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Abstract The importance of model calibration has been growing up as a result of
the energy refurbishment policy promoted by the recast Energy Performance of
Buildings Directive (EPBD 2010/31/EU). In fact, with the purpose of ensuring a
suitable refurbishment design with effective energy conservation measures (ECM),
an accurate model has to be defined in order to assess the energy behaviour of the
as-built building. In this chapter, some issues related to the model calibration are
presented, starting from the definition of an operative procedure step by step.
Furthermore, for the most critical phases of the procedure, analysis techniques and
experimental methods are described both through theory and practical examples.
Finally, throughout the chapter, the analysis of a case study is presented.

Nomenclature

CDH,¢ Cooling degree hours at a base temperature of 26 °C
F Sensitivity index for factorial method

HDH,g Heating degree hours at a base temperature of 18 °C
k Specific heat capacitance (J m~> K1)

n Number of simulation steps

s Sensitivity index for differential sensitivity analysis
R? Regression index
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U Thermal transmittance (W m~—> K~ ')

0; Model response of the j™ simulation

Greek Symbols
A Thermal conductance (W m~—2 K1)
0  Dry bulb temperature (K)

Subscripts

C Cooling
f Floor
H Heating
1 Internal
r Roof

sim Simulated
set  Set point
w Wall

1 Introduction

Energy simulation represents a useful tool to describe actual building behaviour;
hence, it is applied not only in the design process but also in the post-occupancy
analysis. In this case, the purpose is the evaluation of building actual energy effi-
ciency in order to estimate the potential energy savings of existing constructions. In
fact, the recast Energy Performance of Buildings Directive (EPBD [28] 2010/31/
EU) highlights that residential and commercial buildings account for more than
one-third of total annual energy consumption. Since significant energy savings can
be achieved through energy conservation measures (ECM) for existing building
stock, the importance of refurbishment has been growing. Consequently, simula-
tions have been applied to the existing constructions to assess their energy per-
formance and to define effective ECM. In this regard, dynamic energy simulation
allows to understand the dynamic interactions between climate, building, occupants
and energy systems. However, the large number of required inputs and parameters
affects the reliability of dynamic simulation and significant discrepancies between
predicted and real data could occur. Furthermore, the comparison between actual
consumption and quasi-steady state prediction highlights important deviations. For
these reasons, model calibration with monitored data is often appropriate in order to
refine models and to develop more realistic energy-behaviour simulations.

Model calibration is widely used for commercial and office buildings analyses,
which require the definition of complex transient simulations in order to design
effective ECM. In fact, due to the large dimensions of these buildings and the
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operational daily schedules that vary with hourly interval, dynamic simulations are
necessary to assess reliable energy behaviour.

Nevertheless, model calibration could be applied even for residential buildings.
Quasi-steady state simulations usually require limited in situ measurements for
model calibration, and they provide for the general behaviour of constructions
(most of all with monthly intervals). Moreover, the input data are similar to the
parameters employed in energy labelling, and the model calibration can be per-
formed with utility bills. Consequently, this kind of evaluation is not time-con-
suming, and it guarantees for economical sustainability. Therefore, quasi-steady
state simulations represent a useful tool for energy performance evaluation of both
average- and small-dimension buildings.

On the other hand, a different approach is suitable for large-dimension houses,
whose typology often constitutes social housing and it is widely spread in the
suburbs of all the European cities. These constructions need a general refurbish-
ment, most of all in terms of energy requirements, and they represent one of the
strategic targets of EPBD [28] 2010/31/EU, because of the significant potential
savings. In this regard, a large-scale evaluation as well as important investments
are necessary for a general energy renewal. Thus, transient simulations can rep-
resent an important tool to plan effective ECM. Finally, time and economical costs
due to dynamic models are sustainable in relation to these construction dimensions
and to the potential energy savings.

Therefore, even in this case, model calibration is necessary in order to define an
accurate model of the ‘as-built’ building and to design effective ECM.

According to these considerations, the large application field of model cali-
bration requires operative procedures. A new European standard is going to be
developed by CEN Technical Committee 89 (Working Group 14), and it will
provide for calibration strategies and measurements of post-processing procedures
for building energy models [24]. Currently, three protocols define general criteria
and tolerance ranges for model calibration:

o International Performance Measurement and Verification Protocol IPMVP [27]),
e Measurement and Verification M&V Guidelines [31]);
e ASHRAE Guideline 14/2002: Measure of energy and demand savings [21].

However, none of these standards define an operative procedure to calibrate
building models. In the literature, several studies deal with the model calibration
issues using actual energy consumption either from in situ monitoring during the
calibration period (e.g., [10, 12]) or from the analysis of monthly utility bills (e.g.,
[20]). Only a few works adopt the internal temperature as a calibration goal (e.g.,
[16]). In fact, this approach could be affected by a series of uncertainties and
interactions with the indoor environment: occupant behaviour, internal gain and
building equipment. Besides, the measurement of several variables can be an
expensive and time-consuming activity. However, the model calibration using
temperature as a control variable is the only viable procedure when no operating
HVAC systems are present in a building.
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Finally, the aim of model calibration is to minimize the discrepancies between
the model and the real behaviour of buildings, therefore an extended procedure is
necessary.

2 The Calibration Approach

Model calibration is an iterative process that aims to reduce the discrepancies
between simulated and actual building energy behaviour, through the refinement
of the model parameters.

In order to ensure the reproducibility of the calibration process and to reduce the
uncertainties of model predictions, it is necessary to establish a reference procedure
that defines the operative methodologies and the evaluation criteria of building
properties. The calibration protocol presented and applied in this chapter is defined
for existing buildings. It is compounded by several phases as shown in Fig. 1.

2.1 Preliminary Operations

The first step of a calibration process is the definition of scope and application field.
In this chapter, a procedure for the calibration of existing building energy models is
reported. During the early stage of the analysis, it is fundamental to check whether
fuel measurement devices are available for the HVAC systems. Otherwise, the
possibility of experimental equipment installation (for short- or long-term measures)
should be investigated. Nevertheless, if a direct measure is not possible, building
energy consumption can be derived from the utility bills, with a lower accuracy level
respect to direct measurement.

2.2 General Data Gathering and Base Model Definition

The definition of a simulation model requires a large number of input data:

® Building features: dimensions and thermophysical properties of materials

e HVAC system: typology and technical features of the subsystem appliances,
schedules and control strategies

e Operating conditions: internal gains due to lighting, equipments and people,
zone occupancy and set point temperatures

e Weather data: dry bulb temperature, solar radiation, relative humidity and wind
speed evaluated at the building location.

These data are used for the development of the base reference model. This
model is defined using the real features and dimensions of building collected
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through a geometrical relief. Furthermore, for all the other parameters, standard
reference values are used. This base model does not reproduce reliable energy
behaviour of the building, but it represents the reference simulation for carrying
out the sensitivity analysis (SA).

2.3 Sensitivity Analysis

The SA aims to evaluate the influence of input data on the dependant variables that, in
case of building simulation, represent the energy behaviour of constructions (con-
sumption and temperature trends).

