‖f‖. Let Ŝ denote the program obtained by replacing f with f̂ in S.
Then it follows that ‖Ŝ‖ ⊇ ‖S‖ that is, Ŝ is an abstraction of S. In figure 2,
compare’ is an abstraction of compare.

2.3 Summary Refinement

The summary abstracts the function’s computation but allows spurious be-
haviours. A model checker analysing code containing summarized functions may

Assertion Checking Using Dynamic Inference 203

return spurious counterexamples, necessitating summary refinement. A summary
f̂2 refines f̂1, denoted f̂2 ≺ f̂1, if ‖f̂2‖ ⊆ ‖f̂1‖. Correspondingly, Ŝ2 is a refinement
of Ŝ1 and ‖Ŝ2‖ ⊆ ‖Ŝ1‖.

We propose to refine summaries by using Daikon to infer new invariants from
the spurious counterexamples that can strengthen the abstraction. The central
idea of the refinement scheme is to partition the state space represented by the
pre-post pairs into two parts such that, the spurious traces form the first part,
with the remaining state space forming the second.

Let 〈prei, posti〉 ∈ f̂1 contain the spurious input-output mappings
(i1, ô1), ..., (in, ôn), extracted from the counterexample obtained on Ŝ while
checking φ. Let p1, q1 be the pre and postcondition invariants inferred by
Daikon on executing f with inputs I1 = {i1, ..., in}. We use 〈p1, q1〉 to parti-
tion 〈prei, posti〉, with the first part as 〈prei ∧ p1, posti ∧ q1〉.

When refining summaries in this way using likely invariants, the problem is
to soundly partition the pre-post pair. We solve this by using a model checker
combined with Daikon to iteratively verify {prei∧p1}f{posti∧q1}, with the pre
and post translated appropriately as assume and assert statements respectively,
in the language of the model checker. Counterexamples returned are added to
I1, improving the inference. Recall that Daikon’s algorithms can report more
invariants as traces accumulate, leading to simultaneous widening and strength-
ening. This terminates when the model checker verifies the pre-post pair over f .
Note that the model checker is applied at unit level, where scalability does not
pose a problem.

We obtain the pre-post pair of second part in the following manner. For the
precondition, we complement the pre of the first, giving p2 = ¬p1. To obtain the
corresponding postcondition q2, constraints in p2 ∧ prei are used to synthesize
inputs I2 to execute f and infer invariants. Following the process above, we
obtain the sound pre-post pair 〈prei ∧ p2, posti ∧ q2〉. These two pre-post pairs

replace 〈prei, posti〉 in f̂1 to give f̂2. Note that f̂2 meets all the requirements of a
summary as defined above namely, preconditions being disjoint, soundness of all
pre-post pairs and preconditions over-approximating state space at call points
of f .

To show f̂2 ≺ f̂1, consider a trace (〈l0, i〉, 〈lk, o〉) such that i � prei ∧ p1, o �
posti ∧ ¬q1, where � denotes the point lies in the state space defined by the
invariants. Such a trace, where the input lies in the first part and the output in
the other, exists in f̂1 but is disallowed in f̂2. Further, every trace in f̂2 exists in
f̂1 as prei ∧ p1 ⇒ prei, posti ∧ q1 ⇒ posti, etc. Clearly, ‖f̂2‖ ⊆ ‖f̂1‖, establishing
refinement. In algorithm 1, we explain how to refine summaries when inferred
invariants are too weak to partition, and how to block the spurious mappings
from reappearing in f̂2.

Example 2. Consider our running example compare’ from figure 2(b). Assume
that the model checker returned a counterexample (spurious) violating the as-
sertion, with assignments a=4,b=-4 at entry of compare’ and ret=7 at the exit.
Figure 3(a) shows invariants, a>b,ret==a, inferred by Daikon after analyzing the

204 A. Yeolekar and D. Unadkat

pre:

a>b

post:

ret==a

(a)

pre:

a>b

post:

ret==a or ret==b

(b)

Fig. 3. Generating a sound pre-post pair

execution of compare. On verifying the pre-post invariants with a model checker,
we obtain a counterexample violating ret==a. On running Daikon again with the
newly added counterexample, we obtain invariants shown in figure 3(b). Subse-
quently, the model checker reports safety of this pre-post pair over compare. The
second pre-post pair {〈¬(a > b)〉, 〈ret = a ∨ ret = b〉} is obtained as explained
above. The parent summary {〈true, true〉} of figure 2(b) is partitioned as shown
in figure 4(a), where compare’ is refined to compare’’.

int compare’’(int a,int b) {

1. int pid=nondet,ret;

2. assume(pid>=0 && pid<2);

3 if (pid==0)

assume(a>b);

4. else

assume(!(a>b));

5. ret=nondet;

6. if (pid==0)

assume(ret==a||ret==b);

7. else

assume(ret==a||ret==b);

8. return ret; }

int main() {

9. unsigned int x=nondet;

10. assert(compare(x,-x)==x); }

(a)

int compare’’’(int a,int b) {

1. int pid=nondet,ret;

2. assume(pid>=0 && pid<3);

3 if (pid==0) assume(a>b && a>0);

4. else if (pid==1)

assume(!(a>0) && (a>b));

5. else assume(!(a>b));

6. ret=nondet;

7. if (pid==0)

assume(ret==a&&(ret==a||ret==b));

8. else if (pid==1)

assume(ret==b&&(ret==a||ret==b));

9. else assume(ret==a||ret==b);

10. return ret; }

int main() {

11. unsigned int x=nondet;

12. assert(compare(x,-x)==x); }

(b)

Fig. 4. Refining a function summary

Example 3. Assume that model checking the code of figure 4(a) returned a
spurious counterexample with a=2,b=-2 at the entry and ret=-2 at the exit
of compare’’. The final refinement is shown in figure 4(b), with 〈a > b, ret =
a ∨ ret = b〉 getting refined to {〈a > 0 ∧ a > b, ret = a ∧ (ret = a ∨ ret =
b)〉, 〈¬(a > 0)∧ a > b, ret = b∧ (ret = a∨ ret = b)〉}. The model checker reports
safety of the assertion after analyzing compare’’’.

Assertion Checking Using Dynamic Inference 205

Algorithm 1. Assertion checking

1: check(S, φ) =
2: f̂ = {〈true, true〉} // initial summary

3: while true do
4: ce = modelcheck(Ŝ, φ)
5: if ce = null or ce = valid then
6: terminate
7: end if
8: for all 〈prek, postk〉 ∈ f̂ | k ∈ pid(ce, f̂) do // partition the parent

9: testdb = inputs(ce, f̂ , k)
10: repeat // first child pre-post pair

11: 〈p1, q1〉 = daikon(f, testdb)
12: 〈pk1, qk1〉 = 〈p1 ∧ prek, q1 ∧ postk〉
13: ce′ = modelcheck({pk1}f{qk1})
14: testdb = testdb ∪ ce′

15: until ce′ is null
16: pk2 = ¬pk1 ∧ prek
17: testdb = synthinputs(f, pk2)
18: repeat // second child pre-post pair

19: 〈dummy, q2〉 = daikon(f, testdb)
20: qk2 = q2 ∧ postk
21: ce′ = modelcheck({pk2}f{qk2})
22: testdb = testdb ∪ ce′

23: until ce′ is null
24: for all 〈i, ô〉 ∈ iopairs(ce, f̂ , k) do // process point pre-post pairs

25: if ô � qk1 then
26: o = simulate(f, i)
27: add(f̂ , 〈i, o〉)
28: end if
29: end for
30: remove(f̂ , 〈prek, postk〉) // replace the parent with children

31: add(f̂ , (〈pk1, qk1〉, 〈pk2, qk2〉))
32: end for
33: end while

2.4 Algorithm for Assertion Checking

Algorithm 1 presents our approach for checking assertion φ using dynamically
computed function summaries. For simplicity, we present the case with only one
function f summarized in S.

The initial abstraction f̂ for f is chosen as the unconstrained pre-post pair,
{〈true, true〉} (line 2). By definition, the summary over-approximates the set of
states reachable in S at all call sites of f . To compute this set is as hard as checking
the assertion itself, so we choose true as an over-approximation of this set.

The algorithm implements CEGAR [6] with dynamic inference in the loop,

beginning line 3. We obtain Ŝ by replacing f with f̂ in S. The summarized
program is passed to the model checker, which may return a counterexample

206 A. Yeolekar and D. Unadkat

trace (line 4). The algorithm terminates if the model checker reports assertion
safety or the counterexample violates φ in S (lines 5-7).

When the counterexample trace violating the assertion turns out to be spuri-
ous, we proceed to refining the summary (lines 8-33). We assume the availability
of trace processing operators pid, inputs, iopairs that extract the values of
f̂ ’s pre-post identifiers, inputs and corresponding output variables respectively,
from the trace when supplied with relevant arguments.

A trace is spurious due to incorrect input-output mapping within the pre-
post pairs of the summary chosen by the model checker. Refinement proceeds
by identifying such pre-post in f̂ along the trace (line 8). The central idea is to
increase precision of the abstraction by partitioning the pre-post pairs such that,
the spurious traces form the first part, with the remaining state space forming
the second. In the process, we also eliminate spurious mappings.

We collect inputs of f , extracted from the spurious trace, belonging to the
pre-post pair (line 9). The algorithm executes f (at unit-level) with these inputs
and invokes Daikon to infer invariants (line 11). These invariants are used to
partition the state space represented by the pre-post pair (line 12). The model
checker is invoked at unit level (line 13) to check whether the postcondition
invariants hold over f , given the preconditions. Counterexamples reported, if
any, are added to the set of executions (line 14) to repeat the process, improving
Daikon’s inference, yielding a sound pre-post pair.

The negated precondition of the first part is used to build the precondition
of the second part (line 16), thus maintaining the correctness condition of the
summary. synthinputs synthesizes values to input variables of f (line 17) from
the precondition constraints, using an off-the-shelf constraint solver. Lines 18-
23 repeat above steps to obtain the corresponding postcondition, completing
the second part. The difference in loops on lines 10-15 and 18-23 is that in the
former, Daikon is used to infer both pre and post, while in the latter, only post
is inferred (pre being available by negating pre obtained earlier).

Due to the nature of Daikon’s inferencing mechanism and loops 10-15 and 18-
23 weakening the postconditions, we cannot guarantee that partitioning pre-post
pairs will always eliminate the spurious input-output mapping in the ce. Lines 24-
29 check this and create point pre-post pairs to eliminate spuriousness. For a spuri-
ous input-output pair (i, ô) retained in the newly created child pre-post pair (line
25), simulate executes f to discover the correct input-output mapping (i, o) (line
26) and appends to the summary (line 27), blocking a family of spurious mappings
(i, ∗) from reappearing in subsequent counterexamples. The newly created pre-
post pairs replace the parent pre-post, refining the summary (lines 30-31).

2.5 Remarks

We discuss some properties of algorithm 1.
Soundness. Ŝ over-approximates the set of traces of S at any stage of refine-
ment. Thus if φ is not violated in Ŝ, then φ is safe in S, subject to the bound
supplied to the model checker.

Assertion Checking Using Dynamic Inference 207

Progress. To guarantee progress, we need to ensure that spurious counterexam-
ples are eliminated. As discussed earlier, spurious mappings from the ce retained
within pre-post pairs are eliminated by inserting the corrected input-output map-
pings. This blocks the spurious system-level counterexample in subsequent model
checking runs, ensuring progress.

To ensure faster convergence, refinement should significantly improve the pre-
cision of the abstraction. Summary refinement partitions the state space such
that known spurious behaviours are separated out from the unknown ones. The
partitioning crucially depends on Daikon (lines 11,19) to form new pre-post
pairs. We depend on the conjunction prek ∧ p1 to partition the parent. Precon-
dition invariants inferred by Daikon with this testdb may turn out to be weaker
than parent’s pre that is, prek ⇒ p1, which means the parent pre-post cannot be
partitioned. This is still not a problem if Daikon is able to infer stronger postcon-
dition invariants which are subsequently verified as sound by the modelchecker.
In this case, the parent pre-post is refined through postcondition strengthening
without getting partitioned.

The worst case occurs when both pre and postcondition invariants inferred
are weaker than parent’s pre-post, or the repeat−until loop weakens the post. In
this case, appending point pre-post pairs to the parent is the only refinement. In
practice, this situation was observed only rarely, and did not impact scalability.

Termination. When algorithm 1 terminates, we have a (validated) counterex-
ample or the assertion is proven safe. Every loop in the algorithm is terminating,
as we use a bounded model checker and Daikon has a finite template set of in-
variants. In the worst case, the algorithm keeps on accumulating point partitions
for each spurious counterexample.

Compositionality. Our choice of {true} as the unconstrained initial precon-
dition of summaries allows to decouple the units from the rest of the system.
Summaries are computed and refined at unit-level, independent of others, mak-
ing our approach fully compositional. Assertion φ is checked at system-level that
is, when the summaries are composed to form Ŝ.

An implication of our choice is that the summary can become too abstract and
the model checker may be employed in checking behaviours that are infeasible in
the context of S. Our experimental results indicate that this has not impacted
the performance or scalability of our approach.

3 Implementation

Figure 5 depicts our technique for checking assertions in C code. We use
Daikon[10] for invariant generation over C code and CBMC [11] for model check-
ing. The preprocessor is built using our internally developed tool suite PRISM
consisting of a front-end for parsing C code into an intermediate representation,
program analysis framework and an unparser. It constructs the function call
graph (fcg), identifies functions for abstraction, identifies input-output variables

208 A. Yeolekar and D. Unadkat

Fig. 5. Tool architecture

of these functions and generates a driver for execution. The functions chosen for
abstraction are the roots of subtrees (in the fcg) of those functions not on the
(statically computed) program call stack, when control reaches the location of
the user-provided assertion on any path. The abstraction routine maintains a
list of pre-post pairs for the abstracted functions. The validation routine replays
counterexamples returned by CBMC on the original code to check for assertion
violations. The ce processing routine extracts (abstracted) function partition ids,
inputs and outputs from the XML trace. We use Kvasir, a tool from the Daikon
toolsuite that instruments C code and generate traces for Daikon’s consump-
tion. Invariants inferred by Daikon are filtered and translated to CBMC assume
and assert statements. The verify routine invokes CBMC to check {pre}f{post};
counterexamples if any, are fed back to Daikon to improve invariants. The add
subroutine appends point pre-post pairs to the summary after executing the
function. The routine synthinputs (not shown in the figure) synthesizes inputs
for execution and inference, by using an off-the-shelf constraint solver over the
negated preconditions generated by verify. The tool has been implemented in
Java in about 3KLoC under Linux.

4 Experiments

This section furnishes details about the experimental setup, tool parameters,
observations and results from the case-studies.

4.1 Setup and Tool Parameters

Table 1 lists the casestudies and results of experiments. For evaluating our strat-
egy, we used benchmark programs (column 1) ranging from a simple program

Assertion Checking Using Dynamic Inference 209

from [12] (row 1) to increasingly complex ones from Kratos [13] (rows 2-18).
Columns 2 and 3 list the number of functions and lines of code, respectively.
The code was seeded with assertions on line numbers given in column 4 (LoA -
line of assert statement). These assertions were ones which could not be checked
in [3] due to either timeouts or algorithm unsoundness. Due to runtime termina-
tion issues, Kratos sources were modified to exit the loops in functions eval and
start simulation after maximum 10 iterations. The preprocessing phase in our
tool removed hard-coded variable initializations and assigned non-deterministic
values to these global variables, converting them to program inputs. Some pro-
grams contained a non-deterministic initialization to local variables; this was
replaced with initialization to a constant, removing the reactive behaviour.

A timeout of 1 hour was imposed on model checking. The unroll depth was
set to the largest loop size in the application when running CBMC, to avoid
loop-unwinding assertions. We synthesized 10 test inputs per partition (using
preconditions) in addition to the inputs obtained via counterexamples, to im-
prove Daikon’s invariant detection. Uninteresting invariants were filtered out
using Daikon’s filtration options, such as disabling disequality comparisons. In
addition, we implemented a filtering strategy that dropped invariants compar-
ing unrelated variables, e.g. invariants comparing only the function’s updated
variables at the entry point (i.e. preconditions), and invariants relating only in-
put variables at the exit (i.e. postconditions). The tool was fully automatic - no
human intervention was required, and no user annotations were used for any of
the case studies.

We also experimented with SatAbs[14] tool. We used SatAbs with default pa-
rameters and a timeout of 1 hour per assertion. All experiments were conducted
on an Intel Xeon 4-core processor running at 2.4 GHz, with processes allowed to
take 3GB of memory.

4.2 Results

Column 5 in table 1 presents the results of applying the SatAbs and DIV for
checking assertions seeded in the code. safe, unsafe, TO indicates that the
assertion was reported safe, the assertion was violated, or the model checker
timed out, respectively. Column 6 reports the number of abstracted functions
based on the call-graph approach. Column 7 reports the number of partitions
generated across all abstracted functions (excluding point partitions). Column 8
reports average number of invariants generated per partition. Column 9 reports
average number of iterations of the loops on lines 10-15 and 18-23 in algorithm 1.
Finally, column 10 reports the number of refinements required by DIV to achieve
the result.

4.3 Analysis and Observations

CBMC when applied alone on the assertions, without our summarization tech-
nique, either timed out or went out of memory for the chosen assertions, except

210 A. Yeolekar and D. Unadkat

Table 1. Experimental Results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

App
#

LoC LoA
Result #Abs # Avg Avg

#Refs
Funcs SatAbs DIV Funcs Parts Invs Iters

SimpleEx 3 24 17 safe safe 1 1 6 2 1

bist cell 18 449
299 safe safe 8 14 26 25 2
199 unsafe unsafe 2 2 2 10 2

pc sfifo3 19 555
358 safe safe 8 13 9 7 1
508 unsafe unsafe 5 5 8 32 5

token ring10 35 1567
1152 TO safe 14 14 - - 0
451 TO unsafe 23 23 - - 0
675 TO unsafe 12 12 2 8 2

transmitter12 39 1777
1322 TO safe 16 16 - - 0
519 TO unsafe 27 27 2 9 1
775 TO TO 15 15 - - -

transmitter13 41 1899
1715 TO safe 17 17 - - 0
560 TO unsafe 29 29 2 4 2
836 TO TO 15 15 - - -

token ring13 41 1936

1341 TO safe 17 17 - - 0
127 TO unsafe 29 29 1 2 1
579 TO unsafe 29 29 2 8 1
875 TO TO 15 15 - - -

row 1. SatAbs terminated successfully for rows 1-5 and timed out for the rest of
the cases. DIV scaled better than both CBMC and SatAbs.

– Scalability: Our approach demonstrates that summarizing code fragments
scales model checking. The novelty of our approach is to use relatively low-
cost dynamic analysis to construct summaries and verify them at unit level,
making the analysis sound, compositional and scalable.

– Summary Refinement: Our approach of forming a pre-post pair con-
sisting of the observed spurious behaviour using inferred invariants yields
highly precise summaries during refinement. This is confirmed by the low
number of refinements required by DIV (column 10) to terminate with a
result. Further, our approach shows that executing code fragments with well
chosen inputs (derived from preconditions) enables Daikon to infer useful
and stronger invariants.

As seen from columns 6 and 7, the number of pre-post pairs is compara-
ble to the number of abstracted functions. This indicates that most of the
pre-post pairs did not require partitioning and were refined by discovering
stronger postconditions, sufficient to check the assertion. We confirmed this
by observing the invariants.

Assertion Checking Using Dynamic Inference 211

– Overhead of Dynamic Inference: Columns 8-9 give an idea of the com-
plexity of repeat-until loops of algorithm 1, used to form new pre-post pairs.
Though several iterations were required to obtain sound pre-post pairs using
Daikon per partition, the model checker was observed to quickly terminate
within a minute. Our invariant filtration strategy combined with instantiat-
ing only selected invariants from Daikon’s template resulted in low number
of invariants representing pre-post, as seen from column 8.

– Call Graph-Based Summarization: The call-graph approach maximizes
functions that can be summarized. Overall, we were able to summarize more
than 50% functions, as seen from column 6. Even with this aggressive ab-
straction, for rows 11,14,18 CBMC timed out. In these cases, we observed
that less than 40% functions could be summarized. When the call graph is
unbalanced or the assertion is placed deep down in the graph, few functions
can be abstracted, resulting in scalability issues.

– Code Modularity: Our abstraction technique is well suited to take advan-
tage of modularity in code, where functions have low coupling. In particular,
a summary is refined only when a counterexample trace passes through the
function, optimising the refinement procedure. As seen in rows 6,7,9,12,15,
the result was obtained with the initial abstraction f̂ = {〈true, true〉} in
place, without any refinement. In all other cases, we observed that not all
abstracted functions underwent refinement.

5 Related

Dynamic analysis to scale model checking has been used by various researchers
[15,16,17,18,19,20]. Daikon has been used in conjunction with static analysis
tools such as ESC/Java to infer properties and specifications for subsequent
verification or user consumption [8], and to achieve both scale and automation
of theorem proving [21].

Gulavani et.al. [22] propose a combination of DART-like dynamic and
predicate-based static reasoning, called the Synergy algorithm. Test executions
are used to refine an abstraction of the program, which in turn generates new test
cases attempting to violate the given assertion. The abstraction and refinement
strategies differ from our approach, which focuses on summarizing functions.

Kroening et.al. [23] proposed loop summarization using abstract transformers
for checking assertions using CBMC. They abstract program loops with respect
to a given abstract interpretation. Similar to our technique, they instantiate
candidate invariants from a template and check which invariant holds over the
loop, except that we use Daikon to guess invariants. Leaping counterexamples
provide diagnostic information to user but can include spurious ones as they do
not refine the abstraction. In contrast, our approach refines the abstraction to
eliminate spurious counterexamples.

Taghdiri [7] proposed an approach to abstract procedures using statically
computed specifications. The initial over-approximation is refined using spurious
counterexamples returned by a SAT solver. Unsat cores reported by the solver

212 A. Yeolekar and D. Unadkat

while concretizing (spurious) traces are conjuncted with the existing specifica-
tion, to iteratively strengthen the specification. Our approach differs in the way
that, the abstraction is refined both by blocking (a family of) spurious coun-
terexamples and increasing precision by adding new pre-post pairs, guided by
dynamic inference.

6 Conclusion and Future Work

We have presented a CEGAR-based technique that combines model checking
with dynamic analysis to check assertions. The central idea is to use dynam-
ically inferred invariants to separate observed spurious behaviour, refining the
abstraction. The technique is sound, compositional and scales better than some
existing tools as seen from experiments.

As part of the future work, we envision the following:

– Our technique can be generalized to include different reasoning techniques for
the decomposed code fragments. In particular, we would like to use static
analysis methods to obtain sound postconditions for dynamically inferred
preconditions.

– Daikon templates can be extended to infer suitable invariants over different
domains. We would like to extend our approach to more challenging areas
like heap analysis and concurrency.

Acknowledgements. The authors would like to thank their colleagues R.
Venkatesh and Shrawan Kumar for their valuable inputs at various stages of
this work. They would also like to thank the anonymous reviewers for their
feedback.

References

1. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

2. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27, 1165–1178 (2008)

3. Yeolekar, A., Unadkat, D., Agarwal, V., Kumar, S., Venkatesh, R.: Scaling model
checking for test generation using dynamic inference. In: International Conference
on Software Testing, Verification and Validation (ICST 2013). IEEE (2013)

4. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69, 35–45 (2007)

5. Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

Assertion Checking Using Dynamic Inference 213

7. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE, pp. 144–153
(2004)

8. Nimmer, J.W., Ernst, M.D.: Invariant inference for static checking. In: SIGSOFT
FSE, pp. 11–20 (2002)

9. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written
and automatically inferred contracts. In: ISSTA, pp. 93–104 (2009)

10. Ernst, M., et al.: The daikon invariant detector, http://pag.lcs.mit.edu/daikon
11. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:

Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

12. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference.
In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2012, pp. 181–192. ACM (2012)

13. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos bench-
marks, https://es.fbk.eu/tools/kratos/index.php?n=Main.Benchmarks

14. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Formal Methods in System Design (FMSD) 25, 105–127
(2004)

15. Yuan, J., Shen, J., Abraham, J.A., Aziz, A.: On combining formal and informal
verification. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 376–387.
Springer, Heidelberg (1997)

16. Shacham, O., Sagiv, M., Schuster, A.: Scaling model checking of dataraces using
dynamic information. J. Parallel Distrib. Comput. 67, 536–550 (2007)

17. Kroening, D., Groce, A., Clarke, E.: Counterexample guided abstraction refinement
via program execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004.
LNCS, vol. 3308, pp. 224–238. Springer, Heidelberg (2004)

18. Gunter, E.L., Peled, D.: Model checking, testing and verification working together.
Formal Aspects of Computing 17, 201–221 (2005)

19. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: better to-
gether! In: Proceedings of the 2006 International Symposium on Software Testing
and Analysis, pp. 145–156. ACM (2006)

20. Păsăreanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract
matching and refinement. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 52–66. Springer, Heidelberg (2005)

21. Win, T., Ernst, M.: Verifying distributed algorithms via dynamic analysis and
theorem proving (2002)

22. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: a new algorithm for property checking. In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, SIG-
SOFT 2006/FSE-14, pp. 117–127. ACM, New York (2006)

23. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008)

http://pag.lcs.mit.edu/daikon
https://es.fbk.eu/tools/kratos/index.php?n=Main.Benchmarks

Formal Specification of an Erase Block

Management Layer for Flash Memory

Jörg Pfähler, Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg,
and Wolfgang Reif

Institute for Software & Systems Engineering
University of Augsburg, Germany

{joerg.pfaehler,ernst,schellhorn,haneberg,reif}
@informatik.uni-augsburg.de

Abstract. This work presents a formal specification and an implemen-
tation of an erase block management layer and a formal model of the
flash driver interface. It is part of our effort to construct a verified file
system for flash memory. The implementation supports wear-leveling,
handling of bad blocks and asynchronous erasure of blocks. It uses ad-
ditional data structures in RAM for efficiency and relies on a model
of the flash driver, which is similar to the Memory Technology Device
(MTD) layer of Linux. We specify the effects of unexpected power failure
and subsequent recovery. All models are mechanized in the interactive
theorem prover KIV.

Keywords: Flash File System, Specification, Refinement,Wear-Leveling,
Power Failure, UBI, MTD, KIV.

1 Introduction

Flaws in the design and implementation of file systems already lead to serious
problems in mission-critical systems. A prominent example is the Mars Explo-
ration Rover Spirit [25] that got stuck in a reset cycle. This incident prompted a
proposal to verify a file system for flash memory [18,12] as a small step towards
Hoare’s Grand Challenge [15]. In 2013, the Mars Rover Curiosity also had a
bug in its file system implementation, that triggered an automatic switch to safe
mode.

We are developing such a verified flash file system (FFS) as an implementation
of the POSIX file system interface [29], using UBIFS [16]—a state-of-the-art FFS
implemented in Linux—as a blueprint. In order to tackle the complexity of the
verification of an entire file system implementation, we refine a top-level abstract
POSIX specification in several steps down to an implementation.

File systems for flash memory differ from traditional ones because the hard-
ware does not support overwriting data in-place (in contrast to magnetic disks).
The memory is physically partitioned into blocks, each consisting of an array of
pages that can be empty or programmed with data. There are three operations
1) Read a consecutive part of a block, possibly across page boundaries. Empty

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 214–229, 2013.
c© Springer International Publishing Switzerland 2013

Formal Specification of an Erase Block Management Layer for Flash Memory 215

pages yield default values, typically bytes 0xFF. 2) Write/Program data to a
whole page that was previously empty. Typically, there is an additional con-
straint that pages in a block must be written in order [11,8]. 3) Erase a whole
block, i.e., empty all of its pages. The erase operation enables reuse of memory,
though it comes at considerable costs: Erasing is slow and physically degrades
the memory. The number of erase cycles until a block breaks down is thus limited
– between 104 and 106 for typical hardware. Such broken blocks are called bad.

To deal with these characteristics, data is always written to new locations
(out-of-place updates); and erasing is performed asynchronously and in parallel
to read/write access to the flash device. The software component responsible
for this is called the Erase Block Management (EBM) layer. It maintains the
information which blocks are currently available. The interface offered to clients
mirrors the hardware operations, but it is based on logical block numbers instead
of physical ones. The primary task of the EBM is therefore to maintain a mapping
from logical to physical block numbers.

Several significant benefits follow from such a mapping. The EBM layer can
transparently migrate a logical block to a different physical one. This enables
wear-leveling, a method to distribute erase cycles evenly between physical blocks
to prolong the hardware’s lifetime. Furthermore, the client may reuse a logical
block number after issuing an erase request, even before the corresponding phys-
ical erase has been performed.

Filesystem Implementation

MTD

Eraseblock Management Layer

WBUF

UBI

(UBIFS)

Fig. 1. Lower Layers

This work presents the formal models of our project
that are related to erase block management. As the bot-
tom layer (Sec. 2) we specify a thin abstraction of the
driver for flash memory that supports the operations read,
write and erase. It is modeled after the Memory Technol-
ogy Device (MTD) interface of Linux. We also define a
simple EBM specification (Sec. 3) to capture the behav-
ior visible to the upper layers. The main design goal is to
abstract from implementation details as far as possible to
facilitate the verification of clients wrt. the specification.
Note that this abstract model only needs to consider logical blocks. Finally, we
give an implementation (Sec. 4) that supports wear-leveling, handling of bad
blocks and asynchronous erasure of blocks using additional data structures in
RAM for efficiency. Its design is inspired by the state-of-the-art Unsorted Block
Image layer (UBI) [22,14]. Our implementation also provides strong guarantees
in the event of an unexpected power failure. However, the effects are subtle and
visible to the client (and thus occur in the abstract EBM as well). For the EBM
specification and the MTD layer, we also contribute a proof of certain invariants.

Figure 1 visualizes some of the layers of our FFS. The part shaded in grey
is subject of this paper, namely the abstract EBM, the implementation UBI
and driver abstraction MTD. The dashed lines indicate functional equivalence,
or more formally, refinement relations. The erase block management is uti-
lized by the file system either directly or through a write-back cache (the write
buffer ”WBUF”). The interface symbol denotes dependencies between the

216 J. Pfähler et al.

components. The refinement is already proved, but a description is out of scope
for this paper. A correctness proof of the FFS then only has to consider the ab-
stract specification of an EBM’s behavior, which is much more suitable for the
verification of clients – especially wrt. the effects of unexpected power failure.

We have previously published models of the top-level POSIX specification [10],
of the Virtual Filesystem Switch (VFS) [9] and of an abstract version of UBIFS
[28]; [10] also presents a correctness proof of VFS. These models constitute the
upper layers of the refinement stack that are not shown in Fig. 1.

We use KIV to mechanize our models as ASMs [1] based on structured alge-
braic specifications [26] with freely and non-freely generated algebraic datatypes.
For proofs about programs we use the wp-calculus. All our models and proofs
are available online [24].

2 Hardware Model (MTD)

This section defines our assumptions about the hardware, captured by the be-
havior of an abstract interface representing the driver.

Flash memory is organized as an array of physical erase blocks (PEBs):

state var pebs : Array〈Peb〉 where (1)

data Peb = peb(data : ArrayPEB SIZE〈Byte〉, fill : N, bad : B)

Each PEB stores a byte-array data of fixed length PEB SIZE that is implicitly
partitioned into pages of length PAGE SIZE. A PEB stores a page-aligned counter
fill that tracks the part of the block that contains programmed pages, i.e.,
only data above fill is known to be EMPTY and can be written to. Note that
the fill counter cannot be accessed by software. It is an auxiliary state only used
to enforce that pages are written sequentially and never overwritten. PEBs also
carry a hardware-supported marker bad that is set by the EBM or the file system
after access failures to prevent future usage of the block.

Figure 2 shows the specification of the operations on this layer. Value param-
eters are separated from reference parameters by semicolon. The state variable
is passed implicitly. The if-test at the beginning of operations reflects the pre-
condition. With the exception of mtd isbad, each operation requires that the
respective physical erase blocks is not marked as bad. Furthermore, all offsets
must be in bounds; offsets must additionally be page-aligned for mtd write. We
tacitly omit an additional precondition n < #pebs for all operations.

The operation mtd write models the fact that pages are written sequentially
by a loop. The function copy(src, off0 , dst , off1 , n) returns the result of copying
the value from index off0+i in src to index off1+i in dst , for all i with 0 ≤ i < n.
We also specify the possibility of hardware failures : either the body of the loop
executes normally, or writing of the current page fails nondeterministically and
a corresponding error code EIO is returned. Similarly, all other operations may
also fail nondeterministically. We omit the respective code in each operation for
brevity.

This model makes the following assumptions about the hardware:

Formal Specification of an Erase Block Management Layer for Flash Memory 217

mtd write(n, off , len, buf ; err)
if pebs [n].fill ≤ off ∧ off + len ≤ PEB SIZE ∧ ¬ pebs [n].bad

∧ page-aligned(off) ∧ page-aligned(len) then

err � ESUCCESS, m� 0

while err = ESUCCESS ∧m 	= len do

{ pebs [n].data� copy(buf , m,pebs [n].data, off +m, PAGE SIZE)
pebs [n].fill� off +m+ PAGE SIZE

m�m+ PAGE SIZE }
or err � EIO

mtd read(n, off , len; buf , err)
if off + len ≤ PEB SIZE ∧ ¬ pebs [n].bad then

buf � copy(pebs [n].data, off , buf , 0, len)

mtd erase(n; err)
if ¬ pebs [n].bad then

pebs [n]� peb(EMPTY PEB, 0, false)

mtd isbad(n; bad)
bad � pebs [n].bad

mtd markbad(n; err)
if ¬ pebs [n].bad then

pebs [n].bad� true

Fig. 2. MTD Operations

1. Page writes and block erasure can be viewed as atomic operations.
2. Success of an operation can be recognized, i.e., an error is not returned by

mistake.
3. Conversely, hardware failure can also be detected reliably. In particular, reads

that produce garbage can be recognized.
4. An unsuccessful page write/block erasure does not modify the state.
5. An unexpected power failure has no effect on the state of the flash device.

Assumption 4 is not realistic and we will relax it to a certain degree. For example,
checksums can be used to recognize certain kinds of data corruption. However,
on the level of MTD there is no possibility to express such application-specific
concepts.

The model maintains the following invariant for all peb=pebs [i] with ¬peb.bad:

invariant page-aligned(peb.fill) ∧ peb.fill ≤ PEB SIZE (2)

∧ ∀n. peb.fill ≤ n < PEB SIZE→ peb.data[n] = EMPTY

It specifies that the fill count is a multiple of PAGE SIZE and that all bytes
above (inclusive) are empty. The invariance of this trivially follows from the
preconditions of the operations.

3 Abstract EBM Layer Specification

The erase block management layer essentially provides the same functionality
as the driver/MTD—namely read, write and erase—though it is based on log-
ical erase blocks (LEBs). These are mapped on-demand to physical ones. This
indirection enables a number of desirable features, namely asynchronous erase,

218 J. Pfähler et al.

logical blocks

physical blocks 0 2 1

0 1 2 3

unmapped erased

async erase available

0 1 2 3

Fig. 3. Mapping of Logical Blocks to Physical Ones

hiding of bad blocks from the application, wear-leveling and trivial support for
several volumes (i.e., partitions) on one device. However, the way this mapping
is stored on flash leads to subtle differences between the behavior of the EBM
and MTD in the presence of power failures. These effects can not be hidden
completely by the implementation and are consequently present in the formal
EBM specification as well. We therefore informally describe first how the imple-
mentation works, and then define an abstract EBM model.

Figure 3 shows the logical view of the device at the top with consecutive
blocks numbered 0, 1, . . ., and the physical device at the bottom. Bold arrows
denote which physical block is allocated for a logical one. For example, block 0
is mapped to 0, whereas the data of logical block 2 is stored in physical block 1.
This forward mapping is kept in RAM.

An inverse mapping (displayed by thin arrows) is stored on flash in the grey
headers of physical blocks. The in-memory representation of the forward map-
ping is initially built during system startup by reading the headers of each phys-
ical block, and it is lost during power-failure.

A logical block that has no associated physical one (such as the dashed blocks 1
and 3) is implicitly empty, i.e., it has previously been erased. As soon as a write
to such a block occurs, a new physical block is allocated and the mapping is
extended both in memory and on flash.

The mapping to a physical block is in general deallocated by requesting an
asynchronous erase, also called unmapping the LEB. The logical block may
be reused immediately after unmapping, however, the old physical block still
contains the inverse mapping, as it is the case for LEB 1 in the example. When
the system recovers from power failure in such a situation, the mapping for logical
block 1 will re-appear with some old data. Since it would be rather difficult to
prevent this effect without sacrificing the lazy allocation of physical erase blocks,
the application/file system is expected to deal with it; or alternatively use a less
efficient synchronous version of logical block erasure. Note that several PEBs
with the same inverse mapping may exist simultaneously. These are distinguished
by sequence numbers in PEB headers (see Sec. 4).

We will now formally specify the EBM layer in a way so that it only main-
tains logical blocks but encompasses the effect described above. The state of the
model consists of a partial function avols mapping volume identifiers V to arrays
of logical blocks: A mapped LEB stores an array data of bytes together with the
counter fill similarly to MTD (1). However, a LEB has a smaller size than a
PEB due to the inverse mapping stored at the beginning of each physical block by

Formal Specification of an Erase Block Management Layer for Flash Memory 219

ebm write(v, l, off , len, buf)
if avols [v][l].ismapped ∧ avols[v][l].fill ≤ off ∧ off + len < LEB SIZE

∧ page-aligned(off) ∧ page-aligned(len) then

choose n with n ≤ len ∧ page-aligned(n) in

avols [v][l].data� copy(buf , 0, avols [v][l].data, off , n)
if n 	= 0 then avols [v][l].fill� off + n
if n = len then err � ESUCCESS else err � EIO

ebm read(v, l, off , len; buf)
if off + len ≤ LEB SIZE then

if avols [v][l].ismapped then buf � copy(avols [v][l].data, off , buf , 0, len)
else buf � fill-buffer(buf , len, EMPTY)

ebm erase(v, l)
{ avols [v][l]� erased, err � ESUCCESS }

or { avols [v][l]� unmapped, err � EIO }

ebm map(v, l)
if ¬ avols [v][l].ismapped then

avols[v][l]� mapped(EMPTY LEB, 0)

ebm unmap(v, l)
avols [v][l]� unmapped

ebm create volume(n; v)
choose v0 with ¬ v0 ∈ avols in v� v0

avols [v]� mkarray〈Leb〉(n)
forall l < n do

avols [v][l]� erased

Fig. 4. EBM Operations

the implementation. Mapped blocks leb are recognized by the test leb.ismapped.
Otherwise, a logical block has been erased asynchronously (unmapped) or syn-
chronously (erased). Note that the EBM implementation handles bad blocks
transparently, i.e., there is no need to model them in the abstract interface and
state.

state var avols : V #→ Array〈Leb〉 where

data Leb = mapped(data : ArrayLEB SIZE〈Byte〉, fill : N)

| unmapped | erased

Figure 4 shows the operations on this layer. The preconditions—denoted by
if-statements at the beginning of operations—are similar to the ones of MTD,
namely the respective offsets must be in bounds and a multiple of PAGE SIZE.
Blocks are addressed by a volume identifier v and the logical block number l. We
tacitly assume that v denotes a valid volume v ∈ avols , and that l < #avols [v].
Additionally, the operation ebm write requires the block l to be mapped.1

Writing to a block may fail nondeterministically. In contrast to Fig. 2 it is not
realized by a loop but simply by writing a (non-strict) prefix of length n of the
actual data. The operation succeeds if the whole data is written. The field fill

is updated only if n �= 0.

1 The full model actually checks for this condition and maps the block on-demand.
This is omitted for brevity here.

220 J. Pfähler et al.

ebm reset recover(; err)
choose avols ′, err ′ with (err ′ = ESUCCESS → inv(avols ′) ∧ avols ⊆ avols ′)
avols� avols ′

err � err ′

Fig. 5. Effect of a Power-failure on the state of the EBM

A physical erase block for an LEB is allocated via the operation ebm map.
Operations ebm erase and ebm unmap request synchronous resp. asynchronous
deallocation. Similar to our hardware model, nondeterministic failures may occur
(partly omitted in Fig. 4), and we assume that failure as well as success can
be detected reliably. In the case of such errors the state is not modified by any
operation, with the exception of erase, which may set the respective logical erase
block to unmapped. This means that erase may update the in-memory mapping
although it failed to invalidate the remains of the inverse mapping stored on flash.

Unsurprisingly, an invariant inv analogous to formula (2) is maintained by
all operations. We call a state of the EBM consistent if it satisfies this invariant.

Possible effects of a power failure and the subsequent recovery are specified by
an extra operation ebm reset recover shown in Fig. 5. After a power failure,
the EBM implementation reads the mapping stored in each physical erase block
and tries to restore its state. This may fail due to read errors. For an unmapped
logical erase block there may still be a physical erase block storing the inverse
mapping, as for example PEB 2 in Fig. 3. Thus, the logical erase block 1 will
be re-mapped with the contents found in PEB 2. In the model, this leads to a
state avols ′ that is “greater” than avols before the crash, formally specified by
the relation ⊆, which holds iff

1. avols and avols ′ contain the same volume identifiers and corresponding vol-
umes have the same size

2. if avols [v][l] �= unmapped then avols ′[v][l] = avols [v][l].

Thus, both states are identical with the exception of previously unmapped logical
erase blocks, which may be arbitrary after a reset.

4 EBM Implementation

This section describes the implementation of the functionality of Sec. 3 on top
of the MTD hardware model of Sec. 2. The implementation has several sub-
components as visualized by Fig. 6. Grey boxes denote functional components.
For example, the whole layer is represented by “interface operations” that pro-
vides the EBM interface to applications, as denoted by the knob at the top. It
maintains the in-memory data structure that stores the forward mapping from
logical to physical blocks, labeled “mapping table”.

Allocation “get” and asynchronous erase “put” of physical blocks are man-
aged by the wear-leveling subsystem; it maintains the erase queue and some
information about the state of physical blocks in the “wear-leveling array”. Asyn-
chronous erasure and wear-leveling are background operations.

Formal Specification of an Erase Block Management Layer for Flash Memory 221

get/put PEB

flush

update

erase
worker

wear-leveling
worker

IO operations, data structure encoding MTD

wear-
leveling
array

erase queue
...

...
interface

operations

mapping table

wear-leveling subsystem

Fig. 6. Subsystems of the Implementation

data pages

EC ...

headers

VID

Fig. 7. Layout of a PEB

The I/O layer provides operations not only to read and write parts of the
flash memory, but also to convert on-disk data structures such as block headers
and the volume table to and from a byte-representation.

This section is structured as follows: First the data structures needed for
an implementation of the interface operations are discussed. Afterwards, the
asynchronous erasure and wear-leveling subsystem are discussed. Finally, we
outline how the in-memory state is recovered from flash.

4.1 Data Structures and Interface Operations

The forward mapping vols (bold arrows in Fig. 3) is stored in RAM. It maps
(#→ indicates a finite map) each volume identifier v ∈ vols to an array, which
is indexed by logical block numbers. The value stored is either a physical block
number if one has been allocated, or the constant unmapped otherwise.

state var vols : V #→ Array〈PebRef 〉 where

type PebRef = N+ unmapped

Fig. 7 shows the layout of a PEB. The first two pages are used to store two
headers. The remaining pages store application data. The first page contains an
erase counter associated with the physical erase block (erase counter- or EC-
header). The erase counter is used for wear-leveling.

The second page of allocated PEBs contains the inverse mapping (thin arrows
in Fig. 3) as the volume identifier header (VID-header). It stores the correspond-
ing volume identifier and logical block number. Sequence numbers sqn distin-
guish multiple PEBs with equal vol, leb pairs: During system startup/recovery,
the highest sequence number denotes the newest block for a given inverse map-
ping. An (optional) size and checksum of the contents of the block are used for
atomic block-writes during wear-leveling. Two headers are necessary, because
every PEB must store its erase counter, but only once a PEB is allocated an
inverse mapping is required. Formally, the headers are defined as:

data EcHeader = echdr(ec : N)

data VidHeader = vidhdr(vol : V, leb : N, sqn : N, size : N, checksum : N)

222 J. Pfähler et al.

write(v, l, off , len, buf)
if vols [v][l] 	= unmapped then

io write data(vols [v][l], off , len, buf)

read(v, l, off , len; buf)
if vols [v][l] = unmapped then

buf � fill-buffer(buf , len, EMPTY)
else

io read data(vols [v][l], off , len; buf)

erase(v, l)
unmap(v, l)
wl flush(v, l)

unmap(v, l)
if vols [v][l] 	= unmapped then

vols[v][l]� unmapped

wl put peb(v, l, vols [v][l])

create volume(n; v)
choose v0
with v0 /∈ vols ∧ v0 	= VTBL VOLID in

v� v0
vols[v]� mkarray〈PebRef 〉(n)
forall l < n do

vols[v][l]� unmapped

io write vtbl(vols)

map(v, l)
if vols [v][l] = unmapped then

wl get peb(;m)
io write vidhdr(m, vidhdr(v, l,max-sqn , 0, 0))
max-sqn�max-sqn + 1
if err = ESUCCESS then vols[v][l]�m

Fig. 8. Implementation of the Operations (slightly simplified)

We specify I/O operations (prefixed by io) for reading and writing EC/VID-
headers and data pages. Their purpose is twofold: On the one hand encoding from
and to byte-representations is performed. On the other hand the operations do
the necessary offset computations. For example io write data(n, off , len , buf)
simply calls mtd write(n, 2 · PAGE SIZE+ off , len, buf). Furthermore, they add
additional hardware failures on top of the hardware model of Sec. 2. Program-
ming a VID-header for example may also fail by writing garbage, i.e., data that
does not contain a valid VID-header, into the second page.

The main operations are shown in Fig. 8 in a slightly simplified version. In the
actual implementation a hardware failure triggers several retries of an operation
before giving up and returning an error.

Reading and writing of a logical block (v, l) evaluates the mapping vols [v][l]
to obtain the physical block number and calls the respective I/O-operation. The
operation map requests a new physical block m from the wear-leveling subsystem
by calling wl get peb and writes the VID-header using a new sequence number.
If the write was successful, the mapping is updated. Conversely, unmap removes
a logical block (v, l) from the mapping and releases the corresponding physical
block with wl put peb which puts the PEB into the erase queue. Similarly, erase
first removes the in-memory mapping. Additionally, all PEBs that still store an
inverse mapping for the LEB are erased synchronously via wl flush.

A new volume is created by selecting an unused volume identifier, setting the
state of each logical block to unmapped and writing the new volume table to
flash. The volume table encodes a partial function from user-accessible, existing
volumes to their size. Apart from user-accessible volumes, there are also hidden

Formal Specification of an Erase Block Management Layer for Flash Memory 223

wl put peb(lebref , n)
wla[n].status� erasing

eraseq � enqueue(eq-entry(n, lebref), eraseq)

wl get peb(;n)
let ecs = {wla[n].ec | wla[n].status = free ∧ n < #wla} in

if ecs 	= ∅ then

choose m with wla[m].status = free ∧ ϕ(wla[m].ec, ecs) in

n�m
wla[n].status� used

atomic change(v, l,m, len, buf , err)
len� datasize(buf)
io write vidhdr(m, vidhdr(v, l,max-sqn, len, checksum(buf , len)); err)
max-sqn�max-sqn + 1
if err = ESUCCESS ∧ len > 0 then

io write data(m, 0, align↑(len, PAGE SIZE), buf)

Fig. 9. The Wear-Leveling Subsystem

volumes. We currently only use the hidden volume VTBL VOLID to store the
volume table itself.

4.2 Asynchronous Erasure and Wear-Leveling

Whether a physical erase block is free, allocated, scheduled for erasure or is
already unusable is stored alongside its erase counter in the wear-leveling array.
It is used to find suitable free PEBs for the interface operations and appropriate
free and used PEBs for wear-leveling.

state var wla : Array〈WlEntry〉 where

data WlEntry = wl-entry(ec : N, status : WlStatus)

data WlStatus = free | used | erasing | erroneous

Every free and used PEB has a valid EC-header and its erase counter stored on
flash and in memory match. The page for the VID-header and the data pages of
a free physical erase block are not yet programmed. Erroneous PEBs are already
marked as bad on flash.

