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Foreword

When the Editors asked me to write a foreword for these Lecture Notes, mod-
esty suggested I should decline at the sight of the impressive list of interna-
tionally recognized expert contributors: the notes cover the 6th International
School “Synchrotron Radiation and Magnetism”, held in Mittelwihr (France)
in the Autumn 2012. But my thoughts went back to the 1990’s when it all
started with the annual “Grand-Est” workshops of the “Institut de Physique et
de Chimie des Matériaux de Strasbourg” (IPCMS) that boosted my involve-
ment in spectroscopic studies of magnetism using synchrotron light and my
participation, first as a novice, later as a lecturer, in the quadriennal series
of these schools organized by the IPCMS. At the 4th school (2004), I, like
the rest of the audience, was particularly impressed by François GAUTIER’s
lecture providing a fascinating, clear, and insightful picture of magnetism.
Unfortunately his extensive responsibilities left him no room to write down a
manuscript and we, the students, did not take the initiative of recording this
highly pedagogical moment. His lecture contributed strongly to our enthusi-
asm for studying magnetism and convinced us that publishing lecture notes
was an essential consolidation of the various view points brought to this field.
That past frustration convinced me that this foreword was an opportunity to
stress how important and timely this pedagogical book seems to me. It is a
snapshot of both our present understanding of magnetism acquired via syn-
chrotron radiation based techniques and a glimpse into the future as tools
develop at more advanced light sources.

Magnetism is one of the most important physical effects in life as we know
it. The Earth’s magnetic field has probably been crucial to the appearance of
Life on the Blue Planet: it avoids the erosion of our atmosphere by the solar
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vi Foreword

wind, and thus protects our biosphere. Magnetism has played a prominent role
in the determination of the geography of our world thanks to the use of the
“magnetic” compass as a navigational instrument at the beginning of the XIth

century. Today we can hardly imagine living without electricity produced by
the conversion of mechanical energy using magnets. Magnetic effects are at
the forefront of modern electronics involving research into the size and speed
limits inherent in the manipulation of magnetization and the development of
spintronics, i.e., the use of both the charge and the spin information carried
by the electron. This is where spectroscopic tools using synchrotron radiation
come into play.

Synchrotron radiation is the light emitted by relativistic charged parti-
cles moving along a curved trajectory. Considered by nuclear physicists as
a nuisance because responsible of particle energy loss, it was recognized in
the 1960’s as a light source of tremendous interest for spectroscopy. Under
the impulse of Yvette CAUCHOIS, head at this time of the “Laboratoire de
Chimie Physique de la Faculté des Sciences de Paris”, the first spectroscopic
experiments in Europe using the orbit radiation of the Frascati synchrotron
were done, in collaboration with the “Istituto Superiore di Sanità” (Rome).
The new physics that can be explored using the unique properties of syn-
chrotron radiation, namely continuous spectral range from the infrared to the
x-rays, high intensity, angular collimation, polarization, and pulsed structure,
attracted an ever-growing scientific community and led in the 1970’s to the
building of storage rings dedicated to the sole production of “synchrotron”
light (called second generation synchrotron radiation sources). The next step
has been, as in the current (third-generation) synchrotron radiation sources,
to increase their brightness and obtain full control of the polarisation of the
light. Now efforts are made to develop fourth-generation light sources: x-ray
free-electron lasers.

The first experimental evidence that light and electromagnetism were
linked was given by FARADAY (1845) and KERR (1875) who observed a
rotation of the plane of polarization of visible light either transmitted or re-
flected by a magnetic system. Synchrotron light being naturally polarized, it
was tempting to extend magneto-optics to the x-ray range. Strong magneto-
optical effects were indeed theoretically predicted (1975) and experimentally
observed (1987). This discovery of magnetic dichroism in x-ray absorption
has made a great impact on the understanding of magnetic interactions in
matter because it opens the way to element- and orbital-specific investiga-
tions. The technique soon became a standard probe of magnetic properties as,
via the “sum rules” (1992-3), it allows the determination of elemental orbital
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and spin magnetic moments. It turns out that x-ray magnetic dichroism is a
facet of related x-ray magneto-optical effects such as x-ray resonant magnetic
scattering, magnetodichroic x-ray/electron (micro-)spectroscopies and x-ray
holography, to cite a few, that are now classical characterization tools of mag-
netic (nano-)objects.

Thus 2012 was the Silver Wedding Anniversary between synchrotron ra-
diation and magnetism. There is no doubt that in the coming years this part-
nership will give birth to interesting “new offspring” in the exploration of
magnetism at large light source facilities, in particular at lower length scales
(< 10 nm) and shorter time scales (< 100 fs).

This book is a fitful celebration of this anniversary because it is an illus-
tration of the progress made in the physics of magnetic materials by closely
coupling synchrotron radiation and magnetism and forms an excellent text-
book on magnetism and spectroscopy with synchrotron radiation, including
the presentation of new hot topics and perspectives in x-ray radiography of
magnetism.

I would like to underline that the contributors, all leaders in the field, have
made a remarkable pedagogical effort.

Paris, Trieste, March 2013 Jean-Michel Mariot



Preface

This volume contains the lecture notes of the fifth school on Magnetism and
Synchrotron Radiation held in Mittelwihr, France, from 14 to 19 October
2012.

Twenty three years ago, in March 1989, was held the first edition of this
school, which ended by a one-day international Workshop. The elder ones of
us vividly remember the talk given in this workshop by G. Schütz, who pre-
sented the first x-ray magnetic circular dichroism results obtained two years
earlier. This discovery was important enough to open new perspectives in the
study of magnetism, which kept on feeding the school with new topics for the
following 25 years.

We would like to thank all the teachers for the interesting and very much
appreciated lectures they gave and for animating the practicals of this school,
as well as the members of the scientific committee for their help in establish-
ing the school program (see lists next pages). We are very grateful to J.-M.
Mariot, a long-date supporter who kindly accepted to write the foreword of
this book.

The success of this school is also due to the hard work of our colleagues
from the local organization committee, J.-L. Bubendorff (LPSE, Mulhouse),
F. Gautier, V. Wernher and S. Cherifi (IPCMS). Particular thanks go to J.-P.
Kappler, one of the main and early initiators of this exciting adventure, and
faithfull organizer since 1989. Thank you for pushing us to make this school
live further.

Last but not least, it is a great pleasure to acknowledge the kind hospi-
tality of the Centre de Mittelwihr and the Communauté des Communes de
Ribeauvillé which have been welcoming us since 1989.
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This school would not have been possible without financial support by
following institutions and companies, which we gratefully acknowledge:

- Formation Permanente du CNRS
- Université de Haute Alsace
- Région Alsace
- Conseil Général du Haut-Rhin
- Institut de Physique et Chimie des Matériaux de Strasbourg
- Synchrotron SOLEIL, St Aubin
- ALTEC Equipment
- SPECS
- VAT

Strasbourg, May 2013 E. Beaurepaire
H. Bulou
L. Joly

F. Scheurer
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6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 Recording RIXS spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.2.1 The absorption spectrum . . . . . . . . . . . . . . . . . . . . . . 187
6.2.2 Fluorescence and Raman-like losses . . . . . . . . . . . . . 189
6.2.3 Self-absorption effects and sample orientation . . . . . 190
6.2.4 Scattering geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3 RIXS cross section and Kramers-Heisenberg relation . . . . . . 194



xvi Contents

6.3.1 Elementary excitations . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.2 Charge transfer (CT) excitations . . . . . . . . . . . . . . . . 198
6.3.3 Orbital excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.3.4 Magnetic excitations . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4 Diffraction grating spectrometers for soft x-rays . . . . . . . . . . . 204
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7 Synchrotron-radiation studies of topological insulators . . . . . . . 211
Philip Hofmann
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 Basic principles behind topological insulators . . . . . . . . . . . . . 213
7.3 Angle-resolved photoemission spectroscopy (ARPES) . . . . . 222
7.4 Measured electronic structure of topological insulators . . . . . 226

7.4.1 Observation of the topological surface states . . . . . . 226
7.4.2 Dynamics of the surface states: Electron-phonon

coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8 Anisotropic x-ray magnetic linear dichroism . . . . . . . . . . . . . . . . 239
Gerrit van der Laan
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.2 Wonderful symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.3 Scattering intensity for different symmetries . . . . . . . . . . . . . . 244

8.3.1 Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.3.2 Cubic symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.3.3 Orthorhombic symmetry . . . . . . . . . . . . . . . . . . . . . . . 246

8.4 Various ways to obtain the XMLD . . . . . . . . . . . . . . . . . . . . . . 247
8.5 XMLD in the (001) plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.6 Separation into the isotropic and anisotropic part . . . . . . . . . 250

8.6.1 Weak crystal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.7 The peculiar case of the Ni2+ L2 edge . . . . . . . . . . . . . . . . . . 252
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9 25 years of magnetic x-ray dichroism . . . . . . . . . . . . . . . . . . . . . . 257
Gerrit van der Laan
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.2 A sensational discovery of invisible rays . . . . . . . . . . . . . . . . . 259



Contents xvii

9.3 An early attempt to observe the x-ray magneto-optical effect 260
9.4 Emerging opportunities with soft x-rays . . . . . . . . . . . . . . . . . 261
9.5 Prediction and first observation of x-ray magnetic dichroism 262
9.6 X-ray magnetic circular dichroism in absorption . . . . . . . . . . 263
9.7 XMCD at the 3d transition metal L2,3 edges . . . . . . . . . . . . . . 266
9.8 Other noteworthy developments . . . . . . . . . . . . . . . . . . . . . . . . 267
9.9 Multiplet calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.10 The rise of magneto-optical sum rules . . . . . . . . . . . . . . . . . . . 268
9.11 The XMCD sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.11.1 The machinery spitting out the sum rules . . . . . . . . . 270
9.11.2 Energy dependence of the ground state moments . . 274
9.11.3 Possible causes of concerns . . . . . . . . . . . . . . . . . . . . 275
9.11.4 Sum rules for other x-ray spectroscopies . . . . . . . . . 276

9.12 Determining the magnetic anisotropy . . . . . . . . . . . . . . . . . . . . 276
9.13 Circular dichroism in x-ray photoemission . . . . . . . . . . . . . . . 277
9.14 Circular dichroism in resonant x-ray processes and Auger . . 279
9.15 X-ray detected optical activity . . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.16 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

10 Advanced Instrumentation for x-ray Magnetic Circular
Dichroism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Andrei Rogalev, Fabrice Wilhelm, José Goulon and Gérard
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Chapter 1
Magnetism

Robert L. Stamps

Abstract A summary of concepts and ideas useful for an understanding of
measurable phenomena in thin film and nanostructured magnetic materials is
presented. Beginning with the base definitions of magnetic moment and its
relation to angular momentum, mechanisms are discussed for long range or-
dering based on electronic orbital overlap in insulators, and electronic band
structure in metals. The nature of excitations about this ground state are also
discussed, and how these can be understood by analogy to the quanta of har-
monic oscillations associated with vibrations in crystals. A phenomenological
model of magnetic ordering and excitations is also described, and key parame-
ters defined in terms of symmetries allowed by the local atomic environment.
Lastly, a thermodynamic view of magnetic states and configurations is sum-
marised, and here the focus is on mechanisms for magnetic reversal and coer-
civity and the concepts of magnetic domain walls and domain wall mobilities
are discussed.

1.1 Introduction

In this chapter we will examine magnetic phenomena arising in materials.
This is a remakably rich field not only at present, but also in the past. Indeed,
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2 Robert L. Stamps

William Gilbert produced one of the first great works in modern science– per-
haps the first– with his book De Magnete. Gilbert based De Magnete on work
he began in 1581 that some historians suggest marked the invention of the
modern scientific process of experiment and hypothesis. Moreover, Gilbert
recognised and noted numerous possibilities for application of magnetic ma-
terials in navigation (and also mining and military technologies). This recog-
nition of the practical benefits that can follow from scientific research is some-
thing that permeates the field of magnetism, and continues on today.

Modern applications are fascinating because of their diversity, important
because of the key technological advances they underpin, and interesting
because of close linkages to fundamental problems in condensed matter re-
search. Examples include:

• Permanent magnets: used in motors and activators, an important current
materials problem is to produce low cost ”super-magnets” for alternative
energy production schemes;

• High density data storage and digital logic circuits: magnetic grains are
used to store information, and collections of patterned, interacting mag-
netic particles have been proposed as basic elements in low power con-
sumption logic circuits that can in principle approach the Landauer effi-
ciency limit;

• Magnetic based spintronics: The Nobel Prize in 2007 was awarded in
recognition of the discovery and application of ultra-sensitive magnetore-
sistive devices that utilise the spin dependent scattering that can exist at
metallic magnetic interfaces (and which have enabled modern high density
hard disk drive technologies;

• Microwave device applications: electromagnetic properties of some mag-
netic materials have been used for signal processing since the early days
of radar, and new discoveries of how voltages and charge currents interact
with magnetic moments enable entirely new types of microwave devices.

The field of magnetism is characterized by scientific research and tech-
nical applications progressing jointly. Many of recent developments will be
mentioned in what follows, but the main purpose of this chapter is to pro-
vide an introduction to the essential concepts and principles underlying our
understanding and descriptions of the wide variety of phenomena studied in
magnetic materials. To begin, the fundamental origins of magnetic moments
are discussed, along with the physical processes resulting in their possible
long range orderings. Fundamental excitations and different types of dynam-
ics exhibited by magnetic spin systems are then discussed.
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Lastly, a comment on referencing is in order. This is a brief introductory
summary of a large body of knowledge. A full listing of all the fine works ex-
isting would be well outside the scope of this article, and instead only a small
handful of references have been included. These either reference directly re-
search results reproduced here, or point the reader for further information to
examples of relevant texts and monographs.

1.2 Magnetization and Long Range Ordering

We will be concerned exclusively with magnetic properties asociated with
electrons in a material. For the most part in fact, we are concerned specifically
with how a material responds magnetically to an applied magnetic field.

1.2.1 Magnetic Moment

Before talking about atoms and materials, let us first consider the behaviour of
a free electron in a magnetic field H = B/µo (where B is the magnetic induc-
tion and µo is the permeability of vacuum). An electron will rotate through
a circular orbit centered on H , with frequency ωc = eH/m where e is the
charge and m is the mass of the electron. A rotating electron defines a loop of
current I that encloses a circular area A. The associated magnetic moment is
µ = IA . Writing the current in terms of ωc and using A= πr2 , where r is the
radius of the loop, the magnetic moment is

µ =−µoe2H
2m

r2 . (1.1)

Note that we have neglected the intrinsic spin of the electron, and will dis-
cuss this later. From this circulation of charge, we can make an important
connection between magnetic moment and angular momentum. The angular
momentum L of the circulating electron has magnitude L = mrv where v is
the tangential speed defined in terms of frequency as ωc = v/2πr . Using this
with (1.1), we arrive at

µ =− e
2m

L , (1.2)
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thereby illustrating that the magnitude of the magnetic moment is proportional
to the angular momentum, and oriented oppositely.

With this in mind, we now consider the magnetic moment of electrons in
atomic orbitals. Suppose that there is no field and the orbital is that of a simple
Bohr model with L=ml h̄ , where ml is the Bohr angular momentum quantum
number. Neglecting spin, we now expect that for ml = 1 ,

µ = µB =− eh̄
2m

, (1.3)

which is called the Bohr magneton.
What now is the effect of an applied magnetic field H? In the frame of

reference of the electron, it turns out that H has no effect at least to first order
in perturbation theory. Therefore if H is not too large, the energy is simply
shifted by the amount h̄ωL, where ωL is the rotation frequency of the electron.

It is interesting to note that ωL 6= ωc . This can be seen by examining the
dynamics of the atomic moment when in the presence of a field H. In order to
do this, we first recall the energy and equations of motion for a moment in a
magnetic field. The energy is defined as

E =−µoµ ·H , (1.4)

and the precession of angular momentum is described by the torque Γ expe-
rienced by the magnetic moment

Γ =
dL
dt

= µoµ×H = µ×B . (1.5)

Placing H along the z direction, and assuming L = a(x̂+ iŷ)exp(−iωLt)+ ẑ ,
one finds the Larmor frequency

ωL =
µB

h̄
. (1.6)

The Larmor frequency characterizes the precession of µ locally around a field
H .

The above considerations apply for multi-electron atoms, however we
should at this point take electron spin S into account. In this case we consider
the total angular momentum J = L+S , so that there are two contributions to
the angular momentum and correspondingly two contributions to the magnetic
moment. Denoting these µS and µL, the total moment is now µ = µL + µS ,
with magnitude
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µ = gµB
√

j( j+1) , (1.7)

where j is the angular momentum quantum number. The g-factor is defined
by the total, orbital, and spin quantum numbers j, l, and s as

g = 1+
j( j+1)+ s(s+1)− l(l+1)

2 j( j+1)
. (1.8)

The gyromagnetic ratio γ =−gµB/h̄ determines the ratio of magnetic moment
to angular momentum via µ = h̄γJ . Note that the total moment µ is generally
not in the direction of J.

1.2.2 Mechanisms for Exchange

In some materials, strong correlations between magnetic moments exist that
give rise to long range ordering and thermodynamic phases. The energy as-
sociated with these correlations can arise from different mechanisms. The
largest of these energies are associated with the Coulomb interaction, and are
often referred to as “exchange energies”. Before discussing mechanisms for
exchange, it is useful to review the relevant energy scales in matter. Following
Anderson and Mattis, [1] we summarize some key energy scales in Table 1.1.

Fig. 1.1 Illustration of pre-
cession of an orbital magnetic
moment. The angular momen-
tum is oriented opposite to the
moment, and the transverse
component rotates about axis
defined by the local field
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Table 1.1 Relevant energy scales for materials, as tabulated by P. W. Anderson

Energy Range (eV) Mechanisms

1−10 Atomic Coulomb integrals; Electronic band
widths; Energy/state at εF

0.1−1.0 Crystal field splitting
10−2−10−1 Spin-orbit coupling; kBTC or kBTN
10−4 Magnetic spin-spin coupling; Interaction of a spin

with a 1 T field
10−6−10−5 Hyperfine electron-nuclear coupling

The Coulombic interaction is the most important for correlating individual
magnetic moments, however quantum mechanical effects must be taken into
account. In particular, the correlation energy for insulators is determined by
overlap of atomic orbitals and these are strongly dependent on the spin state
of electrons occupying the orbitals. As we will see, this provides an important
insight into the nature of magnetic ordering via exchange.

We can appreciate the strength of the interaction by the following qualita-
tive argument. Pauli exclusion acts to separate electrons in the same spin state.
Suppose two electrons are in orbitals on neighbouring atoms. Further suppose
that their average separation with antiparallel spins is 0.3 nm, whereas with
parallel spins the average separation changes to 0.31 nm. The corresponding
change in Coulombic energy is ∆E = 0.05 eV. In units of temperature, this is
580K. The equivalent field is ∆E/µB = 870 T.

A great insight into how to think about exchange can be obtained by calcu-
lating more precisely the exchange energy of overlapping orbitals on neigh-
bouring atoms. A simple model is represented by the following hamiltonian
for two nuclear cores (located at positions Ra and Rb) and two electrons (lo-
cated at positions r1 and r2 defined relative to an atomic core)

Fig. 1.2 Sketch of two orbitals and the average distance for two different spin orderings
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H =
p21
2m

+
p21
2m

+
e2

|Ra−Rb|
− e2

|r1|
− e2

|r2|
+

e2

|r1− r2|
. (1.9)

The first two terms represent the electron kinetic energies, the third term
is the repulsion between cores, the fourth and fifth term is the interaction be-
tween the electrons and their respective cores, and the last term is the electron-
electron repulsion. The two electron problem can be solved in terms of prod-
uct orbitals, defined as the two possible orbital occupations of the electrons

ΨI = ψa(r1)ψb(r2) (1.10)
ΨII = ψa(r2)ψb(r1) . (1.11)

The two electron wavefunction is a linear combination of these two orbitals

Ψ = cIΨI + cIIΨII . (1.12)

Substitution into the hamiltonian of (1.9) allows us to solve for energies and
coefficients. Two cases result: a symmetric (cI = cII) and an antisymmetric
(cI =−cII) one. The energy of the symmetric case is

E+ = 2E +
V +U
1+ l2

, (1.13)

and the antisymmetric case is

E− = 2E +
V −U
1− l2

. (1.14)

The overlap integrals appearing in these energies are

V =
∫ ∫

Ψ
2
I,IIe

2
(

e2

|Ra−Rb|
− e2

|r1|
− e2

|r2|
+

e2

|r1− r2|

)
dr1dr2 (1.15)

U =
∫ ∫

Ψ
∗
I ΨIIe2

(
e2

|Ra−Rb|
− e2

|r1|
− e2

|r2|
+

e2

|r1− r2|

)
dr1dr2 (1.16)

l =
∫

ψa(r)∗ψb(r)dr (1.17)

The exchange energy Jex corresponds to the difference

Jex = E−−E+ ∼Ul2−V . (1.18)
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This is called “exchange” because the symmetric and antisymmetric cases are
tied to the requirement of antisymmetric symmetry imposed by Pauli exclu-
sion. The total wavefunction for the two electrons must be antisymmetric.
This is accomplished by a product of a symmetric spatial wavefunction with
an antisymmetric spin function, or the product of an antisymmetric spatial
wavefunction with a symmetric spin function. Note that the antisymmetric
spin function has spin zero, whereas the symmetric spin function can have
spin −1,0 or 1.

The magnitude of the energy Jex is determined by the Coulomb interac-
tion, and can be indexed to the possible spin states of the two electrons. This
feature was noticed independently by Dirac and Heisenberg, who then estab-
lished that a basis of spin functions could be used to produce the same en-
ergy eigenvalues. This allows one to rewrite the hamiltonian in terms of Pauli
spin operators: i.e., H = −Jexσ1 · σ2 . A number of authors, including van
Vleck, extended this idea to multi-electron orbitals, producing what is now
often called, the exchange hamiltonian

Hex =−∑
i, j
Jex(ri− r j)S(ri) ·S(r j) . (1.19)

There are many issues involved with creating a theory for the exchange in-
tegral Jex(ri− r j) for a many atom system. Methods based on perturbation
theory have been successful in estimating Jex for many insulating magnets.
More details and links to original literature can be found in many standard
texts, including [1], [2], and [3]. The problem of constructing an analogous
picture for conducting magnets will be discussed later.

We conclude this session by commenting on the sign and range of Jex.
The sign can be either positive or negative, depending upon details of the
specific overlap integrals. The convention is usually that positive exchange
leads to parallel ordering of magnetic moments (ferromagnetism) and neg-
ative exchange leads to antiparallel ordering (antiferromagnetism). In many
compounds, magnetic ions sit in inequivalent sites with different valences,
and can have differently sized magnetic moments. When these order antiferro-
magnetically, there can still be a residual magnetic moment. These orderings
are called ferrimagnetic . Examples are sketched in Fig. 1.3.

In such materials, exchange is mediated by hopping of electrons through
orbitals on neighbouring, non-magnetic atoms such as oxygen or fluoride.
In these cases additional considerations enter concerning the occupancy and
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Fig. 1.3 Sketches of four different types of magnetic orderings: parallel (ferromagnetic),
antiparallel (antiferromagnetic and ferrimagnetic), and non-colinear (helical in this case)

geometry of multielectron orbitals. The results describe mechanisms for ex-
change that include what are called “super” and “double” exchange.

Interactions between magnetic atoms beyond nearest neighbour can be
signficant. Depending on the geometry, it is possible to have competing ferro-
and antiferromagnetic interactions. This can lead to non-colinear orderings,
such as the helical ordering depicted in Fig. 1.3. In some cases of particu-
larly low symmetry, it is possible to have interactions that are described by
exchange energies of the form D · S1 × S2 , where D is a vector that may
describe, for example, distortions of the crystal lattice associated with strain
fields. This form often appears in descriptions of magnetoelectric effects.

1.3 Response to Applied Magnetic Fields

Experimental studies of magnetic phenomena are quite often made through
measurement of response to magnetic fields. There are a number of aspects
to this, and we will begin by defining the magnetic susceptibility and how it
varies with temperature.
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1.3.1 Magnetic Susceptibility

Measurement of macroscopic samples usually involves some sort of averag-
ing over atomic moments. Because of this, it is useful to define a magnetic
moment per volume V , called the “magnetization”M

M =
1
V ∑

i
µ i . (1.20)

The linear response to a magnetic field H is characterized by a susceptibility
χ

M = χH . (1.21)

In general χ is a tensor, but we consider here only the simpler case of an
isotropic magnetic system such that the magnetization responds in a direction
defined by the orientation of the applied field. This can be along the field di-
rection, or opposite. We consider first the case of non-interacting moments.
If the response is in the direction of the magnetic field, it is called “paramag-
netic”. Example materials include rare earth ions and alkali metals, and typical
values range from 10−2 to 10−4 per mole. If the response is opposite to that
of the applied field, the response is called “diamagnetic”. Electrons in nearly
all materials have some sort of diamagnetic response, and typical values are
on the order of −1.0×10−6 per mole.

1.3.1.1 Langevin Diamagnetism

The Langevin picture of diamagnetism follows directly from our Bohr orbital
model discussed earlier in relation to the Larmor frequency. Using the Larmor
frequency ωL = µoHe/(2m) , we can write (following Kittel [4])

µ = Iπr2 =
(
−eωL

2π

)
πr2 =−e2µoH

4m
r2 . (1.22)

We can generalise this to a multi-electron Bohr atom by noting that orbits
can occur in any plane, so that the projection of an orbit onto a plane per-
pendicular to the field H is on average 2/3 of the Bohr radius

√
x2 + y2 + z2 .

Additionally, the moment scales with the number of contributing electrons Z.
The diamagnetic moment then becomes
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µ =−Ze2µo

6m
H〈r2〉 (1.23)

so that the susceptibility is χdia =−Ze2µo〈r2〉/(6m) . This is negative so that
application of an external field induces a moment opposite the field direction.

1.3.1.2 Paramagnetic Suceptibility

Paramagnetism can occur in atoms and molecules with an odd number of
electrons so that the total electronic spin is not zero. Defects in crystals can
also support such states. Likewise, free atoms and ions with partly filled inner
shells can support uncompensated spin. Examples include Mn2+ and Gd3+ .
In some cases solids constructed from such ions will be paramagnetic. We will
also see that paramagnetism can appear over restricted temperature ranges
in some materials. Finally, we will later mention superparamagnetism where
nanoscopic dimensions lead to paramagnetic behaviour.

One obvious example of this is hydrogen. Hydrogen atoms have spin
1/2 and no orbital moment in the ground state. In this case J = S and
E = −µoµH = −µoµBH since g ≈ 2 and S = 1/2 . Writing B = µB |H| ,
the energy is E = ∓µBB , where the minus sign applies when the moment
is parallel to H, and the plus sign applies when the moment is antiparallel to
H.