The SA could be carried out with several methods, which are expounded in

Sect. 4.
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2.4 Second Data Gathering Campaign and Simulation Runs

During this phase of the calibration process, two categories of data are collected:

e Model input
e Control variables for calibration

The measurement of real values for the control variables for calibration allows
to assess the reliability of the model during the validation step.

On the other hand, the gathering of model input for building simulation is
highly complex due to the large amount of parameters that can affect the model
results. Therefore, it is necessary to define strict criteria for the data selection. The
SA highlights the most influent parameters and inputs that have to be investigated
to obtain an effective simulation. Moreover, in order to refine the model, a source
hierarchy has to be defined as explained in Sect. 5.

Finally, a series of simulations is carried out considering different inputs and
boundary conditions.

2.5 Calibration Criteria

The discrepancies between real measured control parameters and model results
have to be evaluated through given validation criteria, which assess the level of
model calibration. In this phase, the indices and the tolerance range for the reli-
ability assessment have to be defined.

2.6 Model Validation

In this phase, the model outputs are compared to the actual values of control variables
for model calibration. If the results respect the calibration criteria, the model is
correctly defined, otherwise it has to be refined by changing the model parameters or
through a new data collection campaign, carried out according to the source hierarchy.

Finally, the calibrated model must be validated over a different measurement
period respect to those used for the calibration phase. In fact, the calibration of the
simulation model is a so-called inverse heat transfer problem, for which the
uniqueness of the solution cannot be taken for granted [11]."

' “Inverse Heat Transfer Problems (IHTP) rely on temperature and/or heat flux measurements
for the estimation of unknown quantities appearing in the analysis of physical problems in
thermal engineering. As an example, inverse problems dealing with heat conduction have been
generally associated with estimation of unknown boundary heat flux, by using temperature
measurement taken below the boundary surface. Therefore, while in the classical direct heat
conduction problem the cause (boundary heat flux) is given and the effect (temperature field in
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(a)

Fig. 2 a North-east facade. b North-west facade

3 Case Study

The case study is a historical manufacturing facility built in Rovereto in Northern
Italy. The building, presently disused, was realized in 1854 as a storage con-
struction for the tobacco processing (Fig. 2).

It has an overall surface of 3,650 mz, four levels, one basement and a flat roof
with a black coating (absorption coefficient roughly equal to 0.9).

The building has a concrete structure (beam and pillar) and a massive envelope
made of stone and bricks, whose thickness ranges from 90 cm of the underground
floor to 65 cm of the third floor. Except for the underground level, which is
characterized by basement windows, the envelope has a homogeneous ratio of
glazing over opaque surface equal to 30 %.

The windows have timber frames with single glazing. During the relief, several
leakages in the glass elements were detected, with the consequence of significant
infiltration rates.

The building is now disused, and therefore, it has no operating HVAC systems.

Considering the high thermal capacitance of the internal walls, each room is
modelled as a single thermal zone, as shown in Figs. 3 and 4.

The envelope material properties are unknown, and there are no available design
documentations. Therefore, according to the building features, the construction year,
the structure and the thickness, and standard compositions were extracted from the
Appendix A of the Italian technical specification UNI/TS 11300-1 [30] (Table 1).

4 Sensitivity Analysis of Building Energy Model

The detailed modelling of the building and HVAC energy performances leads to
careful study of the interactions between the envelope, the occupants, internal
loads and energy systems. However, the increasing detail of the models requires a

(Footnote 1 continued)
the body) is determined, the inverse problem involves the estimation of the cause from the
knowledge of the effect” (Ozisik and Orlande 2000).
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Fig. 3 Thermal zones

Fig. 4 Building section

greater number of input data that, if not properly investigated, can undermine the
reliability of results. Furthermore, the relative influence of stochastic variations in
building energy needs increases for low energy constructions. On the other hand,
the input data do not affect in the same way the model predictions and, in this
sense, it is important to carefully assess the sensitivity of the model to the input
parameters.

A practical definition is that SA is an answer to the questions ‘To what extent
simulation predictions are reliable if input data are affected by uncertainty or are
known with certain accuracy?’ or ‘To what extent the accuracy and the precision
of model previsions improve if the knowledge of the input data is increased?’

A more precise definition is provided by Kioutsioukis et al. [5], which defines
the SA as ‘the study of how uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty in the model
input’.

The main application of the SA in the calibration of the building energy model
thus becomes the identification of the critical inputs for the results reliability. This
knowledge allows to establish priorities and to limit the experimental activities for
input data measurements. In this way, it will be possible to minimize the in situ
measures, which can become time-consuming activities.
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Although in the literature there are several techniques for the SA [15], this
chapter only describes a few simple techniques applied to building energy models,
by highlighting the advantages and application limits.

As reported by Macdonald [8], the SA can be divided in two categories:

e External methods: where a sample of input is generated and, subsequently, the
deterministic numerical model is executed for each input.

e Internal methods: that directly evaluates the output distribution from the
uncertain inputs and from the differential equations of the mathematical model.

The external procedures are also divided in two branches, i.e., local and global.
In local methods, the output uncertainty is evaluated with respect to changes
around a specific value of individual parameters, whereas global methods quantify
the output variation along a specific range of input variability.

The two approaches adopted in this chapter belong to the local methods based
on the derivatives techniques, which have the advantage of being very efficient
computationally with respect to global sensitivity methods such as Monte Carlo
technique. In fact, derivative methods require only few simulations compared with
the Monte Carlo methods. However, the main drawback is the limited suitability
for models of unknown linearity. In fact, derivative methods provide punctual
information about the model sensitivity (i.e., local method) and they do not allow
an extrapolation of the results to the rest of the input space. In non-linear models,
therefore, the impossibility to extend the results to other input values, with respect
to those used for the estimation of the local sensitivity index, requires a reliable
estimation of the input and of its expected variability range. These data must,
therefore, be derived from the experience of the energy modeller thus to assure
useful results from the SA.

The two techniques adopted in this chapter (local techniques based on the
derivatives) do not represent the most detailed ones, but rather they could be easily
integrated in energy simulations and, therefore, they are more useful for the
application to real cases. Indeed, the ratio of an output O over an input I can be
thought as a mathematical definition of the sensitivity of output model with respect
to input variability.

4.1 Differential Sensitivity Analysis

The differential sensitivity analysis (DSA) is the backbone of local methods, and it
works by perturbing an input data around the mean value while all the other
parameters remain fixed [7]. For each perturbed value, the numerical simulation is
carried out and the model response is calculated. Due to its robustness and sim-
plicity, the DSA is the most diffuse method for a local uncertainty evaluation. The
effects of an uncertain parameter are estimated by comparing the results of these



The Calibration Process of Building Energy Models 225

simulations against those with unperturbed inputs. Consequently, a sensitivity
index (s) of the model prediction to the uncertain parameter is defined as:

A0
_ 1
s=— ()

where AO is the difference between the output with perturbed input with respect to
deterministic model as well as Al is the perturbation of input.
Since the sensitivity index depends on both the input and output dimensions,
Lam and Hui [6] proposed a dimensionless index (s¢,) defined as:

S, — AO/Obase
% AI/Ibase

(2)

where the numerator and denominator report, respectively, the percentage changes
of output and input of the model.