The PEBs scheduled for erasure are additionally kept in a queue. It is used
to assign work to the background operation for asynchronous erasure. For syn-
chronous erasure of one LEB (v, l) ∈ V × N it is necessary to locate all PEBs
that belonged to (v, l). To easily locate them without reading from flash, each
entry of the queue caches the inverse mapping stored in the corresponding PEB.

state var eraseq : Seq〈EraseqEntry〉 where

data EraseqEntry = eq-entry(pnum : N, lebref : LebRef)

data LebRef = none+ V× N

224 J. Pfähler et al.

free peb

write vid- success failure

write data success partial write / failure

successive
write

datasize mismatch

partial write

datasize or checksum
mismatch

header
EC invalid EC v,l,...

datasize & checksum
match

EC v,l,... buf buf'

EC v,l,... partial buf / garbage EC v,l,... buf

 EC

Fig. 10. States of the new PEB during and after atomic change

Fig. 9 shows the implementation of allocation and deallocation of a physical
erase block. Allocation choses a free PEB with certain restrictions ϕ on its erase
counter—e.g. medium wear among the free PEBs—and marks it as used. De-
allocation of a PEB n that was mapped at LEB lebref beforehand (or known to
have an invalid VID-header if lebref is none) adds a corresponding entry to the
erase queue.

The background operation for asynchronous erasure (not shown) dequeues
an entry from the erase queue and then tries to erase the PEB synchronously
by calling mtd erase and to write a new EC-header with an increased erase
counter multiple times. If this fails, the PEB is marked as bad via mtd markbad.
The operation wl flush (not shown) iterates over the erase queue and similarly
erases all PEBs that still belong to a specific LEB synchronously.

Wear-leveling is implemented as choosing a used and a free physical erase
block of low resp. high wear. If the difference of the erase counters exceeds a cer-
tain threshold the VID-header and data region of the used PEB are read. The
operation atomic change as shown in Fig. 9 is the core of the wear-leveling al-
gorithm. Conceptually, it must write a new inverse mapping for the logical erase
block (v, l) and the buffer’s contents into the free physical erase block m. How-
ever, there are two problems that need to be addressed. First, programming all
pages of the data region of the new PEB could preclude successive write opera-
tions from the client that were allowed on the previous PEB. Therefore, only the
contents up to the last non-EMPTY byte are written, calculated as datasize(buf).
From the MTD invariant (2) it follows that successive writes by a client remain
allowed. Second, additional measures are needed to ensure correct recovery from
an unexpected power-loss during wear-leveling. Fig. 10 shows the different inter-
mediate states of the target physical erase block during wear-leveling. At the top
the contents of a free PEB are shown. The bold arrows denote state transitions
due to a call of an I/O operation. An unsuccessful write to the VID-header is
easily detectable during recovery, either the VID-header is empty or contains
garbage. After a successful write of the VID-header, the recovery would read the
PEB and discover that it stores the newest inverse mapping for the logical erase

Formal Specification of an Erase Block Management Layer for Flash Memory 225

ebm change(v, l, n, buf)
avols [v][l]� mapped(copy(buf , 0, EMPTY LEB, 0, n), n)

Fig. 11. Atomically Exchange the Contents of an LEB

block (v, l). However, this is clearly wrong, since the actual data has not yet been
copied to this PEB and successive read operations would just return bytes with
the value EMPTY. Therefore, the data size of the contents of the original PEB is
also stored in the VID-header. Rebuilding the mapping after a reset then only
takes a PEB into consideration if the data size calculated over its data pages is
at least as large as the value in the VID-header requires. This measure is also
sufficient to detect a partial write of the data. We store a checksum in the VID-
header and additionally allow failures during programming of the data pages
that can be detected by either the data size or the checksum. If the copying was
successful, the in-memory mapping is updated accordingly. Otherwise, the new
physical erase block is scheduled for erasure and the old PEB is used.

Note that the checksum is only calculated up to the initial data size. Thus, a
successive write to the LEB after wear-leveling maintains that the data size and
checksum stored in the VID-header match the values calculated from the con-
tents of the data region. In summary, these additional fields allow to distinguish
valid (solid) from invalid (dotted) states of the target PEB.

The second problem is not specific to this implementation. Every model that
either 1) updates the mapping before copying the actual data or 2) allows failures
that write a valid mapping but invalid data simultaneously has to deal with this
issue. In our model the inverse mapping must be updated first because it is
stored in the second page and we enforce that pages are written sequentially.

If asynchronous erasure and wear-leveling are scheduled in between opera-
tions, do not fail and there are enough free PEBs to move to, the difference
between erase counters of good PEBs is bounded by a constant. Thus, the de-
vice is worn out evenly.

With the operation atomic change it is possible to implement an additional
interface operation that atomically exchanges the contents of a logical erase
block. On the abstract layer of Sec. 3 this is then specified as shown in Fig. 11. If
the operation fails the LEB is unchanged. In contrast to ebm write, ebm change

is more general and has a more favorable behavior wrt. failures. However, on the
concrete layer this comes at the price of one additional erasure of a block. Thus,
it is only desirable to use ebm change if the additional guarantees are actually
required. In UBIFS this functionality is for example used to write a new super
block.

4.3 Power Failure and Recovery

The state of the EBM implementation is in RAM and only the MTD state is
persistent. An unexpected power failure may invalidate the in-memory state, but
is assumed to preserve everything stored on flash unaltered.

226 J. Pfähler et al.

recover(; err)
let recs = ∅ in

scan all(; recs , err)
if (VTBL VOLID, VTBL LNUM) ∈ recs then let vtbl in

io read vtbl(recs [VTBL VOLID, VTBL LNUM].pnum; vtbl , err)
if err = ESUCCESS then

init volume sizes(vtbl ;)
init volume mappings(recs ;)

Fig. 12. Rebuilding of the in-memory State from Flash

Fig. 12 shows how the in-memory state is rebuilt from the data structures
stored on flash. We assume that after a power failure this operation is first
executed, before any client can issue a call. First, all physical erase blocks are
scanned (scan all), i.e., it is checked whether a PEB is marked as bad and
has valid EC- and VID-headers. The PEB’s entry in the wear-leveling array, the
erase queue and maximum of the sequence numbers are updated accordingly.
Instead of updating the in-memory mapping vols directly an intermediate data
structure

recs : V× N #→ RecoveryEntry where

RecoveryEntry = recovery-entry(pnum : N, sqn : N)

is introduced. In contrast to vols , the data structure contains all encountered
combinations (v, l) of volume identifiers and logical block numbers and the cor-
responding physical erase block. This includes hidden volumes and logical erase
blocks beyond the—at this point unknown—size of the corresponding volume.
The sequence number of the corresponding PEB is also cached. It is used to
determine during the scanning which one of two PEBs belonging to the same
LEB stores the most recent inverse mapping in case both are valid.

Afterwards, it is checked that a volume layout was found during scanning.
Mounting fails if no layout is present. Otherwise, the volume table is read and
for each non-hidden volume identifier a volume of the stored size initialized to
unmapped is added to vols (init volume sizes). Finally, all mapping informa-
tion from the intermediate data structure recs referring to an existing volume
and within its bounds is transferred to vols (init volume mappings).

The recovery does not alter the MTD state. A power-loss during the operation
therefore does not need any additional concepts.

It is crucial for the correctness of the recovery that the in-memory mapping
corresponds to the most recent (inverse) mapping stored on-disk after each op-
eration, among those PEBs that are valid.

To see that it is necessary to have the most recent mapping in RAM, assume
the opposite: There are two PEBs A and B and both store a mapping for a LEB
(v, l). In memory (v, l) is mapped to A, although B has the higher sequence
number. If the contents of both data regions are identical, assume that a write
operation is requested by the client on LEB (v, l) with non-empty data. After-

Formal Specification of an Erase Block Management Layer for Flash Memory 227

wards, A and B ’s contents definitely differ. In the event of a power failure, the
subsequent recovery will restore a mapping from (v, l) to B. Reading the mapped
LEB (v, l) before and after the power-loss will yield different results.

During wear-leveling there are intermediate states that do not yet have the
correct data, but a newer version of the mapping—the dotted states in Fig. 10.
Therefore, it is not sufficient to only consider the sequence number. The data size
and checksum of the PEB also need to be taken into account, i.e., the mapped
PEB must be valid.

5 Related Work

The models [4,3,2] in Z notation of an ONFI-compliant [11] device are concep-
tually below our model of a driver for flash memory. It would be possible to
provide an implementation of our MTD model on top of their hardware model.

The block manager in the Alloy models [19,20] maps logical to physical pages
and has a similar task as our EBM. However, storing and updating an on-disk
mapping is not treated. Power failures are only considered during writing of a se-
quence of pages. Their specification of power failures and recovery is intertwined
and uses auxiliary variables for the status of a pages. It is not immediately clear
to us, how one would disentangle the specification in a real implementation.

Flash Translation Layers (FTLs) [5] and some FFSs [6,13] similarly store
information about the state of a page or block in out-of-band (OOB) data,
which allows programming of individual bits. This simplifies the recovery from
power failures during wear-leveling, since it is possible to set a validity bit after
copying the data. However, NOR flash devices do not have OOB data and some
NAND devices use the whole area for error-correction codes [30]. Therefore, our
EBM implementation is more generic. FTLs that support an operation similar to
unmap (see “trim” command in Section 7.10 in [17], [21] clarifies the semantics)
also have the problem that pages re-emerge after a power failure.

In the refinement-based approach [7] with Event-B, it is assumed that book-
keeping information is stored in every page, i.e., a page knows the version of
the file it belongs to and the offset within the file. Updating the contents of
one page is atomic. If two pages store the same inverse mapping after a power
failure during wear-leveling, its contents are identical and chosing either suffices.
However, this approach uses more memory for the mapping and requires reading
every page of the flash device during startup in order to rebuild the mapping.

None of the formal models [4,19,7] considers the limitation to sequential writes
within an erase block, although non-sequential writes are often not supported
by newer ONFI-compliant devices [8,11].

6 Conclusion

We have presented a formal specification of an erase block management layer and
an implementation based on an ONFI-compliant hardware model. Performance
aspects such as asynchronous erasure and quality aspects such as wear-leveling

228 J. Pfähler et al.

are hidden from clients of the abstract model. Only power failure is visible, but
its abstract specification is much more tractable for the verification of clients. As
a consequence we can focus on the log-structure, indexing and write buffering of
a FFS in the future.

The refinement proof between the abstract EBM model and the implemen-
tation is already completed and establishes that the implementation’s behavior
is captured by the abstract EBM specification. We also show that the recovery
works as specified if a power failure occurs in between or during operations using
the temporal logic of KIV [27]. Due to space limitations, we could not provide a
description of these proofs in this paper. Quite some time was spent on under-
standing which concepts are relevant and what assumptions regarding failures
are necessary to ensure that power loss during operations is handled correctly.

We are currently working on an automatic translation from our models to
Scala [23] code, allowing us to run and test our implementation on top of a
Memory Technology Device in Linux.

Several aspects remain for future work. In the implementation of UBI wear-
leveling and erasure are performed in a background thread and concurrent write
operations are permitted. The implementation uses locks on a per-LEB level
to ensure that the background operations do not interfere with the interface
operations. We did not yet verify this kind of concurrency. There is also an
unresolved issue with unstable bits [31], resulting from a power cut during an
erase operation. They are not covered by our hardware model.

References

1. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level Sys-
tem Design and Analysis. Springer (2003)

2. Butterfield, A., Ó Catháin, A.: Concurrent models of flash memory device be-
haviour. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902,
pp. 70–83. Springer, Heidelberg (2009)

3. Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of flash
memory. Sci. Comput. Program. 74(4), 219–237 (2009)

4. Butterfield, A., Woodcock, J.: Formalising flash memory: First steps. In: IEEE Int.
Conf. on Engineering of Complex Computer Systems, pp. 251–260 (2007)

5. Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee, S.-W., Song, H.-J.: A survey
of flash translation layer. J. Syst. Archit. 55(5-6), 332–343 (2009)

6. Intel Corp. Intel Flash File System Core Reference Guide, version 1. Technical
report, Intel Corporation (2004)

7. Damchoom, K., Butler, M.: Applying Event and Machine Decomposition to a
Flash-Based Filestore in Event-B. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF
2009. LNCS, vol. 5902, pp. 134–152. Springer, Heidelberg (2009)

8. Samsung Electronics. Page program addressing for MLC NAND application note
(2009), http://www.samsung.com

9. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: A Formal Model of
a Virtual Filesystem Switch. In: Proc. of Software and Systems Modeling (SSV),
pp. 33–45 (2012)

http://www.samsung.com

Formal Specification of an Erase Block Management Layer for Flash Memory 229

10. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: Verification of a
Virtual Filesystem Switch. In: Proc. of Verified Software, Theories Tools and Ex-
periments (to appear, 2013)

11. Intel Corporation, et al.: Open NAND Flash Interface Specification (June 2013),
http://www.onfi.org

12. Freitas, L., Woodcock, J., Butterfield, A.: POSIX and the Verification Grand Chal-
lenge: A Roadmap. In: ICECCS 2008: Proc. of the 13th IEEE Int. Conf. on Engi-
neering of Complex Computer Systems (2008)

13. Gal, E., Toledo, S.: Algorithms and Data Structures for flash memory. ACM Com-
puting Surveys, 138–163 (2005)

14. Gleixner, T., Haverkamp, F., Bityutskiy, A.: UBI - Unsorted Block Images (2006),
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

15. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
Journal of the ACM 50(1), 63–69 (2003)

16. Hunter, A.: A brief introduction to the design of UBIFS (2008),
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

17. INCITS. ATA/ATAPI Command Set - 2 (ACS-2), Revision 2 (August 3, 2009)
18. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Formal

Aspects of Computing 19(2) (June 2007)
19. Kang, E., Jackson, D.: Formal Modeling and Analysis of a Flash Filesystem in

Alloy. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS,
vol. 5238, pp. 294–308. Springer, Heidelberg (2008)

20. Kang, E., Jackson, D.: Designing and analyzing a flash file system with alloy. Int.
J. Software and Informatics 3(2-3), 129–148 (2009)

21. Knight, F.: TRIM - DRAT/RZAT clarifications for ATA8-ACS2, Revision 2
(February 23, 2010)

22. Memory Technology Device (MTD) and Unsorted Block Images (UBI) Subsystem
of Linux, http://www.linux-mtd.infradead.org/index.html

23. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-step Guide, 1st edn. Artima Incorporation, USA (2008)

24. Pfähler, J., Ernst, G., Haneberg, D., Schellhorn, G., Reif, W.: KIV models and
proofs of MTD, UBI and abstract UBI (2013),
http://www.informatik.uni-augsburg.de/swt/projects/flash.html

25. Reeves, G., Neilson, T.: The Mars Rover Spirit FLASH anomaly. In: Aerospace
Conference, pp. 4186–4199. IEEE Computer Society (2005)

26. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications, vol. II, pp. 13–39. Kluwer, Dordrecht (1998)

27. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Proc. of TIME, pp. 99–106. IEEE Computer
Society (2011)

28. Schierl, A., Schellhorn, G., Haneberg, D., Reif, W.: Abstract Specification of the
UBIFS File System for Flash Memory. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 190–206. Springer, Heidelberg (2009)

29. The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1,
2008 edn. (2008), http://www.unix.org/version3/online.html (login required)

30. UBI - Out-of-Band Data Area,
http://www.linux-mtd.infradead.org/faq/ubi.html

31. UBIFS - Unstable Bits Issue,
http://www.linux-mtd.infradead.org/doc/ubifs.html

http://www.onfi.org
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/index.html
http://www.informatik.uni-augsburg.de/swt/projects/flash.html
http://www.unix.org/version3/online.html
http://www.linux-mtd.infradead.org/faq/ubi.html
http://www.linux-mtd.infradead.org/doc/ubifs.html

Attention-Based Coverage Metrics�

Shoham Ben-David1,��, Hana Chockler2, and Orna Kupferman3

1 David Cheriton School of Computer Science, University of Waterloo, Canada
2 Department of Informatics, King’s College, London, UK

3 School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Abstract. Over the last decade, extensive research has been conducted
on coverage metrics for model checking. The most common coverage
metrics are based on mutations, where one examines the effect of small
modifications of the system on the satisfaction of the specification. While
it is commonly accepted that mutation-based coverage provides adequate
means for assessing the exhaustiveness of the model-checking procedure,
the incorporation of coverage checks in industrial model checking tools
is still very partial. One reason for this is the typically overwhelming
number of non-covered mutations, which requires the user to somehow
filter those that are most likely to point to real errors or overlooked
behaviors.

We address this problem and propose to filter mutations according
to the attention the designer has paid to the mutated components in
the model. We formalize the attention intuition using a multi-valued set-
ting, where the truth values of the signals in the model describe their
level of importance. Non-covered mutations of signals of high importance
are then more alarming than non-covered mutations of signals with low
intention. Given that such “importance information” is usually not avail-
able in practice, we suggest two new coverage metrics that automatically
approximate it. The idea behind both metrics is the observation that de-
signers tend to modify the value of signals only when there is a reason
to do so. We demonstrate the advantages of both metrics and describe
algorithms for calculating them.

1 Introduction

Today’s rapid development of complex hardware designs requires reliable verifi-
cation methods. A major challenge in these methods is to make the verification
process as exhaustive as possible. Exhaustiveness is crucial in simulation-based
verification [5]. There, coverage metrics have been traditionally used in order
to monitor progress of the verification process, estimate whether more input
sequences are needed, and direct simulation towards unexplored areas of the
design [12,22,24]. During the last decade, there has been an extensive research

� This work is partially supported by the EC FP7 programme, PINCETTE 257647,
and by the ERC (FP7/2007-2013) grant agreement QUALITY 278410.

�� Shoham Ben-David is grateful to the Azrieli Foundation for the award of an Azrieli
Fellowship.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 230–245, 2013.
c© Springer International Publishing Switzerland 2013

Attention-Based Coverage Metrics 231

on coverage metrics for model checking. Such metrics are used for assessing the
exhaustiveness of the specification, and information obtained from them is used
in order to reveal behaviors of the system that are not referred to in the speci-
fication [19,18,10,16,21,7].

The most common coverage metrics for model checking are based on muta-
tions, where one examines the effect of small modifications of the system on
the satisfaction of the specification. For example, state-based mutations flip the
value of some (control or output) signal, and logic-based mutations fix the value
of a signal to 0 or 1 [10,21]. While there is an agreement that mutation-based
coverage provides adequate means for assessing the exhaustiveness of the model-
checking procedure, the incorporation of coverage checks in industrial-strength
model-checking tools is still very partial. One possible reason for this is the fact
that coverage checking requires model checking many mutations. As it turns out
though, the fact the mutations are only slightly different from the original sys-
tem enables a reuse of much of the information gathered during model checking
and leads to coverage algorithms that do not incur a significant computational
overhead on top of the model-checking procedure [9,6,7]. Another reason for the
slow integration of coverage checks in practice, is the overwhelming number of
non-covered mutations that current metrics involve [3], a problem reported also
in the context of test-case generation using model checking [15]. Typically, a
user gets a long list of mutations that are non-covered, and is expected to ana-
lyze them and filter out the non-interesting ones. When a significant portion of
the non-covered mutations are false alarms, it may cause the user to disregard
coverage information altogether, potentially causing real problems to be ignored.

We address this problem and propose to filter mutations according to the
attention the designer has paid to the mutated components in the original model.
We first formalize the intuition of attention using a multi-valued setting. In this
setting, the truth values of the signals in the model are real numbers taken
from the range [−1, 1]. The higher the absolute value of a signal is, the “more
intentional” this value is. In particular, 1 stand for “very intentional true”, −1
for “very intentional false”, and 0 corresponds to “don’t care”. We consider
specifications described by means of formulas in linear temporal logic (LTL). The
semantics of LTL can be adjusted to the multi-valued setting, lifting the intention
interpretation from the output signals to the whole specification [1]. Recall that
in the traditional approach to coverage, we check coverage by flipping the value
of a signal in a state, and checking whether the specification is satisfied in the
new model. In the multi-valued setting, mutations reduce the absolute value of
the truth value of a signal, and we check the effect of this on the truth value of
the specification. Non-covered mutations of signals with high intention are then
more alarming than non-covered mutations of signals with low intention.

While the multi-valued setting offers a very precise ranking of mutations, it re-
quires the user to manually provide the intention information, which is a serious
drawback. Accordingly, we suggest two new coverage metrics that automatically
approximate the intention information. The idea behind both metrics is the ob-
servation that designers tend to modify the value of signals only when there is

232 S. Ben-David, H. Chockler, and O. Kupferman

a reason to do so. Thus, the value of a signal that has just been assigned is
“more intentional” than the value of a signal that maintains its value. Before we
turn to describe the new coverage metrics, let us point out that the above “lazy
assignment” assumption, which is the key to our two metrics, is supported by
power gating and clock gating considerations. Power consumption is an impor-
tant consideration in modern chip design, from portable servers to large server
farms. As the chips become more complex, the cost of powering a server farm
can easily outweigh the cost of the servers themselves, thus design teams go to
great lengths in order to reduce power consumption in their designs. Existing
power saving techniques can be divided into electrical, such as using more effi-
cient transistors, and logical, which attempt to introduce power-saving changes
into designs without changing their logic. Logical power saving techniques at-
tempt to reduce the number of changes in the values of signals, the main source
of power consumption in chips. The most widely researched logical power saving
techniques are clock gating, in which a clock is prevented from making a “tick”
if it is redundant (c.f., [2]), and power gating, in which whole sections of the chip
are powered off when not needed and then powered on again [20,13]. The goal of
these techniques is to make sure that a change in the value of a signal happens
only when there is a good reason for it, that is, leaving the value of a signal
unchanged would result in a different logic than intended by the designer.

Our first coverage metric is stuttering coverage, where mutations flip the value
of a signal along a sequence of states in which the signal is fixed (rather than
flipping the value in a single state). Consider, for example, the property “every
request is eventually granted” and a chip design where “grant” signals, once
raised, only fall when the current transaction terminates. In this design, “grant”
will stay up for several consecutive cycles. Applying the traditional mutation-
based coverage metrics results in all these states being identified as non-covered
with respect to the property and the “grant” signal. On the other hand, con-
sidering mutations that flip the value of a signal in the whole block at once will
filter out these blocks, resulting in fewer and more meaningful coverage results.

Our second metric is applied to netlist mutations. Such mutations set a signal
in the netlist to a constant value or make it “free” to change nondeterministically
in every cycle. Here, the goal is to define as interesting mutations of signals whose
values have received a lot of attention of the designer. We associate attention
with the frequency in which signals flip their value. Thus, our metric filters
mutations of signals that are not often flipped. We formalize “often” by means
of windows of a fixed length along the computation.

We discuss the advantages of both metrics and describe algorithms for calcu-
lating them. Our algorithms output a “pass” result if all mutations are covered.
If a non-covered block or signal (in the first and the second metrics, respec-
tively) is found, it is presented as a counterexample. Note that, in contrast to
existing algorithms for computing coverage, our algorithms do not output all
non-covered mutations at once. There are two advantages to this strategy. First,
it allows us to construct algorithms with the same complexity as model checking
(essentially, we reduce coverage computation to model checking a property of

Attention-Based Coverage Metrics 233

almost the same size as the original one). Second, it mimics the real verification
process, where bugs are found and corrected one by one. Since fixing a coverage
hole results in a modification of either a property or a design, the rest of the
coverage holes might become irrelevant, and the verification process should be
re-executed.

2 Preliminaries

2.1 Linear Temporal Logic

We specify on-going behaviors of reactive systems using the linear temporal logic
LTL [23]. Formulas of LTL are constructed from a set AP of atomic proposition
using the usual Boolean operators and the temporal operators X (“next time”),
U (“until”), G (“always”), and F (“eventually”). We define the semantics of
LTL with respect to a computation π = σ0, σ1, σ2, . . ., where for every j ≥ 0,
we have that σj is a subset of AP , denoting the set of atomic propositions that
hold in the j’s position of π. We use π |= ψ to indicate that an LTL formula ψ
holds in the path π.

2.2 Circuits

We model reactive systems by sequential circuits. A sequential circuit (a circuit,
for short) is a tuple S = 〈I, O,C, θ, ρ, δ〉, where I is a set of input signals, O is a
set of output signals, and C is a set of control signals that induce the state space
2C . The sets I and C and the sets I and O are disjoint. Accordingly, θ ∈ 2C

is an initial state, ρ : 2C × 2I → 2C is a deterministic transition function, and
δ : 2C → 2O is an output function. Possibly O ∩ C �= ∅, in which case for all
x ∈ O ∩ C and t ∈ 2C , we have x ∈ t iff x ∈ δ(t). Thus, δ(t) agrees with t on
signals in C. We partition the signals in O ∪ C into three classes as follows. A
signal x ∈ O \ C is a pure-output signal. A signal x ∈ C \ O is a pure-control
signal. A signal x ∈ C ∩ O is a visible-control signal. While pure output signals
have no control on the transitions of the system, a specification of the system
can refer only to the values of the pure-output or the visible-control signals.

An input sequence i0 ·i1·i2 · · · ∈ (2I)ω induces a run s0, s1, s2, . . . of states of S,
where s0 = θ and sj+1 = ρ(sj , ij) for all j ≥ 0. Recall that only signals in I∪O are
visible, thus LTL formulas that specify S are over the set AP = I ∪O of atomic
propositions, and a computation of S is a sequence σ0, σ1, σ2, . . . ∈ (2I∪O)ω ,
such that there is an input sequence i0 · i1 · i2 · · · ∈ (2I)ω, inducing the run
s0, s1, s2, . . ., and σj = ij ∪ δ(sj) for all j ≥ 0.

2.3 Mutations in Circuits

Let S be a circuit that satisfies a specification ϕ. We consider two types of
mutations – state-based and logic-based – reflecting the possible ways in which
a small change (mutation) can be introduced into S (see also [10,21]).

234 S. Ben-David, H. Chockler, and O. Kupferman

State-Based Mutations. For a circuit S = 〈I, O,C, θ, ρ, δ〉, a state t ∈ 2C ,
and a signal x ∈ C, we define the x-twin of t, denoted twinx (t), as the state t′

obtained from t by dualizing the value of x. Thus, x ∈ t′ iff x �∈ t. A state-based
mutation of x in t replaces t by twinx (t). The resulting mutant circuit is denoted
by S̃t,x. The effect of this mutation for a pure-output signal x is changing the
value of x in t. Mutations that dualize control signals introduce more aggresive
changes. Indeed, dualizing a control signal x in a state s in S causes all transitions
leading to t to be directed to its t-twin. In particular, the state t is no longer
reachable in S̃t,x. Formally, given S, s, and a signal x ∈ O ∪ C, we define the

dual circuit S̃s,x = 〈I, O,C, θ̃, ρ̃, δ̃〉 as follows.
– If x is a pure-output signal, then θ̃ = θ, ρ̃ = ρ, and δ̃ is obtained from δ by

dualizing the value of x in s, thus x ∈ δ̃(s) iff x �∈ δ(s).
– If x is a pure-control signal, then δ̃ = δ, and θ̃ and ρ̃ are obtained by replacing

all the occurrences of s in θ and in the range of ρ by twinx (s). Thus, if θ = s,
then θ̃ = twinx (s); otherwise, θ̃ = θ. Also, for all s′ ∈ 2C and i ∈ 2I , if
ρ(s′, i) = s, then ρ̃(s′, i) = twinx (s); otherwise, ρ̃(s

′, i) = ρ(s′, i).
– If x is a visible-control signal, then we do both changes. Thus, δ̃ is obtained

from δ by dualizing the value of x in s, and θ̃ and ρ̃ are obtained by replacing
all the occurrences of s in θ and in the range of ρ by twinx (s).

For a specification ϕ such that S |= ϕ, a state t is x-covered by ϕ if S̃t,x does
not satisfy ϕ.

Note that it makes no sense to define coverage with respect to observable
input signals. This is because an open system has no control on the values of the
input signals, which just resolve the external nondeterminism of the system.

Logic-Based Mutations. These mutations describe changes resulting from
freeing a control signal of S or fixing it to 0 or 1. Freeing a control signal is,
from the design perspective, equivalent to turning this signal into an input sig-
nal. Fixing a signal to 0 or to 1 is known as “stuck-at-0” and “stuck-at-1”
mutations, respectively, and these are the most commonly-used fault models in
fault simulation and automatic test pattern generation (ATPG). For a circuit
S = 〈I, O,C, θ, ρ, δ〉 and a control signal x ∈ C, the mutant circuits are defined
according to the type of the logic-based mutation applied to S as follows:

– The x-freed circuit Sx = 〈I ′, O, C′, θ′, ρ′, δ′〉 is obtained from S by moving
x to the set of input signals (that is, I ′ = I ∪ {x}, and C′ = C \ {x}),
and removing it from the definition of θ, from the range of ρ, and from the
domain of δ.

– The x-fixed-to-1 circuit Sx,1 = 〈I, O,C, θ′, ρ′, δ〉 is obtained from S by replac-
ing all the occurrences of x in θ and in the range of ρ by 1; i.e., θ′ = θ∪{x},
and for all s ∈ 2C and i ∈ 2I , we have ρ′(s, i) = ρ(s, i) ∪ {x}.

– The x-fixed-to-0 circuit Sx,0 is defined by replacing all the occurrences of x
in θ and in the range of ρ by 0.

A control signal x is nondet-covered if Sx does not satisfy ϕ, 1-covered if Sx,1
does not satisfy ϕ, and 0-covered if Sx,0 does not satisfy ϕ.

Attention-Based Coverage Metrics 235

2.4 Mutations in Netlists

Hardware designs are frequently represented as netlists. A netlist is a collection
of primitive combinational elements. And-Inverter graphs (AIGs) are often used
to store the netlist; i.e., the netlist consists of input gates, AND-gates, invert-
ers, and memory elements (registers). Formally, a netlist N is a directed graph
〈VN , EN , τN 〉, where VN is a finite set of vertices, EN ⊆ VN × VN is a set of
directed edges, and τN : VN → {AND, INV,REG, INPUT } maps a node to its
type. The in and out degree of the vertices respects the expected requirements
from the corresponding type.

When a design is modeled as a netlist, the smallest possible mutation is chang-
ing the type of a single node. We use the definition from [7], where the mutation
changes the type of a single node in VN to an input. This new input can be kept
open, in which case its value is non-deterministically set at each cycle, or it can
be fixed to 0 or 1.

Netlists can be naturally represented as a special case of sequential circuits,
where the registers are viewed as control signals, that is, a state of the netlist
is defined by a combination of values of the registers. Changing the type of a
single node in a netlist can, therefore, be viewed as a logic-based mutation in
the corresponding circuit.

3 Attention-Based Coverage

Ranking of coverage results according to the level of alarm they should cause
could have been a much easier task if the designer of the verified system had pro-
vided information regarding his understanding of the importance of the different
components of the system. In this section we develop a multi-valued approach
for ranking of coverage results in case such an information is provided. We are
aware of the fact that current modeling formalisms do not require the user to pro-
vide such an information. We still find it interesting and useful, both as further
motivation to future modeling standards (especially given the tendency today
to move to multi-valued approaches), and as a starting point for methods that
approximate the multi-valued settings without information from the user, like
those we suggest in Sections 4 and 5.

3.1 Multi-valued Circuits

For our model of intention based coverage, we assume that the assignments to the
pure-output variables are not Boolean. Rather, each output signal is assigned a
real value in the range [−1, 1], reflecting the level of importance that the designer
gives to this assignment. Formally, in a multi-valued circuit S = 〈I, O,C, θ, ρ, δ〉,
the output function is δ : 2C → [−1, 1]O, which is not Boolean. Note that
C ∩ O need not be empty, in which case we require, for all states s ∈ 2C and
visible-control signals x ∈ C ∩O, that either x ∈ s and δ(s)(x) ≥ 0 or x �∈ s and
δ(s)(x) ≤ 0. Note that the values of signals in I are still Boolean. For uniformity,

236 S. Ben-David, H. Chockler, and O. Kupferman

we map them to {−1, 1}, in the expected way: a computation of the multi-valued
circuit S is a sequence σ0, σ1, σ2, . . . ∈ ([−1, 1]I∪O)ω, such that there is an input
sequence i0 · i1 · i2 · · · ∈ (2I)ω , inducing the run s0, s1, s2, . . ., and for all j ≥ 0,
the assignment σj describes the values of the input and output signals in the
j-th position in the run. Thus, for an input signal x ∈ I we have that σj(x) is 1 if
x ∈ ij and is −1 if x �∈ ij , and for an output signal x ∈ O, we have σj(x) = δ(sj).

Intuitively, the higher the absolute value of a signal is, the “more intentional”
this value is. In particular, 1 stand for “very intentional true”, −1 for “very
intentional false”, and 0 corresponds to “don’t care”. The semantics of LTL can
be adjusted to the multi valued setting, lifting the intention interpretation from
the output signals to the whole specification. We use val(π, ϕ) to denote the value
(in [−1, 1]) of an LTL formula ϕ in a computation π = σ0, σ1, . . . ([−1, 1]I∪O)ω .
The value val(π, ϕ) is defined by induction on the structure of ϕ as follows (c.f.,
[1]).

– val(π, p) = σ0(p),
– val(π,¬ϕ1) = −val(π, ϕ1),
– val(π, ϕ1 ∧ ϕ2) = min{val(π, ϕ1), val(π, ϕ2)},
– val(π,Xϕ1) = val(π1, ϕ1),
– val(π, (ϕ1 Uϕ2)) = max{val(π, ϕ2),min{val(π, ϕ1), val(π

1, (ϕ1 Uϕ2))}}.

Note that, by De-Morgan rules, we have that val(π, ϕ1 ∨ ϕ2) = max{val(π, ϕ1,
val(π, ϕ2)}, which matches our intuition. When ϕ is propositional, we sometimes
use val(s, ϕ) (rather than val(π, ϕ)), for the first state s of π.

Example 1. Consider the computation π in Figure 1 and the property ϕ =
G(p → Fq). The signal q is “strongly false” in states s0, s1, and s2, and is
“strongly true” in the state s3. Afterwards, the value of q reduces to 1

2 , indi-
cating a “weaker true”, possibly because the value is kept on only in order to
reduce power consumption or as a back-up for the case that the q that is true
in state s3 would fail.

Fig. 1. A multi-valued computation

We compute the value of ϕ on π. By the multi-valued semantics, we have

val(π, ϕ) = min
0≤i≤5

{val(πi,¬p ∨ Fq)}.

Opening val(πi,¬p ∨ Fq), we get

val(π, ϕ) = min
0≤i≤5

{max
i≤j≤5

{val(sj ,¬p), val(sj, q), . . . , val(s5, q)}}.

Attention-Based Coverage Metrics 237

In all indices i that correspond to states in which p is strongly false we get that
the maximum is 1 (since p is negated in sj , its −1 value contributes 1). When
i = 0, we have that val(s0, p) =

3
4 . But since val(s3, q) = 1, the maximal value

in max{val(s0,¬p), val(s1, q), val(s2, q), val(s3, q), val(s4, q), val(s5, q)} is still
1. Hence, the value of ϕ on π is 1.

Theorem 1. The model-checking problem for multi-valued LTL has the same
complexity as the model-checking problem for regular (Boolean) LTL.

Proof Sketch. Essentially, the states of the automata constructed from the LTL
specifications are now extended to be associated with functions from formulas
in the closure of the specification to values in [−1, 1], rather than with subsets
of the formulas in the closure [1]. $�

3.2 Multi-valued Coverage

We now turn to the question of coverage in multi-valued circuits. Recall that in
a regular (Boolean) model we check coverage by flipping the value of a signal
in a state, and checking whether the specification is satisfied in the new model.
In the multi-valued setting, mutations reduce the importance of a truth value
of a signal, and check the effect of this on the truth value of the specification.
Consider the example in Figure 1 again. If we reduce the truth value of q is state
s3 we expect to get a different coverage result from the case where the truth
value of q is reduced in state s4, since the value in s3 is more important than
that in s4 to begin with.

We parameterize the coverage query by two values v1, v2 ∈ (0, 1]. The first
value, v1, describes the change in the truth value of the mutated signal. The
second value describes the threshold for reporting non-coverage. That is, if after
changing the truth value of the signal by v1, the change in the truth value of the
specification is less than v2, then the signal is non-covered.

We now turn to formalize this intuition. For a state s ∈ 2C and an output
signal x ∈ O with |δ(s)(x)| ≥ v1, we define the v1-mutated value of x in s
as the value obtained from δ(s)(x) by “bringing it closer to 0” by changing
it by at most v1. Note that since |δ(s)(x)| ≥ v1, we do not have to worry
about a signal switching its positivity in the definition below. Also note that
the assumption about |δ(s)(x)| being at least v1 matches the intuition behind
multi-valued coverage, as it makes little sense to compute the effect of mutating
signals that the designer does not care much about.

Formally,

valv1(s, x) =

{
δ(s)(x) − v1 if δ(s)(x) ≥ 0.
δ(s)(x) + v1 if δ(s)(x) < 0.

For a circuit S we define S̃s,x,v1 to be the circuit obtained from S by replac-
ing δ(s)(x) with valv1(s, x). It is not hard to prove that reducing the absolute
value of a signal by v1 can reduce the absolute value of the whole specifica-
tion by at most v1. Formally, for all circuit S, states s, signals x, values v1,

238 S. Ben-David, H. Chockler, and O. Kupferman

and specifications ϕ, we have that 0 ≤ val(S, ϕ) iff 0 ≤ val(S̃s,x,v1 , ϕ) and

|val(S, ϕ) − val(S̃s,x,v1 , ϕ)| ≤ v1. Hence, checking (v1, v2)-coverage, we take
v2 ≤ v1.

We say that x is (v1, v2)-covered in a state s by a formula ϕ in the model S
if |val(S, ϕ)− val(S̃s,x,v1 , ϕ)| ≥ v2.

Example 2. Consider again the computation π appearing in Figure 1. Suppose
we want to evaluate the coverage of the signal q in state s3 with respect to the
specification ϕ = G(p → Fq) and the parameters (12 ,

1
4). The value of q in s3 is

reduced to 1
2 and we get that max{val(s0,¬p), val(s1, q), val(s2, q), val(s3, q),

val(s4, q), val(s5, q)} is now 1
2 , while the other values in the external minimum

remain 1, so the value of ϕ in the mutated computation is min{ 12 , 1, 1, 1, 1} =
1
2 .

Recall from Example 1 that val(π, ϕ) = 1. Thus |val(π, ϕ) − val(π̃s4,q,
1
2
, ϕ)| =

1− 1
2 ≥

1
4 . Accordingly, we get that q is (12 ,

1
4)-covered in s3 with respect to ϕ,

we do not report a hole here, which matches our intuition.
Let us now check the (12 ,

1
4)-coverage of q in s4. It is easy to see that val(π̃s4,q,

1
2
, ϕ)

is still 1. Thus, |val(π, ϕ)− val(π̃s4,q,
1
2
, ϕ)| = 0 < 1

4 . Accordingly, we report that

q is (12 ,
1
4)-non-covered in s4, which matches our intuition.

4 Stuttering Coverage

In a circuit, a mutation S̃s,q switches the value of a visible control signal q in
the state s of the circuit S (see Section 2.3). In many cases, such a mutation
is too subtle, resulting in a spurious ‘non-covered’ result. To see this, consider
the formula ϕ = G(p→ Fq), and the execution path π shown in Fig. 2. Clearly,
π |= ϕ. If we apply the standard mutation based coverage check, we shall flip the

Fig. 2. An execution path in which existing metrics declare that q is not covered by
G(p → Fq)

value of q in each of the states s3, s4 or s5, and find that none of them is covered.
It could be the case however, that q was left active simply because there was no
reason to deactivate it, and therefore the ‘non-covered’ result that we report is
a false alarm.

In this section we introduce stuttering coverage, which regards a block of states
that agree on the value of a propositional formula as one unit, and flips their
value together. In the case of Figure 2, the value of q will be flipped in all the
states s3, s4, and s5 together, causing ϕ to fail on the mutated path, and thus
we get that q is covered in all states. Consider now a slightly modified example,
where q holds in states s3 and s5, but not in s4. In this case, the stuttering

Attention-Based Coverage Metrics 239

coverage metric will indicate that both s3 and s5 are not covered, which seems a
reasonable strategy, since the designer deliberately switched q off and on again.

Stuttering coverage is related to statement coverage metrics used in the con-
text of code coverage [4,10]. There, a mutation modifies or skips an assignment
statement in the code. The effect of this in the corresponding circuit is a change
in the block of states that starts with the execution of the statement and ends
when the next assignment takes place. Unlike stuttering coverage, all blocks as
above are affected. In contrast, stuttering coverage flips the value of q in a sin-
gle block. Also, the boundaries of the block are determined by a propositional
formula that may depend not only in q. Below we present the formal definition
of stuttering coverage and suggest an algorithm to easily detect it.

4.1 Finding Stuttering Coverage Holes

We examine mutations that flip the value of q in a sequence of states – a block.
In the example, we define blocks as maximal sequences of states along which
the mutated signal does not change its value. Here we generalize the setting to
consider blocks defined by a predicate on the state space. For a Boolean assertion
β over C, let ||β|| denote the set of states that satisfy β. We are going to include
in a block a sequence of states that are all satisfying β. That is, in stuttering
coverage, we switch the value of q in β-blocks instead of in a single state. Note
that typically there may be many β-blocks in a circuit, each suggesting a different
mutation, and our metric considers them all.

Let S = 〈I, O,C, θ, ρ, δ〉 be the circuit, q the signal to be flipped and β the
Boolean expression. We construct a mutant circuit S ′ = 〈I ′, O′, C′, θ′, ρ′, δ〉 that
embodies all the mutations corresponding to a flip of q in a β-block. Essentially,
as suggested in [8], we do so by nondeterministically guessing when a β-block
starts. We now describe the details of the construction. We define I ′ = I ∪
{x} and O′ ∩ C′ = O ∩ C ∪ {start, hold}. The new input signal x is used to
nondeterministically select a starting point for a β-block. The visible control
signals start and hold are used to find the borders of the β-block: The signal
start is initiated to false and is set to true by the transition function if x is true
and β is false. Once start is set to true it stays true forever. Thus start uses
the input x to “guess” that β is going to become active in the next state of the
computation. Since start may be wrong in its guess, we use the signal hold to
verify the guess and to indicate when β is no longer valid. The signal hold is
initiated to true, and stays active as long as start is false, or, if start is true, it
stays active until β is false.

Formally, θ′ = θ ∪ {hold} and ρ′(s, i) = ρ(s ∩C, i ∩ I) ∪ γ, where γ is defined
as follows:

γ =

⎡⎢⎢⎢⎢⎣
{start,hold} If (start �∈ s, x ∈ i, and s �∈ ||β||) or

(start ∈ s, hold ∈ s, and s ∈ ||β||).
{start} If hold �∈ s or (hold ∈ s, start ∈ s and s �∈ ||β||).
{hold} If start �∈ s and (x �∈ i or (x ∈ i and s ∈ ||β||)).
∅ Otherwise.

240 S. Ben-David, H. Chockler, and O. Kupferman

Note that a state s is in the selected β-block iff start, hold and β are all active
together in s. We denote such states by the predicate InBlock = start∧hold∧β.
This construction however, cannot select a β-block if it begins in the initial state.
This is because start is initialized to false and thus can be active only starting
in the second state. This can be easily fixed by introducing a new initial state
θ̃ = {hold}, with a single outgoing transition leading to the original initial state,
and adding a leading X (next) before the formula. This way the formula will be
checked starting from the original initial state of the model, and a β-block can
be selected from the original initial state as well.

Note that in S ′ there are execution paths on which InBlock is never active:
this happens when the input signal x never holds, or when start becomes active
in wrong place and “misses” the beginning of a β-block.

In order to flip q in the selected β-block, we introduce a new observable signal
q′ = q⊕ InBlock . Note that q′ holds the flipped value of q exactly on the selected
β-block, and is equal to q in all other states. We define ϕ′ = ϕ[q ← q′], replacing
every occurrence of q in ϕ with q′. Thus, ϕ′ ”reads” the flipped value of q exactly
on the selected β-block.

In order to search for a non-covered case, we look for a computation path on
which ϕ′ holds, but also InBlock is active at some point. Thus we search for a
computation path on which ϕ′ ∧ F (InBlock) holds. Such a computation path
demonstrates a non-covered case of the original circuit S.

The size of the S ′ is linear in the size of S and the Boolean expression β, size
of the new property ϕ′ is the same as the size of ϕ, and the algorithm performs
model checking once, hence proving the following claim.

Claim. Finding a stuttering coverage hole is not harder than detecting a non-
covered mutation as defined in Section 2.3, and is the same as model checking.

Remark 1. The logic LTL-X excludes the “next time” (X) operator from LTL
and is used for the specification of stutter-invariant properties [14]. Formulas
in LTL-X are particularly suitable for stuttering coverage. Indeed, while the
next-time operator can impose requirements on particular states in a computa-
tion (say, some valuation of signals should occur immediately after some event
happens), stutter-invariants properties impose requirements on blocks. Even in
the presence of the next-time operator, stuttering coverage has the advantage of
reducing the number of mutations that needs to be checked.

Remark 2. Since stuttering coverage introduces larger changes in the circuit than
the standard mutation-based coverage metrics described in Section 2.3, it may
seem that stuttering coverage is strictly stronger than the standard coverage
(in other words, if a state is stutter-covered, then it is covered according to
the standard mutation-based metric). This is true for most properties, and, in
particular, for properties used in the verification of real hardware designs, making
this metric especially attractive in practice. However, this implication does not
hold in general. One example is the properties using the X operator, as Remark 1
points out. Another example are properties that require that a particular signal
holds its value for a large block of cycles (or for the duration of the whole design),

Attention-Based Coverage Metrics 241

as in p → Gp, which states that if a signal p holds in the initial state, then it
should hold in the whole design.

5 Frequency-Based Coverage

We now consider logic-based mutations, typically modeling netlists [9]. Such a
mutation takes a signal x and frees it or fixes it either to 0 or to 1. Here as well,
coverage is reported when the specification holds on the mutated model.

In this metric we define as important signals that change a lot, assuming that
a change in the signal’s value is a result of an intentional action by the designer,
whereas keeping the value constant whenever possible is the default behavior.
We thus want to detect a signal that changes its value frequently, and yet, when
mutated, does not influence the satisfaction of the specification.

We first have to formalize “frequently”. There are different definitions that
come to mind. We find the definition of k-window, specified below, to be most
appropriate. It is possible to extend the idea here to other definitions. Let S =
〈I, O,C, θ, ρ, δ〉 be the circuit modeling the netlist. For a control signal x, a
computation π, and an integer k ≥ 1, we say that x is k-frequently flipped in
π if in each window of length k in π (that is, each subsequence of length k of
assignments), the value of x is flipped at least once.

5.1 Finding Frequency-Based Coverage Holes

We are going to filter coverage results by frequency by defining a mutant circuit
S ′ that keeps a log of flips of x in the last k transitions. , and enables the coverage
check to restrict attention to computations in which x is flipped frequently. The
circuit S ′ also applies the required mutation on x. The frequency check is, of
course, with respect to the values of x before the mutation. Accordingly, S ′ keeps
record of the original value of x in a new signal x′. In order to detect a change
in the value of x′, we also add a signal prev-x′, recording the original value of x
in the previous state.

We define the mutant circuit S ′ = 〈I, O′, C′, θ′, ρ′, δ〉 as follows. First, we
apply to x the desired mutation as specified in Section 2.3. We then add a set
of control signals V = {x′, prev-x′, q0, q1, ..., qk}. Thus, C′ = C ∪ V . The signals
x′ and prev-x′ are described above. The signals q0, q1, ..., qk are used to count to
k (note that as such, one could easily replace them by only %log k& signals. For
simplicity, we describe the construction here with linearly many signals). Only
qk needs to be visible, thus O′ = O ∪ {qk}.

The signal x′ records the behavior of x in S, namely, before the mutation was
applied to it. The signal prev-x′ records the value of x′ in the previous state.
Thus, we define x′ ∈ θ′ iff x ∈ θ and prev-x′ ∈ θ′ iff x �∈ θ. For all s ∈ 2C

′

and i ∈ 2I , we set ρ′(s, i) = ρ(s ∩ C, i) ∪ {x′} if x ∈ ρ(s ∩ C, i), and ρ(s ∩ C, i)
otherwise. We set ρ′(s, i) = ρ′(s, i) ∪ prev-x′ iff x ∈ s. A change in the value of
x occurs in a state s ∈ 2C

′
if s |= x′ ⊕ prev-x′. That is, if x′ ∈ s and prev-x′ �∈ s

or x′ �∈ s and prev-x′ ∈ s.

242 S. Ben-David, H. Chockler, and O. Kupferman

In order to detect whether x is k-frequently flipped in the computations of S,
we record the behavior of x along k-windows. We do it using q0, ..., qk. For each
state s ∈ 2C

′
we add exactly one of q0, ..., qk as follows. We define θ′ = θ′ ∪{q0},

and for all s ∈ 2C
′
, i ∈ 2I and 0 ≤ j < k, we update ρ′ as follows.

ρ′(s, i) =

⎧⎨⎩
ρ′(s, i) ∪ {qk} if qk ∈ s,
ρ′(s, i) ∪ {q0} if s |= x′ ⊕ prev-x′ and qk �∈ s,
ρ′(s, i) ∪ {qj+1} if s �|= x′ ⊕ prev-x′ and qj ∈ s.