We next consider what happens at finite temperatures. When B = 0 , the
number of up spins and down spins should be equal since “up” and “down”
are arbitrary. This should also be true at high temperatures even with non-zero
field if kBT � |E| . However at low temperatures with finite field, one expects
more spin up than spin down since the up state is energetically favored. As
a function of field, we expect that at low temperatures the populations of up
spins will saturate as the field strength is increased, and the population of
down spins will tend to zero.

We can make these considerations precise by calculating the fractions of up
and down spins according to Boltzman statistics. The fraction N↑ of N spins
should be proportional to the thermal probability to be in the E < 0 state

N↑
N

=
1
Z
e+ µB

kBT , (1.24)
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where Z is a constant for normalization. The fraction of down spins, N↓ ,
should go as

N↓
N

=
1
Z
e−

µB
kBT . (1.25)

Normalization gives Z as

Z = e
µB
kBT + e−

µB
kBT . (1.26)

The difference in populations is the average magnetic moment

〈µ〉= µBN tanh
(

µBB
kBT

)
. (1.27)

For B = 0 , this gives zero moment at any temperature, as expected. For
large T , the lowest order term is linear in B and one has

〈µ〉= µBN
µBB
kBT

(1.28)

so that the susceptibility is

χpara =
〈µ〉
B

=
µ2
BN
kBT

. (1.29)

The inverse dependence on temperature is the Curie Law: χpara =C/T where
C is the Curie constant. This is a useful experimental parameter to measure,
and the inverse is usually plotted as a function of temperature, allowing the
Curie constant to be determined from the slope.

The above equations for χpara are valid for spin 1/2. Generalisation to
arbitrary angular momentum J is straightforward. A higher value of J corre-
sponds to more possible angular momentum states, and the thermal average
needs to account for these different possible values. The average moment is
then defined as

〈µ〉= 1
ZJ

(
∑
j
eµB jB−∑

j
e−µB jB

)
. (1.30)

The sum and normalization factor can be worked out, and the result is

〈µ〉= NgJµBBJ

(
gJµB

kBT

)
, (1.31)
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where BJ(x) is the Brillouin function, and defined by

BJ(x) =
2J+1
2J

coth
(
2J+1
2J

x
)
− 1

2J
coth

( x
2J

)
. (1.32)

The first term in an expansion of 1.32 for small x is linear in 1/T , con-
sistent with the Curie Law. It is useful to note that values of C will depend
very much upon the relative contributions of the spin and orbital components
of the magnetic moment. In materials this will involve details of how the spin
and orbital angular momenta couple. An extended tutorial discussion can be
found in [5].

1.3.1.3 Paramagnetism of Metals

Experimentally, metals show a weak paramagnetic response. This is not what
one expects from classical arguments such as those discussed in the previous
section. Instead for metals one finds that the paramagnetic susceptibility is
roughly independent of temperature. This turns out to be another consequence
of Pauli excusion and spin, and can be understood as follows.

The important electron states in a metal are those near the Fermi energy
εF . In terms of the number, or density, of states at energy ε one can expect
a density of states D(ε) to be roughly of the form shown in Fig. 1.4. The left
panel shows the spin up and down density of states without an applied field,
and the panel on the right shows the state densities with an applied field. A
non-zero applied field favours magnetic moments that are parallel to the field
direction, and so lowers the electronic energies of the spin down electrons.
Likewise, the electronic energies of up spin electrons is increased.

The shift in energy per spin is ±µBB , leading to an imbalance of numbers
between spin up and spin down states that lie beneath the Fermi energy. This
corresponds to an overall magnetic moment that is approximately given by

〈µ〉= 1
2
gµB (D(εF)µBB) , (1.33)

where the factor 1/2 appears since D = D↑+D↓ . Using results for free elec-
tron gases, D(εF) = 3N/(2kBTF) , where kBTF = εF . One then arrives at

χP =
2Nµ2

B
2kBTF

, (1.34)
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independent of temperature. Note that at room temperatures, χpara/χP � 1
so that contributions to metallic paramagnetism are due almost exclusively to
field induced shifts of the electronic energies. We note that the diamagnetic
contribution is significant: Landau showed that it is given by χdia =−χP/3 .

1.3.1.4 Magnetic Ordering in Correlated Spin Systems

We now consider the case when interactions between spins represented by
exchange energies lead to long range ordering. Following on from our dis-
cussion of paramagnetic response in the previous sections, one can imagine
that at finite temperatures the thermal reduction of magnetization arises due
to local misalignments of magnetic moments with a local field.

Consider a ferromagnet in which the ground state is one with parallel spins.
In the sketch shown in Fig. 1.5, a “snapshot” of spins randomly deviated away
from parallel alignment is shown. If one considers a single spin, as indicated
by the circle, on average the local exchange field will be proportional to the
thermally averaged spin of the system. This is as if the local exchange field
were being produced by static, aligned, neighbouring spins with reduced mag-
nitudes. This interaction is depicted on the right hand side by purple coloured
arrows surrounding a fluctuating spin.

This approximation to the local field is an example of mean field theory,
and is represented by writing

Fig. 1.4 Sketch of density of states for a nonmagnetic metal as a function of energy. In
zero applied field the state distributions are independent of spin. An applied field breaks the
symmetry of the up and down states
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Fig. 1.5 The mean field approximation amounts to replacing the local field of a moment
(indicted here by a circle) with a field proportional to the average magnetization of the entire
system (represented by purple arrows)

Bex = λM =
(
2ZnnJex
NµB

)
M , (1.35)

where M is the magnetization and λ is a constant representing the exchange
integral and the number of nearest neighbours Znn . The field Bex is sometimes
called a Weiss molecular field. At zero temperatures this is entirely equivalent
to the classical form of the Heisenberg hamiltonian.

At finite temperatures, this approach provides a good first approximation
to thermal reduction of magnetic order. In this picture, Bex adds to the external
applied field, and one can define a susceptibility based on that for χpara

χ =
C

T −λM
. (1.36)

Solving forM/B , one arrives at

χF =
C

T −TC
, (1.37)

where TC = λC . This susceptibility shows that a ferromagnetically ordered
system can behave as a paramagnet above some critical temperature TC . Be-
low this temperature, ordering due to exchange will dominate, and (1.37) will
not apply. Above TC, 1/χF is linear in temperature, but intersects the temper-
ature axis at TC, a clear experimental signature of the possibility of an onset
of magnetic ordering.

Below TC, we need to revist the calculation of thermal averages. In zero
applied field, there is still a non-zero probability of finding an average magne-
tization at finite temperatures. Consider a simplified model in wich magnetic
moments µ only point up or down with respect to one another (corresponding
to the spin half case above). Denoting the numbers pointing up with N+ and
those down with N− , the fractions are
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N±
N

=
e±

µλM
kBT

e
µλM
kBT + e−

µλM
kBT

. (1.38)

The difference between up and down fractions again gives the magnetization.
This is

M = µBN tanh
(

µλM
kBT

)
. (1.39)

This is an implicit equation forM , and can be solved graphically when put
in the form x= tanh(x) . A solution forM = 0 always exists, but an additional
solution forM > 0 exists for temperatures between T = 0 and T = Tmf , where
Tmf is the critical temperature corresponding to TC in the Curie theory.

The theory can be generalised to larger J values as before, with the result
that self consistent equation now has the form

M = NgµBJBJ

(
gµBλM
kBT

)
. (1.40)

Solutions for M for different values of J are shown in Fig. 1.6. Note that the
critical temperature is determined by Jex, not the angular momentum number
J.

Fig. 1.6 Solution of (1.40) for different values of angular momentum quantum number J

We note that this mean field description of temperature dependence is a
strong approximation, and breaks down in a number of ways. The problem is
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that it neglects correlations which are important at low temperatures and also
near TC. Moreover, it is also not able to capture effects associated with dimen-
sionality. These aspects will be discussed later when we introduce models for
fluctuations.

We complete this section with a few words about antiferromagnetic or-
dering. The simplest example of antiferromagnetic ordering is to reverse the
direction of neighbouring moments, as depicted earlier in Fig. 1.3. This can
be modelled simply by changing the sign of Jex, or equivalently, the sign of
λ . One can again show that a paramagnetic response exists above a critical
temperature TN , but the susceptibility is now

χAF =
C

T +TN
. (1.41)

In this case the inverse susceptibility is still linear in T , but it now intercepts
the temperature axis at a negative value. The three susceptibilities discussed
above are plotted in Fig. 1.7 for comparison.

Fig. 1.7 Examples of paramagnetic susceptibilities. A simple paramagnet is compared with
a ferromagnet (with T > TC) and an antiferromagnet (with T > TN )
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1.3.2 Magnetic Ordering and Magnetoelectric Coupling

As noted earlier, non-collinear ordering of spins can arise from competing ex-
change interactions in some classes of materials. The Dzyaloshinski-Moriya
interaction is often used to provide a phenomenological description of inter-
actions that lead to a so-called “weak” ferromagnetism arising from canted
moments in an otherwise antiferromagnetic ordering.

Fig. 1.8 The spin structure in a material such as BiFeO3 would be antiferroelectric for a
crystal with inversion symmetry, such as that depicted on the left. A Dzyaloshinski-Moriya
interaction can arise for distortions that remove inversion symmetry, leading also to a cant-
ing of spins as shown on the right

An example is shown in Fig. 1.8, where spins in a cubic lattice align antipar-
allel if D is zero in a hamiltonian of the form H = ∑i, j[JSi ·S j−DSi×S j] .

In some multiferroic materials, a coupling between dielectric and mag-
netic order parameters exists. One model for this is through a Dzyaloshinski-
Moriya interaction with a coupling constant that depends on the dielectric
polarization P . A geometry for this is shown in Fig. 1.9. A phenomenological
free energy for such a system can be written as

F =
1
2

β1P2+
1
4

β2P4−PE−λma ·mb−K(m2
az+m2

bz)−MH+FME . (1.42)

The first three terms in (1.42) are a continuous transition Landau-Ginzburg
energy density for the ferroelectric component, with landau parameters β1
and β2. The third term is the energy of a static electric field applied along the
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direction of P. The next three terms are the exchange, anisotropy (assumed to
be uniaxial along the z direction) and the Zeeman field aligned along the cant-
ing direction. The final term is the magneto-electric coupling, which is often
taken as a Dzyaloshinski-Moriya form. An example appropriate for BaMnF4
and FeTiO3 is [6]

FME =−αP(ma +mb)x(ma−mb)z =−αPMxLz . (1.43)

Fig. 1.9 Weak magnetization for a canted antiferromagnet in a multiferroic. Here there
are two sublattices with magnetizations ma and mb . L and M are the sum and differences
between the sublattice magnetization vectors. A dielectric polarization P is oriented perpen-
dicular to the plane of canting. L andM are the sum and differences between the sublattice
magnetization vectors

The temperature dependence of the magnetization can be calculated in
a mean field approximation as described earlier. The temperature depen-
dence of the ferroelectric is obtained from the Landau-Ginzburg parameter
β1 ∼ (T − Tf ) where Tf is the critical temperature of the ferroelectric. The
canting angle determining M is found by minimizing the total free energy
with respect to the orientations of the magnetic sublattices and the magnitude
of P . An example is shown in Fig. 1.10 where parameters are chosen to rep-
resent BaMnF4 . Results for different strengths of magnetoelectric coupling
are shown.

For this material, the ordering temperature Tf for the ferroelectric is larger
than that for the magnetic ordering. The magneto-electric coupling serves to
enhance the dielectric polarization at low temperatures when M is non-zero,
but the enhancement disappears whenM goes to zero. Also, the magnetoelec-
tric energy favours orientation of M and P such that M will reverse if P is
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Fig. 1.10 Temperature dependence of a the ferroelectric and magnetic components calcu-
lated for a model multiferroic. After [6] (Used with permission)

reversed, or P will reverse if M is reversed. Thus one can control the orien-
tation of P with a magnetic field, and the orientation of M with an electric
field.

1.3.3 Magnetic Impurities in Metals

Wemention briefly another type of magnetic ordering interaction that is medi-
ated by conduction electrons. Consider a local magnetic moment immersed in
a nonmagnetic metal. Spin dependent scattering of conduction electrons from
the impurity will result in oscillations of the spin density in proximity to the
impurity, in analogy to Friedel oscillations. The period of oscillations depends
upon the Fermi wavevector of the conduction spins.

A second magnetic impurity placed some distance r away from the first
will likewise interact with the conduction spins. The electronic states respon-
sible for the magnetic moment of the impurity will hybridize to some extent
with the conduction band of the host metal. As a result, the relative orientation
of the impurity moments will have an energy associated with the oscillations
in the conduction spin densities. The energy will depend on the separation r
of the impurities, and favour parallel alignment of the moments for some dis-



1 Magnetism 21

tances, and antiparallel alignment for other distances. The lowest order terms
for this energy are

F(r) =
sin(2kFr)−2kFr cos(2kFr)

(2kFr)4
, (1.44)

where kF is the magnitude of the fermi wavevector. This interaction is respon-
sible for the oscillatory magnetic coupling between ferromagnets across thin
transition metal films and known as the Ruderman-Kittel-Kasuya-Yosida in-
teraction [7]. In an alloy such as CoMn or AuMn, where local moments are
distributed randomly, this interaction can give rise to frustration due to com-
petition between parallel and antiparallel ordering energies.

1.3.4 Magnetic Metals

It is possible to find some metals with spins that order spontaneously without
the application of an external magnetic field. Consider transition metals which
have a both s and d like states at the Fermi energy. The energy states for a non-
magnetic metal are degenerate with respect to the spin state of the electrons.

Fig. 1.11 Left: Sketch of energies for s and d bands of a non-magnetic transition metal.
Right: Some metals have spontaneous splitting of spin up and down levels, creating a net
magnetization
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A sketch of this is shown in Fig. 1.11. The d band is narrow compared to the
s band, and is found in some metals to have spin dependence for sufficiently
low temperatures. In these cases, there is a majority of spins of one orientation,
and the material has a ferromagnetic magnetization.

A simple way to conceptualise this is with the single band Stoner model.
The central idea is that Pauli exclusion creates correlations between spins,
which was also the principle underlying the theory for the exchange integral
for insulators. In the case of conductors, we can think of a Hubbard hamil-
tonian with a correlation energyU of the form

Un↓↑ =
1
4
U [n2− (n↑−n↓)2] , (1.45)

where n↑ and n↓ are the number of up and down spins in the band, and n =
n↑+n↓ . The magnetization is then defined asM = n↑−n↓ . The Stoner model
then proposes a spin dependent potential for single electron energies where the
spin up/down energies are given by

ε↑↓(k) = εo(k)−
I
n
n↑↓ . (1.46)

Here εo(k) is the non-magnetic energy level, and I is the so-called Stoner
parameter, which relates to the correlation energy.

One can now calculate a susceptibility to an applied magnetic field. This
can be approached by calculating 〈M(k)〉 using a free energy hamiltonian,
and then requiring ∂ 〈M(k)〉/∂ t = 0 . This can be used to derive a relation
betweenM and the applied field B, from which the susceptibility is identified.
One finds an enhanced Pauli susceptibility (χP)

χ =
χP

1− ID(εF)
. (1.47)

The key result is that the unpolarized ground state becomes unstable when
D(εF)I = 1 . A magnetically ordered ground state can appear then for a suffi-
ciently large density of states at the Fermi level. It is useful to note that there
exist metals which have an enhancement factor that is not large enough to
provide spontaneous order, but can result in the appearance of local moments
induced by magnetic impurities immersed in a paramagnetic host. This has
been observed for impurities in Pd and interfaces of Pt with ferromagnetic
metals.
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1.4 Magnons and Thermal Fluctuations

It was noted at the end of the last section that mean field theory breaks down
when correlations between spins become important. We can see how mean
field theory neglects fluctuations by looking at how the mean field approxi-
mation is applied to the Heisenberg hamiltonian. Assume a hamiltonian for
classical spins of the form

H =−1
2 ∑

<i, j>
JexSi ·S j , (1.48)

where the notation < i, j > is used to indicate that the sum is over only near
neighbours. The factor of 1/2 appears because spin pairs are counted twice.
The minus sign ensures that a positive exchange integral Ji j leads to ferro-
magnetic ordering. Now consider fluctuations si at site i defined relative to the
mean 〈S〉 . These are written as

Si = si + 〈S〉 . (1.49)

Substitution into the hamiltonian of (1.48) produces the expression

H =−∑
i,δ

Jexsi · sδ +ZnnN |〈S〉|2−2∑
i
ZnnJexSi · 〈S〉 . (1.50)

The first term represents contributions from interactions between fluctuations,
and the last term is the interaction of the fluctuations with the mean magneti-
zation. The mean field approximation amounts to neglecting the first term.

Interactions between fluctuations create correlations that can become im-
portant in determining the thermal behaviour of the spin system. At high tem-
peratures near the critical point, correlations can occur over any lengthscale.
Mean field theory predicts that at these temperatures 〈S〉∼ (T−TC)1/2 . When
correlations are taken into account, 〈S〉 ∼ (T −TC)β , where β ≈ 0.34 for fer-
romagnets. Moreover, dimensionality is very important: It is expected in two
dimensions for any finite temperature that there is no long range ordering if
the interactions are only through short range exchange.
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1.4.1 Magnons in Insulators

At low temperatures, 〈S〉 is not much changed from its zero temperature value
in a mean field model, and deviations from the mean field behaviour are di-
rectly attributable to the correlations described by the first term in (1.50).
The nature of these low temperature excitations can be understood through
an insight provided by Holstein and Primakoff. They noticed that the angu-
lar momentum ladder operators L± , defined to act on an angular momentum
function ψm,l according to

L±ψm,l = h̄
√

(l∓m)(l±m+1)ψm±1,l , (1.51)

can be put in the form of harmonic oscillator raising and lowering operators.
The idea is to define a spin deviation number ns from the angular momentum
quantization numbers l and m according to ns = l−m . ns can be thought of
as the number of quanta associated with a reduction of Lz from its minimal
value.

The correspondence to harmonic oscillators is made in the limit of small
ns. In this case, the raising and lowering operators become

L+ψns ≈ h̄
√
2l
√
nsψns−1 (1.52)

L−ψns ≈ h̄
√
2l
√
ns +1ψns+1 . (1.53)

These have exactly the same form as harmonic oscillator raising and lowering
operators. Note that the increase in ns corresponds to the angular momentum
lowering operator. It is therefore convenient to define spin ladder operators in
analogy to the harmonic oscillator operators (a+ = x+ ipx , for example) as

S−ψns =
√
2S
√
2Sa+

ψns =
√
2S
√
nsψns−1 (1.54)

S+
ψns =

√
2S
√
2Saψns =

√
2S
√

ns +1ψns+1 (1.55)
Szψns = (−S+a+a)ψns = (−S+ns)ψns . (1.56)

The number operator then appears in the definition for Sz, and counts the
number of spin excitations. The spin hamiltonian can be expanded in terms of
a Fourier expansion of the spin operators, where the operators b+

k and bk now
describe raising and lowering operators for momentum states k
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S−j =
1√
N ∑

k
e−ik·x jbk (1.57)

S+
j =

1√
N ∑

k
eik·x jb+

k . (1.58)

The hamiltonian expressed in terms of these operators is now diagonal in low
orders of b

H =−JexNzS2 +∑
k

[
2JexzS

(
1− 1

z ∑
δ

eik·δ
)]

b+
k bk +O(b4) . (1.59)

The z refers to the number of nearest neighbours. The second term in (1.59)
is the magnon contribution to the energy, and the b are magnon operators. For
a cubic lattice of constant a, the energy in the long wavelength limit for a
ferromagnet is

h̄ωk = (JexSa2)k2 . (1.60)

One can use this approximation to estimate the total reduction of magne-
tization due to thermal fluctuations. The excitations are bosons, so that the
thermodynamic average over fluctuations is estimated using a Bose-Einstein
statistics

∑
k
〈b+

k bk〉=
1

(2π)2

∫ [
e

ωk
kBT −1

]−1
d3k∼ T 3/2 . (1.61)

This is the Bloch law describing the reduction of magnetization as a function
of temperature. It applies for low temperatures only, and Dyson showed how
taking higher order magnon interactions into account, one can expect correc-
tions that go as higher powers of T 1/2 , i.e.M(0)−M(T )∼ c1T 3/2+c2T 5/2+
c3T 7/2 + ... [8].

There are different experimental probes of spinwave excitations, including
inelastic neutron scattering, inelastic light scattering, and various microwave
absorption techniques. Inelastic neutron scattering is able to sample a wide
range of energies across the magnon band structure whereas other techniques
typically sample long wavelength excitations near the magnon Brillouin zone
center. More will be said in the next sections about long wavelength excita-
tions.
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1.4.2 Magnons in Metals

As discussed earlier, one must take electronic band structure into account for
a description of metallic magnetism. One can cast this theory in a form remi-
niscent of the above theory for magnons in insulators by writing the electronic
hamiltonian in terms of the fermion analogy to raising and lowering operators.
In this picture, we define state and site occupation operators c and c+whose
mathematical effect is to lower or raise the occupation of an electronic state.
The hamiltonian in this picture has the form

H = ∑
lmσ

Hoc+
mσclσ + ∑

lmσ

∑
l′m′σ ′

Hic+
mσc

+
lσcm′σ ′cl′σ ′ , (1.62)

where the energies are the kinetic and positive core interactions (Ho) and the
Coulombic repulsion (Hi). The sums are over sites and spin states. These are
given by integrals involving the single particle wavefunctions ψ j(r) associated
with site j

Ho =
∫

ψ
∗
l (r)

[
p2

2m
+∑

R
V (r−R)

]
ψm(r)d3r (1.63)

Hi =
∫

ψ
∗
l (r)ψ

∗
l′(r
′)

e2

|r− r′|
ψm′(r′)ψm(r)d3r . (1.64)

We next define spin raising and lowering operators at site m as

Szm =
1
2

(
c+
m↑cm↑− c+

m↓cm↓
)

(1.65)

S+
m = c+

m↑cm↓ (1.66)

S+
m = c+

m↓cm↑ . (1.67)

This theoretical formulation can be used to identify low energy excitations
of the electron gas in a perturbative approach. In the context of a Stoner model
wherein the Coulomb interaction is replaced by a local energy Iδ (ri−r j) , the
excitation energies are found to obey ωk Dk2 , similar in form to the disper-
sion for magnons in an insulator. The exchange constant for metals however
depends upon details of the band structure and spin densities. Moreover, the
magnons run into a band of spin flip excitations (Stoner excitations) for large
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wavevectors, that are not found in the Heisenberg model discussed for insula-
tors.

1.5 Macroscopic Models of Magnetic Ordering and
Excitations

So far in our treatment we have concentrated on exploring how magnetism
arises from underlying electronic states. A more phenomenological descrip-
tion is possible, and preferrable in some cases for understanding and mod-
elling details of many types of experiments. These models start from a con-
tinuum formulation of the energies and equations of motion. Comprehensive
accounts of original spin wave theories can be found in [9], [2], and [10].
More recent summaries are contained in [12], [11], and [13].

A magnetic density field can be defined in terms of local electronic spins
formally as

M̂(r) = gµB∑
j

δ (r− r j)σ̂ j . (1.68)

It is most convenient to work with a macroscopic magnetization, m(r) =
Tr(ρM̂(r)) , where ρ is the density matrix. This defines a classical quantity
M for the magnetic moment density at a location r in a material.

1.5.1 Exchange and Anisotropy Effective Fields

An exchange energy can now be postulated that is compatible with the sym-
metry of the crystal

Eex = ∑
αkl

Ckl
∂mα(r)

∂ rk

∂mα(r)
∂ rl

, (1.69)

where α indexes the components of the magnetization, and k indexes the com-
ponents of the position vector. In an isotropic medium this becomes, for ex-
ample,

Eex =C
[
(∇mx)2 +(∇my)2 +(∇mz)2

]
. (1.70)
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There are additional effects associated with the local atomic environment
that can also be constructed using symmetry arguments. Small perturbations
due to spin orbit coupling can introduce an orientational dependence to the
magnetization. Symmetry allowed terms to an expansion of the energy asso-
ciated with these perturbations can take the form

Eanis =−Kum2
z +K4

(
m2
xm

2
y +m2

xm
2
z +m2

ym
2
z
)
+ ... , (1.71)

where the coefficients Ku and K4 denote uniaxial and four-fold anisotropies,
respectively. As an example, consider hexagonal Co. This crystal has a two
fold axis of rotation, and allows uniaxial anisotropies. The two largest terms
can be written in terms of an angle θ measured from the axis of rotation

Eani = K(1)
u sin2 θ +K(2)

u sin4θ . (1.72)

A typical value for K(1) is 5×105 J/m3 .

1.5.2 Magnetostatic Fields

Exchange and anisotropy are “local” in the sense that the range of interactions
are mostly limited to the immediate atomic environment. Magnetic moments
themselves act as sources of magnetic fields through interactions mediated
by the electromagnetic field. An individual point moment generates a dipolar
magnetic field, and the site local field in an ensemble of point dipoles can be
represented by a sum over other dipoles in the system

hdip =
1
2
g2µ

2
B∑

i j

[
Si ·S j

r3i j
−3

(ri j ·Si)(ri j ·S j)
r5i j

]
, (1.73)

Fig. 1.12 Easy and hard directions sketched for a single domain rectangular magnetic ele-
ment



1 Magnetism 29

where ri j is the position vector defined by the sites i and j . This interaction
is long ranged, and can drive complex magnetic configurations because of
dipolar fields created by sources over large lengthscales. The shape of a mag-
netic element is important in this regards. A uniformly magnetized element
will generate demagnetizing fields through the magnetostatic fields that can
appear as a “shape anisotropy”.

Dipoles with a component normal to a surface generate uncompensated
poles. The magnitude of the field produced by surfaces is proportional to the
magnetic field flux generated by these poles. In a rectangular planar element,
such as that depicted in Fig. 1.12, alignment of the magnetization along the
long axis will produce the smallest magnetic field flux, thus defining an “easy”
direction for the orientation of the magnetization. Alignment of the magneti-
zation normal to the largest area will generate a correspondingly large flux,
and defines a “hard” axis orientation for the magnetization.

It is possible to calculate exactly the demagnetizing fields and energies
only for a few simple geometries. A uniformly magnetized ellipsoid will have
a shape anisotropy energy density arising from demagnetizing fields, that can
be described in terms of shape factors Nx , Ny , and Nz :

Eshape =
M2

S
2µo

(Nx sin2 θ cos2 φ +Ny sin2 θ sin2 φ +Nz cos2 θ) . (1.74)

Calculation of magnetostatic fields for specific element shapes and dif-
ferent magnetic configurations is far from trivial. Although there are some
specific geometries which can be treated analytically, in general numerical
methods are used. These approaches are called “micromagnetic”, and involve
various approaches to taking the long range magnetostatic fields into account
in addition to local exchange, anisotropy, and other energies.

