
Chapter 3
Theoretical Basis of Photon Spectroscopies

Massimo Altarelli

Abstract The theoretical basis of x-ray spectroscopies most commonly used
in the investigation of magnetic systems is reviewed. A systematic derivation
of the cross sections of the different processes (elastic and inelastic, reso-
nant and non-resonant scattering, absorption spectroscopies and dichroism) is
attempted, emphasizing the conceptual common aspects of these techniques
and, at the same time, the variety of information that they deliver.

3.1 Introduction

The purpose of this article is to review the basic aspects of photon spectro-
scopies, with special emphasis on the techniques that find widespread appli-
cation to magnetic systems. Our aim is to give a pedagogical presentation, by
providing a step-by-step guide through the sometimes elaborate calculations
of the relevant scattering amplitudes and cross sections.

Crystallographers have used x-ray diffraction for almost one hundred
years, as a tool for the determination of crystal structures. A particularly im-
portant development of more recent years was the realization that the scat-
tering of polarized x-rays can deliver information not only on the electron

Massimo Altarelli
European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany, e-mail: mas-
simo.altarelli@xfel.eu

95E. Beaurepaire et al. (eds.), Magnetism and Synchrotron Radiation: Towards
the Fourth Generation Light Sources, Springer Proceedings in Physics 151,
DOI: 10.1007/978-3-319-03032-6_3,
� Springer International Publishing Switzerland 2013



96 Massimo Altarelli

density distribution, but also on the distribution of magnetic moments. Al-
though the application of magnetic x-ray scattering has only recently become
popular, thanks to the development of modern synchrotron light sources, the
coupling between photons and magnetic moments is predicted by quantum
electrodynamics, and in fact it was described as early as 1954 by Low [1]
and Gell-Mann and Goldberger [2] in their derivations of the low-energy limit
of the Compton cross section. Later, Platzman and Tzoar [3] pointed out the
possibility to use this effect to investigate magnetic structures.

Due to the very small cross section, it was not until 1981, however, that
the first magnetic scattering experiment was carried out by de Bergevin and
Brunel [4] on NiO, demonstrating the basic features of non-resonant scatter-
ing. The truly heroic apects of this first experiment performed with an x-ray
tube were later alleviated by the advent of synchrotron sources, and exper-
iments were performed to take advantage of the attractive features of x-ray
magnetic scattering, as compared to neutron scattering, i.e. the very high mo-
mentum resolution and the possibility of a separate determination of the spin
and of the orbital contributions to the magnetic moment by the different po-
larization dependence.

A further important step forward was the discovery that in the anomalous
or resonant region (when the x-ray photon energy is close to an absorption
edge of one of the atomic species of the sample), the scattering amplitude
often displays a strong dependence on the polarization of the incoming and
scattered beams. This is formally translated in the description of the atomic
scattering amplitude as a tensor (rather than as a scalar) quantity, with impor-
tant consequences for the selection rules for the diffracted beams [5, 6].

The particular significance of the resonant scattering for magnetism stud-
ies was realized in 1988, with the discovery by Gibbs et al. [7] of resonant
magnetic scattering (also called resonant exchange scattering), i.e. of an en-
hancement of several orders of magnitude of the magnetic scattering intensity
when the photon energy is close to an absorption edge of the material. A very
large number of studies in rare earth, actinide and transition metal systems
followed. Although the price to pay for the resonant enhancement is the loss
of a direct interpretation of the scattering intensity in terms of spin and or-
bital magnetic structure factors, many experiments followed, and contributed
to clarify many issues on the electronic structure of magnetic materials: as we
shall see, the selection rules for optical transitions make the resonant process
sensitive to electronic states with specific orbital character, and enhance their
contribution to the magnetic properties.
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This last remark leads naturally to another recent development, the ex-
ploitation of the sensitivity of resonant scattering not only to charge and mag-
netic order, but also to orbital order, because the atomic scattering amplitude
can vary substantially depending on the occupation of selected spin or orbital
states and therefore on their availability to serve as intermediate states in the
second order scattering process.

Modern x-ray sources, providing high brilliance and controlled polariza-
tion, allowed two more techniques to acquire paramount importance: on the
one hand the use of the polarization dependence of absorption cross sections
(circular or linear dichroism); on the other, the resonant enhancement of the
scattering amplitude for inelastic scattering, which has a cross section much
smaller than the corresponding elastic process. The study of electronic, in-
cluding magnetic, excitations by resonant inelastic x-ray scattering (RIXS)
is becoming an increasingly popular technique, and great progress in energy
resolution, on the one hand, and in the interpretation of the resulting spectra,
on the other, is taking place.

The structure of the article is the following: in Section 3.2 we recall the
formalism necessary to set up the Hamiltonian for the interaction between
radiation and matter, and to develop a perturbation description of scattering
processes (in the range of radiation intensities where the perturbation ap-
proach is justifiable). In Section 3.3 the cross section for the non-resonant
case is obtained and discussed, while the resonant elastic case is treated in
Section 3.4. Section 3.5 is devoted to absorption spectroscopy, showing how
the relevant quantities are related to those for resonant scattering by the “op-
tical theorem” of scattering theory, and how their dependence on polarization
in anisotropic and magnetic systems can be derived. Finally, Section 3.6 is
devoted to a discussion of resonant inelastic scattering and of some recent ap-
plications to the study of electronic and magnetic excitations and properties.

3.2 Interaction of Radiation with Electronic Matter

A microscopic discussion of the electronic properties of matter must neces-
sarily be formulated in the language of quantum mechanics. We also need to
consider relativistic effects, if we want to consider magnetic x-ray scattering,
because quantities such as the magnetic moment associated to the electron
spin appear only in a relativistic theory, and relativistic effects such as the
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spin-orbit interaction play an essential role in determining the coupling be-
tween radiation and magnetic moments, as we shall see.

We therefore expect the reader to be familiar with basic quantum mechan-
ics and its general formalism, including some aspects of advanced topics such
as relativistic quantum mechanics and the second quantization formalism.

In discussing the scattering of electromagnetic waves on a material system
composed of electrons and nuclei, we shall follow the usual approach and
consider the Hamiltonian for the material system, plus the Hamiltonian for the
free electromagnetic field, plus an interaction term between the two systems.
As it will be clear soon, the scattering from electrons is much more intense
than the scattering from nuclei, and we shall therefore consider matter as a
system of electrons, interacting with one another and with a set of nuclei in
fixed positions, through a potential energy which can be written

V (r1, ...,rN) =
N

∑
i=1

Vnuc(ri)+ ∑
i> j

VC
(∣∣ri− r j

∣∣) (3.1)

where the first term represents the interaction with the nuclei, and in the sec-
ond the Coulomb interaction is VC(r) = e2/r . The system of electrons and
nuclei is a many-body system and, in general, not much progress is possi-
ble without suitable approximations. Although it is not indispensable for our
derivations, a self-consistent field approximation, in which the dependence of
(3.1) on the positions of all electrons is replaced by a one-electron average

V (r1, ...,rN)'
N

∑
i=1

V (ri) (3.2)

is convenient to simplify the notations and the developments. The potential
energy is the key ingredient that allows to write the Hamiltonian for the i-th
electron, which, in relativistic quantum mechanics, is the Dirac Hamiltonian
[8, 9]

Hel =
N

∑
i=1

(cα ·pi +βmc2 +V (ri)) (3.3)

where α and β are the 4×4 Dirac matrices



3 Theoretical Basis of Photon Spectroscopies 99

α(x,y,z) =
(

0 σ(x,y,z)
σ(x,y,z) 0

)
β =

(
1 0
0 −1

)
, (3.4)

where σ(x,y,z) denotes the 2× 2 Pauli matrices and 1 the 2× 2 unit matrix;
in addition, pi is the momentum of the i-th electron. We now consider that
the processes we are interested in (scattering and energy exchanges of x-ray
photons with energies at most in the∼ 10 keV range), always involve energies
much smaller than the electron rest energy, mc2 ' 511 keV , an energy scale
that is indeed bigger than any binding energies of core levels that we want to
investigate. This authorizes us to adopt the weakly relativistic limit of (3.3),
which is considered and derived in great detail in Section 15 of [9]. To see
the basic idea, we separate the four-component Dirac spinor into an upper and
a lower two-component spinors Ψa and Ψb, so that the Dirac equation in the
stationary case

HelΨ = ih̄
∂

∂ t
Ψ = EΨ (3.5)

can be written as

c(σ ·p)Ψb = (E−mc2−V (r))Ψa = (Enr−V (r))Ψa , (3.6)
c(σ ·p)Ψa = (E +mc2−V (r))Ψb = (2mc2 +Enr−V (r))Ψb (3.7)

where we defined the non-relativistic energy Enr = E −mc2 � mc2 . From
this inequality and the structure of the two equations, one can already guess
thatΨa is much larger thanΨb. Upon substitutingΨb from the second equation
into the first

(σ ·p)
c2

2mc2 +Enr−V (r)
(σ ·p)Ψa = [Enr−V (r)]Ψa (3.8)

we can expand

c2

2mc2 +Enr−V (r)
' 1

2m
(1− Enr−V (r)

2mc2
+ . . .) (3.9)

If we retain only the first term in the expansion, we recover the non-relativistic
kinetic energy expression; including also the second gives the leading rel-
ativistic correction, of order v2/c2. In order to obtain the equation for the
two-component spinor Ψa, we must carefully handle the commutation of the
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p operators with the functions of r, and obtain, after dropping the a index (for
details, see [9, 10])[

p2

2m
− p4

8m3c2
− eh̄s · (E×p)