It is easy to see that if x is k-frequently flipped in a computation, then q0 would
appear infinitely often on π. Otherwise, eventually a state with qk would be
reached, and from that point onwards qk will appear in all states on π. Let ψ be
the formula to be verified, and let S ′ be the mutated model as defined above. In
order to check for coverage, we check for a computation satisfying ψ′ = ψ∧G¬qk,
asserting that ψ holds with the mutated behavior of x even though qk is never
reached. A path satisfying ψ′ exhibit an interesting non-covered mutation.

6 A Case Study

We experimented with our ideas on a model of a PCI bus, taken from the
NuSMV [11] example list. The model describes four master-slave units, com-
municating using the PCI bus protocol [17]. We briefly describe the protocol
below, omitting details that are not essential for understanding our examples.

When a PCI master unit needs to start a transaction over the bus, it first
asserts its request signal req, and keeps it asserted until permission is granted
by the bus arbiter, indicated by the signal gnt being asserted. When permission
is granted, the master can start a transaction by asserting its frame signal.
We omit the details of the actual transaction over the PCI bus. A transaction
terminates when frame is de-asserted, at which stage the bus is free for new
transaction requests.

We note that in the formal PCI bus protocol, all signal are active low, meaning
that they are considered active when their value is 0 and inactive when it is 1. In
the PCI model we used, signals are active high, thus our example looks different
than a typical PCI waveform.

The PCI model specifies more than 100 properties, which can roughly be
divided into three categories. We examine each of the categories in light of the
stuttering coverage method. The first are properties of the form

G((¬req ∧ issue next)→ Xreq)

asserting that one event should be immediately followed by another event. As
discussed in Remark 1, the advantage of stuttering coverage in formulas that
impose requirements in specific states (in our example, those immediately after
states with ¬req) is computational, and it does not change the coverage analysis.

The second type of properties have the form

G(req → (req U grant)),

Attention-Based Coverage Metrics 243

stating that once a signal becomes active, it should remain active until some other
event occurs, similarly to the second type of properties discussed in Remark 2.
Recall that coverage information is checked for specifications that hold in the
system. Thus, checking the coverage of the signal req, we know that G(req →
(req U grant)) holds. When β = req, we flip the value of a full block of req. We
distinguish between two cases: (1) We flip a block in which req is active. Then,
the left hand side of the implication becomes false, and the formula continues to
hold, thus req is not covered, which meets our intuition – we want the design to
activate req only when required, thus the fact req is active high should be further
challenged by other components of the specification. (2) We flip a block in which
req is inactive. Here, the fact we flip the entire block puts the responsibility on
the coverage on the signal grant, enabling the user to detect redundant activation
of grant.

The third type of properties are eventual ones. For example,

ϕ = G((gnt ∧ ¬frame)→ F frame).

This specification states that if frame is inactive and gnt is given, then a trans-
action must start eventually. We checked stuttering coverage of the signal frame
for the above specification with β = frame. That is, we switch frame in blocks of
consecutive states where frame has value 1. As described in Section 4.1, this in-
volves the introduction of the signal block, which is asserted during the selected β
block, and the signal frame ′, which agrees with frame outside the selected block,
and is the negation of frame inside the block. We replaced the specification by

ϕ′ = ¬(G((gnt ∧ ¬frame ′)→ F (frame ′)) ∧ Fblock).

The specification ϕ′ failed, and Figure 3 presents the counterexample, which
is an example of a non-covered block. In this example, three transactions take
place. In cycles 5, frame is asserted for a short transaction of 2 cycles. Then on
cycle 9, frame is asserted again for a longer transaction lasting until cycle 17.
Finally, a last transaction starts on cycle 20. The block of consecutive frames
selected for coverage check is the middle transaction, from cycle 9 to 17, as in-
dicated by signal ‘block’ being asserted. Note that the signal frame is indeed

Fig. 3. A non-covered case for G((gnt ∧ ¬frame) → F (frame))

244 S. Ben-David, H. Chockler, and O. Kupferman

not stutter-covered by ϕ. This is because many transactions take place on a
typical execution path. Accordingly, a gnt is followed by many blocks of con-
secutive frames, and eliminating one such block is not sufficient for causing ϕ
to change its value. In order to cover the behavior of frame, a more detailed
property should be introduced. Note further, however, that by using stuttering
coverage we dramatically reduce the number of non-covered cases: in traditional
“single state” coverage, each of the frames in cycles 9 to 17 would be declared
as non-covered.

7 Future Work

The algorithms we presented in this paper can be easily implemented on top of
existing model checking tools – we need only to generate properties for detect-
ing stuttering coverage and frequency-based coverage as described in Sections 4
and 5. As we already mentioned in the introduction, our algorithms generate one
non-covered mutation at each run, hence mimicking the typical patterns of work
of a verification engineer. Sometimes, however, we want to have a picture of how
well our properties cover the design before we set up to fix coverage holes. In
this context, a promising direction is to combine our definitions with the existing
algorithms for efficient computation of coverage at once, for example those de-
scribed in [7] and [6]. Based on our experience, the main obstacle in adoption of
these algorithms as a part of the mainstream verification process is the sheer size
of the output – the set of all non-covered mutations that need to be examined.
We believe that using stuttering and frequency-based coverage will reduce the
number of non-covered mutations by filtering the non-important mutations away,
and we plan to perform these experiments as a future work. Finally, while the
multi-value setting here comes mainly as a motivating framework to its approx-
imation by stuttering and frequency-based coverage, we strongly believe that in
the future we will see more and more quantitative specifications and systems,
giving rise to quantitative verification methods, and making the multi-valued
reasoning realistic in practice.

References

1. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and Branching Metrics for Quan-
titative Transition Systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

2. Arbel, E., Rokhlenko, O., Yorav, K.: SAT-based synthesis of clock gating functions
using 3-valued abstraction. In: Proc. 9th FMCAD, pp. 198–204 (2009)

3. Auerbach, G., Chockler, H., Moran, S., Paruthi, V.: Functional vs. Structural Ver-
ification – Case Study. DAC User Track (2012)

4. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold (1990)
5. Bening, L., Foster, H.: Principles of verifiable RTL design – a functional coding

style supporting verification processes. Kluwer Academic Publishers (2000)
6. Chockler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal ver-

ification of hardware. In: Proc. 11th FMCAD, pp. 135–143 (2011)

Attention-Based Coverage Metrics 245

7. Chockler, H., Kroening, D., Purandare, M.: Computing Mutation Coverage in
Interpolation-Based Model Checking. IEEE Trans. on CAD of Integrated Circuits
and Systems 31(5), 765–778 (2012)

8. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A Practical Approach
to Coverage in Model Checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001)

9. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage Metrics for Temporal Logic
Model Checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 528–542. Springer, Heidelberg (2001)

10. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage Metrics for Formal Verifica-
tion. STTT 8(4-5), 373–386 (2006)

11. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
p. 359. Springer, Heidelberg (2002)

12. Dill, D.L.: What’s between simulation and formal verification? In: Proc. 35st DAC,
pp. 328–329. IEEE Computer Society (1998)

13. Eisner, C., Nahir, A., Yorav, K.: Functional verification of power gated designs by
compositional reasoning. FMSD 35(1), 40–55 (2009)

14. Etessami, K.: Stutter-Invariant Languages, ω-Automata, and Temporal Logic. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248.
Springer, Heidelberg (1999)

15. Fraser, G., Wotawa, F.: Mutant Minimization for Model-Checker Based Test-Case
Generation. In: TAIC PART – MUTATION, pp. 161–168 (2007)

16. Große, D., Kühne, U., Drechsler, R.: Analyzing Functional Coverage in Bounded
Model Checking. IEEE Trans. on CAD of Integrated Circuits and Systems 27(7),
1305–1314 (2008)

17. PCI Special Interest Group: PCI Local Bus Specification, 2.2 edn. (1998),
http://www.ics.uci.edu/~harris/ics216/pci/PCI_22.pdf

18. Hoskote, Y., Kam, T., Ho, P.-H., Zhao, X.: Coverage estimation for symbolic model
checking. In: Proc. 36st DAC, pp. 300–305 (1999)

19. Katz, S., Grumberg, O., Geist, D.: “Have I written enough properties?” - A method
of comparison between specification and implementation. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 280–297. Springer, Heidelberg (1999)

20. Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi, K.: Low Power Methodology
Manual. Springer (2007)

21. Kupferman, O., Li, W., Seshia, S.A.: A Theory of Mutations with Applications to
Vacuity, Coverage, and Fault Tolerance. In: Proc. 8th FMCAD, pp. 1–9 (2008)

22. Peled, D.: Software Reliability Methods. Springer (2001)
23. Pnueli, A.: The temporal logic of programs. In: Proc. 18th FOCS, pp. 46–57 (1977)
24. Tasiran, S., Keutzer, K.: Coverage Metrics for Functional Validation of Hardware

Designs. IEEE Design and Test of Computers 18(4), 36–45 (2001)

http://www.ics.uci.edu/~harris/ics216/pci/PCI_22.pdf

Synthesizing, Correcting and Improving Code,

Using Model Checking-Based Genetic
Programming

Gal Katz and Doron Peled

Department of Computer Science, Bar Ilan University
Ramat Gan 52900, Israel

Abstract. The use of genetic programming, in combination of model
checking and testing, provides a powerful way to synthesize programs.
Whereas classical algorithmic synthesis provides alarming high complex-
ity and undecidability results, the genetic approach provides a surpris-
ingly successful heuristics. We describe several versions of a method for
synthesizing sequential and concurrent systems. To cope with the con-
straints of model checking and of theorem proving, we combine such
exhaustive verification methods with testing. We show several examples
where we used our approach to synthesize, improve and correct code.

1 Introduction

Software development is a relatively simple activity: there is no need to solve
complicated equations, to involve chemical materials or to use mechanical tools;
a programmer can write tens of lines of code per hour, several hours a day.
However, the number of possible combinations of machine states in even a very
simple program can be enormous, producing frequently unexpected interactions
between tasks and features. Quite early in the history of software development, it
was identified that the rate in which errors are introduced into the development
code is rather high. While some simple errors can be observed and corrected by
the programmer, many design and programming errors survive shallow debug-
ging attempts and find themselves in the deployed product, sometimes causing
hazardous behavior of the system, injuries, time loss, confusion, bad service, or
massive loss of money.

A collection of formal methods [20] were developed to assist the software devel-
opers, including testing, verification and model checking. While these methods
were shown to be effective in the software development process, they also suffer
from severe limitations. Testing is not exhaustive, and frequently, a certain per-
centage of the errors survive even thorough testing efforts. Formal verification,
using logic proof rules, is comprehensive, but extremely tedious; it requires the
careful work of logicians or mathematicians for a long time, even for a small
piece of code. Model checking is an automatic method; it suffers from high com-
plexity, where memory and time required to complete the task are sometimes
prohibitively high.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 246–261, 2013.
c© Springer International Publishing Switzerland 2013

Synthesizing, Correcting and Improving Code 247

It is only natural that researchers are interested in methods to automatically
convert the system specification into software; assuming that formal specifica-
tion indeed represents the needed requirements fully and correctly (already, a
difficult task to achieve), a reliable automatic process would create correct-by-
design code. Not surprisingly, efficient and effective automatic synthesis methods
are inherently difficult. Problems of complexity and decidability quickly appear.
Unless the specification is already close in form to the required system (e.g., one
is an automaton, and the other is an implementation of this automaton), this is
hardly surprising. One can show examples where the required number of states
of a reactive system that is described by a simple temporal specification (using
Linear Temporal Logic) grows doubly exponential with the specification [16].
This still leaves open the question of whether there is always a more compact
representation for such a specification, a problem that is shown [6] to be as hard
as proving open problems about the equivalence of certain complexity classes.

Software synthesis is a relatively new research direction. The classical Hoare
proof system for sequential programs [7] can be seen not only as a verification
system, but also as an axiomatic semantics for programs, and also as a set of rules
that can be used to preserve correctness while manually refining the requirement
from a sequential system into correct code. The process is manual, requiring the
human intuition of where to split the problem into several subparts, deciding
on where a sequential, conditional or iterating construct needs to be used, and
providing the intermediate assertions. Manna and Wolper [17] suggested the
transformation of temporal logic into automata, and thence to concurrent code
with a centralized control. A translation to an automaton (on infinite sequences)
provides an operational description of these sequences. Then, the operations that
belong, conceptually, to different processes, are projected out on these processes,
while a centralized control enforces globally the communication to occur in an
order that is consistent with the specification.

More recent research on synthesis is focused on the interaction between a sys-
tem and its environment, or the decomposition of the specified task into different
concurrent components, each having limited visibility and control on the behav-
ior of the other components. The principle in translating the given temporal
specification into such systems is based on the fact that the components need
to guarantee that the overall behavior will comply with the specification while
it can control only its own behavior. This calls for the use of some intermediate
automata form. In this case, it is often automata on trees, which include the
possible interactions with the environment. In addition, synthesis includes some
game theoretical algorithms that refine the behaviors, i.e., the possible branches
of the tree, so that the overall behavior satisfy the specification. The seminal
work of Pnueli and Rosner [22] shows that the synthesis of an open (interac-
tive) system that satisfies LTL properties can be performed using some game
theoretical principles. On the other hand, Pnueli and Rosner show [23], that syn-
thesis of concurrent systems that need to behave according to given distributed
architecture (as opposed to centralized control) is undecidable.

248 G. Katz and D. Peled

The approach presented here is quite different. Instead of using a direct al-
gorithmic translation, we perform a generate-and-check kind of synthesis. This
brings back to the playground the use of verification methods, such as model
checking or SAT solving, on given instances. An extreme approach would be to
generate all possibilities (if they can be effectively enumerated) and check them,
e.g., by using model checking, one by one. In the work of Bar-David and Tauben-
feld [3], mutual exclusion algorithms are synthesized by enumerating the possible
solutions and checking them. We focus on a directed search that is based on ge-
netic programming. In a nutshell, genetic programming allows us to generate
multiple candidate solutions at random and to mutate them, again as a stochas-
tic process. We employ enhanced model checking (model checking that does not
only produce an affirmation to the checked properties or a counterexample, but
distinguishes also some finer level of correctness) to provide the fitness level; this
is used by genetic programming to increase or decrease the chance of candidate
programs to survive. Our synthesis method can be seen as a heuristic search in
the space of syntactically fitting programs.

2 Genetic Programming Based on Model Checking

We present a framework combining genetic programming and model checking,
which allows to automatically synthesize software code for given problems. The
framework we suggest is depicted at Figure 1, and is composed of the following
parts:

– A user that provides a formal specification of the problem, as well as addi-
tional constraints on the structure of the desired solutions,

– an enhanced GP engine that can generate random programs and them
evolves them, and

– a verifier that analyzes the generated programs, and provides useful infor-
mation about their correctness.

The synthesis process generally goes through the following steps:

1. The user feeds the GP engine with a set of constraints regarding the pro-
grams that are allowed to be generated (thus, defining the space of candidate
programs). This includes:
(a) a set of functions, literals and instructions, used as building blocks for

the generated programs,
(b) the number of concurrent processes and the methods for process com-

munication (in case of concurrent programs), and
(c) limitations on the size and structure of the generated programs, and the

maximal number of permitted iterations.
2. The user provides a formal specification for the problem. This can include, for

instance, a set of temporal logic properties, as well as additional requirements
on the program behavior.

3. The GP engine randomly generates an initial population of programs based
on the fed building blocks and constraints.

Synthesizing, Correcting and Improving Code 249

User
Interface

1. Configuration 2. Specification 6. Results

Enhanced
GP

Engine

 3. Initial population

 5. New programs

Enhanced
Model

Checker

 4. Verification results

Fig. 1. The Suggested Framework

4. The verifier analyzes the behavior of the generated programs against the
specification properties, and provides fitness measures based on the amount
of satisfaction.

5. Based on the verification results, the GP engine then creates new programs
by applying genetic operations such as mutation, which performs small
changes to the code, and crossover, which cuts two candidate solutions and
glues them together, to the existing programs population. Steps 4 and 5 are
then repeated until either a perfect program is found (fully satisfying the
specification), or until the maximal number of iterations is reached.

6. The results are sent back to the user. This includes a program that satisfies
all the specification properties, if one exists, or the best partially correct
programs that was found, along with its verification results.

For steps 4 and 5 above we use the following selection method, which is similar
to the Evolutionary Strategies [24] μ+ λ style:

– Randomly choose at set of μ candidate solutions.
– Create λ new candidates by applying mutation (and optionally crossover)

operations (as explained below) to the above μ candidates.
– Calculate the fitness function for each of the new candidates based on “deep

model checking”.

250 G. Katz and D. Peled

– Based on the calculated fitness, choose μ individuals from the obtained set of
size μ+λ candidates, and use them to replace the old μ individuals selected
at step 2.

Programs Representation. Programs are represented as trees, where an in-
struction or an expression is represented by a single node, having its parameters
as its offspring, and terminal nodes represent constants. Examples of the instruc-
tions we use are assignment, while (with or without a body), if and block. The
latter is a special node that takes two instructions as its parameters, and runs
them sequentially.

A strongly-typed GP [18] is used, which means that every node has a type,
and also enforces the type of its offspring.
Initial Population Creation. At the first step, an initial population of can-
didate programs is generated. Each program is generated recursively, starting
from the root, and adding nodes until the tree is completed. The root node is
chosen randomly from the set of instruction nodes, and each child node is chosen
randomly from the set of nodes allowed by its parent type, and its place in the
parameter list. A “grow” method [15] is used, meaning that either terminal or
non-terminal nodes can be chosen, unless the maximum tree depths is reached,
which enforces the choice of terminals. This method can create trees with various
forms. Figure 2(i) shows an example of a randomly created program tree. The
tree represents the following program:

while (A[2] != 0)

A[me] = 1

Nodes in bold belong to instructions, while the other nodes are the parameters
of those instructions.
Mutation. Mutation is the main operation we use. It allows making small
changes on existing program trees. The mutation includes the following steps:

1. Randomly choose a node (internal or leaf) from the program tree.
2. Apply one of the following operations to the tree with respect to the chosen

node:
(a) Replace the subtree rooted by the node with a new randomly generated

subtree.
(b) Add an immediate parent to the node. Randomly create other offspring

to the new parent, if needed.
(c) Replace the node by one of its offspring. Delete the remaining offspring

of that node.
(d) Delete the subtree rooted by the node. The node ancestors should be

updated recursively (possible only for instruction nodes).

Mutation of type (a) can replace either a single terminal or an entire subtree.
For example, the terminal “1” in the tree of Fig. 2(i), is replaced by the grayed
subtree in 2(ii), changing the assignment instruction into A[me] = A[0]. Muta-
tions of type (b) can extend programs in several ways, depending on the new
parent node type. In case a “block” type is chosen, a new instruction(s) will be

Synthesizing, Correcting and Improving Code 251

while

!= assign

A[] 0

2

A[]

me

(i)

1

while

!= assign

A[] 0

2

A[]

me

(ii)

A[]

0

Fig. 2. (i) Randomly created program tree, (ii) the result of a replacement mutation

inserted before or after the mutation node. For instance, the grayed part of Fig.
3 represents a second assignment instruction inserted into the original program.
Similarly, choosing a parent node of type “while” will have the effect of wrap-
ping the mutation node with a while loop. Another situation occurs when the
mutation node is a simple condition which can be extended into a complex one,
extending, for example, the simple condition in Fig. 2 into the complex con-
dition: A[2] != 0 and A[other] == me. Mutation type (c) has the opposite
effect, and can convert the tree in Fig. 3 back into the original tree of Fig. 2(i).
Mutation of type (d) allows the deletion of one or more instructions. It can
recursively change the type, or even cause the deletion of ancestor nodes.

The type of mutation applied on candidate programs is randomly selected, but
all mutations must obey strongly typing rules of nodes. This affects the possible
mutation type for the chosen node, and the type of new generated nodes.
Crossover. The crossover operation creates new individuals by merging building
blocks of two existing programs. The crossover steps are:

1. Randomly choose a node from the first program.
2. Randomly choose a node from the second program that has the same type

as the first node.
3. Exchange between the subtrees rooted by the two nodes, and use the two

new programs created by this method.

While traditional GP is heavily based on crossover, it is quite a controversial
operation (see [2], for example), and may cause more damage than benefit in the
evolutionary process, especially in the case of small and sensitive programs that
we investigate. Thus, crossover is barely used in our work.
The Fitness Function. Fitness is used by GP in order to choose which pro-
grams have a higher probability to survive and participate in the genetic

252 G. Katz and D. Peled

while

!= block

A[] 0

2

assign assign

A[] other

2

A[]

me

1

Fig. 3. Tree after insertion mutation

operations. In addition, the success termination criterion of the GP algorithm is
based on the fitness value of the most fitted individual. Traditionally, the fitness
function is calculated by running the program on some set of inputs (a train-
ing set) which suppose to represent all of the possible inputs. This can lead to
programs that work only for the selected inputs (overfitting), or to programs
that may fail for some inputs, which might be unacceptable in some domains. In
contrast, our fitness function is not based on running the programs on sample
data, but on an enhanced model checking procedure. While the classical model
checking provides a yes/no answer to the satisfiability of the specification (thus
yielding a two-valued fitness function), our deep model checking algorithm gen-
erated a smoother function by providing several levels of correctness. In fact, we
have four levels of correctness, per each specification property, written in Linear
Temporal Logic:

1. None of the executions of the program satisfy the property.
2. Some, but not all the executions of the program satisfy the property.
3. The only executions that do not satisfy the property must have infinitely

many decisions that avoid a path that does satisfy the property.
4. All the executions satisfy the property.

We provided several methods for generating the various fitness levels:

– Using Streett Automata, and a strongly component analysis of the program
graph [10].

– A general deep model checking logic and algorithm. [9,19].
– A technique inspired by probabilistic qualitative LTL model checking [13].

We use a fitness-proportional selection [8] that gives each program a proba-
bility of being chosen that is proportional to its fitness value. In traditional GP,

Synthesizing, Correcting and Improving Code 253

after the μ programs are randomly chosen, the selection method is applied in
order to decide which of them will participate in the genetic operations. The
selected programs are then used in order to create a new set of μ programs that
will replace the original ones.

3 Finding New Mutual Exclusion Algorithms

The first problem for which we wanted to synthesize solutions was the classical
mutual exclusion problem [4]. The temporal specification (in Linear Temporal
Logic) for the problem are given in Table 1.

Table 1. Mutual Exclusion Specification

No. Type Definition Description

1 Safety �¬(p0 in CS ∧ p1 in CS) Mutual Exclusion

2,3 Liveness �(pme in Post → �(pme in NonCS)) Progress
4,5 �(pme in Pre ∧ �(pother in NonCS)) →

�(pme in CS))
No Contest

6 �((p0 in Pre ∧ p1 in Pre) → �(p0 in
CS ∨ p1 in CS))

Deadlock Freedom

7,8 �(pme in Pre → �(pme in CS)) Starvation Freedom

9 Safety �¬(remote writing) Single-Writer

10 Special Bounded number of remote operations Local-Spinning

Initially, we tried to rediscover three of the classical mutual exclusion al-
gorithms - the one bit protocol (a deadlock-free algorithm for which we used
properties 1 − 6 from the above specification), and two starvation-free algo-
rithms (satisfying also properties 7 − 8) - Dekker’s and Peterson’s algorithms.
Our framework (and tool) successfully discovered all of these algorithms [9], and
even some interesting variants of them.

Inspired by algorithms developed by Tsay [25] and by Kessels [14], our next
goal was to start from an existing algorithm, and by adding more constraints
and building blocks, try to evolve into more advanced algorithms.

First, we allowed a minor asymmetry between the two processes. This is done
by the operators not0 and not1, which act only on one of the processes. Thus,
for process 0, not0 (x) = ¬x while for process 1, not0 (x) = x. This is reversed
for not1 (x), which negates its bit operand x only in process 1, and do nothing
on process 0.

As a result, the tool found two algorithms which may be considered simpler
than Peterson’s. The first one has only one condition in the wait statement,
written here using the syntax of a while loop, although a more complicated
atomic comparison, between two bits. Note that the variable turn is in fact A[2]
and is renamed here turn to accord with classical presentation of the extra global
bit that does not belong to a specific process.

254 G. Katz and D. Peled

Pre CS

A[me] = 1

turn = me

While (A[other] != not1(turn));

Critical Section

A[me] = 0

The second algorithm discovered the idea of setting the turn bit one more
time after leaving the critical section. This allows the while condition to be
even simpler. Tsay [25] used a similar refinement, but his algorithm needs an
additional if statement, which is not used in our algorithm.

Pre CS

A[me] = 1

turn = not0(A[other])

While (A[2] != me);

Critical Section

A[me] = 0

turn = other

Next, we aimed at finding more advanced algorithms satisfying additional
properties. The configuration was extended into four shared bits and two private
bits (one for each process). The first requirement was that each process can
change only its 2 local bits, but can read all of the 4 shared bits (the new
constraint was specified as the safety property 9 in the table above). This yielded
the following algorithm.

Pre CS

A[me] = 1

B[me] = not1(B[other])

While (A[other] == 1 and B[0] == not1(B[1]));

Critical Section

A[me] = 0

As can be seen, the algorithm has found the idea of using 2 bits as the “turn”,
were each process changes only its bit to set its turn, but compares both of them
on the while loop. Finally, we added the requirement for busy waiting only on
local bits (i.e. using local spins). The following algorithm (similar to Kessels’)
was generated, satisfying all properties from the table above.

Non Critical Section

A[other] = 1

B[other] = not1(B[0])

T[me] = not1(B[other])

While (A[me] == 1 and B[me] == T[me]);

Critical Section

A[other] = 0

Synthesizing, Correcting and Improving Code 255

4 Synthesizing Parametric Programs

Our experience with genetic program synthesis quickly hits a difficulty that
stems from the limited power of model checking: there are few interesting fixed
finite state programs that can also be completely specified using pure temporal
logic. Most programming problems are, in fact, parametric. Model checking is
undecidable even for parametric families of programs (say, with n processes,
each with the same code, initialized with different parameters) even for a fixed
property [1]. One may look at mutual exclusion for a parametric number of
processes. Examples are, sorting, where the number of processes and the values
to be sorted are the parameters, network algorithms, such as finding the leader
in a set of processes (in order to reinitialize some mutual task), etc. In order
to synthesize parametric concurrent programs, in particular those that have a
parametric number of processes, and even a parametric architecture, we use a
different genetic programming strategy.

First, we assume that a solution that is checked for a large number of in-
stances/parameters is acceptable. This is not a guarantee of correctness, but
under the prohibitive undecidability of model checking for parametric programs,
at least we have a strong evidence that the solution may generalize to an arbi-
trary configuration. In fact, there are several works on particular cases where one
can calculate the parameter size that guarantees that if all the smaller instances
are correct, then any instance is correct [5]. Unfortunately, this is not a rule that
can be applied to any arbitrary parametric problem. We apply a co-evolution
based synthesis algorithm: we collect the cases that fail as counterexamples, and
when suggesting a new solution, check it against the collected counterexamples.
We can view this process as a genetic search for both correct programs and
counterexamples. The fitness is different, of course, for both tasks: a program
gets higher fitness by being close to satisfying the full set of properties, while a
counterexample is obtaining a high fitness if it fails the program.

One way to observe this kind of co-evolution also as using model checking
for instance of the parameters. For example, consider seeking a solution for the
classical leader election in a ring problem, where processes initially have their
own values that they can transfer around, with the goal of finding a process that
has the highest value. Then, the parameters include the size of the ring, and
the initial assignment of values to processes. While we can check solutions up
to a certain size, and in addition, check all possible initial values, the time and
state explosion is huge, for both size and permutation of initial values. We can
then store each set of instances of the parameters that failed some solution, and,
when checking a new candidate solution, check it against the failed instances.

In this sense, the model checking of a particular set of instances can be con-
sidered as a generalized testing for these values: each set of instances of the
parameters provides a single finite state systems that is itself comprehensively
tested using model checking. This idea can be used, independently, for model
checking: for example, consider a sorting program with a parametric set of values
and initial values to be sorted; for a particular size and set of values, the model

256 G. Katz and D. Peled

checking provides automatic and exhaustive test, but the check is not exhaustive
for all the array sizes or array values, but rather samples them.

5 Correcting Erroneous Program

Our method is not limited to finding new program that satisfy the given spec-
ification. In fact, we can start with the code of an existing program and try to
improve or correct it. When our initial population consists of a given program,
which is either non optimal, or faulty, we can start our genetic programming
process with it, instead of with a completely random population. If our fitness
measure includes some quantitative evaluation, the initial program may be found
inferior to some new candidates that are generated. If the program is erroneous,
then it would not get a very high fitness value by failing to satisfy some of the
properties.

In [12] we approached the ambitious problem of correcting a known protocol
for obtaining interprocess interaction called α-core [21]. The algorithm allows
multiparty synchronization of several processes. It needs to function in a system
that allows nondeterministic choices, which makes it challenging, as processes
that may consider one possible interaction may also decide to be engaged in
another interaction. The algorithm uses asynchronous message passing in order
to enforce live selection of the interactions by the involved processes. This non-
trivial algorithm, which is used in practice for distributed systems, contains an
error. The challenges in correcting this algorithm are the following:

Size. The protocol is quite big, involving sending different messages between
the controlled processes, and new processes, one per each possible multi-
party interaction. These messages include announcing the willingness to be
engaged in an interaction, committing an interaction, cancelling an interac-
tion, request for commit from the interaction manager processes, as well as
announcement that the interaction is now going on, or is cancelled due to
the departure of at least one participant. In addition to the size of the code,
the state space of such a protocol is obviously high.

Varying architecture. The protocol can run on any number of processes, each
process with arbitrary number of choices to be involves in interactions, and
each interaction includes any number of processes.

These difficulties make also the model checking itself undecidable [1] in gen-
eral, and the model checking of a single instance, with fixed architecture, hard.
In fact, we use our genetic programming approach first to find the error, and
then to correct it. We use two important ideas:

1. Use the genetic engine not only to generate programs, but also to evolve
different architectures on which programs can run.

2. Apply a co-evolution process, where candidate programs, and test cases (ar-
chitectures) that may fail these programs, are evolved in parallel.

Synthesizing, Correcting and Improving Code 257

Specifically, the architecture for the candidate programs is also represented
as code (or, equivalently, a syntactic tree) for spanning processes and their in-
teractions, which can be subjected to genetic mutations. The fitness function
directs the search into program that may falsify the specification for the current
program. After finding a “bad” architecture for a program, one that causes the
program to fail its specification, our next goal is to reverse the genetic program-
ming direction, and try to automatically correct the program, where a “correct”
program at this step, is one that has passed model checking against the archi-
tecture. Yet, correcting the program for the first found wrong architecture only,
does not guarantee its correctness under different architectures. Therefore, we
introduce a new algorithm (see Algorithm 1) which co-evolves both the candidate
solution programs, and the architectures that might serve as counterexamples
for those programs.

Algorithm 1: Model checking based co-evolution
MC-CoEvolution(initialProg, spec, maxArchs)
(1) prog := initialProg
(2) InstantList := ∅
(3) while |archList| <maxArchs
(4) arch := EvolveArch(prog, spec)
(5) if arch = null
(6) return true // prog stores a “good” program
(7) else
(8) add arch to archlist
(9) prog := EvolveProg(archlist, spec)
(10) if prog is null
(11) return false // no “good” program was found
(12) return false // can’t add more architectures

The algorithm starts with an initial program initProg. This can be the existing
program that needs to be corrected, or, in case that we want to synthesize some
code, a randomly generated program. It is also given a specification spec which
the program to be corrected or generated should satisfy. The algorithm then
proceeds in two steps. First (lines (4)− (8)), the EvolveArch function is called.
The goal of this function is to generate an architecture on which the specification
spec will not hold. If no such architecture is found, the EvolveArch procedure
returns null, and we assume (though we cannot guarantee) that the program is
correct, and the algorithm terminates. Otherwise, the found architecture arch is
added to the architecture list archList, and the algorithm proceeds to the second
step (lines (9)− (11)).

In this step, the architecture list and the specification are sent to the Evolve-
Prog function which tries to generate programs which satisfy the specification
under all of the architectures on the list. If the function fails, then the algorithm
terminates without success. Since the above function runs a Genetic Program-
ming process which is probabilistic, instead of terminating the algorithm, it is
possible to increase the number of iterations, or to re-run the function so a new

258 G. Katz and D. Peled

search is initiated. If a correct program is found, the algorithm returns to the
first step at line (4), on which the newly generated program is tested. At each
iteration of the while loop, a new architecture is added to the list. This method
serves two purposes. First, once a program was suggested, and refuted by a new
architecture, it will not be suggested again. Second, architectures that were com-
plex enough to fail programs at previous iterations, are good candidates to do
so on future iterations as well. The allowed size of the list is limited in order to
bound the running time of the algorithm.

Both EvolveProg and EvolveArch functions use genetic programming and
model checking for the evolution of candidate solutions (each of them is equipped
with relevant building blocks and syntactic rules), while the fitness function
varies. For the evolution of programs, a combination of the methods proposed
in [10,11] is used: for each LTL property, an initial fitness level is obtained by
performing a deep model checking analysis. This is repeated for all the archi-
tectures in archList, which determines the final fitness value. For the evolution
of the architectures, we reverse the goal of the fitness function, and give higher
score for architectures that are having a better chances to falsify the program.
At the end, the smallest architecture that manifested the failure included two
processes, with two alternative communication between both of them.

6 A Tool for Genetic Programming Based on Model
Checking

We constructed a tool, MCGP [13], that implements the our ideas about model
checking based genetic programming. Depending on these setting, the tool can
be used for several purposes:

– Setting all parts as static will cause the tool to just run the deep model
checking algorithm on the user-defined program, and provide its detailed
results.

– Setting the init process as static, and all or some of the other processes as
dynamic, will order the tool to synthesize code according to the specified
architecture. This can be used for synthesizing programs from scratch, syn-
thesizing only some missing parts of a given partial program, or trying to
correct or improve a complete given program.

– Setting the init process as dynamic, and all other processes as static, is
used when trying to falsify a given parametric program by searching for a
configuration that violates its specification (see [12]).

– Setting both the init and the program processes as dynamic, is used for syn-
thesizing parametric programs, where the tool alternatively evolves various
programs, and configurations under which the programs have to be satisfied.

7 Conclusions

We suggested the use of a methodology and a tool that perform a genetic pro-
gramming search among versions of a program by code mutation, guided by

Synthesizing, Correcting and Improving Code 259

Fig. 4. User interface during synthesis of a mutual exclusion algorithm

model checking results. Code mutation is at the kernel of genetic programming
(crossover is also extensively used, but we did not implement it). Our method
can be used for

– synthesizing correct-by-design programs,

– finding an error in protocol with complicated architecture (where the archi-
tecture can also undergo genetic mutation),

– automatically correcting erroneous code with respect to a given specification,
and

– improve code, e.g., to perform more efficiently.

We demonstrated our method on the classical mutual exclusion problem, and
were able to find existing solutions, as well as new solutions.

In general, the verification of parametric systems is undecidable, and in the few
methods that promise termination of the verification, quite severe restrictions
are required. The same apply to code synthesis. Nevertheless, we provide a co-
evolution method for synthesize parametric systems based on accumulating cases
to be checked: architectures on which the synthesis failed before, or test cases
based on previous counterexamples are accumulated to be checked later with new
candidate solutions. As the model checking itself is undecidable, we finish if we
obtain a strong enough evidence that the solution is correct on the accumulated
cases.

Although our method does not guarantee termination, neither for finding the
error, nor for finding a correct version of the algorithm, it is quite general and
can be fine tuned through provided heuristics in a convenient human-assisted
process of code correction.

An important strength of the work that is presented here is that it was im-
plemented and applied on a complicated published protocol to find and correct
an actual error.

260 G. Katz and D. Peled

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming –
An Introduction. In: On the Automatic Evolution of Computer Programs and its
Applications, 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)

3. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In: PODC, p. 305 (2003)

4. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

5. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
6. Fearnley, J., Peled, D., Schewe, S.: Synthesis of succinct systems. In: Chakraborty,

S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 208–222. Springer, Hei-
delberg (2012)

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

9. Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing
new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. Katz, G., Peled, D, vol. 5311, pp. 33–47.
Springer, Heidelberg (2008)

10. Katz, G., Peled, D.: Model checking-based genetic programming with an applica-
tion to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

11. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

12. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010)

13. Katz, G., Peled, D.: MCGP: A software synthesis tool based on model checking and
genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 359–364. Springer, Heidelberg (2010)

14. Kessels, J.L.W.: Arbitration without common modifiable variables. Acta Inf. 17,
135–141 (1982)

15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

17. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

18. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

19. Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. Niebert, P., Peled, D., Pnueli, A, vol. 5123, pp. 504–516.
Springer, Heidelberg (2008)

20. Peled, D.: Software Reliability Methods. Springer (2001)

Synthesizing, Correcting and Improving Code 261

21. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implement-
ing multiparty synchronization. Concurrency - Practice and Experience 16(12),
1173–1206 (2004)

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190 (1989)

23. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757 (1990)

24. Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., New York (1993)

25. Tsay, Y.-K.: Deriving a scalable algorithm for mutual exclusion. In: Kutten, S.
(ed.) DISC 1998. LNCS, vol. 1499, pp. 393–407. Springer, Heidelberg (1998)

Domain Types:
Abstract-Domain Selection Based on Variable Usage�

Sven Apel 1, Dirk Beyer 1, Karlheinz Friedberger 1,
Franco Raimondi 2, and Alexander von Rhein 1

1 University of Passau, Germany
2 Middlesex University, London, UK

Abstract. The success of software model checking depends on finding an ap-
propriate abstraction of the program to verify. The choice of the abstract domain
and the analysis configuration is currently left to the user, who may not be fa-
miliar with the tradeoffs and performance details of the available abstract do-
mains. We introduce the concept of domain types, which classify the program
variables into types that are more fine-grained than standard declared types (e.g.,
‘int’ and ‘long’) to guide the selection of an appropriate abstract domain for a
model checker. Our implementation on top of an existing verification framework
determines the domain type for each variable in a pre-analysis step, based on the
usage of variables in the program, and then assigns each variable to an abstract
domain. Based on a series of experiments on a comprehensive set of verification
tasks from international verification competitions, we demonstrate that the choice
of the abstract domain per variable (we consider one explicit and one symbolic
domain) can substantially improve the verification in terms of performance and
precision.

1 Introduction

One of the main challenges in software model checking is to automatically select, for
each program variable, an abstract representation (also known as abstract domain) that
allows to effectively prove the program correct or to identify an error path. Several ab-
stract domains have been applied successfully to software-verification problems, with
different strengths and weaknesses. Abstract domains can be based on explicit represen-
tations (e.g., hash tables for integers, memory graphs for the heap) and symbolic repre-
sentations (predicates, binary decision diagrams (BDD)). For example, using an explicit-
value domain [14] was efficient on many benchmarks from the recent competition on
software verification [9], while using a BDD domain [15] was more efficient on event-
condition-action (ECA) systems that involve only simple operations over integers in an
ECA competition [30]. In the context of product-line verification, it has been shown
that BDD-encodings of feature variables improve verification performance [5, 24]. The
key insight is that different abstract domains are successful on different programs, and
for every abstract domain, we can find programs for which the abstract domain is not
successful.

� A preliminary version was published as Technical Report MIP-1303 in May 2013 [3].

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 262–278, 2013.
c© Springer International Publishing Switzerland 2013

Domain Types: Abstract-Domain Selection Based on Variable Usage 263

So far, the choice of the abstract domain for a given verification problem (which
often implies the choice of a certain verification tool as well) was left to the user. Our
goal is to automate the choice of an effective abstract domain. We analyze the usage
of program variables before the model checker starts the state-space exploration and
assign each variable to a certain domain type. In addition to the declared type of a
variable (e.g., int and char), the domain type represents information about the value
range and the operations in which the variable is involved.

Our approach is based on the CPA verification framework, in which each abstract
domain has a precision associated with it [11]. We use the domain types from the pre-
analysis as guidance for assigning an abstract domain to each variable. In the experi-
ments that we conducted to evaluate our approach, we use two abstract domains: an
explicit-value domain and a BDD-based domain. For both domains, the precision is a
set of variables that should be tracked in the domain. The precisions are initialized based
on the variables’ domain types. The domain assignment improves the overall verifica-
tion performance, if each abstract domain tracks the kind of variables that it is suited
for.

The analysis is implemented in the verification framework CPACHECKER [13], which
implements configurable program analysis for C programs and provides abstract do-
mains for an explicit-value analysis and a BDD-based analysis (we do not use the
predicate analysis). We evaluate our approach on six sets of verification tasks from dif-
ferent application domains (a total of 2 435 files) that have been used by recent interna-
tional competitions on software model checking (SV-COMP 2013 [9], RERS Challenge
2012 [30]).

Our evaluation reveals that the programs in the benchmark sets contain a significant
number of variables that have a much narrower domain type than the declared type of
the variable. We also demonstrate that the verification performance improves if these
variables are tracked using a more suitable abstract domain, compared to using a single
abstract domain for all variables. All results are available on the supplementary web-
site 1.

int enabled, a, b;
b = 20;
if (enabled) {

if (a > 5) {
if (a == 0) {

b = 0;
}
assert (b ∗ b > 200);

}
}

Fig. 1. Example with int variables
of different domain types

Example. We illustrate our approach on the exam-
ple program in Fig. 1. The program contains three
variables that are declared by the programmer as int.
The variables are used in different ways: the variable
enabled is used as a boolean; the variables a and b
are numeric and used in a greater-than comparison,
b is also used in a multiplication. Neither the explicit-
value analysis nor the BDD-based analysis is able to
efficiently verify such a program: The explicit-value
domain is perfectly suited to handle variable b, be-
cause b has a concrete value, and the multiplication
and the greater-than comparison can easily be computed; BDDs are known to be ineffi-
cient for multiplication [31]. The BDD domain can efficiently encode the variables en-
abled and a, whereas the explicit-value analysis is not good at encoding facts like a > 5.

1 http://www.sosy-lab.org/projects/domaintypes/

http://www.sosy-lab.org/projects/domaintypes/

264 S. Apel et al.

Thus, without information about variable a, the explicit-value analysis does not know
the value of variable b and cannot determine the result of the multiplication.

It has been proposed to use several abstract domains in parallel, with each domain
handling all variables (e.g. [17]). If the domains are well communicating (reduced prod-
uct), this could solve the verification task, but the load on each domain would be unnec-
essarily high, because every domain has to handle more variables than necessary.

Contributions. We make the following contributions:
– We introduced the concept of domain types and developed a pre-analysis that com-

putes the domain types for all program variables.
– We extended an existing verification framework to use the two abstract domains

‘explicit-value’ and ‘BDD’ in parallel, while controlling the precision of each ab-
stract domain (the variables to track) separately, based on domain types.

– We evaluate our approach on verification benchmarks from recent international
software-verification competitions.

2 Background

We informally explain the concepts that we use, and provide references to the literature
for details. As context, we assume to verify C programs with integer variables.

Abstract Domains and Program Analysis. Abstraction-based software model check-
ers automatically extract an abstract model of the subject program and explore this
model using one or more abstract domains. An abstract domain represents certain as-
pects of the concrete program’s states that the state exploration is supposed to track [1].
Different abstract domains can track different aspects of the program state space and
complement each other. For example, a shape domain [12, 26, 34] stores, for each
tracked pointer, the shape of the pointed-to data structures on the heap. Another ex-
ample is the explicit-value domain that, for each tracked variable, tracks the explicit
value of the variable [14, 28, 29]. These two examples illustrate that abstract domains
can represent different information. However, it is also possible to use different abstract
domains to represent the same information in different ways. Consider a program in
which the value of variable x ranges from 3 to 9. This can be stored by an interval do-
main [17] using the abstract state x #→ [3, 9], or by a predicate domain [7, 10, 27] using
the abstract state x ≥ 3 ∧ x ≤ 9.

Every abstract domain consists of (1) a representation of sets of concrete states, defin-
ing the abstract states (lattice elements), (2) an operator to decide if one abstract state
subsumes another abstract state (partial order), and (3) an operator that combines two
abstract states into a new abstract state that represents both (join). Software verifiers use
one or several abstract domains to represent the states of the program. The characteris-
tics of the abstract domain have implications on the effectivity (low number of failures
and false results) and efficiency (performance) of the program analysis.

Precision. Each abstract domain can operate at different levels of abstraction (i.e., it can
be more fine-grained or more coarse-grained). The level of abstraction of an abstract
domain is determined by the abstraction precision, which controls if the analysis is
coarse or fine. For example, the precision of the shape domain could instruct the analysis
which pointers to track and how large a shape can maximally grow; the precision of the

Domain Types: Abstract-Domain Selection Based on Variable Usage 265

1 int x, y, z;
2 x = 5;
3 if (y > 1) {
4 z = 2;
5 } else {
6 z = 2 ∗ x / 5;
7 }
8 ...

Fig. 2. Example program (left), control-flow automaton (CFA) that represents the program (mid-
dle), and abstract reachability graph (ARG, right) for the explicit-value domain. CFA edges model
assume operations (e.g., [y > 1]) and assignment operations (e.g., z = 2;).

predicate domain is a set of predicates to track that can, for example, grow by adding
predicates during refinement steps [23].

Next, we describe the two abstract domains that we consider in our experiments.

Explicit-Value Domain. The explicit-value domain stores explicit values for program
variables. Each abstract state of this abstract domain is a map that assigns to each
program variable that occurs in the precision, an integer value (or no value if an ex-
plicit value cannot be determined). For example, consider the code, the control-flow
automaton (CFA), and the abstract reachability graph (ARG) in Fig. 2: the assignment
of value 5 to variable x is stored in an abstract state for CFA node 3. Then, a conditional
statement starts two possible execution paths, which the verifier has to explore. The
explicit-value domain does not store a value for variable y, because there is no explicit
value for y. After both branches of the CFA are explored, the ARG contains a ‘frontier’
abstract state that is the result of joining the abstract successors from both branches
for CFA node 8. The explicit-value domain might suffer from a loss of information if
no explicit values can be determined (e.g., for y > 1). On the one hand, this introduces
imprecision and potentially false alarms. On the other hand, if values are present, all
operations can be executed extremely fast. The precision controls which variables are
tracked in the explicit-value domain. For the code fragment in Fig. 2, we could use a
precision {x, z} and omit y, if we knew beforehand that it is not necessary to represent
variable y.

BDD Domain. The BDD domain stores information about program variables using bi-
nary decision diagrams (BDD). Each abstract state in the BDD domain is a BDD that
represents a predicate over the variable values [18]. BDDs can be efficient in represent-
ing predicates and performing boolean operations. Because of this characteristic, BDDs
have been used in model checking of systems with a large number of boolean variables,
most prominently in hardware verification [20, 31]. Values of integer variables can be
represented by BDDs using a binary encoding of the values (representing the integer
values using, e.g., 32 boolean BDD variables). We can represent a variable with even
fewer BDD variables if we can statically determine the set of values that the variable
might hold at run time and that (non-) equality is the only arithmetical operation (nom-
inal scale [37]). In our example, there is only one value for variable x (i.e., x = 5), and
thus we need only one boolean variable for program variable x. The size of the BDD
—and thus, the performance of the BDD operations— depends on the number of BDD
variables; therefore, it is important to keep the number of BDD variables small.

266 S. Apel et al.

�������	�
�
��
��	��

������	��
����

�����
����

�	�	�����
��	�
�

�
�����
������
����	�
�

��	��
��	��

��	�
��
��	�������

�
����������
���������

Fig. 3. A model-checking engine with two abstract
domains and domain-type analysis

�����������	
�����

������	
����

������

Fig. 4. Hierarchy of domain types

The abstraction precision of the BDD domain is (also) a set of program variables that
an analysis should track using this abstract domain. Considering again our example of
Fig. 2, if we knew beforehand that the explicit-value domain can efficiently represent
variables x and z, we would not include them in the BDD precision, which would result
in precision {y} for the BDD domain, and thus we would need only BDD variables
for y. Because the performance of BDD operations decreases with a growing number
of variables, the BDD domain should be used only for variables that the explicit-value
analysis can not efficiently track. To achieve the goal of a better assignment of program
variables to abstract domains, we introduce the concept of domain types in Section 3.

3 Domain Types

The domain-type-based verification process consists of three steps: (1) The subject pro-
gram is type-checked to determine the domain type for each variable (pre-analysis).
(2) Each variable is mapped to an abstract domain that the analysis will use to represent
information about the variable. (3) The actual verification procedure with the initialized
precisions per abstract domain is started. Fig. 3 illustrates the approach of a verifica-
tion engine that is based on domain types. The state-exploration algorithm uses several
abstract domains to represent the state space of the program.