1.5.3 Spinwaves in Continuum Models

The macroscopic model outlined above can be used to also describe magnonic
excitations in the long wavelength limit. We refer to this description as “spin-
waves”, with the understanding that it is the classical analogue of the quantum
physics picture presented earlier.
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Fig. 1.13 Illustration of dif-
ferent wavenumber regimes
for magnetostatic, dipole-
exchange, and exchange spin-
waves. Propagation directions
along the magnetization axis
can have negative group ve-
locities at long wavelengths

We begin with a total energy constructed from the exchange, anisotropy,
magnetostatic, and any additional contributions that might arise (such as in-
terlayer magnetic coupling, Dzyaloshinski-Moriya interactions, etc). An ef-
fective field He f f can be constructed as a gradient of the energy Etot

He f f =−∇MEtot . (1.75)

An effective field constructed from an applied field Ha, exchange with
strength A, anisotropy with strength K, and a dipolar field hdip will have the
form

He f f = Ha +A∇
2M(r)+M(r) ·KM(r)−hdip . (1.76)

The dipolar field can be calculated from Maxwell’s equations, and is usu-
ally done in the magnetostatic limit where ∇× hdip = 0 . This is valid for
the long wavelength limit in non-conductive materials. In the case of ohmic
conductors, this condition needs to be augmented with the associated currents
generated by the time varying magnetic field.

The equations of motion in this formulation are of the form of torque equa-
tions

∂

∂ t
M(r) = γM(r)×He f f −Γdiss , (1.77)

where Γdiss is a torque introduced to describe redistribution and loss of energy
from the magnetic system. The redistribution occurs because of interactions
between spinwaves and interactions with other degrees of freedom in the sys-
tem (including elastic, electronic, and electromagnetic). In the original form
proposed by Landau and Lifshitz, [14] a damping was chosen such that the
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magnitude of the magnetization was conserved. This requirement is served by
the construction

Γdiss = αM(r)× (M(r)×He f f ) . (1.78)

From the point of view of non-conservative dynamics, the dissipation
should be of the form |dM/dt|2 . A commonly used form is consistent with
this (Rayleigh) dissipation is called “Gilbert damping” [15]. In its more com-
mon representation, the equations of motion and damping are written explic-
itly as

(1+ γ
2
α
2M2

S)
∂

∂ t
M(r) = γM(r)×He f f − γαM(r)× ∂

∂ t
M(r) . (1.79)

Illuminating discussions of non-linearities, spinwave interactions, and damp-
ing processes observed in microwave resonance experiments can be found in
[13], [16], [17], and [18].

The zero wavevector excitations are especially important for a variety of
resonance experiments. As an example, consider a ferromagnet illuminated
uniformly by a microwave frequency alternating field. Suppose further that
the ferromagnet has a uniaxial anisotropy along the y direction, and there is
a static applied field along the z direction. The effective field acting on the
magnetization is

He f f = ẑHa + ŷ
2K
M2

S
M . (1.80)

Ignore dissipation for simplicity. Substitution into the torque equations gives

dMx

dt
= −γ[HaMy− (2K/M2

S)MzMy] (1.81)

dMy

dt
= −γ[HaMx] (1.82)

dMz

dt
= −γ[(2K/M2

S)MxMy] . (1.83)

These equations are non-linear. However if one considers only small ampli-
tude precessions, thenMxMy ≈ 0 and the third equation reduces to a statement
that Mz is constant. The small amplitude resonance then corresponds to pre-
cession of the magnetization around the z direction, with time varying com-
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ponents in the transverse plane. The transverse components oscillated with
resonance frequency ω = γ

√
Ha(Ha−2K/MS) . The precession is elliptical,

and exists only for an applied field large enough to align the magnetization in
the hard direction (Ha > (2K/MS)) .

Non-zero wavevector excitations are spinwaves. If one considers only the
exchange interaction, then the additional contribution to the effective field is
A∇2M(r) , and the dispersion of plane waves with wavenumber k is

ω2

γ2
= (Ha +Ak2)(Ha−2K/MS +Ak2) . (1.84)

Dipolar interactions can also contribute to the dispersion. In the longest wave-
length regime, dipolar contributions dominate and can even lead to waves with
negative group velocities (backward travelling waves). For some propagation
directions, surface magnetostatic waves can exist as excitations localized to
interfaces. At short wavelengths, the exchange contribution dominates, and
ω ∼ k2 . The waves in the intermediate wavelength range are called “dipole-
exchange” modes since the exchange and dipolar contibutions are compara-
ble. These ranges are illustrated in Fig. 1.13.

1.6 Reversal of Magnetization

Fig. 1.14 Analogy between reversal of a single domain particle and a double well potential.
Thermal activated reversal can be likened to a chemical rate problem

We have discussed linear dynamics in two contexts: first in terms of linear
response to quasi-static applied fields, and next in the context of small ampli-
tude precession and spinwaves. The dynamics of magnetization reversal are
now examined, and this goes well beyond linear response in either of the pre-
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vious senses. Indeed, magnetic systems have often been used as experimental
and theoretical models for different aspects of non-linear dynamics and be-
haviours far from equilibrium. Some of these will be surveyed here, within
the context of magnetization reversal mechanisms.

1.6.1 Reversal of Single Domain Particles

Fig. 1.15 Illustration of the precession driven reversal process. A magnetic field can make
an orientation unstable, and reversal then occurs through damped precession

It was noted that the phenomenological equations of motion describing pre-
cession are inherently non-linear. A useful conceptual analogy is the double
well potential that is perhaps best known from chemical rate theory wherein a
barrier separates two minimizing energy states. The barrier must be overcome
in order to make the transition from one state to the other.

This analogy is illustrated in Fig. 1.14 where the orientation of a single
domain particle is identified with positions in a double well potential. It is
assumed that the particle has a large uniaxial anisotropy so that only two
alignments parallel with the anisotropy axis are energetically favorable. In
magnetic systems, an external magnetic field will break the degeneracy of the
two otherwise equivalent configurations, as indicated by the lowering of one
well minimum relative to the other.

A sufficiently strong field can make one configuration unstable. The crit-
ical field at which this occurs is the one for which the energy well curvature
for that configuration becomes zero. This situation is sketched in Fig. 1.15. In
this case, any fluctuation will cause the moment to begin a precession trajec-
tory and dissipation will bring the moment to rest in the lower energy, stable
orientation.
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Fig. 1.16 Trajectory of a single domain elliptically shaped particle. After [19] (Used with
permission.) Shape anisotropies align the magnetization in plane along the major axis. A
static field is applied opposite to the initial magnetization. A pulsed field is applied at an
oblique angle to the moment, causing a precessional reversal

1.6.1.1 Field driven precessional reversal

The approximation of a single domain particle is quite severe, but does serve
to illustrate general features observed in experiment. Most importantly, it al-
lows for a simple analysis using torque equations wherein the magnetization
is replaced by a single block vector representing the instantaneous orientation
of the particle’s magnetization. An example is shown in Fig. 1.16.

An elliptical dot of soft material is modelled by a single block spin. The
geometry in used to define an easy direction in the plane: Shape anisotropies
align the magnetization in plane along the major axis, and are represented by
uniaxial anisotropies in the effective fields. A static field is applied opposite
to the initial magnetization. A pulsed field is applied at an oblique angle to
the moment, causing a precessional reversal. The length of the pulse is greater
than the relaxation time. Dynamics is modelled by numerically integrating
the Landau-Lifshitz equations with Landau damping. The tip of the magneti-
zation vector is traced over the course of the precession. The highly elliptical
precession is due to the strong in-plane shape anisotropy.



1 Magnetism 35

The success of creating reversal depends sensitively on pulse field duration,
magnitude and orientation. Results are shown in Fig. 1.17 for a pulse field that
is much shorter than the characteristic relaxation time [19]. A phase diagram is
shown where the axes give the orientation and magnitude of the pulse field in
a polar plot. The grey shaded regions are ones which lead to reversal, whereas
the unshaded areas leave the moment in its initial direction.

1.6.1.2 Thermally driven reversal

Thermal fluctuations can also serve to drive reversal. In Néel’s fluctuation
model, one imagines that a moment experiences instantaneous effective mag-
netic fields that are random in orientation and magnitude, with a distribution
that depends upon temperature. This is described by a random vector field h f
included in the torque equations of motion.

Fig. 1.17 The success of creating reversal using a pulse much shorter than the characteristic
relaxation time depends sensitively on field magnitude and orientation. A phase diagram is
shown where the axes give the orientation and magnitude of the pulse field in a polar plot.
The grey shaded regions are ones which lead to reversal, whereas the unshaded areas leave
the moment in its initial direction. After [19] (Used with permission)
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Fig. 1.18 Schematic of thermally driven reversal in a two state model. Some fluctuations
are able to drive the magnetization over the barrier

Fig. 1.19 Energy barrier
determination for an ensemble
of FePt nanoparticles. The
distribution is proportional to
the magnetic viscosity divided
by temperature. After [20]
(Used with permission)

Fluctuations can occur on very short timescales in this model, leading to
discontinuous changes in the trajectory during otherwise precessional dynam-
ics. A sketch is given in Fig. 1.18. In terms of the two state potential well
model, there is a probability that some thermal fluctations will lead to preces-
sion that takes the magnetization across the barrier with a final orientation in
the opposite direction.

On average, it is possible to construct an estimate of the reversal rate based
on the statistics of the fluctuations. Details of a full calculation are complex,
but the resulting form is relatively simple

1
τ

= foe
− ε

kBT , (1.85)

where ε is the barrier “activation” energy, kBT is the thermal energy at tem-
perature T , and fo is an “attempt” frequency. The attempt frequency can be
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thought of as a measure of the number of ways the magnetic system can fluc-
tuate in such a way as to lead to reversal.

In the Stoner model, the activation energy is estimated for a simple single
domain particle from an energy of the form

E =V
(
−HaMS cosθ +K sin2 θ

)
, (1.86)

where V is the volume and θ is an angle taken relative to a unixaxial
anisotropy axis. The activation energy in this model is the energy of the energy
maximum at θ = π/2 . Then ε =VK+[HaMS/(2K)]2 .

Reversal in an ensemble of particles is sometimes considered as a chemi-
cal rate problem where concentrations of up and down oriented particles are
denoted by n↑ and n↓. The rate equations are

dn↑
dt

= W↓↑n↓−W↑↓n↑ (1.87)

dn↓
dt

= W↑↓n↑−W↓↑n↓ . (1.88)

Here, transition probabilities Wσσ ′ are defined for processes that convert a
spin of orientation σ to a spin of orientation σ ′. Conservation of particles
means that n↑+n↓ = 1 and the magnetization is related to the difference m(t)
between concentrations. One finds

m(t) = n↑−n↓ = m(0)e−Γ t , (1.89)

where m(0) is a constant determined by the initial conditions, and the relax-
ation time is defined as Γ = 1/τ .

A distribution of relaxation times, P(Γ ) is taken into account by writing

m(t) = m(0)
∫

P(Γ )e−Γ tdΓ . (1.90)

In a single process approximation, exp(−Γ t)≈ 1−Θ(t−1/Γ ) . The integral
in (1.90) simplifies in this case. Using P(Γ ) = P(ε) |dε/dΓ | to convert to an
energy barrier distribution, one obtains

dm
dt
∼−kBT

t
P(ε = kBT ln(t/τo)) , (1.91)

where the time τo = 1/ fo is the inverse activation frequency.
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The result represented by (1.91) allows the experimental measure of energy
barrier distributions by varying temperature and time. The barrier distribution
can be accessed by defining a “viscosity” parameter S defined as

P(ε = kBT ln(t/τo))≈
1

m(0)kBT

(
−t dm

dt

)
=

S
m(0)kBT

. (1.92)

One then plots S/kBT as a function of temperature to obtain a plot of the
barrier distribution. An example of results from this procedure is shown in
Fig. 1.19 where S was obtained from an ensemble of FePt particles measured
using SQUID magnetometry [20]. Note that the accuracy of this method de-
pends on measurements of the magnetization over very large time scales due
to the lograthmic dependence of P on time.

1.6.2 Domain Walls and Magnetization Processes

The reversal process described for a single domain particle in reference to
Figs. 1.14 and 1.15 pretained specifically to a magnetic system with two de-
grees of freedom, corresponding to the two angles used to specify the instanta-
neous orientation of the magnetic moment. This picture can be generalized to
macroscopic magnetic systems with many degrees of freedom corresponding
to the orientation of the spatial and time varying magnetization.

Instead of a simple two state system, one then needs to consider an en-
ergy landscape with many wells and barriers. Reversal then corresponds to a
path through the energy landscape that navigates across saddle points between
minima in a landscape controlled by the many degrees of freedom associated
with non-uniform magnetic order.

1.6.2.1 Characteristic Lengths

In consequence, magnetization processes in large systems can be complex
with new phenomena appearing. How large does a system need to be? A char-
acteristic length is

Lex =
√

µoA/M2
S , (1.93)
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which is a measure of the distance over which magnetic order can vary. In
exchange coupled magnets, deformation of otherwise uniform magnetic order
incurs additional exchange energy, and if compared to magnetostatic energy
as in (1.93), one can define an “exchange” length below which one would
expect uniformly ordered magnetic moments.

Magnetocrystalline anisotropy creates preferred directions for magnetic
moments. Different and incompatible orientations can be degenerate in en-
ergy, and a large enough system can support multiple orientations. Regions
of different orientation will be separated by boundary walls, in much the way
that different thermodynamic phases in other many body systems can be sep-
arated by phase boundary wall. A comprehensive discussion of domain and
wall structure is given by [21].

A characteristic length for this type of magnetic phase separation is called
a domain wall length

λ =
√
A/K . (1.94)

This ratio of exchange to anisotropy defines a length over which magneti-
zation can deform across a hard direction. Only ferromagnetic systems are
considered for the remainder of this section, although many of the ideas and
concepts carry over into multisublattice magnets.

1.6.2.2 Nucleation and Growth of Domains

Consider a ferromagnetic film much thinner than either of the lengths Lex
or λ . Magnetic nonuniformities will then occur across the film plane, but not
the film thicknesses, at least for temperatures away from the critical point. For
definiteness, consider also a strong out of plane oriented uniaxial anisotropy
so that the magnetization orients spontaneously perpendicular to the film

Fig. 1.20 Sketch of aver-
age magnetization during an
adiabatic field driven reversal
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Fig. 1.21 Illustration of do-
main nucleation. Initially the
magnetization is saturated in
an easy direction. A magnetic
field is applied in the opposite
direction, and a small domain
can nucleate and grow in size

Fig. 1.22 Example of domain
structure nucleated in TbFeCo
by a sequence of short pulsed
fields. The image was taken
using a magneto-optical mi-
croscope [22]

plane. Note: If the anisotropy is large enough, λ approaches the length of
a lattice spacing which is the minimum width of a domain wall. The system
then approximates an Ising magnet which is the theoretical construct for a two
state magnetic system.

The magnetic film is assumed to be able to exchange heat energy freely
with a reservoir (such as a substrate). Now suppose that the magnetization is
aligned by a large magnetic field applied along the film normal. Suppose now
that the field is now reduced in magnitude slowly, so that the magnetization
can respond adiabatically. In a system free from defects or large thermal fluc-
tuations, the magnetization will remain pefectly aligned as the field is reduced
to zero and reversed.

It is only until some coercive field −hc is reached that magnetization can
reverse. In a single domain particle at zero temperature, this field corresponds
to the field at which the original state becomes unstable and the activation
barrier is removed. At finite temperatures, thermal fluctuations can overcome
the activation energy barrier (within a time scale set by the experiment) at a
field less than the zero temperature coercive field. Once reversal is accom-
plished, the magnetization aligns along the applied field direction. The aver-
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age magnetization for this process is sketched in Fig. 1.20 by the path from
positive to negative fields. If now the field is again reduced in magnitude and
reversed, the magnetization follows the lower path from negative to positive
fields, changing sign to align with the field at +hc .

In an extended film, the change in magnetization orientation at the coercive
fields typically begins with the nucleation of domains of reversed magneti-
zation. The process is sketched in Fig. 1.21. Nucleation occurs with a com-
petition between two energies: there is an energy gained by aligning some
volume V with the applied field: EZeeman = −µoMSVHa . There is an en-
ergy cost per area σDW of forming a domain wall boundary around this vol-
ume. If the bounded area is A , then the domain can form when the energies
EZeeman + σDWA is minimized. This defines a critical size for the domain,
given by the ratio σDW/(µoMSHa) .

An example of a domain structure nucleated in a FeTbCo thin film is shown
in Fig. 1.22 [22]. This image was made using a magneto-optical microscope,
and the domain pattern is the result of first saturating the magnetization out of
plane, and then applying a sequence of small field pulses to nucleate reversal.
Several domains nucleate, and then grow in size. The image is taken after sev-
eral domains have coalesced, thus resulting in a complex pattern of connected
regions.

Domains typically nucleate at magnetic or structural defects in a material.
Domains grow through motion of domain walls, and the walls themselves can
be pinned at defects. This competition between domain wall nucleation and
motion results in coercivity and hysteresis, and is strongly dependent on time,
temperature, and structural details of the material.

1.6.2.3 Domain Wall Motion in the Creep and Viscous Regimes

As noted earlier, magnetic domain walls are examples of thermodynamic
phase boundary walls. They are configurational (topological) excitations of
the uniform magnetized ground state, and can be modelled using micromag-
netics. Quite often a useful qualitative description can be constructed by ap-
proximating the walls as elastic lines with a characteristic width and energy
per area.

Some analytical models can be constructed simply in one dimension. These
provide insight into the behaviour and properties of domain walls in general,
and we review some of the essentials here. A simple model begins with ex-
change and anisotropy energy and a wall in one dimension
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E =
∫ [

A
(

∂u(x)
∂x

)2

−Ku(x)2
]
dx , (1.95)

where u(x) = Mz/MS , a normalised component of the magnetization profile.
Note that there are two ways to obtain this projection u(x). The magnetization
can rotate around the x axis in a Bloch wall configuration, or the magnetiza-
tion can rotate through the x−z plane in a planar Néel type wall configuration.
In the case of the latter, uncompensated magnetic poles exist in the wall, and
additional contributions from dipolar energies modify the wall profile and en-
ergy. Description of these contributions can be obtained using more advanced
approaches or numerical micromagnetics.

The energy of (1.95) can be minimized for a domain wall excitation by
first constructing a Euler-Lagrange equation for the integrand. Writing u(x) =
cos(θ(x)) , this is of the form

A
∂ 2θ(x)

∂y2
+K sin2(θ(x)) = 0 . (1.96)

One solution describes a soliton centered at x = 0 with profile parametrized
by θ(x)

cos(θ(x)) = tanh

[
x√
A/K

]
. (1.97)

The width λ can be defined from λ =
√
A/K and represents a competition

between the exchange, which tends to align moments relative to one another,
and anisotropy, which tends to align magnetization relative to a direction in
the material. Substitution of this solution into the energy of (1.95) results in
the energy per length

σDW =
√
4AK . (1.98)

In materials with small anisotropy, wall like structures will be strongly
modified by dipolar energies, and the above model is less applicable. High
anisotropy materials produce narrow domain walls which more closely resem-
ble the above model. In these materials, walls can move freely if no pinning
sites or other defects exist.

Motion of a domain wall is still governed by torque equations, and in-
volves precession. A wall will move under the influence of magnetic field,
for example, to a first approximation without changing its profile. Dissipation
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Fig. 1.23 Moments inside a Bloch wall at rest will rotate in a plane normal to the wall axis.
In motion, the plane of rotation is tilted so that a component of the moments lies along the
wall axis [23]

Fig. 1.24 Walker breakdown
occurs when magnetostatic
charges built up within a
propagating wall drive in-
ternal dynamics. The onset
occurs at a critical driving
field, and drastically modify
the wall velocity [25]

Fig. 1.25 Motion of a domain
wall in the creep regime is
governed by avalanche dy-
namics. Depinning from one
site can lead to a cascade of
other depinnings that reverse
an area of magnetization

will determine the speed, and the wall will move at a constant rate determined
by the field magnitude. The rate, or speed vDW , will be determined by the
dissipated power averaged over time (the overbar stands for time-averaging)

vDW ∝ α

∫
|M×He f f |2dx . (1.99)

This is a terminal velocity. The wall speed will be linear in the applied field
magnitude and proportional to the damping constant.
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Fig. 1.26 Measured velocities
for domain wall creep in a 0.5
nm thick Co film. The lines
are fits to the data in the creep
and viscous regimes [25]

We note here also an effect that can occur for large speeds and driving
fields. Taking into account some modifications of the profile, one finds that
the moments in a Bloch wall will tilt slightly out of the plane of the wall. This
is shown schematically in Fig. 1.23. This means that a component of the mag-
netization will appear along the wall axis, leading to uncompensated magnetic
charge. As a result there will be a magnetostatic contribution to the wall en-
ergy. In a nanowire, the magnitude of the tilt will also depend on the shape
of the wire through demagnetizing factors. At high fields, this angle will in-
crease and can lead to an instability known as Walker breakdown. In this type
of motion, internal oscillations appear that result in a change the wall veloc-
ity. The corresponding effects on the field dependence of the wall velocity are
illustrated in Fig. 1.24. Internal oscillations set in at a critical field HW , and at
higher fields the velocity is strongly reduced and wall motion involves preces-
sion within the wall itself. Shape anisotropies in nanostructures can affect the
onset of criticality, through shape anisotropies [24].

Motion at low fields in the presence of pinning can lead to a phenomena
known as “creep”. Suppose that a narrow wall exists in a planar ferromagnet
with a distribution of point defects that can pin a wall. Such a site might
be associated with a local variation in anisotropy or exchange, for example,
which lowers the magnetic energy if intersected by a wall. The wall energy
depends upon its length, and there will be a competition between wall and
pinning energies that determine the wall configuration.

Application of a magnetic field will exert a pressure on the wall and can
cause an adjustment of the configuration as the wall again seeks to minimize
its length against the constraint of intersecting pinning sites. Each pinning
site itself represents a potential energy well for a wall to sit in, and so ther-
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mal fluctuations can cause portions of the wall to depin and move to a new
pinning site. However depinning from one site may increase the probability
of depinning from a nearby site, thereby leading to an avalanche dynamics, as
depicted in Fig. 1.25.

In this way, motion of the wall occurs in a series of discrete jumps asso-
ciated with depinning avalanches. This is also known as Barkhausen noise in
that each jump corresponds to the reversal of an area of magnetization and
change in the net magnetization.

A description of creep as avalanche dynamics provides a useful means
of determining the average velocity of a wall. An applied field of sufficient
strength will overcome all barriers and the wall will move linearly with field
as in the viscous regime discussed above. At zero temperature, thermal fluc-
tuations will not play a role, and there will be a critical value Hdepin for the
applied field that defines a depinning transition. At this field, any magnitude
of avalanche becomes possible, and this insight allows one to define scaling
relations for the size of the avalanches. Scaling arguments can then be used to
define a depinning energy as the difference between elastic and applied field
Zeeman energies

Eelastic−EZeeman = Edepin ≈UC

(
Hdepin

Ha

) 2ζ−2+D
2−ζ

. (1.100)

The exponent ζ in (1.100) and other critical exponents can be derived from
renormalization group methods, and D is the dimensionality. The constantUC
is a measure of the pinning potential distribution. The energy Edepin represents
a barrier to motion of the domain wall in analogy to the activation energy pre-
sented earlier in the context of single particle reversal. One can then define an
average displacement for a wall overcoming this energy, and assign a char-
acteristic time τo to the process. This then allows definition of a speed in the
creep regime

vcreep ≈
ξ

τo
exp
[
− UC

kBT

(
Hdepin

Ha

)µ]
, (1.101)

where the exponent µ is calculated to be 1/4 for films thin enough to be
considered two dimensional.

An example of measured creep motion for a specially constructed thin 0.5
nm thick Co film is shown in Fig. 1.26 [25]. The measurements were made us-
ing magneto-optical microscopy, with motion of the wall created by a pulsed
magnetic field. The sample was held at room temperature. Velocities were de-
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termined by measuring the distance travelled for a known duration pulse. The
straight line is a fit to the wall motion in the viscous regime. The low field
data is fit with the creep law (1.101) using µ = 0.25 . The transition region
between creep and viscous motion lies between 500 and 1200 Oe. A recent
summary of creep dynamic experiments can be found in [23].

1.6.2.4 Summary

A summary of concepts and ideas useful for an understanding of measurable
phenomena in thin film and nanostructured magnetic materials has been pro-
vided. Materials magnetism begins with electronic spin and chemical bonds.
Beginning with the base definitions of magnetic moment and its relation to an-
gular momentum, mechanisms were discussed for long range ordering based
on electronic orbital overlap in insulators, and electronic band structure in
metals.

Equally important to the existence of a magnetically ordered ground state,
is the nature of excitations about this ground state. Correlations between spin
fluctuations define the lowest energy excitations in ordered magnetic systems,
and it was shown how these can be understood by analogy to the quanta of
harmonic oscillations associated with vibrations in crystals. A phenomeno-
logical model of magnetic ordering and excitations is also described, and key
parameters defined in terms of symmetries allowed by the local atomic envi-
ronment.

The thermodynamic view of magnetic states and configurations is partic-
ularly useful for understanding a variety of phenomena, and also for many
applications. Here the focus has been on mechanisms for magnetic reversal
and coercivity and the concepts of magnetic domain walls and domain wall
mobilities are discussed.

The scope of the discussion has been limited to introductory ideas, neglect-
ing a number of very interesting and technologically important developments
of recent years. In particular, there is a wealth of new knowledge accumulated
regarding electron transport and spin torque transfer that has not been pre-
sented. These topics themselves fill several reviews and fall well outside the
scope of this brief introduction.

Before closing, there is one other area that is currently developing very
quickly. As modern lithographic techniques advance, so to is the ability to de-
fine magnetic elements with nanoscale precision in two and three dimensional
arrays. The dimensions and geometry of the arrays can be defined such that
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Fig. 1.27 Geometry for a
square artificial spin ice array.
Configurations can be char-
acterized by arrangements of
magnetic poles at vertices.
Sixteen different vertex con-
figurations are possible. After
[26] (Used with permission)

Fig. 1.28 Sketch of a square artificial magnetic ice array. The arrows indicated the domain
magnetization of individual elements. Two array ground states are shown with a boundary
indicated by the small arrows at vertices. Domain growth occurs through an avalanche along
the boundary triggered by a single element reversal at an array domain corner. After [27]
(Used with permission)

the individual element interact strongly through, for example, stray dipolar
magnetic fields.