2m2c2
− eh̄2

8m2c2
∇ ·E

]
Ψ = Enr

Ψ , (3.10)

where the vector ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z ), and the spin operator s appearing in the
third term (representing the spin-orbit interaction) is defined as s = (1/2)σ ,
and the electric field E is the gradient of the potential energy V , divided by
the (negative) electron charge.The second term in this equation represents the
relativistic mass correction, and the last one is the so-called Darwin term, that
is different from zero where the electric field has a non-vanishing divergence.
Let us now come to the radiation field, that, on the other hand, is described by
the electric and magnetic fields E,B, which obey Maxwell’s equations [11],
and which can also be described by introducing a scalar and a vector potential,
Φ(r) and A(r, t)

B = ∇×A

E = −∇Φ− (1/c)
∂A
∂ t

. (3.11)

For given E(r) and B(r), the definition of the vector and scalar potentials is
not unique; when describing the fields of electromagnetic waves in vacuum,
we can use this freedom to chose the gauge in such a way that the scalar
potential vanishes, and the vector potential A is divergence free (∇·A = 0)
[12]. This will turn out to be a convenient choice later. An arbitrary space-
and time-dependent vector potential can be expanded in terms of plane waves,
which are characterized by a wavevector k and by one of the two polarization
modes labeled by λ . Let us write this expansion in the following form

A(r, t) = ∑k,λ

(
hc2

Ωωk

)1/2 [
eλ (k)a(k,λ )ei(k·r−ωkt)

+ e∗
λ
(k)a†(k,λ )e−i(k·r−ωkt)

]
. (3.12)

In this equation, Ω is the volume of the quantization box, and does not appear
in any physically meaningful quantity in the following, ωk is just c|k|, eλ is
the polarization vector associated to the mode λ , i.e. one of two orthogonal
unit vectors in the plane normal to k. Furthermore, in a classical description
of the field, a(k,λ ) and a†(k,λ ) are the amplitude of the corresponding mode
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of the field and its complex conjugate. However, in the language of the second
quantization formalism a and a† are operators, respectively the annihilation
and creation operators of a photon with quantum numbers (k,λ ). In this for-
malism the Hamiltonian of the field takes a very simple and appealing form

Hrad = ∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
. (3.13)

Turning now to the modifications of Hel in presence of the electromagnetic
field, we follow the usual prescription to write the Hamiltonian for the motion
of a charged particle in external electric and magnetic fields, that reproduces
the equations of motion in the electric force and in the Lorentz force: we insert
the A(ri) in the Dirac Hamiltonian as an additional term to the momentum
operator [8, 9]

H ′el =
N

∑
i=1

(
cα · [pi− (e/c)A(ri)]+βmc2 +V (ri)

)
, (3.14)

and follow the previous line of reasoning to obtain the non-relativistic limit
of (3.14), which is considered and derived in great detail in Section 15 of [9].
The resulting Hamiltonian, to order (v/c)2 is

H ′el =
N

∑
i=1

[ [pi− (e/c)A(ri)]2/(2m)

−pi4/8m3c2

+V (ri)− (eh̄/mc)si ·B

− (eh̄/2m2c2)si · (E× [pi− (e/c)A(ri)])

+ (eh̄2/8m2c2)∇ ·E
]

. (3.15)

In this equation, the first term on the r.h.s. is the usual modification of the
kinetic energy in presence of a field, the second (the relativistic mass correc-
tion) does not involve the field and is therefore not relevant to our discussion;
the fourth term is the interaction of the electron spin s = (1/2)σ with the
magnetic field of the radiation, B= ∇×A , confirming that the Dirac equation
implies that electrons have spin and a magnetic moment associated to it; the
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fifth is the spin-orbit interaction term, with the usual modification of the mo-
mentum in presence of the field; and the last, the Darwin correction, is again
independent of the radiation field, because the transversality of electromag-
netic waves (k ·E = 0 ) implies ∇ ·E = 0 , so that there is no contribution to
this term from the radiation electric field. After removing all the relativistic
corrections toH ′el which are not affected by the radiation field, we are left with
the following Hamiltonian H =H ′el +Hrad for the system of electrons and the
radiation field:

H =
N

∑
i=1

[
[pi− (e/c)A(ri)]2

2m
+V (ri)− (eh̄/mc)si ·B

−(eh̄/2m2c2)si · (E× [pi− (e/c)A(ri)])
]

+∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
. (3.16)

We are then in a position to separate all the terms mixing electron and
photon variables, that constitute the interaction Hamiltonian, Hint

H = Hel +Hrad +Hint , (3.17)

Hel =
N

∑
i=1

[
pi2

2m
+V (ri)+(eh̄/2m2c2)si · (∇V (ri)×pi)

]
, (3.18)

Hrad = ∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
, (3.19)

Hint =
N

∑
i=1

[
(e2/2mc2)A2(ri)− (e/mc)A(ri) ·pi

−(eh̄/mc)si · (∇×A(ri))
+ (eh̄/2m2c3)si · [(∂A(ri)/∂ t)× (pi− (e/c)A(ri))]

]
(3.20)

≡ H ′1 +H ′2 +H ′3 +H ′4 .

The total Hamiltonian, to the required order of relativistic corrections, is
thus split into the Hamiltonian for electronic matter, (3.18), for the radiation
field, (3.19) and the Hamiltonian describing the interaction between matter
and radiation, (3.20). In the next section, scattering processes will be de-
scribed as transitions between the eigenstates of Hel and Hrad induced by the
perturbation Hint . This can be done by regarding the A field as a classical
quantity, or alternatively and more elegantly, by considering it as an operator,
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according to the expansion (3.12) in terms of annihilation and creation oper-
ators. Before proceeding to the implementation of this program, one should
briefly explore the range of validity of the perturbation expansion. One way
to approach this question is to ask under which conditions the interaction with
the radiation fields leaves the structure of electronic energy levels and wave-
functions essentially unchanged. To this aim, we can compare the size of the
electric field experienced by an electron inside an atom with the size of the
radiation electric field. The magnitude of the atomic field has the order of
magnitude of the hydrogen atom field, that is, in atomic units, simply ∼ e/aB
where aB is the Bohr radius. This gives Eatom ∼ 5 · 109 V/cm . To compare
this with the field of radiation, let us remember that if denote by I the inten-
sity of radiation, i.e. the energy deposited on the unit surface in the unit time,
the energy density (energy per unit volume) is I/c and it equals (1/4π)E2

rms
[11]. So for a typical situation at a modern synchrotron beamline, where, say
1011× 1 keV photons per second are delivered in a 1 µm2 spot, even if we
consider the peak intensity during one of ∼ 107 pulses per second, each with
a duration of∼ 10 ps, the peak electric field is of order of∼ 105 V/cm at most.
We are therefore several order of magnitudes below the atomic field, the struc-
ture of the electronic energy levels is hardly affected and we are in a position
to describe the effect of radiation as the occurrence of transitions of the elec-
tronic system from one unperturbed eigenstate to another, that we can com-
pute by perturbation methods. However, as it has been the case for the IR and
visible region, lasers can deliver a much higher intensity than other sources.
Similarly, X-ray Free-Electron Lasers [13, 14, 15] are capable of delivering
1011 photons in one 10 fs pulse, with the same 1 µm2 focus. The correspond-
ing increase by ten orders of magnitude of the energy density leads to peak
fields of order 1010 V/cm, quite comparable or exceeding atomic fields!

In this case, which we shall however not consider any further, perturba-
tion theory is in trouble, and strong non-linear effects can be anticipated (for
evidence of such behavior in absorption experiments, see [16, 17] for the the-
oretical investigation of possible effects in scattering experiments).

3.3 Cross Section for Non-Resonant Elastic Scattering

In developing the expressions for the scattering cross section, we closely fol-
low the lucid discussion by Blume [18], warning the reader that this important
paper unfortunately contains many misprints.
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In this Section, our discussion is restricted to elastic scattering, i.e. to
processes in which the sample (the system of electrons) is in the same state
(for simplicity, let us say the ground state) before and after the scattering
event. If we consider the scattering of an incoming photon with polarization e
and wavevector k into an outgoing photon with polarization e′ and wavevector
k′ (conservation of energy implies |k|= |k′|), we can describe the initial and
final state of the system (sample plus radiation field) as

|i〉 = |0; . . . ,(e,k), . . .〉
| f 〉 = |0; . . . ,(e′,k′), . . .〉 , (3.21)

with an obvious notation labelling the ground state of the electronic system
with |0〉, and the radiation field state with the quantum numbers of the photons
present in that state.

It is then clear that the transition consists in the annihilation of one photon
(e,k), and in the creation of one photon (e′,k′). This means that the opera-
tor A, which is linear in the creation and annihilation operators, must operate
twice. Therefore the lowest order contributing processes will come from ap-
plying second order perturbation theory to H ′2 and H ′3, which contain one A
operator, and by first order perturbation theory applied to H ′1 and H ′4, which
contain two A operators. As a matter of fact, H ′4 contains two terms, respec-
tively proportional to ∂A/∂ t · p and to ∂A/∂ t · (e/c)A. However, we shall
later see that the first one produces a negligible effect, so we will drop it and
retain the second term only.

