Demo Abstract: MakeSense—Managing
Reproducible WSNs Experiments

Rémy Léone, Jérémie Leguay, Paolo Medagliani
and Claude Chaudet

Abstract Wireless Sensor Networks (WSN) users often use simulation campaigns
before real deployment to evaluate performance and to fine-tune application and net-
work parameters. This process requires repeating the same experiments under similar
conditions and to collect, parse and present data efficiently. This chapter introduces
MakeSense: a tool that automates this workflow and that allows reproducing simu-
lations easily by defining the whole experiment and post-processing steps in a single
JSON configuration file, easy to share and to modify. MakeSense also provides in-
terfaces to interact with a running simulation, allowing to send external stimuli and
to collect data in real time. MakeSense currently runs over the COOJA simulator,
but has been built to be easily adapted to other architectures, including real testbeds.

1 Introduction

Evaluating applications and protocols through simulation always follow the same
workflow from the simulation parameters definition to the creation of graphs that
represent performance under different conditions. Yet, no generic tool really provides
a way to automate the whole process and people often rely on ad-hoc scripts. Some

R. Léone (X)) - J. Leguay - P. Medagliani
Thales Communications & Security, Gennevilliers, France
e-mail: remy.leone @telecom-paristech.fr; remy.leone @thalesgroup.com

J. Leguay
e-mail: Jeremie.Leguay @thalesgroup.com

P. Medagliani
e-mail: Paolo.Medagliani @thalesgroup.com

R. Léone - C. Chaudet

Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI UMR 5141,
Paris, France

e-mail: Claude.Chaudet @telecom-paristech.fr

K. Langendoen et al. (eds.), Real-World Wireless Sensor Networks, 65
Lecture Notes in Electrical Engineering 281, DOI: 10.1007/978-3-319-03071-5_7,
© Springer International Publishing Switzerland 2014

66 R. Léone et al.

tools such as NEPI [3] focus on the interaction between testbeds, but do not address
wireless sensor network platforms and hence, their architecture may be too complex
for constrained devices.

In this chapter, we introduce MakeSense, a tool that automates large-scale WSN
experiments and facilitates adaptation and reproducibility. MakeSense relies on a
single JSON configuration file described in Sect. 2 from scenario definition to graphs
generation. Sharing this lightweight file with the specific source code is sufficient
to let others reproduce an experiment, improving the results trustworthiness [1].
MakeSense runs today over the COOJA simulator, but is designed to be generic and
to be adapted to real testbeds too. We then describe its workflow and functionalities,
including online interaction with simulation and describe a demonstration in Sect. 3.

2 MakeSense Core Functionalities

2.1 JSON Configuration File

All simulation parameters such as random seeds, transmission range are defined in
a single JavaScript Object Notation configuration file. An excerpt of such a con-
figuration file is presented on Listing 1.1. The file starts by the definition of some
general parameters, such as the wireless interference range and specifies a template
for the Makefile that will serve during the building process. It then defines one or
several mote types (e.g. routers, end nodes, ...), the firmware they will use and gives
them an RPL instance ID. In the motes section, it instantiates the different nodes
with respect to the templates and specifies individual parameters such as their coor-
dinates, their ID (address) and the UDP port on which they will be reachable during
the simulation.

As this configuration file specifies all relevant parameters for a simulation, it is
easy to use templates and scripting to run large experimental campaigns. A script can
generate a series of such files, referring to the same or to different source codes, run
experiments and store the JSON files as scenario descriptors, as they are lightweight.
Listing 7.1 Configuration file excerpt

Demo Abstract: MakeSense—Managing Reproducible WSNs Experiments 67

[..]

"interference range": 50.0,
"makefile template":

"simple makefile",
"mote types": {

"hello": {
"color": "blue",
"description": "Router",
"firmware address": |
"nodes" ,
"hello",

"hello—world . sky"
I,

" rpl_instance_id " 30

}
}s
l|ml|: [
{
"mote id": 1,
"mote type": "hello",
"settings": {
"lambda": 1
}
"socket port": 60001,
My !t 10_7
g": 0

"

}7
[..]

2.2 Workflow

MakeSense workflow, represented schematically in Fig. 1, is composed of 6 steps
that can be called independently, thanks to their loose coupling, or run in sequence
using the run_all shortcut.