The main weakness of this calculation procedure is that it assumes the perfect
independency among all parameters. Consequently, only the elementary effect of
each parameter could be computed while the combined effects can be estimated by
a superposition in linear problems.

4.2 Factorial Methods

With the aim of overcoming DSA issues, the factorial method (FM) is also used in
SA. The FM is a further development of the DSA approach that includes the
interactions between parameters and, consequently, it permits the estimation of the
higher-order effects. In this procedure, all the uncertain parameters are perturbed
simultaneously around their mean values.

Usually, two different perturbation levels are considered for each parameter by
imposing a low and high level (Table 2). In general, k parameters would require 2
simulations to generate all combinations for a full factorial simulation plan. These
combinations represent the corners of the k-dimensional hypercube. Hence, the
drawback of this technique is the number of simulations required that increase
faster with the number of inputs.

If the factorial design of simulation aims to determine the model behaviour at a
grid of locations inside the hypercube, more than 2 levels for each parameter are
required. In this case, the total number of simulations becomes 1k, where 1 is the
number of perturbation levels.

Based on the model predictions, the first-order effects can be calculated as:

(02 + 04+ Og + Og) — (01 + O3 + O5 + O7) (3)
4

(03 + 04+ O7 + Og) — (01 + 02 + Os + O¢)
Fg = 1 (4)

Fy =
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Table 2 Factorial design for three inputs with two perturbation levels

Number A B C A-B A-C B-C A-B-C
1 — - + + + —

2 + - — — - + +

3 — + - - + — +

4 + + - + — —

5 — — + + — —

6 + — + — + — —

7 + + — +

8 + + + + + + +

(05+06+07—|—08)—(01+02+03+04) (5)
4

where F; is the first-order effect due to the /™ input and O, represents output of the
7™ simulation run.

The higher-order effects can be computed starting from the simulation runs. In
this regard, the signs to be used in the following equations are obtained by mul-

tiplying the sign reported in (Table 2)

Fe=

(01 + 04+ 05+ 03g) — (0, + 03+ 06 + O7)

Fap= 2 (6)
(01 + 034 06+ 03) — (0, + 04+ 05 + 07)
Fic= ) (7)
(014 024+ 07 + Og) — (03 4+ O4 + Os + Og)
Fp_c= ) (8)
(024 034+ 05 + Og) — (01 + O4 + O + O7)
Fapc= ) 9)

where F4_p is the second-order effect due to the A™ and B™ inputs.

In the next section, the SA on the test case presented in Sect. 3 is reported. In
particular, this analysis is carried on as a preliminary investigation of the hourly
energy simulation model with the purpose of understanding the extent to which
each parameter can affect the calibration procedure. Starting from this information,
some of these inputs are further investigated by experimental activity or using a
higher hierarchy source.

4.3 Example

In this section, the results of the SA on the case study described in Sect. 3 are
presented. Since in the test case there is no energy systems, the dependent vari-
ables are related to the air temperature of the control thermal zone (i.e., P3_Z1).
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Besides, four different variables are adopted with the purpose of analysing some
indexes closely related to system sizing and to the estimation of energy needs. In
particular, the variables adopted are as follows:

e Minimum zone air temperature (¢,i,)
e Maximum zone air temperature (fy,x)
e Zone Heating Degree Hour (HDH,g)
e Zone Cooling Degree Hour (CDHyg)

Heating and Cooling Zone Degree Hour indicate the sum of hourly difference
between internal set point temperature (i.e., 18 °C for heating and 26 °C for
cooling) and the simulated values of air temperature in the thermal zone.

n

HDH18 = Z (ﬁi,H,set - ﬁi,H,sim) (10)

i=1

n

CDHy = Z (Vi.csim — Vicyset) (11)

i=1

These indices are adopted because they are proportional to the heating and
cooling demand, as well as minimum and maximum temperature are closely
related to the required size of energy system.

Starting from this point, a SA is carried out with a local external approach using
both the DSA and the FM approaches. Based on some analyses about the uncer-
tainty level of some parameters, the SA is performed by perturbing the following:

o External envelope air tightness expressed as an airflow for pressure difference of
4 Pa (Q4 Pa)

Roof thermal transmittance (U,or)

Wall thermal transmittance (U,.y)

Intermediate Floor thermal transmittance (Uggor)

Roof thermal specific capacitance (K;o0f)

Roof thermal specific capacitance (K;o0f)

Wall thermal specific capacitance (K1)

Floor thermal specific capacitance (Kgoor)

g-value for glazing systems (g-value)

Starting from the base model described in Sect. 3, each parameter is perturbed
by applying a 10 % variation in the original value.

Figure 5 shows the sq, sensitivity index, respectively, for HDH;g and CDHyg
(Fig. 5a) and for minimum and maximum zone air temperature (Fig. 5b).

Note that for CDH,g, g-value and roof thermal transmittance are the most
influent parameters. Besides, for these variables, the indices have a positive sign
that indicates a direct correlation. The greater the input values the higher the
CDHy¢ and, consequently, the cooling demand. The other indices are negative but
the magnitudes of sensitivity index are close to zero. The graphs highlight the role
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Fig. 5 Sq, for zone heating and cooling degree hour and for minimum and maximum zone air
temperature

of thermal capacitance both of wall and roof in keeping down the cooling demand.
Besides, it is interesting to note the negative correlation between CDH,¢ and the
wall thermal transmittance, it means that, for the test case, the night heat losses
prevail on the inward heat losses.

On the other hand, Fig. 5b shows that thermal capacitance of the envelope
strongly affects both minimum and maximum temperature for the investigated test
case. Lower magnitude is registered for the other parameters and in particular it is
interesting to note the low effects of g-values with respect to envelope capacitance.

These graphs show to which parameters the model simulation is more sensitive.
Additionally, the factorial analysis method provides information on the high-order
effects and then on the interactions among different parameters. The main differ-
ence is hence the simultaneous perturbation of the parameters aiming to discover
the possible synergistic effects of variable perturbations. Besides, in order to
compare the results both for degree hour indices and for internal peak tempera-
tures, also the relative factorial factors are used. These indices are calculated by
dividing the results of the Eqs. (6-9) for the unperturbed energy demand. The
results obtained (Table 3) are consistent with the DSA.

Regarding first-order effects, the FM confirms that HDH,g and CDHyg are less
affected by thermal capacitance of floor, whose index is of an order of magnitude
lower than F,.,,; and F,_yaue-

The results of factorial analysis show weak second-order effects, and the link
among variables has generally a negative sign, which means that there is not a
synergistic effect. Therefore, the assumption of perfect independent variables of
the DSA approach has been proved for this particular energy model. Starting from
these considerations, the model can be refined by further investigating the most
sensitive parameters. Moreover, also in model calibration, particular attention will
be paid to the investigation of the parameter with the highest sensitivity indexes.
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Table 3 Relative factorial indexes

Effect CDHye HDH,5 max Imin

Fyr —0.0038 —0.0009 —0.0015 0.0221
Fioy —0.0302 —0.0042 —0.0145 0.1827
Fy 0.0715 —0.0169 0.0138 0.0314
Fip v 0.0004 0.0001 0.0000 0.0000
Fy g 0.0000 0.0000 —0.0001 0.0000
Fi —0.0007 —0.0001 —0.0004 0.0018
Fiowikfg 0.0000 0.0000 0.0000 0.0000

5 Collecting Input Data

The data gathering is a critical and complex step. Because of the large amount of
parameters and inputs that affect the model, the number of missing data could be
significant. Therefore, each experimental campaign is affected by a certain level of
approximation, whose extent has to be established at preliminary level according
to the general accuracy needed for the model.