According to Fermi’s Golden Rule of time-dependent perturbation theory,
the number of transitions per unit time is proportional to

w =
(
2π

h̄

)∣∣∣∣〈 f |H ′1 +H ′4|i〉

+∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

∣∣∣∣2 δ (h̄(ωk−ωk′)) . (3.22)

In the second term, the sum over the complete set of eigenstates |n〉 of the
unperturbed Hamiltonian, Hel +Hrad appears, referred to as the sum over the
intermediate states. The calculation of the matrix elements involve both elec-
tron and photon operators and is tedious, but straightforward. For example
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〈 f |H ′1|i〉 =
(

hc2

Ωωk

)(
e2

mc2

)
∑
i
〈0;(e′,k′)|(e′∗ · e)a†(k′,e′)a(k,e)ei(k−k

′)·ri |0;(e,k)〉

=
(

hc2

Ωωk

)(
e2

mc2

)
(e′∗ · e)∑

i
〈0|ei(k−k′)·ri |0〉 , (3.23)

after taking the photon annihilation and destruction operator matrix ele-
ments according to the usual rules. In this matrix element we recognize the
Thomson scattering amplitude, with the dot product polarization dependence
and the structure factor, expressed by the ground state expectation value of
∑i ei(k−k

′)·ri . Notice also that the matrix element magnitude per electron is
controlled by the quantity r0 ≡ e2/mc2 which has the dimensions of length
and is the Thomson radius, r0 = 2.818 ·10−13 cm.

We are now in a position to confirm that the scattering from the nuclei
is negligible. In fact, to obtain the corresponding matrix element for nuclear
scattering, we should simply replace the electronic positions with the atomic
ones, and also replace e2/mc2, with Z2e2/Mc2 , where Z and M are the nu-
clear charge and mass. However, M is roughly equal to 2Zmn, where mn is the
nucleon mass, and the mass ratio mn/m is about 1850. Therefore, the scatter-
ing matrix element for a nucleus is ∼ Z/(2× 1850) times smaller than that
for an electron, and can be neglected because Z never exceeds 92. In addition,
one should also note that there are Z times more electrons than nuclei!).

3.3.1 Thomson Scattering and Crystallography

Before proceeding to the evaluation of the matrix elements deriving from the
other pieces of the interaction Hamiltonian, we briefly consider the implica-
tions of the H ′1 matrix elements. As a matter of fact, we shall later show that,
as long as the photon energy h̄ωk is not close to any of the absorption edges
of the atoms in the system, this is the dominant matrix element for the photon
scattering process. Consider for example the radiation from a Mo x-ray tube,
which allows to exploit the Kα line, with an energy of 17.4 keV. This is well
above all edges of light atoms such as Al, Si, Ca or Ti, which are below 5 keV,
and contributions other than H ′1 are negligible. In this approximation,(3.22)
simplifies to



106 Massimo Altarelli

w =
(
2π

h̄

)∣∣〈 f |H ′1|i〉∣∣2 δ (h̄(ωk−ωk′)) . (3.24)

We are now ready to replace (3.23) into (3.24). However, this gives a number
of transitions per unit time which depends on the normalization volume. We
would rather have a physically meaningful quantity, i. e. a cross section, de-
fined as: the number of transitions per unit time, into photon states with energy
h̄ωk′ < E < h̄ωk′+dE , with wavevector k′ in the solid angle dO′, divided by
the number of incident photons per unit time and area. That is, in differential
form (

d2σ

dEdO′

)
=

wρ(E)
c/Ω

(3.25)

where ρ is the density of photon states (with specified polarization), i.e. the
number of wavevectors within dO’ satisfying periodic boundary conditions in
a box of volume Ω and h̄ωk ≤ h̄ωk′ ≤ h̄ωk +dE , i.e.

ρ(E)dEdO′ =
(

Ω

(2π)3

)(
E2

h̄3c3

)
dEdO′ (3.26)

Finally, by putting Eqs. (3.22), (3.23), and (3.25) together, and upon mul-
tiplying (3.25) by dE and integrating (remember the Dirac δ in (3.22)) we
obtain the important result(

dσ

dO′

)
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉
∣∣∣∣∣
2

(e′∗ · e)2 (3.27)

after defining (k−k′)≡ q , the scattering vector.
With reference to Fig. 3.1, define the scattering plane as that identified by

k,k′, and introduce a specific basis for the polarization vectors, eπ parallel to
the scattering plane, and eσ perpendicular to the scattering plane. Define fur-
ther the scattering angle 2θ (the factor 2 is a mere convention !) as the angle
between k,k′. It is easy to see that the polarization factor (e′∗ · e)2 forbids σ

to π transitions and viceversa, and in other cases is worth

(e′∗ · e)2 = 1 (σ → σ)
(e′∗ · e)2 = cos2(2θ) (π → π

′) . (3.28)
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Fig. 3.1 Scattering and polarization geometry

For example, if the photon source is unpolarized, we have to average over
the incoming polarizations, and we obtain(

dσ

dO′

)
=

1
2
r20
(
1+ cos2(2θ)

)
|F(q)|2 , (3.29)

where we defined
F(q) = ∑

j
〈0|eiq·r j |0〉 . (3.30)

In full generality, let the scattering object be a systemwith N electrons, with its
ground state |0〉 described by an antisymmetric wavefunctionΨ(r1,r2, ...,rN),
from which an electron density is derived as:

ρ(r) = N
∫

dr2dr3 . . .drN |Ψ(r,r2, ....,rN)|2 . (3.31)

It is then easy to see that

F(q) =
∫

dreiq·rρ(r) , (3.32)

so that the scattering cross section with scattering vector q, (3.27), is propor-
tional to the absolute square of the Fourier transform of the electron density
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at momentum q. A knowledge of the Fourier transform at all wavevectors is
of course equivalent to the knowledge of the electron density. However, much
to the crystallographers’ sorrow, we see that x-ray scattering only delivers the
absolute value of the Fourier transform. To reconstruct the electron density
one should also know the phase of each reflection, which, however, is a much
more elusive quantity.

3.3.2 Non-resonant Magnetic Scattering

We now resume the systematic exploration of (3.22), and, after dealing with
the matrix elements of H ′1, we consider the remaining terms, which contribute
exclusively to magnetic scattering.

The next task is the evaluation of 〈 f |H ′4|i〉. Remember thatH ′4 contains two
terms, respectively proportional to ∂A/∂ t ·p and to ∂A/∂ t ·(e/c)A. However,
we shall soon verify that the second order perturbation on the first term pro-
duces a contribution to the cross section which is a factor (h̄ω/mc2)2 smaller
than the first order contribution of the second, so we will drop it and retain the
second term only. We must first of all determine an expression for the operator
∂A/∂ t from (3.12). For one mode only, i.e. omitting for simplicity the sum
over all k,λ ,

∂A/∂ t =
(

hc2

Ωωk

)1/2 [
−i ωkeλ (k)a(k,λ )ei(k·r−ωkt)

+i ωke∗λ (k)a†(k,λ )e−i(k·r−ωkt)
]

. (3.33)

Inserting this expression, the H ′4 matrix element is readily evaluated:

〈 f |H ′4|i〉=−i
(

e2

mc2

) (
h̄ωk

mc2

)(
hc2

Ωωk

)
∑
j
〈0|ei(k−k′)·r js j · (e′∗(k′)× e(k))|0〉 . (3.34)

One therefore sees immediately that a term containing the spin operators, i.e.
a genuine magnetic scattering term appears, and that its magnitude compared
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to the Thompson term is reduced by the factor (h̄ωk/mc2). This is a small
number, because typically in the x-ray region h̄ωk ∼ 10 keV, while mc2 =
511 keV. Additional magnetic information is hidden in the second term in
(3.22), which we now proceed to evaluate. The accessible intermediate states
have either no photons, or two photons, and their energy is

|n〉 = |Ψn ;0,0〉;En = E(Ψn) (3.35)
|n〉 = |Ψn ;(e,k),(e′,k′)〉;En = E(Ψn)+2h̄ωk . (3.36)

The first set of terms (let us call them terms (a)) is reached by the action of
the annihilation part of the A operator on the initial state; the second (terms
(b)) by the action of the creation operator part. There is also an additional,
important difference between the two kinds of terms: in case (a) the energy
denominator can vanish, and give rise to a resonance, when E0−En + h̄ωk =
0 ; in case (b) it cannot, because E0−E(Ψn)− h̄ωk < 0 always. To prevent
an unphysical divergence of the scattering cross section, we must take into
account that the intermediate states |n〉 are not really stationary, but have a
finite lifetime, which is represented by adding a small imaginary part to the
eigenvalue, which becomes important only near the resonance condition; i.e.
E(Ψn) is replaced by E(Ψn)− iΓn/2. We want to examine the non-resonant
case first, i.e. the case in which h̄ωk � E(Ψn)−E0 for all states, or, more
precisely, for all states |n〉 which give an appreciable contribution to the sum
in (3.22). Using the following simple identities for the energy denominators:

1
E0−E(Ψn)+ h̄ωk + iΓn/2

=
1

h̄ωk

+
E(Ψn)−E0− iΓn/2

h̄ωk

1
E0−E(Ψn)+ h̄ωk + iΓn/2

1
E0−E(Ψn)− h̄ωk

= − 1
h̄ωk

+
E0−E(Ψn)

h̄ωk

1
E0−E(Ψn)− h̄ωk

, (3.37)

it is easy to see that in this case the denominators are well approximated by
±h̄ωk. As a matter of fact, as discussed in a recent work [19], the same con-
clusions hold even in the case in which h̄ωk is much bigger than E(Ψn)−E0
for some n, and much smaller for others, i.e. as long as it is far away from pos-
sible resonances. Substituting (3.12) into H ′2 +H ′3, and paying due attention
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to the action of photon creation and annihilation operators on the two kinds of
intermediate states, we find for type (a) intermediate states

〈 f |H ′2 +H ′3|n〉 〈n|H ′2 +H ′3|i〉=(
hc2

Ωωk

)( e
mc

)2
〈0|

N

∑
j=1

[
e′∗ ·p j− ih̄(k′× e′∗) · s j

]
e−ik

′·r j |n〉

〈n|
N

∑
j′=1

[
e ·p j′ + ih̄(k× e) · s j′

]
eik·r j′ |0〉 (3.38)

while for type (b) intermediate states we obtain an expression differing only
in that the operators acting between 〈0| and |n〉 and between 〈n| and |0〉 are
interchanged. This, together with the fact that the energy denominators, in the
non-resonant approximation defined above, are independent of |n〉 and change
sign for the two types of intermediate states, and with the closure relationship