3.1 Classification

In many statically-typed programming languages, variables are declared to be of a
certain type. The type determines which values can be stored in the variable and
which operators are allowed on the variable. For the assignment of abstract domains

int enabled;
if (enabled) {

...
} else {

...
}

Fig. 5. Using an integer variable
as boolean in C

to variables in a program analysis, more specific infor-
mation on the variables are valuable, in particular, which
of the operators that the static type allows are actually ap-
plied to the variable. For example, consider boolean vari-
ables in the programming language C. The language C
does not provide a type ‘boolean’. In C, the boolean val-
ues true and false are represented by the integer values
1 and 0, respectively. When integer variables are read,
the value 0 is interpreted as false and all other values

Domain Types: Abstract-Domain Selection Based on Variable Usage 267

SYNTAX DEFINITION

op ::= program operations:
[expr] assume

| x = expr; assignment
expr ::= expressions:

| val value
| ! expr negation
| expr == expr equality
| expr != expr inequality
| expr + expr addition
| expr – expr subtraction
| expr * expr multiplication
| expr / expr division

val ::= values:
0 zero

| c non-zero constant
| x variable

TYPE RULES FOR PROGRAM OPERATIONS

expr : τ

[expr] : τ
(ASSUME)

expr : τ

x = expr; : τ
(ASSIGNMENT)

uses(op1, x) op1 : τ1
uses(op2, x) op2 : τ2

op1 : max({τ1, τ2})
(CLOSURE)

uses(op, x) op : τ

x : τ
(VARUSAGE)

TYPE RULES FOR EXPRESSIONS

expr : τ

! expr : max({τ, IntBool}) (NEGBOOL)

val : τ

val == 0 : max({τ, IntBool})
val != 0 : max({τ, IntBool})

(EQBOOL)

expr1 : τ1 expr2 : τ2

expr1 == expr2 : max({τ1, τ2, IntEqBool})
expr1 != expr2 : max({τ1, τ2, IntEqBool})

(EQINT)

expr1 : τ1 expr2 : τ2

expr1 + expr2 : max({τ1, τ2, IntAddEqBool})
expr1 – expr2 : max({τ1, τ2, IntAddEqBool})

(ADD)

expr1 : τ1 expr2 : τ2

expr1 * expr2 : max({τ1, τ2, IntAll})
expr1 / expr2 : max({τ1, τ2, IntAll})

(MULT)

DESCRIPTION

Predicate uses(op, x) states that a program operation op
references a variable x; function max({τ1, . . . , τn})
returns the maximal type for our defined set of
types and the following (transitiv) type relation:
IntBool < IntEqBool < IntAddEqBool < IntAll;
a type constraint obj : τ states that the type of obj is
equal or greater than τ , where obj can be either an ex-
pression, a program operation, or a variable; note that
this first proposal for typing rules is very coarse and can
be significantly refined, e.g., by eliminating the closure.

Fig. 6. Syntax definition and domain-type rules; a program is represented as control-flow au-
tomaton (CFA) [10], where nodes represent control-flow locations and edges represent program
operations that are executed when control flows from one control-flow location to the next;
CPACHECKER supports C, we use this largely abbreviated and adjusted grammar of program
operations to simplify the presentation.

are interpreted as true. Let us consider the code in Fig. 5: The expression enabled in
the if condition is internally expanded to the expression enabled != 0 [2]. As described
in Sect. 2, such a variable should be represented in a BDD by one boolean variable,
not by 32 boolean variables. Therefore, we introduce a domain type IntBool that rep-
resents this more precise type. To determine whether an integer variable has actually
the domain type IntBool , our pre-analysis inspects all occurrences of the variable in
the C expressions. If a variable is found to be of domain type IntBool , this fact can
be considered during the assignment of the abstract domain, and thus the variable can
be represented by data structures that efficiently store boolean values during the veri-
fication. Fig. 4 shows the four domain types that we consider in the static pre-analysis
(more domain types are of course possible, but not yet evaluated). The pre-analysis as-
signs every program variable to one of these domain types, from which an appropriate
abstract domain can be derived.

Other programming languages (e.g., JAVA) provide more restrictive types than C
does, such as boolean and byte, but for the purpose of assigning the best abstract

268 S. Apel et al.

domain, even more precise information is beneficial. In dynamically-typed or even un-
typed languages, types of variables are unknown before program execution. A static
analysis of domain types can lead to considerable improvements of the verification pro-
cess, because it can infer more specific domain types, and thus, choose more efficient
algorithms and data structures for representing abstract states.

3.2 Pre-analysis

In the first step, a static pre-analysis computes the domain type for each program vari-
able, according to the type system in Fig. 6. For each program operation (either ASSUME

or ASSIGNMENT), the analysis determines the maximal domain type that is needed ac-
cording to the expression operators that occur in the program operation. Then, it con-
structs the type closure over all program operations that use some common variables,
to determine the maximal domain type that the program operations for a program vari-
able require. The type of a variable x is the (maximal) domain type of program op-
erations that use variable x. For example, the program operations x == 0, x == x + 1, and
y == x * (z + x) are of the domain types IntBool , IntAddEqBool , and IntAll , respectively.
If all program operations occur in the program, the closure includes all of them (because
all use variable x), and thus the domain type of x, y, and z is IntAll .

The domain type of an expression is IntBool if all operators in the expression are
negations (!) or comparisons with zero (== 0 and != 0). If an expression also contains
equality tests with non-zero constant values or other variables (==, !=), then the domain
type of the expression is IntEqBool . If an expression, in addition, contains linear arith-
metic (+, –), arbitrary comparisons (==, !=, <, >, <=, >=), or bit operators (&, |, ˆ), then the
domain type is IntAddEqBool 2. Expressions that contain any other operators (e.g., mul-
tiplication, division) are of the most general domain type IntAll .

The four domain types are in subtype relation, as illustrated in Fig. 4. Each variable
that is of type IntBool is also of the domain types IntEqBool , IntAddEqBool , and
IntAll . The type system assigns the strongest (most restrictive, least) possible type
that satisfies the type rules (i.e., the type system assigns domain type IntBool instead
of IntAddEqBool if possible). To be able to refer to variables that are of a certain
domain type and not of the corresponding weaker domain type (e.g., variables that are
in IntAddEqBool and not in IntEqBool), we introduce four new domain types, for
brevity:

Bool = IntBool

Eq = IntEqBool \ IntBool
Add = IntAddEqBool \ IntEqBool

Other = IntAll \ IntAddEqBool

3.3 Domain Assignment

Once the domain type has been determined for each program variable, each domain
type is assigned to a certain abstract domain that the analysis uses to track the variables

2 The operators <, >, <=, >=, <<, >>, &, |, and ˆ are omitted in the type rules in Fig. 6 for brevity.

Domain Types: Abstract-Domain Selection Based on Variable Usage 269

of that domain type. Therefore, we define a domain assignment d to be a map that
assigns an abstract domain to each domain type. To setup the program analysis, we add
all variables of a domain type t to the abstraction precision of the abstract domain d(t).
In principle, every abstract domain can represent any variable, but each abstract domain
has certain strengths and weaknesses. A perfect domain assignment would map each
domain type to the abstract domain that is most appropriate for representing values of
the variables.

It seems straightforward to assign the BDD domain to domain type Bool. The BDD
domain can efficiently represent complex boolean combinations of variables, but is sen-
sitive to the number of represented variables. We can also assign the BDD domain to
the domain types Eq and Add. For domain type Eq, we know from the properties of the
domain type that those variables only hold a limited and static set of values. Therefore,
we can enumerate these values and represent them by log2(n) BDD variables, where
n is the number of values. The explicit-value domain can in principle be used for all
domain types, but the more different combinations of variable assignments need to be
distinguished in the analysis, the larger the state space grows, perhaps resulting in an
out-of-memory exception. Moreover, the explicit-value domain is not appropriate for
analyzing uninitialized variables.

In our experiments, we show that different domain assignments have significantly
different performance characteristics for different sets of verification tasks. Automati-
cally selecting an optimal domain assignment remains an open research problem. The
goal of this paper is to show that the concept of domain types provides a promising
technique to approach the problem.

4 Experimental Evaluation

To evaluate the domain-type-based analysis approach, we conduct a series of experi-
ments with different configurations on a diverse set of verification tasks. The results
provide evidence that the chosen domain assignment has a significant impact on
effectiveness and efficiency. In particular, we address the following issues:

Domain Types. The subject systems contain a sufficient set of integer variables such
that a domain-type analysis is able to classify them into more specific domain types.

Variable Partitioning. The verification performance significantly changes if variables
are represented by different abstract domains, compared to representing all vari-
ables with the same abstract domain.

Advantage of Combinations. Using the BDD domain for some variables (e.g., all vari-
ables of the domain types Bool and Eq) and the explicit-value domain for other
variables can improve the verification performance.

4.1 Implementation

For our experiments, we extended the open verification framework CPACHECKER [13],
which provides various abstract domains and supports the concept of abstraction pre-
cisions in a modular way, such that it is easy to extend and configure. The tool is ap-
plicable to an extensive set of verification benchmarks, because it participated in the

270 S. Apel et al.

competition on software verification. This makes it possible to evaluate our approach
on a large set of representative programs.

Explicit-Value Domain. We use the default explicit-value domain that is already im-
plemented in CPACHECKER [14]. It uses a hash-map to associate variables with values.
This implementation is efficient in handling variables with few different values that are
used in complex operations.

BDD Domain. We extended CPACHECKER’s BDD domain [15] to use —depending on
the domain type— specialized encodings of variables in the BDD. For domain type
Bool, we use exactly one BDD variable per program variable. For variables of domain
type Add, we use 32 BDD variables to represent one program variable (we omit the
details of bit-precise analysis). For variables of domain type Eq, we know from the pre-
analysis how many different values the variable can hold. Therefore, we can re-map the
values to a new set of values with the same cardinality (nominal scale [37]), which needs
considerably fewer BDD variables (compared to 32 BDD variables). We use a simple
bijective map from the original constants in the program to a (smaller, successive) set of
integer values encoded with BDD variables. We also encode information about equality
of uninitialized Eq variables (for example, in the expression x==y). To achieve this, we
reserve a value in the encoding for each of the Eq variables. In total, we use log2(n+m)
BDD variables per Eq program variable, where n is the number of program constants
and m is the number of Eq variables.

4.2 Experimental Setup

We performed all experiments on a Ubuntu 12.04 (64-bit) system (LINUX 3.2 as ker-
nel and OpenJDK 1.7 as JAVA VM) with a 3.4 GHz Quad Core processor (Intel Core
i7-2600). Each verification run was limited to 2 cores, 15 GB of memory, and 15 min
of CPU time. We used the version of CPACHECKER that is available as revision tag
cpachecker-1.2.7-hvc13. Each verification task was verified using five different config-
urations:
Explicit: This configuration tracks all variables with the explicit-value domain.
BDD-IntBool: This configuration uses both abstract domains 3; all variables of domain

type IntBool are in the precision of the BDD domain and all other variables are in
the precision of the explicit-value analysis.

BDD-IntEqBool: This configuration uses both abstract domains; all variables of do-
main type IntEqBool are in the precision of the BDD domain and all other vari-
ables are in the precision of the explicit-value domain.

BDD-IntAddEqBool: This configuration uses both abstract domains; all variables of
domain type IntAddEqBool are in the precision of the BDD domain and all other
variables are in the precision of the explicit-value domain.

BDD: This configuration tracks all variables with the BDD domain.

3 We expected that the combined configurations (BDD-IntBool, BDD-IntEqBool, and BDD-
IntAddEqBool) would suffer from the overhead of running two abstract domains. We measured
this overhead in separate experiments (running one of the domains with empty precision) and
found that the impact is negligible.

Domain Types: Abstract-Domain Selection Based on Variable Usage 271

4.3 Verification Tasks

We evaluate our approach on six benchmark sets that, in total, consist of 2 435
verification tasks. The benchmark sets are (number of verification tasks in parentheses):

CONTROL FLOW AND INTEGER VARIABLES (94) LOOPS (79)
DEVICE DRIVERS LINUX 64-BIT (1 237) SYSTEMC (62)
ECA (366) PRODUCT LINES (597)

All verification tasks of the benchmark sets have been used in international compe-
titions of software-verification tools [9, 30]; they are publicly available via the compe-
tition repository or the CPACHECKER repository 4. The SV-COMP benchmark suite is
the most comprehensive and diverse suite of this kind that currently exists. It covers
various application domains, such as device drivers, software product lines, and event-
condition-action-systems simulation.

The following description of the systems is partly taken from the report on the first
competition on software verification [8]. Unless stated otherwise, the systems are taken
from the 2013 edition of the competition. The set CONTROL FLOW AND INTEGER

VARIABLES contains, among others, verification tasks that are based on device drivers
from the WINDOWS NT kernel and verification tasks that represent the connection-
handshake protocol between SSH server and clients with protocol-specific specifica-
tions. The set DEVICE DRIVERS LINUX 64-BIT contains verification tasks that are
based on device drivers from the LINUX kernel. The verification tasks in the set SYS-
TEMC are provided by the SYCMC project [21] and were taken (with some changes)
from the SYSTEMC distribution. The benchmark set ECA contains event-condition-
action (ECA) programs, a kind of systems that is often used in sensor-actor systems.
The verification tasks in our benchmark set have been used in the RERS Grey-Box
Challenge 2012 [30] on verifying ECA systems. The LOOPS benchmark set consists
of verification tasks that require the analysis of loops with non-static loop bounds. The
benchmark set PRODUCT LINES models three software product lines used in feature-
interaction detection [5].

Domain Types. To evaluate whether we can assign a non-trivial set of variables to
specific domain types, we measured how many variables could be classified as Bool , Eq
or Add per benchmark set. We were able to classify as Bool , Eq or Add , on average,
60 % for CONTROL FLOW AND INTEGER VARIABLES, 26 % for DEVICE DRIVERS

LINUX 64-BIT, 64 % for LOOPS, 52 % for PRODUCT LINES, 99 % for SYSTEMC, and
100 % for ECA of all program variables. This confirms that there is always a set of
variables that have potential for improvement by alternative domain assignments. In
most benchmark sets, the domain type with the largest number of variables is Eq. We
expect that optimizations for the domain type Eq pay off, especially, in the benchmark
sets ECA and SYSTEMC, because this domain type covers a large part of the variables
in these sets. The benchmark set SYSTEMC also has a high number of Add variables
in a significant number of verification tasks, so we expect a performance difference for
the different domain assignments especially for this domain type.

4 http://cpachecker.sosy-lab.org/

http://cpachecker.sosy-lab.org/

272 S. Apel et al.

1
5

50
50

0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 11 21 31 41 51 61 71 81 91

●

●

Control Flow and Integer Variables

●

●

Explicit
BDD−IntBool
BDD−IntEqBool
BDD−IntAddEqBool
BDD

1
5

50
50

0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 81 191 311 431 551 671 791 911 1051 1201

● ●

Device Drivers Linux 64−bit
1

5
50

50
0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 31 61 91 131 171 211 251 291 331

●

●

ECA

1
5

50
50

0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 11 21 31 41 51 61 71

●
●

Loops

1
5

50
50

0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 11 21 31 41 51 61

● ●

SystemC

1
5

50
50

0

n−th fastest verification task

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

1 41 91 151 211 271 331 391 451 511 571

●

●

Product Lines

Fig. 7. The quantile plots show the performance of different configurations; each picture repre-
sents the data for one benchmark set; each data point (x, y) shows the x-th fastest verification
run that needed y seconds of CPU time; the y-axes use logarithmic scales

4.4 Results

Due to the huge amount of verification results, we cannot provide the raw data of all ver-
ification runs. Instead, we discuss results aggregated by categories and configurations
in Fig. 7. The diagrams show the performance of the configurations (Explicit, BDD-
IntBool, BDD-IntEqBool, BDD-IntAddEqBool, and BDD) in quantile plots for each
benchmark set. A point (x, y) in a quantile plot states that the x-th fastest verification
run of the respective configuration took y seconds of CPU time. The right-most x value
of a configuration indicates the total number of correctly solved verification tasks. The
area below the graph is proportional to the accumulated verification time. We also pro-
vide a supplementary web page 5, where the detailed results of all verification runs
(including the raw data and the log files) are available for download and as interactive
plots.

5 http://www.sosy-lab.org/projects/domaintypes/

http://www.sosy-lab.org/projects/domaintypes/

Domain Types: Abstract-Domain Selection Based on Variable Usage 273

Effectiveness. Figure 7 witnesses that many tasks are difficult to verify. For example,
in the benchmark set LOOPS, most configurations solve only about half of the tasks
correctly. Failures are caused by timeouts, out-of-memory exceptions, or limitations
of the implemented abstract domains. The combined configurations often demonstrate
good effectiveness results. In several benchmark sets, the configuration BDD-IntBool is
among the configurations that can verify most files correctly (have one of the highest
x values). However, there is no clear winner in terms of effectiveness, which suggests to
further investigate verification based on domain types. The first plot (CONTROL FLOW

AND INTEGER VARIABLES) demonstrates that using combinations of abstract domains
allows solving verification tasks that are not solvable by one abstract domain alone.

Efficiency. The benchmark set CONTROL FLOW AND INTEGER VARIABLES covers
a diverse set of verification tasks. Among others, it contains drivers of the WINDOWS

NT kernel and SSH benchmarks. The plot (Fig. 7) shows that the configurations BDD-
IntEqBool and BDD-IntAddEqBool are fast on many of the files, and that configuration
BDD-IntBool can solve more tasks than any other configuration. This result can be ex-
plained by investigating the number of variables per domain type: the verification tasks
in this category have many variables of domain types that can be efficiently handled
in the BDD domain (Bool, Eq, Add). A certain set of verification tasks can only be
solved using the configuration BDD-IntBool. These verification tasks illustrate a situa-
tion where two variables of types Eq and Other interact in a special pattern. The vari-
ables must be handled by the same domain to verify the file. Only the configurations
Explicit and BDD-IntBool track both variables in the explicit domain and compute a
correct verification result. Configuration Explicit fails on other tasks in this set, such
that its effect on these tasks cannot be seen easily in the plot.

On the benchmark set DEVICE DRIVERS LINUX 64-BIT, all configurations, except
the BDD configuration, show identical performance. Configuration BDD performs so
well because some of the Other variables, which are ignored in configuration BDD,
do not have an effect on the verification result. It would be interesting to combine our
approach with CEGAR [23] (where such variables would be ignored in all configu-
rations). The combination configurations perform similarly because only 26 % of all
variables have been classified as IntAddEqBool , and therefore these tasks do not have
much potential for the domain-type optimization.

For the benchmark set ECA, the configurations that encode Eq variables in BDDs
are most efficient. All variables in the ECA verification tasks are of domain type Eq,
and therefore the configurations that represent Eq variables with the BDD domain are
performing best (BDD-IntEqBool, BDD-IntAddEqBool, and BDD). This indicates that
tracking Eq variables with BDDs can be beneficial. The configurations Explicit and
BDD-IntBool perform worse, because they represent the variables of domain type Eq
using the explicit-value domain. The performance result is in line with the results of a
recent paper on BDD-based software model checking [15].

In the benchmark set LOOPS, the BDD-IntAddEqBool and BDD configurations can
solve a specific group of tasks that the other configurations can not solve. These tasks
model a token-ring architecture with a varying number of nodes. The verification tasks
each contain pairs of Add variables that are difficult to track with the explicit-value do-
main, because they are not initialized at program start. One of the variables is assigned

274 S. Apel et al.

to the other, then both are incremented (which makes them Add), and then the values
are compared again. This unique usage profile requires to represent these variables in
the BDD domain, which explains the results.

The benchmark set SYSTEMC shows that the configurations BDD-IntAddEqBool and
BDD-IntEqBool can verify a considerable number of tasks more than the other combi-
nation configuration and configuration Explicit. This is easy to understand: the tasks
contain many IntEqBool (avg. 93 %) and IntAddEqBool (avg. 99 %) variables. This
result shows that it can be extremely efficient to track such variables with BDDs. The
good performance of configuration BDD shows that the non-IntAddEqBool variables
can be ignored during verification.

The configuration BDD-IntBool performs well on the verification tasks in bench-
mark set PRODUCT LINES. The benchmark set has been used for research projects on
product-line verification [4, 5], from which we know that these files contain many vari-
ables of type Bool and Eq. Some of the files that are most difficult to verify contain
Bool variables that guide the control flow and are critical for the verification process.
Therefore, it is no surprise that the BDD-IntBool configuration performs best on these
tasks.

4.5 Discussion

Our experimental study has shown that the performance of the combined configurations
(BDD-IntBool, BDD-IntEqBool, and BDD-IntAddEqBool) depends heavily on the do-
main types of the variables in the program. If the verification tasks contain variables of
domain type IntAddEqBool , then representing these variables with the BDD domain
can significantly improve the performance.

The experiments have also shown that configuration BDD exhibits a good perfor-
mance on many verification tasks, even though it cannot track variables of domain type
Other. This means that variables of domain type Other are ignored during verification,
and still the verification result is correct. But, in the interest of soundness and reliable
results, we are more interested in configurations without obvious ‘blind spots’.

Let us briefly re-visit —based on the experimental results— the issues that we listed
at the beginning of the section. The first issue concerning the domain types has already
been discussed (Sect. 4.3). Concerning the variable–domain mapping, our experiments
confirm that analyzing variables of different domain types with different abstract do-
mains can make a huge difference, in terms of effectiveness and efficiency. Combined
configurations sometimes outperform the single-domain configurations (only explicit-
value domain or only BDD domain) on several benchmark sets. The configuration BDD
performs well on most benchmark sets, in particular on the DEVICE DRIVERS LINUX

64-BIT tasks. However, it is apparent that including the support of the explicit analysis
for Other variables is critical to obtain reliable verification results. Overall, it might be
beneficial to use the BDD domain for variables of domain type IntAddEqBool , and the
explicit-value domain for the Others . This is confirmed by the performance of configu-
rations BDD-IntEqBool and BDD-IntAddEqBool.

Domain Types: Abstract-Domain Selection Based on Variable Usage 275

5 Related Work

We infer domain types for program variables according to their usage in program opera-
tions. This principle is also used by the type- and memory-safety analysis of C programs
with liquid types [33]. There, a static program analysis is used to determine, for each
variable, a predicate that restricts the possible values of the variable (the liquid type).
In a second step, each usage of the variable is checked for type safety, or if it could
lead to an unsafe memory access. In contrast to domain types, liquid types use a pred-
icate for each variable. Liquid types are fine-grained, domain types are coarse-grained
in comparison, but the granularity is flexible in both approaches. Our type checker for
domain types does not depend on an SMT solver, which is an advantage in terms of
computational complexity.

Roles of variables are used to analyze programs submitted by students [16]. Program
slicing and data-flow analysis is applied to determine the role of each variable (e.g., con-
stant or loop index). The role is then compared to the role that the students have assigned
to the variables. Variable roles are also used to understand COBOL programs [38, 39],
to understand novice-level programs [35], and to classify programs into categories [25].
These works on variable roles fall into the area of automated program comprehension.
The rather strong behavioral variable types might be interesting to extend our work.

JAVA PATHFINDER [40] has an extension that combines the standard explicit analysis
with a BDD-based analysis for boolean variables [5,32]. In that approach, the variables
that are to be tracked by BDDs were manually selected, based on domain knowledge.
Our new approach handles a broader set of domain types and categorizes them automat-
ically.

BEBOP [6], a model checker for boolean programs, encodes all program variables
(only booleans, in this case) in BDDs, and uses explicit-state exploration for the pro-
gram counter. Our domain-type analysis would correctly classify all variables as Bool
and encode them with BDDs; thus, we subsume this approach. A similar strategy was
followed by others [22].

A hybrid approach combining explicit and BDD-based representations analyzes the
program variables with BDDs and the states of the property automaton explicitly [36].
In our setting, this translates to encoding all program variables in BDDs, because the
property automaton runs separately and explicitly in parallel in CPACHECKER. This case
can be represented in our general framework as configuration BDD.

The two symbolic domains BDDs and Presburger formulas have been previously
used as representation for boolean and integer variables [19]. The approach was eval-
uated on two systems, a control software for a nuclear reactor’s cooling system and
a simplified transport-protocol specification. In contrast to our work, this work is not
based on a separate analysis to determine domain types of variables, but includes the
type analysis in the actual model-checking process. By performing the domain-type
analysis in advance, we avoid overhead during the model-checking process.

6 Conclusion

We introduced the concept of domain types, which makes it possible to assign variables
to certain abstract domains based on their usage in program operations. We define a

276 S. Apel et al.

static pre-analysis that maps each variable of type ‘integer’ to one of four more specific
domain types, which reflect the usage of variables in the program.

We performed many experiments with two abstract domains, to demonstrate that the
domain assignment based on domain types has a significant impact on the effectiveness
and efficiency of the verification process. We considered five domain assignments: one
for each considered abstract domain that tracks all program variables in one single ab-
stract domain, without considering the different domain types, and three with different
assignments of the variables to the two abstract domains according to the domain type.

A key insight is that the concept of domain types is a simple yet powerful technique
to create verification tools that implement a better choice for the domain assignment.
State-of-the-art is to use either one single abstract domain, or a fixed combination of ab-
stract domains that adjust precisions via CEGAR or otherwise dynamically, during the
verification run. Our benchmark set contains a significant number of variables for which
we can determine different, narrower domain types. The domain type IntEqBool (and
even more its subtype IntBool) dramatically decreases the size of the internal BDD rep-
resentation of the variable assignments, and thus can lead to a significant improvement
in verification efficiency. Overall, our experiments show that performance can be im-
proved substantially if the variables are tracked in an abstract domain that is suitable for
the domain type of the variable. Not only the performance is improved: combinations
of abstract domains make it possible to solve verification problems that are not solvable
using one abstract domain alone.

Acknowledgements. S. Apel and A. von Rhein have been supported by the DFG grants
AP 206/2, AP 206/4, and AP 206/5.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley (1986)

2. American National Standards Institute. ANSI/ISO/ IEC 9899-1999: Programming Lan-
guages — C. American National Standards Institute, 1430 Broadway, New York, USA
(1999)

3. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., von Rhein, A.: Domain types: Select-
ing abstractions based on variable usage. Technical Report MIP-1303, University of Passau
(2013), http://arxiv.org/abs/1305.6640

4. Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detection of feature interactions
using feature-aware verification. In: Proc. ASE, pp. 372–375. IEEE (2011)

5. Apel, S., von Rhein, A., Wendler, P., Größlinger, A.: Strategies for product-line verification:
Case studies and experiments. In: Proc. ICSE, pp. 482–491. IEEE (2013)

6. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In: Proc.
SPIN, pp. 113–130 (2000)

7. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis.
In: Proc. POPL, pp. 1–3. ACM (2002)

8. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

9. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg (2013)

http://arxiv.org/abs/1305.6640

Domain Types: Abstract-Domain Selection Based on Variable Usage 277

10. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.
Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjust-
ment. In: Proc. ASE, pp. 29–38. IEEE (2008)

12. Beyer, D., Henzinger, T.A., Théoduloz, G., Zufferey, D.: Shape refinement through ex-
plicit heap analysis. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 263–277. Springer, Heidelberg (2010)

13. Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190.
Springer, Heidelberg (2011)

14. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and inter-
polation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793,
pp. 146–162. Springer, Heidelberg (2013)

15. Beyer, D., Stahlbauer, A.: BDD-Based Software Model Checking with CPACHECKER. In:
Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 1–11. Springer, Heidelberg (2013)

16. Bishop, C., Johnson, C.G.: Assessing roles of variables by program analysis. In: Proc. CSEIT,
pp. 131–136. TUCS (2005)

17. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Proc. PLDI, pp. 196–207. ACM
(2003)

18. Bryant, R.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24(3), 293–318 (1992)

19. Bultan, T., Gerber, R., League, C.: Composite model-checking: Verification with type-
specific symbolic representations. ACM TOSEM 9(1), 3–50 (2000)

20. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: Proc. LICS, pp. 428–439. IEEE (1990)

21. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A software model
checking approach. In: Proc. FMCAD, pp. 51–59. IEEE (2010)

22. Cimatti, A., Roveri, M., Bertoli, P.G.: Searching powerset automata by combining explicit-
state and symbolic model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 313–327. Springer, Heidelberg (2001)

23. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

24. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic model checking of software
product lines. In: Proc. ICSE, pp. 321–330. ACM (2011)

25. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its use in software
analysis. Technical Report abs/1305.6745, ArXiv (2013)

26. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A verification tool for programs
with dynamic linked data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 545–548. Springer, Heidelberg (2012)

27. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

28. Havelund, K., Pressburger, T.: Model checking Java programs using Java PATHFINDER. Int.
J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000)

29. Holzmann, G.J.: The SPIN model checker. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)
30. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box challenge

2012: Analysis of event-condition-action systems. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer, Heidelberg (2012)

31. McMillan, K.L.: The SMV system. Technical Report CMU-CS-92-131, CMU (1992)

278 S. Apel et al.

32. von Rhein, A., Apel, S., Raimondi, F.: Introducing binary decision diagrams in the explicit-
state verification of Java code. In: JavaPathfinder Workshop (2011),
http://www.infosun.fim.uni-passau.de/cl/publications/
docs/JPF2011.pdf

33. Rondon, P., Bakst, A., Kawaguchi, M., Jhala, R.: CSolve: Verifying C with liquid types. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 744–750. Springer,
Heidelberg (2012)

34. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
TOPLAS 24(3), 217–298 (2002)

35. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural programs.
In: Proc. HCC, pp. 37–39. IEEE (2002)

36. Sebastiani, R., Tonetta, S., Vardi, M.Y.: Symbolic systems, explicit properties: On hybrid
approaches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 350–363. Springer, Heidelberg (2005)

37. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
38. van Deursen, A., Moonen, L.: Type inference for COBOL systems. In: Proc. WCRE,

pp. 220–230. IEEE (1998)
39. van Deursen, A., Moonen, L.: Understanding COBOL systems using inferred types. In: Proc.

IWPC, pp. 74–81. IEEE (1999)
40. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. J.

ASE 10(2), 203–232 (2003)

http://www.infosun.fim.uni-passau.de/cl/publications/docs/JPF2011.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/JPF2011.pdf

Efficient Analysis of Reliability Architectures

via Predicate Abstraction

Marco Bozzano, Alessandro Cimatti, and Cristian Mattarei

Fondazione Bruno Kessler, Trento, Italy
{bozzano,cimatti,mattarei}@fbk.eu

Abstract. The overall safety of critical systems is often based on the
use of redundant architectural patterns, such as Triple Modular Redun-
dancy. Certification procedures in various application domains require
an explicit evaluation of the reliability, and the production of various
artifacts. Particularly interesting are Fault Trees (FT), that represent in
a compact form all the combinations of (basic) faults that are required
to cause a (system-level) failure. Yet, such activities are essentially based
on manual analysis, and are thus time consuming and error prone.

A recently proposed approach opens the way to the automated anal-
ysis of reliability architectures. The approach is based on the use of
Satisfiability Modulo Theories (SMT), using the theory of Equality and
Uninterpreted Functions (EUF) to represent block diagrams. Within this
framework, the construction of FTs is based on the existential quantifi-
cation of an EUF formula. Unfortunately, the off-the-shelf application of
available techniques, based on the translation into an AllSMT problem,
suffers from severe scalability issues.

In this paper, we propose a compositional method to solve this prob-
lem, based on the use of predicate abstraction. We prove that our method
is sound and complete for a wide class of system architectures. The pre-
sented approach greatly improves the overall scalability with respect to
the monolithic case, obtaining speed-ups of various orders of magnitude.
In practice, this approach allows for the verification of architectures of
realistic systems.

Keywords: Formal Verification, Reliability Architectures, Fault Tree
Analysis, Satisfiability Modulo Theory, Redundant Systems.

1 Introduction

Redundancy is a well known solution used in the design of critical system. In
order to increase the dependability of a system, components carrying out impor-
tant functions are replicated, and their effects combined by means of dedicated
modules such as voters. A typical schema is Triple Module Redundancy (TMR)
where three components are connected by a voter. This solution can be instan-
tiated multiple times within the same system, in cascading stages organized in
different structures [3,37,28].

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 279–294, 2013.
© Springer International Publishing Switzerland 2013

280 M. Bozzano, A. Cimatti, and C. Mattarei

The reliability analysis for such architectures is based on the construction of
so-called Fault Trees [45]. A Fault Tree (FT) identifies all the configurations of
faults that can lead to an undesired event (e.g., loss of a system function). The
construction of FT’s from a model are in general not carried out automatically,
and are thus costly, tedious and error prone. A recent exception is the work
in [13], where the problem of analyzing reliability architectures is cast in the
framework of Satisfiability Modulo Theories (SMT) [6]. Functional blocks are
represented in the theory of Equality and Uninterpreted Functions (EUF) as
uninterpreted functions. Redundancy is modeled by the repetition of the same
function block, combined with blocks representing the voting mechanisms. The
possible occurrence of faults is modeled by the introduction of Boolean fault
variables. Within this framework, FTs are directly generated by the collection of
values to the fault variables that make an EUF formula satisfiable. In fact, the
construction of such FTs is a variation of the AllSMT problem [35] where the
assignments to the fault variables are required to be minimal with respect to set
inclusion. Unfortunately, the techniques based on [35] can be seen as a monolithic
enumeration of the disjucts of the DNF of the resulting formula, are are often
subject to a blow up. This prevents the construction of FT (and ultimately the
reliability analysis) for systems of realistic size.

In this paper, we propose a new method for the compositional computation
of FTs for the analysis of redundancy architectures. The key technical insight is
the use of predicate abstraction to partition the construction of FT. More specif-
ically, the computation of the FT for a DAG of concrete components proceeds
in two steps: first, we combine the abstraction of the individual components un-
der a suitable set of predicates, carrying out an SMT-based quantification, thus
obtaining a pure Boolean model; then, we compute the FT for such model using
BDD-based projection techniques [14]. We prove that the approach is sound, i.e.
the FTs computed on the abstract system are the same as the ones computed
directly on the original, concrete system.

The approach was implemented within the NuSMV3 system, on top of the
MathSAT5 [21] SMT solver, and we carried also out an experimental evaluation
to test the scalability. On small-sized examples, where the monolithic approach
requires already a significant computation time, the new method performs orders
of magnitude better. Even more important, the new method scales dramatically
better, and is able to generate fault trees with hundreds of blocks in less than one
minute. The increased capacity allowed us to analyze some classical architectures
(e.g. [3,46,37,28]) that are out of reach for the previous technique [13].

The paper is structured as follows. In Section 2 we discuss some relevant
related work. In Section 3 we present some logical background. In Section 4
we define the problem, and discuss the limitations of the previous solutions. In
Section 5 we present our approach. In Section 6 we formally define the approach
and prove its soundness. In Section 7 we describe the experimental evaluation.
In Section 8 we draw some conclusions, and discuss future work.

Efficient Analysis of Reliability Architectures via Predicate Abstraction 281

2 Related Work

In recent years, there has been a growing interest in techniques for model-based
safety assessment [33]. The perspective of model-based safety assessment is to
represent the system by means of a formal model and perform safety analysis
(both for preliminary architecture and at system-level) using formal verification
techniques. The integration of model-based techniques allows safety analysis to
be more tractable in terms of time consumption and costs. Such techniques must
be able to verify functional correctness and assess system behavior in presence
of faults [17,4,11,16].

A key difference with respect to our approach is that these techniques focus
on the analysis of the behavior of dynamical systems, whereas our approach
aims at evaluating characteristics of redundancy architectures, independently of
components’ behavior. Our approach builds upon the work in [13], which is based
on the calculus of Equality and Uninterpreted Functions (EUF), and makes use
of Satisfiability Modulo Theory (SMT) techniques for verification [7,27].

The techniques based on Markov Decision Process and Probabilistic Petri Nets
[34,29,44,19,40] are widely used in industry for the quantitative evaluation and
reliability analysis. However, such approaches are not able to provide a uniform
and completely automated process, and in fact, the link between the reliability
evaluation and the qualitative safety assessment analysis is performed manually.
Thus, this is a key difference between the approach proposed in [13] and the
current techniques for the analysis of reliability architectures.

In this work we rely on NuSMV3, that is a complete verification and validation
framework for model based analysis. NuSMV3 is based on an open source veri-
fication engine [20], that supports BDD-based and SAT-based finite state model
checking. At its core, NuSMV3 uses the SMT solver MathSAT [10,21], that sup-
ports several theories like linear arithmetic over reals and integers, difference
logic, bit vectors, uninterpreted functions, and equality. In addition to verifica-
tion, NuSMV3 also provides complex capabilities to perform safety assessment,
in particular, FTA [14] and reliability evaluation.

3 Background

Traditionally, dynamical systems are modeled as finite state systems: their state
can be represented by means of assignments to a specified set of variables [30].
In symbolic model checking, they are represented by means of Boolean logic,
where (Boolean) variables are combined together via Boolean connectives (e.g.
conjunction, disjunction, negation). In this approach, sets of states are repre-
sented by the Boolean formula corresponding to the characteristic function of
the set. The symbolic analyses of dynamic systems, most notably symbolic model
checking techniques (e.g. [39,8,38]) rely on efficient ways to represent and manip-
ulate Boolean formulae, in particular Binary Decision Diagrams [18], and, more
recently, Boolean satisfiability (SAT) solvers [41].

Boolean logic, however, is a rather limited representation, and fails to repre-
sent many important classes of systems. This limitation has been lifted with the

282 M. Bozzano, A. Cimatti, and C. Mattarei

advent of Satisfiability Modulo Theory (SMT) [6], where the formula is not pure
Boolean, but it is expressed in some background theory such as Real and Integer
Arithmetic (LA(Q)/LA(Z)), Difference Logic (DL), and Bit Vectors (BV). On
top of SMT solver there are many different verification algorithms that can be
used [25,43,22,23]. In this paper we will focus primarily on the theory of Equality
and Uninterpreted Functions (EUF), where variables range over an unspecified
domain, and function symbols can be declared, but have no specific property,
except for the fact that they are functions, i.e. (x = y)→ (f(x) = f(y)). More-
over, we use predicate abstraction in order to approximate a concrete system
using a set of formulas (predicates). Our approach makes use of an AllSMT pro-
cedure [35] that efficiently implements predicate abstraction by enumerating all
the satisfying assignments over the set of predicates using an SMT solver.

The target of our approach is to improve the analysis of reliability archi-
tectures, and in particular the techniques for Model-Based Safety Assessment
such as the construction of Fault Trees and Failure Mode and Effects Analysis
(FMEA) tables, which can be performed automatically by reduction to symbolic
model checking [16,11,15,14,12].

4 The Problem: Analysis of Reliability Architectures

The evaluation of architectural patterns is an essential ingredient for the de-
velopment of safety critical system, due to the fact that such systems have to
guarantee an high reliability. When a specific component is essential to guarantee
correct and safe operation of the system, a standard practice in safety engineer-
ing is to encapsulate it in a redundant architectural pattern. This practice aims
at increasing the reliability of the redunded component.

One of the most well-known architectural pattern is the Triple Modular Re-
dundancy (TMR) architecture [3,5,26,42,31]. It consists in triplicating the mod-
ule that is critical for the reliability of the system, and feeding one voter with
their outputs. Specifically, considering each redundant module as a functional
component, receiving an input and providing an output, the voter returns the
value computed by the majority of the redunded modules. This approach allows
us to varying, and hopefully increase, the reliability of the system, which de-
pends on the reliability of each voter and each component, in addition to the
displacement and connections between them. The analysis of reliability architec-
tures, in general, is performed manually, due to the lack of specific techniques
addressing both modeling and verification. The manual approach is supported
by several specific algorithms [28,36] that can aid the verification and analysis
of reliability of TMR chains. However, such approaches cannot be generalized in
order to cover a full set of architectural patterns.

Recent studies on the verification of architectural patterns [13] aim at au-
tomating the analysis of reliability architectures. The idea proposed in [13] con-
sists in defining the behavior of components using uninterpreted functions. Such
formalism has the capability to describe the functional behavior of the compo-
nents without giving any details of their implementation. Uninterpreted func-
tions have no specific properties, except that they have to provide the same

Efficient Analysis of Reliability Architectures via Predicate Abstraction 283

(a) Nominal System (b) Redundant System

Fig. 1. Network of combinatorial components [3]

(a) 1 port, 1 voter (b) 1 port, 2 voters (c) 3 ports, 3 voters

Fig. 2. Modular redundancy examples

outputs when given the same inputs. Moreover, faulty behavior can be modeled
simply by leaving the output of a faulty component unconstrained.

5 The Approach

In this work we concentrate on the equivalence checking between nominal and
faulty systems with redundant modules. The idea is to provide the same inputs
to both structures and evaluate under which conditions the outputs are different.
This evaluation relies on Model-Based Fault Tree Analysis [14], which consists
of generating all the faults configurations such that it is possible to reach an
undesirable behavior (a.k.a. Top Level Event). A faults configuration, also called
cut-set, is minimal if it is not possible to reach the TLE by removing a fault from
this set, and in this work we concentrate on the minimal cut-sets generation.

Figure 1 shows a graphical representation of the nominal (1a) and redundant
(1b) configurations of the network example introduced in [3]. Each redundant
module, as shown in Figure 2, is then extended to take into account faults,
namely by placing the nominal (the M and V modules) and faulty behaviors
(the light red modules) in parallel. Figure 2 illustrates some examples of this
extension, for different architectures. The selection between nominal and faulty
behaviors is realized by a multiplexer that receives a fault event as input. Finally,

284 M. Bozzano, A. Cimatti, and C. Mattarei

Fig. 3. Comparison TMRs and faultless modules

Figure 3 illustrates our approach to system equivalence, in the case of linear
architectures. It consists in equating the output of the nominal architecture with
the output of the extended redundant architecture. The same approach can be
generalized to the case of Tree or DAG structures, their evaluation being similar
to the linear ones.

In this work, we refer to modules that integrate both nominal and redundant
system definition for each stage. This approach allows us to keep aligned (w.r.t
architectural patterns) nominal and redundant systems, by construction. The
idea is to define each module, composed of nominal and redundant behavior,
using an abstract definition that preserves their behavior, while permitting a
significant improvement of the performances of the routines that analyze them.

The predicate abstraction is defined for each individual redundant component,
and formalized in Equation 1. Specifically, given a component defined as an SMT
formula ΓB∪D(I, O, F) over input and output ports, and faults events, we want
to define a Boolean formula ΨB(AI , AO, F) over input and output predicates
(defined as φI and φO, then bound to AI and AO) by performing a quantifier
elimination over concrete input and output ports (the sets I and O), and fault
events. The relation between these predicates and concrete ports is defined by

ΨB(AI , AO, F) = ∃I, O.(ΓB∪D(I, O, F)∧
AI ⇐⇒ φI(I) ∧ AO ⇐⇒ φO(O))

(1)

From the Boolean formula representing an abstract component, it is possible
to generate an SMV module that encodes it. On top of this, we can encode a
network composed of individual abstract components. In Section 6 we show that
this network is equivalent to the abstraction of a network composed of concrete
components, and use this result for FTA.

Given that abstract formulas are Boolean, we can analyze them using a BDD-
based engine. Moreover, the network definition that we introduced in this paper
allows for the generation of an optimal variable ordering that guarantees high
verification performances. Equation 2 describes a system as the composition of
different modules; in particular, it represents the configuration shown in Figure
1. This notation, similar to the relational language introduced in [32], consists

Efficient Analysis of Reliability Architectures via Predicate Abstraction 285

of defining two operators: sequential composition (�) and parallel composition
(|). The former relates components that are connected in a sequential fashion,
linking outputs of the first component with inputs of the second one. Paral-
lel composition, on the other hand, juxtaposes the set of ports from different
components, which run in parallel.

(M1|M2) � (D|D) � (M3|M4|M5) � M6 (2)

The framework described in this paper enables the definition of any tree- or
DAG-shaped structure. Three special combinatorial components can be used
to connect inputs and outputs of different components, in order to implement:
duplication of values (module D), simple propagation of input values (I module,
a.k.a. identity) and arbitrary reconfiguration of signals (R module). For instance,
in Equation 2 we use D modules in order to duplicate outputs of the M1 and
M2 components.

6 Abstraction

In this section we formally define our approach, based on predicate abstraction,
and we show that it allows for an efficiently generation of FTs. We concentrate
on networks of combinatorial components used to define TMR architectures. A
combinatorial component, according to Definition 1, is a system with input and
output ports, a set of faults signals and a formula. Intuitively, such components
do not have time evolution (i.e., they are combinatorial) and the values of the
output ports are computed only over current inputs and faults.

Definition 1 (Combinatorial component). A combinatorial component is a
tuple S = 〈P , F, π〉, where:

– P = PO‖PI are the terms representing vector ports, sequentially split into
input and output (i.e. the symbol ‖ defines vectors concatenation). Each port
can have Boolean (B) or Data (D) type, while faults are only Boolean;

– F is the set of faults events;
– π(PI ,PO, F) is an SMT formula over ports and faults, where each term

belongs to B or D.

We also define two special combinatorial components whose purpose is to formal-
ize the abstraction. Specifically, the abstractor component (compare Definition
2) is used to translate a set of concrete values into their abstract counterpart,
whereas the concretizer component (Definition 3) generates instances of concrete
values satisfying the input predicates.

Definition 2 (Abstractor combinatorial component). A combinatorial
component A = 〈P , F, α〉 is called abstractor if:

– F = ∅;
– P = PI‖PO;
– PI is the vector of input ports belonging to D;

286 M. Bozzano, A. Cimatti, and C. Mattarei

– PO is the vector of output ports belonging to B;
– α(PI ,PO, ∅) is an SMT formula over input and output ports.

Definition 3 (Concretizer combinatorial component). A combinatorial
component C = 〈P , F, γ〉 is called concretizer if:

– F = ∅;
– P = PI‖PO;
– PI is the vector of input ports belonging to B;
– PO is the vector of output ports belonging to D;
– γ(PI ,PO, ∅) is an SMT formula over input and output ports.

Definition 4 formalizes the sequential composition of two components S′ and
S′′. The idea is to connect the output ports of S′ to the input ports of S′′.
The resulting component S has the same input ports as S′, the same output
ports of S′′ and the union of the faults of S′ and S′′. Concretizer and abstractor
components allow us to express the abstraction of module S as the sequential
composition C � S � A.

Definition 4 (Sequential composition). Given two combinatorial compo-
nents S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that |P ′

O| = |P ′′
I |, the

sequential composition S = 〈P , F, π〉, denoted S = S′ � S′′ is defined by:

– PI = P ′
I ;

– PO = P ′′
O ;

– F = F ′ ∪ F ′′;
– π(PI ,PO, F) = ∃P ′

O,P ′′
I .π′(P ′

I ,P
′
O, F ′)∧

π′′(P ′′
I ,P ′′

O , F ′′)∧ P ′
O = P ′′

I .

Similarly, parallel composition of two components is defined as follows.

Definition 5 (Parallel composition). Given two combinatorial components
S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that F ′ ∩ F ′′ = ∅, the parallel
composition S = 〈P , F, π〉, denoted S = S′|S′′, is defined by:

– PI = P ′
I‖P ′′

I ;
– PO = P ′

O‖P ′′
O;

– F = F ′ ∪ F ′′;
– π(PI ,PO, F) = π′(P ′

I ,P
′
O, F ′)∧ π′′(P ′′

I ,P ′′
O , F ′′).

Definition 6 expresses the equivalence between combinatorial components.
Intuitively, two combinatorial components are equivalent if their relational for-
mulas have the same value for each assignment to input and output ports, and
faults.

Definition 6 (System equivalence). Given two combinatorial components
S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that F ′ = F ′′ and P ′ = P ′′, they
are called system equivalent, denoted S′ ≡ S′′, if and only if
∀M = 〈pI1, ..., pIn, pO1, ..., pOm, f1, ..., fIk〉 : π′(M) ⇐⇒ π′′(M).

Efficient Analysis of Reliability Architectures via Predicate Abstraction 287

In this work we concentrate on Fault Tree Analysis [45], and specifically on
the generation of the Minimal Cut-Sets (MCSs) as formally defined in 8. This
analysis provides a subset of the cut-sets (see Definition 7), which represents all
fault configurations such that there exists an assignment to input and output
ports making a specific event, called top level event (TLE), true. In this case, we
consider to have two different systems, nominal and redundant, and the TLE is
the predicate representing the difference between the outputs, by providing to
them the same input.

Definition 7 (Cut-Sets). Given a combinatorial component S = 〈P , F, π〉 and
a predicate T (PO), called Top Level Event; the set of cut-sets, denoted CS, is
defined as follows:

CS(S, T) = {f ∈ 2F |∃pI ∈ 2PI , pO ∈ 2PO .π(pI , pO, f) ∧ T (pO) = �}

A minimal cut-set is defined as follows, by keeping only cut-sets that are minimal
fault configurations.