Moreover, the data collection depends on the kind of simulation to be carried
out: transient simulations reproduce detailed results, but in situ measurements are
necessary to define the trends of parameters along the simulation period. On the
other hand, quasi-steady state models use monthly data with a lower level of
reliability in the simulation of real building behaviour.

Raftery et al. [13, 14] propose the definition of a source hierarchy for each
calibration: it assigns a level of accuracy to an input data according to the reli-
ability of the source evidence. In particular, a general hierarchy for a building
simulation, as indicated also in the Guidelines ASHRAE 14 [21], is composed by:

e Direct sources

Long-term monitoring (>6 months)
Short-term monitoring
Spot measurement
— Direct relief of the internal environment
— User interview
o Indirect sources

— Design project and documentation
— Technical sheet of materials and operating manual of the HVAC system
e Standard sources

— Technical standards

— Standard guidelines and reference catalogues

In case of low-level sources and indirect investigations, spot measurements and
visible inspections are necessary to verify the reliability of documentation.
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Standard references represent useful tools to integrate the building model data,
but they provide for general information not related to the specific building.
Hence, they could be a potential discrepancy source for the building simulation.

Moreover, in a calibration process, the source hierarchy represents an important
reference to refine the building simulation.

In the further sections, some measurement techniques and example of data
gathering are reported.

5.1 Experimental Data for Model Calibration

In order to calibrate the building energy model, the simulation predictions have to
be validated and verified against experimental measurements. Generally, the
protocols and regulations indicate the actual fuel or power consumption of energy
system as comparative data for model calibration. However, it is not always
possible to trace the actual energy consumption, as for disused buildings or in
constructions without energy systems. Therefore, in these cases, the indoor air
temperature as well as the envelope surfaces temperatures may be employed as
control variables for the model calibration.

The experimental data collection becomes then a key aspect in the calibration
process of an energy model and, at the same time, it can be one of the most
complex and expensive topic in the energy analysis. For these reasons, every
in situ measurement must be based on a design of experiment established in early
stage of the analysis. This document has to define the measurements with respect
to the energy simulation requirements and, in particular, for the inputs highlighted
by SA or for data that the energy modeller believes affected by epistemic uncer-
tainty. The design of experiment has to define the instruments’ requirements in
terms of accuracy and precision, the maximum sample rate, the data quality
control and assurance, the expected range of experimental data, the procedures for
detection and management of outliers and missing data.

The following paragraphs will discuss some of the most frequents experimental
activities carried out for the calibration of building energy models.

5.2 Thermal Conductance Measures

The measurement of envelope thermal conductance is to a large extent one of the
key measures for the energy simulation refinement. Indeed, in constructive ele-
ments in which the materials are unknown, the uncertainty in the estimation of the
overall conductance can be propagated through the energy model.

The standard ISO 9869:1994 [29] defines the main aspects concerning the
experimental approach: it indicates the equipment to be used, methods of mea-
surement and the quality assurance and the post-processing techniques.
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Specifically, the ISO 9869 methods are valid for opaque elements characterized by
normal heat flow with negligible lateral heat flows.

The measurement has to be carried out by means of one heat flow meter on the
internal side (i.e., the side adjacent to the most stable temperature) and two
thermometers positioned both on the internal and external surface of the wall. The
heat flow meter is a thermopile of known thermal conductivity that measures the
temperature difference between the two faces of the plate. Moreover, a thin silicon
paste is added between heat flow meter and wall surface aiming to decrease the
contact thermal resistance.

The standard sets out the measurement conditions to be met in order to ensure
the reliability of results. In addition, the sampling rate and the test duration are also
defined as a function of the wall characteristics, temperature trends and the post-
processing method. The minimum test duration has to be greater than 72 h.
However, if the temperature or the heat flux has a variable trend over time, the
duration must be extended for a period longer than 7 days, until stable results are
reached.

Two different post-processing techniques are proposed in the international
standard, i.e., the average method and the dynamic analysis method. The average
method computes the thermal conductance of the building element as the ratio of
the mean density of heat flow rate over the mean temperature difference, as
reported in Eq. (12).

A= Zj:l (qf) (12)

o5k (0s) = Os))

If the conductance value is estimated after each measurement, it converges to
an asymptotical value (Fig. 6b). On the other hand, with the purpose of ensuring a
faster solution convergence, the standard suggests the use of dynamic analysis
method. Starting from the temperatures and the heat flow collected, at each time
the heat flow rate can be obtained from (13):

gi = A(0gi; — Hsei) + K H;ii -K> Qs.e,i

+ZP Z Osij(1 = By) B (i — j) 13)

Jj=i—p
+ZQgZHW — B) B, (i —J)
Jj=i—p

where K, and K, and P, and Q, are dynamic characteristics depending on the g
time constants 7,. The variables f3, are exponential functions of the time constants.
Since Eq. (13) is a function of the 2g 4+ 3 unknowns, at least 2g 4 3 data points
are needed for the solution of the linear systems. However, with the purpose of
eliminating stochastic variations, an over determined system of M equations is
usually solved by means of least square fit. The accuracy of the outcome of this
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Fig. 6 Thermal transmittance evaluation: a Heat flux meter and Pt100 position. b Thermal
conductance evaluated by Standard ISO 6946

method is a function of the number of data analysed (N), of the choice of the
number (g) and ratio (r) of time constants and of the dimension (M) of the linear
system [2].

5.2.1 Example

The two post-processing methods are applied on the measures collected to a wall
of the test case presented in Sect. 3. In particular, due to the massive wall and to
the high temperature variation also at the internal side of the component, the
measurement period is extended for more than a month in order to ensure the
convergence of the solution. In Fig. 6a, the positions of the thermoresistance
(Pt100) and of the heat flow meter both on the outer side of the wall are shown.

The first post-processing technique is the average methods applied to the
measurement period that met the conditions:

® Agnp — Aos <5 % Agpnps
® Agnp — Aoz <5 % Apnp;

where Agnp is the final thermal conductance, A,4 and A,; are respectively the
conductance obtained at 24 h before the end of the monitoring and at 2/3 of the
same.

The second result is obtained applying the dynamic method described in the
previous section (Eq. 13) (Table 4).

5.3 Weather Data for Model Calibration

Weather data represent one of the main external forces driving the building energy
behaviour. Therefore, it is important to refer both the actual energy consumption
and the indoor environmental variables to the actual weather conditions [17].
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Table 4 Conductance values obtained by two post-processing methods

Average method Dynamic analysis method
1.552 W/(m> K) 1.439 W/(m> K)
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These climate conditions are then used as boundary conditions for the energy
model in order to obtain consistent result with respect to measurements.