∑
n
|n〉〈n|= 1 (3.39)

where 1 denotes the unit operator, allows to write the second term in (3.22) as
the expectation value of a commutator

∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

'
(

hc2

Ωωk

)( e
mc

)2
〈0|
[
C′,C

]
|0〉 , (3.40)

where

C′ =
[
e′∗λ ′ ·p j− ih̄(k′× e′∗λ ′) · s j

]
e−ik

′·r j (3.41)

C = [eλ ·p j + ih̄(k× eλ ) · s j]eik·r j . (3.42)

To calculate the commutator is a tedious operation, but is easily performed
remembering the basic commutation rules for components of positions, mo-
menta, spin and arbitrary functions of them, referred to the same electron[

rα , pβ

]
= ih̄δαβ

[pα , f (r)] = −ih̄∂ f/∂ rα[
sα ,sβ

]
= ih̄εαβγsγ . (3.43)
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Here the antisymmetric tensor εαβγ was introduced, and it is worthwhile to
remember the expression of the cross product of two vectors in terms of it
(summation over repeated indices is implied)

(v1×v2)α = εαβγv1βv2γ . (3.44)

By a careful use of these rules, of the transversality conditions, e ·k = 0
and of a simple vector identity

(A×B) · (C×D)≡ (A ·C)(B ·D)− (A ·D)(B ·C) (3.45)

which is applied to the four vectors: (k−k′)≡ q, p j, e′∗, e , the patient reader
should obtain

∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

=−i
(

hc2

Ωωk

)(
e2

mc2

)
h̄ωk

mc2[
〈0|∑

j
eiq·r j

iq×p j

h̄k2
|0〉(e′∗× e)+ 〈0|∑

j

eiq·r js j
k2
|0〉

[
(k′× e′∗)(k′ · e)− (k× e)(k · e′∗)− (k′× e′∗)× (k× e)

]]
. (3.46)

Now that we have the second order contribution of the A ·p term in H ′2, we
can substantiate our claim that the contribution of the ∂A/∂ t×p term of H ′4
is negligible. In fact, the magnitude of the latter contribution would be sim-
ilar to that of the former, which we just evaluated, except for some different
prefactors. On the one hand, the time derivative introduces a factor ωk, on the
other, the constant in front of H ′4 introduces, with respect to H

′
2, another factor

of h̄/2mc2, so that all in all an extra factor h̄ωk/2mc2 is obtained. This shows
that the matrix element of the first part of H ′4 is reduced by (h̄ωk/2mc2)2 with
respect to the Thomson term, and therefore is negligible with respect to the
other magnetic scattering terms, which are reduced by h̄ωk/2mc2.

Finally, by putting Eqs. (3.22), (3.23), (3.34), (3.46), and (3.25) together,
we can complete the cross section expression of (3.27) to obtain



112 Massimo Altarelli

dσ

dO′
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉(e′∗ · e)
−i h̄ωk

mc2

[
〈0|∑

j
eiq·r j

iq×p j

h̄k2
|0〉 ·PL + 〈0|∑

j
eiq·r js j|0〉 ·PS

]∣∣∣∣∣
2

,

(3.47)

where we introduced the polarization factors

PL = (e′∗× e) (3.48)
PS = (e′∗× e)+ [(k̂′× e′∗)(k̂′ · e)− (k̂× e)(k̂ · e′∗)− (k̂′× e′∗)× (k̂× e)] .

(3.49)

In this equation, k̂ denotes the unit vector parallel to k, and the indices L
and S where adopted for the two factors because the second one is attached to
the term related to the spin moment, while the first pertains to a term which,
as we shall show, is related to the orbital moment. In fact, after noting that
|q|= 2|k|sinθ , where 2θ is the scattering angle, the relevant quantity can be
transformed as follows

∑
j
eiq·r j

iq×p j

h̄k2
=

i
h̄q

(4sin2 θ)∑
j
eiq·r j q̂×p j

=
i
h̄q

(4sin2 θ)q̂×
∫

dreiq·r
1
2 ∑

j
[p jδ (r− r j)+δ (r− r j)p j]

=
−im
eh̄q

(4sin2 θ)q̂×
∫

dreiq·rj(r)

=
−im
eh̄q

(4sin2 θ)q̂× j(q) (3.50)

where the electrical current density operator j(r) = (−e/2m)∑ j[p jδ (r−r j)+
δ (r−r j)p j] has been expressed in terms of the momentum and the density of
electrons multiplied in symmetrized form, because they do not commute.

This current density describes the microscopic currents associated to the
motion of the electrons, not the macroscopic ones, which we can assume to
vanish in our system in the absence of external perturbations (remember that
all matrix elements in a perturbation calculation refer to the unperturbed sys-
tem eigenstates). The vanishing of macroscopic currents means that the flux
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across any surface S internal to the sample vanishes, i.e.∫
S
j(r) ·nSdS = 0 , (3.51)

which implies that the microscopic current is divergence-free, i.e. ∇ · j(r) = 0,
and can therefore be expressed as the curl of a vector field. We write this field
so that

j(r) = c[∇×ML(r)]. (3.52)

For the purposes of our discussion, we identify ML(r) with the density
of orbital magnetization. Although a formal identification between operators
is analytically involved [20, 21], one can satisfy himself of the plausibility
of (3.52) by the classical description of magnetic fields in matter; Maxwell’s
equations for the fields H and B = H+4πM (no spin magnetization exists in
the classical description, so hereMmeansML) prescribe that the microscopic
currents are related to the curl of M by (3.52) (see for example [22]).

Equation (3.52) implies that j(q) =−icq×ML(q) . Therefore

∑
j
eiq·r j

iq×p j

h̄k2
=

mc
eh̄q2

q× [ML(q)×q] . (3.53)

We are now ready to collect all the bits and pieces in a formula for the
differential cross section

dσ

dO′
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉(e′∗ · e)
−i h̄ωk

mc2

[mc
eh̄
〈0|q̂× [ML(q)× q̂]|0〉 ·PL +

mc
eh̄
〈0|MS(q)|0〉 ·PS

]∣∣∣∣2 .

(3.54)

where the polarization factor PL was redefined to include the angular factor

PL = (e′∗× e)4sin2 θ , (3.55)

and the Fourier transform of the spin magnetization density was introduced

MS(q) =
eh̄
mc ∑

j
eiq·r js j . (3.56)
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We are now ready to obtain from (3.54) the basic properties of non-
resonant magnetic scattering. In a system with an ordered magnetic struc-
ture, e.g. an antiferromagnet, the densities of (orbital and spin) magnetization
are periodic functions, with Fourier transforms which are non vanishing only
for selected q values corresponding to this periodicity. Some of these vectors
may possibly concide with reciprocal lattice vectors of the crystallographic
structure, others will correspond to new reflections (magnetic reflections) with
nonvanishing intensity below the Néel temperature, below which the antifer-
romagnetic order sets in.

As already noticed, the prefactor h̄ωk/mc2 reduces the intensity of the
magnetic terms considerably with respect to the Thompson one. To reinforce
this, while all core and valence electrons contribute to Thomson scattering,
only electrons in partially filled shells can contribute to magnetic scattering as
the orbital and spin moments of filled shells add up to zero. Therefore, apart
from the first pioneering experiments [4], the high intensity of synchrotron
light sources is necessary for these experiments.

It is important to notice that PL contains the factor 4sin2 θ , and since |q|=
2|k|sinθ , for a given reflection, i.e. for a given q, sinθ is proportional to
1/h̄ωk. Thus, the weight of the orbital part decreases at high photon energies,
where spin scattering dominates the magnetic cross section; more generally,
the ωk dependence of the orbital term is not only in the prefactor.

The different polarization factors PL , PS and the well known polarization
properties of synchrotron radiation allow to separate the spin and the orbital
contributions to the magnetic moments by changing the experimental geom-
etry. This is a much more direct approach to the separation of the two contri-
butions than it is possible with neutron scattering. This method was applied
to rare earth systems such as Ho [7], to actinide systems such as UAs [23, 24]
and more recently to 3d antiferromagnets such as NiO [25]. Together with the
higher momentum resolution allowed by well collimated synchrotron beams,
this orbit and spin separation justifies the interest of x-ray scattering for some
cases, in spite of the more widespread use of neutron scattering to determine
magnetic structures.

A further important point to mention about the magnetic terms in (3.54) is
the imaginary prefactor −ih̄ωk/mc2. This means that, upon taking the square
modulus, no interference of Thomson and magnetic scattering terms occurs,
unless the structure factors

∑
j
〈0|eiq·r j |0〉 (3.57)
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are complex (which means that the crystallographic structure is non-centro-
symmetric), or that the polarization vectors are complex (corresponding to
non-linear, i.e. elliptic or circular polarization). In such cases one has inter-
ference terms, and these can be useful, for example, in detecting magnetic
scattering in ferromagnets [26, 27]. Very recently a further application to the
multiferroic system TbMnO3 [19] used charge-magnetic interference scatter-
ing to detect small ionic displacements that contribute to the electrical polar-
ization.