These arrays are intriguing as they represent new classes of “artificial”
magnetic materials. The materials are artificial in that the interaction strengths
can be controlled to a large extent, and response to thermal fluctuations engi-
neered. These systems, in various geometries, have been realized experimen-
tally and typically the element sizes have been chosen to around 200 nm in
length, and usually of a soft material such as FeNi. The larger sizes approxi-
mate single domain particles and are stable against thermal fluctuations.

A particularly interesting class of arrays use geometry to create frustra-
tion in what are called “artificial spin ices”. It is useful in these systems to
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think of the magnetic orientations at vertices. There are sixteen possible ver-
tex configurations in a square spin ice, and they can be ranked in terms of
their corresponding energies due to interactions. There are four distinct ener-
gies, allowing for a defintion of four vertex classes. The square ice geometry
and corresponding vertex classes are shown in Fig. 1.27 [26].

Reversal of elements accomplished through applied fields, and generally
involve a cascade of elemental reversals due to strong inter-element interac-
tions. An example of a spin configuration is sketched in Fig. 1.28 for a square
lattice [27]. The lattice is designed to encourage the magnetic elements to
align such that the net magnetization is zero, as in a multisublattice antiferro-
magnet. The large arrows indicate the orientation of element magnetizations,
and in this geometry two incompatible ground states are possible for the ar-
ray. Each ground state is characterized by two arrows in and two arrows out,
in analogy to the polar bonds in water ice that obey a similar “ice” rule for the
lowest energy configuration.

The arrangement shown in Fig. 1.28 shows the boundary between two
neighbouring array ground states. The boundary carries a net magnetic mo-
ment, as indicated by the small arrows. Growth of a domain occurs by motion
of the boundary. Motion of the boundary occurs via reversals of element mag-
netizations. The first element to reverse is at a corner of the array domain, and
leads to a cascade of other element reversals in a one dimensional avalanche.
This avalanche may be triggered by an external field or, if the elements are
small enough, by thermal fluctuations.

This example illustrates that the concepts and models developed for con-
tinuous films and materials have extensions and applicability to a new class
of magnetic systems. The potentials to define key characteristic lengths and
energies through nanoscale design allow one to create and engineer new prop-
erties and functionalities. The phase space of possibilities is extraordinarily
large, and to date only a few examples have been examined. The history of
magnetism is one punctuated by the discovery of new and useful phenomena
with each advance in materials technology, suggestive of a very interesting
future ahead indeed.
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57007 (2007)
25. P. Metaxas, J.-P. Jamet, A. Mougin, M. Cormier, J. Ferré, V. Baltz, B. Rodmacq, B.
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Chapter 2
Synchrotron radiation, polarization, devices
and new sources

Marie-Emmanuelle Couprie and Mathieu Valléau

Abstract Synchrotron radiation is emitted by accelerated relativistic charged
particles. In accelerators, it is produced when the particle trajectory is sub-
jected to a magnetic field, either in bending magnets or in specific insertion
devices (undulators or wigglers) made of an alternated succession of mag-
nets, allowing the number of curvatures to be increased and the radiation to
be reinforced. Synchrotron radiation, tunable from infra-red to x-rays, has a
low divergence and small size source, and it can provide different types of
polarization. It produces radiation pulses, whose duration results from that of
the electron bunch from which they are generated. The repetition rate also de-
pends on the accelerator type: high (typically MHz for storage rings, kHz for
superconducting linear accelerators) and 10 to 100Hz (for normal conducting
linear accelerators). Longitudinally coherent radiation can also be generated
for long bunches with respect to the emitted wavelength or thanks to the Free
Electron Laser process.
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2.1 Introduction

Synchrotron radiation, the electromagnetic radiation emitted by accelerated
charged particles, is generally produced artificially in particle accelerators,
but it can be also observed in astrophysics [1, 8], such as in the sun where hy-
drogen submitted to loops of magnetic fields emits in the center in the visible
and on the edges in the x-ray domain for example.

Theoretical foundations were established at the end of the nineteenth cen-
tury by Larmor [9] and Liénard [10]. The angular and spectral distribution
and polarization properties were then described by Schott [2, 11]. In 1944,
Ivanenko and Pomeranchuk estimated a calculated limit on the energy ob-
tainable in a betatron (of the order of 0.5GeV) due to energy losses due to
radiating electrons [12]. Particles slow down and lose synchronism. Because
of the spread in revolution frequency with energy, the frequency cannot sim-
ply be reduced to maintain synchronism [13] but the particle bunch should be
injected in the RF at a proper phase (phase stability), as proposed by McMil-
lan [14] and Veksler [15] in a “synchrotron”-type accelerator, which was then
built [16]. After the construction of first accelerators, J.-P. Blewett could mea-
sure the particle energy loss on the 100MeV betatron and he found it in good
agreement with the theoretical expectation, but failed to observe synchrotron
radiation in the micro-waves [17, 18]. J. Schwinger described the peaked spec-
trum and predicted that higher photon energies should be observed [19, 20].
The first synchrotron radiation was then observed in the visible tangent to the
electron orbit one year later on the 70MeV General Electric synchrotron, of
29.3m radius and 0.8 T peak magnetic field [21]. The rapid increase of the
intensity with the electron beam energy was measured (fourth power of the
energy). The emitted light was found polarized with an electron vector par-
allel to the plane of the electron orbit. Besides, H. Motz calculated the field
created by a relativistic particle in the magnetic sinusoidal field (i.e. such as
produced by undulators) [22], and he examined the influence of the bunch-
ing of the electrons on the coherence of the radiation. He then observed the
polarized visible radiation from an undulator installed on the 100MeV Stan-
ford accelerator [23]. A buncher set-up after a 3.5MeV accelerator enabled to
achieve 1W peak power at 1.9mm thanks the the bunching of the electrons.
In parallel, the emission of the radiation spectrum produced from an undula-
tor installed on a 2.3 MeV accelerator was investigated by R. Combe and T.
Frelot [24].
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In accelerators, synchrotron is produced when the particle trajectory is sub-
jected to a magnetic field, which is for example generated in bending magnets
in circular accelerators. The coordinate system given in Fig. 2.1 with s the
longitudinal coordinate, x (resp. z) the horizontal (resp. vertical) position is
adopted.

Fig. 2.1 a Adopted coordi-
nate system: s the longitudinal
coordinate of the electron,
transverse coordinates x in
horizontal and z in vertical, b
position of the observer with
respect to the emitting particle

When a relativistic particle of normalized energy γ given by γ = E
moc2

(with
E its energy, mo the particle mass, e the particle charge and c the speed of
light) is submitted to the magnetic field Bd of a dipole, its movement is given
by the Lorentz equation, as γmo

dv
dτ

= ev ×Bd , with the particle time τ , its
velocity v(τ) = β (τ)c , and its position R(τ) . In case of an uniform magnetic
field, the particle follows an arc of circle, whose radius ρ is given by

ρ =
moγβc
eBd

(2.1)

The observer receives the emitted radiation in a cone of solid angle 1
γ
be-

cause of the relativistic transformation of the angles from the particle frame to
the laboratory frame (see Fig. 2.2). Synchrotron radiation is very collimated,
and the higher the electron beam energy, the smaller the collimation angle.

Fig. 2.2 Relativistic projec-
tion of the radiation angles,
dipole emission in the labo-
ratory frame of the particle
and projected emission in the
observation frame, within a
cone of 1

γ
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The dipoles (bending magnets) bend the trajectory of the electron in short
arcs, and the observer placed on axis receives the radiation for a very short
time: this narrow electric field in the time domain corresponds to a broad-
band radiation in the frequency domain. In consequence, synchrotron radia-
tion covers a wide spectral range. More intense radiation can be then obtained
by alternating a series of Nw dipoles (so-called ”wigglers”) resulting in an in-
tensity enhancement by Nw . The angle of emission results from the different
poles, and it is then wider.

Fig. 2.3 Undulator sketch
with a periodic magnetic
field created by alternated
poles. Case of a periodic
field created with permanent
magnets according to the
Halbach configuration [57].

A periodic magnetic field (period λu), as expressed in Tab 2.1 can also be
generated in the so-called “insertion devices” (undulator or wigglers) [4] made
of an alternated succession of magnets, enabling the radiation to be more in-
tense due to the higher number of emitters (as shown in Fig. 2.3). Insertion
devices can be built either using permanent magnets and high permeability
steel poles (such as Vanadium Permendur) or with coils (normal or super-
conducting ones). The movement of electrons in a sinusoidal periodic field Bu

(Bux , Buz) is ruled by the first Lorentz equation, i.e. γmo
dβ

dτ
= eβ×Bu . A first

integration leads to the normalized velocity β , given in Table 2.1, consider-
ing that 1

γ
=
√
1−β 2

x −β 2
z −β 2

s with the deflection parameter Ku , Kux , Kuz

given by Ku = eBuλu
2πmoc

(Kux = eBuxλu
2πmoc

, Kuz = eBuzλu
2πmoc

). In the wiggler regime, the
angle of the velocity Ku

γ
is large with respect to 1

γ
. For Kux =Kuz =Ku and the

dephasing between the horizontal and vertical field components ϕ = π

2 , one

has βs = 1− 1
γ2
− K2

u
2γ2

. A second integration gives the trajectory. In the pla-
nar case, the electrons execute smooth sinusoı̈dal oscillations in the horizontal
plane, so that the radiation is kept in the same emitted cone. In addition, the
beam oscillates at twice the pulsation in the longitudinal direction. The inter-
ference takes place for the wavelengths λn for which nλn = c(1−βs)t , with
n an integer, βs the longitudinal reduced velocity of the electrons. The funda-
mental resonant wavelength is obtained for n = 1 , i.e. for λ1 = λu(1−βs) .
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Table 2.1 Velocity and trajectory of a single electron in the magnetic fields for the planar
or ellipsoidal undulator cases

Planar Undulator Elliptical Polarized Undulator

Field Field
Buz = Buz cos

(
2π

λu
s
)

Bux = 0
Bus = 0


Buz =−Buzsin

(
2π

λu
s
)

Bux = Buxsin
(
2π

λu
s+ϕ

)
Bus = 0

Velocity Velocity


βz = 0

βx = Ku
γ
sin
(
2π

λu
s
)

βs =
√

1− 1
γ2
− K2

u
γ2

sin2
(
2π

λu
s
)



βz =−Kux
γ
cos
(
2π

λu
s+ϕ

)
βx = Kuz

γ
cos
(
2π

λu
s
)

βs = 1− 1
γ2
− K2

ux
4γ2
− K2

uz
4γ2

+K2
ux

4γ2
cos
(
4π

λu
s
)

+ K2
uz

4γ2
cos
(
4π

λu
s+2ϕ

)
Trajectory Trajectory


z = 0

x = Kuλu
2πγ

cos
(
2π

λu
τ

)
s =

(
1− 1

2γ2
− K2

u
γ2

)
cτ + cK2

uλu
16πγ2

sin
(

4π

λuc
τ

)



z =−Kuxλu
2πγ

sin
(
2π

λu
s+ϕ

)
x = Kuzλu

2πγ
sin
(
2π

λu
s
)

s =
(
1− 1

2γ2
− K2

uz
γ2
− K2

ux
γ2

)
cτ

+ cK2
uzλu

16πγ2
sin
(

4π

λuc
τ +2ϕ

)
+ cK2

uxλu
16πγ2

sin
(

4π

λuc
τ

)

Using the expression of βs , it comes for the resonant wavelength and its har-
monics in the planar case

nλn =
λu

2γ2

(
1+

K2
u

2

)
(2.2)

The wavelength λn of the emitted radiation can be varied by a modification
of the undulator magnetic field (by changing the gap for permanent magnet
insertion devices or the power supply current for electromagnetic insertion
devices). In the time domain, the observer receives a train of Nu magnetic pe-
riods which can be considered as quasi-continuous emission of radiation with
respect to the bending magnet radiation. The radiation spectrum, square of the
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Fourier transform of this train, is then composed of a series of square sinus
cardinal, centered on odd harmonics. The “homogeneous” relative linewidth
of the harmonics is thus given by

∆λ

λn
=

1
nNu

(2.3)

The so-called “homogeneous linewidth” refers to the case of a single elec-
tron. The emission is then a narrow-band in the frequency domain. In other
words, the emitted field interferes between different points of the trajectory,
leading to sharp spectral peak emission. The “inhomogeneous” broadening
of the undulator line results from the electron beam energy spread, size and
divergence.

2.2 Electron beam characteristics

Fig. 2.4 Accelerator schemes: a storage ring, b linear accelerator

Storage rings [26] (see Fig. 2.4) are composed of a succession of magnetic
elements for keeping the particle in a close trajectory. Bending magnets en-
sure the curvature of the trajectory, quadrupoles the focusing, sextupoles and
possibly octupoles the compensation of the non linear terms. The transverse
dynamics is ruled by the so-called betatron motion defined by the electron
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beam lattice with evolution of the betatron function βi (i being either x or z)
and the dispersion functionηi . Electron beam size and divergence are given
by

σi =
√

εiβi +η2
i σ2

γ σ
′
i =
√

εi(1+β ′2i /4)/βi +η ′2i σ2
γ (2.4)

with σγ the energy spread. The emittance ε (horizontal εx and vertical εz), the
product of the beam size by its divergence, is a figure of merit. εx strongly
depends on the electron energy, the number of bending magnets as well as
the magnetic focalization strengths (optical lattice). For a given ring size, the
beam emittance rises quadratically with the electron energy. Different lattices
are studied now to reach very low emittances in the so-called ultimate stor-
age rings [30]. The energy loss due to synchrotron radiation is restored by
the electric field of the radio frequency (RF) cavity which re-accelerates the
particles. The electrons are packed in a large number of bunches. The longi-
tudinal dynamics involving the longitudinal particle position and its deviation
with respect to the synchronous particle is called the synchrotron motion. The
energy loss and acceleration lead to so-called “synchrotron” energy and po-
sition oscillations with respect to the reference particle (the synchronous one
at nominal energy in phase with the RF field), these oscillations are damped
with the synchrotron damping time. The beam is then kept circulating during
several hours. The electron longitudinal oscillation imposed by the RF system
induces a pulse minimum duration of few tens of picoseconds, to which is
added a systematic bunch lengthening following the interaction with the emit-
ted microwave field [29]. Radiation is emitted via a quantic process, leading
to discrete changes in the energy of the particles. The equilibrium between
the quantum excitation and the synchrotron damping regime (Fokker-Planck
equation) enables to derive the energy spread. Short bunches produced with a
specific magnetic field configuration where the value of the momentum com-
paction factor α relating the orbit distortion to the energy of the particles is
decreased. Considering independent electrons, i.e. without collective effects
[27, 28], the bunch length scales as α [12], so that the so-called low-α con-
figuration [32, 33] leads to a bunch length of a few ps against tens of ps with
traditional storage ring configuration, but at very low current. Further reduc-
tion down to hundred of fs is achieved in the slicing scheme [54, 55] where a
fs intense laser interacts with the electron beam in an undulator.

In a linear accelerator, the electron beam comes in long µs (even ms for
superconducting linacs) macro-pulses containing a large number of micro-



58 Marie-Emmanuelle Couprie and Mathieu Valléau

pulses with duration of few tens of ps. Electrons generated at the gun are
accelerated with sections of RF cavities and shortened by the longitudinal
compression with magnetic chicanes or by velocity bunching. The beam emit-
tance decreases with energy (∼ 1/γ). Linear accelerators have dramatically
progressed thanks to the requirements of the colliders in term of electron
beam density, energy spread and stability. State-of-the-art relativistic electron
beams are presently delivered by RF linear accelerators with accelerating sec-
tion gradients of few tens of MV/m, with for example at 1GeV, 1 nC charge,
1 π .mm.mrad emittance, σγ ∼ 0.01% .

In Laser WakeField Accelerators (LWFAs) [34], high-intensity laser pulses
are focused in an under dense plasma from a gas target. Due to the intense
laser field, the plasma electrons are pushed out of the laser path, and separated
from the ions, creating a strong traveling longitudinal electric field, on a length
given by the plasma wavelength, providing field gradients up to∼ 100GV/m.
In the bubble regime [35, 36, 37, 38], using a single laser pulse, electron beams
in the 100MeV range can be produced over mm distances (σγ ∼ 5− 10% ,
∼ 100 pC charge), or in the 1GeV range with lower charge with the laser pulse
guided over a few cm in a capillary plasma discharge. Scaling laws predict that
multi-GeV electron beams with nC charges might be attainable [39, 40] with
σγ ∼ 5− 10% . Two-stage laser plasma accelerators have recently delivered
GeV electron bunches with σγ ∼ 1% [41]. Charge and energy spread can be
controlled in the colliding laser pulses scheme, leading to 1− 10% energy
spread, 10−100 pC charge, 4 fs duration, 5−10% stability [42, 43, 44].

2.3 General characteristics of synchrotron radiation

2.3.1 Retarded Liénard-Wiechert potentials

Let us consider an electron traveling on a curved trajectory and emitting ra-
diation at time τ (the electron time or retarded time) at the position R(τ)
with a velocity v(τ) = β (τ)c . The stationary observer receives the emission
at time t at the fixed position r(t) . With D the distance between the elec-
tron when it emits light and the observer receiving it, one has t = τ + D(τ)

c
and D(τ) = |r(t)−R(τ)| . After derivation, it comes dt

dτ
= 1−n ·βc . Thanks

to the Maxwell equations in the Lorentz gauge, the electric E(r, t) and mag-
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netic B(r, t) fields can be expressed with B(r, t) =
[
n(τ)
c ×E(r, t)

]
ret

and the
retarded Liénard-Wiechert potential, as [3]



E(r, t) =
e

4πε0

[ n−β

γ2(1−βn)3D2

]
ret

+

n×
[
(n−β )× dβ

dτ

]
(1−βn)3D


ret


B(r, t) =

e
4πε0c

[ β ×n
γ2(1−βn)3D2

]
ret

+

n
[
n× [n−β ]× dβ

dτ

]
c(1−nβ )3D


ret


(2.5)

with εo the dielectric vacuum permittivity. For a rest particle, one gets the
Coulomb law. The electric field comports two terms, the so-called “velocity
field” in 1/D2, vanishing at long distances, and so-called “acceleration field”
in 1/D, which is predominant at long distances (far-field case).

2.3.2 Energy loss per turn and power

The radiated power is given by the flux of the Poynting E×B/µo vector
through a closed surface S with µo the magnetic vacuum permittivity. In case
of the far field approximation, the Coulomb term in 1/D is neglected, the
electric field, the magnetic field and the observation direction are orthogonal
to each other. After calculations, the radiated power P by a particle is given
by P= 2ro

3moc

[
p2//+ γ2p2⊥

]
, with ro the classical radius of the electron given by

ro = e2
4πεomoc2

and p// (resp. p⊥) the parallel (resp. perpendicular) momentum.
The radiated power is γ2 times larger for a perpendicular force than for a lon-
gitudinal one. Radiation losses are then very small in linear accelerators. This
term is neglected from now. From β ≈ 1 it comes: P = 2romoc3γ4

ρ2 . The energy
lossUo per turn is given by

Uo =
4romoc2γ4

ρ
. (2.6)

In practical units it comes:Uo[keV] = 88.5E4[GeV]
ρ[m] = 26.6E3[GeV]Bd⊥[T] .

For example, in the case of SOLEIL at 2.75GeV for a current I of 500mA, the
energy loss per turn due to the bending magnets (field of 1.7 T) is 0.94MeV,
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to which adds the contribution of the insertion devices (0.205MeV) and of
the parasitic modes power (22 keV).

2.3.3 Frequency domain

In the frame of the Lorentz gauge, the field potential can be expressed in the
frequency domain [3, 50]. The total power dP

ds radiated by a filament mono-
energetic beam of current I per unit surface orthogonal to the unit vectors
becomes

dP
dS

=
∫

∞

0

dP
dSdω

dω = 4πεoc2
I
e

∫
∞

0
Re(E(r,ω)×B∗ (r,ω))sdω (2.7)

The spectral flux dΦ

ds per unit surface (i.e. the number of photons per unit
surface, per second, per relative frequency bandwidth) is then

dΦ

ds
=

2πω

hω

dP
dSdω

=
8πεoc2

h
I
e
Re(E(r,ω)×B∗ (r,ω))s (2.8)

with h the Planck constant. In the far-field approximation case, the fields can
then be expressed as{

E(r,ω) = −ieω

4πcεoD
exp iωn·r

c H(n,ω)
B(r,ω) =− 1

cE(r,ω)×n
(2.9)

with the dimensionless field vector H given by

H(n,ω) =
ω

2π

∫
∞

−∞

(n−β )exp(iω (τ−n ·R/c)) dτ (2.10)

H(n,ω) =
ω

2π

∫
∞

−∞

n× (n×β )exp(iω (τ−n ·R/c)) dτ (2.11)

It enables to express the different physical quantities [25]. It can also be
seen that E(r,ω) is the Fourier transform of e

2cεoD
d
dt (n× (n×β )) , repre-

senting the electric field seen by the observer in the time domain [7].



2 Synchrotron radiation, polarization, devices and new sources 61

E(r, t) =
e

4πε0

[ n−β

γ2 (1−β ·n)3D2

]
ret

+

n×
[
(n−β )× dβ

dτ

]
(1−β ·n)3D


ret

 (2.12)

The general treatment (without the far-field approximation) should be ap-
plied for the infrared edge radiation and in some cases of off-axis undulator
emission. The approximation of ultra-relativistic beams ( 1

γ
<< 1) can also be

considered; it comes

β =

(
βx,βz,

√
1− 1

γ2
− (β 2

x +β 2
z )

)
≈
(

βx,βz,1−
1
2γ2
−

β 2
x +β 2

z

2

)
.

(2.13)
In the small angle (or paraxial) approximation with small values of the

angle of observation θ , the direction of observation n is then given by

n =
(

θx,θz,
√
1−θ 2

x −θ 2
z

)
≈
(

θx,θz,1−
θ 2
x +θ 2

z

2

)
. (2.14)

2.3.4 Brilliance and mutual coherence

The common approach is to define the brilliance as the number of photons
per second and per unit of phase space (or the density distribution in phase
space), which corresponds to the geometrical optics frame. It enables to de-
scribe somehow the propagation properties of the rays through optical ele-
ments. The general expression of the brilliance B (or spectral brightness in
a narrow bandwidth) is given by means of the Wigner distribution [45, 46]
as defined in quantum mechanics as a quasi-probability density of a quantum
system in phase space. TheWigner distribution [47], first developed in the sta-
tistical quantum mechanics, has also been adopted for the treatment of optical
waves [48].

B(χ,χ
′,s,ω, û) =

ε0ω2I
2π2hce

∫ +∞

−∞

∫ +∞

−∞

E
(

χ ′+ ξ

2 ,s,ω
)
û∗.E∗

(
χ ′− ξ

2 ,s,ω
)
û

×exp
(
−iω

c χ.ξ
)
d2ξ . (2.15)

with û the polarization state, E the electric field in its angular representation,
∗ for its complex conjugate, χ and χ ′ representing transverse position (x,z)
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and angles (θx,θz) . This concept inherently incorporates the complete infor-
mation on the electric field, from different position. It thus properly provides
information on the transverse coherence (ability to interfere [49]). Indeed, the
one of mutual intensity, defined as

M (χ,χ
′,s,ω, û) =

(
E
(

χ +
ξ

2
,s,ω

)
û∗
)(

E∗
(

χ
′− ξ

2
,s,ω

)
û
)

(2.16)

simply relates to the generalized brilliance definition, as

M (χ,χ
′,s,ω, û) =

h
2πε0c

e
I

∫ +∞

−∞

∫ +∞

−∞

B(χ,χ
′,s,ω, û)exp

(
−iω

c
χ
′.ξ
)
d2χ

′. (2.17)

The generalized Wigner brilliance enables to recover the usual quanti-
ties. The density of photons per unit surface and solid angle results from
the integration of the brilliance over spatial coordinates. This general spec-
tral brightness, by relating directly to the electric field, contains the informa-
tion on the phase and enables a proper treatment of the wavefront propagation
within Fresnel diffraction, and transformation through optical elements. Such
a brightness is real, but not necessarily positive. This could appear as a para-
dox for a quantity describing a photon density, but it could result from the
quantum nature of photon for which position and momentum cannot be mea-
sured at the same time, forbidding strictly speaking to define a photon density
[45]. More precisely, its projections are positive [46]. A part from the specific
case of bunching (such as in free electron laser), the classical approximation
to sum over the electrons from a statistical point of view can be applied, pro-
vided that the electron bunch duration is long with respect to the coherence
time and long with respect to 2πcNu/λu . Concerning the thick beam analysis,
the convolution between the electron/ photon beam sizes, divergences can be
applied provided the trajectory inside the undulator or wiggler induces small
deviation in position and angle and that the undulator does not introduce im-
portant modifications of the electron beam (such as focusing modifying the
electron beam size) or strong cosh type dependance (term neglected here in
Table 2.1, required in principle to verify Maxwell equation).

In the approximation of Gaussian distributions, the brilliance becomes

B =
( w

πc

)2
Φ(ω,u)exp

(
− θ 2

x

2σx′ph
−

θ 2
z

2σz′ph
− x2

2σxph
− z2

2σzph

)
(2.18)

with the horizontal σx′ph (resp. σxph) and vertical (resp. σzph) divergence (resp.
size) of the photon beam resulting from the single electron emission and from
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the contribution of the electron beam emittance and energy spread. In this
case, one recovers the usual definition of brilliance. Besides the fact that prop-
agation is treated in the geometrical optics frame, it is unlikely that undulator
radiation can be assimilated to a Gaussian beam, as it will be discussed in the
next sections. In consequence, the use of such a definition should be handled
with great care in considering ultimate storage ring issues or partial coherence
of synchrotron radiation. A proper treatment has been derived in the frame of
the Wigner distribution [45, 46].

2.3.5 Generations of accelerator based light source

The so-called first generation took advantage of the parasitic synchrotron ra-
diation emitted in the storage rings initially built for high energy physics. The
second generation was developed on dedicated storage ring accelerators. The
third generation light sources arose on storage rings with reduced emittances
[31] and high number of installed undulators or wigglers. They provide a high
average brilliance and a partial transverse coherence [56] thanks to the low
beam emittance in the storage ring and to the high number of insertion de-
vices generating spontaneous emission. Light pulses are limited in terms of
pulse duration to a few ps, unless particular optics [32] or slicing scheme
[54, 55] are applied, but to the detriment of the total flux. Fourth Genera-
tion Light Sources generally use linear accelerators for short pulse duration.
In addition, they enable longitudinal coherence by setting in phase the emit-
ting electrons thanks to the free electron laser (FEL) process. A light wave
of wavelength λ (spontaneous emission progressing along the undulator or
stored in an optical cavity, or external seed) interacts with the electron bunch
in the undulator, inducing an energy modulation of the electrons which is
gradually transformed into density modulation at the wavelength and leads to
a coherent radiation emission. After the theoretical proposal of the FEL [51],
the first FEL experience was carried out in 1977 on MARK-III at Stanford,
USA using an oscillator configuration in the infrared [53]. Whereas great hope
was put in re-circulating accelerators such as storage rings in the early FEL
times, the dramatic progress of linear accelerator has enormously contributed
to the success of x-ray FELs. However decrease in wavelength requires an
increase in energy of the accelerated electrons (typically hundreds of MeV to
several GeV for VUV/soft and hard x-rays). Light sources using energy re-
covery linear accelerators are also somehow considered as fourth generation
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light source, since sub-ps bunches are produced. The fifth generation is not
yet clearly defined; among possible understandings, the conventional linear
accelerator is replaced by a laser wakefield one, for a more compact source.