Furthermore, it should be stressed that weather data are not independent vari-
ables but rather a single set of cross-correlated measures collected at the same site
location [4]. Additionally, the sample rate must be consistent with the model
undertaken and, therefore, with the phenomena variability coupled with building
or system response.

The data required for calibration can be obtained from meteorological stations
located close to the building or directly measured in situ through the installation of
a weather station. In fact, the suitability of data collected at meteorological stations
cannot be taken for granted since the representativeness of local conditions are not
assured owing to local climate effects such as urban heat island, urban canyons, or
orographic influences [3].

As an example, Fig. 7 shows the dry bulb temperature collected in 2011 for the
city of Pavia (Italy). Three meteorological stations are available in the province as
shown in Table 5.

The trends of average monthly temperatures show noticeable deviations
between the data recorded in different parts of the same city. This spread is mainly
related to the effects of urban heat island and, consequently, to the interactions
with the surrounding of meteorological station.

Therefore, it is important to correctly verify the data prior to use it in the model
calibration process. In this regard, it is useful to distinguish two different stages of
validation process. As defined by the guide WMO n. 8 [32], they are the quality
assurance and quality control.
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Table 5 Weather data stations

Station Context Coordinate

1 Urban 45° 11’ 42.56"" N, 9° 9’ 48.42" E, 79 m asl

2 Suburban 45° 10" 51.331"” N, 9° 8 48.053" E, 55 m asl
3 Urban (city centre) 45° 11" 8.931” N, 9° 9’ 28.463" E, 87 m asl

1. Quality assurances are all the planned and systematic activities implemented
within the quality system to provide adequate confidence that an entity will
fulfil requirements for quality. The primary objective of the quality assurance
system is to ensure that data are consistent, meet the data quality objectives and
are supported by comprehensive description of methodology.

2. Quality controls are the operational techniques and activities that are used to
fulfil requirements for quality. The primary purpose of quality control of
observational data is missing data detection, error detection and possible error
corrections in order to ensure the highest possible reasonable standard of
accuracy for the optimum use of these data by all possible users.

These two definitions clearly indicate that, when data are obtained from
meteorological stations, the quality assurance activities are the responsibility of the
owner of the station, while the verification of raw data (quality control) can be
charged to the end user. On the other hand, the energy modeller has to ensure the
quality assurance in case of data obtained from an in situ weather station specif-
ically installed for the purpose.

The quality control activities aim to discover the outliers and the unphysical
data. In this regard, the WMO guide suggests these checks [1]:

e values exceeding more than 50 % the Ist and 99th percentile are deleted;

e temperature derivatives higher than 4 K/h are not physical;

e values repeated for more than five times for temperature, solar radiation and
wind velocity are anomalous data;

e values repeated for more than five times for relative humidity are anomalous if
lower than the 75th percentiles;

e global solar radiation higher than solar constant are eliminated as well as
radiation before sunrise or after sunset;

e negative values of wind velocity, solar radiation and relative humidity as well as
relative humidity higher than 100 % are unphysical.

The data that do not meet these requirements are deleted and treated as missing
values in the interpolation phase. In addition, it is generally assumed a threshold of
25 % [23] of missing data in a specific measurement period to prevent that the
excessive interpolation leads to the use of a synthetic dataset.

The use of linear interpolation is not always the best solution for data filling. In
fact, the use of linear interpolation for temperature, relative humidity and wind
velocity can be accepted for short period of missing data [12]. For longer period
and for solar radiation, the linear interpolation cannot adhere to the natural
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Fig. 8 Weather data interpolation: a Linear interpolation. b Cyclic interpolation

variation in the weather data. Therefore, in these cases, a cyclic interpolation is
generally used (Fig. 8).

Lastly, it is important to remember that the weather data must comply with the
energy model requirements. For example, if the energy analysis is performed by
means of an hourly dynamic simulation, the main weather data required are the

following [18]:

e Global horizontal irradiance: is the total amount of direct and diffuse solar
radiation received on a horizontal surface during the 60-min period ending at the
time stamp

e Dry bulb temperature: is the dry bulb temperature at the time indicated
(instantaneous value)

e Relative humidity: is the relative humidity at the time indicated (instantaneous

value)
e Wind velocity: is the wind speed at the time indicated (instantaneous value).

Therefore, particular attention should be paid when data collected in meteo-
rological station are used. In fact, weather variables are routinely sampled with
temporal frequencies of 10-15 min, while the published data are generally hourly
average values. Therefore, the instantaneous values must be requested for tem-
perature, relative humidity and wind speed whereas the adopted average tech-
niques has to be investigated for the solar radiation values. In fact, there are no
widely accepted standard and, consequently, each institution uses its own con-
vention such as a forward, backward or centred average (Table 6).
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Table 6 Evaluation of hourly average

Backward average Forward average

Measurements Time Measurements Time
stamp stamp

06:00 |::> 06:00 06:15 |::> 07:00

06:15 06:30

06:30 06:45

06:45 07:00

6 Evaluation of Actual Energy Consumption

The actual fuel consumption is a reference for the calibration that allows to
compare the real behaviour with the model results in terms of energy demand of
the energy systems. This section describes some methods for the gathering of data
consumption and for the data post-processing.

In particular, the actual energy needs are evaluated basing on the amount of fuel
(by volume or weight) converted in energy through multiplication by the lower
heating value according to the following relationship:

Oreal = Viuel - L.H.V. (14)
where

® (Ora — actual energy needs
® Vi — fuel amount di
e L.H.V. — lower heating value® (reference values are reported Table 7).

The total energy consumption of a building consists in several components:

Ccoll - Ch + CW + Ccook (15)
where

Cocon — real gathered consumption

Co;, — heating Co;, = Coj, = 0 (during summer season)
Coy domestic hot water production

Cocoox — for cooking

In Table 8 reference values for cooking energy needs for residential buildings
are presented; these terms can be assumed as constant during all the monitoring
period.

2 Generally, only the H.H.V. (higher heating value) is reported in the utility bills. Nevertheless,
L.H.V. is required to obtain effective energy consumption. Therefore LHV has to be estimated
starting from the HHV.
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Table 7 Reference lower ¢ Low heating value (L.H.V.)
heating values for common 5
fuels Methane 9.940 KkWh/Nm"

Propane 28.988 kWh/Nm?>

Butane 36.779 kWh/Nm’>

Diesel fuel 11.870 kWh/kg
Table 8 Reference coking Plan surface (m?) Specific energy need (kWh/G)
energy needs

<50 4

50 m” < Surface < 120 m? 5

>120 m? 6

In addition, it is necessary to divide the energy needs for heating respect to
domestic hot water requirements, which can be deducted through summer mea-
surements, (after the cooking contribute subtraction).

In fact, energy needs for domestic hot water are assumed to be fixed throughout
the year with an adequate level of approximation, if thermal solar systems are not
installed. Hence the summer DHW consumptions can be used even for winter.