3.4 Resonant Scattering

We now abandon the assumption of the non-resonant limit and consider the
case in which E(Ψn)−E0' h̄ωk , at least for one excited stateΨn (normally, in
a solid there will be a continuum of states satisfying this condition). Returning
to the expressions of the matrix elements of H ′2 +H ′3 as written in (3.38), we
want first of all to prove that the contribution of H ′2 is always much larger than
that of H ′3. To establish this, we begin by remarking that the most important
excited states which are resonant with x-ray photons are those in which a core
electron in one of the atoms is promoted to an empty one-electron state above
the highest occupied orbital. Arguing within an approximate scheme in which
the states |0〉, |n〉 are reasonably well described by an antisymmetric product
of one-electron states, then the matrix elements of the operators H ′2 or H ′3,
which are sums of one-electron operators, can be written [28] in terms of an
overlap integral over N− 1 of the coordinates, multiplied by a one-electron
matrix element, i.e

〈n|H ′2 +H ′3|i〉 =
(

hc2

Ωωk

)1/2( e
mc

) N

∑
j=1
〈n| [e ·p j + ih̄(k× e) · s j]eik·r j |0〉

=
(

hc2

Ωωk

)1/2( e
mc

)N−1

∏
j=1

∫
dr jψ

(n)∗
v j (r j)ψ

(0)
v j (r j)

×
∫

drNψ
(n)∗
vN (rN) [e ·pN + ih̄(k× e) · sN ]eik·rNψ

(0)
c (rN) ,

(3.58)
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where ψv is a one-electron valence wavefunction, either for the ground or
the n-th excited states and ψc a core wavefunction which is exponentially
decreasing, outside an appropriate core radius rc. We can then argue that the
main contribution to the integral comes from this inner region; and one can
see that inside this region k ·r j� 1 , for the values of k = |k| of interest here.
This is because at the resonance condition

k = ω/c = E/h̄c , (3.59)

where E is the difference of the core and valence energy, i.e. the core ion-
ization energy. This energy is related to the radius of the core orbital by the
approximate hydrogen-like relationship

E ' h̄2/2mr2c (3.60)

whence one finds rc ' h̄/
√
2mE and therefore

krc '
√
E/2mc2 . (3.61)

The right hand side is always small for all core levels, because 2mc2 is about
1 MeV, while the deepest core level (1s in Uranium) has a binding energy of
about 116 keV. So, in this most extreme case, krc ' 0.34 , and is less for all
other core levels. It is therefore legitimate, for r ≤ rc , to expand

eik·r j ∼ 1+ ik · r j− (k · r j)2/2+ . . . (3.62)

and to observe that the terms of the series are rapidly decreasing with increas-
ing order (which is referred to as the multipole order). We can then reach the
proof of the statement that H ′2 matrix elements dominate over those of H ′3, i.e.
that the first term in the last integral of (3.58) dominates over the second. The
point is that for given ψ

(n)
vN ,ψ

(0)
c , the lowest nonvanishing order in the series

(3.62) for the integral of pN is lower by one than the lowest nonvanishing order
for the second term (which contains the spin, but no rN operator). Remember
indeed that the selection rules for atomic transitions are the same for p or
for r matrix elements (a manifestation of the Wigner-Eckart theorem [29]),
and since the H ′3-related operator contains the spin but neither p nor r’s, it is
necessary to have one more r (with respect to the first term) in order to have
a nonvanishing integral, i.e. to go to the next order in k · rN .Therefore, near
the resonance condition, the resonant terms dominate the cross section, and,
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among these, only theH ′2 matrix elements need to be retained. Equation (3.22)
becomes

w =
2π

h̄

∣∣∣∣∑
n

〈 f |H ′2|n〉〈n|H ′2|i〉
E0−En + h̄ωk + iΓn/2

∣∣∣∣2 δ (h̄(ωk−ωk′))

=
2π

h̄

∣∣∣∣∣
(

hc2

Ωωk

)( e
mc

)2
∑
n

〈0|∑N
j=1 e′

∗ ·p je−ik
′·r j |n〉〈n|∑N

j′=1 e ·p j′e
ik·r j′ |0〉

E0−E(Ψn)+ h̄ωk + iΓn/2

∣∣∣∣∣
2

×δ (h̄(ωk−ωk′)) .

(3.63)

As a matter of fact, the above equation contains a contribution that was
already taken into account in the non-resonant part; remember (3.37), where
the first piece on the r.h.s. was included in the previous Section. Therefore,
only the second addendum needs to be considered here and that means that in
(3.63) we must replace

1
E0−E(Ψn)+ h̄ωk + iΓn/2

(3.64)

with:
E(Ψn)−E0− iΓn/2

h̄ωk

1
E0−E(Ψn)+ h̄ωk + iΓn/2

. (3.65)

3.4.1 Electric Dipole Approximation

Let us then look in detail into the relevant matrix elements. Consider

〈n|e ·p jeik·r j |0〉 ' 〈n|e ·p j(1+ ik · r j + . . .)|0〉 (3.66)

and, for a given |n〉, consider only the lowest order term for which the matrix
element does not vanish. We established already that all higher order terms
are negligible in comparison to it. The largest contributions come from those
|n〉’s for which the first term provides a nonvanishing contribution, so that the
exponential is simply replaced by 1. These states are said to be accessible by
electric dipole transitions. In a full quantum electrodynamical formulation,
one can see that electric dipole transitions are induced by photons with a total
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angular momentum of 1. The name “electric dipole” comes from the fact that
in a non-relativistic theory, neglecting the spin-orbit interaction altogether, so
that Hel = ∑ j(p2j/2m+V (r j)) , one can write

〈n|e ·p j|0〉 = m〈n|e · ṙ j|0〉

=
−im
h̄
〈n|e · [r j,Hel ]|0〉

=
im
h̄

[E(Ψn)−E(0)]〈n|e · r j|0〉 . (3.67)

In view of this, and neglecting iΓn/2 in the numerator of (3.65), the sum
over intermediate states in (3.63) becomes

m2

h̄2 ∑
n

(E(Ψn)−E(0))3

h̄ωk

〈0|e′∗ ·R|n〉〈n|e ·R|0〉
E(Ψn)−E(0)+ h̄ωk + iΓn/2

, (3.68)

where we defined
R = ∑

j
r j . (3.69)

In order to make progress and to make contact with the literature [30], we
express all vectors in terms of their spherical components, i.e. we define

R0 = iRz,R±1 = (∓i/
√
2)(Rx± iRy) . (3.70)

The definitions of the 0,±1 components apply to any vector, e.g. to the
polarization e as well, and they are clearly inspired from the definition of the
spherical harmonics for l = 1,

Y1,0 = i

√
3
4π

(z/r),Y1,±1 =∓i
√

3
8π

(
x± iy
r

) , (3.71)

where we adopted the convention for the phases given in [41]. It is easily
verified that the scalar product becomes

e ·R =
1

∑
m=−1

(−1)m−1emR−m . (3.72)

It is then easy to see that
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〈0|e′∗ ·R|n〉〈n|e ·R|0〉= ∑
m,m′

(−1)m+m′e′∗mem′〈0|R−m|n〉〈n|R−m′ |0〉 . (3.73)

To simplify this expresssion further, one must take advantage of the sym-
metry of the physical system. The simplest case corresponds of course to the
highest symmetry, i.e. the spherical symmetry of isolated atoms. Then, the
eigenstates |0〉 and |n〉 are eigenstates of the angular momentum and of its
z-component, and this implies that the sum is restricted to m =−m′, because
the angular momentum selection rules say that, for the matrix elements

〈0|R−m|n〉 6= 0⇒ −m0−m+mn = 0 ,

〈n|R−m′ |0〉 6= 0⇒ −mn−m′+m0 = 0 ,

⇒ m =−m′ (3.74)

The sum in (3.73) is then simplified and it is worth noticing that

〈0|R0|n〉〈n|R0|0〉=−|〈n|R0|0〉|2

〈0|R−1|n〉〈n|R1|0〉= |〈n|R1|0〉|2

〈0|R1|n〉〈n|R−1|0〉= |〈n|R−1|0〉|2 . (3.75)

The first relationship may look surprising, but remember that, because of
the factor i in the definition, coming from the chosen convention on the phases
of the spherical harmonics, R0 is an antihermitian operator. Another conse-
quence of that is the fact that if

e0 = iez (3.76)

it is also
e∗0 = ie∗z , (3.77)

i.e. the spherical component 0 of the complex conjugate need not be the com-
plex conjugate of the 0 component. With the help of all of the above we can
write

〈0|e′∗ ·R|n〉〈n|e ·R|0〉=−e′∗0 e0|〈n|R0|0〉|2 + e′∗1 e−1|〈n|R1|0〉|2

+e′∗−1e1|〈n|R−1|0〉|2 . (3.78)

Going back to cartesian coordinates for the polarization vectors, it is pos-
sible, with a bit of algebra to recast this expression in the following form
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e′∗z ez|〈n|R0|0〉|2 +
1
2
[e′∗x ex + e′∗y ey](|〈n|R1|0〉|2 + |〈n|R−1|0〉|2)

− i
2
[e′∗x ey− e′∗x ey](|〈n|R1|0〉|2−|〈n|R−1|0〉|2) . (3.79)

We define

Fe
1,m = me∑

n

[E(Ψn)−E(0)]3

h̄3ωk

|〈n|Rm|0〉|2

E(0)−E(Ψn)+ h̄ωk + iΓn/2
, (3.80)

where the label e and 1 on F remind us that this refers to electric (e) dipole
(l=1) contributions, and where we introduced the symbol me for the elec-
tron mass, to avoid any confusion with the index m, which runs over 0,±1;
reinserting the prefactors present in (3.63) and those allowing to relate w to
dσ/dO′, see (3.25), we finally obtain

dσ

dO′
= | fres|2 , (3.81)

where fres is the resonant scattering amplitude, given by

fres =−r0
[
1
2
e′∗ · e(Fe

1,1 +Fe
1,−1) −

i
2
(e′∗× e) · ẑ(Fe

1,1−Fe
1,−1)

+(e′∗ · ẑ)(eλ · ẑ)(Fe
1,0−

1
2
Fe
1,1−

1
2
Fe
1,−1)