2.4 Radiation from a bending magnet and from wigglers

2.4.1 Radiation from a bending magnet

Fig. 2.5 Brightness from a
SOLEIL dipole magnet gen-
erating 1.7 T with a curvature
radius of 11.25m observed at
20m through a 1mm squared
window. Beam parameters:
E = 2.75 GeV, I = 400mA,
σγ = 0.1% , εx = 4 nm.rad,
εz = 40 pm.rad.

In a bending magnet, the electron emits radiation during ∆ t ′ = ρ/γc to-
wards the observer, who receives it during ∆ t = (1− n · β ) , i.e. during
∆ t ∼ 2ρ

3γ3c . The so-called “critical pulsation” ωc becomes by Fourier analysis

ωc ∼ 3γ3c
2ρ

. The “critical wavelength” is λc ∼ 4πρ

3γ3
. It is less than 1 keV for

storage rings below 1GeV, in the 1−10 keV range for several GeV rings. For
a direction of observation in the (xOz) plane, with ψ the angle between the
observation direction and the axis x, the emitted angular flux is given by

dΦ

dΩ
=

3eγ2

16π3εoc
ω2

ω2
c

(
1+(γψ)2

)2
K2
2/3 (ξ )+

(γψ)2

1+(γψ)2
K2
1/3 (ξ ) (2.19)

with the angle ξ =
(
1+(γψ)2

)3/2
ω/ωc , K1/3 and K2/3 the modified Bessel

functions. In practical units, in the orbit plane, it comes
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dΦ

dΩ
(ψ = 0)

(
ph/s/mrad2/0.1%BW

)
=

1.327×1013E2 (GeV ) I (A)
ω2

ω2
c
K2
2/3

(
ω

ωc

)
.

(2.20)

It can be integrated over the ψ angle. The horizontal angle of emission is
spanned by the particle movement, and it is rather wide. Several beamlines
can use jointly the bending magnet radiation. The bending magnet radiation
is polarized linearly in its plane. Out of it, the elliptical polarization can be
decomposed in a vertical I⊥ and horizontal I// components as

I//
dΩ

+
I⊥
dΩ

=
7e2

4πεo

1
16ρ

(
γ2

1+(γψ)2

)5/3(
1+

5
7

(γψ)2

1+(γψ)2)2

)
. (2.21)

I// is centered at Ψ = 0 within ∆ψ = 1.13/γ . I⊥ is maximum for ψ =
±0.63/γ . The cone of the whole emission is 1.3/γ . Out of the orbit plane, the
rate of linearly polarization decreases whereas the rate of circular polarization
is larger.

2.4.2 Radiation from a wiggler

In the wiggler case (Nw periods), the deflection parameter Kw being large,
the radiation from the different periods does not interfere but simply adds.
The wiggler radiation can then be treated as the sum of the radiation from
the equivalent different 2Nw dipoles trajectory curvatures, considering the
magnetic field where the electron trajectory is tangential to the observation
direction. The critical pulsation thus also depends on the observation direc-
tion, according to ωc(θ) =

√
1− (θKw/γ)2 . The total emission angle is of

2Kw/γ with two transverse source points given by xsource = ±Kw
γ

λw
2π

whereas
the depth of field along s should be considered. In the case of planar verti-
cal field wigglers, polarization is linear in the orbit plane. Out of this plane,
it becomes circular right (resp. left) for positive (resp. negative) half-period
magnetic fields. Adding for the 2Nw dipoles of the wiggler, the incoherent
superposition of left and right circular components cancels out in non polar-
ized radiation besides the remaining linear components. Radiation is extended
towards the higher photon energies with a several pole wiggler [115].
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2.5 Undulator radiation

2.5.1 Emitted field

In the case of periodic fields (period λux and λuz) with a Nu number of periods,
the field vector H(θx,θz,ω) can be expressed as

H(θx,θz,ω) = Nuhn (θx,θz,ω)sinc
πNu (ω−ω1)

ωn
(2.22)

with sinc(x) = sinx
x . The general expression of the resonant wavelength is

λn =
λu

2γ2n
(1+

K2
ux

2
+

K2
uz

2
+ γ

2
θ
2
x + γ

2
θ
2
z ) (2.23)

with the general deflection parametersKx andKz given byKx =
√

2γ2

λu

∫
λu
0 β 2

x ds

and Kz =
√

2γ2

λu

∫
λu
0 β 2

z ds . Considering a planar undulator, in the temporal do-
main (Fig. 2.6), the field is nearly sinusoidal for small values of the deflection
parameter, resulting in an emission mainly on the fundamental wavelength.
When the deflection parameter increases, the distance between the peaks in
time gets larger and the radiation is red-shifted. The temporal pulses are get-
ting narrower, deviating from a sinusoid, and inducing emission on different
harmonics. For even larger deflection parameters, the radiation tends to be
equivalent to that of twice the number of period dipoles of equivalent peak
field, getting into the wiggler regime.

The far-field electric field for small angles presents a periodicity resulting
from that of the magnetic field, leading to a harmonic spectrum. A typical on-
axis spectrum for a typical planar in-vacuum undulator of SOLEIL is shown
in Fig. 2.7a in the case of a filament mono-energetic electron beam. On-axis
radiation is mainly emitted on the odd harmonics, whereas the even harmonics
start to appear with increasing harmonic order, because of the finite observa-
tion window. The influence of the electron beam contribution is illustrated in
Fig. 2.7b–e on zooming on one odd and one even harmonic. The emittance
contribution enlarges the lines on the red side of the spectrum, because the
electron beam dispersion of position and divergence can be assimilated to an
off-axis emission at wavelengths larger than the harmonic resonant one, via
the γ2θ 2 of the resonant condition. Indeed, it results in a significant growth of
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Fig. 2.6 A Electric field. B associated spectra for different values of the deflection parame-
ter: K = 0.5 , K = 1 and K = 2 calculated with SRW [93] at 20m from the source through
a 250 µm squared aperture. Case of a planar undulator: λu = 2 cm, Nu = 100 , Ku = 1.81
(corresponding to Sm2Co17 magnets with vanadium/permendur poles). Beam parameters:
E = 2.75GeV, I = 400mA, σγ = 0.1% , εx = 4 nm.rad, εz = 40 pm.rad

the even harmonic whereas a side-band appears on the odd one. The energy
spread contribution to the inhomogeneous broadening can be easily expressed
from the resonant condition, as ∆λ/λ = 2σγ . For example, for 0.1% energy
spread, it equals the homogeneous linewidth for Nun = 500 , i.e. for a 100
periods undulator, for the fifth harmonic. It results in Fig. 2.7d to a reduction
of the undulator odd line peak intensity (by more than a factor of 10) and to
a line widening (by 65 eV). The even harmonic grows as well significantly.
Adding both the thick beam contributions due to the emittance and the energy
spread makes the eleventh harmonic to be reduced in intensity (by a factor of
15) and to be widened (from 16 eV to 87 eV). The higher the harmonic order,
the larger is the effect, since the homogeneous relative linewidth inversely
decreases with the harmonic number.

The influence of the aperture observation size is shown in Fig. 2.8. When
the observation size gets larger, off-axis radiation is seen with wavelength
different from the resonant one. In addition, even harmonics, which are not
emitted for a filament electron beam on-axis, are getting more intense with
respect to the even harmonics. In the frequency domain, the normalized on-
axis field vector can be expressed as
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Fig. 2.7 On-axis spectrum calculated with SRW at 20m from the source through a 250 µm
squared aperture. Case of a planar undulator: λu = 2 cm, Nu = 100 , Ku = 1.81 (corre-
sponding to Sm2Co17 magnets with vanadium/permendur poles). Beam parameters: E =
2.75GeV, I = 400mA. a σγ = 0 , εx = εz = 0 pm.rad. Zooms on the tenth and the eleventh
harmonics (b-e): b σγ = 0 , εx = εz = 0 pm.rad. c σγ = 0 , εx = 4 nm.rad, εz = 40 pm.rad.
d σγ = 0.1% , εx = εz = 0 pm.rad. e σγ = 0.1% , εx = 4 nm.rad, εz = 40 pm.rad

Fig. 2.8 Undulator spectra calculated with SRW through a 50 µm (-) squared aperture
(×100) , 1mm (· · · ) or a 2mm (−−) one. Case of a planar undulator: λu = 2 cm, Nu = 100 ,
Ku = 1.81 . Beam parameters: E = 2.75GeV, I = 400mA, σγ = 0.1% , εx = 4 nm.rad,
εz = 40 pm.rad

{
For odd harmonics, hn(0,0) = γ

nKu
1+K2

u/2

[
J n+1

2

(
nK2

u/2
4+2K2

u/2

)
− J n−1

2

(
nK2

u/2
4+2K2

u/2

)]
u

For even harmonics, hn(0,0) = 0
(2.24)
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The Bessel functions can also be seen as resulting from the oscillation at twice
the pulsation in the expression of the position s . Off-axis radiation leads to
more complex expressions.

2.5.2 Angular and angle integrated spectral flux

The angular spectral flux dφ

dΩ
(θx,θz,ω,u) at the pulsation ω close the one of

the undulator harmonics can be expressed for a filament mono-energetic beam
in the direction (θx , θz) as

dφ

dΩ
(θx,θz,ω,u) =

αIN2
u

e
|hn(θx,θz,u)|2 sinc2

(
πNu(ω−ω1)

ωn

)
(2.25)

Fig. 2.9 Transverse images
of the free electron laser
two undulators (Nu = 2x7 ,
λu = 78mm) installed on
the ACO storage ring for
different gaps at 170MeV.
The large size of the vacuum
chamber enables to observe
the different rings of the
radiation due to the off-axis
and harmonic emission

The angular spectral flux comports two terms, the “interference term” term
and the “lobe function” one. The “interference term”, varying as sinus cardi-
nal, gives the homogeneous linewidth of the radiation: the higher the num-
ber of period, the sharper the line. It depends also on the observation angle
through the resonant frequency. The “lobe function” term (hn(θx,θz,u)) de-
pends on the magnetic field characteristics. Radiation is emitted in a narrow
cone, which gets larger for higher harmonics. Off-axis radiation for a resonant
wavelength is emitted at higher wavelength, as seen in the images shown in
Fig. 2.9. The resonant wavelength is emitted in the center, with larger ring for
longer wavelengths (such as the red ring). Further blue rings correspond to the
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off-axis emission of the successive harmonics. The black holes in the ring are
related to the form factor. When the gap is opened, the deflection parameter
is lowered, the resonant wavelength is reduced and the red off-axis emission
shifts to a larger ring size. The angle integrated spectral Φ(ω,u) flux over
angles leads on resonant harmonics to

Φ(ωn,u) =
απN
2enγ2

(
1+

K2
ux

2
+

K2
uz

2

)
|hn(0,0)u|2 (2.26)

and close to the resonant harmonic to

Φ(ω ′n,u) =
απN
enγ2

(
1+

K2
ux

2
+

K2
uz

2

)
|hn(0,0)u|2 (2.27)

corresponding to a flux twice larger than for the resonant frequency. The flux
does not depend on the electron beam energy, even though, for a given spectral
range, the value of the energy determines that of the K value.

2.5.3 Divergence and beam size

The divergence can be evaluated considering the angular spectral flux. In
the approximation of small angles and large number of periods, it comes

Hn(0,0,ω) = Nu ∑
∞
n=1(−1)n(Nu−1)hn(0,0)sinc(Γ ) with Γ = πn(θ2

x +θ2
z )Lu

λ1
+

πNu(λ1/λ − n) and Lu the length of the undulator. For a given harmonic,
the photon spatial distribution depends on the energy as illustrated in Fig.
2.10. In the case of the first harmonic Fig. 2.10(a-c), for a photon wavelength
smaller than the resonant one (blue side of the spectrum), the cone presents a
smooth distribution with the smallest divergence, but with less flux. At reso-
nant wavelength, the distribution is larger and presents a flat-top, with a larger
intensity. For wavelength larger than the resonant wavelength (red side of the
spectrum), the radiation is emitted in a ring, corresponding to the particu-
lar cone of emission. It is not Gaussian. Divergence is then larger. Cuts of
the images Fig. 2.10(a-c) are given in Fig. 2.10g, illustrating clearly that the
distribution is far from being Gaussian. The ring thickness comes from the
electron beam contribution, the higher the harmonic, the thicker the ring as
shown in Fig. 2.10(d-f). The separated contributions of the energy spread and
of the emittance are shown in Fig. 2.11. Both are smearing out the structure,
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indeed because the considered radiation is in the hard x-ray. Structures can
be better kept with the thick beam contribution for undulators emitting in the
VUV.

Fig. 2.10 Angular flux calculated with SRW at 20m from the source through a 250 µm
squared aperture in the case of planar undulator: λu = 2 cm, Nu = 100 , Ku = 1.81 (corre-
sponding to Sm2Co17 magnets with vanadium/permendur poles). Beam parameters: E =
2.75GeV, I = 400mA σγ = 0.1% , εx = 4 nm.rad, εz = 40 pm.rad. (a-d) First , (e) fifth, and
(f) eleventh harmonics. a H1 low energy side 1.465 keV, b H1 resonant energy 1.47 keV,
cH1 high energy side 1.472 keV in a 0.5 eV resolution. d H1 1.465 keV, e H5 7.38 keV,
f H11 16.35 keV, g horizontal cuts of images (a-c)

The divergence can be properly calculated with the rms value of the distrib-
ution. For practical reasons, the divergence of the resonant radiation Σ ′ph can
be fitted and provides an estimation of the undulator divergence as

Σ
′
ph = 0.69

√
λn

2L
=

0.69
2γ

√√√√(1+ K2
ux
2 + K2

uz
2

)
nN

(2.28)

The higher the number of periods, the smaller the divergence. The expression
does not contain all the proper information for an exact evaluation of the trans-
port in the beamline. One can however perform the fit for an energy where the
flux is twice larger, what modifies the numerical coefficient of the expression.

The photon undulator beam size can be conceived as the source point
which can be imaged by a lens with an observation plane which is a conjugate
to the undulator center. The expression can be derived as
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Fig. 2.11 Spectral flux calculated with SRW on H1 (a-d) at 1.47 keV in 10 eV and on H5
(e-h) at 7.4 keV in 10 eV at 20m from the source through a 250 µm squared aperture for
a planar undulator (λu = 2 cm, Nu = 100 , Ku = 1.81) at E = 2.75GeV, I = 400mA for
various beam parameters: (a,e) σγ = 0 , εx = εz = 0 pm.rad; (b,f) σγ = 0 , εx = 4 nm.rad,
εz = 40 pm.rad; (c,g) σγ = 0.1% , εx = εz = 0 pm.rad; (d, h) σγ = 0.1% , εx = 4 nm.rad,
εz = 40 pm.rad
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Instead of properly calculating the rms value of the distribution, a fit for the
resonant wavelength distribution with a Gaussian provides an estimation of
the sources size

Σph = 2.74
√

λnL/4π =
1.89λu

4πγ

√√√√N
2

(
1+ K2
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2 + K2
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2

)
nN

. (2.30)
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2.6 Undulator technology

The requirements for the insertion devices depend on the accelerator type.
Multi-turn recirculating vacuum chambers should be rather wide, especially
in the horizontal dimensions for accelerators such as storage rings for syn-
chrotron radiation because of the beam excursion during injection, leading to a
flat vacuum chamber. In contrast, single or few pass accelerator such as Linac,
Energy Recovery Linac or LWFA enable small aperture cylindrical vacuum
chamber, enabling to add magnetic material on the sides. Again, because of
recirculation, multipolar terms can be critical for storage rings for lifetime and
beam injection efficiency. A small value of the phase error enables operation
on the undulator harmonics, especially on third generation storage rings of in-
termediate energy. It is then less critical for a FEL application where operation
takes place mainly on the fundamental wavelength and its first harmonics. Im-
pedance restrictions result from extremely short bunches, vacuum chambers
type (size, roughness, discontinuity) and number of turns. Using permanent
magnets for undulator fabrication [95, 57] enables to provide a steady-state
magnetic field, with extremely low operating cost. Poles are added to enhance
the peak magnetic field for a given period.

To reach a higher magnetic field, the physical limitation of the magnetic
gap due to the vacuum chamber is eliminated by the mounting beams sup-
porting the magnet arrays inside the vacuum chamber for in-vacuum undula-
tors. To avoid demagnetization, proper grades of magnets should be selected,
compromising between the value of the remanent field Br and the coercitivty
Hc j: either Sm2Co17 (Br 6 1.05 T, µHc j = 2.8 T) or Nd2Fe14B (Br 6 1.25 T,
Hc j = 2.4 T) whereas for out-of-vacuum devices, grades with larger fields can
be used (Br = 1.4 T, µHc j = 1.5 T). In addition, machine protection to avoid
beam losses on the magnets requires a proper setting of the scraper values.
After a first prototype built at BESSY [58], in-vacuum undulators were ac-
tively developed in Japan. A first undulator with 90 periods of 40mm, using
Nd2Fe14B magnets (Br = 1.2 T, iHc = 21 kOe) has been installed on TRIS-
TAN [59] and operated with a minimum gap 10mm, leading to a field of
0.82-0.36 T . Equipped with NEG and sputter ion pumps, a magnet stabiliza-
tion at 125◦ C enabled vacuum commissioning at 115◦ C. In-vacuum undula-
tors were then actively built at SPring-8, where a 30m long in-vacuum undu-
lator made of different segments (with 780 periods of 32mm, a 12mm gap,
a peak field of 0.59 T) has been installed [60, 61]. The very fine adjustments
of the gap segments enabled to reduce the phase error (qualifying the period
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interfering merit) from 11◦ to 3.6◦. A revolver in-vacuum undulator comport-
ing four rotating undulators (133 periods of 6mm, 100 periods of 10mm, 66
periods of 15mm, 50 periods of 20mm providing respectively a field of 0.74,
1.07, 1.32, 1.44 T for a gap of 3.2mm) [62] has been built by the SPring-8
group and installed on Pohang Light Source [63]. Placing directly the magnet
arrays inside the vacuum introduces some impedance issues, for keeping it as
smooth as possible. The RF transition can comport different fingers in a grid-
type arrangement, with cooling water in a spring-type pipe enabling flexibility
for the gap change, flexible Cu plates with crenels or flexible plates. Besides,
power deposition resulting from the electron beam image current, the heat
load due to the wakefields [64], and up-stream synchrotron radiation implies
to install a liner, i.e. a conductive foil, on the magnet arrays to prevent from
degradation of the magnets. Some liner degradation has been observed, such
as for the first in-vacuum installed at ESRF [65] with a stainless steel foil led
to a local heating and ablation, and a 0.5% magnet demagnetization. Practi-
cally, outgassing and beam loss on the stored beam appear, liner degradation
can be diagnosed with bumps.

Cooling down rare earth based permanent magnets Pr2Fe14B enables to
increase the remanent field by 10% and the coercivity by a factor of 3 [67].
Whereas Nd2Fe14B cannot be operated below 130K because of the appear-
ance of the spin reorientation transition (SRT) [68] requiring the cryogenic
undulator to be cooled down to the liquid nitrogen temperature and heated
back to the working temperature to 140K, Pr2Fe14B based undulators can be
directly cooled and operated at 77K because of the absence of the SRT, with-
out thermal resistances. Cryogenic Permanent Magnet Undulator have been
proposed and tested at SPring-8 [69] with a prototype built with Nd2Fe14B
permanent magnet at cryogenic temperature. Full scale installed Nd2Fe14B
cryogenic undulators have been built at ESRF [70], at SLS [71] and DIA-
MOND [72]. Pr2Fe14B cryogenic prototypes have been built at NSLS-II [73],
SOLEIL [67], BESSY [74]. A full scale Pr2Fe14B cryogenic undulator has
been built and installed at SOLEIL [75]. The gap opening due to the contrac-
tion of the supporting rods at low temperature, the period reduction due to
the girder contraction and the phase error should be compensated. Compared
to an in-vacuum undulator of equivalent spectral range (i.e. same deflection
parameter), the flux is enhanced thanks to the field increase and to additional
periods for a given total length (a smaller period leads to the same deflection
parameter).

Electromagnetic undulators consisting of alternated poles are also widely
used. In particular, room temperature electromagnetic undulators enable flex-
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ible control of the different field components and of the polarization as de-
scribed in the following section. Superconducting undulators are also rapidly
developing. After first systems such as the one installed on ACO [76], re-
search and development rapidly progressed [77], with achieved 0.69 T (7mm
gap, 15mm period) [78], 0.81 T (14mm period, 4mm gap) on a small scale
device, and 1.15 T (11.5mm period, 5.85mm gap) on a 1.74m device [79].
Use of high temperature superconductors is also under way [80]. Besides,
combined permanent magnet undulator with high temperature superconduct-
ing coils, as proposed and tested in SPring-8 [81] enables the field for a U15
undulator at 5.5mm to grow by 7% with coils at 77K and 22% with coils at
40K. The proposed adaptive gap undulator concept [82], satisfying the stay-
clear and impedance constraints with segments of different periods, leads to a
flux enhancement of typically 10%.

Usually, magnetic measurements are performed with conventional bench
based on the displacement of magnetic sensor (Hall probes, rotating coils) by
an actuation stage of high precision, requiring to remove the magnet arrays for
the installation of the vacuum chamber. Stretched and pulse wire techniques
are also currently used. More recently, direct in-vacuum measurements with
calibration of the Hall probe at low temperature and feedback on the position
have been developed, such as SAFALI for the SACLA Free Electron Laser
undulator segments of 5m each [66].

2.7 Polarization from insertion devices

Polarization can be decomposed on unit vectors: ux (uz) for the horizontal
(vertical) linear one, uux45 (uux135) linear one at 45◦ (135◦), circular right as
ur = (ux + iuz)/

√
2 and left as ul = (ux − iuz)/

√
2 . In complex notation,

an i multiplication correspond to a π/2 dephasing. On an orthogonal ba-
sis decomposition, Stockes parameters are defined as s0 = Φ(ux)+ Φ(uz) ,
s1 = Φ(ux)−Φ(uz) , s2 = Φ(uux45)+Φ(ux135) , s3 = Φ(ur)−Φ(ul) . Polar-
ization rates are defined as the Stockes components normalized with respect
to the total intensity as

I1 =
s1
s0

I2 =
s2
s0

I3 =
s3
s0

(2.31)

For a mono-energetic filament electron beam with on-axis observation, one
gets: I1 = ra2−1

ra2+1 , I2 = 2ra×cosϕ

ra2+1 , I3 = 2ra×sinϕ

ra2+1 with ra = Bux
Buz

.
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Fig. 2.12 Sketch of an APPLE-I undulator

In case of planar undulators (for example, with a vertical field), the par-
ticles execute an oscillating trajectory in the horizontal plane, leading to a
horizontal polarization of the radiation. Using two crossed planar undulators
[83, 84, 85, 86] generating perpendicular magnetic fields is the simplest way
for producing elliptically polarized radiation with insertion devices. The phase
between vertical and horizontal field components, hence the polarization, is
modified by sliding longitudinally an undulator with respect to the other. For
permanent magnet based systems, further magnetic designs embedded in one
single undulator carriage have been proposed and tested. One of the most pop-
ular is the APPLE-II undulator (Advanced Planar Polarized Light Emitter-II)
[87, 88, 89, 90, 91, 92], for which each jaw comports two rows of perma-
nent magnets arrays above and below the electron beam in Halbach configura-
tion. Each row is composed of a succession of pure permanent magnet blocks
magnetized along vertical or longitudinal axis. APPLE-I undulator, first pro-
posed [99] (see Fig. 2.12), differs fromAPPLE-II one as vertically magnetized
blocks magnetization axis is tilted from 45◦. The APPLE-III undulator [100],
with vertically magnetized blocks magnetization tilted from 45◦ as for the
APPLE-I, comports a special magnet shape capable of accepting a round bore
vacuum chamber at a lower magnetic gap (down to 5.5mm), ideal for single
pass machines. Besides, elliptically polarized undulators (EPU) with various
magnet arrangements have been proposed and built, such as Helios [96, 97],
or a “fixed circular polarization device” [98], a 6-arrays device [101, 102].
Using Dup,Ddown for the phase shift of one given magnet array, the APPLE
magnetic fields can be expressed asBux = Bux1

[
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s
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with, Bux1 (resp. Buz1), the vertical (resp. horizontal) peak field value gener-
ated by a single row. For circular polarization Dup = Ddown = D0 (The phase
ϕ in Table 2.1 being 2πD0

λu
), magnetic components becomeBux = 4Bux1 cos

(
π+D0

2

)
sin
(
2π

λu
s+ π+D0

2

)
Buz = 4Buz1 cos

(
D0
2

)
sin
(
2π

λu
s+ D0

2

) (2.33)

For linear polarization, either horizontal or vertical Dup = −Ddown = D0 ,
magnetic components are then reduced toBux = 2Bux1 sin

(
π+D0

2

)
(1− cos(D0))

Buz = 2Buz1 sin
(

π+D0
2

)
(1+ cos(D0))

(2.34)

Fig. 2.13 APPLE peak magnetic field computed with RADIA [94] for 30mm square
Nd2Fe14B magnets with a remnant magnetization of 1.26 T for a 15.5mm gap, in linear
(• vertical, � horizontal fields) and circular (◦ vertical, � horizontal fields) polarizations. a
APPLE II case: Bz = 0.4 T, Bx = 0.23 T. b APPLE III case: Bz = 0.315 T, Bx = 0.185 T. c
APPLE I case: Bz = 0.43 T, Bx = 0.2 T. For the same gap of 15.5mm and magnet parame-
ters, HELIOS fields [96] are Bz = 0.17 T, Bx = 0.12 T and “fixed device” [98] Bz = 0.13 T,
Bx = 0.21 T.

Fig. 2.14 APPLE linear (•) and circular (◦) polarization rate computed with SRW for the
case of Fig. 2.12: a APPLE II, b APPLE III, c APPLE I for a photon energy of 1.5 keV.