Another method to deduce domestic hot water, cooking and plug loads is based
on the correlation between external temperature and energy consumption during
the operational period of HVAC system [20]. In fact, when the load line becomes
parallel with the x-axis, fuel consumptions are not affected by external temperature
and the constant value represents the energy needs for the production of domestic
hot water and for cooking. The values for a reference year could be represented in
a graph in association with monthly temperatures: the lower the external tem-
perature, the higher the heating consumption and vice versa. When there are no
fuel consumption caused by domestic hot water (electrical production), the con-
stant value is close to zero. Also the electrical requirements trend could be
expressed with respect to the monthly external temperature. The slope increases
according to the temperatures owing to the cooling system consumptions. In this
regard, an horizontal line represents the sum of domestic hot water, lighting and
plug loads.

6.1 Case Study: Utility Bills Analysis

The case study is a residential detached building with a floor surface of 120 m*
heated by means of a combined boiler (heating and domestic hot water). The actual
fuel consumption, collected during a whole year, is reported in Table 9.
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Table 9 Real fuel demand of the case study

Reference period of the utility Number of Fuel consumption Energy needs
bills days (m’) (kWh)
January 30 660.00 6,560.4
February—March 59 1,178.00 11,709.32
April-May 60 425.00 4,224.5
June—August 91 169.00 1,679.86
September—November 90 1,274.00 12,663.56
December 30 213.00 2,117.22

Table 10 Real energy needs (without cooking contribution)

Reference period of the Number of Energy needs Cooking energy Net energy needs
utility bills days (kWh) needs (kWh) (kWh)

January 30 6,560.40 180 6,290.94
February—March 59 11,709.32 354 10,361.32
April-May 60 4,224.50 360 3,745.22
June—August 91 1,679.00 546 1,133.86
September—November 90 12,663.56 540 11,139.50
December 30 2,117.22 180 1,957.10

Utility bills report the fuel consumption, which can be converted into energy
need through the Lower Heat Value that, for methane, is roughly equal to
9.940 kWh/m™:

Co(kWh) = Co(m?®) (m®) x 9.940 kWh/m*

This equation has been applied to obtain the values in the fourth column
(Table 9). Nevertheless, cooking energy needs and the contribution for domestic
hot water have to be separated from the total consumption. Considering the floor
surface and the reference values reported in Table 8, the energy requirements for
cooking accounts for 6 kWh/day (Table 10).

The last contribution to be separated from the total consumption is the energy
required for domestic hot water preparation. Considering the average energy
consumption registered from period between June and August, the daily energy
needs are evaluated as:

1,679 kWh

= 12.46 kWh/day
91¢g

Extending this value to the whole period, the results showed in Fig. 9 are
obtained.
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6.2 Source for Real Consumption Monitoring

According to the fuel of the HVAC system, different sources of data are necessary
to evaluate actual consumption.

For instance, in case of network gas systems, monitoring device are installed to
evaluate the consumption and define the amount of the utility bills.

There are two main methods for the data record:

e ndirect
e Direct

In the first case, real consumption is estimated through the values on the utility
bills in relation to the monitoring period. Nevertheless, these amounts could be
determined by a statistical evaluation according to the previous consumption
(estimate values). Therefore, they cannot reproduce the real energy behaviour of
the building, but they show the historical trends of fuel supply. Hence, in order to
calibrate the model, the effective energy needs have to be adopted.

On the other hand, the direct method is featured by a relief of the measurement
device during the monitoring period. The finer the gathering interval, the more
accurate the calibration.

In case of HVAC system fuelled by a storage volume with a measurement
device, the model can be calibrated considering the instrument error. If the storage
has no counter, the fuel consumption can be estimated through the following
equation:

CQ = (CQ; —CQr) +CQ4 (16)
where
e () — quantity in the storage
e (J; initial quantity
e (O final quantity
[ ]

0O, supplied quantity during the monitored period.
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Fig. 10 Measurement of
water flow in HVAC
subsystems

6.3 Subsystem Consumption Measurement

In order to calibrate enhanced simulation models, the final fuel consumption may not
be suitable for the overall HVAC models. Therefore, in these cases, it is also nec-
essary to measure the energy consumption of the HVAC subsystems up to the single
components. For this purpose, it can be useful to highlight the mode and the main
tools employed for the measurement of thermal and electrical energy flows. These
experimental activities are already widely spread in the Anglo-Saxon world as a
phase of the commissioning process, during the post-occupancy investigations [22].

In order to quantify the thermal energy flow, the measurement of air/water flow
and temperature difference is required (Fig. 10). For example, the heating provided
by a radiator is computed starting from the water mass flow rate and the tem-
perature difference between inlet and outlet sections. Therefore, the energy meter
already installed in central heating/cooling systems as well as, ad hoc flow meters
can be installed for high-rise residential buildings. These electronic energy flow
meters offer accuracy up to 1 % as reported in the calibration datasheet.

As regards the measurement of the current in auxiliary systems, the most
common instruments are the current transducer (CT). These instruments are placed
on wires connected to specific auxiliary system such as motors, pumps or lights
and then connected to a digital multi-meter. The CT has typical accuracy up to one
per cent. If coupled with the voltage monitoring, by means of a voltmeter, this
measure can be used to estimate the appliance power consumptions. However,
separate voltage and current measurements should not be used for inductive loads
such as motors or magnetic ballasts [27]. In fact, if the signal is distorted owing to
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various noise sources, a transducer (true RMS) must be adopted. These instru-
ments are capable of accurate measurements of AC voltage even if the waveforms
are not purely sinusoidal.

7 Measure of Air and Surface Temperature

The temperature measurement devices commonly used are resistance thermometer
(RTD), thermistors and thermocouples. These tools do not directly measure the
temperature but rather the variation in a quantity related to the temperature
changes. In addition to the different measured variable, these thermometers differ
from each other for the cost, the accuracy and the range of measurement.
Therefore, the use of a thermometer with respect to another depends on the par-
ticular conditions of the temperature to be measured.

The RTD represents one of the most common types of thermometer. In these
instruments, the temperature variations are related to the changes in electrical
resistance of metal. Platinum RTDs, usually Pt100 or Pt1000, are remarkable
instruments: the Pt100 sensor has a resistance of 100 ohm at O °C and it is by far
the most common type of RTD sensor. These sensors are normally covered by
some protective sheath or mounting to form probes that are commonly referred as
platinum resistance thermometer (PRT). The tolerances for PRT sensors are
specified by the International Standard IEC 751:1983°. In this standard, two
classes are defined: Class A, with a tolerance of £0.15 °C at 0 °C; and Class B,
with a tolerance of £0.3 °C at 0 °C. Sometimes the accuracy classes provided by
the manufactured are defined as 1/10 DIN or 1/3 DIN. This means, respectively, a
certified tolerance of 1/10 or 1/3 of the Class B specification. The linear relation
between platinum resistance and temperature, in the range of environmental
temperatures, makes them the thermometer of choice for many applications. The
main limitation of this type of sensors is connected to the relative higher cost, from
20 to 300 €, linked to the metal cost.

For this reason, RTDs using semiconductors in lieu of metals (i.e., bulk
semiconductor sensor or thermistors) are also very popular. Additionally, the
semiconductor material exhibits a large change in resistance proportional to a
small change in temperature. Besides, thermistors are one of the most accurate
types of temperature sensors with a typical accuracy of +0.1-0.3 °C depending on
the particular thermistor model. However, thermistors are fairly limited in their
temperature range (typical 0-100 °C) and in the non-linear relation temperature
resistance against the lower cost from 0.20 to 20 €.