]
, (3.82)

where the unit vector in the z direction (i.e. in the axis of quantization of the
angular momenta), ẑ, was introduced. Equation (3.82) was derived in [30] us-
ing the relativistic formalism of vector spherical harmonics, soon after the
discovery of resonant magnetic scattering by Gibbs et al. [7]. Let us pause
briefly to analyze some of the consequences of the results derived so far. The
three terms in (3.82) describe resonant or anomalous scattering in general, and
are rather different in nature. The first is proportional to (Fe

1,1 +Fe
1,−1) and is

therefore always present. The second is a genuinely magnetic term, because it
originates from the difference between the 1 and the −1 components, which
arise only in the presence of a magnetic preference for one sense of rotation
around the quantization axis. Finally, the last term is nonvanishing for any
anisotropic system, a system with a preferential axis, identified either by a
crystal anisotropy or by a magnetic moment, which translates into a different
occupation for one-electron orbitals with different orientation. The difference
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in occupation translates into a difference in the value of individual Fe
1,m, which

is strongly influenced (see (3.80)) by the availability of states with the appro-
priate symmetry, at or near the resonance energy, suitable to play the role of
intermediate states.As an example, consider first an isotropic or cubic envi-
ronment for an atom. In this case, Fe

1,m is the same for all m ’s and can be
called simply Fe

1 . Then

fres =−r0
1
2
(e′∗ · e)(2Fe

1 ) . (3.83)

We can represent the polarization dependence by evaluating the above
equation for the various cases arising when e′,e take all possible σ and π

orientations and writing the result in terms of a tensor scattering amplitude
[5, 6]

fres = e′∗ f̂rese. (3.84)

The f̂res tensor is represented in matrix form as

f̂res =−r0Fe
1

(
1 0
0 cos(2θ)

)
(3.85)

where the rows correspond to e′ = σ or π ′ respectively, and the columns to
e = σ or π . Consider next the case in which the atom is in a orthorombically
distorted environment, in which z is inequivalent to the x,y directions, so that
2Fe

1,0−(Fe
1,1+Fe

1,−1)≡ Fe
an 6= 0 . For a geometry in which the scattering plane

is the x,y plane, and the x axis is chosen parallel to the scattering vector q (see
Fig. 3.2a), corresponding to the experimental situation sketched in Fig 3.2b,
where the crystal surface and the directions of the incoming and scattered
beams are visible, we find that

f̂res =− r0
2

[
(Fe

1,1 +Fe
1,−1)

(
1 0
0 cos(2θ)

)
+[2Fe

1,0− (Fe
1,1 +Fe

1,−1)]
(
1 0
0 0

)]
. (3.86)

If the crystal in Fig. 3.2b is rotated by an angle φ about the x axis, that is
around the scattering vector q (azimuthal scan), while leaving the scattering
geometry, i.e. the directions of k and k′ unchanged (it is not easy to rotate a
synchrotron !), the molecular preferred axis is rotated by an angle φ as shown
by the dashed line in Fig. 3.2a. The scattering amplitude becomes
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(a)

(b)

Fig. 3.2 a Sketch of the scattering plane with the scattering angle 2θ , and the azimuthal
angle φ , describing rotations about the scattering vector q; b A sketch of the actual experi-
mental geometry corresponding to a.

f̂res =− r0
2

[
(Fe

1,1 +Fe
1,−1)

(
1 0
0 cos(2θ)

)
+
[
2Fe

1,0− (Fe
1,1 +Fe

1,−1)
]( cos2 φ − 1

2 sinθ sin(2φ)
1
2 sinθ sin(2φ) sin2 θ sin2 φ

)]
.

(3.87)



3 Theoretical Basis of Photon Spectroscopies 123

This simple example is sufficient to demonstrate how, in the resonant regime,
the charge-related scattering may display features such as non-diagonal ten-
sor properties with respect to the polarization of the incoming and scattered
beams, and the azimuthal angle dependence, which are absent for the non-
resonant Thompson scattering. The tensor nature of the resonant scattering
amplitude, which was traditionally written as a single complex number with
the notation f ′+ i f ′′ has become increasingly important in recent years. As we
mentioned in passing, (3.82) also contains magnetic scattering components,
as first observed in [7]. The reader may wonder where, in the formulation
in terms of electric multipole transitions between the ground and the inter-
mediate states, the sensitivity to magnetic moments may come from. This
is a subtle but very important point. In fact, no spin operators appear in the
resulting expressions. The sensitivity to magnetic moments comes from the
combined action of two ingredients: the Pauli principle and the spin-orbit in-
teraction. The Pauli principle enters because of the already mentioned strong
dependence of the scattering amplitude on the availability of states, at or near
the resonance energy, suitable to play the role of intermediate states. In a one-
electron language, if states with a given spin are predominantly occupied, it is
mostly states with the opposite spin which are available to be virtually filled
by the promotion of a core electron in the first part of the resonant scattering
process. Since the spin is conserved in the optical transition, it is mostly elec-
trons with the same spin as the predominantly available intermediate states
which are virtually excited. In the case of all core levels with l 6= 0, the spin-
orbit interaction is nonvanishing and much larger than in the valence states
(for example, the L2 and L3 core levels of the rare earths are separated by
many hundreds of eV). In a given spin-orbit partner, states with spin up or
down have a different orbital character (think for example of L2,3 levels, where
typically (px + ipy)|sz = −1/2〉 states are, because of the spin-orbit interac-
tion, linearly superposed to pz|sz = +1/2〉 states). Because of the selection
rules to the available intermediate states, this orbital polarization translates
into a difference between the transition rates for different m’s, therefore in an
imbalance among the corresponding Fe

1,m, which is in turn responsible for a
nonvanishing magnetic scattering amplitude.The above qualitative description
of resonant magnetic scattering must be modified for s core levels, which have
a vanishing spin-orbit interaction. In this case, resonant magnetic scattering is
also observable [?], but it must be ascribed to the much weaker spin-orbit in-
teraction of the valence states, which acts to polarize the final states of given
spin and to reproduce the same mechanism. We have so far considered the
scattering amplitude for a single atom or ion. In order to consider a lattice of
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atoms, we must perform a coherent superposition of the scattering amplitudes
from all atoms, in which the amplitude from the atom sitting atRl,m,n acquires
a phase factor eiq·Rl,m,n . If the system displays crystallographic or magnetic or-
der, such that the direction of the preferred axis z changes from atom to atom,
this must also be taken into account, as it will affect the value of the scattering
amplitude for given polarization, as visible from (3.82). In order to illustrate
the consequences of these facts, let us consider the case of a basal-plane an-
tiferromagnet, e.g. the rare earths Ho, Tb, and Dy, sketched in Fig. 3.3. All
spins are ferromagnetically aligned in the planes, but their direction rotates by
a fixed angle from one plane to the next. It was indeed in Ho, which displays a
spiral antiferromagnetic phase in the 20K≤ T ≤ 131K temperature range that
the first observations of resonant magnetic scattering took place [7].

Fig. 3.3 Schematic view of a basal-plane antiferromagnet and of the scattering geometry.

With reference to Fig. 3.3, let us label the atomic positions by a single index
Rn, for simplicity, and let us identify the spin direction of the ion n with ẑn. It
is apparent that, with respect to the chosen x,y,z coordinate frame, this vector
is given by

ẑn = (sin(τ ·Rn),cos(τ ·Rn),0) , (3.88)
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where τ is the wavevector associated to the spiral pitch, and if we define for
short (Fe

1,1+Fe
1,−1)≡F0 , (Fe

1,1−Fe
1,−1)≡F1 and [2Fe

1,0−(Fe
1,1+Fe

1,−1)]≡F2 ,
we are ready to write the scattering amplitude

f = ∑
n
eiq·Rn fres(Rn, ẑn) . (3.89)

For the case σ → σ ′, the F1 component does not contribute, and we are left
with

f =− r0
2 ∑

n
eiq·Rn [F0 +F2 sin2(τ ·Rn)] . (3.90)

Expressing the sin2 in terms of exponentials, a bit of algebra gives

f =− r0
2 ∑

h,k,l
[(F0 +

1
2
F2)δ (q−Ghkl)−

1
4
F2δ (q−Ghkl±2τ)] . (3.91)

We thus see that the resonant scattering occurs at the crystallographic recipro-
cal lattice vectors q = Ghkl , with a charge and a magnetic component (F0 and
F2 respectively) and also at the second harmonic magnetic satellite vectors,
displaced by ±2τ from each crystallographic reflection. A complete analysis
for different polarizations and different satellite is possible using the formula
by Hannon and Trammel [7, 30].

The remarkable success of the formalism we just discussed deserves a mo-
ment of reflection. In fact, the derivation of the Hannon-Trammel formula
rested on the assumption of spherical symmetry of the atoms (see 3.74, where
this assumption was explicitly used). Later, we introduced the possibility for
the atom to be e.g. in a tetragonal environment, or to have a preferential mag-
netic orientation, without affecting, however, the basic selection rules deriv-
ing from spherical symmetry. In other terms, the rotational character of the
wavefunctions was assumed to be intact, external influences being limited to
(gently) removing the degeneracies and thus affecting the occupation of the
different atomic states. This is a typical situation for weakly perturbed atomic
states. The reason why the Hannon-Trammel formula is so successful for core
resonances of magnetic systems, is that core levels are of course very atomic-
like, and that the intermediate states of highest interest in magnetic investi-
gations are those of d− or f− electrons, that are to a larger or lesser extent
localized, and preserve a pronounced atomic character.