78 Marie-Emmanuelle Couprie and Mathieu Valléau

The magnetic field amplitude can be adjusted by changing the gap between
upper and lower jaws (constituted of two rows) whatever the polarization pro-
duced. Diagonally opposed rows can be moved longitudinally in order to
produce vertical field at 0mm shift and horizontal one at ±λ

2 mm (see Fig.
2.13). Helical polarization results from moving diagonally opposed rows of
the same quantity in parallel. Tilting the direction of the linear polarization
from linear horizontal to vertical comes in shifting two diagonally opposed
arrays by the same value but with opposite signs. Compared to an APPLE-II
device, APPLE-I provides a slightly higher vertical magnetic field (+7.5%)
but the horizontal component is decreased (−13%). With same block sizes,
APPLE-III fields at the same gap value are decreased due to a chamfer close
to the magnetic axis on magnet blocks. They can however reach higher fields
at lower gaps.

The polarization rates derived from Stokes parameters calculated with
SRW [93] for the different APPLE undulators as a function of the shift for
each mode are compared in Fig. 2.14. The circular polarization is only a par-
ticular case of the helical configuration where field components in both plane
have the same amplitude and shifted by λ

4 mm. The linear one is equal to 1
(resp. -1) for an horizontal polarization (resp. vertical) and 0 when the circular
one is maximal. Compared to the APPLE-II, the APPLE-I circular polariza-
tion rate curve becomes asymmetric and the linear one is equal to zero for
a higher shift value. The maximal linear rate of APPLE-III differs from 1,
due to the non-zero residual field of the minor magnetic component. Photon
density transverse distributions are illustrated in the APPLE-II case for the
various polarizations in Fig. 2.15.

Fig. 2.15 Transverse density generated in circular polarization (II , Dup = φ , Ddown = φ ),
linear tilted 45◦ polarization (X-1 , Dup =−φ , Ddown = φ ), and linear tilted 135◦ polariza-
tion (X-2 , Dup = φ , Ddown =−φ ) for a photon energy of 1.5 keV. Case of Fig. 2.13
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Recently, a new kind of device [103], called DELTA, inspired from the first
elliptical undulator has successfully been built. Instead of using a rectangular
magnet shape, it uses a triangular one, enabling to lower the magnetic gap
(down to 5.5mm, Fig. 2.16). The major advantage, its compactness, permits
to encapsulate the whole undulator in a small vacuum chamber. Nevertheless,
its exploitation on a storage ring is difficult due the low gap and the absence of
motorization for gap movements. However, it is very useful on FEL machines
or energy recovery linacs.

Fig. 2.16 a Sketch of DELTA undulator using triangular shape. b Peak value of the mag-
netic fields versus phase. APPLE III (� for 15.5mm gap, ♦ for 5.5mm gap) and DELTA
(Nd2Fe14B magnets with a remnant magnetization of 1.26 T, N for 15.5mm gap, 4 for
5.5mm gap).

Quasi-periodic EPU can be applied to APPLE-II [104] or to the so-called
Figure-8 [106, 105], for out-of-vacuum and in-vacuum versions.

Electromagnetic technology with [107] or without poles [108] suits well
for the fabrication of rather long period EPU, providing the possibility of
any type of polarization or aperiodicity. Analogue feedforward ensures the
synchronization of the main and corrector power supplies, enabling for the
transient orbit deviations to be canceled.

Combining electromagnets and permanent magnets provides a fast switch-
ing of the polarization from circular right to circular left and vice versa as
installed at NSLS [109] and at ESRF [110]. Real-time synchronization is nec-
essary to ensure a proper compensation of the Eddy currents. For short peri-
ods, conventional coils have been replaced by copper sheets alternated with
cooled copper ones [111, 112, 113]. The ElectroMagnetic Permanent magnet
Helical Undulator (EMPHU) developed in such a way at SOLEIL [114] em-
ploys three series of coils for independent compensations of the field integral,
the exit position and the photon emission direction: after static corrections,
dynamical corrections without and with the vacuum chamber are measured
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thanks to the analysis of the pulse response, so that tables prepared in the
magnetic measurement laboratory are directly applied for the undulator com-
missioning, leading to typical less than 10 µm residual close orbit distortion.

Specific wiggler design also enable to produce various polarizations. For
example, with peak positive and negative fields of the different amplitudes
[116], polarization can be selected by modification of the position of the an-
alyzing slit. Crossed wigglers with a π/2 dephasing generate different polar-
ization according to the vertical observation angle [117].

2.8 Temporally coherent synchrotron radiation

Longitudinal coherence for which electrons emit in phase can occur either if
the electron bunch length is small with respect to the considered wavelength
of emission, or if a modulation is imprinted on the electron bunch, such as in
the free electron laser process.

Coherent synchrotron radiation (CSR) [118] results from in-phase emis-
sion of electrons, with a bandwidth related to the longitudinal shape of the
bunch. For CSR in the THz range, correlation between electron radiations is
achieved either by imprinting a modulation on the electron bunch profile with
an external laser [120, 121], or by modifying the electron-bunch length so
that its length becomes shorter than the THz wavelength [119, 122, 123, 124].
Bunches with structures induced by short or modulated laser pulses enable to
reach higher THz frequencies, but with a rather low repetition rate (kHz).

With a FEL, the generated radiation is not only based on the spontaneous
synchrotron radiation emitted in the undulator: a wavelength λ light wave in-
teracts with the electron bunch in the undulator, inducing an energy modula-
tion of the electrons which is gradually transformed into density modulation at
λ and leads to a coherent radiation emission at λ and λ/n , n being an integer
(fundamental and harmonics) [52]. The laser tunability, one of the major ad-
vantages of FEL sources, is obtained by merely modifying the magnetic field
of the undulator in a given spectral range set by the electron beam energy. The
polarization depends on the undulator configuration. The small signal gain is
proportional to the electronic density and varies as 1/γ3 , depending on the
undulator length. Operation at short wavelengths requires high beam energies
for reaching the resonant wavelength, and thus long undulators (0.1–1 km for
0.1 nm) and high electron beam density (small emittance and short bunches)
for ensuring a sufficient gain. On single pass FEL, transverse coherence re-
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Fig. 2.17 FEL configurations: a oscillator case with an optical cavity enabling to store
the spontaneous emission (insert with the energy exchange between the electron and the
radiation leading to density modulation), b Self amplified spontaneous emission (SASE)
where the spontaneous emission emitted in the beginning of the undulator is amplified in
one single pass, c seeding, where a coherent source tuned on the resonant wavelength of the
undulator enables to perform efficiently the energy echange leading further to the density
modulation, d high gain harmonic generation, e echo enable harmonic generation (EEHG).

sults from the electron beam emittance (which should be of the order of the
emitted wavelength) and from possible gain guiding. FELs can be declined in
different configurations. In the oscillator mode [126, 127], the laser field, start-
ing from synchrotron radiation, is stored in an optical cavity (see Fig. 2.17a),
enabling interaction with the optical wave on many passes. FEL oscillators
cover a spectral range from the THz to the VUV, where mirrors are available.
After the theoretical prediction of the FEL concept in 1971, the first IR FEL
was achieved in 1977 on the MARK-III linac (Stanford, USA) in the oscilla-
tor configuration. ACO (Orsay, France) [128] provided the second worldwide
FEL (first visible radiation) in 1983 and first FEL based harmonic generation
[129] in the UV and VUV [130], followed by results on the SuperACO FEL
(Orsay, France) [131]. First FEL applications started in the infrared and in the
UV-FELs in biology [132, 133] and surface science [134] in 1993. Various
FEL oscillators were then built down to 190 nm [135].

Because of the limited performance of mirrors, short wavelength FEL are
usually operated in the so-called self amplified spontaneous emission (SASE)
(see Fig. 2.17b) setup [136, 138, 137], where the spontaneous emission at the
input of the FEL amplifier is amplified, typically up to saturation in a single
pass after a regime of exponential growth. Once the saturation is reached, the
amplification process is replaced by a cyclic energy exchange between the
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electrons and the radiated field. The uncorrelated trains of radiation, which
result from the interaction of electrons progressing jointly with the previously
emitted spontaneous radiation, lead to spiky longitudinal and temporal distri-
butions, apart from single spike operation for low charge short bunch regime
[139, 140]. The emission usually presents poor longitudinal coherence prop-
erties. Thanks to recent accelerator advances (high peak current, small energy
spread, low emittance) and long undulator linac based single pass SASE FEL
are blooming worldwide. They now provide tuneable coherent sub-ps pulses
in the UV/x-ray region, with record peak powers (MW to GW ) and a sub-
stantial gain in peak and average brilliance. After LEULT (Argonne, USA) in
the VUV [141], FLASH (Germany) [142] (30–4.5 nm), SCSS Test Acceler-
ator (Japan, 40–60 nm) [143] operate for users. In the angström region, the
first tuneable fs x-ray FELs at 0.15 nm achieved at the Linear Coherent Light
Source (LCLS, Stanford, USA, 2mJ, 14GeV) in 2009 [144, 145] and down
to 0.12 nm since June 2011 in SACLA (Japan, 8GeV) [146] constitute the
brightest x-ray beams ever produced on earth and has been already used by
scientists. European XFEL [147], the Korean XFEL and the SwissFEL are
expected soon. Presently, no conventional laser can compete with the perfor-
mance of LCLS or SACLA. These x-ray FELs, of a typical km length, use
more than 100m of undulators. Fifty years after the laser discovery [148],
the emergence of several mJ x-ray lasers for users in the angström range con-
stitutes a major breakthrough. The recent advent of tunable coherent x-ray
FELs (XFELs) [149] opened a new era for the investigation of matter. They
enable to decrypt the structure of biomolecules and cells [150, 151, 152],
to provide novel insight in the electronic structure of atoms and molecules
[153, 154, 155, 156], to observe non-equilibrium nuclear motion, disordered
media and distorted crystal lattices, thanks to recent progress of fs spec-
troscopy [157] and pump-probe techniques [158]. Detailed structural dynam-
ics can be inferred from spectroscopic signatures [161]. XFELs can also reveal
chemical reactions movies. With new imaging techniques [159, 160], they are
exceptional tools for the investigation of ultrafast evolution of the electronic
structure and provide a deeper insight in the extreme states of matter [162].
Higher availability of x-ray pulses with stable energy, synchronized to an ex-
ternal pump laser, enabling jitter-free optical pump/resonant x-ray probe ex-
periments will enable to step further.

For suppressing the spikes, improving the longitudinal coherence, reducing
the intensity fluctuations and the jitter, a typical strategy consists in seeding
the FEL amplifier using an external seed that possesses the required coher-
ence properties [163] [164] (see Fig. 2.17c). Saturation is also more rapidly
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reached than in the SASE case, which makes the system more compact. The
seed can be an external laser wave or a short wavelength coherent light source,
such as High order Harmonics generated in Gas (HHG) [165, 166], injected
in order to interact with the electron beam in the undulator. HHG seeding
has been first performed on SCSS Test Accelerator at 160 nm [167] and at
60 nm [168], at SPARC [172] with cascading demonstration and at 30 nm at
s-FLASH [173]. In the high gain harmonic generation scheme (HGHG) [169]
(see Fig. 2.17d), an injected laser source induces the modulation in density of
the electron bunch in the first undulator. The radiation is produced in the sec-
ond undulator tuned on the fundamental or harmonic (cascade scheme) [170]
of the injected wavelength. Tunability can be achieved on the injection source
coupled to a gap change [174] or by applying a chirp (frequency drift) both
on the seed and on the electron bunch [174]. Coherent nonlinear harmonics of
the fundamental wavelength are also generated. FEL pulse temporal and spec-
tral distributions result from the seed itself and the FEL intrinsic dynamics. In
particular cases, super-radiant modes exhibit further pulse duration narrowing
and intensity increase [171]. Self-seeding [176] suits better the hard x-ray do-
main: a monochromator installed after the first undulator spectrally cleans the
radiation before the last amplification in the final undulator. Recently, self-
seeding with the spectral cleaning of the SASE radiation in a crystal mono-
chromator [177] appears to be very promising with the first results [178, 179].
At shorter wavelengths (89 nm), seeded FELs found first applications in mole-
cular physics [180]. FERMI@ELETTRA (Italy) is the only seeded FEL user
facility, using a conventional laser as a seed [181]. In the Echo Enabled Har-
monic Generation [182] (EEHG) scheme (see Fig. 2.17e), without equivalent
in classical optics, two successive laser-electron interactions are performed,
using two undulators, in order to imprint a sheet-like structure in phase space.
As a result, higher order harmonics can be obtained in an extraordinary ef-
ficient way. EEHG opens the way to shorter wavelengths when operating on
a high order harmonic of the seed wavelength. Experimentally demonstrated
so far in the UV experiment on the Next Linear Collider Test Accelerator
(ECHO7) at SLAC [183] and on the Shanghai FEL Test Facility [184], it con-
stitutes a breakthrough in up-frequency conversion from a conceptual point
of view, and in terms of compactness and pulse properties (e.g., duration and
wavelengths). Schemes derived from EEHG such as the Triple Mode Chicane
open perspectives for very short wavelength (nm) and short duration at mod-
erate cost [185].

One path towards the fifth generation (5G) is to replace the conventional
linac by a LWFA, which provides GV/m of acceleration with very short
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bunches [190] with GeV electron beams. Using electron beams with the
presently achieved performance in terms of energy spread and divergence
however does not lead to direct FEL amplification whereas spontaneous emis-
sion from undulators has been observed [191, 192]. Experiments are under
way in various places [187, 188, 189]. LWFA beams provide in longitudi-
nal, short bunch duration and large relative energy spread and in transverse,
large divergence and micrometer size. The large divergence can be handled by
strong quadrupoles located very close to the electron source [193]. Electron
beam manipulation by chicane decompression [194] or by the use of trans-
verse gradient undulator [196] suggest that significant amplification with the
present LWFA performance has become possible.
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and former collaborators O. Chubar and C. Kitégi.
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75. C. Benabderrahmane, P. Berteaud, N. Béchu, L. Chapuis, M.-E. Couprie, J.-P. Da-
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G. Indlekofer, M. Billardon, A. Taleb-Ibrahimi, Phys. Lett. 70, 895 (1997)

135. M. Marsi, M. Trovo, R. P. Walker, L. Giannessi, G. Dattoli, A. Gatto, N. Kaiser, S.
Gunster, D. Ristau, M.-E. Couprie, D. Garzella, J. A. Clarke, M.W. Poole, Appl. Phys.
Lett. 80, 2851 (2002)

136. R. Bonifacio, C. Pellegrini, and L.M. Narducci, Optics Comm. 50, 373 (1984)
137. K.J. Kim, Phys. Rev. Lett. 15, 1871 (1986)
138. A.M. Kondratenko, E.L. Saldin, Part. Accel. 10, 207 (1986)
139. Y. Din, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich,

G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn,
D. Ratner, J. Turner, J. Welch, W. White, and J. Wu, Phys. Rev. Lett. 102, 254801
(2009)

140. E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Opt. Comm. 148, 383 (1998)
141. V. Milton, E. Gluskin, N.D. Arnold, C. Benson, W. Berg, S.G. Biedron, M. Bor-

land, Y.-C. Chae, R.J. Dejus, Den P.K. den Hartog, B. Deriy, M. Erdmann, Y.I. Ei-
delman, M.W. Hahne, Z. Huang, K.-J. Kim, J.W. Lewellen, Y. Li, A.H. Lumpkin,
O. Makarov, E.R. Moog, A. Massiri, V. Sajaev, R. Soliday, B.J. Tieman, E.M. Trakht-
enberg, G. Travish, I.B. Vasserman, N.A. Vinokurov, X.J. Wang, G. Wiemerslage, and
B.X. Yang, Science 292, 2037 (2001)

142. W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, N. Baboi, J. Bähr, V. Balandin,
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D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller,
F. Schopper, H. Soltau, K.-U. K”uhnel, M. Messerschmidt, J.-D. Bozek, S.P. Hau-
Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Ha-
jdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda,
S. Stern, K. Nass, R. Andritschke, C.D. Schröter, F. Krasniqi, M. Bott, K.E. Schmidt,
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M. Hoener, Y.H. Jiang, P. Johnsson, E.T. Kennedy, M. Meyer, R. Moshammer, P. Rad-
cliffe, M. Richter, A. Rouzée, A. Rudenko, A.A. Sorokin, K. Tiedtke, K. Ueda, J. Ull-
rich, and M.J.J. Vrakking, J. Mod. Optics 57, 1015 (2010)

155. G. Doumy, C. Roedig, S.-K. Son, C.I. Blaga, A.D. DiChiara, R. Santra, N. Berrah,
C. Bostedt, J.D. Bozek, P.H. Bucksbaum, J.P. Cryan, L. Fang, S. Ghimire, J.M. Glow-
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M. E. Couprie, L. Cultrera, M. Del Franco, G. Di Pirro, A. Drago, M. Ferrario,
D. Filippetto, F. Frassetto, A. Gallo, D. Garzella, G. Gatti, L. Giannessi, G. Lambert,
A. Mostacci, A. Petralia, V. Petrillo, L. Poletto, M. Quattromini, J.V. Rau, C. Ronsi-
valle, E. Sabia, M. Serluca, I. Spassovsky, V. Surrenti, C. Vaccarezza, and C. Vicario,
Phys. Rev. Lett. 107, 224801 (2011)

173. C. Lechner, Ackermann, A. Boedewadt Azima, M. Drescher, E. Hass, U. Hipp,
T. Mitchev Matzezopoulos, M. Mittenzwey, M. Redhers, J. Roensch, J. Rossbach,



2 Synchrotron radiation, polarization, devices and new sources 93

R. Tarkeshian, M. Wieland, S. Khan, S. Bajt, S. Düsterer, K. Honkavaara, T. Laar-
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Chapter 3
Theoretical Basis of Photon Spectroscopies

Massimo Altarelli

Abstract The theoretical basis of x-ray spectroscopies most commonly used
in the investigation of magnetic systems is reviewed. A systematic derivation
of the cross sections of the different processes (elastic and inelastic, reso-
nant and non-resonant scattering, absorption spectroscopies and dichroism) is
attempted, emphasizing the conceptual common aspects of these techniques
and, at the same time, the variety of information that they deliver.

3.1 Introduction

The purpose of this article is to review the basic aspects of photon spectro-
scopies, with special emphasis on the techniques that find widespread appli-
cation to magnetic systems. Our aim is to give a pedagogical presentation, by
providing a step-by-step guide through the sometimes elaborate calculations
of the relevant scattering amplitudes and cross sections.

Crystallographers have used x-ray diffraction for almost one hundred
years, as a tool for the determination of crystal structures. A particularly im-
portant development of more recent years was the realization that the scat-
tering of polarized x-rays can deliver information not only on the electron
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density distribution, but also on the distribution of magnetic moments. Al-
though the application of magnetic x-ray scattering has only recently become
popular, thanks to the development of modern synchrotron light sources, the
coupling between photons and magnetic moments is predicted by quantum
electrodynamics, and in fact it was described as early as 1954 by Low [1]
and Gell-Mann and Goldberger [2] in their derivations of the low-energy limit
of the Compton cross section. Later, Platzman and Tzoar [3] pointed out the
possibility to use this effect to investigate magnetic structures.

Due to the very small cross section, it was not until 1981, however, that
the first magnetic scattering experiment was carried out by de Bergevin and
Brunel [4] on NiO, demonstrating the basic features of non-resonant scatter-
ing. The truly heroic apects of this first experiment performed with an x-ray
tube were later alleviated by the advent of synchrotron sources, and exper-
iments were performed to take advantage of the attractive features of x-ray
magnetic scattering, as compared to neutron scattering, i.e. the very high mo-
mentum resolution and the possibility of a separate determination of the spin
and of the orbital contributions to the magnetic moment by the different po-
larization dependence.

A further important step forward was the discovery that in the anomalous
or resonant region (when the x-ray photon energy is close to an absorption
edge of one of the atomic species of the sample), the scattering amplitude
often displays a strong dependence on the polarization of the incoming and
scattered beams. This is formally translated in the description of the atomic
scattering amplitude as a tensor (rather than as a scalar) quantity, with impor-
tant consequences for the selection rules for the diffracted beams [5, 6].

The particular significance of the resonant scattering for magnetism stud-
ies was realized in 1988, with the discovery by Gibbs et al. [7] of resonant
magnetic scattering (also called resonant exchange scattering), i.e. of an en-
hancement of several orders of magnitude of the magnetic scattering intensity
when the photon energy is close to an absorption edge of the material. A very
large number of studies in rare earth, actinide and transition metal systems
followed. Although the price to pay for the resonant enhancement is the loss
of a direct interpretation of the scattering intensity in terms of spin and or-
bital magnetic structure factors, many experiments followed, and contributed
to clarify many issues on the electronic structure of magnetic materials: as we
shall see, the selection rules for optical transitions make the resonant process
sensitive to electronic states with specific orbital character, and enhance their
contribution to the magnetic properties.
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This last remark leads naturally to another recent development, the ex-
ploitation of the sensitivity of resonant scattering not only to charge and mag-
netic order, but also to orbital order, because the atomic scattering amplitude
can vary substantially depending on the occupation of selected spin or orbital
states and therefore on their availability to serve as intermediate states in the
second order scattering process.

Modern x-ray sources, providing high brilliance and controlled polariza-
tion, allowed two more techniques to acquire paramount importance: on the
one hand the use of the polarization dependence of absorption cross sections
(circular or linear dichroism); on the other, the resonant enhancement of the
scattering amplitude for inelastic scattering, which has a cross section much
smaller than the corresponding elastic process. The study of electronic, in-
cluding magnetic, excitations by resonant inelastic x-ray scattering (RIXS)
is becoming an increasingly popular technique, and great progress in energy
resolution, on the one hand, and in the interpretation of the resulting spectra,
on the other, is taking place.

The structure of the article is the following: in Section 3.2 we recall the
formalism necessary to set up the Hamiltonian for the interaction between
radiation and matter, and to develop a perturbation description of scattering
processes (in the range of radiation intensities where the perturbation ap-
proach is justifiable). In Section 3.3 the cross section for the non-resonant
case is obtained and discussed, while the resonant elastic case is treated in
Section 3.4. Section 3.5 is devoted to absorption spectroscopy, showing how
the relevant quantities are related to those for resonant scattering by the “op-
tical theorem” of scattering theory, and how their dependence on polarization
in anisotropic and magnetic systems can be derived. Finally, Section 3.6 is
devoted to a discussion of resonant inelastic scattering and of some recent ap-
plications to the study of electronic and magnetic excitations and properties.

3.2 Interaction of Radiation with Electronic Matter

A microscopic discussion of the electronic properties of matter must neces-
sarily be formulated in the language of quantum mechanics. We also need to
consider relativistic effects, if we want to consider magnetic x-ray scattering,
because quantities such as the magnetic moment associated to the electron
spin appear only in a relativistic theory, and relativistic effects such as the
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spin-orbit interaction play an essential role in determining the coupling be-
tween radiation and magnetic moments, as we shall see.

We therefore expect the reader to be familiar with basic quantum mechan-
ics and its general formalism, including some aspects of advanced topics such
as relativistic quantum mechanics and the second quantization formalism.