Definition 8 (Minimal Cut-Sets). Given a combinatorial component S =
〈P , F, π〉 and a predicate T (PO), the set of minimal cut-sets, denoted MCS, is
defined as follows:

MCS(S, T) = {cs ∈ CS(S, T)|∀cs′ ∈ CS(S, T), cs′ ⊆ cs =⇒ cs′ = cs}

6.1 Modular Abstraction Equivalence

In this work we evaluate redundant networks by using modular predicate ab-
straction. In order to show the soundness of our approach, we prove that, given
a system composed of concrete modules, it is possible to substitute each individ-
ual module with its abstract counterpart. This result is stated in Theorem 1. We
organize the proof using the following lemmas. Lemma 1 states that the if two
combinatorial components are equivalent, it is possible to sequentially combine
them with a third component and preserve the equivalence. Lemma 2 states a
similar result for parallel composition.

Lemma 1 (Reduction equivalence). Given the combinatorial components S,
S′, and S′′, if S′ ≡ S′′ then S � S′ ≡ S � S′′ and S′ � S ≡ S′′ � S.

Lemma 2 (Parallel equivalence). Given the combinatorial components S′
1,

S′′
1 , S

′
2, S

′′
2 , if S

′
1 ≡ S′′

1 ∧ S′
2 ≡ S′′

2 then S′
1|S′

2 ≡ S′′
1 |S′′

2 .

Theorem 1 allows us to generate an equivalent network of combinatorial com-
ponents by using only abstract modules. Namely, it enables substitution of a
concrete module with its abstract counterpart, provided that the application of
abstraction and concretization on inputs preserves the behavior of the outputs
in the abstract domain, as formally defined by the hypothesis.

Theorem 1 (Modular abstraction equivalence). Given a combinatorial
component S = S1 � . . . � Sn, a set of abstractors A1, A2, ..., An and a set of

288 M. Bozzano, A. Cimatti, and C. Mattarei

concretizers C1, C2, ..., Cn, where C(S) = C1 � S1 � S2 � . . . � Sn−1 � Sn � An and
A(S) = C1 � S1 � A1 � . . . � Cn � Sn � An, such that ∀i ∈ {1, ..., n}. |PCi

O | =
|PSi

I | ∧ |PSi

O | = |PAi

I |
if ∀i ∈ {2, ..., n}.Ai−1 � Ci � Si � Ai ≡ Si � Ai

then C(S) ≡ A(S)

Proof. by hypothesis Sn � An ≡ An−1 � Cn � Sn � An

then (by Lemma 1) C(S) ≡ (C1 � S1 � S2 � ... � Sn−1) � (Sn � An) ≡
(C1 � S1 � S2 � ... � Sn−1) � (An−1 � Cn � Sn � An)

then (by hypothesis) Sn−1 � An−1 ≡ An−2 � Cn−1 � Sn−1 � An−1

then (by Lemma 1) ... � Sn−2) � (Sn−1 � An−1) � (Cn � Sn � An) ≡
... � Sn−2) � (An−2 � Cn−1 � Sn−1 � An−1) � (Cn � Sn � An)

then, keep applying hypothesis and Lemma 1 it is possible to conclude that

(C1 � S1) � (S2 � A2) � (C3 � ... ≡
(C1 � S1) � (A1 � C2 � S2 � A2) � (C3 � ... ≡ A(S)

The results stated in Theorem 1 is very general; it can be applied to different
abstractions, provided that the hypothesis of the theorem holds. In the case of
stages that are a parallel composition of modules, the hypothesis can be proved
with Lemma 2, and this is an important aspect when dealing with Tree and
DAG systems. As a corollary, we obtain that it is possible to compute the MCSs
for the concrete system on the abstract system.

Corollary 1 (Computation of Minimal Cut-Sets). If a combinatorial com-
ponent S = S1�. . .�Sn, the abstractors A1, ..., An, and the concretizers C1, ..., Cn

satisfy the hypothesis of Theorem 1, then MCS(C(S), T) = MCS(A(S), T).

7 Experiments

7.1 Implementation

We implemented our approach on top of the NuSMV3 system, a verification
tool built on top of NuSMV2 [20] and MathSAT [21]. NuSMV3 provides various
SMT-based verification algorithms, and various engines for predicate abstrac-
tion [1,2]. The functionalities that are relevant for this paper are the ability to
deal with EUF theory, predicate abstraction via AllSMT [35], and the capability
to generate Fault Trees with probabilistic evaluations as described in [13].

Our implementation takes a description of a nominal model, its counterpart
expressed with redundancy schemas, and can generate either the monolithic
problem or the compositional problem, where the various components are mod-
eled with fault variables and predicates describing discrepancies between the
nominal and redundant flow.

Efficient Analysis of Reliability Architectures via Predicate Abstraction 289

We instantiated the framework described in Section 5 using the following
abstraction, which expresses, given a set of input and output ports, the equiv-
alence between nominal values and their extended version. More precisely, con-
sidering a stage with a nominal component having in, on as input and output
ports, and a redundant module duplicating the signals with i1, i2, o1, o2 as ports,
our abstraction generates the predicates {(in = i1), (in = i2)} as input, and
{(on = o1), (on = o2)} as output.

In order to use the results of Section 6, we have to prove that the hypothesis
of Theorem 1 holds for our predicates. For this purpose, we carried out an
equivalence checking using the MathSAT SMT solver. Specifically, we proved
that the formula �M : ¬(πα(M) ⇐⇒ πγ(M)) is unsatisfiable for each SMV
module implementation, where πα and πγ represent, respectively, abstract and
concrete formula modulo predicates, as expressed in Theorem 1. Thus, each
sequence Ci � Si �Ai explicitly represents an abstract component, and it is used
as a single module that is computed using AllSMT-based predicate abstraction
techniques.

The generation of Fault Trees, in the form of Binary Decision Diagrams [18],
provided the best performance by disabling dynamic reordering, and using a
statically computed ordering, based on the topology of the analyzed system. In
detail, considering the example in Expression 2, the ordering starts with faults
and output predicates for the module M1, followed by the variables of M2, then
the ones from M3 (D modules do not have variables), and so on.

The setting for the experimental evaluation comprises the generation of the
abstract modules, for each of the possible pair of nominal and redundant com-
ponents represented in Figure 2, and then caching their machine representation.
The time needed to perform such process is not taken into account in the scal-
ability evaluation, however this operation takes on average 5 seconds with a
maximum time of 10 seconds. The target of our evaluation consists in Fault
Tree Analysis (generation of MCSs), with a top level event stating that the
output of the nominal network differs from the redundant one. The library of
abstract components consists of 12 different redundancy configurations with 1, 2
and 3 voters per stage. The system configuration for the standard methodology
of [13], without predicate abstraction, is similar to the setting with modular
abstraction with the difference that each module is a concrete representation
with real variables and EUF functions. The algorithms used in both cases are
based on Fault Tree generation as proposed in [14]; given the difference between
concrete and abstract, in the first case we use SMT-based techniques, whereas
for the latter we use the BDD-based ones.

7.2 Experimental Evaluation

We compared the performance of the monolithic and compositional approaches
on a wide set of benchmarks, including randomly generated and real-world ar-
chitectures. Whenever both techniques terminated, we checked the correctness
by comparing the Fault Trees. We ran the experiments on an Intel Xeon E3-1270
at 3.40GHz, with a timeout of 1000 seconds, and a memory limit of 1 GB.

290 M. Bozzano, A. Cimatti, and C. Mattarei

Linear Structures. We first analyzed the scalability of the approach on linear
TMR structures. The TMR chains experiments consider networks of length n
with 1, 2 and 3 voters, with different combinations of structures. The results of
this comparison are presented in Figure 4: the x axis represents the length of the
chain, while on the y axis there is the time needed to compute the minimal cut-
sets. The concrete generation reaches the timeout starting from a TMR chain
with 1 and 2 voters of length 20, while with 3 voters, it is not able to evaluate
more than 10 stages within the timeout. The modular abstraction approach is
able to perform FTA in less than 110 seconds for a TMR chain of length 140,
both with 1, 2 and 3 voters.

The two and three voters schemas are much harder to deal with (as witnessed
by the relative degrade in performance of both techniques). In fact, the pres-
ence of additional voters increases the number of fault variables, and the overall
number of cut-sets. In the case of compositional, partitioning helps to limit the
impact on performance. However, the compositional approach is vastly superior
to the monolithic one which shows a significant degrade in performance.

Scalability on Tree and DAG Structures. We then analyzed tree and DAG
diagrams, first considering the design description presented in [3], that describes
a DAG redundant structure as shown in Figure 1. In this case, the modular
abstraction technique is able to perform FTA in 0.025 seconds, while the concrete
case takes 4.5 seconds. Both methods construct the set of 102 minimal cut-sets.

The analysis of a real-word system architecture concerned the verification of
the redundancy management of the Boeing 777 Primary Flight Computation, as
described in [46]. The model considers a system with 36 redundant modules and
123 possible faults. In this case, the technique based on predicate abstraction
takes 1.07 seconds to generate the Fault Tree composed of 195 minimal cut-sets.
Differently, the monolithic approach takes 4680 seconds (1 hour and 18 minutes).

In order to evaluate the performance of modular abstraction, we built a ran-
dom generator of Tree and DAG structures. The problems are generated by pick-
ing a module type from the set of possible ones, adding it to the network with
inputs selected from inputs of the system or outputs of previously introduced
modules, until the target system size is reached. In order to be able to relate
numbers of modules and verification complexity, we imposed that the increase
of system diameter between two consecutive layers is at most two modules. This
means that a random tree structure with length 140 has a maximum diameter
of 22 modules (i.e. max diameter with n modules is 2 ∗ √n− 1).

The set of possible components is defined with modules with 1, 2, and 3 inputs
and a single output, in addition to the special components D, which replicates
the input to two equal set of outputs, and an identity module I.

The random generation of Tree and DAG networks allows us to compare the
performances of two approaches. Figure 5 shows a scatter plot of the results for
networks of size until 25, with red and blue points representing respectively Tree
and DAG architectures. The results of this test clearly illustrate the improve-
ment due to the abstraction, which is able to perform the analysis in less than 1.5

Efficient Analysis of Reliability Architectures via Predicate Abstraction 291

0.0

0.1

1.0

10.0

100.0

1000.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Ti
m

e
(s

ec
on

ds
)

Length pipeline

1 voter
(Concrete)

2 voters
(Concrete)

3 voters
(Concrete)

1 voter
(Abstraction)

2 voters
(Abstraction)

3 voters
(Abstraction)

Fig. 4. Scalability evaluation on
linear structures

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

CO
N

CR
ET

E

ABSTRACTION

DAG

Tree

Fig. 5. Tree (Red) and DAG (Blue)
comparison

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Ti
m

e
(s

ec
on

ds
)

Number of modules

DAG

Tree

Fig. 6. Tree and DAG scalability: abstraction

seconds for each instance, with an average gain in performance that is in the
order of 102 (i.e. Gain (Min, Avg, Max) = (2, 6 ∗ 102, 7 ∗ 103)).

The scalability evaluation of the modular approach in the case of Tree and
DAG structure is shown in Figure 6. In this chart, the x axis represents the
number of modules composing the network, while the y axis shown the total
time to compute the full set of minimal cut-sets. The module count in the case of
DAG does not consider the components of type D or I, due to the fact that they
essentially express links between stages. The results shows that the performance
in the case of Linear, Tree or DAG structure are almost comparable, in fact
almost all the time is spent on the BDD quantification of predicates.

In the monolithic case, the bottleneck is clearly the AllSMT procedure (with
optimizations described in [14]), due to the excessive number of cut-sets. In the
compositional case, the time for initializing the library accounts in total for less
than 1 minute. This cost is payed only once, and the necessary abstractions can
be cached. Once the library is initialized, the main source of inefficiency is the
generation of the BDD. This cost appears hard to limit, but we remark that we
are obtaining an expensive quantification by partitioning and inlining.

292 M. Bozzano, A. Cimatti, and C. Mattarei

8 Conclusion

In this paper we tackled the problem of automated safety assessment of redun-
dancy architectures. In this work, we enhance the approach proposed in [13],
where functional blocks are modeled within the SMT(EUF) framework. We fo-
cus on the construction of Fault Trees, that is a fundamental step in [13]: this
step was tackled as a problem of AllSMT [35] and turned out to be a bottle-
neck. Here we propose a compositional technique for the construction of fault
trees that relies on the idea of predicate abstraction, and partitions the prob-
lem, trading one large quantifier-elimination operation with several (but much
simpler) operations. We prove the correctness of the decomposition, and provide
an implementation realized on top the MathSAT5 solver. An experimental eval-
uation demonstrates dramatic improvements in terms of scalability with respect
to the monolithic quantification. This makes it possible to construct Fault Trees
with more than 400 minimal cut-sets from 26∗140 (10250) possible fault configu-
rations. The availability of this tool allows us to automatically obtain results for
realistic configurations that were previously out of reach.

In the future, we will investigate the integration of these techniques into an
architecture decomposition framework, based on contract-based design [24]. We
will also analyze the problem of synthesizing the best configuration for a given
cost function. Future work will also consider the analysis of various forms of
deployment, where functions are run on the same platform. This form of anal-
ysis, also known as Common Cause Analysis, can be expressed in the modeling
framework, but it is currently unclear if the compositional analysis is retained.

References

1. Proc. of Formal Methods in Computer-Aided Design, FMCAD 2007, Austin, Texas,
USA, November 11-14. IEEE Computer Society (2007)

2. Proc. of 9th International Conference on Formal Methods in Computer-Aided De-
sign, FMCAD 2009, Austin, Texas, USA, November 15-18. IEEE (2009)

3. Abraham, J.A., Siewiorek, D.P.: An algorithm for the accurate reliability evaluation
of triple modular redundancy networks. IEEE Trans. on Comp. 100(7), 682–692
(1974)

4. Akerlund, O., Bieber, P., Boede, E., Bozzano, M., Bretschneider, M., Castel, C.,
Cavallo, A., Cifaldi, M., Gauthier, J., Griffault, A., et al.: ISAAC, A framework for
integrated safety analysis of functional, geometrical and human aspects. In: Proc.
ERTS (2006)

5. Anderson, T., Lee, P.A.: Fault tolerance, principles and practice. Prentice/Hall
International (1981)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, et al. (eds.) [9], pp. 825–885

7. Bensalem, S., Ganesh, V., Lakhnech, Y., Munoz, C., Owre, S., Rueß, H., Rushby,
J., Rusu, V., Saıdi, H., Shankar, N., et al.: An overview of sal. In: Proc. of the 5th
NASA Langley Formal Methods Workshop (2000)

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

Efficient Analysis of Reliability Architectures via Predicate Abstraction 293

9. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
FAIA, vol. 185. IOS Press (2009)

10. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz,
S., Sebastiani, R.: MathSAT: Tight Integration of SAT and Mathematical Decision
Procedures. Journal of Automated Reasoning 35, 265–293 (2005)

11. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability, and performance analysis of extended AADLmodels. The Computer
Journal (March 2010), doi:10.1093/com

12. Bozzano, M., Cimatti, A., Lisagor, O., Mattarei, C., Mover, S., Roveri, M., Tonetta,
S.: Symbolic model checking and safety assessment of altarica models. ECE-
ASST 46 (2012)

13. Bozzano, M., Cimatti, A., Mattarei, C.: Automated analysis of reliability architec-
tures. In: ICECCS, pp. 198–207. IEEE Computer Society (2013)

14. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic Fault Tree Analysis for Reactive
Systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

15. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)

16. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems.
CRC Press (Taylor and Francis), An Auerbach Book (2010)

17. Bozzano, M., Villafiorita, A., Åkerlund, O., Bieber, P., Bougnol, C., Böde, E.,
Bretschneider, M., Cavallo, A., et al.: ESACS: An integrated methodology for de-
sign and safety analysis of complex systems. In: Proc. ESREL 2003, pp. 237–245
(2003)

18. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

19. Ciardo, G., Muppala, J., Trivedi, K.: SPNP: stochastic Petri net package. In:
Proc. of the Third International Workshop on Petri Nets and Performance Models,
PNPM 1989, pp. 142–151. IEEE (1989)

20. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer
(STTT) 2(4), 410–425 (2000)

21. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013)

22. Cimatti, A., Mover, S., Tonetta, S.: SMT-Based Verification of Hybrid Systems.
In: Hoffmann, J., Selman, B. (eds.) AAAI (2012)

23. Cimatti, A., Mover, S., Tonetta, S.: SMT-based scenario verification for hybrid
systems. Formal Methods in System Design 42(1), 46–66 (2013)

24. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: 2012 38th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), pp. 21–28. IEEE (2012)

25. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

26. Favalli, M., Metra, C.: TMR voting in the presence of crosstalk faults at the voter
inputs. IEEE Transactions on Reliability 53(3), 342–348 (2004)

27. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236 (2007)

294 M. Bozzano, A. Cimatti, and C. Mattarei

28. Hamamatsu, M., Tsuchiya, T., Kikuno, T.: On the reliability of cascaded TMR
systems. In: 2010 IEEE 16th Pacific Rim International Symposium on Dependable
Computing (PRDC), pp. 184–190. IEEE (2010)

29. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

30. Holzmann, G.J.: The model checker spin. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

31. Johnson, J.M., Wirthlin, M.J.: Voter insertion algorithms for fpga designs using
triple modular redundancy. In: Proc. of the 18th Annual ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 249–258. ACM (2010)

32. Jones, G., Sheeran, M.: Relations and refinement in circuit design. In: 3rd Refine-
ment Workshop, vol. 90, pp. 133–152. Citeseer (1990)

33. Joshi, A., Whalen, M., Heimdahl, M.P.E.: Modelbased safety analysis: Final report.
Technical report (2005)

34. Katoen, J.-P., Khattri, M., Zapreevt, I.S.: A markov reward model checker. In:
Second International Conference on the Quantitative Evaluation of Systems, pp.
243–244. IEEE (2005)

35. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast Predicate
Abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 424–
437. Springer, Heidelberg (2006)

36. Tan, L., Tan, Q., Li, J.: Specification and verification of the triple-modular redun-
dancy fault tolerant system using csp. In: The Fourth International Conference on
Dependability, DEPEND 2011, pp. 14–17 (2011)

37. Lee, S., Jung, J.I., Lee, I.: Voting structures for cascaded triple modular redundant
modules. IEICE Electronic Express 4(21), 657–664 (2007)

38. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

39. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
40. Sanders, W.H., Obal II, D., Qureshi, M.A., Widjanarko, F.: The ultrasan modeling

environment. Perf. Evaluation 24(1), 89–115 (1995)
41. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers. In:

Biere, et al. (eds.) [9], pp. 131–153
42. Thaker, D.D., Amirtharajah, R., Impens, F., Chuang, I.L., Chong, F.T.: Recur-

sive TMR: Scaling fault tolerance in the nanoscale era. IEEE Design & Test of
Computers 22(4), 298–305 (2005)

43. Tonetta, S.: Abstract model checking without computing the abstraction. In: Cav-
alcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer,
Heidelberg (2009)

44. Trivedi, K.S.: Sharpe 2002: Symbolic hierarchical automated reliability and perfor-
mance evaluator. In: Proc. International Conference on Dependable Systems and
Networks, DSN 2002, p. 544. IEEE (2002)

45. Vesely, W.E., Stamatelatos, M., Dugan, J., Fragola, J., Minarick III, J., Railsback,
J.: Fault Tree Handbook with Aerospace Applications (2002)

46. Yeh, Y.C.: Triple-triple redundant 777 primary flight computer. In: Proc. of the
IEEE Aerospace Applications Conference, vol. 1, pp. 293–307. IEEE (1996)

Lazy Symbolic Execution through Abstraction

and Sub-space Search

Guodong Li and Indradeep Ghosh

Fujitsu Labs of America, CA
{gli,ighosh}@fla.fujitsu.com

Abstract. We present an approach to address a main performance bot-
tleneck in symbolic execution. Despite a powerful method to produce
test cases with high coverage, symbolic execution often suffers from the
problem of exploring a huge number of paths without (1) significantly
increasing the coverage, and (2) going deep enough to hit hot spots.
The situation becomes worse for modern programming languages such
as C/C++ which extensively use library calls and shared code. In this
paper we use a novel “lazy” execution approach to evaluate functions,
library calls, and other entities commonly used in a high level language.
Specifically, the symbolic executor uses high level abstractions and sub-
space search to control and guide symbolic execution so that only nec-
essary paths are visited to produce valid test cases. This method is able
to avoid exploring many useless or duplicate paths. Experimental results
show that it can help solve path constraints and produce test cases in
much less time. For many programs, it can improve the performance
by several orders of magnitude while maintaining the same source code
coverage.

1 Introduction

Traditionally, software quality has been assured through manual testing which
is tedious, difficult, and often gives poor coverage of the source code especially
when availing of random testing approaches. This has led to much recent work
in the formal validation arena. One such formal technique is symbolic execution
[5,15,16,19] which can be used to automatically generate test inputs with high
structural coverage for the program under testing.

Some widely used symbolic execution engines such as [6,5] handle high level
languages such as C and Java. We have extended KLEE [5] to a tool KLOVER

[15] for the automatic validation and test generation for C++, the language
of choice for most low-level scientific and performance critical applications in
academia and industry. To avoid dealing with the complex syntax of a high level
language, these tools [5,19,15] handle the bytecode (e.g. LLVM bytecode [12]
in [5,15,16]) generated by a compiler. So does the approach proposed in this
paper; however it is a general method independent of the input language or
the intermediate bytecode, although an OO language like C++ containing large
libraries can benefit more from the approach.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 295–310, 2013.
c© Springer International Publishing Switzerland 2013

296 G. Li and I. Ghosh

Typically, a symbolic executor forks two new states (or paths) when the con-
dition of a branch is evaluated to be unknown (i.e. both this condition and
its negation are satisfiable). If n unknown branches are called in a sequence,
then O(2n) states are produced. It is possible that a small program (e.g. with
embedded loops containing unknown branches) leads to hundreds of thousands
of states; and the executor gets stuck in exploring too many paths. On the other
hand, we usually do not need all these states to test the program, e.g. O(n)
states are sufficient to cover all the branches of this sequence. Hence a question
is: which O(n) states are needed, and how to produce these states automatically?

Many modern symbolic executors [6,5,19] have applied some techniques to
mitigate the state explosion problem. For example, the EXE tool [6] has incor-
porated a RWSet analysis [4] to merge the states which are equivalent modulo
live variables. At an execution point, two states can be merged if their stacks,
heaps, and path conditions are the same after non-live variables are eliminated.
For another example, KLEE [5] provides an experimental feature which allow a
user to specify where to merge the states. Ite (if-then-else) expressions are
used to combine expressions from different states. Recently, a more advanced
merging approach [11] is proposed which merges states according to the impact
that each symbolic variable has on solver queries that follow a potential merge
point. This can be guided by search strategies that are more likely to reach the
bugs or missed branches. This paper proposes a different approach.

State explosion becomes more severe for a language like C/C++ which comes
with a large standard library containing the implementation of commonly-used
APIs. Unfortunately, the library is highly optimized only for concrete execution.
A simple API function call may contain a vast number of unknown branches.
For example, consider the code “if (f(x) > g(x)) ...; else ...;”, we need
only two paths (states) to cover the two branches, while the symbolic execution
of f(x) or g(x) may lead to path explosion. State merging may help in this case,
however there is another approach — the focus of this paper — which needs
no state merging at all! After all, state merging is costly and it is very hard
to find out appropriate merging points and strategies. One of our key ideas is
that we do not spawn states unless they are indeed needed. That is, the states
are spawned lazily such that (1) useless or duplicate paths are avoided whenever
possible; and (2) the execution can terminate early without coverage penalty.

Now we summarize our techniques and contributions:

– We use function abstraction and lazy function evaluation to avoid path ex-
plosion. Specifically, we first use abstractions to divide the state space into
sub-spaces, then search each sub-space efficiently for one valid solution. Once
a solution is found in a sub-space, we safely skip the rest of this sub-space.
This divide-and-conquer technique enables us to explore only a small portion
of the entire space without scarifying source coverage.

– We use a generic declarative language to describe the abstractions and con-
trol the execution. We show how to abstract some commonly-used data
structures and APIs. Our method allows us to define operations, recursive

Lazy Symbolic Execution through Abstraction and Sub-space Search 297

abstractions, quantified expressions, and so on, in a slight extension of the
source language; hence is very general and extensible. (Section 3.1)

– We present how to search sub-spaces through early termination (Section 3.2).
We give some analysis and preliminary experimental results to demonstrate
the effectiveness of our method.

As far as we know, the presented work is the first effort to apply lazy symbolic
execution through functional abstraction and optimized sub-space search to mit-
igate path explosion, especially for C/C++ programs. With this technique, our
symbolic executor is able to improve the performance by orders of magnitude,
yet produce valid test cases without source coverage penalty. Although there are
some prior works on using summaries to help symbolic execution [1,9], or using
lazy methods to initialize data structures [10] or generate path constraints [17],
our method contains new features such as two-level execution, sub-space based
early termination, and so on. In this paper we describe how to (1) introduce the
abstraction phase and the search phase; and (2) handle general data structures
and apply search and solving mechanisms.

We organize the paper by first giving motivating examples and an overview,
then describing the lazy execution method in details, and then presenting ex-
perimental results. Finally we discuss and conclude.

2 Backgroup and Motivation

Our executor is built on top of a symbolic execution engine KLEE [5] to handle
C++ programs. The C++ standard includes a library for all commonly used
data structures and algorithms. Instead of using the standard library provided
with GCC, we choose and optimize the simpler uClibc++ library [20] to improve
the performance of symbolic execution. This paper uses this library to illustrate
how lazy execution is performed. Note that the method is general, e.g. it is
applicable to other libraries in other languages.

Motivating Example 1 (Strings). We start with the simple String library in
C++. The following is a part of the C++ version of the main benchmark program
in [2], where input str is a symbolic string. The full version is presented in the
Appendix.

int i = str.find_last_of(’/’);

if (i == string::npos) return false; // exit 1

...

if (t == "live.com") return true; // exit 5

In order to reach exits 1 and 5, we need to solve the following two paths
constraints. Suppose we use the default uClibc++ implementation. If str is
given a fixed length n, then the executor explores O(n) paths for exit 1. However
we need only visit 1 path to cover this exit, e.g. when str is an empty string.
Other valid paths are simply duplications. Exit 5 is much more challenging.

298 G. Li and I. Ghosh

The minimum length of str is 29; unfortunately the executor fails to find out a
solution within the 2-hour time-out limit after exploring > 10, 000 paths. The
case where str’s length is not fixed becomes worse since more paths need to be
visited.

Exit 1: str.find last of(’/’) 	= npos
Exit 5: i = str.find last of(’/’) ∧ i != npos ∧ rest = str.substr(i+1) ∧

rest.find(“EasyChair”) 	= −1 ∧ str.compare(0, 7, ”http://”) = 0 ∧
t = str.substr(7, i-7) ∧ t.compare(0,4,“www.”) = 0 ∧
t’ = t.substr(4) ∧ t’ = “live.com”

One main problem of using the default library implementation is that many
new states will be spawned in the very beginning, while these states may lead
to only invalid paths in subsequent execution. For example, for exit 5, all the
trials on lengths less than 29 are fruitless. In fact, for these lengths, the executor
should not execute the bodies of the involved string APIs at all!

Motivating Example 2 (C++ Containers). C++ containers are data struc-
tures parametrized for generic types. Take map for example, it supports inser-
tion, deletion, search, and so on. The keys and elements can be integers, strings,
or even user-defined objects. Similar to the string case, using the default library
implementation will inevitably lead to path explosion even for small programs.
To see this, consider inserting n elements with symbolic keys into a set. A naive
implementation may lead to O(nn) paths, and an optimized one (e.g. the ele-
ments are sorted) may result in O((log(n))n) paths. This poses a big challenge
to executing realistic programs which usually use containers extensively.

Two issues further complicate the problem: (1) C++ containers use iterators
to traverse the elements, where an iterator is a pointer referring the elements
objects in the heap; and (2) the key can be of object (e.g. string) type such that
each comparison of two keys may produce a large number of paths.

Motivating Example 3 (User-defined Class). A user may define a class
converting a long number (e.g. read from a hardware register) to a date of
customized format. For example, the following code converts an input to a date
and then sees whether the date is the first date of 2012. The fromNum function
usually involves many division operations and branches over the results. This
may overload the SMT solver. In contrast, lazy execution can quickly find out a
valid solution for exit 1, e.g. n = 2012×366+0×31+0. Basically it first identifies
a candidate dt = “2012-01-01” in the abstraction phase, then converts it back
to a valid number in the search phase. The conversion is fast since the target
number has been given in this case.

long n; // symbolic value

Date dt = Date::fromNum(n); // delayed execution

if (dt.isValid() && dt == "2012-01-01")

...; // exit 1

Lazy Symbolic Execution through Abstraction and Sub-space Search 299

2.1 Overview

Fig. 1. Lazy execution with abstrac-
tion and subspace search: the main
flow

Our lazy execution approach delays state
spawning to the point where the new states
are indeed needed. For a library function
call, we first regard it as an “atomic” opera-
tion by refraining its execution from spawn-
ing paths. Specifically, we do not execute
this function’s body at this moment; instead
we use an abstraction to model this func-
tion’s semantics and mark its atomic space.
In addition, an invocation to the declarative
implementation of this function is added into
the path condition. Take find last of for
example. A valid abstraction requires that
the return value is either npos (indicating
character c is not found) or an unsigned in-
teger less than the string length. The ab-
straction marks the relation between the re-
turn value i and the string length; while the
DI maintains the relation of i and the string
value.

Abstraction : i = str.find last of (c) ∧ (i = npos ∨ 0 ≤ i < str.len)
DI Invocation : find last of imp(i, str, c)

As shown on the left of Figure 1, in an abstraction phase, only the abstractions
are used to determine the satisfiability of a branch. When the end of a path is
reached, the executor enters the “search” phase, where the DIs are expanded in
their original call order. Consider exit 1 with path condition str.find last of (c) =
npos. To cover this exit we take the requirement as an assumption, then execute
the function body to search a solution within the “sub-space” associated with
this exit. Once a solution is found, e.g. str = “”, the executor can stop exploring
other paths since they won’t increase coverage. This early termination technique
avoids exploring useless or duplicate paths in a sub-space. A key point here is
that the abstractions are used as assumptions, e.g. the return value must be
npos, then the DIs are executed with respect to this fact. This avoids exploring
other values which lead to invalid solutions.

The case of exit 5 is similar. The abstractions imply that str’s minimum length
is 29, and i = 19. This immediately specifies str’s length and the values of all
intermediate symbolic integer variables. Then, the executor can explore only one
path to find out a valid solution, e.g. str = “http://www.live.com/EasyChair”.

Hence we use the abstractions to (1) mark atomic operations; (2) divide the
state space into coverage sub-spaces; (3) constrain the values of variables in the
DIs; and (4) guide the search. For each sub-space, we only need to find one
solution (i.e. explore only one path).

300 G. Li and I. Ghosh

τ := i1, i2, . . . bitvector type
e := c : τ constant

| id : τ variable
| id[e] array read
| id[e �→ e] array update
| opu e unary operation
| e opb e binary operation
| opt(e, e, e) trinary operation

τ ′ := τ | τ × . . . primitive, vector type
τf := τ ′ → τ ′ function type
τp := τ ′ → bool predicate type
e := λv. e(v) lambda expression

| ∀v ∈ [e, e] : (e : τp) v forall expression
| ∃v ∈ [e, e] : (e : τp) v exists expression
| (id : τf)(e, . . . , e) function application
| (id : τp)(e, . . . , e) predicate
| fabs(e, τ

′) unintrp. abstraction

Fig. 2. Main syntax of IL

On the right of Figure 1 we show pictorially why lazy execution is better
than eager execution (i.e. the usual one without abstractions and DIs). In the
eager case, executing function f1 spawns many paths, most of which may be
invalidated during f2’s execution (marked by black filled nodes in the diagram).
Suppose f1 and f2 spawn m and n states respectively, then eager execution
explores O(m × n) useless paths. In contrast, lazy execution first collects the
abstractions without path spawning, then use them to rule out most of f1’s
invalid paths. In one sense, it utilizes the subsequent control- and data- flow
information to avoid visiting useless paths. In many cases this can reduce the
number of paths to O(n), and further to O(1) through early termination.

Important questions include: (1) how to find out and define the abstractions?
(2) how to combine the abstractions and DIs at run-time? and (3) how to effi-
ciently search the sub-space? We address these questions in the next section.

3 Lazy Symbolic Execution

We use an immediate language to help define function abstractions and control
the execution. The Intermediate Language (IL) extends KLEE’s expression lan-
guage by adding advanced expressions such as quantified expressions, function
applications, etc., plus mechansims to evaluate these advanced expressions in
the execution engine. In Figure 2, we show the syntax of the primitive expres-
sions inherited from KLEE (left) and some advanced expressions introduced by
IL (right). Note that new abstract functions or operations are introduced.

3.1 Function Abstraction and Declarative Implementation

An abstraction records the abstract information about a function, while encapsu-
lating other details in a declarative implementation (DI). For example, function
find last of is abstracted as below, where i marks c’s position in the string, and
input pos specifies the first position to consider. Here i is either npos or an
unsigned integer less than the string’s length. When the executor encounters
this function, it adds into the current path condition the abstraction and an
invocation to the DI. The DI constrain the values of i and str in a declarative

Lazy Symbolic Execution through Abstraction and Sub-space Search 301

style, i.e. it captures the exact semantics: if i = npos, then c /∈ str; otherwise,
str[i] = ‘c’ ∧ ∀k > i : str[i] 	= ‘c’. Here primitive assume adds the constraint into
the current path condition, and test is similar but terminates the path if the
constraint is false. Note that find last of imp is marked LAZY so that the
symbolic executor will execute it later (e.g. at the end of a path).

size_t string::find_last_of(char c, size_t pos = npos) { // abstraction

size_t len = str.length(); pos = pos > len ? len : pos;

size_t i = _create_symbolic_variable(sizeof(size_t), "i");

_assume(i == npos || i < len);

_assume(find_last_of_imp(i, *this, c, pos));

return i;

}

// the following is the DI (declarative implemenation)

_LAZY void find_last_of_imp(size_t i, string& str, char c, size_t pos) {

for (size_t k = pos; k > 0; --k)

if (str[k-1] == c) { _test(i == k - 1); return; }

_test(i == npos);

}

We show below two other DI versions: the first one uses IL’s syntax parser
to introduce a built-in forall expression (assume IL accepts various argument
formats similar to printf); the second one specifies the DI as a recursion, whose
unrolling can be customized at run-time (see Section 3.2). Note that both the
abstractions and the DIs are directly specified in the source code.

_LAZY void find_last_of_imp_1(size_t i, string& str, char c, size_t pos) {

if (i == npos) _assume_IL("@x [0,%0] : %1[x] <> %2", pos-1, str, c);

else

{ _assume_IL("@x [%0,%1] : %2[x] <> %3", i+1, pos-1, str, c);

_test(str[i] == c); }

}

_LAZY void find_last_of_imp_2(size_t i, string& str, char c, size_t pos) {

if (pos == -1) { _test(i == npos); return; }

if (str[pos-1] == c) { _test(i == pos - 1); return; }

_assume(find_last_of_imp_2(i, str, c, pos - 1));

}

We show below the abstractions for exit 5. Figure 3 shows some other string
operations. Some length constraints are also used in [2]. For example, operator
A(s) introduces an integer variable for s to reason about the relation between
strings, e.g. s1 > s2 ∧ s1 < s2 is unsat since A(s1) > A(s2) ∧ A(s1) < A(s2) is unsat
for uninterpreted function A.

Abs.(Length constraints)
0 ≤ i < str.len ∧
i+ 1 + rest.len ≤ str.len ∧ 9 ≤ rest.len ∧
7 ≤ str.len ∧
t.len = i− 7 ∧ 4 ≤ t.len ∧
t′.len+ 4 ≤ t.len ∧ t′.len = 8

DI (Lazy function calls)
find last of imp(i, str, ‘/’) ∧
find imp(0, rest, “EasyChair”) ∧
compare imp(0, str, 0, 7, “http://”) ∧
compare imp(0, t, 0, 4,“www.”) ∧
eq imp(t’, “live.com”)

302 G. Li and I. Ghosh

Figures 3 and 4 show some example abstractions. For C++ set, elements are
associated with pointers (positions) as chars in a string; hence the abstraction is
somehow similar to the string case. To model the mutations better, we introduce
an “add” operator to model element insertion, and specify some DIs in recursive
form. An interesting point is that the abstraction of operation erase can use
function call find to facilitate subsequent query on the element. We give below
an example where the executor explores only one path to cover the target branch.

code: set<int> s; set<int>::iterator it;
s.insert(b); s.insert(c); s.insert(a); s.insert(a+1); cout � “s: ” � s � endl;
it = myset.find(a+2);
if (*it > 100 && s.size() > 3) // the target branch

cout � “found: a + 2 = ” � get solution(*it) � endl;

output: the set: a+ 1⊕ a⊕ c⊕ b⊕ {}
found: a+ 2 = 101

3.2 Sub-space Search with Early Termination

Let us consider exit 5 in the string example. With a valid assignment to the
numeric variables, e.g. str.len = 29 ∧ t′.len = 8 ∧ t.len = 12 ∧ rest.len = 9 ∧
i = 19, the executor can expand the DIs to obtain a valid string. It should be
noted that such assignment calculation is done implicitly, and the executor will
not enumerate concrete values. The executor will give a solution once all the
abstractions together with the explored parts of the DIs are found satisfiable.

Hence, the length constraints are the “initial” assumption of the search phase.
The DIs are symbolically executed one by one, each of which may result in
multiple paths. Once a path terminates normally (i.e. without violating any
test), the executor terminates this sub-space and returns a valid test case. For
instance, find last of imp is expanded to produce value constraints: str[19] =
‘/’∧ str[20] 	= ‘/’∧ str[17] 	= ‘/’∧ · · · ∧ str[28] 	= ‘/’. Finally we obtain a solution str
= “http://www.live.com/EasyChair”.

It is not uncommon that the search phase needs to explore more than one path
to find out a valid solution. For example, consider constraints t = “live.com” and
!t.compare(0,4,“www.”), the length constraints imply that t’s minimum length is
8; however it should be 12 when considering the string value. the executor will
find out this fact in the search phase, and try larger lengths. Here lazy execution
starts from length 8 rather than 0 (a substantial improvement already).

3.3 Sub-space Search with Abstractions

Eager execution spawn paths immediately, while in lazy execution, extra assump-
tions (e.g. abstractions) are used to rule out a portion of the invalid paths. Figure
5 gives two branching trees starting from a node with path condition pc. This
node spawns n paths with constraints C1

1 , . . . , C
1
n respectively. On the left, each

Lazy Symbolic Execution through Abstraction and Sub-space Search 303

Operation Abstraction Decl. Imple.

s[i] 0 ≤ i < |s| return (s[i])

s2 = s.concat(s1) |s2| = |s|+ |s1| ∀k ∈ [0, |s2|) : s2[k] = ite(k < |s|, s[k], s1[k])

i = s.lastIndexOf(c)
i = −1 ∨
(0 ≤ i < |s| ∧
s[i] = c)

(i = −1 ∧ ∀k ∈ [0, |s|) : s[k] 	= c) ∨
(0 ≤ i < |s| ∧ ∀k ∈ [i+ 1, |s|) : s[k] 	= c)

i = s.find(s′)
i = −1 ∨ 0 ≤ i∧
0 ≤ i ≤ |s| − |s′|

(i = −1 ∧ ∀k ∈ [0, |s| − |s′|) : s[k, k + |s′|) 	= s′)
∨ (0 ≤ i ≤ |s| − |s′| ∧ s[i, i+ |s′|) = s′ ∧
∀k ∈ [0, i) : s[k, k + |s′|) 	= s′)

s.substr(i1, i2) 0 ≤ i1 + i2 ≤ |s| return (s[i1, i1 + i2))

s = s1
|s| = |s1| ∧
A(s) = A(s1)

∀k ∈ [0, |s|) : s[k] = s1[k]

s > s1 A(s) > A(s1)
(|s| > 0 ∧ |s1| = 0) ∨ s[0] > s1[0] ∨
s[1, |s|) > s1[1, |s|)

Fig. 3. An example abstraction for string operations (excerpt). Operator || gives the
length of a string, s[i, j] gives a substring of s starting from position i and ending at
j; and s[i, j) = s[i, j − 1]. Operator A(s) introduces an integer variable for s. return
returns an expression as the result.

Operation Abstraction Decl. Imple.

S.insert(v) :
return (v ⊕ S, p)

∗p = v ∧ 0 ≤ p < |S|
insert imp(e⊕ S, v, p, k = 0) =
if e = v then p = k
else insert imp(S, v, p, k + 1)

p = S.find(v)
p = −1 ∨
0 ≤ p < |S| ∧ ∗p = v

find imp(e⊕ S, v, p, k = 0) =
if e = v then p = k
else find imp(S, v, p, k + 1) ∧

find imp({}, v,−1, k)

S1 = S.erase(v) S1.find(v) = −1 (∀p ∈ [0, |S|) : ∗p 	= v ⇒ ∗p ∈ S1)

Fig. 4. An example of abstracting C++ unsorted set (excerpt). We use p, S, k and v
to denote iterator (pointer), set, key, and value respectively. We use ⊕ for adding an
element in the front, ∗ for dereferencing an iterator, and {} for an empty set. A set
is a sequence of pointers indexing from 0; each pointer refers to an element. v ∈ S is
implemented by iterating over S’s elements.

node continues spawning and generates a large sub-tree of height k. The nodes
in each bottom sub-tree at the last level have constraints Ck

1 , . . . , C
k
m. There

are O(n× · · · ×m) paths, which is exponential to the height k. Suppose all the
leaf nodes except the rightmost one are invalid (marked by •), e.g. Ck

1 , . . . , C
k
m−1

conflict with pc, then only the rightmost path is valid (marked by ◦). In this case
exploring the others is fruitless. This can be avoided through the lazy method
shown on the right: the abstraction moves Ck

1 , . . . , C
k
m−1 to be closer to pc. Then

the first m − 1 paths are found to be invalid quickly at level 2, and all related
sub-trees are cut immediately. The number of visited paths is reduced by m− 1
times, e.g. if level k corresponds to a function with m = 1, 000 internal paths,
then we obtain a speed-up of 999x. Furthermore, the remaining sub-tree itself

304 G. Li and I. Ghosh

is also subject to lazy execution, hence we may need to explore only a couple of
paths. This can bring improvement of several orders of magnitude.

Here we introduce some notations to facilitate subsequent discussions. Expres-
sion (c1 +¬c1) · c2 describes a tree that first branches over condition c1 and then
encounters c2. Here operators · and + denote “fork” and “concat” respectively.
Obviously this expression equals to c1 ·c2+¬c1 ·c2. Notation Λ � Γ denotes the tree
Γ with abstraction Λ, i.e. the tree simplified under assumption Λ. For example,
c1 � (c1 + ¬c1) · c2 is c1 � c1 · c2 or simply c1 � c2. The number of visited paths
(including unsat paths) in a tree Γ is |Γ |, e.g. |(c1+¬c1) ·c2| = 2 and |c1 � c2| = 1.
The basic theorem about lazy execution is: ∀Λ, Γ : |Λ| × |Λ � Γ | ≤ |Γ |, hence
adding extra non-forking abstractions (i.e. |Λ| = 1) will not increase the number
of paths. This indicates that, with non-forking abstractions, the lazy approach
always performs better than the eager one w.r.t. path number.

As illustrated in Section 3.1, our abstractions are mostly non-forking logical
formulas. Even for forking ones, the conclusion is virtually the same since ab-
straction Λ’s paths usually exist in the original implementation Σ as well. That
is, (|Λ| ≤ |Γ1|) ⇒ (|Λ � Γ · Γ1| ≤ |Γ · Γ1|). The main overhead brought by abstrac-
tions is on the solver. Fortunately this overhead is marginal because (1) Λ are
light-weight constraints; and (2) KLEE uses many powerful optimizations such
as cache solving and independence solving that handle extra constraints well.

Does the quality of the abstractions matter? Let us consider two extreme
cases. First, if the abstractions contain no useful information (e.g. tautologies),
then the lazy method is the same as the eager one: | � Γ1| = |Γ1|. Second, if the
abstractions are precise, then there is no need to use the DIs to find out a valid
solution: |Γ1 � Γ1| = |Γ1|. In general, the more precise the abstractions are, the
faster a lazy executor can find the answer.

We give below some properties about lazy execution, where Γ1 � Γ2 denotes
that (1) Γ1 = Γ2 (i.e. they have the set of end paths), and (2) |Γ1| ≤ |Γ2|. This
indicates that Γ1 is a sound reduction of Γ2. These self-explanatory properties
specify how to introduce, lift and merge abstractions.

Abs. Intro.: (Γ ⇒ Λ) =⇒ Λ � Γ1 · Γ · Γ2 � Γ1 · Γ · Γ2

Abs. Absort: Λ1 � (Λ2 � Γ) ≡ Λ1 ∧ Λ2 � Γ
Abs. Union: Λ � Γ1 + Γ2 � (Λ � Γ1) + (Λ � Γ2)
Abs. Concat: Λ1 ∧ Λ2 � Γ1 · Γ2 � (Λ1 � Γ1) · (Λ2 � Γ2)

An important property about DIs is that their declarative style allows us to
exchange DIs and form DI groups based on dependency information, e.g. give
higher execution priorities to DI groups that will be more likely to incur path re-
duction. The executor can use simple heuristics for DI scheduling which include:
(1) grouping dependency DIs with respect to data dependency; (2) unrolling
recursive DIs partially based on look-up information, and grouping the rest; and
(3) searching the sub-space in favor of sub-trees with less dependency. Due to
space constraint we do not elaborate this optimization.

Example. Consider an example where a map is searched to find an element with
key s1 + s2 (here + adopts its C++ semantics to denote the concatenation of

Lazy Symbolic Execution through Abstraction and Sub-space Search 305

Eager: pc

C1
1

. . .

Ck
1

•

. . . Ck
m

•

. . .

. . .

. . .

•

C1
n

. . .

Ck
1

•

. . . Ck
m

◦

Lazy: pc

Ck
1

•

. . . Ck
m−1

•

Ck
m

C1
1

. . .

•

. . .

•

C1
n

. . .

◦

Fig. 5. Comparing lazy and eager execution

strings and characters). For brevity we ignore C++ iterators and the abstractions
over the map operations, and model the map as a sequence of (key,value) pairs:
(k1, v1) ⊕ (k2, v2) ⊕ The find operator can be specified in a functional style:
find(empty m, k’) = null ∧ find((k,v)⊕m, k’) = (if k = k’ then v else find(m,k’)).
Suppose we want to find an element with key s1+ s2 in the following map under
path condition s3.find(s2) = 1 ∧ s1[0] > ‘a′. An abstraction of this condition is
s2.len+ 1 ≤ s3.len ∧ s1.len > 0 ∧ s1[0] > ‘a‘ .

Key: s1 + s2 + s3 “A” + s1 + s2 s1 + s2[0] + “A” . . .

Value:

We can unroll the find function three times to match s1 + s2 over the first
three symbolic keys. Since the first key uses variable s1, s2 and s3, while the other
two use only s1 and s2, the search might be in favor of keys 2 and 3. For key 2,
the derived abstraction is 1 + s1.len+ s2.len = s1.len+ s2.len, which immediately
invalidates this case. The abstraction for key 3 is s1.len+ 1 + 1 = s1.len+ s2.len;
hence constraint s2.len = 2 is added into the path condition. Now s3.find(s2) = 1

can be unrolled to get s3[0, 1] 	= s2∧s3[1, 2] = s2. For this constraint together with
s2[0]+“A′′ = s2, the executor can quickly find a valid solution, e.g. s2 = “0A′′ and
s3 = “00A′′. Another DI “s1[0] > ‘a′” is executed next, where a valid assignment
to s1, e.g. s1 = “b′′, can be found by exploring only one path.

4 Evaluation Results

We run KLOVER on benchmark programs on a laptop with a 2.40GHz Intel
Core(TM)2 Duo processor and 4GB memory. We compare lazy execution with
eager execution, in terms of the number of visited paths and the execution time.

Results I: String Solving through Lazy Execution. We first test the main
benchmark program in [2]: example 1 described in Section 2. Table 1 compares
the results when using the default uClibc++ implementation, IL quantified ex-
pressions, or IL predicates. Both the value and the length of the string are
symbolic. Lazy execution can achieve much higher performance. The eager ap-
proach can also use “early termination” to make the execution reasonably fast

306 G. Li and I. Ghosh

Table 1. Experimental results on the string example for eager execution, lazy execution
with DIs using quantified expressions, lazy expressions with DIs defined in source. We
use “*” to mark the the cases where a fixed length is given to the input string to
avoid T.O (e.g. > 5 minutes) in eager execution. Time is measured in seconds. “E.T.”
indicates that the execution instance will terminate once a valid test is found.