However, to a considerable extent, the cheaper and widespread thermometer in
temperature measures is the thermocouple. This instrument is based on the See-
beck’s effect, whereby if two conductors of different material are jointed, a current

3 DIN IEC 751:1983, Temperature/Resistance Table for Platinum Sensors
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Fig. 11 Thermography analysis of an external wall

grows proportional to the temperature difference of the two joint. A thermocouple is
available in different combinations of metals or calibrations. The most common in
building analysis are type T for environmental temperature and type K for high
temperature measurements, such as HVAC systems. Although for the most precise
measurements, the reference joint should be kept in a triple point of water, however,
such accuracy is rarely needed and a multi-meter reference joint can be adopted.

Nonetheless, the low accuracy frustrates the advantage of the limited cost, from
0.80 to 3 € as a function of the wire insulation and shelter. The EN 60584-2 [25]
standard defines the accuracy requirement tolerance that for type 7 thermocouple
are within £0.5 °C for first class and 1.0 °C for second class.

Starting from the instrument choice, the correct installation position has to be
checked, thus ensuring that the boundary conditions do not influence the mea-
surement. For this reason, the instruments must not be placed close the heat
sources or direct exposed to sunlight or drafts. Furthermore, for the surface tem-
perature measurements, the position must avoid the edge effects due to the pres-
ence of thermal bridges or to non-homogeneous area. For this purpose, the surface
should be checked by means of a thermography survey with the purpose of
detecting any structural discontinuities or areas with high moisture content
(Fig. 11).

8 Building Model Input and Experimental Calibration:
Analysis on a Case Study

According to the results of the SA, some parameters were investigated by
experimental analysis and more accurate evaluation in order to refine the model.

In particular, the thermophysical properties of the envelope are evaluated both
through standard and in situ measurements. The external wall in zone P3_Z1 is
65 cm thick, it has a high thermal mass and it is composed by bricks and sand.
Therefore, according to the Italian technical specification UNI TS 11300-1, the
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Fig. 12 a Standard air-change rate (0.5 vol/h). b Calculated air-change rates (EN 15242)

reference structure CO-01 is chosen. Moreover, an experimental analysis is carried
out conforming to ISO 9869. Two couples of HFM and thermo-resistance Pt100
are positioned both on internal and external surfaces in order to measure surface
temperatures, inward and outward heat fluxes. The measurements are carried out
for 70 days (2"! March—10"™ May) in order ensure the convergence of the solution.

The monitored data are post processed with the average method described in
standard ISO 9869. The values of conductance for standard and experimental
method are, respectively, equal to 1.372 and 1.552 W/(m* K).

Furthermore, considering the absence of HVAC system and the leakages of the
envelope, infiltration losses represent a significant contribution. Figure 12a, b
show the different air-change rates applied for model definition. Since the enve-
lope presents numerous cracks and leakages, the standard value 0.5 ACH is
adopted even if it is used for global natural ventilation. EN 15242 [26] defines a
standard method to estimate the infiltration air-change rates, according to envelope
features and to local weather data (temperature and wind speed).

In Fig. 13, the instrument position is shown: the heat flux meter (HFM)
apparatus (two HFM and two thermoresistance Pt100) is installed in B, while the
points from S1 to S5 indicate the thermistors employed for the surface temperature
recording. Since the building has no HVAC system, the internal temperatures have
been monitored in order to calibrate the simulation model. In particular, both the
surface and air temperatures were collected every 10 min in the control thermal
zone (i.e., P3_Z1) that is placed on the 4™ floor, next to the roof (Fig. 13). The
measurement campaign was carried out from March to October 2012.

Starting from the described sources of input data, a series of simulations is
carried out with the software TRNSYS (TRNSYS: A Transient Simulation Pro-
gram, Ver. 16, University of Wisconsin-Madison, 2007). A code identifies each
model and it describes which kind of parameter is applied in the analysis. Table 11
reports the set of simulations and it explains which inputs are implemented.
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Fig. 13 Control thermal zone: monitoring devices

Table 11 Set of simulations

Simulation Air-change rates Thermal conductance
0.5 EN 15242 Standard Measured
tn_05_std X X
tn_05_ms X
tn_en_ms X

9 Validation Indices
9.1 Calibration with Real Consumption

In case of model calibration with real consumption of buildings, for both electrical
and fuel energy needs, the reference statistical indices are presented in ASHRAE
Guidelines14/2002 [21]. They assess the discrepancies between real and predicted
values.

9.1.1 Mean Bias Error MBE,

Mean bias error is evaluated by summing the differences between measured
consumptions (M) and predicted energy needs (S) along the considered time
interval and dividing each difference for the corresponding measured value in
order to obtain a percentage index.
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MBE,, provides for a general assessment of the simulation reliability, in rela-
tion to the actual behaviour monitored during the in situ measurement. In addition,
it allows to evaluate whether the model overestimates or underestimates the real
energy needs. Nevertheless, MBEq, is not adequate to validate a simulation,
because it can give misleading indications due to the sign error compensations. In
fact, opposite sign errors tend to neutralize each other and they are not highlighted
in the final result. For this reason, additional indices are needed.

9.1.2 Cumulative Variation in Root Mean Square Error

This index is based on the standard deviation between actual (M) and simulated
(S) behaviour.

(M =8
RSMEperiod _ \/ Zpenod](v )perlod (18)
period

The Root Mean Square Error determines the absolute value of the discrepancies
between two parameters, and it assesses the effectiveness of the simulation in
comparison with the real behaviour. The higher the RMSE value, the lower the
reliability of the model. However, in case of calibration with real energy con-
sumption, RMSE could be inadequate: in fact the same value of RMSE could be
associated both to an accurate model with high consumption and to an inaccurate
model with low energy consumption. Therefore, the cumulative variation in
RMSE is assumed because it expresses the percentage deviation in relation to a
mean value of measured energy needs.

RMSE i
CV (RSMEperiod) = [71"’} x 100 % (19)

Aperiod

where Aperiod 1S an average value based on the number of intervals that charac-
terizes the measurement period:

> (Mperiod)] (20)

Aperiod = |:
Nperiod

9.1.3 Calibration Criteria

The number of measurement intervals depends both on the reference period of the
monitoring and on the kind of simulation carried out: in case of steady state
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Table 12 Tolerance ranges

Index IPMVP (%) M&V (%) ASHRAE 14 (%)
MBEmonthly +20 +15 +5

CV (RMSEmonthly) 5 10 15

MBEhourly - - +10
CV(RMSEhourly) - - 30

models the calibration is fulfilled through monthly data, while for transient models
through hourly or sub-hourly data.

The calibration criteria and the tolerance range have to be established at early
stage in relation to the availability of data, the simulation type and the detail level
request for the assessment.

The evaluation protocols set different values depending on the model type: for
hourly simulations 30 % of discrepancies in terms of CVRMSE and 10 % in terms
of MBE are considered acceptable, whereas for the simulations calibrated on
monthly data, the tolerance range is halved (Table 12).

9.2 Calibration with Temperature

The model calibration through the temperature monitored in a control thermal
zone requires error indices that provide significant indication in terms of tem-
perature discrepancies between predicted and real values.