In discussing the scattering of electromagnetic waves on a material system
composed of electrons and nuclei, we shall follow the usual approach and
consider the Hamiltonian for the material system, plus the Hamiltonian for the
free electromagnetic field, plus an interaction term between the two systems.
As it will be clear soon, the scattering from electrons is much more intense
than the scattering from nuclei, and we shall therefore consider matter as a
system of electrons, interacting with one another and with a set of nuclei in
fixed positions, through a potential energy which can be written

V (r1, ...,rN) =
N

∑
i=1

Vnuc(ri)+ ∑
i> j

VC
(∣∣ri− r j

∣∣) (3.1)

where the first term represents the interaction with the nuclei, and in the sec-
ond the Coulomb interaction is VC(r) = e2/r . The system of electrons and
nuclei is a many-body system and, in general, not much progress is possi-
ble without suitable approximations. Although it is not indispensable for our
derivations, a self-consistent field approximation, in which the dependence of
(3.1) on the positions of all electrons is replaced by a one-electron average

V (r1, ...,rN)'
N

∑
i=1

V (ri) (3.2)

is convenient to simplify the notations and the developments. The potential
energy is the key ingredient that allows to write the Hamiltonian for the i-th
electron, which, in relativistic quantum mechanics, is the Dirac Hamiltonian
[8, 9]

Hel =
N

∑
i=1

(cα ·pi +βmc2 +V (ri)) (3.3)

where α and β are the 4×4 Dirac matrices
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α(x,y,z) =
(

0 σ(x,y,z)
σ(x,y,z) 0

)
β =

(
1 0
0 −1

)
, (3.4)

where σ(x,y,z) denotes the 2× 2 Pauli matrices and 1 the 2× 2 unit matrix;
in addition, pi is the momentum of the i-th electron. We now consider that
the processes we are interested in (scattering and energy exchanges of x-ray
photons with energies at most in the∼ 10 keV range), always involve energies
much smaller than the electron rest energy, mc2 ' 511 keV , an energy scale
that is indeed bigger than any binding energies of core levels that we want to
investigate. This authorizes us to adopt the weakly relativistic limit of (3.3),
which is considered and derived in great detail in Section 15 of [9]. To see
the basic idea, we separate the four-component Dirac spinor into an upper and
a lower two-component spinors Ψa and Ψb, so that the Dirac equation in the
stationary case

HelΨ = ih̄
∂

∂ t
Ψ = EΨ (3.5)

can be written as

c(σ ·p)Ψb = (E−mc2−V (r))Ψa = (Enr−V (r))Ψa , (3.6)
c(σ ·p)Ψa = (E +mc2−V (r))Ψb = (2mc2 +Enr−V (r))Ψb (3.7)

where we defined the non-relativistic energy Enr = E −mc2 � mc2 . From
this inequality and the structure of the two equations, one can already guess
thatΨa is much larger thanΨb. Upon substitutingΨb from the second equation
into the first

(σ ·p)
c2

2mc2 +Enr−V (r)
(σ ·p)Ψa = [Enr−V (r)]Ψa (3.8)

we can expand

c2

2mc2 +Enr−V (r)
' 1

2m
(1− Enr−V (r)

2mc2
+ . . .) (3.9)

If we retain only the first term in the expansion, we recover the non-relativistic
kinetic energy expression; including also the second gives the leading rel-
ativistic correction, of order v2/c2. In order to obtain the equation for the
two-component spinor Ψa, we must carefully handle the commutation of the
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p operators with the functions of r, and obtain, after dropping the a index (for
details, see [9, 10])[

p2

2m
− p4

8m3c2
− eh̄s · (E×p)

2m2c2
− eh̄2

8m2c2
∇ ·E

]
Ψ = Enr

Ψ , (3.10)

where the vector ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z ), and the spin operator s appearing in the
third term (representing the spin-orbit interaction) is defined as s = (1/2)σ ,
and the electric field E is the gradient of the potential energy V , divided by
the (negative) electron charge.The second term in this equation represents the
relativistic mass correction, and the last one is the so-called Darwin term, that
is different from zero where the electric field has a non-vanishing divergence.
Let us now come to the radiation field, that, on the other hand, is described by
the electric and magnetic fields E,B, which obey Maxwell’s equations [11],
and which can also be described by introducing a scalar and a vector potential,
Φ(r) and A(r, t)

B = ∇×A

E = −∇Φ− (1/c)
∂A
∂ t

. (3.11)

For given E(r) and B(r), the definition of the vector and scalar potentials is
not unique; when describing the fields of electromagnetic waves in vacuum,
we can use this freedom to chose the gauge in such a way that the scalar
potential vanishes, and the vector potential A is divergence free (∇·A = 0)
[12]. This will turn out to be a convenient choice later. An arbitrary space-
and time-dependent vector potential can be expanded in terms of plane waves,
which are characterized by a wavevector k and by one of the two polarization
modes labeled by λ . Let us write this expansion in the following form

A(r, t) = ∑k,λ

(
hc2

Ωωk

)1/2 [
eλ (k)a(k,λ )ei(k·r−ωkt)

+ e∗
λ
(k)a†(k,λ )e−i(k·r−ωkt)

]
. (3.12)

In this equation, Ω is the volume of the quantization box, and does not appear
in any physically meaningful quantity in the following, ωk is just c|k|, eλ is
the polarization vector associated to the mode λ , i.e. one of two orthogonal
unit vectors in the plane normal to k. Furthermore, in a classical description
of the field, a(k,λ ) and a†(k,λ ) are the amplitude of the corresponding mode
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of the field and its complex conjugate. However, in the language of the second
quantization formalism a and a† are operators, respectively the annihilation
and creation operators of a photon with quantum numbers (k,λ ). In this for-
malism the Hamiltonian of the field takes a very simple and appealing form

Hrad = ∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
. (3.13)

Turning now to the modifications of Hel in presence of the electromagnetic
field, we follow the usual prescription to write the Hamiltonian for the motion
of a charged particle in external electric and magnetic fields, that reproduces
the equations of motion in the electric force and in the Lorentz force: we insert
the A(ri) in the Dirac Hamiltonian as an additional term to the momentum
operator [8, 9]

H ′el =
N

∑
i=1

(
cα · [pi− (e/c)A(ri)]+βmc2 +V (ri)

)
, (3.14)

and follow the previous line of reasoning to obtain the non-relativistic limit
of (3.14), which is considered and derived in great detail in Section 15 of [9].
The resulting Hamiltonian, to order (v/c)2 is

H ′el =
N

∑
i=1

[ [pi− (e/c)A(ri)]2/(2m)

−pi4/8m3c2

+V (ri)− (eh̄/mc)si ·B

− (eh̄/2m2c2)si · (E× [pi− (e/c)A(ri)])

+ (eh̄2/8m2c2)∇ ·E
]

. (3.15)

In this equation, the first term on the r.h.s. is the usual modification of the
kinetic energy in presence of a field, the second (the relativistic mass correc-
tion) does not involve the field and is therefore not relevant to our discussion;
the fourth term is the interaction of the electron spin s = (1/2)σ with the
magnetic field of the radiation, B= ∇×A , confirming that the Dirac equation
implies that electrons have spin and a magnetic moment associated to it; the
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fifth is the spin-orbit interaction term, with the usual modification of the mo-
mentum in presence of the field; and the last, the Darwin correction, is again
independent of the radiation field, because the transversality of electromag-
netic waves (k ·E = 0 ) implies ∇ ·E = 0 , so that there is no contribution to
this term from the radiation electric field. After removing all the relativistic
corrections toH ′el which are not affected by the radiation field, we are left with
the following Hamiltonian H =H ′el +Hrad for the system of electrons and the
radiation field:

H =
N

∑
i=1

[
[pi− (e/c)A(ri)]2

2m
+V (ri)− (eh̄/mc)si ·B

−(eh̄/2m2c2)si · (E× [pi− (e/c)A(ri)])
]

+∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
. (3.16)

We are then in a position to separate all the terms mixing electron and
photon variables, that constitute the interaction Hamiltonian, Hint

H = Hel +Hrad +Hint , (3.17)

Hel =
N

∑
i=1

[
pi2

2m
+V (ri)+(eh̄/2m2c2)si · (∇V (ri)×pi)

]
, (3.18)

Hrad = ∑
k,λ

h̄ωk
(
a†(k,λ )a(k,λ )+1/2

)
, (3.19)

Hint =
N

∑
i=1

[
(e2/2mc2)A2(ri)− (e/mc)A(ri) ·pi

−(eh̄/mc)si · (∇×A(ri))
+ (eh̄/2m2c3)si · [(∂A(ri)/∂ t)× (pi− (e/c)A(ri))]

]
(3.20)

≡ H ′1 +H ′2 +H ′3 +H ′4 .

The total Hamiltonian, to the required order of relativistic corrections, is
thus split into the Hamiltonian for electronic matter, (3.18), for the radiation
field, (3.19) and the Hamiltonian describing the interaction between matter
and radiation, (3.20). In the next section, scattering processes will be de-
scribed as transitions between the eigenstates of Hel and Hrad induced by the
perturbation Hint . This can be done by regarding the A field as a classical
quantity, or alternatively and more elegantly, by considering it as an operator,
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according to the expansion (3.12) in terms of annihilation and creation oper-
ators. Before proceeding to the implementation of this program, one should
briefly explore the range of validity of the perturbation expansion. One way
to approach this question is to ask under which conditions the interaction with
the radiation fields leaves the structure of electronic energy levels and wave-
functions essentially unchanged. To this aim, we can compare the size of the
electric field experienced by an electron inside an atom with the size of the
radiation electric field. The magnitude of the atomic field has the order of
magnitude of the hydrogen atom field, that is, in atomic units, simply ∼ e/aB
where aB is the Bohr radius. This gives Eatom ∼ 5 · 109 V/cm . To compare
this with the field of radiation, let us remember that if denote by I the inten-
sity of radiation, i.e. the energy deposited on the unit surface in the unit time,
the energy density (energy per unit volume) is I/c and it equals (1/4π)E2

rms
[11]. So for a typical situation at a modern synchrotron beamline, where, say
1011× 1 keV photons per second are delivered in a 1 µm2 spot, even if we
consider the peak intensity during one of ∼ 107 pulses per second, each with
a duration of∼ 10 ps, the peak electric field is of order of∼ 105 V/cm at most.
We are therefore several order of magnitudes below the atomic field, the struc-
ture of the electronic energy levels is hardly affected and we are in a position
to describe the effect of radiation as the occurrence of transitions of the elec-
tronic system from one unperturbed eigenstate to another, that we can com-
pute by perturbation methods. However, as it has been the case for the IR and
visible region, lasers can deliver a much higher intensity than other sources.
Similarly, X-ray Free-Electron Lasers [13, 14, 15] are capable of delivering
1011 photons in one 10 fs pulse, with the same 1 µm2 focus. The correspond-
ing increase by ten orders of magnitude of the energy density leads to peak
fields of order 1010 V/cm, quite comparable or exceeding atomic fields!

In this case, which we shall however not consider any further, perturba-
tion theory is in trouble, and strong non-linear effects can be anticipated (for
evidence of such behavior in absorption experiments, see [16, 17] for the the-
oretical investigation of possible effects in scattering experiments).

3.3 Cross Section for Non-Resonant Elastic Scattering

In developing the expressions for the scattering cross section, we closely fol-
low the lucid discussion by Blume [18], warning the reader that this important
paper unfortunately contains many misprints.
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In this Section, our discussion is restricted to elastic scattering, i.e. to
processes in which the sample (the system of electrons) is in the same state
(for simplicity, let us say the ground state) before and after the scattering
event. If we consider the scattering of an incoming photon with polarization e
and wavevector k into an outgoing photon with polarization e′ and wavevector
k′ (conservation of energy implies |k|= |k′|), we can describe the initial and
final state of the system (sample plus radiation field) as

|i〉 = |0; . . . ,(e,k), . . .〉
| f 〉 = |0; . . . ,(e′,k′), . . .〉 , (3.21)

with an obvious notation labelling the ground state of the electronic system
with |0〉, and the radiation field state with the quantum numbers of the photons
present in that state.

It is then clear that the transition consists in the annihilation of one photon
(e,k), and in the creation of one photon (e′,k′). This means that the opera-
tor A, which is linear in the creation and annihilation operators, must operate
twice. Therefore the lowest order contributing processes will come from ap-
plying second order perturbation theory to H ′2 and H ′3, which contain one A
operator, and by first order perturbation theory applied to H ′1 and H ′4, which
contain two A operators. As a matter of fact, H ′4 contains two terms, respec-
tively proportional to ∂A/∂ t · p and to ∂A/∂ t · (e/c)A. However, we shall
later see that the first one produces a negligible effect, so we will drop it and
retain the second term only.

According to Fermi’s Golden Rule of time-dependent perturbation theory,
the number of transitions per unit time is proportional to

w =
(
2π

h̄

)∣∣∣∣〈 f |H ′1 +H ′4|i〉

+∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

∣∣∣∣2 δ (h̄(ωk−ωk′)) . (3.22)

In the second term, the sum over the complete set of eigenstates |n〉 of the
unperturbed Hamiltonian, Hel +Hrad appears, referred to as the sum over the
intermediate states. The calculation of the matrix elements involve both elec-
tron and photon operators and is tedious, but straightforward. For example
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〈 f |H ′1|i〉 =
(

hc2

Ωωk

)(
e2

mc2

)
∑
i
〈0;(e′,k′)|(e′∗ · e)a†(k′,e′)a(k,e)ei(k−k

′)·ri |0;(e,k)〉

=
(

hc2

Ωωk

)(
e2

mc2

)
(e′∗ · e)∑

i
〈0|ei(k−k′)·ri |0〉 , (3.23)

after taking the photon annihilation and destruction operator matrix ele-
ments according to the usual rules. In this matrix element we recognize the
Thomson scattering amplitude, with the dot product polarization dependence
and the structure factor, expressed by the ground state expectation value of
∑i ei(k−k

′)·ri . Notice also that the matrix element magnitude per electron is
controlled by the quantity r0 ≡ e2/mc2 which has the dimensions of length
and is the Thomson radius, r0 = 2.818 ·10−13 cm.

We are now in a position to confirm that the scattering from the nuclei
is negligible. In fact, to obtain the corresponding matrix element for nuclear
scattering, we should simply replace the electronic positions with the atomic
ones, and also replace e2/mc2, with Z2e2/Mc2 , where Z and M are the nu-
clear charge and mass. However, M is roughly equal to 2Zmn, where mn is the
nucleon mass, and the mass ratio mn/m is about 1850. Therefore, the scatter-
ing matrix element for a nucleus is ∼ Z/(2× 1850) times smaller than that
for an electron, and can be neglected because Z never exceeds 92. In addition,
one should also note that there are Z times more electrons than nuclei!).

3.3.1 Thomson Scattering and Crystallography

Before proceeding to the evaluation of the matrix elements deriving from the
other pieces of the interaction Hamiltonian, we briefly consider the implica-
tions of the H ′1 matrix elements. As a matter of fact, we shall later show that,
as long as the photon energy h̄ωk is not close to any of the absorption edges
of the atoms in the system, this is the dominant matrix element for the photon
scattering process. Consider for example the radiation from a Mo x-ray tube,
which allows to exploit the Kα line, with an energy of 17.4 keV. This is well
above all edges of light atoms such as Al, Si, Ca or Ti, which are below 5 keV,
and contributions other than H ′1 are negligible. In this approximation,(3.22)
simplifies to
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w =
(
2π

h̄

)∣∣〈 f |H ′1|i〉∣∣2 δ (h̄(ωk−ωk′)) . (3.24)

We are now ready to replace (3.23) into (3.24). However, this gives a number
of transitions per unit time which depends on the normalization volume. We
would rather have a physically meaningful quantity, i. e. a cross section, de-
fined as: the number of transitions per unit time, into photon states with energy
h̄ωk′ < E < h̄ωk′+dE , with wavevector k′ in the solid angle dO′, divided by
the number of incident photons per unit time and area. That is, in differential
form (

d2σ

dEdO′

)
=

wρ(E)
c/Ω

(3.25)

where ρ is the density of photon states (with specified polarization), i.e. the
number of wavevectors within dO’ satisfying periodic boundary conditions in
a box of volume Ω and h̄ωk ≤ h̄ωk′ ≤ h̄ωk +dE , i.e.

ρ(E)dEdO′ =
(

Ω

(2π)3

)(
E2

h̄3c3

)
dEdO′ (3.26)

Finally, by putting Eqs. (3.22), (3.23), and (3.25) together, and upon mul-
tiplying (3.25) by dE and integrating (remember the Dirac δ in (3.22)) we
obtain the important result(

dσ

dO′

)
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉
∣∣∣∣∣
2

(e′∗ · e)2 (3.27)

after defining (k−k′)≡ q , the scattering vector.
With reference to Fig. 3.1, define the scattering plane as that identified by

k,k′, and introduce a specific basis for the polarization vectors, eπ parallel to
the scattering plane, and eσ perpendicular to the scattering plane. Define fur-
ther the scattering angle 2θ (the factor 2 is a mere convention !) as the angle
between k,k′. It is easy to see that the polarization factor (e′∗ · e)2 forbids σ

to π transitions and viceversa, and in other cases is worth

(e′∗ · e)2 = 1 (σ → σ)
(e′∗ · e)2 = cos2(2θ) (π → π

′) . (3.28)
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Fig. 3.1 Scattering and polarization geometry

For example, if the photon source is unpolarized, we have to average over
the incoming polarizations, and we obtain(

dσ

dO′

)
=

1
2
r20
(
1+ cos2(2θ)

)
|F(q)|2 , (3.29)

where we defined
F(q) = ∑

j
〈0|eiq·r j |0〉 . (3.30)

In full generality, let the scattering object be a systemwith N electrons, with its
ground state |0〉 described by an antisymmetric wavefunctionΨ(r1,r2, ...,rN),
from which an electron density is derived as:

ρ(r) = N
∫

dr2dr3 . . .drN |Ψ(r,r2, ....,rN)|2 . (3.31)

It is then easy to see that

F(q) =
∫

dreiq·rρ(r) , (3.32)

so that the scattering cross section with scattering vector q, (3.27), is propor-
tional to the absolute square of the Fourier transform of the electron density
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at momentum q. A knowledge of the Fourier transform at all wavevectors is
of course equivalent to the knowledge of the electron density. However, much
to the crystallographers’ sorrow, we see that x-ray scattering only delivers the
absolute value of the Fourier transform. To reconstruct the electron density
one should also know the phase of each reflection, which, however, is a much
more elusive quantity.

3.3.2 Non-resonant Magnetic Scattering

We now resume the systematic exploration of (3.22), and, after dealing with
the matrix elements of H ′1, we consider the remaining terms, which contribute
exclusively to magnetic scattering.

The next task is the evaluation of 〈 f |H ′4|i〉. Remember thatH ′4 contains two
terms, respectively proportional to ∂A/∂ t ·p and to ∂A/∂ t ·(e/c)A. However,
we shall soon verify that the second order perturbation on the first term pro-
duces a contribution to the cross section which is a factor (h̄ω/mc2)2 smaller
than the first order contribution of the second, so we will drop it and retain the
second term only. We must first of all determine an expression for the operator
∂A/∂ t from (3.12). For one mode only, i.e. omitting for simplicity the sum
over all k,λ ,

∂A/∂ t =
(

hc2

Ωωk

)1/2 [
−i ωkeλ (k)a(k,λ )ei(k·r−ωkt)

+i ωke∗λ (k)a†(k,λ )e−i(k·r−ωkt)
]

. (3.33)

Inserting this expression, the H ′4 matrix element is readily evaluated:

〈 f |H ′4|i〉=−i
(

e2

mc2

) (
h̄ωk

mc2

)(
hc2

Ωωk

)
∑
j
〈0|ei(k−k′)·r js j · (e′∗(k′)× e(k))|0〉 . (3.34)

One therefore sees immediately that a term containing the spin operators, i.e.
a genuine magnetic scattering term appears, and that its magnitude compared
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to the Thompson term is reduced by the factor (h̄ωk/mc2). This is a small
number, because typically in the x-ray region h̄ωk ∼ 10 keV, while mc2 =
511 keV. Additional magnetic information is hidden in the second term in
(3.22), which we now proceed to evaluate. The accessible intermediate states
have either no photons, or two photons, and their energy is

|n〉 = |Ψn ;0,0〉;En = E(Ψn) (3.35)
|n〉 = |Ψn ;(e,k),(e′,k′)〉;En = E(Ψn)+2h̄ωk . (3.36)

The first set of terms (let us call them terms (a)) is reached by the action of
the annihilation part of the A operator on the initial state; the second (terms
(b)) by the action of the creation operator part. There is also an additional,
important difference between the two kinds of terms: in case (a) the energy
denominator can vanish, and give rise to a resonance, when E0−En + h̄ωk =
0 ; in case (b) it cannot, because E0−E(Ψn)− h̄ωk < 0 always. To prevent
an unphysical divergence of the scattering cross section, we must take into
account that the intermediate states |n〉 are not really stationary, but have a
finite lifetime, which is represented by adding a small imaginary part to the
eigenvalue, which becomes important only near the resonance condition; i.e.
E(Ψn) is replaced by E(Ψn)− iΓn/2. We want to examine the non-resonant
case first, i.e. the case in which h̄ωk � E(Ψn)−E0 for all states, or, more
precisely, for all states |n〉 which give an appreciable contribution to the sum
in (3.22). Using the following simple identities for the energy denominators:

1
E0−E(Ψn)+ h̄ωk + iΓn/2

=
1

h̄ωk

+
E(Ψn)−E0− iΓn/2

h̄ωk

1
E0−E(Ψn)+ h̄ωk + iΓn/2

1
E0−E(Ψn)− h̄ωk

= − 1
h̄ωk

+
E0−E(Ψn)

h̄ωk

1
E0−E(Ψn)− h̄ωk

, (3.37)

it is easy to see that in this case the denominators are well approximated by
±h̄ωk. As a matter of fact, as discussed in a recent work [19], the same con-
clusions hold even in the case in which h̄ωk is much bigger than E(Ψn)−E0
for some n, and much smaller for others, i.e. as long as it is far away from pos-
sible resonances. Substituting (3.12) into H ′2 +H ′3, and paying due attention
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to the action of photon creation and annihilation operators on the two kinds of
intermediate states, we find for type (a) intermediate states

〈 f |H ′2 +H ′3|n〉 〈n|H ′2 +H ′3|i〉=(
hc2

Ωωk

)( e
mc

)2
〈0|

N

∑
j=1

[
e′∗ ·p j− ih̄(k′× e′∗) · s j

]
e−ik

′·r j |n〉

〈n|
N

∑
j′=1

[
e ·p j′ + ih̄(k× e) · s j′

]
eik·r j′ |0〉 (3.38)

while for type (b) intermediate states we obtain an expression differing only
in that the operators acting between 〈0| and |n〉 and between 〈n| and |0〉 are
interchanged. This, together with the fact that the energy denominators, in the
non-resonant approximation defined above, are independent of |n〉 and change
sign for the two types of intermediate states, and with the closure relationship

∑
n
|n〉〈n|= 1 (3.39)

where 1 denotes the unit operator, allows to write the second term in (3.22) as
the expectation value of a commutator

∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

'
(

hc2

Ωωk

)( e
mc

)2
〈0|
[
C′,C

]
|0〉 , (3.40)

where

C′ =
[
e′∗λ ′ ·p j− ih̄(k′× e′∗λ ′) · s j

]
e−ik

′·r j (3.41)

C = [eλ ·p j + ih̄(k× eλ ) · s j]eik·r j . (3.42)

To calculate the commutator is a tedious operation, but is easily performed
remembering the basic commutation rules for components of positions, mo-
menta, spin and arbitrary functions of them, referred to the same electron[

rα , pβ

]
= ih̄δαβ

[pα , f (r)] = −ih̄∂ f/∂ rα[
sα ,sβ

]
= ih̄εαβγsγ . (3.43)
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Here the antisymmetric tensor εαβγ was introduced, and it is worthwhile to
remember the expression of the cross product of two vectors in terms of it
(summation over repeated indices is implied)

(v1×v2)α = εαβγv1βv2γ . (3.44)

By a careful use of these rules, of the transversality conditions, e ·k = 0
and of a simple vector identity

(A×B) · (C×D)≡ (A ·C)(B ·D)− (A ·D)(B ·C) (3.45)

which is applied to the four vectors: (k−k′)≡ q, p j, e′∗, e , the patient reader
should obtain

∑
n

〈 f |H ′2 +H ′3|n〉〈n|H ′2 +H ′3|i〉
E0−En + h̄ωk

=−i
(

hc2

Ωωk

)(
e2

mc2

)
h̄ωk

mc2[
〈0|∑

j
eiq·r j

iq×p j

h̄k2
|0〉(e′∗× e)+ 〈0|∑

j

eiq·r js j
k2
|0〉

[
(k′× e′∗)(k′ · e)− (k× e)(k · e′∗)− (k′× e′∗)× (k× e)

]]
. (3.46)

Now that we have the second order contribution of the A ·p term in H ′2, we
can substantiate our claim that the contribution of the ∂A/∂ t×p term of H ′4
is negligible. In fact, the magnitude of the latter contribution would be sim-
ilar to that of the former, which we just evaluated, except for some different
prefactors. On the one hand, the time derivative introduces a factor ωk, on the
other, the constant in front of H ′4 introduces, with respect to H

′
2, another factor

of h̄/2mc2, so that all in all an extra factor h̄ωk/2mc2 is obtained. This shows
that the matrix element of the first part of H ′4 is reduced by (h̄ωk/2mc2)2 with
respect to the Thomson term, and therefore is negligible with respect to the
other magnetic scattering terms, which are reduced by h̄ωk/2mc2.

Finally, by putting Eqs. (3.22), (3.23), (3.34), (3.46), and (3.25) together,
we can complete the cross section expression of (3.27) to obtain
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dσ

dO′
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉(e′∗ · e)
−i h̄ωk

mc2

[
〈0|∑

j
eiq·r j

iq×p j

h̄k2
|0〉 ·PL + 〈0|∑

j
eiq·r js j|0〉 ·PS

]∣∣∣∣∣
2

,

(3.47)

where we introduced the polarization factors

PL = (e′∗× e) (3.48)
PS = (e′∗× e)+ [(k̂′× e′∗)(k̂′ · e)− (k̂× e)(k̂ · e′∗)− (k̂′× e′∗)× (k̂× e)] .

(3.49)

In this equation, k̂ denotes the unit vector parallel to k, and the indices L
and S where adopted for the two factors because the second one is attached to
the term related to the spin moment, while the first pertains to a term which,
as we shall show, is related to the orbital moment. In fact, after noting that
|q|= 2|k|sinθ , where 2θ is the scattering angle, the relevant quantity can be
transformed as follows

∑
j
eiq·r j

iq×p j

h̄k2
=

i
h̄q

(4sin2 θ)∑
j
eiq·r j q̂×p j

=
i
h̄q

(4sin2 θ)q̂×
∫

dreiq·r
1
2 ∑

j
[p jδ (r− r j)+δ (r− r j)p j]

=
−im
eh̄q

(4sin2 θ)q̂×
∫

dreiq·rj(r)

=
−im
eh̄q

(4sin2 θ)q̂× j(q) (3.50)

where the electrical current density operator j(r) = (−e/2m)∑ j[p jδ (r−r j)+
δ (r−r j)p j] has been expressed in terms of the momentum and the density of
electrons multiplied in symmetrized form, because they do not commute.

This current density describes the microscopic currents associated to the
motion of the electrons, not the macroscopic ones, which we can assume to
vanish in our system in the absence of external perturbations (remember that
all matrix elements in a perturbation calculation refer to the unperturbed sys-
tem eigenstates). The vanishing of macroscopic currents means that the flux
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across any surface S internal to the sample vanishes, i.e.∫
S
j(r) ·nSdS = 0 , (3.51)

which implies that the microscopic current is divergence-free, i.e. ∇ · j(r) = 0,
and can therefore be expressed as the curl of a vector field. We write this field
so that

j(r) = c[∇×ML(r)]. (3.52)

For the purposes of our discussion, we identify ML(r) with the density
of orbital magnetization. Although a formal identification between operators
is analytically involved [20, 21], one can satisfy himself of the plausibility
of (3.52) by the classical description of magnetic fields in matter; Maxwell’s
equations for the fields H and B = H+4πM (no spin magnetization exists in
the classical description, so hereMmeansML) prescribe that the microscopic
currents are related to the curl of M by (3.52) (see for example [22]).

Equation (3.52) implies that j(q) =−icq×ML(q) . Therefore

∑
j
eiq·r j

iq×p j

h̄k2
=

mc
eh̄q2

q× [ML(q)×q] . (3.53)

We are now ready to collect all the bits and pieces in a formula for the
differential cross section

dσ

dO′
= r20

∣∣∣∣∣∑j 〈0|eiq·r j |0〉(e′∗ · e)
−i h̄ωk

mc2

[mc
eh̄
〈0|q̂× [ML(q)× q̂]|0〉 ·PL +

mc
eh̄
〈0|MS(q)|0〉 ·PS

]∣∣∣∣2 .

(3.54)

where the polarization factor PL was redefined to include the angular factor

PL = (e′∗× e)4sin2 θ , (3.55)

and the Fourier transform of the spin magnetization density was introduced

MS(q) =
eh̄
mc ∑

j
eiq·r js j . (3.56)
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We are now ready to obtain from (3.54) the basic properties of non-
resonant magnetic scattering. In a system with an ordered magnetic struc-
ture, e.g. an antiferromagnet, the densities of (orbital and spin) magnetization
are periodic functions, with Fourier transforms which are non vanishing only
for selected q values corresponding to this periodicity. Some of these vectors
may possibly concide with reciprocal lattice vectors of the crystallographic
structure, others will correspond to new reflections (magnetic reflections) with
nonvanishing intensity below the Néel temperature, below which the antifer-
romagnetic order sets in.

As already noticed, the prefactor h̄ωk/mc2 reduces the intensity of the
magnetic terms considerably with respect to the Thompson one. To reinforce
this, while all core and valence electrons contribute to Thomson scattering,
only electrons in partially filled shells can contribute to magnetic scattering as
the orbital and spin moments of filled shells add up to zero. Therefore, apart
from the first pioneering experiments [4], the high intensity of synchrotron
light sources is necessary for these experiments.

It is important to notice that PL contains the factor 4sin2 θ , and since |q|=
2|k|sinθ , for a given reflection, i.e. for a given q, sinθ is proportional to
1/h̄ωk. Thus, the weight of the orbital part decreases at high photon energies,
where spin scattering dominates the magnetic cross section; more generally,
the ωk dependence of the orbital term is not only in the prefactor.