The example presented so far corresponds to relatively “hard” x-rays, with
wavelengths in the range of order ∼ 0.1 nm. This wavelength corresponds to
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the typical order of interatomic distances and is therefore extremely suitable to
investigate crystallographic or, possibly, magnetic structures, with periods of
the same order. There is however nothing, in our derivations, which would not
equally well apply to softer x-rays, and allow the investigation of structures
with longer periods. Modern technology for the growth of nanostructures, and
in particular of multilayers, has led to the fabrication of structures with char-
acteristic periods in the order of 1 nm or more, which are therefore accessible
to investigation by soft x-rays. But also nature provides for systems with order
parameters with periods compatible with soft x-ray wavelengths. As pointed
out in [32], orbital order in La0.5Sr1.5MnO4 as well as in other manganites, is
within reach of the Mn L-edge resonances, with the advantage that L2 and L3
resonances access the 3d orbitals in the intermediate states, and should there-
fore be very sensitive to their orbital and magnetic order. This was confirmed
by experiments [33, 34, 35, 36, 37] exploring the orbital and magnetic order
reflections; comparing their dependence on the incoming photon energy with
theoretical calculations within an atomic multiplet scheme in a crystal field
[38, 39], it turns out that scattering at the L2 resonance is very sensitive to
orbital order, while the intensity at the L3 resonance is mostly induced by the
Jahn-Teller distortion. This developed in a very intensive field of investigation
of strongly correlated systems, and in-vacuum diffractometers for soft x-ray
scattering are nowadays quite common around synchrotron sources.

3.4.2 Electric Quadrupole Transitions

Our goal is now to derive expressions for electric quadrupole transitions, i.e.
for the case in which the resonant transitions are allowed only when the sec-
ond term in the expansion of eik·r ' 1+ ik · r+ . . . is retained. The important
matrix elements in (3.63) reduces to

〈n|eλ ·p jeik·r j |0〉 ' 〈n|(eλ ·p j)(ik · r j)+ . . . |0〉 . (3.92)

Using the same approximate trick as in (3.67), the operator p j can be ex-
pressed in terms of the commutator of r j and H, and allowing H to act on 〈n|
and on |0〉 by moving it next to them using the commutation rules one finds
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〈n|(eλ ·p j)(k · r j)|0〉=−i
m
h̄

(E(0)−E(Ψn)) 〈n|(eλ · r j)(k · r j)|0〉

−〈n|(eλ · r j)(k ·p j)|0〉 .
(3.93)

Adding to both sides of this equation the same quantity, namely the left
hand side, it becomes

2〈n|(eλ ·p j)(k · r j)|0〉 = −im
h̄

(E(0)−E(Ψn))〈n|(eλ · r j)(k · r j)|0〉

+ 〈n|(eλ ·p j)(k · r j)|0〉−〈n|(eλ · r j)(k ·p j)|0〉 .
(3.94)

Application to the last two terms of this equation of the vector identity
(3.45) finally yields

〈n|(eλ ·p j)(k · r j)|0〉=−i
m
2h̄

(E(0)−E(Ψn))〈n|(eλ · r j)(k · r j)|0〉

+
1
2
(k× eλ )〈n|r j×p j|0〉 . (3.95)

Now it is easy to recognize in the last term the matrix element between
the ground and intermediate states of the orbital angular momentum operator
(or, in the language of multipole expansions, the matrix element correspond-
ing to magnetic dipole transitions). For the transitions resonant with x-ray
photons, which involve promotion of a core electron above the Fermi level,
the magnetic dipole matrix elements vanish, because of the orthogonality of
the radial part of core and valence states, as the angular momentum opera-
tors only affect the angular part of the wavefunctions. Summarizing, one can
conclude that the second term in the expansion of the plane-wave exponen-
tial produces terms with the matrix elements of products of two components
of the position operator r j (electric quadrupole terms) plus magnetic dipole
terms, which are irrelevant in the x-ray range. In analogy to the discussion
following (3.68), define the rank 2 quadrupole moment tensor, with cartesian
components (α,β = x,y,z)

Q(2)
αβ

= RαRβ −
1
3
R2

δαβ . (3.96)

Its spherical components are
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Q(2)
m =

√
4π

5
R2Y 2

m(θ ,φ) (3.97)

with m=−2,−1, ...,2. All matrix elements of importance for quadrupole res-
onant scattering can be written in terms of the quantities

Fe
2,m =

me

h̄3c2 ∑
n

[E(Ψn)−E(0)]3ωk
|〈n|Q(2)

m |0〉|2

E(0)−E(Ψn)+ h̄ωk + iΓn/2
. (3.98)

The scattering amplitude at the quadrupole level comprises 13 different
terms (see e.g. [40]) one of which contains no dependence on ẑn and is written
as

− r0
3

(e′∗λ ′ · eλ )(k′ ·k)[Fe
2,2 +Fe

2,−2] . (3.99)

There are then 2 terms in which there is a linear dependence on ẑn

− r0
3

[(k′ ·k)(e′∗λ ′ × eλ ) · ẑn +(e′∗λ ′ · eλ )(k′×k) · ẑn][Fe
2,2−Fe

2,−2] . (3.100)

The other terms have 2, or 3 or 4 factors of ẑ and they give rise to reflections up
to the fourth harmonic magnetic satellites, in agreement with the observations
of [7] in Ho.

3.5 Absorption Spectroscopies

It is actually possible to discuss the absorption spectroscopies very efficiently,
by using the variety of results obtained so far, if we remember the general
connection between the photon scattering amplitude and the optical absorp-
tion spectrum of the system by the Optical Theorem [41] of general scattering
theory. This theorem states that

k
4π

σt = Im f (0) , (3.101)

where σt is the total cross section, comprising all elastic and inelastic processes,
and f(0) is the forward scattering amplitude, i.e. the amplitude of scattering
for k′ = k and e′ = e , which can be easily obtained as a special case of the
general expressions derived in the preceding Sections. In the case of pho-
tons in the energy range of interest here, the total cross section σt for the
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interaction with electronic matter is dominated by photoelectric absorption
processes, all other processes having cross sections that are smaller by a few
orders of magnitude (see [42] for typical examples). Therefore, the left-hand
side of (3.101) reproduces, with good approximation, the absorption spec-
trum.

In the traditional crystallographic notation in which the atomic scattering
amplitude is a simple scalar quantity, written as the sum of the non-resonant
amplitude f0 and the real and imaginary resonant parts f ′+ i f ′′, the optical
theorem identifies f ′′ as proportional to the optical absorption spectrum, be-
cause, in the case of forward scattering, k−k′ = 0 , f0 is purely real. In our
formulation, we can write f = f0c + f0m + fres and, for the pure real character
of the charge (or Thomson) part f0c, see (3.23); and the magnetic part, f0m,
(3.47) , it vanishes altogether as the orbital term is zero for q = 0 and PS is
also zero under forward conditions (this requires a bit of vector algebra). So,
in conclusion, the only contribution comes from the resonant amplitude. This
result has general validity. However, in the spirit of concentrating on the con-
ditions that are met in the investigation of magnetic systems, we shall make
use of the expressions derived in the previous section under the assumptions
underlying the results of Hannon and Trammel, that, as discussed there, are
well suited for this case.

Considering the application of the theorem to the expression derived at the
dipole level, (3.82), which provides the most intense resonances, gives the
following expression [43] for the absorption cross section

σt =−λ r0[Im(Fe
1,1 + Fe

1,−1)− i(e∗× e) · ẑ Im(Fe
1,1−Fe

1,−1)

+|e · ẑ|2 Im(2Fe
1,0−Fe

1,1−Fe
1,−1)] (3.102)

where λ = 2π/k is the photon wavelength.Notice that the expression (e∗×e)
vanishes for a real polarization vector (i.e. for linear polarization) and is
purely imaginary in other cases.Therefore the imaginary part of the expres-
sions (3.80) is determined by

ImFe
1,m = me∑

n

[E(Ψn)−E(0)]3

h̄3ωk

−Γn/2
(E(0)−E(Ψn)+ h̄ωk)2 +(Γn/2)2

ImFe
1,m ≡ −we

1,m (3.103)

so that the absorption spectrum is described as a sum of Lorentzians, we
1,m,

each with the broadening parameter determined by the inverse lifetime of the
corresponding excited state.
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In terms of this quantity the absorption cross section is written

σt = λ r0[(we
1,1 +we

1,−1) − i(e∗× e) · ẑ(we
1,1−we

1,−1)

+|e · ẑ|2(2we
1,0−we

1,1−we
1,−1)] . (3.104)

and this expression is very convenient because it explicitly shows the depen-
dence on photon polarization and is therefore immediately applicable to de-
scribing various forms of dichroism. As a first example, consider linear polar-
ization; in the case e ‖ ẑ or e⊥ ẑ one finds respectively

σ‖ = 2λ r0we
1,0 (3.105)

σ⊥ = λ r0
(
we
1,1−we

1,−1
)

(3.106)

so that linear dichroism is expressed as

σ‖−σ⊥ = λ r0
(
2we

1,0−we
1,1−we

1,−1
)

. (3.107)

In the same way we can derive general expressions for the circular dichro-
ism, a technique of very wide use in the study of magnetic systems since the
discovery of sum rules [44, 45]. Consider first the Faraday geometry, in which
k= ẑ . The two circular polarization states are: e+ =−i x+iy√

2
,e− = i x−iy√

2
, and

with the help of the expressions

e∗+× e+ =−e∗−× e− = iẑ (3.108)

we easily derive the circular dichroism formula

σ+−σ− = 2λ r0
(
we
1,1−we

1,−1
)

. (3.109)

In the more general case of a propagation direction forming an angle θ

with the direction of magnetization ẑ, that coincides with a symmetry axis of
a cubic or hexagonal ferromagnet, some trigonometry delivers the following
results for the absorption of photons circularly polarized in the plane normal
to the propagation direction

σ+ = λ r0
[(
we
1,1 +we

1,−1
)

+ cosθ
(
we
1,1−we

1,−1
)

+
1
2
sinθ

2 (2we
1,0−we

1,1−we
1,−1
)]

(3.110)
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σ− = λ r0
[(
we
1,1 +we

1,−1
)
− cosθ

(
we
1,1−we

1,−1
)

+
1
2
sinθ

2 (2we
1,0−we

1,1−we
1,−1
)]

(3.111)

so that the circular dichroism is, in this more general case

σ+−σ− = 2λ r0 cosθ
(
we
1,1−we

1,−1
)

. (3.112)

3.6 Resonant Inelastic X-ray Scattering

Fig. 3.4 Photon scattering from an atom chain. Upper panel: elastic scattering, the final
state is the same, irrespective of which of the atoms is scattering the photon (the first one
in a, the N-th in b). The amplitudes for the N different ways to reach the same final state
must be first summed and than squared. Bottom panel: inelastic scattering: the final state is
different, depending on which atom scatters the photon and is promoted to an excited state
(the first in c or the N-th in d), therefore the amplitudes are first squared and then added.