68

Fig. 1 MakeSense workflow
Node
source code
- Binary file ‘,—‘
‘x

make

deploy

run_exp

analyze

plot

report

R. Léone et al.

for motes

- Input for .
ploy \

NS
O\,
Traces
- PCAP -~ Configuraﬁon
- logs \ file
"/ﬁ/—
analyze v
CSV files /

plot 7
<~ 7
7/

figures

<"
HTML report

creates the whole environment necessary for the experiment execution. It
compiles the source code and creates the configuration files required by
the simulation tool from templates.

uploads the simulation files from a local repository to a remote location
to run several simulations in parallel. This step can easily be adapted to
upload firmwares to a real testbed.

launches the simulation series. MakeSense can launch concurrently, sev-
eral functions that will fetch the simulation output through the nodes’ serial
or network interfaces. Each node has its own independent log file.

parses trace files, e.g. PCAP files or text logs file, by applying a set of filters
to produce CSV files that contain only the desired information. Filters are
easy to specify and MakeSense includes a set of basic filters.

produces graphs using the CSV files produced by the analyze step and the
info in the settings files to select relevant data.

gathers all the results into a single HTML report file.

2.3 Multiple Control Channels

The simulation runs from its beginning to its end without user interaction, or can be
run in real-time mode, allowing real-time interaction with traffic generators such as
real applications, other simulators, or a user using an interactive command line and
visualizing performance evolution through the COOJA scripting engine, as illustrated
in Fig. 2. This feature allows to let the WSN run as if it were a real network and to
measure its reaction to external, controlled, stimuli.

Demo Abstract: MakeSense—Managing Reproducible WSNs Experiments 69

Fig. 2 Real-time interaction e
Script

with COOJA engine
External
1P Ve
application V6

@ ommands

Tlnet “--~.__radio

output o

reading —— =

COOJA

3 Demonstration

The COOJA implementation of MakeSense uses the Python programming language
and other libraries such as fabric, jinja2 and matplotlib. As a demonstration, we use
COOIJA [2] in real time mode to simulate a network of 10 nodes connected using an
RPL tree. The first node is a border router that connects all the remaining nodes that
are CoAP servers, to the hosting operating system. We send traffic to the different
sensor nodes from the shell and from the script engine contained inside the simulator.
This traffic is composed of CoAP and PING requests.

As specified in the configuration file, MakeSense generates without user interac-
tion various graphs. For example, Fig. 3 represents the theoretical connectivity graph,
extracted from the sole configuration file using circular transmission range. Figure 4
is a representation of the real RPL tree, generated by querying nodes for RPL infor-
mation on their serial interface, without perturbing the network traffic. Figure 5 is a
classical per-protocol throughput graph, showing the use of per-protocols filters and
Fig. 6 represents delay of Ping requests issued from the hosting operating system,
that shows the interaction with the outside world.

Fig. 3 Connectivity graph

Fig.4 RPL tree

70 R. Léone et al.

Fig. 5 RPL and ping traffic 40
evolution

I T T I T L T

35} — ping |4
301 R rp] i

i .4 N

50 100 150 200 250 300 350 400

time (s)
Fig. 6 Ping RTT between 120 . - - - : -
. : = Node 1 — Node 4 - Node & = Node 8
EgztemaChlne and simulated — Node2 ~— Node5 ~— Node7 ~— Node9

RTT (ms)

0 20 40 60 80 100 120 140
time (s)

4 Conclusion

This chapter describes and shows an example use of MakeSense, a framework for
automating series of simulation in order to make them reproducible and reusable.
The current implementation is tailored for the Cooja simualtor, and we are working
on its adaptation to real testbeds. The MakeSense Python implementation for Cooja
is available at: http://github.com/sieben/makesense.

This work takes place in the context of the ANR IRIS project and was partially
carried out at the LINCS laboratory.

http://github.com/sieben/makesense

Demo Abstract: MakeSense—Managing Reproducible WSNs Experiments 71

References

1. Aruliah, D.A., Brown, C.T., Hong, N.P.C., Davis, M., Guy, R.T., Haddock, S.H.D., Huff, K.,
Mitchell, 1., Plumbley, M., Waugh, B., White, E.P., Wilson, G., Wilson, P.: Best practices for
scientific computing. Comput. Res. Reposit. abs/1210.0530 (2012)

2. Eriksson, J., Osterlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter, R., Marrén, PJ.,
COOJA/MSPSim: interoperability testing for wireless sensor networks. In: 2nd International
Conference on Simulation Tools and Techniques (SIMUTools 2009), p. 27. Rome, Italy (2009)

3. Lacage, M., Ferrari, M., Hansen, M., Turletti, T., Dabbous, W.: NEPI: using independent simu-
lators, emulators, and testbeds for easy experimentation. ACM SIGOPS Oper. Syst. Rev. 43(4),
60-65 (2010)

	7 Demo Abstract: MakeSense---Managing Reproducible WSNs Experiments
	1 Introduction
	2 MakeSense Core Functionalities
	2.1 JSON Configuration File
	2.2 Workflow
	2.3 Multiple Control Channels

	3 Demonstration
	4 Conclusion
	References