9.2.1 Mean Bias Error MBE

MBE = {W} (21)

The average error MBE is the sum of the differences between measured (M) and
simulated (S) temperatures along the monitoring period divided by the number of
records. A positive value of MBE indicates that the model overestimates the
temperatures, while a negative value of MBE represents an underestimation of the
internal temperature of the control thermal zone. Nevertheless, as highlighted in
Sect. 9.1.1, MBE is affected by the sign error compensation, and for this reason,
additional indices have to be adopted.
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9.2.2 Root Mean Square Error

" (M; — S;)?
RSME = [M 22)
N
Root mean square error RMSE overcomes the misleading of MBE, since it
provides for the absolute value of the discrepancies between the temperatures.

9.2.3 Pearson’s Index

For model calibration with internal temperatures, the correlation between pre-
dicted and real values is a significant indication of the simulation reliability.

The Pearson’s index (r) assesses the correlation between two variables, in this
case, the temperature trends (predicted and real) and it allows to verify the reli-
ability of simulation:

\/ (Z M2 — (ZNMY) : (Z s @)

e M measured temperatures (°C)
e § simulated temperatures (°C)
e N number of intervals

where:

The Pearson’s index ranges from —1 to 1: where a negative value means an
opposite correlation

e r < 0 opposite correlation, if the model temperature increases, the measured
values trend to decrease and vice versa; therefore the model is not representative
of the real building behaviour;

e r = 0 no correlation between variables;

e r > ( direct correlation, if the model and the monitored temperatures have the
same trend. r > 0.5 represents a significant correlation between temperature
variables [3].

The measurement precision can be considered as the reliability limit. This is
possible if we consider the correct estimation of the internal temperatures for the
control thermal zone aims to validate the simulation energy needs of the analysed
building [9].
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Fig. 14 a Mean bias error for hourly temperatures. b Root mean square error for hourly
temperatures

10 Model Calibration Results

In this section, the calibration process of the dynamic hourly simulation model of
the test case (Sect. 3) is presented. The accuracy of the numerical model with
respect to the measured data is evaluated both through the statistical indicators
(i.e., MBE, RMSE and Pearson’s index) and by means of a graphically comparing
between the model and experimental trends of temperatures.

The first part of the section will discuss the early stages of calibration. In
particular, starting from the initial energy model, firstly the standard values of
thermal conductance are replaced with those measured by the in situ tests. Fol-
lowing on from this point, the standard ventilation rate is replaced with the more
detailed calculation procedure present in the EN 15242 [26].

In the second part, instead, the final results of the calibration are presented. The
calibration is performed by varying the parameters highlighted by the SA
according to a uniform distribution, within the plausible range of variability, with
the purpose of finding the parameter set that best fits the actual building behaviour.
This investigation is carried out on the monitoring period from 2" March to 22
October 2012.

Figure 14a and b show the statistical indexes for both air (air) and the envelope
surface (S1—S2—S3—S4—S5) temperature in the control thermal zone.

MBE quantifies the long-term performance of a model. A positive value rep-
resents the average amount of overestimation in the predicted values and vice
versa. MBE in Fig. 14a highlights a general underestimation of the predicted
temperature with respect to actual data. Besides, it clearly shows a greater con-
vergence of the refined models with respect to the initial-based model.
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Table 13 Pearson’s indices—air temperature

tn_0.5_std tn_0.5_ms tn_en_ms
0.987 0.991 0.992
MBE_T AMB MBE_T AMB
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Fig. 15 a Error indices for simulation try_05_std. b Error indices for simulation tn_en_ms

Nevertheless, MBE drawback arises from the compensation between underesti-
mations and overestimations. Therefore, to assess the reliability of a simulation
other indices are required.

In this regard, RMSE overcomes this problem, since it reveals the absolute
discrepancies between actual and simulated temperatures. This parameter provides
information about the short-term performance of the method by means of a term
by term comparison. The smaller the RMSE value, the better are the model pro-
visions. Figure 14b shows a slight convergence of the indexes. In fact, in this test,
a few large errors can produce a significant increase in the RMSE index.

These results are also confirmed by the Pearson’s index. The values reported in
Table 13 highlight as the greatest index increment is obtained using the measured
thermal conductance.

Lower increment is achieved by improving the infiltration model. Nevertheless,
even Pearson’s index shows some weakness. In fact, in case of general uniformity
with small deviation between minimum and maximum values, Pearson’s index
assumes relative high average. Consequently, also this parameter does not permit a
univocal assessment of the best model combination. Therefore, a multi-criteria
analysis has to be applied by simultaneously plotting the different indexes for all
the temperature sensors (Fig. 15). In these pictures, the indexes are plotted for the
initial and refined models by means of a radar plots representing the multi-criteria
analysis according to the following indices:

e absolute values of mean bias error ((MBE)) for air and surface temperatures (S1,
S2, S3, S4, S5)

e values of root mean square error (RMSE)

e complementary values of Pearson’s Indices (1 — r).
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Fig. 16 a Air temperature trends (March 4th—5th). b Air temperature trends (June 20th—21st)

Table 14 Tolerance ranges

Input Low limit (%) High limit (%)
Infiltration rates -20 +20
Usoof —50 +50
Uyan -20 +20
Usoor —50 +50
Roof capacitance -50 +50
Wall capacitance -50 +50
Floor capacitance -50 +50
g-value for glazing -30 +30

The higher the blue-painted area, the higher the discrepancies between pre-
dicted and actual values of temperatures and, therefore, the lower the reliability of
the model. Moreover, this representation highlights the temperature predictions for
which the model shows the greatest differences from the measured data.

Nevertheless, error indices give information about the global gap between
actual and predicted temperature. A graphical comparison between the hourly
trends of temperature is useful in order to have a punctual but qualitative indi-
cation of the reliability of building simulations (Fig. 16a, b).

The graphs point out some discrepancies in the evaluation either of positive and
negative temperature peaks. Probably, this spread is caused by the incorrect
modelling of the thermal capacitance of the walls or to the incorrect estimation of
the window solar transmittance.

For this reason, the parameters investigated in the SA are simultaneously varied
according to a uniform distribution in order to find the parameter set that best
approximates the actual building behaviour. In particular, the range of variation,
with respect to the initial value, shown in Table 14 are adopted. These take into
account the real knowledge of the parameter and its expected variability.

Several hourly simulations are performed by varying the input data. The evalu-
ation of the model convergence is performed through the multi-criteria analysis
previously presented. In Fig. 17a, the internal temperature trend of the control
thermal room (measured and simulated values) is reported while in Fig. 17b the radar
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Fig. 17 Calibrated model: a Air temperature trends. b Multi-criteria radar plot of the calibrated
model

graphs obtained for the calibrated model is shown. After the calibration process, the
indices MBE and r decrease, while RMSE values still remain high. This problem
occurs because of the nature of RMSE index, whose amount is affected even by a
small number of simulated points that are not consistent with real value. In fact, as it
is shown in Fig. 17a, the simulation trend approaches to actual values with lower
discrepancies with respect to the previous simulations. Nevertheless, the calibrated
model presents some errors in the lower peak values during the winter season.
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