In this Section inelastic processes are considered, in which the state of the
material system after the scattering event (the final state) has a different energy
than the initial state (for simplicity assumed to be the ground state). In recent
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years, inelastic scattering with synchrotron radiation has acquired a growing
importance.

Inelastic processes can take place in the non-resonant as well as in the reso-
nant regime. The two regimes provide different information on the properties
of the system, and both of them are in general extremely valuable. Here we
shall mostly discuss the resonant regime, defined as usual by the condition
that the incoming photon energy is close to one of the absorption edges of the
system: this is because resonant inelastic scattering is much more relevant for
the investigation of magnetic properties.

One thing that is important to underline at the outset is that inelastic scat-
tering is a photon-starved technique. There is indeed a very large intensity
difference between elastic and inelastic scattering: a simple argument to see
that [46], at least in the limit of wavelength larger than the inter-atomic dis-
tance, is that the intensity of elastic scattering is proportional to N2, the square
of the number of scattering atoms; the intensity of inelastic scattering to N.
A schematic illustration of the reason is offered in Fig. 3.4, for a chain of
identical non-interacting atoms. The difference is that in elastic scattering,
scattering processes through different atoms represent different paths through
which the same final state is reached: the laws of quantum mechanics say
that one must add the amplitudes for different paths, and then square; on the
other hand, in the inelastic case, the atom contributing to an inelastic scat-
tering process is left with some energy, i.e. in an excited state: scattering on
different atoms lead therefore to different final states and now intensities must
be added, after squaring the amplitudes. The argument can be carried over to
the more realistic cases in which atoms are interacting, electrons are tunnel-
ing from one to the other and the energy eigenstates are Bloch states, and even
electron-hole interactions can be included.

In the non-resonant case, we can proceed by generalizing the treatment
of Section 3 (equation (3.27)) to include scattering from the initial electronic
state |ie〉, with energy Ei, to a different electronic state | fe〉 with energy E f
(see (3.21)). One can show that the Thomson scattering analog becomes(

d2σ

dO′dωk′

)
= r20

ωk′

ωk

(
e′∗ · e

)2 S(q,ω) (3.113)

where the dynamic structure factor S(q,ω), with ω = ωk−ωk′ , is defined as
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(q,ω) = ∑
f

∣∣∣∣∣〈 f |∑j eiq·r j |i〉
∣∣∣∣∣
2

δ

(
E f −Ei

h̄
−ωk +ωk′

)
. (3.114)

In a famous paper, Van Hove [47] showed how S(q,ω) is related to a
density-density correlation function, in space and in time, of the system

S(q,ω) =
∫

drdtei(q·r−iωt)
∫

dr′〈i|ρ(r′,0)ρ(r+ r′, t)|i〉 . (3.115)

This shows, not surprisingly, that the inelastic analog of the non-resonant
charge scattering (Thomson scattering) allows to explore the spectrum of
charge density fluctuations; this allows to investigate phonons, electronic exci-
tations, plasmons [48]. One can expect that magnetic information is delivered
by the inelastic analog of the non-resonant magnetic scattering terms: this is
in principle the case, but if you remember that magnetic scattering amplitudes
are reduced by the factor h̄ω/mc2 with respect to charge scattering ampli-
tudes, and that already magnetic elastic scattering is an experiment suffering
from low-count rate, you can anticipate that non-resonant inelastic magnetic
scattering shall be extremely difficult to measure; in fact, except for early
magnetic scattering experiments in the Compton limit (when the transferred
energy is much larger than the ionization energy) [48], there are hardly any
further attempts in the literature.

We shall therefore turn to the resonant inelastic x-ray scattering (RIXS)
case, defined as usual by the condition that the incoming photon energy is
close to one of the absorption edges of the system. In this case one can con-
sider the dominant resonant terms only, and obtain, in full analogy to (3.63)

w =
2π

h̄ ∑
f

∣∣∣∣∑
n

〈 f |H ′2|n〉〈n|H ′2|i〉
E0−En + h̄ωk + iΓn/2

∣∣∣∣2 δ (h̄(ωk−ωk′)− (E f −Ei)) .

(3.116)

Figure 3.5 shows schematically how an inelastic scattering process can
leave the system in a final state with an electron-hole pair in the valence lev-
els or with a pair where the hole is in a core shell. In the latter case the term
“resonant x-ray Raman scattering” is used. There an obvious similarity be-
tween resonant inelastic x-ray scattering (RIXS) and other techniques such as
x-ray fluorescence spectroscopy and absorption spectroscopy in the fluores-
cence detection mode. The presence of an electron-hole pair in the final state
also suggests an analogy with absorption spectroscopy, either in the visible-
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UV region, for valence holes, or in the soft x-rays for the Raman case. There
are however significant differences, because the inelastic scattering process
has different selection rules, and the sampling depth of a technique using hard
x-rays is always larger than that of soft x-ray spectroscopies. A good illus-
tration of the relationship between inelastic scattering and absorption spec-
troscopy is provided by the results by Hämäläinen et al. [49] on the Dy L3
edge in dysprosium nitrate. After quadrupolar excitation from the 2p3/2 to the
4 f manifold by the incoming photon, a high resolution analyzer accepts only
a narrow band of the outgoing photons corresponding to 3d5/2 electrons filling
the 2p3/2 holes.

Fig. 3.5 Schematic description of resonant inelastic scattering processes

The outgoing photons can be analyzed both in energy and in momentum:
this gives the possibility to map the momentum dispersion of elementary ex-
citations. In order to be really interesting for the study of many-body systems,
however, this must be done with an appropriate resolution; and although the
enhancement due to the resonance is brought to bear, a RIXS experiment is
always a compromise between resolution and count rate. They are therefore
performed at modern high brilliance synchrotron sources; in addition, in re-
cent years, a tremendous progress in the design of spectrometers has taken
place and nowadays the best instruments are able to deliver spectra with re-
solving power ∆E/E exceeding 10,000. A figure of 33,000 around 1 keV is
quoted for the instrument ADRESS at the Swiss Light Source, and the trans-
mission of the beamline is delivering some ' 1011−1012 photons per second
on the sample [50].
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To exemplify the remarkable progress of RIXS spectroscopy (for reviews,
see [51, 52]), we shall briefly mention recent investigations of high-temperature
cuprate superconductors and related compounds with strongly correlated elec-
trons. Here the L2,3 edges of Cu, in an energy region around 940 eV are con-
veniently investigated, as they are dipole-coupled to the Cu d-electrons, that
are universally considered to play a key role in the superconductivity. In ad-
dition, the complex perovskite crystal structures of the cuprates have rather
large unit cells, therefore rather small Brillouin zones; so that the momentum
transfer region accessible to the soft x-ray photons near these edges covers
about 80% of the way from the zone centre to the edge [53]. The study of
momentum dispersion for a variety of excitations becomes therefore possible
and can be of high value. Interestingly, besides charge and inter-orbital (d−d
electron) excitations, also magnetic excitations (spin waves) and their disper-
sion are accessible to this technique [54]. In the case of elastic scattering,
we already explained the sensitivity to magnetic order of a resonant elastic
scattering process based on electric dipole transitions (see the discussion in
subsection 3.4.1) in terms of the strong spin-orbit interaction for electrons in
the L2,3 core levels. A similar argument [55] explains the possibility to ex-
plore magnetic excitations (i.e. spin-flip excitations) by RIXS. With reference
to Fig. 3.6 , and to our previous discussion, we can understand how the mixed
spin-up / spin-down character of the core wavefunctions allows to populate a
spin-down level near the Fermi edge with the incoming photon, and to fill the
hole by removing a spin-up electron near the Fermi level with the outgoing
one, leaving a spin-flip excitation in the system. Remarkably, the dispersion of
spin-waves measured by RIXS [54] agrees with that obtained by neutron scat-
tering, and offers the possibility of a complementary technique in those cases
(e.g. samples too small, low momentum region) where neutron techniques are
difficult.

The complexity and variety of information contained in RIXS spectra
makes theoretical calculations a major challenge. The approaches which have
so far been applied most frequently are based either on atomic multiplet mod-
els, or on their extension to include the neighbouring ligands via Anderson
impurity models or small cluster calculations [51, 52]. On the other hand,
from the experimental point of view, this technique, in spite of all the diffi-
culties connected to the low cross-section and the limitations in resolution,
can provide rather unique information of importance for many-body physics.
In conclusion, one can say that RIXS is a technique with great promise, as
advances in instrumentation should lead to continued improvement in energy
resolution.
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Fig. 3.6 Schematic description of spin-flip resonant inelastic scattering processes at the L3
edge
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