Case Min. Len. Original Impl. Start Len. Method I Method II

- E.T. + E.T. DI w. Quant. Expr. DI in Source

Exit (Path) 1 0 <0.1s <0.1s 0 <0.1s <0.1s
Exit (Path) 2 1 <0.1s <0.1s 1 <0.1s <0.1s
Exit (Path) 3 10 0.1s <0.1s 10 <0.1s <0.1s
Imme. Path 1 17 5.2s∗ 1.8 17 0.1s 0.2s
Imme. Path 2 21 T.O∗ T.O 21 0.7s 1s
Exit 4, Path I 17 T.O∗ T.O 17 0.2s 0.3s
Exist 5, Path I 29 T.O∗ T.O 29 2.1s 2.5s

All 9 paths 32 T.O∗ T.O – 4.4s 5.7s

when a path condition is short; but it rapidly blows up when the path conditions
are complicated. This indicates that early termination is not the key reason why
lazy execution is much faster.

When the DIs are modeled using quantified expressions (e.g.
find last of imp 1), the execution is a little faster than the case where
DIs are modeled as predicates in source code (e.g. find last of imp). This is
because KLOVER is able to solve quantified expressions directly in the solver
rather than search the DI state space. Executing DIs may spawn many paths,
hence KLEE’s various search heuristics can be applied here (we use DFS only).
In addition, KLEE’s cache solver is essential to speed-up the solving since
these paths have similar path conditions. Note that KLOVER always finds the
minimum lengths.

We also test KLOVER on string sequences generated randomly. The operations
in each sequence are related by data dependency such that the result or the
side-effect of an operation may be used by subsequent operations. We are able to
obtain 10–500x speed-ups by adopting the lazy execution method. Moreover, the
longer a sequence is, the better lazy execution work. In general, using quantified
expressions in DIs works better for larger strings and longer sequences; but
defining DIs in the source code is more general and requires less support from
the executor and its solver. Note that the eager approach often times out, in
which case the lazy approach achieves higher speed-ups.

To summarize, with lazy execution we can define a built-in string solver that
can rival with external solvers [2,7,14,8]. In particular, the solver in [8] uses a
lazy solving technique to avoid fruitless iterations between the numeric domain
and the string domain. Our approach is general and flexible, e.g. easy to support
new operations or different operation semantics.

Results II: Road Test. Table 2 shows the results for 63 programs for unit
testing the STL library (e.g. from http://www.cplusplus.com/reference) and

http://www.cplusplus.com/reference

Lazy Symbolic Execution through Abstraction and Sub-space Search 307

Table 2. Road test results on programs for unit testing. “#path” gives the number of
valid paths.

Library #programs Original Method Lazy Execution Time Impr.

time #path time #path

bitset,set 10 141s 2,559 1.1s 23 128x
bitset2,container 15 >20m >35,200 9.4s 31 >127x

string 20 >20m >21,330 7.2s 35 >166x
regexp 8 >20m >37,100 47.5s 12 >25x

date,math 10 >20m >1,540 8.4s 39 >142x

user-defined data structures. We compare the original eager method and our lazy
method in terms of the completed paths leading to valid test cases. The original
method is given a 20-minute timeout. As shown in the table, the lazy method can
reduce the total execution time from around minutes to a few seconds without
losing source line coverage. In fact for those time-out cases, with lazy execution
we are able to not only finish the execution of all programs in reasonable time,
but also achieve higher coverage (10-30%) since more paths are visited using the
lazy method. In these unit-testing programs, typically 1-2 inputs are symbolic.

Results III: Lazy Execution for Small Programs. We test KLOVER on
programs using various data structures and multiple input variables. The data
structures include bitset, container, string, regular expression, date and user-
defined ones. We manually define their abstractions and DIs. Table 4 shows the
results for 5 programs (of small-medium size) developed by us. More complicated
programs often result in time-out even with the lazy execution method, hence
they are not the subject of the performance evaluation. The evaluation results
show that: lazy execution can reduce the number of paths and execution times
by 1-3 orders of magnitude for non-trivial programs. For example, when prog
1 has less symbolic inputs or elements, the eager method explores 16,384 valid
paths (and many more invalid paths) while the lazy method explores only 931
paths, among which 145 paths lead to valid test cases. These 145 tests consti-
tute a coverage-preserving subset of the 16,384 ones. The improvement is more
significant when more conflicts exist in the program such that many tentative
paths turn out to be unsat in the end.

Cost of Defing DIs. We observe that the more accurate and restrictive the
DIs, the faster our lazy method can find out the solutions and terminate the
execution. Defining abstractions and DIs in the IL is quite straight-forward,
however identifying the right abstractions requires efforts. Typically, it takes a
couple of hours to identify and specify non-trivial abstractions and DIs for a
library; and it takes a few hours to write test cases to verify and check their
correctness and efficiency. Fortunately, it is possible to use symbolic execution
or other symbolic techniques to (1) calculate program invariants [9], and (2)
check the correctness of likely invariants. It is also possible to derive predicates

308 G. Li and I. Ghosh

Table 3. Experimental results on programs using multiple libraries. T.O denotes a 10-
minute time-out. Eager “#path” gives the number of valid paths by the eager method;
lazy “#path” is of format valid path number / tried path number for the lazy method.
“Impr.” indicates the time improvement by the lazy method over the eager one.

Program Less Sym. Input/Element More Sym. Input/Element

Eager Lazy Impr. Eager Lazy Impr.

time #path time #path time #path time #path

prog. 1 398s 16384 17.1s 145/931 23.2x T.O >22100 40.3s 203/1651 >14.8x
prog. 2 T.O >34450 0.8s 9/88 ≥750x T.O >34460 2.1s 9/144 >285x
prog. 3 T.O >45780 29s 9/227 >26.7x T.O >38700 41.9s 14/344 >14.3x
prog. 4 324s 2940 4.3s 9/1851 75.3x T.O >2087 15.4s 9/6851 >77.9x
prog. 5 69s 625 4.9s 13/72 14.1x 195s 545 14.5s 53/155 13.4x

from the assembly or bytecode of a function and formally verify their correctness
automatically [13]. We plan to explore these directions to automatically derive,
refine and verify the abstractions and DIs.

5 Discussion and Conclusion

Lazy execution enables us to infer information about subsequent executions and
use it to prune useless and duplicate paths. A typical way to gather such informa-
tion is to apply static analysis on the source program [3]. In this paper we show
how to provide a general framework to use this information in symbolic execu-
tion. For example, KLOVER supports defining the information in an abstraction-
search architecture, and iteratively applies the declarative implementations to
search for a solution. KLOVER extends the engine’s kernel to introduce IL for
controlling lazy execution. This method is not only general but also efficient. For
example, KLOVER can reuse all facilities built in a high-performance executor
such as KLEE, e.g. use optimizations such as expression rewriting, value con-
cretization, constraint independence, etc., to process and solve IL expressions.

A main advantage of lazy execution is to avoid exploring many useless or
duplicate paths, and define sophisticated built-in solvers in the source code.
State merging techniques [4,11] have a similar purpose. However our method is
more systematic and may work better since it utilizes the information in the
very beginning and in a declarative way. There also exist some works on using
summaries in symbolic execution. For example, Anand et al. [1] found feasible
interprocedural program paths by composing symbolic executions of feasible
intraprocedural paths. They summarize procedures at various levels of detail and
of composing those using logic formulas in a demand-driven way. Godefroid et al.
[9] computed both may and must information compositionally and store them as
summaries, and use them to check specific properties and help directed testing.
In addition, Khurshid el al. [10] performed symbolic execution of commonly
used library classes at the abstract level only. Our abstraction-DI-search flow is
orthogonal to these methods.

Lazy Symbolic Execution through Abstraction and Sub-space Search 309

The most related work is [17] and [18]. The main goal of [17] is to handle
constraints involving data structures that cannot be handled by the solver, such
as pointers, non-linear constraints, hidden external functions. The basic idea is
to obtain concrete values in one run, then use these values to resolve complex
elements (e.g. non-linear functions) in subsequent runs. It contains no concepts
of abstraction, sub-space search, etc.

The lazy method in [18] first explores an abstraction of a function by replac-
ing each called function with an unconstrained input, then expands a (possibly
spurious) trace to a concretely realizable one by recursively expanding the called
functions and finding concrete executions. It two-phase execution scheme is sim-
ilar to ours, but it uses no predicate abstractions and DIs during the execution.

Our future work includes (1) identifying high-quality abstractions automati-
cally; (2) improving DI specification and sub-space search; and (3) testing larger
C/C++ programs.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 367–381. Springer, Heidelberg (2008)

2. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

3. Blanc, N., Groce, A., Kroening, D.: Verifying C++ with STL containers via pred-
icate abstraction. In: Automated Software Engineering, ASE (2007)

4. Boonstoppel, P., Cadar, C., Engler, D.: RWset: Attacking path explosion in
constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Operating Systems Design
and Implementation (OSDI) (2008)

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automati-
cally generating inputs of death. In: Conference on Computer and Communications
Security, CCS (2006)

7. Ganesh, V., Kieżun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.: HAMPI: A
string solver for testing, analysis and vulnerability detection. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 1–19. Springer, Heidelberg
(2011)

8. Ghosh, I., Shafiei, N., Li, G., Chiang, W.-F.: JST: An automatic test generation
tool for industrial java applications with strings. In: International Conference on
Software Engineering, ICSE (2013)

9. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: unleashing the power of alternation. In: Symposium on Principles
of Programming Languages, POPL (2010)

10. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

11. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Programming Language Design and Implementation (PLDI)
(2012)

310 G. Li and I. Ghosh

12. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Symposium on Code Generation and Optimization
(CGO) (2004)

13. Li, G.: Validated compilation through logic. In: Butler, M., Schulte, W. (eds.) FM
2011. LNCS, vol. 6664, pp. 169–183. Springer, Heidelberg (2011)

14. Li, G., Ghosh, I.: PASS: String solving with parameterized array and interval au-
tomaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 15–31.
Springer, Heidelberg (2013)

15. Li, G., Ghosh, I., Rajan, S.P.: KLOVER: A symbolic execution and automatic test
generation tool for C++ programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 609–615. Springer, Heidelberg (2011)

16. Li, G., Li, P., Sawaga, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
Concolic verification and test generation for GPUs. In: Symposium on Principles
and Practice of Parallel Programming (PPoPP) (2012)

17. Lin, M., Li Chen, Y., Yu, K., Shi Wu, G.: Lazy symbolic execution for test data
generation. IET Software 5(2), 132–141 (2011)

18. Majumdar, R., Sen, K.: LATEST: Lazy dynamic test input generation. Tech. Rep.
UCB/EECS-2007, EECS Department, University of California, Berkeley (2007)

19. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

20. uClibc++: An embedded C++ library, http://cxx.uclibc.org

Appendix

bool IsEasyChairQuery(string str) {
1: // (1) check that str contains "/" followed by anything
2: // not containing "/" and containing "EasyChair"
3: int lastSlash = str.find_last_of(’/’);
4: if (lastSlash == string::npos)
5: { printf("exit (path) 1 \n"); return false; }
6:
7: string rest = str.substr(lastSlash + 1);
8: if (rest.find("EasyChair") == -1)
9: { printf("exit (path) 2 \n"); return false; }
10:
11: // (2) Check that str starts with "http://"
12: if (str.compare(0, 7, "http://"))
13: { printf("exit (path) 3 \n"); return false; }
14:
15: // (3) Take the string between "http://" and the last "/".
16: // if it starts with "www." strip the "www." off
17: string t = str.substr(7, lastSlash-7);
18: if (!t.compare(0,4,"www.")) { t = t.substr(4); // imme. path 2}
19: // imme. path 1
20: // (4) Check that after stripping we have either "live.com" or "google.com"
21: if (!(t == "live.com") && !(t == "google.com"))
22: { printf("****** exit (path) 4 ****** \n"); return false; }
23:
24: printf("****** exit (path) 5 ****** \n");
25: return true;
}

Fig. 6. The full motivating example I: a C++ version of the example program in [2]

http://cxx.uclibc.org

SPIN as a Linearizability Checker

under Weak Memory Models�

Oleg Travkin, Annika Mütze, and Heike Wehrheim

Institut für Informatik
Universität Paderborn, Germany

{oleg82,amuetze,wehrheim}@upb.de

Abstract. Linearizability is the key correctness criterion for concurrent
data structures like stacks, queues or sets. Consequently, much effort has
been spent on developing techniques for showing linearizability. How-
ever, most of these approaches assume a sequentially consistent memory
model whereas today’s multicore processors provide relaxed out-of-order
execution semantics.

In this paper, we present a new approach for checking linearizability
of concurrent algorithms under weak memory models, in particular the
TSO memory model. Our technique first compiles the algorithm into
intermediate low-level code. For achieving the out-of-order execution,
we (abstractly) model the processor’s architecture with shared memory
and local buffers. Low-level code as well as architecture model are given
as input to the model checker SPIN which checks whether the out-of-
order execution of the particular algorithm is linearizable. We report on
experiments with different algorithms.

1 Introduction

With the increased usage of multicore processors concurrent data structures im-
plementing stacks, queues or sets find their way into standard programming
libraries (e.g., java.util.concurrent). To allow for a high degree of con-
currency these often restrict locking to small parts of the data structure or even
completely dispose with locking. However, the performance gain achieved by
such lock-free algorithms often comes at the price of an increased complexity
in verification: The intricate interplay between concurrent processes makes such
algorithms particularly hard to prove correct.

The standard correctness criterion for concurrent data structures is lineariz-
ability [11]. A fine-grained implementation of a data structure (e.g., an imple-
mentation of a stack by a linked list) is linearizable if its operations (e.g., pop
and push) appear to be atomic. As Herlihy and Wing put it, ”they seem to take
effect instantaneously at some point in time” [11]. This is an important charac-
terization as most proof techniques rely on fixing this point in time, also called

� This work has been partially funded by the German Research Foundation (DFG
LINA, WE 2290/8-1).

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 311–326, 2013.
c© Springer International Publishing Switzerland 2013

312 O. Travkin, A. Mütze, and H. Wehrheim

the linearization point (LP). In addition, linearizability definitions assume to
have an abstract model of the data structure at hand (for comparison) in which
all operations are executed atomically.

Today, a vast amount of techniques is available for showing linearizability,
ranging from manual proofs (usually done by the algorithm designers), to model
checking [20] and theorem proving [16,19]. These techniques mostly assume a
sequentially consistent (SC) memory model [14]: statements in a sequential pro-
gram are executed in program order; an execution of a concurrent program is
an interleaving of the sequential program orders. However, multicore processors
like x86, SPARC, POWER provide relaxed out-of-order executions [1]. These
arise because – besides main memory – the cores possess local store buffers, and
thus reads and writes to shared variables become visible to processes in different
orders. In recent years, a large amount of work has been done on formalising
the semantics of such weak memory models [17,2], on checking robustness of al-
gorithms against reordering [3] and on model checking under relaxations [5]. To
the best of our knowledge, there is only a single approach for checking lineariz-
ability under relaxed memory models [4]. The approach, which has also been
applied in an SC setting [6], proceeds by having a model checker generate all
concurrent and sequential histories (roughly, sequences of invokes and returns),
and afterwards employing a particular check procedure for comparing them with
respect to linearizability. To this end, the model checker needs to have a state
variable for storing histories. A similar approach to checking linearizability based
on recording histories (for SC executions) has been proposed in [20].

compile
and

transform

Program
(C,C++,...)

Semantics
(SC or TSO)

Program
Model

Instrumented
Programcombine Linearizability

check

Abstract Model
and LPs

Test
Scenario

Fig. 1. Approach overview

In this paper, we present a new approach to checking linearizability under
weak memory models which avoids the overhead of recording histories. In con-
trast to [4,20], we use the model checker to generate the state space as well as
to carry out the linearizability check. Alike them, we use finite1 test scenarios
specifying particular usages of the concurrent data structure to limit state space
exploration. To faithfully model out-of-order executions, we compose the sce-
nario and the data structure with a model of the processor’s architecture. This
model includes local store buffers and the main memory, and provides opera-
tions for local reads and writes as well as memory fences (operations carrying
out buffer flushes). To allow for a precise interaction with this model, we need
exact information about the read and write operations in our algorithms. To

1 The scenario has to be finite in terms of observable states.

SPIN as a Linearizability Checker under Weak Memory Models 313

Core 1 Core n

FIFO
Write
Buffer

FIFO
Write
Buffer

Shared Memory

...

Fig. 2. TSO architecture as it is com-
mon for x86-based multicore processors

Initially : x = 0 ∧ y = 0

Process 1

write(x , 1);
read(y , r1);

Process 2

write(y , 1);
read(x , r2);

r1 = 0 ∧ r2 = 0

Fig. 3. Test program for detection of
Write → Read reordering, also known as
litmus test

this end, the algorithms (written in high-level languages like C or C++) are
compiled into intermediate code by the LLVM compiler framework. Then the
intermediate code (LLVM IR) is transformed into input for the model checker
(which in our case is SPIN [12]). The model checker runs this code, and checks
whether the operation conforms to its abstract model at all linearization points.
Thus, our approach relies on a priori fixing linearization points. This is the price
we pay for dispensing with history recordings. Although the idea of performing
checks against an abstract model is not new, we are the first to combine such
checks in a model checking framework with weak memory model semantics. The
whole approach is summarized in Figure 1.

We have experimented with a number of algorithms, both ones being lineariz-
able in SC as well as ones known to exhibit incorrect behaviour under weak
memory models. Besides providing a linearizability checker, one contribution is
also a Promela model of weak memory which is ready to be used for arbitrary
property verification of concurrent algorithms.

2 Modelling Memory Model Behavior in SPIN

In our approach, a memory model is part of the input to the model checker
SPIN. Currently, we offer two memory models: Sequential Consistency (SC) and
Total Store Order (TSO). SPIN supports SC execution semantics, i.e., program
order of each process is preserved during execution and concurrency is achieved
by interleaving of all processes. Hence, support of SC as a memory model is
straightforward. However, one of our design goals was to allow to switch between
several memory models. In the following, we explain the relaxations introduced
by TSO and our implementation of it.

TSO Architecture and Its Behavior. TSO allows two relaxations compared
to SC. First of all, program order is not guaranteed. In particular, writes may
appear as if they were executed after a later read, i.e., the orderWrite → Read is
relaxed. However, instructions can only be reordered if they are independent, i.e.,
if a write and its following reads access different addresses. Figure 2 illustrates the
architecture of a modern multicore processor providing a TSO memory model.

314 O. Travkin, A. Mütze, and H. Wehrheim

Write Buffer Process 2

loop {
:: read
:: write
:: flush
:: cas
:: fence

}

ss #23

n #3

val 5

...

Write Buffer Process 1

loop {
:: read
:: write
:: flush
:: cas
:: fence

}

ss #23

n #3

val 5

...

Process 2

read(head, r1)
write(ss, r1)
read(ss, r2)
...

Process 1

read(head, r1)
write(ss, r1)
read(ss, r2)
...

1
8

2
#23

3
16

4
#6

5
#3

6
2

7
#1

...

instruction
forwarding

write to /
read from

response

Memory

Fig. 4. Simulating TSO behavior by use of write buffer processes

Each processor has a write buffer to store its writes before they are flushed to the
shared memory, i.e., the writes are pending, and subsequent read access may be
granted before write access. Hence, reads can be executed while an earlier written
value is still pending and the instructions appear to be reordered w.r.t. program
order. Figure 3 shows a test program for detection of this behavior. Initially both
shared variables x and y hold the value 0. The test detects reordering if both
registers have values r1 = 0 ∧ r2 = 0 at the end of its execution and hence at
least one process must have had its instructions reordered. Simple interleaving,
as in an SC setting, does not allow this outcome.

A second relaxation allows processes to read their own writes early. If a write
buffer contains a pending write to an address requested by a read, the value from
the buffer is read. This behavior is called early-read [1] or also Intra-Process-
Forwarding [13], because a reading processor is allowed to see its own writes
before they are committed to the memory and hence before other processes can
see them.

TSO as a Promela Model. In order to allow for flexibly switching between
different memory models, we separate program specification from the underlying
memory model and define an interface between both. Hence, a single program
specification can be reused for checks against different memory models. As an in-
terface we use a basic set of memory instructions as supported by most common
processors. Each memory model specification implements inline statements for
each type of instruction to define its semantics. To make sure that the memory
model semantics is used, a program has to be specified in terms of the inline state-
ments for the instructions. Thus, a program has no direct access to the memory,
but only accesses it through the inlined instructions. Inlines are automatically
replaced by the respective definitions from the memory model specification be-
fore runtime. The main memory is implemented by an array of statically fixed
but adjustable length.

Write buffers introduce non-deterministic behavior by delaying writes. We
model this non-determinism by assigning a dedicated write buffer process to each

SPIN as a Linearizability Checker under Weak Memory Models 315

inline read(addr, register) {
atomic {
ch ! R, addr, NULL, NULL;
ch ? R, addr, register , ;
}

}

Fig. 5. Inline statement for read in-
struction; executed by program process

do
: : ch? R, addr, value , → execRead;
: : ch? W, addr, value , → execWrite;
: : ch? CAS, add, old , new → execCAS;
: : ch? F, , , → execFence;
: : buffer �= ∅ → execFlush ;

od

Fig. 6. Selection of next action; executed
by write buffer process

program process. Figure 4 shows the basic components of a verification model.
A program is defined within a process using the instruction set as defined by the
memory model specification. Control flow and process local operations can be
modelled in terms of regular Promela2 statements because they are not visible
to other processes. Memory instructions, such as read or write, are forwarded
to the write buffer process via a synchronous channel that is dedicated to both
processes only. The write buffer process stores pending writes as an address-
value pair in an array-based FIFO queue and implements the actual execution
of program instructions. Our model produces an error for full buffers in order to
avoid loss of observable behavior. Larger buffers allow for more instructions to be
reordered and hence may reveal behavior that is not observable in combination
with small buffers. The execution of program instructions is performed in a loop,
in which the write buffer process reacts to incoming messages. Messages encode
the type of instruction that is to be executed as well as parameters that are
necessary for its execution.

Instruction Forwarding and Execution. In our TSO model, inlines of the
program process basically forward the actual execution of an instruction to the
write buffer process. The actual execution is defined in the write buffer process.
Figure 5 shows the inline statement for a read instruction. The part shown
in the figure is executed in the program process. A read request (encoded by
message type R) for a particular address addr is send to the write buffer process.
Variable register is used to store the received value in a process local variable.
A loop in the write buffer process (see Fig. 6) implements a non-deterministic
choice between several actions. An incoming message triggers the execution of
the instruction by the write buffer process. Note, that the communication for
the read instruction is a two-way communication and it is performed atomically.
Atomic steps in SPIN are allowed to pass control flow to other processes, e.g.,
via synchronous communication. When a process reaches the end of its control
flow, the control flow is returned to the initiating process. No other non-involved
processes can execute during this step and hence atomicity is preserved although
several processes are involved in an atomic step.

Our memory model offers a basic set of memory instructions, which is also
the interface to program specifications:

1. read(addr , reg): read from memory address addr into register reg

2 Promela is the input specification language for the model checker SPIN.

316 O. Travkin, A. Mütze, and H. Wehrheim

2. write(addr , reg): write value reg to memory address addr
3. mfence(): causes a buffer to flush its content to memory3

4. CAS(addr , oldReg, newReg, resReg): compares memory value at address
addr with value oldReg. Swaps memory value at addr with value newReg if
compared values are equal. Fail or success is returned to resReg.

An overview of the communication structure (including the involved steps)
between program and write buffer processes is given in Figure 7, where 1) shows
the execution of a read instruction. The instruction is performed atomically,
i.e., request, fetching the value from the buffer or memory, and response are
performed in one single step. 2) shows the execution of write. A write message

Program Write Buffer

atomic ! write
? write

enqueue

flush

Program Write Buffer

atomic ! CAS ? CAS

? CAS ! CAS

execute

flushflush

Program Write Buffer

atomic ! read
? read

? read
! read

fetch value

1) 2)

4)

Program Write Buffer

atomic ! fence
? fence

flushflush

3)

Fig. 7. Structure of communication between program and write buffer

is send to the write buffer process, which enqueues the address-value pair in its
queue immediately. To model the delay of writes by a write buffer, the address-
value pair is allowed to stay in the buffer for an unlimited amount of time until
it is flushed. A flush commits a pending write from the buffer to the memory.
Since the buffer implements a FIFO queue, the flushed write is always the oldest
pending write. However, a flush can only be performed on a non-empty buffer.
If the buffer is flushed immediately after enqueueing a write, the observable
behavior is equivalent to a direct write to the memory.

3) shows the execution of a fence instruction. Fences are used to avoid re-
ordering of program instructions. To achieve that, the write buffer is emptied
by a sequence of flush steps, all of which are executed within one single atomic
step. Note, the buffer process may flush non-deterministically during program
execution. Hence, no behavior is lost by executing the fence atomically.

4) shows the execution of an atomic CAS. After receiving a CAS request the
write buffer is emptied in order to avoid reordering with pending writes and

3 Real processors have further kinds of fences. However, we use mfence only, because
it captures the semantics of the other more specific fences.

SPIN as a Linearizability Checker under Weak Memory Models 317

hence to avoid violation of atomicity of CAS. When the buffer is empty, the
actual CAS instruction is executed, which may or may not modify the memory.
In the same step a response of success or failure is send to the program process,
which stores the result in program local register variable.

So far, we have defined the semantics of a TSO architecture and a basic low-
level interface similar to instructions as they are offered by common processors.
In the following, we will use the interface to compose program specifications.

3 Program Encoding

One objective of our approach is to enable verification of programs written in
several languages. Since memory models are defined for low-level instructions
[1,17] similar to assembly languages, a program needs to be compiled before
verification. In our approach, we use the LLVM4 compiler framework, which
transforms a program into an intermediate representation (LLVM IR) before a
final transformation towards an executable. The intermediate representation is
used for static program analysis and for optimization of the program. We reuse
the intermediate representation for verification of the program. Using LLVM has
two advantages over other compilers: 1. LLVM supports compilation of many
languages and hence ensures a broad applicability of our verification approach.
2. The intermediate representation is easier to understand than assembly code,
because it preserves variable and function naming in the code. We extract the
Promela model from the LLVM IR code of a program. Currently this task is
manual, but we plan to automate it in future extensions. The LLVM IR code is
already low-level code and hence consists of instructions syntactically close to
our memory interface (see Section 2). We use a C++ implementation of a stack
to present the program transformation steps.

class Node { class Stack {
public: public:

Node() : val (0) {}; Node∗ head;
int val ; void push(int) ;
Node ∗next ; Node∗ pop() ;

}; };

void Stack : :push(int v) { Node∗ Stack : :pop() {
Node ∗n, ∗ss ; Node ∗ss , ∗ssn ;
n = new Node; do {
n−>val = v; ss = head;
do { i f (ss ==NULL)

ss = head; return NULL;
n−>next = ss ; ssn = ss−>next;

}while (0 ==CAS(&head, ss , n)) ; }while (0 ==CAS(&head, ss , ssn)) ;
} return ss ;

}
Fig. 8. C++ implementation of the Treiber stack [18]

The code in Figure 8 implements a Treiber stack [18], which is known to be
linearizable [9] for SC. It is a list-based implementation and relies on the fine-
grained synchronisation primitive compare-and-swap (CAS). A Node stores an

4 www.llvm.org

www.llvm.org

318 O. Travkin, A. Mütze, and H. Wehrheim

define %Node* @_ZN5Stack3popEv(%Stack* %this) {
entry:
%retval = alloca %Node*
%this.addr = alloca %Stack*
%ss = alloca %Node*
%ssn = alloca %Node*
store %Stack* %this, %Stack** %this.addr
%this1 = load %Stack** %this.addr
br label %do.body

do.body:
%head = getelementptr %Stack* %this1, i32 0, i32 0
%0 = load %Node** %head
store %Node* %0, %Node** %ss
%1 = load %Node** %ss
%cmp = icmp eq %Node* %1, null
br i1 %cmp, label %if.then, label %if.end

if.then:
store %Node* null, %Node** %retval
br label %return

if.end:
%2 = load %Node** %ss
%next = getelementptr %Node* %2, i32 0, i32 1
%3 = load %Node** %next
store %Node* %3, %Node** %ssn
br label %do.cond

do.cond:
%head2 = getelementptr %Stack* %this1, i32 0, i32 0
%4 = bitcast %Node** %head2 to i32*
%5 = load %Node** %ss
%6 = ptrtoint %Node* %5 to i32
%7 = load %Node** %ssn
%8 = ptrtoint %Node* %7 to i32
%9 = cmpxchg i32* %4, i32 %6, i32 %8 seq_cst
%10 = icmp eq i32 %9, %6
%conv = zext i1 %10 to i32
%cmp3 = icmp eq i32 0, %conv
br i1 %cmp3, label %do.body, label %do.end

do.end:
%11 = load %Node** %ss
store %Node* %11, %Node** %retval
br label %return

return:
%12 = load %Node** %retval
ret %Node* %12

}

Fig. 9. LLVM-IR code for pop operation
from Figure 8; slightly simplified for brevity

inline pop(returnvalue)
{
short retval, head, head2, thisAddr,
ss, ssn, this1, v, v0, v1, v2, v3, v4,
v5, v7, v9, v11, next;

entry:
atomic {
alloca(Ptr, retval);
alloca(Ptr, thisAddr);
alloca(Ptr, ss);
alloca(Ptr, ssn); }
write(thisAddr, this);
read(thisAddr, this1);

doBody:
getelementptr (Stack, this1, 0, head);
readPopFail (head, v0);
write (ss, v0);
read(ss, v1);
if
:: ss == NULL -> write(retval, NULL);

goto retLabel;
:: else -> skip;
fi
->

ifend:
read (ss,v2);
getelementptr (Node, v2, 1, next);
read (next, v3);
write (ssn, v3);

doCond:
getelementptr(Stack, this1, 0, head2);
read (ss, v5);
read (ssn, v7);
casPop(head2, v5, v7, v9);
if
:: v9 == false -> goto doBody
:: else skip;
fi
->

retLabel:
read(ss,v11);
write(retval, v11);
returnvalue = v11;

}

Fig. 10. Promela model for the
code in Fig. 9

integer value and a next-pointer to the next element in the list. The head-pointer
of Stack points to the top element of a stack. Note that the loop in the method
push (pop) tries to replace the head-pointer with a new value (the value of next).
The CAS is successful, if no other process replaces head in the time between
the first read of head and the CAS attempt. Each new loop iteration retries to
perform the CAS until it is successful or, in case of pop, the stack is empty.

Promela Model of the Program. In order to verify program correctness
under a particular memory model, we need a low-level representation of the pro-
gram. For this, the program has to be compiled. An excerpt, the pop operation,

SPIN as a Linearizability Checker under Weak Memory Models 319

of the compiled stack implementation from Figure 8 is shown in Figure 9. We
slightly reduced the representation by removing additional instruction param-
eters for brevity (e.g., alignment). A manually transformed Promela model for
the pop operation is shown in Figure 10.

The LLVM IR code is structured by operations and labeled blocks. An op-
eration may contain several blocks. We tried to preserve this structure during
transformation by defining inlines for operations and creating similarly labeled
blocks. The instructions load, store and cmpxchg correspond to read, write and
CAS instructions in our memory model (see Section 2). Depending on its pa-
rameters a branching instruction br represents a conditional or unconditional
goto. Instruction alloca allocates memory and getelementptr is used for pointer
computation, e.g., to determine the memory address of a particular attribute
of an object. Variables in LLVM IR are prefixed by % for register variables
and by @ for static variables. Note that memory addresses are stored within
registers (as well as their values) and hence instruction parameters are always
register variables or primitive values. For readability and understandability, we
preserve variable naming during transformation.5 Pointer casts are ignored dur-
ing transformation, e.g., ptrtoint, because the memory address does not change
for pointers of different types. Hence, the Promela model has fewer variables
than the LLVM IR code. However, the word size of a read may vary with the
pointer type (32bit, 64bit or more) and can lead to non-atomic reads for larger
word sizes. Our model assumes atomicity of a read and hence is only valid if
all reads of a program can be performed atomically, which is the case for the
Treiber stack.

Memory Layout and Type Information. Low-level programs have to allo-
cate memory. In order to simulate memory allocation in our model, there are two
options: 1. Manually reserve portions of memory for each variable, which must
be adapted whenever a test scenario is changed, e.g., number of operation calls.
2. We define some allocation mechanism, which performs allocation automati-
cally. In order to allow simple application of our approach, we chose the latter.
Type information is encoded as an integer indicating the length of an object
in the memory array. A pointer Ptr has length one to store the pointer value.
Similarly, a Stack instance has length 1, because it has exactly one head pointer
to the top element. A Node instance has length 2. To store a Node instance, two
array slots are necessary, one to store the element value and another one to store
a pointer reference to the next node.

Memory allocation is implemented by a counter pointing to the next free
memory slot. An alloca instruction increments the counter by the amount of
slots to reserve after assigning the counter value to its second parameter, which
becomes a pointer pointing to a free memory slot. Allocated memory is never
freed in order to avoid the complexity inherent to a garbage collection mech-
anism. Hence, our model excludes the ABA problem as it is closely related to

5 We prefixed nameless register variables (e.g., %1, %2,. . .) with “v” in our program
specification in order to fit to Promela syntax.

320 O. Travkin, A. Mütze, and H. Wehrheim

the memory reclamation of a garbage collector. To access a particular attribute
of an object, e.g., next pointer of a Node, the memory location containing the
attribute must be computed. This computation is a simple offset computation
which is local and is performed by getelementptr. Since different programs use
different types, the instructions alloca and getelementptr must be adapted for
each program and hence are part of the program model, although they can be
seen as a part of the interface introduced in Section 2.

With this encoding of type information, we can model dynamic allocation of
memory and avoid the effort of manually allocating memory for each test sce-
nario. However, dynamic memory allocation results in different possible memory
distributions due to interleaving and increases the number of observable states.
More important, it usually does not affect correctness of the program. To reduce
possible memory distributions in our Promela model, we allocate memory in
atomic blocks. A fully static memory allocation would be optimal, but it would
require us to allocate memory manually. The effort for creation and adaption of
test scenarios would increase by far.

#include "tso.pml"
proctype process1(chan ch){

short returnvalue;
push(this, 42);
pop(returnvalue);

}

init{ atomic{
alloca(Stack, this)
run process1(channelT1);
run bufferProcess(channelT1);
run process1(channelT2);
run bufferProcess(channelT2);

}}

Fig. 11. Test scenario: two processes performing push and pop operations under TSO

Towards Verification. So far, we have defined an interface between memory
models and program models. The program model is defined in terms of the in-
terface provided by memory models and hence executes with the semantics as
defined by a memory model. In order to start verification of correctness proper-
ties, we have to compose test scenarios, i.e., define which instructions a process
should execute and under which memory model. The test scenario composition
is straightforward in the sense that processes have to be defined as well as their
initialisation. The underlying memory model is specified by an include instruc-
tion. Figure 11 shows a process definition on the left, which performs a push
operation followed by a pop operation. The initialisation on the right simply
allocates memory for a stack that is used throughout the test and starts pairs
of program processes (process1) and write buffer processes (bufferProcess).

4 Checking Linearizability

Earlier sections have presented the construction of a program model and its com-
bination with TSO execution semantics. In the following, we enrich the resulting
model with correctness checks in order to identify violations of linearizability.

Linearizability is expressed in terms of histories of events, where the events
are invocations and returns of operations. Roughly speaking, if all concurrent
histories produced by an implementation have a matching sequential history of

SPIN as a Linearizability Checker under Weak Memory Models 321

the abstract sequential specification, then the implementation is linearizable. In
the original setting [11], ”matching” is defined by (a) the sequential history hav-
ing exactly the same invocations and returns as the concurrent history, and (b)
the ordering between non-overlapping operations to be kept. Two operations do
not overlap if the return of the first precedes the invocation of the second. A
consequence of this definition is that the implementation looks as though the op-
eration takes effect instantaneously at some point in time, this point being called
the linearization point (LP). For weak memory models it is now condition (b)
which becomes less clear: what do we mean by non-overlapping? In sequentially
consistent memory, an operation has definitely finished when it has returned;
in weak memory, an operation has only definitely finished when its results have
been flushed, which might actually happen after the return (delayed writes).

reads OP1

OP1

writes OP1

reads OP2

writes OP0

reads OP0

OP0 OP2SC

TSO

Inv OP1

Inv OP1 Ret OP1

Ret OP1

writes OP2

flushInv OP1 flushRet OP1

Fig. 12. Comparison of operation execution by one process for SC and TSO

Therefore, recently, two new definitions of linearizability for TSO were pro-
posed [4,10], none of which we are however going to use. The first one [4] (TSO-
to-TSO linearizability) considers the delay of writes by enriching the histories
with two new events. The events mark the beginning (flushInv OP1) and the
end (flushRet OP1) of an execution interval, in which writes of an operation are
flushed, see Figure 12. The core of the definition in [4] is to preserve the order
of Ret or flushRet events and their following Inv or flushInv events in the his-
tory produced by the abstract sequential specification. In order to produce such
a history, the abstract sequential specification is executed on a TSO memory
model as well and hence can be subject to errors due to TSO-behavior itself.
A second definition [10] (TSO-to-SC linearizability) rather sticks to the original
definition [11] and considers the order of Ret and Inv events only. Hence, the
implementation has to have its LP within the interval between Inv and Ret ,
which is equivalent to allowing behavior that is observable on SC only. To make
implementations in which the effect of an operation can take place between Ret
and flushRet linearizable under this criterion, the authors propose to weaken the
abstract sequential specification by allowing operations to fail for no reason.

We do not use the first definition because it does not keep the essential idea
behind proving linearizability, namely that once linearizability has been proven
the programmer can think of such operations as behaving like atomic operations.
We do not use the second definition because we always want to start with the
established sequential specification of the data structure (a push is a push, and
not sometimes a push and sometimes an empty operation), and our linearizabil-
ity check should detect whether the implementation running on TSO deviates
from this specification. Nevertheless, our notion of linearizability is close to the

322 O. Travkin, A. Mütze, and H. Wehrheim

definition by Gotsman et al., and hence also to the original one, it only differs
in the sense that we consider the full execution interval of an operation running
on TSO. Regarding Figure 12, the full execution interval of OP1 is the interval
between InvOP1 and flushRetOP1. Two operations being non-overlapping thus
means that the return or flushReturn (whatever is later) of the first operation
needs to preceed the invocation of the second. This is the ordering which has to
be kept when finding a matching sequential history.

In order to check for our notion of linearizability with SPIN, we use a Promela
model of the sequential abstract specification of the data structure in which all
operations are atomic. By executing operations of this sequential data structure,
we therefore get sequential histories. We assume that the implementations of the
data structures have linearization points (LPs) which have a fixed position in the
code, i.e., belong to particular program statements. This is an assumption which
is true for a large number of concurrent data structures, e.g., Treiber Stack [18]
or MS Queue [15], but not for all. Our linearizability check now makes use of the
knowledge about LPs: whenever the implementation executes an LP, we also ex-
ecute the corresponding atomic operation on the abstract data structure. When
these two statements (the LP statement and the abstract operation) disagree
in the result returned by an operation, the current execution is not linearizable
with this LP. If they always agree, the sequence of abstract operations gives us
the sequential history we look for.

In case of our stack, agreement or disagreement can be checked by comparing
the values returned by pop operations: if the pop LP in the implementation ex-
tracts a value from the list which is not equal to the return value of the abstract
pop on a stack, the implementation is not linearizable. Thus it is the pop oper-
ation which acts as an observer for the correctness of previous push operations.
For the push, the LP in the implementation and the atomic push on the stack
are just executed together; no check is necessary here since the push operation
is not returning a value. In order to carry out this check of agreement between
implementation and abstract data structure, the low-level operations have to
be instrumented such that the corresponding abstract operation is executed at
the LPs. Next, we first describe how we model the abstract data structure in
Promela, then the instrumentation of the implementation and finally give some
results of an experimental evaluation.

Abstract Model. For the linearizability check, we use an abstract atomic
model of the data structure which is shared by all processes. For each LP of
the implementation, we create an abstract atomic operation. If an operation
has more than one LP, e.g., one LP for failure and one for success, we encode
separate abstract operations w.r.t. the behavior at the LP. Abstract model and
implementation model are wired during the instrumentation, which is explained
in Section 4.

For the stack example, we use the abstract model in Figure 13. An array
is used to store stack content with up to SSIZE elements. The variable asTop
always has the index value of the first free slot in the stack array. For each LP

SPIN as a Linearizability Checker under Weak Memory Models 323

#define SSIZE 4
short asStack[SSIZE];
short asTop = 0;

inline asPopSucc(asValue) {
atomic {
asTop--;
assert (asStack[asTop] == asValue);
asStack[asTop] = 0;

}
}

inline asPopFail() {
assert (asTop == 0)

}

inline asPush(asValue) {
atomic {

assert (asTop < SSIZE)
asStack[asTop] = asValue;
asTop++;

}
}

Fig. 13. Abstract stack model; allows to stack up to SSIZE elements

of the Treiber stack we define an inline. The Treiber stack has three LPs [8],
one for push and two for pop. Both push and pop have their LPs at the CAS
instruction, if the CAS execution is successful. A pop operation can fail if the
stack is empty. In this case, the LP is the first read of variable head. Assertions
to ensure consistency of implementation and abstract model are included in the
inline definitions. Variable asValue is used to forward the input value (in case of
push) from the implementation to the abstract stack or the result value (in case
of pop). Finally, we need to instrument the implementation in order to execute
the abstract model at the LPs.

Instrumentation for Linearizability Checking. So far, we have provided a
stack implementation model that is executed w.r.t. TSO memory model seman-
tics and an abstract model of the stack. For a linearizability check, both models
must pass the LP synchronously. Hence, both models have to execute a low-
level instruction for the LP together with the corresponding abstract operation
atomically. However, we cannot always put an atomic block around a low-level
instruction in the program model followed by an abstract operation to achieve
this. Instructions can be delayed by write buffers, which would be prevented by
an atomic block.

inline readPopFail(addr, target)
{

atomic{
ch ! R, addr, NULL, NULL;
ch ? R, addr, target, NULL;
if

:: target == NULL -> asPopFail();
:: else -> skip;

fi
}

}

inline casPop(addr, old, new, return)
{

atomic{
ch ! CAS, addr, old, new;
ch ? CAS, addr, return, _;
if

:: return -> asPopSucc(memory[old]);
:: else -> skip;

fi
}

}

Fig. 14. Instrumentation of LPs for the pop operation

Hence, instead of wiring both models at the program level, we extend the
semantics model. The idea is not to change the execution semantics of the mem-
ory model, but to find the right step to perform the abstract operation. In other
words, we define copies of existing instruction definitions and customize them
for each LP. Afterwards, we replace the standard instructions by the customized
instructions at LPs in the program model. In Figure 14 two customized instruc-
tion definitions for the LPs of the pop operation are shown. Both replace the

324 O. Travkin, A. Mütze, and H. Wehrheim

standard instructions (read and cas) in the model in Figure 10, readPopFail in
the doBody block and casPop in the doCond block. Since both instructions are
atomic, we can add the instrumentation code to the atomic block of the corre-
sponding instruction. Depending on the instruction result the LP is reached and
hence, the abstract operation is triggered. In case of the read instruction the LP
is reached, if the read value is NULL. In case of the CAS, the LP of the pop
operation is a successful execution of CAS.

Writes have to be instrumented differently from reads and CAS instructions.
Because a write becomes visible to other processes during its flush into memory,
the actual LP is the flush. Hence, the abstract operation has to be performed
during the flush of the write. For correct instrumentation of LPs corresponding
to writes, the flush semantics need to be extended, s.t. flushing a write cor-
responding to an LP also triggers the execution of the corresponding abstract
operation. In our instrumentation of writes, we send a third value besides the
address-value-pair to the buffer process. This value represents a particular ab-
stract operation to trigger or none if the write is a non-LP write. During the
execution of a flush a simple case distinction encodes whether and, if so, which
abstract operation is triggered. Examples for instrumented writes can be ob-
tained from our SVN repository. In particular, we instrumented writes in our
models of Seqlock, Spinlock and Burns Mutex.

The instrumentation is the final step of the model composition for checking
linearizability. Executions leading to inconsistent results of the abstract model
and implementation model are reported as errors and indicate non-linearizability
of the implementation or a wrong instrumentation of LPs. In the following sec-
tion, we discuss our experience with the proposed approach.

Experimental Results. As a proof of concept, we tested our approach on
a few well-known concurrent data structure implementations. We implemented
each of the data structures in C/C++ and applied our approach to it as presented
throughout this paper. All implementations, the corresponding Promela models
including test scenarios and our memory models are available for download at
our SVN repository6. We performed an exhaustive search for each of the program
models and test scenarios. The results are presented in Figure 15 for SC and TSO
separately. The column buffer# (memory#) denotes the minimum write buffer
(memory resp.) size that is required for the test scenarios.

We were able to identify known bugs in the Burns Mutual Exclusion algo-
rithm, which can be easily avoided by introducing fence instructions. The other
implementations did not show non-linearizable behavior, neither with SC nor
with TSO semantics. Our results confirm existing verification results [3,4], which
were not able to find bugs due to TSO memory model relaxations. However, the
stack and queue implementations are known to show incorrect behavior, when
run on weaker memory models [5].

6 http://code.google.com/p/lina-rmm-verification/

http://code.google.com/p/lina-rmm-verification/

SPIN as a Linearizability Checker under Weak Memory Models 325

SC TSO
test scenario states time [s] states time [s] buffer# memory#

Treiber stack [18]

U‖O 627 0 14292 0.07 6 13
UO‖UO 16772 0.04 262742 1.38 6 23

UOU‖OUO 135708 0.29 4145402 29.4 10 33
UUUU‖OOOO 896528 2.55 33589805 294 16 43

U‖O‖U 47214 0.1 5893891 52.4 6 19
UO‖UO‖UO 37269425 157 oom 769 6 33

U =̂ push, O =̂ pop, oom =̂ out of memory

M&S Queue[15]

E‖D 2203 0.01 94354 0.52 7 20
ED‖ED 88933 0.24 4113224 28.2 9 34

EDE‖DED 1401240 4.53 oom 873 19 48
E =̂ enqueue, D =̂ dequeue, oom =̂ out of memory

Seqlock [10]

W ‖R 676 0 11099 0.05 6 10
WW ‖RR 10570 0.02 1050382 6.9 12 13

WWW ‖RRR 103873 0.16 63211488 538 18 16
W ‖R‖R 71571 0.12 4467945 31.2 6 14

W =̂ write pair, R =̂ read pair

Spinlock [4]
p‖p 193 0 1004 0 1 2

p‖p‖p‖p 48995 0.11 3741610 26.8 1 2
p is infinite loop, selecting non-det. operations: acquire, release, tryacquire

Burns unfenced [7] p1‖p2 43 0 � 0 2 3

Burns (fenced)
p1‖p2 54 0 474 0 2 3

p1 and p2 enter and leave critical section in an infinite loop

Fig. 15. All tests were performed on a virtual machine, Ubuntu Linux, Intel Core i5,
2.53GHz and 3GB dedicated to SPIN 6.2.3

5 Conclusion

In this paper, we have presented an approach for linearizability checking under
consideration of different architectures and hence different memory models. Our
approach can be viewed as a step-by-step guide that leads developers from the
implementation of a concurrent program to the verification of its correctness.
Since we carry out checks based on given test scenarios, our approach is – like
others – a testing and not a verification technique. Thus, we see our linearizabil-
ity checker as a first step of getting confidence in the correctness of an algorithm
before starting a formal proof, for instance in a theorem prover supported ap-
proach. Moreover, we provide a Promela model of TSO memory model that is
ready to use for arbitrary correctness properties.

The relation between our and other notions of linearizability on TSO [4,10]
has already been discussed. In the future, we also intend to study what kind of
compositionality our notion of linearizability guarantees. On the practical side,
we plan to automate the transformation from LLVM IR code to our Promela
model, which would reduce a developer’s effort in applying our approach. We
also plan to offer weaker memory models, e.g., Partial Store Order (PSO), for
verification and to extend the provided instruction set in order to be applicable
to a greater variety of programs. However, it is yet unclear how linearizability
could be defined for the even weaker memory model PSO.

References

1. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
IEEE Computer 29(12), 66–76 (1996)

326 O. Travkin, A. Mütze, and H. Wehrheim

2. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The Semantics of Power and ARM Multiprocessor Machine Code. In: Proceedings
of the 4th Workshop on Declarative Aspects of Multicore Programming, DAMP
2009, pp. 13–24. ACM, New York (2008)

3. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and Enforcing Robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

4. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

5. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

6. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: A complete and auto-
matic linearizability checker. In: PLDI, pp. 330–340 (2010)

7. Burns, J., Lynch, N.A.: Mutual Exclusion Using Indivisible Reads and Writes. In:
Proceedings of the 18th Annual Allerton Conference on Communication, Control,
and Computing, pp. 833–842 (1980)

8. Derrick, J., Schellhorn, G., Wehrheim, H.: Proving Linearizability Via Non-atomic
Refinement. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
195–214. Springer, Heidelberg (2007)

9. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

10. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consis-
tent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

12. Holzmann, G.: The Spin model checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

13. Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1 (May 2012)

14. Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28(9), 690–691 (1979)

15. Michael, M.M., Scott, M.L.: Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms. In: The 15th Annual ACM Symposium on Princi-
ples of Distributed Computing, pp. 267–275 (May 1996)

16. Schellhorn, G., Wehrheim, H., Derrick, J.: How to Prove Algorithms Linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012)

17. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

18. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Res. Ctr. (1986)

19. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Torrellas, J., Chatterjee, S. (eds.) PPOPP, pp.
129–136 (2006)

20. Vechev, M., Yahav, E., Yorsh, G.: Experience with Model Checking Linearizability.
In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 261–278.
Springer, Heidelberg (2009)

Arithmetic Bit-Level Verification
Using Network Flow Model

Maciej Ciesielski1, Walter Brown1, and André Rossi2

1 University of Massachusetts
ECE Department

Amherst, MA 01003, USA
ciesiel@ecs.umas.edu,webrown@umass.edu

2 Université de Bretagne-Sud
Lab-STICC UMR 6285

56321 Lorient Cedex France
andre.rossi@univ-ubs.fr

Abstract. The paper presents a new approach to functional, bit-level
verification of arithmetic circuits. The circuit is modeled as a network of
adders and basic Boolean gates, and the computation performed by the
circuit is viewed as a flow of binary data through such a network. The
verification problem is cast as a Network Flow problem and solved us-
ing symbolic term rewriting and simple algebraic techniques. Functional
correctness is proved by showing that the symbolic flow computed at
the primary inputs is equal to the flow computed at the primary out-
puts. Experimental results show a potential application of the method
to certain classes of arithmetic circuits.

Keywords: Formal verification, Functional verification, Arithmetic ver-
ification, Bit-level arithmetic.

1 Introduction

One of the most challenging problems encountered in hardware design is func-
tional verification of arithmetic circuits and datapaths. Boolean logic techniques,
based on BDDs, so successfully used in logic synthesis, cannot solve large arith-
metic problems as they require “bit-blasting”, i.e., flattening of the design into
bit-level netlists. Similarly, Boolean satisfiability (SAT) and Satisfiability Mod-
ulo Theories (SMT) solvers cannot handle complex arithmetic designs and re-
quire solving computationally expensive decision problems. On the other hand,
theorem provers, popular in industry, require a significant human interaction
and intimate knowledge of the design to guide the proof process. Typical ap-
proach in industry is to use a host of methods, including simulation-based and
formal methods, which requires large teams of experts with high degree of ex-
pertise. While datapath verification has reached certain level of maturity [1,2],
certain areas of arithmetic verification remain open for more research. According
to Slobodova [3] “Multiplication function is beyond the capacity of BDDs and

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 327–343, 2013.
c© Springer International Publishing Switzerland 2013

328 M. Ciesielski, W. Brown, and A. Rossi

SAT solvers”; it requires decomposition into smaller entities, while there is “No
automatic way of finding properties on the decomposition boundary”.

The work described in this paper addresses some of those issues. It focuses
on functional verification, i.e., proving correctness of arithmetic design w.r.t. its
intended function, rather than targeting a specific property or checking equiv-
alence between the implementation and specification. In this sense, functional
verification can be viewed as a more general problem, as it has to overcome
the issue of generating a complete set of properties that describe the intended
functionality. Our approach is based on modeling an arithmetic circuit as a net-
work of half adders and basic Boolean connectors and viewing the computation
performed by the circuit as a flow of binary data through the network. The ver-
ification problem is cast as a special case of a Network Flow problem and solved
using symbolic term rewriting and linear algebraic techniques.

1.1 Related Work

Several approaches have been proposed to check an arithmetic circuit against its
functional specification. Different variants of canonical, graph-based representa-
tions have been proposed, including Binary Decision Diagrams (BDDs), Binary
Moment Diagrams (BMDs), Taylor Expansion Diagrams (TED), and others [4].
Application of BDDs to verification of arithmetic circuits is somewhat limited
due to prohibitively high memory requirement for complex arithmetic circuits,
such as multipliers. BDDs are being used, along with many other methods, for
local reasoning, but not as monolithic data structure [3,1,2]. BMDs and TEDs
offer a linear space complexity but require word-level information of the design,
which is often not available or is hard to extract from bit-level netlists. A number
of SAT solvers have been developed to solve generic Boolean decision problems.
The one potentially relevant to our work is CryptoMiniSAT, which targets xor-
rich bio-informatics circuits by replacing traditional CNF formula with xors [5].
However, it is still based on a computationally expensive DPLL decision pro-
cess and does not scale with the design size. Several techniques combine linear
arithmetic constraints with Boolean SAT in a unified algebraic domain [6] or
use ILP to model the modulo semantics of the arithmetic operators [7] [8]. In
general, ILP models are computationally expensive and are not scalable. Some
techniques combine a word-level version of automatic test pattern generation
(ATPG) and modular arithmetic constraint-solving techniques for the purpose
of test generation and assertion checking [9]. SMT solvers integrate different
theories (Boolean logic, linear integer arithmetic, etc.) into a DPLL-style SAT
decision procedure [10]. However, in their current format, the SMT tools are not
efficient at solving decision problems that appear in arithmetic circuits.

A number of Computer Algebra methods have been introduced to model arith-
metic components as polynomials [11,12]. Automated techniques for extracting
arithmetic bit level (ABL) information from gate level netlists have been pro-
posed in the context of property and equivalence checking [13]. ABL compo-
nents are modeled by polynomials over unique ring, and the normal forms are
computed w.r.t. Grobner basis over rings Z/2n using modern computer algebra

Arithmetic Bit-Level Verification Using Network Flow Model 329

algorithms. In our view this model is unnecessarily complicated and not scalable
to practical designs. A simplified version of this technique replaces the expensive
Grobner base computation with a direct generation of polynomials representing
circuit components [15]. However, no practical method for deriving such large
polynomials and no systematic comparison against the specification have been
proposed. Our work addresses this issue using a more efficient network flow
model.

Industry also uses Theorem Provers, deductive systems for proving that an im-
plementation satisfies a specification, using mathematical reasoning. The proof
system is based on a large (and problem-specific) database of axioms and infer-
ence rules, such as simplification, rewriting, induction, etc. Some of the known
theorem proving systems are: HOL, PVS, and Boyer-Moore/ACL2. The success
of verification depends on the set of available axioms, rewrite rules, and on the
order in which they are applied during the proof process, with no guarantee for
a conclusive answer. Similarly, term rewriting techniques, such as [14], are in-
complete, as they rely on simple rewriting rules (distributivity, commutativity,
and associativity) and use non-canonical representations.

An entirely different approach to functional arithmetic verification has been
proposed in [16]. In this approach the arithmetic circuit, composed of adders and
connecting logic gates, is described by a system of linear equations. The resulting
set of linear equations is then reduced to a single algebraic expression (the “sig-
nature” of the circuit) using Gaussian elimination and linear algebra techniques.
If the resulting signature matches the input and output expressions (specified
by input bit positions and binary output encoding) and does not contain any
internal signals, then the circuit is considered functionally correct. The difficulty
of this method lies in proving the case when not all signals can be eliminated
and the signature contains a “residual expression”(RE), in those variables. In
this case, for the circuit to be functionally correct, the residual expression must
evaluate to zero. Proving this requires solving a separate and difficult Boolean
problem. Furthermore, such an expression is not unique and the method does
not offer means for choosing RE that would be easiest to solve.

1.2 Novelty and Contribution

In this work we follow the algebraic approach similar to [16], but solve the prob-
lem by modeling it as a computationally simpler network flow problem. Specif-
ically, the computation performed by the circuit is modeled as a flow of binary
data, represented as an algebraic, pseudo-Boolean expression. This representa-
tion provides important information about the circuit functionality and location
of possible bugs. The verification proof reduces to showing the equivalence be-
tween the input and output expressions. Any possible discrepancy between the
two expressions is captured in an algebraic expression, which, in contrast to
“residual expression” in [16], is unique and related to fanouts and other signals
that can be identified a priori. This feature greatly simplifies the final proof
which can be solved using purely algebraic methods.

330 M. Ciesielski, W. Brown, and A. Rossi

In contrast to theorem provers and traditional term rewriting techniques, the
proposed method is complete. It is based on a complete set of algebraic ex-
pressions describing internal circuit modules, used as the rewriting rules. The
result does not depend on the order in which the rules are applied; the order is
fixed and unique. The method does not require expertise in formal verification,
can be fully automated, and always terminates with a conclusive answer. Fur-
thermore, no assumption is made about any structural similarity between the
implementation and the specification, required by commercial verification tools.

2 Technical Approach

In this work we are concerned with a class of arithmetic circuits, i.e., combina-
tional circuits with binary inputs that compute a (signed or unsigned) integer
function; the result computed by the circuit is encoded in a finite number of bi-
nary outputs. The internal operators (circuit modules) are assumed to be binary
adders (single-bit half adders and full adders) and basic Boolean logic gates.
Such circuits are often referred to as Arithmetic Boolean Level (ABL) circuits
[13]. Techniques exist that can convert a gate-level arithmetic circuit into such
an ABL network, although a highly bit-optimized arithmetic circuits may con-
tain a sizable number of logic gates that cannot be mapped onto (half) adders.
Those gates will be modeled using arithmetic operators, such as half adders, and
described as linear equations, as described in Section 3.1.

2.1 Basic Terminology

The arithmetic function computed by the circuit is expressed as a polynomial in
terms of the primary inputs. We refer to such a polynomial as input signature,
denoted by Sigin(N), for some circuit N . Such a polynomial is unique, as it
uniquely describes an arithmetic function computed by the circuit; it can be
linear or nonlinear. For example, the input signature of a 7-3 counter NC , shown
in Fig. 2 is simply Sigin(NC) = x1 + x2 + x3 + x4 + x5 + x6 + x7. For a n-bit
binary adder NA with inputs {a0, · · · , an−1, b0, · · · , bn−1}, the input signature is

Sigin(NA) =
∑n−1

i=0 2iai+
∑n−1

i=0 2ibi, etc. The integer coefficients, called weights,
wi), associated with the corresponding signals, are uniquely determined by the
circuit structure and its specification. For the 7-3 counter the input weights are
wi = 1 for each signal xi, while for an adder, w(ai) = w(bi) = 2i for inputs ai, bi
at bit position i.

Input signature for non-linear networks can be similarly obtained. For exam-
ple, input signature of a 2-bit signed multiplier can be directly obtained from its
high-level specification: F = (−2a1+a0)(−2b1+b0) = 4a1b1−2a0b1−2a1b0+a0b0.
By substituting product terms by new variables, x3 = a1b1, x2 = a1b0, x1 =
a0b1, x0 = a0b0, we obtain a linear input signature of the multiplier network in
terms of these fresh variables: Sigin(M) = 4x3 − 2x2 − 2x1 + x0. Again, the
signal weights are uniquely defined by the specification.

Arithmetic Bit-Level Verification Using Network Flow Model 331

The result computed by an arithmetic circuit can also be expressed as a
polynomial in the output variables. This polynomial is always linear as it rep-
resents a unique binary encoding of an integer number computed by the cir-
cuit. We refer to such a polynomial as output signature. For example, the out-
put signature of a 2-bit signed multiplier M with outputs Z3, Z2, Z1, Z0 is
Sigout(M) = −8Z3 +4Z2 +2Z1 +Z0. In general, output signature of any arith-

metic circuit with n output bits Si is represented as Sigout(N) =
∑n−1

i=0 2i Si.
The output signal weights are also uniquely defined, in this case by the output
bit position.

We also introduce the notion of a cut in the circuit, defined as a set of signals
separating primary inputs from primary outputs. Each cut has its own algebraic
signature, defined similarly to the input and output signatures. Specifically, a
cut signature is a linear polynomial in the cut signals with coefficients specified
by the integer signal weights. The computation of those weights is one of the
basic steps of our verification procedure, to be described in detail in Section 3.4.

For nonlinear circuits, such as multipliers, the nonlinear part (contained be-
tween the primary inputs and the linear variables) is typically very shallow. This
is the case not only for simple array multipliers mentioned above, but also for
all signed and Booth-encoded multipliers and other circuits containing adder
network structures (typical of all arithmetic circuits). Such a nonlinear block
can be independently and easily verified using Boolean methods or word-level
diagrams (BMD or TED). In this work we assume that the boundary between
the linear and nonlinear blocks is known (as in the multiplier example above).

2.2 Overview of the Method

Since the input and output signatures describe the same circuit, albeit in differ-
ent sets of variables, in a functionally correct circuit the two signatures must be
equivalent, in the sense that they must evaluate to the same integer value for any
integer input vector. The proof goal of functional verification is then to show that
one signature can be transformed into the other using expressions of the internal
operators: adders and logic gates. This can be done by symbolically rewriting the
input signature, using the properly linearized internal logic and arithmetic oper-
ators, and checking if the polynomial obtained by such transformation matches
the output signature. This check can be easily done using canonical word level
diagrams, such as BMD or TED. The transformation can also be done in the op-
posite direction, from outputs to inputs, and the resulting expression compared
to the input signature. If the input signature is not known, it can be computed
directly from the output signature by such a backward transformation.

The presumed equivalence between the input and output signatures suggests
that the functional verification problem in an arithmetic circuit can be viewed as
a Network Flow Problem: the data is injected into input bits and flows through
the network to be collected at the output bits. The network modules act like
nodes in a transportation network, distributing data according to the edge ca-
pacities, here represented as signal weights. In the functionally correct circuit,

332 M. Ciesielski, W. Brown, and A. Rossi

the total flow into the inputs, described by the input signature, must be equal
to the flow at the output of the circuit, described by the output signature.

While conceptually the equivalence between the input and output signatures
can be determined by symbolic rewriting, it is actually accomplished by comput-
ing the signal weights. The concept of rewriting is presented here only to prove
the correctness of our method. In an actual implementation, the proof will be
accomplished by i) computing weights of the intermediate polynomials involved
in the transformation; ii) checking if such computed weights are compatible with
the input/output signatures; and iii) if the weights satisfy additional equivalence
relations required for functional correctness. The details of this procedure are
provided in Sections 3.4 and 3.5.

3 Arithmetic Network Model

For the presented network model to work, we have to make sure that each
network node (represented by circuit module) satisfies Flow Conservation Law
(FCL). As we will see in the next section, this is automatically guaranteed by
basic arithmetic operators, such as adders. Logic gates and fanouts are modeled
in a similar fashion, to make sure that each satisfies FCL.

3.1 Algebraic Models

This section describes algebraic models of the circuit modules used in our method.
They include: half-adders (ha), full-adders (fa), inverters (inv), buffers (buf),
and basic logic gates (and, xor, or). Each of them is modeled with a single
linear equation which satisfies FCL.
• A half-adder (ha) with binary inputs a, b, and a full adder (fa) with binary
inputs a, b, c0 and outputs S (sum) and C (carry out) are represented by the
following equations:

HA : a+ b = 2C + S; FA : a+ b+ c0 = 2C + S (1)

• Logic gates, and and xor, can be obtained directly from the ha using a linear
ha model: the xor(a, b) is derived from the sum output S, and the and(a, b)
from the carry-out output C of ha(a, b), as shown in Fig. 1(a). If only one gate
(say an and) is used/needed, the other output (in this case corresponding to an
xor) is left unconnected. We refer to such an unused signal as a floating signal.
The role of the floating signals in our model is to pick up the “slack” in the
flow, so that the used output always assumes the correct binary values and the
module satisfies the FCL.
• The or gate, R =or(a, b), can be similarly derived from the ha using deMor-
gan’s law, resulting in {a + b = 2C + S; C + S = R}. By combining the two
equations we obtain a general or model: a+ b = 2R− S, see Fig. 1(b). Here, S
represents an unused, floating signal. The set of equations for or can often be
simplified if C = a · b = 0, i.e., when inputs a, b to the ha are never both 1. This
happens often in arithmetic circuits whenever a, b come as reconvergent fanouts

Arithmetic Bit-Level Verification Using Network Flow Model 333

from the C and S outputs of another ha, where they cannot be both 1. In this
case the equation for the or gate, denoted as or∗, simplifies to a+ b = R, see
Fig. 1(c). In summary, the or gate is modeled as follows:

OR : a+ b = 2R− S; OR∗ : a+ b = R (2)

• An inverter gate y =inv(x) is modeled by the equation: x = 1− y. Similarly, a
buffer with input x and output y can be modeled by the simple equation x = y.
• Special attention must be given to fanouts, which can be viewed as trivial
modules. Such modules do not compute any arithmetic or logic function and
simply replicate the signal as needed. In its original form a fanout node may not
satisfy algebraic flow conservation law. For example, if signal x1 fans out into two
signals, x2, x3 then the equation x1 = x2 + x3, with a constraint x1 = x2 = x3,
does not satisfy the algebraic flow conservation law. To fix this problem, we
create a dummy fanout module, called FBox, with inputs x0, xs and outputs
x1, . . . xk for a fanout with factor k, as shown in Fig. 1(d). Here xs is a slack
variable added to compensate for the difference between x1 + . . . xk and x0. We
refer to such a variable as fanout slack. The equation satisfying FCL for the
FBox is: w0x0 + wsxs = w1x1 + . . . + wkxk, where wi is the weight associated
with signal xi.

Fig. 1 shows algebraic models for the basic modules, and the truth table to
verify the logical correctness of the models. It is easy to verify that each such
module satisfies the FCL.

a b

C S

a b

OR

2R −S

a b

OR∗

R

w0x0 wsxs

FB

w1x1 ...wkxk

a b C S R

0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 1

(a) (b) (c) (d) (e)

Fig. 1. Modeling logic gates: (a) C =and(a, b), S =xor(a, b), derived from half-adder:
a+ b = 2C + S; (b) generic model for or: a+ b = 2R − S; (c) simplified xor* model:
a+ b = R ; (d) model of fanout box; (e) truth table for C, S, R.

3.2 Signature Rewriting

Before formalizing our verification model, we illustrate the verification approach
with an example of a 7-3 counter, shown in Fig. 2. The circuit counts the number
of 1s on the seven input bits and encodes the result in a 3-bit output word. Its
structure is described by the following set of linear equations.

334 M. Ciesielski, W. Brown, and A. Rossi

⎧⎪⎪⎨⎪⎪⎩
FA1 : x1 + x2 + x3 = 2x11 + x12

FA2 : x4 + x5 + x6 = 2x13 + x14

FA3 : x12 + x14 + x7 = 2x15 + x10

FA4 : x11 + x13 + x15 = 2x8 + x9

(3)

The input signature, Sigin = cut0 = x1+x2+x3+x4+x5+x6+x7 is rewritten into
an expression (cut signature) cut1 = (2x11 + x12)+ (2x13 + x14) using equations
for fa1: (x1+x2+x3 = 2x11+x12) and fa2: (x4+x5+x6 = 2x13+x14). Similarly,
expression for cut1 is rewritten into cut2 using equation for fa3, and then into
expression cut3 using fa4. The resulting expression cut3 = 4x8 + 2x9 + x10

matches exactly the output signature, Sigout = 4S2 +2S1 + S0, which indicates
that the circuit is correct (i.e., performs its intended function). Notice the weights

x1 x2 x3

FA1

2C S

x12

x4 x5 x6

FA2

2C S
x14

x7

FA3

2C S

x10

2x11 2x13

2x15

FA4

4C 2S
4x8 2x9

4S2 2S1 1S0

Sigin = cut0 = x1 + x2 + x3 + x4 + x5 + x6 + x7

cut1 = (2x11 + x12) + (2x13 + x14) + x7

cut2 = 2x11 + 2x13 + 2x15 + x10

cut3 = 4x8 + 2x9 + x10 = Sigout

Fig. 2. Arithmetic network model of a 7-3 counter

associated with individual signals in this network. The weight of each input signal
in this circuit is 1. The signature rewriting process gradually increases weights
of some of the signals, eventually producing higher weights at the output bits.
For example, one unit of x1, x2, x3 each, when applied to fa1, will produce one
unit of x12 generated at output S of the adder, and two units of x11 (denoted
in the figure as 2x11), generated at output C. This is a direct consequence of
equation (1) of the adder. Then, signals x11, x13, x15, each with weight 2, will
produce outputs x8 and x9 with weights 4 and 2, respectively. This is simply the
result of replacing the subexpression 2x11 + 2x13 + 2x15 = 2(x11 + x13 + x15) in
cut2 by 2(2x8 + x9), or, equivalently, of multiplying the equation (3) for fa4 by
constant 2.

In summary, the weights, which represent the amount of flow carried by the
signals play an important role in computing the flow in the network. The next two

Arithmetic Bit-Level Verification Using Network Flow Model 335

sections describe the process of computing the weights by propagating them from
the primary outputs to primary inputs, without actually performing signature
rewriting.

3.3 Weight Compatibility Constraints

As discussed in the preceding section, linear models of the arithmetic modules
used in the network naturally impose constraints on signal weights. We refer
to those rules as Weight Compatibility constraints. The weights which satisfy
the compatibility condition are unique, and are determined solely by the output
encoding and the network structure. These rules are simply a consequence of
linear equations modeling the internal modules (adders, gates, inverters, and
fanout boxes). Let wx denote the weight of signal x. Then, the fa equation
a+ b+ c0 = 2C + S imposes the following condition:

wa = wb = wc0 = wS ; and wC = 2wS

For the ha, the first constraint simply reduces to wa = wb = wS . Note that for
the and and xor gates, which use the fa/ha model, these rules will determine
weights of the floating signals, i.e., the S signal for the and gate and the C signal
for the xor gate.

Similar relation can be derived for the generic or gate, modeled by a + b =
2R− S, namely:

wa = wb = −wS , and wR = −2wS

The simplified or* gate, governed by the equation a + b = R, has only one
constraint, namely wa = wb = wR.

The first constraint in each group simply means that the input weights must
be the same. Changing any of the weights in a manner inconsistent with this
constraint, would correspond to multiplying individual signals by different con-
stants, which would invalidate the algebraic model (equations 1 and 2). The
same is true for the buffer: one must not multiply each side of the equation
by a different constant as this will change the relation between the two signals.
On the other hand, multiplying the entire equation for any given module by
a constant, will not change the relationship between the signals and will only
increase the flow carried by those signals. This happens during the process of
weight propagation, as shown in the 7-3 counter circuit.

Similarly, the compatibility constraints for an FBox are derived directly from
the FBox equation: w0x0 + wsxs = w1x1 + . . .+ wkxk.
For a known set of signal weights w0, w1, . . . , wk this will automatically determine
weight of the slack signal xs. The weight propagation procedure, described in
the next section, guarantees that such weights can always be computed and have
unique value.

In addition to the weight compatibility constraints, a connectivity rule needs
to be imposed on the connections between the modules to correctly propagate the
weights along the network wires. Such a rule is intuitively obvious: the weights
of the signals on the two ends of a wire (buffer) must be equal. This, too, can

336 M. Ciesielski, W. Brown, and A. Rossi

be justified by the mathematical model of the buffer, described by the equation
xi = xj . This trivially imposes the constraint that wi = wj .

3.4 Weight Propagation

Computation of signal weights is an important first step in our verification pro-
cedure. The weights are computed by traversing the network from primary out-
puts (where they are determined by the binary encoding) to primary inputs,
starting with the least significant bit, S0. The assignment of weights must sat-
isfy the compatibility conditions derived earlier. The weight assignment process
is illustrated with an example of a parallel prefix adder, with input signature
Sigin = 8(a3 + b3) + 4(a2 + b2) + 2(a1 + b1) + a0 + b0 + c0 and output signature
{16Cout + 8S3 + 4S2 + 2S1 + 1S0} imposed by the output encoding.

Fig. 3 shows the original gate-level design and Fig. 4(a) shows the network
flow model of the circuit, obtained from gate level netlist using ABL extrac-
tion technique. In this design, each or is represented by a simple or* model
(R = a + b), because it satisfies the simplifying conditions discussed earlier.
The signals S6, S7, C10, S11, shown at the bottom of the circuit, are the floating
signals coming from the output of has, which do not propagate any further.
The signals d9, d8, d7, d16, shown at the top of the circuit, are the fanout slack
variables, added as inputs to the FBoxes. In contrast to the input and output
signatures, the weights of the floating and fanout slack signals are not known a
priori and are computed during the weight propagation procedure.

Fig. 3. Gate-level parallel prefix adder

The procedure starts with the
least significant bit of the output,
S0. The weight 1 of signal S0, con-
nected to the S output of fa0,
matches the weight of that signal
generated by fa0. At the same time
weight 2 is imposed on signal d1 at
the C output of that adder (to be
denoted by 2d1). This assignment of
weights at fa0 is compatible with
the weight (1) of its inputs. If the
input weights were not known, this
would also impose weights =1 on
the inputs a0, b0, c0. Propagation of
2S1 upwards similarly satisfies the
weight compatibility at fa1 (whose
all inputs have weight 2) and im-
poses weight 4 on signal d16. Propa-
gation of 4S2 through ha7 generates
weights (4d7, 4d16) at the input to
ha7 and weight 8d18 at the C out-
put of ha7, see Fig. 4(a), etc. The procedure continues as long as the weights
satisfy the weight compatibility conditions.

Arithmetic Bit-Level Verification Using Network Flow Model 337

8a3 8b3

12d9

4a2

8d8

4b2 2a1 2b1

4d7 8d16

1a0 1b0 1c0

8S74S6 8S11

16Cout

16C10

8S3 4S2 2S1 1S0

FA0

2 C 1 S

FA1

4 C 2 S

HA2

8 C 4 S

HA3

16C 8 S

HA4

8 C 4 S

HA5

16 C 8 S

OR*1

C 16 S

HA6

16 C 8 S

HA7

8 C 4 S

OR*3

C 16 S

OR*2

C 8 S

HA8

16 C 8 S

FB3

FB0 FB1 FB2

16d10

8d9

8d9

8d8

4d9

8d98d9 8d8 4d7

8d8

4d7

4d7

2d1

16d15

8d14

4d16

4d16

8d16

16d17
16d20

8d18

8d21

Sigin

cut0

cut1

cut2

cut3

cut4

cut5

cut6

Sigout

Fanout

d 1 6

4

d 8

ONE

2

Float

4

2

d 7

d 9

3

(a) (b)

Fig. 4. (a) Network flow for parallel prefix adder; (b) TED showing equivalence between
fanouts and floating signals

The floating and slack signals must be computed from the weights of already
computed signals. Consider, for example, Fbox3 associated with signal d16. The
weight of the right output signal, 4d16 has been already determined by back-
propagating 4S2, but the other output from this Fbox will not be known until
both inputs to ha6 have been determined. This is made possible by the com-
putation of weights originating at 16Cout, resulting in the following sequence of
weights:

16Cout → 16d20 → {8d14|8d16}

which fixes the left output of Fbox3 to 8d16. The slack variable for this fanout
box is then computed as the difference between the outgoing and incoming flow
associated with this signal, i.e., 8d16 +4d16 − 4d16 = 8d16. Other slack variables

338 M. Ciesielski, W. Brown, and A. Rossi

at the input to Fboxes and floating signals at the outputs of the adders are
resolved similarly, resulting in the weights shown in Fig. 4. In general, because
the graph representing the arithmetic network is acyclic (DAG), there always
exist an order which guarantees the resolution of the weights.

If at any point during the procedure the weights are incompatible, the circuit
cannot produce weights which are compatible with the input weights, i.e., it does
not compute the function specified by the input signature. An example in Section
3.6 illustrates this case. If the weights satisfy the compatibility conditions, the
computation eventually reaches the primary inputs, where the input weights are
compared with those in the input signature. If the weights at the primary inputs
match those in the input signature, the circuit is considered functionally correct.
Otherwise the circuit is faulty (either the network structure is wrong or the
specification, given as input signature, is incorrect). Hence we have the following
necessary condition for the circuit to implement the desired function:

For the circuit to compute the required function, the computed weights must
satisfy the compatibility condition and must match the weights of the inputs.

This equivalence check can be done readily using a canonical word-level dia-
gram, BMD or TED. The weight assignment for the parallel prefix adder example
is shown in Fig. 4(a). The computed weights match those of the primary inputs,
hence satisfying this necessary condition.

3.5 Proof by Flow Conservation

The final condition for functional correctness of the circuit is based on checking if
its model satisfies the Flow Conservation Law (FCL). In the arithmetic network
in which each module satisfies FCL, the flow into the input bits must be equal
to the flow at the output bits. However, by construction of our model, the total
input flow in addition to the flow into the primary inputs (expressed as input
signature) also contains slack variables of the fanout boxes, denoted by Δfn.
Similarly, the total output flow in addition to the flow out of the primary outputs
(expressed as output signature) also contains floating signals associated with
the unused variables, denoted Σfl. That is, in an arithmetic circuit which, by
construction, satisfies flow conservation law, we have:

Sigin +Δfn = Sigout +Σfl (4)

where Δfn and Σfl are the weighted sums of the slack fanouts and the floating
signals introduced in the network, respectively. In our example, Δfn = 8d16 +
12d9 +8d8 +4d7; and Σfl = 16C10 +8S11 +8S7 +4S6. Intuitively, for the input
signature to be equal to the output signature, the flow added by the fanouts
must be compensated by the flow removed by the floating signals. As a result,
if the input and output signatures match, the proof of functional correctness of
the network reduces to proving that

Δfn − Σfl = 0 (5)

In summary: The circuit is functionally correct if and only if: (i) there exists
a compatible assignment of weights consistent with the input signature Sigin;

Arithmetic Bit-Level Verification Using Network Flow Model 339

and (ii) the amount of the flow introduced by fanouts Δfn is equal to the flow
consumed by floating signals Σfl.

The first condition guarantees that the input signature can be rewritten into
an output cut whose weights match those of the output signature, while the sec-
ond condition satisfies the flow conservation law in this pseudo-Boolean network.

A naive way to solve this problem would be to express each of those terms
as a function of primary inputs and prove that the resulting expression is zero.
However, we only need to express Σfl in terms of the fanout variables. We
then need to prove that Σfl = Δfn in terms of the fanout signals only. We
perform this verification using TED. Figure 4(b) shows the TED for Δfn and
Σfl, both expressed in terms of fanout variables only, clearly indicating that
they are identical.

3.6 Debugging Faulty Circuits

The described method for functional verification can also help identify and lo-
calize bugs in a faulty circuit. Consider again the circuit in Fig. 2 but with wires
x12 and x13 swapped. The question is whether this circuit will still work as a
7-3 counter; and if not, what causes the malfunction and how can the bug be
identified. In this faulty configuration the equations for the affected adders, FA3

and FA4, are: {
FA3 : x13 + x14 + x7 = 2x15 + x10

FA4 : x11 + x12 + x15 = 2x8 + x9
(6)

With this, the following cuts are generated during the rewriting process, start-
ing with cut0:⎧⎨⎩

cut1 : (2x11 + x12) + (2x13 + x14) + x7 (same as before)
cut2 : (2x11 + x12) + x13 + (2x15 + x10) (different)
cut3 : x13 − x12 + 4x8 + 2x9 + x10 (different)

(7)

In this arrangement, the weight of x12 does not match the weights of other
signals, 2x11, 2x15, at the input to FA4. Similarly, the weight of signal 2x13 does
not match the weights of x14 and x7, at the input to FA3. This violates the weight
compatibility discussed earlier. While the resulting expression of cut3 contains
the output signature 4x8 + 2x9 + x10, it also contains a “residual expression”
(x13−x12). This indicates that the circuit computes a function that differs from
the intended one by (x13 − x12), hence it is incorrect. (It can be easily shown
that x13 − x12 �= 0). The identification of such a residual expression is useful in
determining the source of the bug: it must be related to signals x13, x12.

4 Results

We tested our verification method on a number of signed multipliers up to 62 ×
62 bits. First, a structural verilog code was generated for each multiplier using
a generic multiplier generator software (courtesy of the University of Kaiser-
slautern). The verilog code was parsed to transform the multiplier circuit into a

340 M. Ciesielski, W. Brown, and A. Rossi

network of ha, fa and basic logic gates from which a set of equations was gen-
erated in the required format. The structure of those designs made it possible
to easily extract input signature required in our method. In general, however,
transformation of an arbitrary gate-level circuit into an ABL network is a known
difficult problem that can be computationally expensive; it may also result in
different configurations since such a mapping is not unique. This, however, does
not affect our approach; the different structures will only affect the effective-
ness of the method but not the result. Each mapping will have its own, unique
set of transformations and any of those will lead to the same conclusive answer
regarding the circuit functionality.

The results of our experiments are shown in Fig. 5. The CPU time includes
all phases of the process: preprocessing (which takes a negligible fraction of the
entire process, taking only 3 sec for the 62-bit multiplier); computing signal
weights; checking weight compatibility with input signature; creating symbolic
equation for Δfn − Σfl; generating script for TED; and using TED to check
the equivalence condition (5). The experiments were run on a PC with an Intel
i7 CPU @ 2.30GHz and 7.7 GB memory. Since most of the research in this

Fig. 5. CPU time for multipliers (a) in the number of bits (b) in number of equations

field has been done in the context of property checking rather than functional
verification, we could not find suitable data for comparison. the CPU runtimes
[1,2]. The runtime complexity of the procedure to compute algebraic signature
of the network is quadratic in the number of equations (or, equivalently in the
number of gates), c.f. Figure 5.

Comparison with SMT Solvers: In principle, the network can be described
by a system of linear equations Ax = b derived directly from the equations de-
scribing the network modules. The test for functional correctness can be obtained
by checking if the network Ax = b is compatible with the expected input and
output signatures. This can be modeled as satisfiability (SAT) problem as fol-
lows. Let Sigin(N) and Sigout(N) be the primary input and output signature
as defined in Section 3.1. Then, we need to show that: (Ax = b) ∧ (Sigin(N) �=
Sigout(N) is unsatisfiable (unSAT). We performed this test on a number of
multipliers using three SMT solvers that support Linear Integer Arithmetic:
MathSAT, Yices, and Z3. The results, reported in Table 1 show that the SMT
solvers were not able to solve the problem for multipliers larger than 8 bits,

Arithmetic Bit-Level Verification Using Network Flow Model 341

while our method can verify the functional correctness of multipliers up to 62
bits in several minutes. Z3 ran out of memory (3 GB), while Yices was unable to
complete the computation in 30 minutes. In some cases, MathSAT was “unable
to perform computation” and is not reported here. We also attempted to solve
the problem using BDDs, but (as expected) we were unable to build BDD for
multipliers larger than 14 bits, due to the memory explosion.

Table 1. Comparison with SMT solvers (MO=memory out with 3 GB, TO=timeout
after 1800 sec)

Design Z3 Yices Our method
(sec) (sec) (sec)

mult 3× 3 0.23 0.02 0.21

mult 4× 4 466.36 0.05 0.28

mult 8× 8 MO TO 0.57

mult 16× 16 MO TO 1.52

mult 24× 24 MO TO 3.63

mult 32× 32 MO TO 12.22

mult 40× 40 MO TO 31.57

mult 48× 48 MO TO 71.93

mult 56× 56 MO TO 157.24

mult 62× 62 MO TO 297.59

PrefixAdder(4b) 160.31 0.05 0.25

5 Conclusions

The goal of this paper was to present a novel idea of modeling the functional
verification of arithmetic circuits without resorting to expensive Boolean or bit-
blasting methods. As such, this approach has a potential application in formal
verification and could be used in conjunction with existing methods for functional
verification. Currently the method is applicable to designs with well defined input
signature, expressed as a multivariate (possibly nonlinear) polynomial in the
input variables. Typically such a signature is given as part of the specification;
otherwise it can be extracted from the design by transforming the known output
signature (binary encoding) backwards towards the inputs. In this sense, the
method is directly applicable to extract circuit functionality from its hybrid
arithmetic/gate-level structure.

An important application where this method can be particularly useful is the
identification and localization of bugs in the design. This can be accomplished
by analyzing areas containing incompatible weights, as illustrated in Section 3.6.
Typically this will happen due to miss-wiring, crossing, or missing wires, which
will result in incompatible weights. It seems that the module which violates
the weight assignment and the bit position that imposes a violating assignment
should provide important information about the bug location. We are not aware
of any other approach that can so efficiently address this debugging issue.

342 M. Ciesielski, W. Brown, and A. Rossi

The major limitation of this method is in generating ABL networks from an
arbitrary gate-level arithmetic circuit, which in general is a difficult problem.
Nevertheless, the method can be useful in verifying new arithmetic circuit ar-
chitectures based on novel computer architecture algorithms, were the design
is already specified in terms of adders and some connecting gates. The method
can be readily extended to sequential circuits by converting them to bounded
models, which is a part of the ongoing research effort. The extension to floating
point arithmetic will need to be investigated.

Acknowledgment. This work has been supported by a grant from the National
Science Foundation under award No. CCF-1319496.

References

1. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing with
Formal Verification in Intel� CoreTM i7 Processor Execution Engine Validation. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429. Springer,
Heidelberg (2009)

2. Seger, C.-J.H., Jones, R.B., OLeary, J.W., Melham, T., Aagaard, M.D., Barrett,
C., Syme, D.: An Industrially Effective Environment for Formal Hardware Verifi-
cation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24(9), 1381–1405 (2005)

3. Slobodova, A.: A Flexible Formal Verification Framework. In: MEMCODE 2011
(2011)

4. Pradhan, D.K., Harris, I.G. (eds.): Practical Design Verification. Cambridge Uni-
versity Press (2009)

5. Soos, M.: Enhanced Gaussian Elimination in DPLL-based SAT Solvers. In: Prag-
matics of SAT (2010)

6. Fallah, F., Devadas, S., Keutzer, K.: Functional Vector Generation for HDL Mod-
els using Linear Programming and 3-Satisfiability. In: Proc. Design Automation
Conference, pp. 528–533 (1998)

7. Brinkmann, R., Drechsler, R.: RTL-Datapath Verification using Integer Linear
Programming. In: Proc. ASPDAC, pp. 741–746 (2002)

8. Zeng, Z., Talupuru, K., Ciesielski, M.: Functional Test Generation based on Word-
level SAT. J. Systems Architecture 5, 488–511 (2005)

9. Huang, C.-Y., Cheng, K.-T.: Using Word-level ATPG and Modular Arithmetic
Constraint-Solving Techniques for Assertion Property Checking. IEEE Trans. on
CAD 20(3), 381–391 (2001)

10. Biere, A., Heule, M., Maaren, H.V., Walsch, T.: Satisfiability Modulo Theories in
Handbook of Satisfiability, ch. 12. IOS Press (2008)

11. Raudvere, T., Singh, A.K., Sander, I., Jantsch, A.: System Level Verification of
Digital Signal Processing application based on the Polynomial Abstraction Tech-
nique. In: Proc. ICCAD, pp. 285–290 (2005)

12. Shekhar, N., Kalla, P., Enescu, F.: Equivalence Verification of Polynomial Data-
Paths Using Ideal Membership Testing. IEEE Trans. on Computer-Aided De-
sign 26, 1320–1330 (2007)

Arithmetic Bit-Level Verification Using Network Flow Model 343

13. Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, G.: An Algebraic Ap-
proach for Proving Data Correctness in Arithmetic Data Paths. In: Proc. ICCAD,
pp. 473–486 (July 2008)

14. Vasudevan, S., Viswanath, V., Sumners, R.W., Abraham, J.A.: Automatic Verifi-
cation of Arithmetic Circuits in RTL using Stepwise Refinement of Term Rewriting
Systems. IEEE Trans. on Computers 56, 1401–1414 (2007)

15. Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W.: STABLE: A new QF-BV SMT
Solver for hard Verification Problems combining Boolean Reasoning with Computer
Algebra. In: Proc. Design Automation and Test in Europe, pp. 155–160 (2011)

16. Basith, M.A., Ahmad, T., Rossi, A., Ciesielski, M.: Algebraic approach to arith-
metic design verification. In: Formal Methods in CAD, pp. 67–71 (2011)

Performance Evaluation of Process Partitioning

Using Probabilistic Model Checking

Saddek Bensalem1, Borzoo Bonakdarpour2, Marius Bozga1, Doron Peled3,
and Jean Quilbeuf1

1 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, France
{saddek.bensalem,marius.bozga,jean.quilbeuf}@imag.fr

2 School of Computer Science, University of Waterloo, Canada
borzoo@cs.uwaterloo.ca

3 Department of Computer Science, Bar Ilan University, Israel
doron.peled@gmail.com

Abstract. Consider the problem of partitioning a number of concurrent
interacting processes into a smaller number of physical processors. The
performance and efficiency of such a system critically depends on the
tasks that the processes perform and the partitioning scheme. Although
empirical measurements have been extensively used a posteriori to assess
the success of partitioning, the results only focus on a subset of possible
executions and cannot be generalized. In this paper, we propose a prob-
abilistic state exploration method to evaluate a priori the efficiency of a
set of partitions in terms of the speedup they achieve for a given model.
Our experiments show that our method is quite effective in identifying
partitions that result in better levels of parallelism.

Keywords: Concurrent programming, Scheduling, Speedup, Efficiency,
Parallel programming, Formal methods.

1 Introduction

In concurrent programming, a program consists of multiple interacting processes
that may run in parallel. Processes can potentially reside on different physical
processors in order to speedup execution. Typically, there are far more processes
than actual available physical processors.Partitioning is the problem of assigning
processes to processors, so that the best level of parallelism and, ideally, maxi-
mum speedup is achieved. This problem is known to be notoriously challenging
in the context of concurrent systems, as an intelligent scheduler must be able to
make predictions about the state and temporal execution of interactions among
processes. The research activities that deal with this problem range over a wide
spectrum: from theoretical parallel and distributed algorithms and analytical
performance analysis methods to empirical and experimental approaches. In all
these activities, one measures the executions of different processes and utiliza-
tion of processors of the system over time. Rules of thumb that involve static
analysis of the system can be useful but of limited effect, since it is the dynamic

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 344–358, 2013.
c© Springer International Publishing Switzerland 2013

Performance Evaluation of Process Partitioning 345

b c da
Proc 2Proc 1

v8v7v6

v1 v2 v3 v4

v5

d

c

a d a

c

...

...b c b

Proc 1: a

Proc 2:

(a) Partition P1

b c da
Proc 1

v1 v2 v3 v4

v6 v7v5

Proc 2

v8

a

b

c

d

a ...

...

cProc 1:

Proc 2:

(b) Partition P2

Fig. 1. An example of the effect of partitioning on concurrent scheduling

behavior that actually affects the efficiency. Empirical approaches provide us
with an insight about specific dynamic behavior of the system under analysis,
but typically they only focus on a very small subset of possible executions and
cannot be generalized.

The focus of this paper is on evaluating and comparing partitions for con-
current programs by using state exploration techniques. Consider the abstract
model of a concurrent program in Figure 1(a) running on two processors Proc

1 and Proc 2. The model has Boolean variables v1 · · · v8, where the values of
v1 · · · v4 and v8 are initially true and the rest are false. The transitions of this
program are labeled by a, b, c, and d. For example, transition a updates the
value of variables as follows: v2 = false , v5 = true, and the value of v1 does not
change. We assume that transitions that share variables cannot execute simul-
taneously (e.g., a and b). A partition maps transitions to processors. Let P1 be
the partition, such that processor Proc 1 executes transitions a and d, and pro-
cessor Proc 2 executes transitions b and c. Since transitions a and c are enabled
in the initial state, Proc 1 and Proc 2 can execute them concurrently. After this
execution, the values of variables are updated as follows: v2 = v3 = v4 = false ,
v5 = v6 = v7 = true. In this state, transitions b and d are enabled and, hence,
Proc 1 and Proc 2 can concurrently execute d and b. Thus, both processors are
always busy executing.

Now, consider a different scenario, where transitions are mapped to processors
according to partition P2 (see Figure 1(b)). In the initial state, a and c are
enabled, but Proc 1 can only execute one of them. If Proc 1 executes transition
a, the system reaches a state from where only transition c is enabled. Since this
is the only choice of execution, Proc 1 executes c and the system reaches a state
where b and d are enabled. Since these transitions are both handled by Proc 2,
they are executed sequentially. Thus, during that execution, partition P2 allows
utilizing only half of the resources, that is one processor over two.

We propose an effective and relatively inexpensive test for assessing a priori
the efficiency of concurrent execution of a system deployed according to a given
partition. The task needs to be based on a simple but affordable analysis, and

346 S. Bensalem et al.

based on existing tools. We rule out solutions that involve long simulations.
Observing the system for a long period, over actual runs, would indeed give a
good answer to the problem, but may be sometimes unfeasible within the system
development deadlines. Instead, we would like to use quick deep analysis, based
on push-button techniques, such as model checking.

We first define a maximal concurrency model that is used to assess the run-
time behavior of the system under different partitions. This concurrency model
consists of a set of processors running in parallel and a partition of the tran-
sitions into these processors. We keep track of the current execution time at
each processor. The execution of a transition may thus need the coordination
and interaction of several processors. This requires the corresponding processors
to be available. Thus, the execution of a transition in our maximal concurrency
model involves first waiting for a time where all involved processors are available,
and then consuming the time required to execute the transition in each one of
them. Obviously, the different mapping of transitions into processors makes a
big impact on execution time.

Our method analyzes the value of variables that keep track of execution time
for each processor. We provide a probabilistic analysis, assuming that different
nondeterministic and concurrent choices are selected randomly. The analysis
relies on comparing execution time and the probability of speedup for finite
prefixes of execution sequences according to a partition. We aim at keeping the
complexity of conducting the analysis as low as possible. This is in particular
challenging, as any analysis that takes into account the performance needs to, in
some sense, sum up behavior parameters (e.g., some measurement of the duration
of the execution) over time. This can potentially explode the size of the state
space very quickly. Our solution is to provide an analysis for a limited execution
sequence, say, of length k. As starting this analysis from only the initial state
would be biased (perhaps the system always performs first the same constant
initialization sequence), our method analyzes execution prefixes from the entire
reachable state space of the system. This means that we take into account the
probability of reaching some state, and, from there, the probability of speedup
of executing a sequence of length k.

By experimenting with various values of k, we can tune between precision and
additional complexity. More formally, one needs to identify the answer to the
following question: with what probability can random executions according to
one partition be faster by a factor of f . We, in particular, use the probabilistic
model checker PRISM [10] to solve this problem. Our experiments clearly show
the benefit of using our technique to assess the efficiency of different partitions.

Organization. In Section 2, we present our computation and concurrency model.
Section 3 is dedicated to our method for comparing the performance of two given
partitions. We present our case study in Section 4. Related work is discussed in
Section 5. Finally, in Section 6, we make the concluding remarks and discuss
future work.

Performance Evaluation of Process Partitioning 347

2 Computation Model

2.1 Transition Systems

Definition 1. A transition system T is a tuple 〈V, S, T, ι〉, where

– V is a finite set of finite-domain variables.

– S is the set of states that are valuations of the variables V ,
– T is a set of transitions. With each transition τ ∈ T , we have:

• An enabling condition enτ : S → {true, false} over the variables V that
must be true for the transition τ to execute.

• A transformation fτ : S → S that modifies the current state on execution
of τ .

– ι ∈ S is the initial state, that is the initial valuation of the variables. $�

For example, the model in Figure 1 has Boolean variables v1 · · · v8 and four
transitions a, b, c, and d. The initial state is where v1 = v2 = v3 = v4 = v8 = true
and v5 = v6 = v7 = false . Moreover, ena is v1 = v2 = true. In Section 1, we
described how the transitions update the state of the program.

Definition 2. An execution σ is a maximal sequence of states σ = s0s1s2 . . .,
such that

– s0 = ι.
– For each 0 ≤ i < |σ|, there exists some τ ∈ T , such that enτ (si) holds and

si+1 = fτ (si). $�

We choose to use simple transition systems, as they can already illustrate
our approach without the need to use complicated details. In particular, we
abstract away processes; concurrency between transitions is allowed when they
use disjoint set of variables. In fact, when the system is divided logically into
processes, there is no need to use a more complicated model: the program counter
of each process is an additional variable that makes all the transitions of a single
process interdependent.

2.2 Maximal Concurrency Model

Given a transition system T = 〈V, S, T, ι〉, in order to reason about concurrency
and speedup, we need to take the execution of transitions and their duration into
account. Let P be a fixed finite set of processors. The mapping of the system T
on the processors P is specified through a partition P of the set V ∪ T . Each
class in P corresponds to a set of variables and/or transitions handled by a
given processor in P . Thus, for a variable v ∈ V (respectively, transition τ ∈ T),
P(v) (respectively, P(τ)) returns a processor in P . Specifying the mapping of
the variables explicitly allows us to determine which processor is used when
accessing the variables.

348 S. Bensalem et al.

Since computing enτ and fτ , where τ ∈ T , involves dealing with a set of
variables, execution of τ will engage a set of processors. Formally, given a parti-
tion P , if transition τ is associated with variables Vτ , then the set of processors
engaged in executing τ is

PP
τ = {p ∈ P | p = P(τ) ∨ ∃v ∈ Vτ : p = P(v)}

We assume that executing a transition τ engages each processor in PP
τ for

some (not necessarily equal) constant time. Given a processor p ∈ PP
τ , we call

this time the duration of transition τ on processor p, and denote it by pPτ .
Furthermore, in order to analyze and keep track of the duration for which a
processor is still engaged in a transition, we introduce a history (time) variable
tPp for each processor p ∈ P .

In order to measure execution time of processors for T , we augment executions
of T with history variables.

Definition 3. Let ρ be a finite segment (suffix of a prefix) of an execution se-
quence σ and P be a partition. The augmented execution of ρ according to
partition P includes updates to the variables tPp for each processor p ∈ P as
follows:

– In initial state ι, tPp = 0, for all p ∈ P .
– Executing τ involves the following updates:

• We let c = max{tPp | p ∈ PP
τ }; i.e., the maximum value among the value

of history variables of processes associated with τ .
• We let tPp = c+ pPτ , for each process p ∈ PP

τ ; i.e., after synchronization,

the history variable tPp is updated, as pPτ time units elapsed in the local
time of process p. $�

Figure 2 shows the effect of executing a transition that involves processors p1,
p3, and p4 on the value of history variable for each processor. Notice that first,
the value of all variables are updated with the maximum time value, and then,
the time durations of each processor are added, respectively. The augmented
execution of any two transitions involving a common processor is sequentialized
through the history variable of the common processor. In particular, two transi-
tions involving a common variable v are never executed concurrently, since they
both involve processor P(v).

3 Evaluating the Effect of Partitions on Speedup

3.1 The Notion and Metrics for Execution Speedup

Our main goal is to compare the execution time of each processor through ana-
lyzing history variables under different partitions. The comparison relies on the
following definitions of respectively execution time, sequential execution time,
and speedup, for a finite prefix of execution sequences according to a partition.

Performance Evaluation of Process Partitioning 349

Duration of a

of history variables

Current values

New values

new transition

tp1

tp2

tp3

tp4

tp1

tp2

tp3

tp4

Fig. 2. The effect of a new transition involving processors {p1, p3, p4} on history vari-
ables

Definition 4. Given a set P of processors, a partition P, and a finite execution
prefix ρ,

– the execution time of ρ is execP(ρ) = max{tPp | p ∈ P}, where tPp are
obtained from augmented execution of ρ according to the partition P,

– the sequential execution time is

seqexecP(ρ) =
∑
τ∈T

#(ρ, τ) ·max{pPτ | p ∈ PP
τ }

where #(ρ, τ) denotes the number of times τ is executed in ρ,
– the speedup achieved by partition P when executing ρ is the ratio

speedupP(ρ) =
seqexecP(ρ)
execP(ρ)

$�

In order to provide a detailed analysis, one needs information about the tim-
ing duration of transitions. This information is based on the processor partition
and the actual protocol used to provide the correct interactions between all the
elements (in particular the participating processors) involved in its execution.
Moreover, to combine all results obtained on different execution sequences, we
need a probability distribution on the occurrences of such sequences. In particu-
lar, this can be obtained from a probability distribution of execution of different
transitions of the system, whenever several of them are simultaneously enabled.
In case a probability distribution of simultaneously enabled transitions is not
given, then one can assume identical probability of execution for all of them. If
the probability distribution μ on finite prefixes of execution ρ is given, then we
can answer the following questions:

350 S. Bensalem et al.

(i) What is the probability distribution of speedupN
P , that is, the speedup

achieved by P on execution sequences of length N? This distribution can
be in fact explicitly computed as follows, given any possible value of the
speedup s :

P
[
speedupN

P ≥ s
]
=

∑{
μ(ρ)

∣∣ length(ρ) = N ∧ speedupP(ρ) ≥ s
}

(ii) What is the expected mean value of speedupN
P , that is, the average speedup

value obtained on all sequences of length N? Again, this value can be
computed by direct summation as follows:

E
[
speedupN

P
]
=
∑{

μ(ρ) · speedupP(ρ)
∣∣ length(ρ) = N

}
(iii) What is the probability that partition P1 is better than P2 by at least,

for instance, 20% on sequences of length N? The answer can be directly
computed as:

P

[
speedupN

P1

speedupN
P2

≥ 1.2

]
=

∑{
μ(ρ) | length(ρ) = N ∧

speedupP1
(ρ)

speedupP2
(ρ)

≥ 1.2

}
We note the following about our analysis method:

1. Probabilities on executing transitions can be given as input. Otherwise, the
method assumes that all transitions enabled at some state are executed with
equal probability.

2. Execution duration of transitions can also be given as input in terms of
time units. Otherwise, we assume that the duration of a transition is 1
time unit for each participating processor. Thus, the sequential execution
time seqexecP(ρ) of any finite prefix ρ is equal to the length of the prefix
length(ρ) and, hence, independent of the partition P . In this case, we can use
the speedup as a performance indicator. That is, a greater speedup means
equivalently smaller (faster) execution time for a partition.

3. Complete analysis is expensive. Timing analysis explodes the state space and
makes even a finite state system, potentially, an infinite one. We will, thus,
analyze limited segments of executions. To avoid biasing the measurement,
we will not always start the analysis from the initial state, but from any
reachable state. Furthermore, we will weigh these measurements according
to the probability to reach and execute such finite fragments.

3.2 Our Assessment Solution

Because of the high complexity of timing analysis for arbitrarily long sequences,
we choose to check only executions of limited size k, with k* N and depending
on the amount of time and memory available, e.g., running k = 10 execution
steps. However, a naive implementation of this idea would be quite biased. For
example, an ATM system may start with verifying the PIN code, not revealing

Performance Evaluation of Process Partitioning 351

within the first few transitions executed a whole lot about the nature of the rest
of the execution.

For this reason, we check the behavior of sequences of k transitions from all
reachable states, based on the calculated probability (under the stated assump-
tions in Subsection 3.1) of reaching that state. We start building augmented
execution prefixes from that point. Let zero be the proposition that states that
the value of all history variables are zero. For an arbitrary expression η encoding
the property of interest, we compute the probability of temporal properties of
the form

φ(k, η) ≡ ♦(zero ∧©kη)

where ©k is the application of the next-time operator © in temporal logic k
times.

Using specific η properties, we can compute approximate answers to questions
(i)-(iii) mentioned in Subsection 3.1. For example, to answer questions (i) and
(ii) for a fixed partition P , we consider η ≡ execP ≤ k

s (where s is a given
possible value of the speedup) and approximate

P
[
speedupN

P ≥ s
]
≈ P

[
φ(k, execP ≤ k

s)
]

E
[
speedupN

P
]
≈

∑k
j=1

k
j · P [φ(k, execP = j)]

Likewise, the average speedup value is approximated as the weighted average of
all potential speedups {kj | 1 ≤ j ≤ k} that can be achieved on sequences of

length k. To answer question (iii), we must consider execution of two partitions
P1 and P2 simultaneously. Accordingly, the two partitions will have different
durations for transitions. In order to make a comparison between partitions, we
allow using multiple history variables and constants per a transition system.
Thus, we may use two sets of processors P1 and P2, two sets of history variables
and two sets of duration constants per partition. In this case, we consider

η ≡ execP2

execP1

≥ 1.2

and approximate:

P

[
speedupN

P1

speedupN
P2

≥ 1.2

]
≈ P

[
φ

(
k,

execP2

execP1

≥ 1.2

)]
In order to efficiently construct augmented prefixes for k steps at each state,

we provide two copies of the transitions: one copy that does not count (i.e.,
no augmented executions), before zero becomes true. Then, a transition that
causes zero to hold, exactly once, occurs, it sets up a flag and the second copy
of the transitions starts to apply augmented executions. This replication of the
transitions guarantees that the analyzed property does not count the time in
doing a reachability analysis, but rather constrain the counting to the k last
steps. The transition that guarantees zero has its own probability, and on the

352 S. Bensalem et al.

τi

vi

ri tmpi

vi+1

ri+1 tmpi+1

Node i Node i+ 1

fτi :

⎧⎪⎪⎨
⎪⎪⎩

vi+1 = min(vi+1, tmpi)
tmpi+1 = max(vi+1, tmpi)
ri+1 = true
ri = false

Fig. 3. Detail of a propagation transition

face of it, one needs to normalize the probability of φ(k, η) with the probability
to execute this transition. However, the probability of skipping this transition
forever is zero. Hence no actual normalization is needed.

4 Case Study : Sorting Chain

Our case study to evaluate our technique is a chain of nodes that sorts values
through a propagation mechanism. Values to sort enter the chain through the
leftmost node. Each node compares the incoming value on its left with its current
value, keeps the smaller one and propagates the greater one to its right. This
propagation scheme sorts the values in ascending order from left to right.

We model the node i as a set of variables (vi, tmpi, ri), where vi is the current
value stored in the node, tmpi is the value to be propagated to the right, and ri
is a Boolean variable that is true whenever the node has to propagate a value to
the right. Propagation of a value from node i to node i+ 1 is modeled through
the transition τi, as shown in Figure 3. The enabling condition is that the node
i has a value to propagate and i + 1 has not. Formally, enτi = ri ∧ ¬ri+1. The
effect of the propagation can be described as follows. The propagation transitions
compare the current value of i+ 1 with the value propagated by i. The smaller
one becomes the new value of i+1 while the greater one is propagated by i+1.
The variables ri+1 and ri are updated to indicate that i has propagated its value
and i+1 has now a value to propagate. Note that transitions τi and τi+1 cannot
execute simultaneously since both access variables of node i+ 1.

0 1 2 3 4

τ0

p0

τ1

p1 p2

τ2

p3

τ3

p4

p5

p6

(a) Neighbor pair parti-
tion.

0 1 2 3 4

p0

p4

τ0

τ1

τ2

τ3

p5

p6

(b) Distant pair parti-
tion.

0 1 2 3 4

τ1 τ2

τ0 τ3

p5

p6

(c) Concentric pair par-
tition.

Fig. 4. Different partitions for sorting chain of 5 nodes

Performance Evaluation of Process Partitioning 353

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 1.2 1.4 1.6 1.8 2

P
ro

ba
bi

lit
y

Speedup

k=6
k=8

k=10
k=12
k=14
k=16
k=18
k=20

Fig. 5. Approximations of speedup distribution, for the model with 5 nodes using the
neighbor pair partition

We assume that each node i is maintained by its own private processor pi.
Then, we consider additional support processors for executing transitions. Ex-
ecution of a transition implies its support processor and the two processors
hosting the corresponding nodes. For simplicity, we assume that the number of
transitions is even (and, hence, the number of variables is odd). We consider the
following partitions:

– Neighbor pairs (P1): we add one processor for each pair (τ2i, τ2i+1), where
i ∈ {0, . . . , n

2 }. With 5 variables, we have p5 for executing τ0 and τ1, p6 for
executing τ2 and τ3, as depicted in Figure 4(a).

– Distant pairs (P2): we add one processor for each pair of transitions (τi,τi+ n
2
),

where i ∈ {0, . . . , n
2 }. With 5 variables, transitions τ0, τ2 are executed by p5

and transitions τ1, τ3 are executed by p6, as depicted in Figure 4(b).
– Concentric pairs (P3): we add one processor for each pair of transitions

(τi,τn−(i+1)), where i ∈ {0, . . . , n
2 − 1}. With 5 variables, transitions τ0, τ3

are executed by p5 and transitions τ1, τ2 are executed by p6, as depicted in
Figure 4(c).

4.1 Approximating Speedup

Our first experiment shows how the approximation behaves when increasing the
length k of the considered execution sequences. We compute an approximation
of the distribution of speedupP1

for different values of k. This is obtained by

checking with PRISM [10] the probability of φ(k, speedupP1
= s), where s ∈ {kj |

1 ≤ j ≤ k}.
Figure 5 shows the speedup distribution for different values of k for the neigh-

bor pairs partition P1. The lines are added for readability, the actual results are
the points that correspond to the possible values of speedup. When k increases,
there are only three speedup values with a strictly positive probability. Namely,

354 S. Bensalem et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Minimal Speedup

Neighbor
Distant

Concentric

(a) Uniform probability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Minimal Speedup

Neighbor
Distant

Concentric

(b) Alternative probability.

Fig. 6. Complementary cumulative distribution function of the speedup for the three
proposed partitions, for the chain of 5 nodes

these are 2, k
k
2+1

and k
k
2+2

. To obtain a speedup of 2, each support processor is

used at every time slot. A speedup of k
k
2+1

is obtained when one of the processors

is unused during one time slot. Similarly, a speedup of k
k
2+2

is obtained when

there are two time slots where one processor is unused. Thus, in that example
speedupN

P1
converges toward 2 as N goes to ∞, which is visible in the successive

distributions obtained.
By checking the probability of φ(k, speedupP ≤ s), we obtain an approxi-

mation of the complementary cumulative distribution function for the speedup,
given a partition P . Since, the probabilities on executing transition can be given
as input, we compare here the uniform probability and an alternative probabil-
ity. In the latter, the probability of executing a given transition is higher, if it
was enabled and not executed for a greater number of steps. To compute the
probability of φ(k, speedupP ≤ s), we take k = 20 for the chain of 5 nodes. The
time for PRISM to build the model and compute the probabilities is about 20
minutes on a 3GHz dual-core machine running Debian Linux. For the chain of 7
nodes, we take k = 12. The time for computing the probabilities is then about
9 hours.

The obtained functions are shown in Figure 6, for the chain of 5 nodes and
Figure 7 for the chain of 7 nodes. Consider the chain of 5 with uniform probability
(Figure 6(a)). The probability of “the speedup is 1.4 or greater” is 0 for the
partition P2 (distant pair partition), roughly 0.4 for the partition P3 (concentric
pair partition), and 1 for the partition P1 (neighbor pair partition). For the chain
of 5 nodes, the speedup is at most 2, since there are only 2 support processors
for transitions. For the chain of 7 nodes, it ranges between 1 and 3.

The alternative probability yields a higher average speedup than uniform
probability. Indeed, if two transitions can be executed in parallel, executing one
of them increases the probability of executing the other one immediately after,
thus enforcing parallelism. Table 1 summarizes the results by giving the aver-
age speedup for each configuration. This gives us the first method for assessing
the efficiency of partitions. Note that the probabilities or the average can be
computed independently for each partition.

Performance Evaluation of Process Partitioning 355

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Minimal Speedup

Neighbor
Distant

Concentric

(a) Uniform probability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Minimal Speedup

Neighbor
Distant

Concentric

(b) Alternative probability.

Fig. 7. Complementary cumulative distribution function of the speedup for the three
proposed partitions, for the chain of 7 nodes

4.2 Comparing Partitions

In order to compare more precisely two partitions P1 and P2, we compare their

speedup by considering
speedupP1

speedupP2

. By checking the probability of the property

φ

(
k,

speedupP1

speedupP2

≥ α

)
for the possible speedup ratios α, we obtain again a complementary cumulative
distribution function. Figure 8(a) and Figure 8(b) compare partitions P1 and P2

for the chains of 5 and 7 nodes. Note that equation

P

[
speedupP1

speedupP2

≥ 1

]
= 1

means that partition P1 cannot exhibit a smaller speedup than the partition
P2. Furthermore, with probability 0.6, the speedup of partition P1 is 20% better
than the speedup of partition P2, and with probability 0.2 it is 40% better.
These results come from the fact that P1 preserves the intrinsic parallelism of
the model, whereas P2 prevents some interactions to execute in parallel. Here,
partition P1 is clearly better than partition P2.

Figures 9(a) and 9(b) compare P2 and P3, for the models of 5 and 7 nodes. In
this case, both partitions are restricting the intrinsic parallelism of the model,
but none of them is always better than the other. For the chain of 5 nodes,

Uniform Probability Alternative Probability

Number Partition Partition Partition Partition Partition Partition
of nodes P1 P2 P3 P1 P2 P3

5 1.80 1.16 1.38 1.82 1.13 1.60
7 1.88 1.46 1.56 1.96 1.67 1.79

Table 1. Average speedup

356 S. Bensalem et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1 1.2 1.4 1.6 1.8 2

P
ro

ba
bi

lit
y

α
(a) Chain of 5 nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

P
ro

ba
bi

lit
y

α
(b) Chain of 7 nodes.

Fig. 8. Probability of
speedupP1
speedupP2

≥ α.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

P
ro

ba
bi

lit
y

α
(a) Chain of 5 nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.8 1 1.2 1.4

P
ro

ba
bi

lit
y

α
(b) Chain of 7 nodes.

Fig. 9. Probability of
speedupP2
speedupP3

≥ α

P

[
speedupP1

speedupP2

≥ 0.5

]
= 1

since both speedups are between 1 and 2. Likewise,

P

[
speedupP1

speedupP2

≥ 2

]
= 0

However, the probability that P2 strictly outperforms P3 (α > 1) is less that
0.2, meaning that the probability that P3 outperforms or performs as well as P2

is more than 0.8. Hence, P3 seems apriori better than P2.

5 Related Work

The (max,+) discrete event systems theory [7] provides conditions about the
existence of asymptotic values for throughput, growth rates, cycle time, etc, as
well as analytic methods for their computation. Nonetheless, these results are
usually restricted to particular classes of systems. As an example tightly related
to our work, one can mention the study of the asymptotic growth rate for heaps
of pieces in Tetris games, as presented in [9]. Using our computational model,

Performance Evaluation of Process Partitioning 357

this problem is equivalent to the computation of the limit/asymptotic speedup
for transition systems where transitions are continuously enabled and fire accord-
ing to a uniform probability. For this particular problem, the (max,+) systems
theory guarantees the existence of the limit speedup. However, the computation
of this limit, known as the Lyapunov exponent, is to the best of our knowledge
still an open problem actively studied within the (max,+) community.

Schedulability analysis using verification has been addressed in different con-
texts. For example, in [1], the authors model jobshop and precedence task
scheduling using timed automata. The schedulability problem is then reduced
to reachability problem in timed automata. On the contrary, the focus of our
work is not on schedulability analysis, but rather on evaluating and comparing
two existing partitions using quantitative analysis. Likewise, the work in [8,11]
discusses partitioning and execution of concurrent Petri nets, but fall short in
evaluation of partitions.

The work in [4,3,5] proposes transformations for automated implementation
of concurrent (e.g., multi-threaded, multi-process, or distributed) systems from a
component-based abstract model. One input to the transformation algorithms is
a partition scheme that maps concurrent components and schedulers to proces-
sors and/or machines. Although the focus of the work in [4,3,5] is on automating
the implementation of a concurrent system, it falls short on evaluating different
partition schemes to choose the one that results in the best speedup for the con-
current implementation. The evaluation technique presented in this paper can
assist in choosing a better input partition to automatically implement concurrent
programs.

Finally, most approaches based on classic performance evaluation (e.g.,
in [6,2]) are limited to specific network topologies. On the contrary, our tech-
nique is independent of topology and it benefits from the push-button model
checking technology. This makes the tedious task of performance evaluation for
different topologies much easier.

6 Conclusion

In this paper, we studied the problem of evaluating and comparing two given
partitions, where each transition and variable of a transition system is mapped
to a processor and the system allows some concurrency among its transitions.
We defined a notion of maximal concurrency that is used to assess the runtime
behavior of the system under different partitions. Our notion of maximal concur-
rency model consists of a set of processors, a partition, a variable per processor
that keeps track of the current execution time at the processor, and a constant,
which describes the duration of transition.

We developed an effective and relatively inexpensive test for assessing and
comparing a priori the efficiency of two partitions. Our method on observing
the system for a long period, over actual runs, or empirical studies. It analyzes
the value of variables that keep track of execution time for each processor. The
analysis relies on comparing execution time, sequential execution time, and the

358 S. Bensalem et al.

probability of speedup, for finite prefixes of execution sequences of some con-
stant size k according to a partition. We utilized a probabilistic model checker
to answer the abstract question: with what probability can random executions
according to one partition be faster by a factor of f . Our experiments on popular
distributed algorithms clearly showed the effectiveness of our technique to assess
the efficiency of different partitions.

For future work, we are planning to design methods that automatically gen-
erate partitions that are likely to perform well. Another interesting research
direction is to incorporate other parameters, such as power consumption (e.g.,
in sensor networks), network load, etc in assessing the efficiency of partitions.

Acknowledgments. This research was supported in part by Canada NSERC
Discovery Grant 418396-2012 and NSERC Strategic Grant 430575-2012.

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret-
ical Computer Science 354(2), 272–300 (2006)

2. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications 18, 535–547 (2000)

3. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
conflict-free distributed implementation of component-based models. In: IEEE
Symposium on Industrial Embedded Systems (SIES), pp. 108–117 (2010)

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Journal on
Distributed Computing (DC) 25(1), 383–409 (2012)

5. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation
of component-based models with priorities. In: ACM International Conference on
Embedded Software (EMSOFT), pp. 59–68 (2011)

6. Cao, M., Ma, W., Zhang, Q., Wang, X., Zhu, W.: Modelling and performance anal-
ysis of the distributed scheduler in IEEE 802.16 mesh mode. In: ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 78–89
(2005)

7. Olsder, G.J., Bacelli, F., Cohen, G., Quadrat, J.P.: Synchronization and Linearity.
Wiley (1992)

8. Ferscha, A.: Concurrent execution of timed Petri nets. In: Winter Simulation Con-
ference, pp. 229–236 (1994)

9. Gaubert, S.: Methods and applications of (max,+) linear algebra. Technical Report
3088, INRIA (January 1997)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

11. Cortadella, J., Kondratyev, A., Lavagno, L., Passerone, C., Watanabe, Y.: Quasi-
static scheduling of independent tasksfor reactive systems. In: Esparza, J., Lakos,
C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 208–227. Springer, Heidelberg
(2002)

Improving Representative Computation

in ExpliSAT�

Hana Chockler1,��, Dmitry Pidan2, and Sitvanit Ruah2

1 King’s College, London, UK
2 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel

Abstract. This paper proposes a new algorithm for computing path
representatives in the concolic software verification tool ExpliSAT. A
path representative is a useful technique for reducing the number of calls
to a decision procedure by maintaining an explicit instantiation of sym-
bolic variables that matches the current control flow path. In the current
implementation in ExpliSAT, the whole representative is guessed at the
beginning of an execution and then recomputed if it does not match the
currently traversed control flow path. In this paper we suggest a new
algorithm for computation of a representative, where the instantiation
is done “on demand”, that is, only when a specific value is required
in order to determine feasibility. Experimental results show that using
representatives improves performance.

1 Introduction

The notion of concolic verification is typically used in the context of static anal-
ysis and testing and refers to a hybrid software verification technique that com-
bines concrete values of control variables with symbolic representation of data.
This technique is now used in many symbolic execution tools, such as dart [1],
cute [2], klee [3] and others. explisat [4] is based on a similar algorithm, but
instead of executing the program on each of the control paths, it, essentially,
builds a model of each explicit control flow path with symbolic data variables
and invokes a decision procedure (usually sat or smt) to determine whether
there exists an instantiation of this path that violates correctness assertions.
One common problem of the concolic approach is how to determine whether
the current control flow path is feasible. Tools that perform formal analysis of
the program apply some decision procedure on the path in order to determine
its feasibility; however, it is useful to know whether the current path is feasible
on-the-fly, to avoid lengthy executions of infeasible paths.

In contrast to tools that use concrete evaluations of symbolic variables for
guiding the execution, explisat uses the concept of path representatives, which

� This work is partially supported by the European Community under the call FP7-
ICT-2009-5 – project PINCETTE 257647.

�� This work was done while this author was an employee of IBM Research Lab in
Haifa.

V. Bertacco and A. Legay (Eds.): HVC 2013, LNCS 8244, pp. 359–364, 2013.
c© Springer International Publishing Switzerland 2013

360 H. Chockler, D. Pidan, and S. Ruah

are computed on the fly and hold a feasible instantiation of the symbolic values.
Representatives are used to reduce the number of calls to the decision procedure
(sat) as follows: in a branching point, if a branch fits the current representative,
then it is feasible, and no call to sat is necessary. In case both branches are
feasible, they both are explored according to the search algorithms and heuristics.
In the current implementation, initial instantiation of all symbolic values in
the representative is guessed at the beginning of the execution. If a guess is
unsuccessful, the representative is recomputed from scratch, thus invalidating
most of its benefits.

In this paper, we suggest a new algorithm for computing and maintaining the
path representative, in which the symbolic values are instantiated “on demand”
– only when needed to determine feasibility. The key point of our algorithm
is that unassigned symbolic variables are not assigned random values, but are
left unevaluated in the formula. The experimental results show that, while our
approach always results in more calls to the decision procedure than in the
previous implementation, these calls are small and do not incure a significant
computational overhead. We compared our new implementation with the current
implementation with the complete representative and with an implementation
that does not use represenatives at all, on several case studies of different types of
programs written in C. In all case studies, the new algorithm with instantiation
of the representative “on demand” outperforms both the implementation with
the full representative and the implementation without path representatives.

2 Preliminaries

Let V be a set of variables of the program under verification and Φ be a set
of expressions over V , C operators, and constants.

Definition 1 (cfg). A control flow graph (cfg) G is a tuple 〈N,E, n0〉, where
N is a set of nodes, E ⊆ N × N is a set of directed edges, and n0 ∈ N is the
initial node. Every node n ∈ N has a type corresponding to a particular program
construct as follows: (1) a terminal node: has no outgoing edges, represents an
error or a final state of the program; (2) an assignment v := ϕ, where v ∈ V
and ϕ ∈ Φ; these nodes have a single outgoing edge (n, n′) ∈ E; (3) an if
statement θ ? n′ : n′′, where θ ∈ Φ, n′, n′′ ∈ N and (n, n′), (n, n′′) ∈ E. the
node n′ corresponds to the next program statement if θ evaluates to true, and
n′′ corresponds to the next program statement if θ evaluates to false.

Definition 2 (Guard). For a path π in the cfg, let n1, . . . , nk be the nodes
of π corresponding to if statements. Let θi ? n′

i : n
′′
i be the statement of ni. A

guard ϕπ ∈ Φ for π is a boolean expression that satisfies ni+1 = n′
i ↔ (ϕπ → θi)

for all 1 ≤ i ≤ k.

We say that a variable v has a symbolic value vs ∈ sv, where sv stands for the
set of symbolic values, if v can be assigned any value in sv. We denote by Φsv
the set of expressions over symbolic values, constants and C operators.

Improving Representative Computation in ExpliSAT 361

Definition 3 (Symbolic valuation). Given a symbolic mapping S : V →
ΦSV of V , symbolic valuation ϕS of expression ϕ ∈ Φ, substitutes every variable
v in ϕ with S(v).

explisat[4] traverses the cfg of a program under verification path by path. A
path π is denoted by the pair 〈n, ϕπ〉, where n is the last node of π and ϕπ is its
guard. On every assignment statement, explisat calculates a symbolic valuation
of the assignment operation and assigns it to a variable on the left. On an if
statement, explisat checks which branch is feasible and continues its traversal
to the feasible branches. Algorithm 1 describes the main explisat procedure.

input : cfg G = 〈N,E, n0〉, program variables V , set of symbolic values sv
Queue of active paths P ← {〈n0, true〉};
Symbolic mapping S : V → ΦSV , ∀v ∈ V, S(v) = vs ∈ sv;
while P 	= ∅ do

〈node n, guard ϕ〉 ← pop P ;
if n is terminal then stop;
else if n is an assignment v := ϕ then

S(v) ← ϕS ;
push P , 〈n′, ϕ〉;

end
else if v is if statement θ ? n′ : n′′ then

if isFeasible(ϕ ∧ θS) then push P , 〈n′, ϕ ∧ θS〉;
if isFeasible(ϕ ∧ ¬θS) then push P , 〈n′′, ϕ ∧ ¬θS〉;

end

end

Algorithm 1. ExpliSAT algorithm

The simplest way to check feasibility of the path in the isFeasible function in
Algorithm 1 is to perform a call to a sat solver to find a satisfying assignment. If a
satisfying assignment exists, the path is feasible and can be traversed. While this
approach is clearly sound and complete, it requires many computationally heavy
sat calls. In order to reduce the number of these calls, explisat maintains a
representative of each path. A representative is a single concrete assignment that
satisfies a path guard up to the current execution point. Within the isFeasible
function, explisat first checks whether the current representative satisfies a new
guard, and if yes, the path is clearly feasible and no sat call is needed.

Definition 4 (Instantiation). Let dom(sv) be a domain of the set of symbolic
variables sv, and let I : sv → dom(sv) be a concrete mapping that assigns
every symbolic value with a concrete value from its domain. Given a mapping I,
ϕ ∈ ΦSV the instantiation I∗(ϕ) ∈ dom(sv) is the result of evaluating ϕ, after
substituting every vs ∈ sv in ϕ by I(vs).

Definition 5 (Representative). Given guard ϕ and symbolic mapping S :
V → ΦSV , a representative is a concrete mapping I such that I∗(ϕS) = true.

362 H. Chockler, D. Pidan, and S. Ruah

3 Our Algorithm and Experimental Results

Partial representative In the current representative computation algorithm,
every symbolic variable vs ∈ sv is initialized to a randomly guessed value, and
the symbolic mapping I (the representative) is updated in every sat call. When
the initial value satisfies the guard, no sat call is needed.

Let svp ⊆ sv be a subset of symbolic values. A partial concrete mapping
I|svp

: svp → dom(svp), is a projection of I : sv→ dom(sv) to svp. We define
partial instantiation I∗|svp

and partial representative using Definitions 4, 5 with
sv and I replaced by svp and I|svp

, respectively. The new isFeasible function
using partial representative is presented in Algorithm 2.

input : partial concrete mapping I∗|svp
: svp → Dom(svp)

function isFeasible(symbolic expression ϕS)

begin
if I∗|svp

(ϕS) = true then return true;

else if ∃A : sv → dom(sv) s.t. A∗(I∗|svp
(ϕS)) = true then

∀vs ∈ symval(ϕS) \ svp, I(vs) ← A(vs);
svp ← svp

⋃
symval(ϕS);

return true;

end
else if ∃A : sv → dom(sv) s.t. A∗(ϕS) = true then

∀vs ∈ symval(ϕS), I(vs) ← A(vs);
svp ← symval(ϕS);
return true;

end
else return false;

end

Algorithm 2. isFeasible with partial representative

The execution starts with svp = ∅. Then, each call to isFeasible updates
the svp with symval(ϕS) - symbolic values appearing in the guard ϕS , and
the partial concrete mapping I|svp

(the representative) with the values of those
variables from the satisfying assignment. Note that, contrary to the previous
algorithm, unassigned symbolic variables are not getting random values, but
are left unevaluated in the formula. When the previously assigned values do not
satisfy the current guard, the whole representative is re-computed as previously.
While this approach generates more sat calls than the previous one (since there
are no guesses of the concrete values), each of these calls is incremental and
is very light-weight in practice. Since the symbolic values are assigned concrete
values based on the output of the sat solver, there are fewer cases when the
heavy sat call is required to re-compute the representative.

Experimental Results. We implemented all the algorithms within a prototype
tool that performs symbolic execution of the program, built on top of the Cprover
framework [5]. An IBM sat solver [6] is used for checking the path feasibility.

Improving Representative Computation in ExpliSAT 363

Table 1. Comparison of path feasibility checking algorithms

Total Imp. Algorithm Solver

cpu time cpu time Calls cpu time Avg.

TCAS
Solver only 0:0:5.14 0:0:4.576 74 0:0:4.445 0.06
Full representative 0:0:4.772 7.16% 0:0:4.321 55 0:0:3.920 0.071
Partial representative 0:0:4.412 14.16% 0:0:3.963 56 0:0:3.606 0.064

Driver testcase
Solver only 77:25:42.814 31:21:30.152 56885 30:56:10.846 1.958
Full representative 74:41:44.834 3.53% 29:45:25.496 46777 27:15:31.462 2.098
Partial representative 66:46:38.931 13.76% 22:45:15.305 54428 20:21:46.061 1.347

Credit card validation testcase
Solver only 3:23:44.884 3:16:3.524 11429 3:13:40.263 1.017
Full representative 2:0:55.146 40.65% 1:52:50.230 7231 1:46:20.714 0.882
Partial representative 1:34:27.025 53.64% 1:26:50.890 7245 1:20:35.568 0.667

Control application testcase
Solver only 3:35:06.587 3:31:13.139 4101 3:27:19.262 3.033
Full representative 3:29:40.822 2.52% 3:25:44.211 3621 3:18:59.129 3.297
Partial representative 2:34:48:432 28.03% 2:30:54.631 3851 2:25:24.401 2.265

Table 2. Characteristics of test cases

Feasible Full representative Partial representative hit ratio

paths ratio hit ratio Before sat After sat Total

TCAS 50% 36.54% 34.62% 19.23% 53.85%

Driver 4.18% 29.91% 7.27% 37.05% 44.32%

Credit card validation 55.89% 54.76% 54.65% 10.78% 65.32%

Control application 55.44% 15.01% 11.23% 76.82% 88.05%

We compared three algorithms: an algorithm without representative (sat is
called for every path), current ExpliSAT algorithm with full representative, and
our new algorithm with partial representative (Algorithm 2). The comparison
was performed on the open source aircraft collision avoidance system TCAS
[7], and on three proprietary input programs representing different domains of
software engineering. The first program is a unit from a hardware driver. The
second program is a procedure simulating the process of a credit card number
validation. The third program is a control application that performs navigation
of the Cassette Multifunctional Mover (CMM) robot in the ITER project (see
http://www.iter.org/). The experimental results are shown in Table 1. The time
in all columns is given in hh:mm:ss format, except for Avg(sec.). The column
“Algorithm CPU time” gives the total time for the verification algorithm, in-
cluding simplifications and the computation of the representative; in particular,
in includes the CPU time of SAT solving.

364 H. Chockler, D. Pidan, and S. Ruah

Each program under test has its own special characteristics. The driver unit
contains long linear blocks of code, making the portion of branching instructions
less significant, while in the credit card number validation program and in the
control application, branching instructions comprise a much larger portion of
the code. This difference can be seen by comparing columns 1 and 3 in Table 1.
In the driver testcase, the portion of time spent by all three algorithms on path
feasibility checking (column 3) is less than 40%, contrary to others, where this
portion is near or above 90%. Intuitively, this means that both representative-
based algorithms are more likely to make a larger impact on the latter testcases.
The column Imp. in Table 1 shows the improvement in overall running time
achieved by each of the representative-using algorithms, compared to the algo-
rithm that uses no representative. It is easy to see that both algorithms improve
the performance in all three cases, with the partial representative being the best
one. The significance of improvement varies depending on the following ratios :
the ratio of feasible paths (see column 1 in Table 2), and the ratio of representa-
tive hits (the ratio of times the representative succeeded to prove the feasibility
of the path, see columns 2− 5 in Table 2). The larger those ratios are, the more
significant the impact of the representative algorithm is.

We also note that our intuition that many small sat calls are better than
fewer large calls is reaffirmed by the results in columns 4−6 in Table 1. Average
time spent on a call to the sat solver in the partial representative algorithm
is smaller than in the full representative algorithm, and thus even though the
number of calls is higher, the overall cpu time spent in the sat solver is much
lower for partial representative algorithm.

References

1. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI, pp. 213–223 (2005)

2. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

3. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

4. Barner, S., Eisner, C., Glazberg, Z., Kroening, D., Rabinovitz, I.: ExpliSAT: Guiding
SAT-based software verification with explicit states. In: Bin, E., Ziv, A., Ur, S. (eds.)
HVC 2006. LNCS, vol. 4383, pp. 138–154. Springer, Heidelberg (2007)

5. The CBMC Homepage, http://www.cprover.org/cbmc
6. RuleBase PE Homepage,

http://www.haifa.il.ibm.com/projects/verification/RB_Homepage

7. Software-artifact Infrastructure Repository,
http://sir.unl.edu/portal/index.php

http://www.cprover.org/cbmc
http://www.haifa.il.ibm.com/projects/verification/RB_Homepage
http://sir.unl.edu/portal/index.php

Author Index

Abel, Andreas 182
Adir, Allon 182
Ahn, Sunha 61
Apel, Sven 262
Arcaini, Paolo 95
Artho, Cyrille Valentin 112
Atzeni, Andrea 145

Ben-David, Shoham 230
Bensalem, Saddek 344
Beyer, Dirk 262
Biere, Armin 112
Blochwitz, Torsten 182
Bonakdarpour, Borzoo 344
Botsikas, Christos 145
Bozga, Marius 344
Bozzano, Marco 279
Brown, Walter 327

Chockler, Hana 230, 359
Ciesielski, Maciej 327
Cimatti, Alessandro 279
Codish, Michael 1

Ernst, Gidon 214

Faily, Shamal 145
Fekete, Yoav 1
Friedberger, Karlheinz 262

Gargantini, Angelo 95
Ghosh, Indradeep 15, 295
Goryachev, Alex 151
Greenberg, Lev 182

Hagiya, Masami 112
Haneberg, Dominik 214
Heljanko, Keijo 32

Kadry, Wisam 151, 166
Katz, Gal 246
Koyfman, Anatoly 166
Krestyashyn, Dmitry 166

Kuismin, Tuomas 32
Kupferman, Orna 230

Landa, Shimon 166
Lange, Tim 44
Li, Guodong 15, 295
Lyle, John 145

Malik, Sharad 61
Mattarei, Cristian 279
Metodi, Amit 1
Morad, Ronny 151
Mounier, Laurent 129
Mütze, Annika 311

Nahir, Amir 166
Neuhäußer, Martin R. 44
Noll, Thomas 44
Ntanos, Christos 145

Peled, Doron 246, 344
Peterson, Richard D. 151
Pfähler, Jörg 214
Pidan, Dmitry 359
Platon, Eric 112

Quilbeuf, Jean 344

Rabetti, Tali 151
Raimondi, Franco 262
Reif, Wolfgang 214
Riccobene, Elvinia 95
Rossi, André 327
Ruah, Sitvanit 359

Salman, Tamer 182
Schellhorn, Gerhard 214
Seidl, Martina 112
Sifakis, Emmanuel 129
Sokhin, Vitali 166
Su, Tao 145

Tanabe, Yoshinori 112
Travkin, Oleg 311

366 Author Index

Unadkat, Divyesh 199

Virji, Habib 145
von Rhein, Alexander 262
von Styp, Sabrina 78

Wehrheim, Heike 311

Yamamoto, Mitsuharu 112
Yeolekar, Anand 199
Yu, Liyong 78

	Preface
	Organization
	Table of Contents
	Session 1: SAT and SMT-Based Verification
	Backbones for Equality
	1 Introduction
	2 Related Work
	3 Backbones and Equalities
	4 Complete Equi-propagation in
	5 Preliminary Experimental Evaluation
	5.1 The First Experiment
	5.2 The Second Experiment

	6 Conclusion
	References

	PASS: String Solving with Parameterized Arrayand Interval Automaton
	1 Introduction
	2 Motivating Examples and Background
	3 Parameterized Array Based Model
	3.1 Solving P-Array Constraints with Quantifier Elimination

	4 Enhancement
	with Automaton
	Based Model
	5 Evaluation Results
	6 Conclusions
	References

	Increasing Confidence in Liveness Model Checking Results with Proofs
	1 Introduction
	1.1 System Models
	1.2 Liveness and Safety Properties
	1.3 Symbolic Model Checking and SAT-Based Model Checking
	1.4 Related Work

	2 Liveness to Safety Reduction
	2.1 Implementation

	3 Verifying the Proof
	4 Experiments
	5 Conclusion and Discussion
	References

	Speeding Up the Safety Verificationof Programmable Logic Controller Code
	1 Introduction
	2 Related Work
	3 IntermediateCode
	4 ModelMinimizations
	4.1 Constant Folding
	4.2 Program Slicing
	4.3 Forward Expression Propagation
	4.4 Combining the Optimizations

	5 Bounded Model Checking
	5.1 Bounded Model Checking
	5.2 Termination
	5.3 Pruning Formulae
	5.4 Multiple Cycles

	6 Evaluation
	7 Conclusions
	References

	Session 2: Software Testing I
	Modeling Firmware as Service Functions and Its Application to Test Generation
	1 Introduction
	2 Rockbox Case Study
	3 Transaction Level Model
	3.1 Model Definition
	3.2 Analyzing Data Dependencies between Transactions
	3.3 Prevalence of the Interaction Patterns in Practice

	4 Using Transaction Interaction Patterns in Firmware Testing
	4.1 Automatic Test Generation Using KLEE
	4.2 Test Case Generation for Stateless Producer-Consumer Transactions
	4.3 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Symbolic Model-Based Testingfor Industrial Automation Software
	1 Introduction
	2 Sequential Function Charts as Functional Description
	3 Testing with Symbolic Transition Systems
	3.1 Symbolic Transition System
	3.2 Testing with JTorX

	4 Translation of SFC to STS
	4.1 Formal Description of
	4.2 From SFC to STS

	5 Case-Study Set-Up
	5.1 Operative Environment
	5.2 Client-Server Communication

	6 Case Studies
	6.1 Case Study Motor
	6.2 Case Study Heat Exchanger

	7 Conclusion
	References

	Session 3: Software Testing II
	Online Testing of LTL Properties for Java Code
	1 Introduction
	2 Background
	3 Formal Definitions
	4 Running Case Study
	5 Monitor Construction
	6 Coverage Criteria over the Monitor
	7 Online Testing of LTL Properties
	8 Experiments
	8.1 Coverage Criteria Evaluation
	8.2 Fault Detection Capability
	8.3 Comparison with LTS

	9 Related Work
	10 Conclusion and Future Work
	References

	Modbat: A Model-Based API Tester for Event-Driven Systems
	1 Introduction
	1.1 Usage of Modbat
	1.2 Outline

	2 Background
	2.1 Terminology
	2.2 Online vs. Offline Testing
	2.3 Related Work

	3 Modeling Notation
	3.1 ESFM Notation
	3.2 Comparison to API-Driven Test Derivation Tools
	3.3 Advanced Modeling Features: Non-determinism and Annotations
	3.4 Other Features

	4 Implementation Architecture
	5 Usage of Modbat in Software Development
	5.1 Testing the SAT Solver Lingeling with Modbat
	5.2 Java PathFinder
	5.3 Evaluation of Models for Non-blocking I/O
	5.4 Defects Found

	6 Conclusions and Future Work
	References

	Predictive Taint Analysis for Extended Testing of Parallel Executions
	1 Introduction
	1.1 Executing Multi-threaded Applications in Parallel
	1.2 Concurrency Bug Analysis
	1.3 Taint Analysis
	1.4 Objectives and Contribution

	2 An OfflineWindow-Based Analysis
	2.1 Slicing the Log Files
	2.2 Sliding Window Prediction

	3 Window-Based Taint Prediction
	3.1 Iterative Taint Prediction
	3.2 Iterative Taint Prediction under Sequential Consistency
	3.3 Taking Un-tainting into Account
	3.4 Precision of the Analysis

	4 Respecting Synchronization Mechanisms
	5 Taint Analysis and TSO Memory Model
	6 Related Work
	7 Conclusion
	References

	Continuous Integrationfor Web-Based Software Infrastructures:Lessons Learned on the webinos Project
	1 Introduction
	2 Related Work
	3 webinos Architecture
	4 Testingwebinos
	4.1 Approach
	4.2 Lessons Learned

	5 Conclusion and Future Work
	References

	Session 4: Supporting Dynamic Verification
	SLAM: SLice And Merge -Effective Test Generation for Large Systems
	1 Introduction
	2 Partitioning Method
	2.1 Slicing Techniques
	2.2 Integration into Test Generators

	3 Adding SLAM to the Verification Cycle
	3.1 Reducing Manual Effort
	3.2 Saving Regression Time

	4 Experimental Evaluation
	4.1 Simulating a Subset of the System
	4.2 Reaching Coverage Faster
	4.3 Covering Unique Events

	5 Related Work
	6 Conclusion
	References

	Improving Post-silicon Validation Efficiencyby Using Pre-generated Data
	1 Introduction
	2 Related Work
	3 SolutionScheme
	4 Address Translation
	5 Memory Management
	6 Conclusions
	References

	Development and Verification of ComplexHybrid Systems Using Synthesizable Monitors
	1 Introduction
	2 Performing Systems Engineering with Monitors
	2.1 Analysis of Test Coverage Requirements
	2.2 Requirement Traceability
	2.3 Data Harvesting and Dynamic Optimization
	2.4 Use of Monitors in Hardware Development and Verification

	3 Language Considerations
	3.1 Declarative vs. Operational Property Specification

	4 Hybrid Simulation Monitors
	4.1 Restricted Monitor Language
	4.2 Monitor Manipulation
	4.3 Monitor-Aware Simulation

	5 Monitor Specification and Synthesis Platform
	6 Conclusions
	References

	Assertion Checking Using Dynamic Inference
	1 Introduction
	2 Compositional Assertion Checking
	2.1 Dynamic Inference Using Daikon
	2.2 Summarizing Functions
	2.3 Summary Refinement
	2.4 Algorithm for Assertion Checking
	2.5 Remarks

	3 Implementation
	4 Experiments
	4.1 Setup and Tool Parameters
	4.2 Results
	4.3 Analysis and Observations

	5 Related
	6 Conclusion and Future Work
	References

	Session 5: Specification and Coverage
	Formal Specification of an Erase BlockManagement Layer for Flash Memory
	1 Introduction
	2 Hardware Model (MTD)
	3 Abstract EBM Layer Specification
	4 EBM Implementation
	4.1 Data Structures and Interface Operations
	4.2 Asynchronous Erasure and Wear-Leveling
	4.3 Power Failure and Recovery

	5 Related Work
	6 Conclusion
	References

	Attention-Based Coverage Metrics
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Circuits
	2.3 Mutations in Circuits
	2.4 Mutations in Netlists

	3 Attention-Based Coverage
	3.1 Multi-valued Circuits
	3.2 Multi-valued Coverage

	4 Stuttering Coverage
	4.1 Finding Stuttering Coverage Holes

	5 Frequency-Based Coverage
	5.1 Finding Frequency-Based Coverage Holes

	6 A Case Study
	7 Future Work
	References

	Keynote Presentation
	Synthesizing, Correcting and Improving Code,Using Model Checking-Based GeneticProgramming
	1 Introduction
	2 Genetic Programming Based on Model Checking
	3 Finding New Mutual Exclusion Algorithms
	4 Synthesizing Parametric Programs
	5 Correcting Erroneous Program
	6 A Tool for Genetic Programming Based on Model Checking
	7 Conclusions
	References

	Session 6: Abstraction
	Domain Types: Abstract-Domain Selection Based on Variable Usage
	1 Introduction
	2 Background
	3 Domain Types
	3.1 Classification
	3.2 Pre-analysis
	3.3 Domain Assignment

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Verification Tasks
	4.4 Results
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

	Efficient Analysis of Reliability Architecturesvia Predicate Abstraction
	1 Introduction
	2 Related Work
	3 Background
	4 The Problem: Analysis of Reliability Architectures
	5 The Approach
	6 Abstraction
	6.1 Modular Abstraction Equivalence

	7 Experiments
	7.1 Implementation
	7.2 Experimental Evaluation

	8 Conclusion
	References

	Lazy Symbolic Execution through Abstractionand Sub-space Search
	1 Introduction
	2 Backgroup and Motivation
	2.1 Overview

	3 Lazy Symbolic Execution
	3.1 Function Abstraction and Declarative Implementation
	3.2 Sub-space Search with Early Termination
	3.3 Sub-space Search with Abstractions

	4 Evaluation Results
	5 Discussion and Conclusion
	References

	SPIN as a Linearizability Checkerunder Weak Memory Models
	1 Introduction
	2 Modelling Memory Model Behavior in SPIN
	3 Program Encoding
	4 Checking Linearizability
	5 Conclusion
	References

	Session 7: Model Representation
	Arithmetic Bit-Level VerificationUsing Network Flow Model
	1 Introduction
	1.1 Related Work
	1.2 Novelty and Contribution

	2 Technical Approach
	2.1 Basic Terminology
	2.2 Overview of the Method

	3 Arithmetic Network Model
	3.1 Algebraic Models
	3.2 Signature Rewriting
	3.3 Weight Compatibility Constraints
	3.4 Weight Propagation
	3.5 Proof by Flow Conservation
	3.6 Debugging Faulty Circuits

	4 Results
	5 Conclusions
	References

	Performance Evaluation of Process PartitioningUsing Probabilistic Model Checking
	1 Introduction
	2 Computation Model
	2.1 Transition Systems
	2.2 Maximal Concurrency Model

	3 Evaluating the Effect of Partitions on Speedup
	3.1 The Notion and Metrics for Execution Speedup
	3.2 Our Assessment Solution

	4 Case Study : Sorting Chain
	4.1 Approximating Speedup
	4.2 Comparing Partitions

	5 Related Work
	6 Conclusion
	References

	Improving Representative Computationin ExpliSAT
	1 Introduction
	2 Preliminaries
	3 Our Algorithm and Experimental Results
	References

	Author Index