The different polarization factors PL , PS and the well known polarization
properties of synchrotron radiation allow to separate the spin and the orbital
contributions to the magnetic moments by changing the experimental geom-
etry. This is a much more direct approach to the separation of the two contri-
butions than it is possible with neutron scattering. This method was applied
to rare earth systems such as Ho [7], to actinide systems such as UAs [23, 24]
and more recently to 3d antiferromagnets such as NiO [25]. Together with the
higher momentum resolution allowed by well collimated synchrotron beams,
this orbit and spin separation justifies the interest of x-ray scattering for some
cases, in spite of the more widespread use of neutron scattering to determine
magnetic structures.

A further important point to mention about the magnetic terms in (3.54) is
the imaginary prefactor −ih̄ωk/mc2. This means that, upon taking the square
modulus, no interference of Thomson and magnetic scattering terms occurs,
unless the structure factors

∑
j
〈0|eiq·r j |0〉 (3.57)
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are complex (which means that the crystallographic structure is non-centro-
symmetric), or that the polarization vectors are complex (corresponding to
non-linear, i.e. elliptic or circular polarization). In such cases one has inter-
ference terms, and these can be useful, for example, in detecting magnetic
scattering in ferromagnets [26, 27]. Very recently a further application to the
multiferroic system TbMnO3 [19] used charge-magnetic interference scatter-
ing to detect small ionic displacements that contribute to the electrical polar-
ization.

3.4 Resonant Scattering

We now abandon the assumption of the non-resonant limit and consider the
case in which E(Ψn)−E0' h̄ωk , at least for one excited stateΨn (normally, in
a solid there will be a continuum of states satisfying this condition). Returning
to the expressions of the matrix elements of H ′2 +H ′3 as written in (3.38), we
want first of all to prove that the contribution of H ′2 is always much larger than
that of H ′3. To establish this, we begin by remarking that the most important
excited states which are resonant with x-ray photons are those in which a core
electron in one of the atoms is promoted to an empty one-electron state above
the highest occupied orbital. Arguing within an approximate scheme in which
the states |0〉, |n〉 are reasonably well described by an antisymmetric product
of one-electron states, then the matrix elements of the operators H ′2 or H ′3,
which are sums of one-electron operators, can be written [28] in terms of an
overlap integral over N− 1 of the coordinates, multiplied by a one-electron
matrix element, i.e

〈n|H ′2 +H ′3|i〉 =
(

hc2

Ωωk

)1/2( e
mc

) N

∑
j=1
〈n| [e ·p j + ih̄(k× e) · s j]eik·r j |0〉

=
(

hc2

Ωωk

)1/2( e
mc

)N−1

∏
j=1

∫
dr jψ

(n)∗
v j (r j)ψ

(0)
v j (r j)

×
∫

drNψ
(n)∗
vN (rN) [e ·pN + ih̄(k× e) · sN ]eik·rNψ

(0)
c (rN) ,

(3.58)
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where ψv is a one-electron valence wavefunction, either for the ground or
the n-th excited states and ψc a core wavefunction which is exponentially
decreasing, outside an appropriate core radius rc. We can then argue that the
main contribution to the integral comes from this inner region; and one can
see that inside this region k ·r j� 1 , for the values of k = |k| of interest here.
This is because at the resonance condition

k = ω/c = E/h̄c , (3.59)

where E is the difference of the core and valence energy, i.e. the core ion-
ization energy. This energy is related to the radius of the core orbital by the
approximate hydrogen-like relationship

E ' h̄2/2mr2c (3.60)

whence one finds rc ' h̄/
√
2mE and therefore

krc '
√
E/2mc2 . (3.61)

The right hand side is always small for all core levels, because 2mc2 is about
1 MeV, while the deepest core level (1s in Uranium) has a binding energy of
about 116 keV. So, in this most extreme case, krc ' 0.34 , and is less for all
other core levels. It is therefore legitimate, for r ≤ rc , to expand

eik·r j ∼ 1+ ik · r j− (k · r j)2/2+ . . . (3.62)

and to observe that the terms of the series are rapidly decreasing with increas-
ing order (which is referred to as the multipole order). We can then reach the
proof of the statement that H ′2 matrix elements dominate over those of H ′3, i.e.
that the first term in the last integral of (3.58) dominates over the second. The
point is that for given ψ

(n)
vN ,ψ

(0)
c , the lowest nonvanishing order in the series

(3.62) for the integral of pN is lower by one than the lowest nonvanishing order
for the second term (which contains the spin, but no rN operator). Remember
indeed that the selection rules for atomic transitions are the same for p or
for r matrix elements (a manifestation of the Wigner-Eckart theorem [29]),
and since the H ′3-related operator contains the spin but neither p nor r’s, it is
necessary to have one more r (with respect to the first term) in order to have
a nonvanishing integral, i.e. to go to the next order in k · rN .Therefore, near
the resonance condition, the resonant terms dominate the cross section, and,
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among these, only theH ′2 matrix elements need to be retained. Equation (3.22)
becomes

w =
2π

h̄

∣∣∣∣∑
n

〈 f |H ′2|n〉〈n|H ′2|i〉
E0−En + h̄ωk + iΓn/2

∣∣∣∣2 δ (h̄(ωk−ωk′))

=
2π

h̄

∣∣∣∣∣
(

hc2

Ωωk

)( e
mc

)2
∑
n

〈0|∑N
j=1 e′

∗ ·p je−ik
′·r j |n〉〈n|∑N

j′=1 e ·p j′e
ik·r j′ |0〉

E0−E(Ψn)+ h̄ωk + iΓn/2

∣∣∣∣∣
2

×δ (h̄(ωk−ωk′)) .

(3.63)

As a matter of fact, the above equation contains a contribution that was
already taken into account in the non-resonant part; remember (3.37), where
the first piece on the r.h.s. was included in the previous Section. Therefore,
only the second addendum needs to be considered here and that means that in
(3.63) we must replace

1
E0−E(Ψn)+ h̄ωk + iΓn/2

(3.64)

with:
E(Ψn)−E0− iΓn/2

h̄ωk

1
E0−E(Ψn)+ h̄ωk + iΓn/2

. (3.65)

3.4.1 Electric Dipole Approximation

Let us then look in detail into the relevant matrix elements. Consider

〈n|e ·p jeik·r j |0〉 ' 〈n|e ·p j(1+ ik · r j + . . .)|0〉 (3.66)

and, for a given |n〉, consider only the lowest order term for which the matrix
element does not vanish. We established already that all higher order terms
are negligible in comparison to it. The largest contributions come from those
|n〉’s for which the first term provides a nonvanishing contribution, so that the
exponential is simply replaced by 1. These states are said to be accessible by
electric dipole transitions. In a full quantum electrodynamical formulation,
one can see that electric dipole transitions are induced by photons with a total
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angular momentum of 1. The name “electric dipole” comes from the fact that
in a non-relativistic theory, neglecting the spin-orbit interaction altogether, so
that Hel = ∑ j(p2j/2m+V (r j)) , one can write

〈n|e ·p j|0〉 = m〈n|e · ṙ j|0〉

=
−im
h̄
〈n|e · [r j,Hel ]|0〉

=
im
h̄

[E(Ψn)−E(0)]〈n|e · r j|0〉 . (3.67)

In view of this, and neglecting iΓn/2 in the numerator of (3.65), the sum
over intermediate states in (3.63) becomes

m2

h̄2 ∑
n

(E(Ψn)−E(0))3

h̄ωk

〈0|e′∗ ·R|n〉〈n|e ·R|0〉
E(Ψn)−E(0)+ h̄ωk + iΓn/2

, (3.68)

where we defined
R = ∑

j
r j . (3.69)

In order to make progress and to make contact with the literature [30], we
express all vectors in terms of their spherical components, i.e. we define

R0 = iRz,R±1 = (∓i/
√
2)(Rx± iRy) . (3.70)

The definitions of the 0,±1 components apply to any vector, e.g. to the
polarization e as well, and they are clearly inspired from the definition of the
spherical harmonics for l = 1,

Y1,0 = i

√
3
4π

(z/r),Y1,±1 =∓i
√

3
8π

(
x± iy
r

) , (3.71)

where we adopted the convention for the phases given in [41]. It is easily
verified that the scalar product becomes

e ·R =
1

∑
m=−1

(−1)m−1emR−m . (3.72)

It is then easy to see that
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〈0|e′∗ ·R|n〉〈n|e ·R|0〉= ∑
m,m′

(−1)m+m′e′∗mem′〈0|R−m|n〉〈n|R−m′ |0〉 . (3.73)

To simplify this expresssion further, one must take advantage of the sym-
metry of the physical system. The simplest case corresponds of course to the
highest symmetry, i.e. the spherical symmetry of isolated atoms. Then, the
eigenstates |0〉 and |n〉 are eigenstates of the angular momentum and of its
z-component, and this implies that the sum is restricted to m =−m′, because
the angular momentum selection rules say that, for the matrix elements

〈0|R−m|n〉 6= 0⇒ −m0−m+mn = 0 ,

〈n|R−m′ |0〉 6= 0⇒ −mn−m′+m0 = 0 ,

⇒ m =−m′ (3.74)

The sum in (3.73) is then simplified and it is worth noticing that

〈0|R0|n〉〈n|R0|0〉=−|〈n|R0|0〉|2

〈0|R−1|n〉〈n|R1|0〉= |〈n|R1|0〉|2

〈0|R1|n〉〈n|R−1|0〉= |〈n|R−1|0〉|2 . (3.75)

The first relationship may look surprising, but remember that, because of
the factor i in the definition, coming from the chosen convention on the phases
of the spherical harmonics, R0 is an antihermitian operator. Another conse-
quence of that is the fact that if

e0 = iez (3.76)

it is also
e∗0 = ie∗z , (3.77)

i.e. the spherical component 0 of the complex conjugate need not be the com-
plex conjugate of the 0 component. With the help of all of the above we can
write

〈0|e′∗ ·R|n〉〈n|e ·R|0〉=−e′∗0 e0|〈n|R0|0〉|2 + e′∗1 e−1|〈n|R1|0〉|2

+e′∗−1e1|〈n|R−1|0〉|2 . (3.78)

Going back to cartesian coordinates for the polarization vectors, it is pos-
sible, with a bit of algebra to recast this expression in the following form
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e′∗z ez|〈n|R0|0〉|2 +
1
2
[e′∗x ex + e′∗y ey](|〈n|R1|0〉|2 + |〈n|R−1|0〉|2)

− i
2
[e′∗x ey− e′∗x ey](|〈n|R1|0〉|2−|〈n|R−1|0〉|2) . (3.79)

We define

Fe
1,m = me∑

n

[E(Ψn)−E(0)]3

h̄3ωk

|〈n|Rm|0〉|2

E(0)−E(Ψn)+ h̄ωk + iΓn/2
, (3.80)

where the label e and 1 on F remind us that this refers to electric (e) dipole
(l=1) contributions, and where we introduced the symbol me for the elec-
tron mass, to avoid any confusion with the index m, which runs over 0,±1;
reinserting the prefactors present in (3.63) and those allowing to relate w to
dσ/dO′, see (3.25), we finally obtain

dσ

dO′
= | fres|2 , (3.81)

where fres is the resonant scattering amplitude, given by

fres =−r0
[
1
2
e′∗ · e(Fe

1,1 +Fe
1,−1) −

i
2
(e′∗× e) · ẑ(Fe

1,1−Fe
1,−1)

+(e′∗ · ẑ)(eλ · ẑ)(Fe
1,0−

1
2
Fe
1,1−

1
2
Fe
1,−1)

]
, (3.82)

where the unit vector in the z direction (i.e. in the axis of quantization of the
angular momenta), ẑ, was introduced. Equation (3.82) was derived in [30] us-
ing the relativistic formalism of vector spherical harmonics, soon after the
discovery of resonant magnetic scattering by Gibbs et al. [7]. Let us pause
briefly to analyze some of the consequences of the results derived so far. The
three terms in (3.82) describe resonant or anomalous scattering in general, and
are rather different in nature. The first is proportional to (Fe

1,1 +Fe
1,−1) and is

therefore always present. The second is a genuinely magnetic term, because it
originates from the difference between the 1 and the −1 components, which
arise only in the presence of a magnetic preference for one sense of rotation
around the quantization axis. Finally, the last term is nonvanishing for any
anisotropic system, a system with a preferential axis, identified either by a
crystal anisotropy or by a magnetic moment, which translates into a different
occupation for one-electron orbitals with different orientation. The difference
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in occupation translates into a difference in the value of individual Fe
1,m, which

is strongly influenced (see (3.80)) by the availability of states with the appro-
priate symmetry, at or near the resonance energy, suitable to play the role of
intermediate states.As an example, consider first an isotropic or cubic envi-
ronment for an atom. In this case, Fe

1,m is the same for all m ’s and can be
called simply Fe

1 . Then

fres =−r0
1
2
(e′∗ · e)(2Fe

1 ) . (3.83)

We can represent the polarization dependence by evaluating the above
equation for the various cases arising when e′,e take all possible σ and π

orientations and writing the result in terms of a tensor scattering amplitude
[5, 6]

fres = e′∗ f̂rese. (3.84)

The f̂res tensor is represented in matrix form as

f̂res =−r0Fe
1

(
1 0
0 cos(2θ)

)
(3.85)

where the rows correspond to e′ = σ or π ′ respectively, and the columns to
e = σ or π . Consider next the case in which the atom is in a orthorombically
distorted environment, in which z is inequivalent to the x,y directions, so that
2Fe

1,0−(Fe
1,1+Fe

1,−1)≡ Fe
an 6= 0 . For a geometry in which the scattering plane

is the x,y plane, and the x axis is chosen parallel to the scattering vector q (see
Fig. 3.2a), corresponding to the experimental situation sketched in Fig 3.2b,
where the crystal surface and the directions of the incoming and scattered
beams are visible, we find that

f̂res =− r0
2

[
(Fe

1,1 +Fe
1,−1)

(
1 0
0 cos(2θ)

)
+[2Fe

1,0− (Fe
1,1 +Fe

1,−1)]
(
1 0
0 0

)]
. (3.86)

If the crystal in Fig. 3.2b is rotated by an angle φ about the x axis, that is
around the scattering vector q (azimuthal scan), while leaving the scattering
geometry, i.e. the directions of k and k′ unchanged (it is not easy to rotate a
synchrotron !), the molecular preferred axis is rotated by an angle φ as shown
by the dashed line in Fig. 3.2a. The scattering amplitude becomes
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(a)

(b)

Fig. 3.2 a Sketch of the scattering plane with the scattering angle 2θ , and the azimuthal
angle φ , describing rotations about the scattering vector q; b A sketch of the actual experi-
mental geometry corresponding to a.

f̂res =− r0
2

[
(Fe

1,1 +Fe
1,−1)

(
1 0
0 cos(2θ)

)
+
[
2Fe

1,0− (Fe
1,1 +Fe

1,−1)
]( cos2 φ − 1

2 sinθ sin(2φ)
1
2 sinθ sin(2φ) sin2 θ sin2 φ

)]
.

(3.87)
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This simple example is sufficient to demonstrate how, in the resonant regime,
the charge-related scattering may display features such as non-diagonal ten-
sor properties with respect to the polarization of the incoming and scattered
beams, and the azimuthal angle dependence, which are absent for the non-
resonant Thompson scattering. The tensor nature of the resonant scattering
amplitude, which was traditionally written as a single complex number with
the notation f ′+ i f ′′ has become increasingly important in recent years. As we
mentioned in passing, (3.82) also contains magnetic scattering components,
as first observed in [7]. The reader may wonder where, in the formulation
in terms of electric multipole transitions between the ground and the inter-
mediate states, the sensitivity to magnetic moments may come from. This
is a subtle but very important point. In fact, no spin operators appear in the
resulting expressions. The sensitivity to magnetic moments comes from the
combined action of two ingredients: the Pauli principle and the spin-orbit in-
teraction. The Pauli principle enters because of the already mentioned strong
dependence of the scattering amplitude on the availability of states, at or near
the resonance energy, suitable to play the role of intermediate states. In a one-
electron language, if states with a given spin are predominantly occupied, it is
mostly states with the opposite spin which are available to be virtually filled
by the promotion of a core electron in the first part of the resonant scattering
process. Since the spin is conserved in the optical transition, it is mostly elec-
trons with the same spin as the predominantly available intermediate states
which are virtually excited. In the case of all core levels with l 6= 0, the spin-
orbit interaction is nonvanishing and much larger than in the valence states
(for example, the L2 and L3 core levels of the rare earths are separated by
many hundreds of eV). In a given spin-orbit partner, states with spin up or
down have a different orbital character (think for example of L2,3 levels, where
typically (px + ipy)|sz = −1/2〉 states are, because of the spin-orbit interac-
tion, linearly superposed to pz|sz = +1/2〉 states). Because of the selection
rules to the available intermediate states, this orbital polarization translates
into a difference between the transition rates for different m’s, therefore in an
imbalance among the corresponding Fe

1,m, which is in turn responsible for a
nonvanishing magnetic scattering amplitude.The above qualitative description
of resonant magnetic scattering must be modified for s core levels, which have
a vanishing spin-orbit interaction. In this case, resonant magnetic scattering is
also observable [?], but it must be ascribed to the much weaker spin-orbit in-
teraction of the valence states, which acts to polarize the final states of given
spin and to reproduce the same mechanism. We have so far considered the
scattering amplitude for a single atom or ion. In order to consider a lattice of
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atoms, we must perform a coherent superposition of the scattering amplitudes
from all atoms, in which the amplitude from the atom sitting atRl,m,n acquires
a phase factor eiq·Rl,m,n . If the system displays crystallographic or magnetic or-
der, such that the direction of the preferred axis z changes from atom to atom,
this must also be taken into account, as it will affect the value of the scattering
amplitude for given polarization, as visible from (3.82). In order to illustrate
the consequences of these facts, let us consider the case of a basal-plane an-
tiferromagnet, e.g. the rare earths Ho, Tb, and Dy, sketched in Fig. 3.3. All
spins are ferromagnetically aligned in the planes, but their direction rotates by
a fixed angle from one plane to the next. It was indeed in Ho, which displays a
spiral antiferromagnetic phase in the 20K≤ T ≤ 131K temperature range that
the first observations of resonant magnetic scattering took place [7].

Fig. 3.3 Schematic view of a basal-plane antiferromagnet and of the scattering geometry.

With reference to Fig. 3.3, let us label the atomic positions by a single index
Rn, for simplicity, and let us identify the spin direction of the ion n with ẑn. It
is apparent that, with respect to the chosen x,y,z coordinate frame, this vector
is given by

ẑn = (sin(τ ·Rn),cos(τ ·Rn),0) , (3.88)
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where τ is the wavevector associated to the spiral pitch, and if we define for
short (Fe

1,1+Fe
1,−1)≡F0 , (Fe

1,1−Fe
1,−1)≡F1 and [2Fe

1,0−(Fe
1,1+Fe

1,−1)]≡F2 ,
we are ready to write the scattering amplitude

f = ∑
n
eiq·Rn fres(Rn, ẑn) . (3.89)

For the case σ → σ ′, the F1 component does not contribute, and we are left
with

f =− r0
2 ∑

n
eiq·Rn [F0 +F2 sin2(τ ·Rn)] . (3.90)

Expressing the sin2 in terms of exponentials, a bit of algebra gives

f =− r0
2 ∑

h,k,l
[(F0 +

1
2
F2)δ (q−Ghkl)−

1
4
F2δ (q−Ghkl±2τ)] . (3.91)

We thus see that the resonant scattering occurs at the crystallographic recipro-
cal lattice vectors q = Ghkl , with a charge and a magnetic component (F0 and
F2 respectively) and also at the second harmonic magnetic satellite vectors,
displaced by ±2τ from each crystallographic reflection. A complete analysis
for different polarizations and different satellite is possible using the formula
by Hannon and Trammel [7, 30].

The remarkable success of the formalism we just discussed deserves a mo-
ment of reflection. In fact, the derivation of the Hannon-Trammel formula
rested on the assumption of spherical symmetry of the atoms (see 3.74, where
this assumption was explicitly used). Later, we introduced the possibility for
the atom to be e.g. in a tetragonal environment, or to have a preferential mag-
netic orientation, without affecting, however, the basic selection rules deriv-
ing from spherical symmetry. In other terms, the rotational character of the
wavefunctions was assumed to be intact, external influences being limited to
(gently) removing the degeneracies and thus affecting the occupation of the
different atomic states. This is a typical situation for weakly perturbed atomic
states. The reason why the Hannon-Trammel formula is so successful for core
resonances of magnetic systems, is that core levels are of course very atomic-
like, and that the intermediate states of highest interest in magnetic investi-
gations are those of d− or f− electrons, that are to a larger or lesser extent
localized, and preserve a pronounced atomic character.

The example presented so far corresponds to relatively “hard” x-rays, with
wavelengths in the range of order ∼ 0.1 nm. This wavelength corresponds to
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the typical order of interatomic distances and is therefore extremely suitable to
investigate crystallographic or, possibly, magnetic structures, with periods of
the same order. There is however nothing, in our derivations, which would not
equally well apply to softer x-rays, and allow the investigation of structures
with longer periods. Modern technology for the growth of nanostructures, and
in particular of multilayers, has led to the fabrication of structures with char-
acteristic periods in the order of 1 nm or more, which are therefore accessible
to investigation by soft x-rays. But also nature provides for systems with order
parameters with periods compatible with soft x-ray wavelengths. As pointed
out in [32], orbital order in La0.5Sr1.5MnO4 as well as in other manganites, is
within reach of the Mn L-edge resonances, with the advantage that L2 and L3
resonances access the 3d orbitals in the intermediate states, and should there-
fore be very sensitive to their orbital and magnetic order. This was confirmed
by experiments [33, 34, 35, 36, 37] exploring the orbital and magnetic order
reflections; comparing their dependence on the incoming photon energy with
theoretical calculations within an atomic multiplet scheme in a crystal field
[38, 39], it turns out that scattering at the L2 resonance is very sensitive to
orbital order, while the intensity at the L3 resonance is mostly induced by the
Jahn-Teller distortion. This developed in a very intensive field of investigation
of strongly correlated systems, and in-vacuum diffractometers for soft x-ray
scattering are nowadays quite common around synchrotron sources.

3.4.2 Electric Quadrupole Transitions

Our goal is now to derive expressions for electric quadrupole transitions, i.e.
for the case in which the resonant transitions are allowed only when the sec-
ond term in the expansion of eik·r ' 1+ ik · r+ . . . is retained. The important
matrix elements in (3.63) reduces to

〈n|eλ ·p jeik·r j |0〉 ' 〈n|(eλ ·p j)(ik · r j)+ . . . |0〉 . (3.92)

Using the same approximate trick as in (3.67), the operator p j can be ex-
pressed in terms of the commutator of r j and H, and allowing H to act on 〈n|
and on |0〉 by moving it next to them using the commutation rules one finds
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〈n|(eλ ·p j)(k · r j)|0〉=−i
m
h̄

(E(0)−E(Ψn)) 〈n|(eλ · r j)(k · r j)|0〉

−〈n|(eλ · r j)(k ·p j)|0〉 .
(3.93)

Adding to both sides of this equation the same quantity, namely the left
hand side, it becomes

2〈n|(eλ ·p j)(k · r j)|0〉 = −im
h̄

(E(0)−E(Ψn))〈n|(eλ · r j)(k · r j)|0〉

+ 〈n|(eλ ·p j)(k · r j)|0〉−〈n|(eλ · r j)(k ·p j)|0〉 .
(3.94)

Application to the last two terms of this equation of the vector identity
(3.45) finally yields

〈n|(eλ ·p j)(k · r j)|0〉=−i
m
2h̄

(E(0)−E(Ψn))〈n|(eλ · r j)(k · r j)|0〉

+
1
2
(k× eλ )〈n|r j×p j|0〉 . (3.95)

Now it is easy to recognize in the last term the matrix element between
the ground and intermediate states of the orbital angular momentum operator
(or, in the language of multipole expansions, the matrix element correspond-
ing to magnetic dipole transitions). For the transitions resonant with x-ray
photons, which involve promotion of a core electron above the Fermi level,
the magnetic dipole matrix elements vanish, because of the orthogonality of
the radial part of core and valence states, as the angular momentum opera-
tors only affect the angular part of the wavefunctions. Summarizing, one can
conclude that the second term in the expansion of the plane-wave exponen-
tial produces terms with the matrix elements of products of two components
of the position operator r j (electric quadrupole terms) plus magnetic dipole
terms, which are irrelevant in the x-ray range. In analogy to the discussion
following (3.68), define the rank 2 quadrupole moment tensor, with cartesian
components (α,β = x,y,z)

Q(2)
αβ

= RαRβ −
1
3
R2

δαβ . (3.96)

Its spherical components are
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Q(2)
m =

√
4π

5
R2Y 2

m(θ ,φ) (3.97)

with m=−2,−1, ...,2. All matrix elements of importance for quadrupole res-
onant scattering can be written in terms of the quantities

Fe
2,m =

me

h̄3c2 ∑
n

[E(Ψn)−E(0)]3ωk
|〈n|Q(2)

m |0〉|2

E(0)−E(Ψn)+ h̄ωk + iΓn/2
. (3.98)

The scattering amplitude at the quadrupole level comprises 13 different
terms (see e.g. [40]) one of which contains no dependence on ẑn and is written
as

− r0
3

(e′∗λ ′ · eλ )(k′ ·k)[Fe
2,2 +Fe

2,−2] . (3.99)

There are then 2 terms in which there is a linear dependence on ẑn

− r0
3

[(k′ ·k)(e′∗λ ′ × eλ ) · ẑn +(e′∗λ ′ · eλ )(k′×k) · ẑn][Fe
2,2−Fe

2,−2] . (3.100)

The other terms have 2, or 3 or 4 factors of ẑ and they give rise to reflections up
to the fourth harmonic magnetic satellites, in agreement with the observations
of [7] in Ho.

3.5 Absorption Spectroscopies

It is actually possible to discuss the absorption spectroscopies very efficiently,
by using the variety of results obtained so far, if we remember the general
connection between the photon scattering amplitude and the optical absorp-
tion spectrum of the system by the Optical Theorem [41] of general scattering
theory. This theorem states that

k
4π

σt = Im f (0) , (3.101)

where σt is the total cross section, comprising all elastic and inelastic processes,
and f(0) is the forward scattering amplitude, i.e. the amplitude of scattering
for k′ = k and e′ = e , which can be easily obtained as a special case of the
general expressions derived in the preceding Sections. In the case of pho-
tons in the energy range of interest here, the total cross section σt for the
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interaction with electronic matter is dominated by photoelectric absorption
processes, all other processes having cross sections that are smaller by a few
orders of magnitude (see [42] for typical examples). Therefore, the left-hand
side of (3.101) reproduces, with good approximation, the absorption spec-
trum.

In the traditional crystallographic notation in which the atomic scattering
amplitude is a simple scalar quantity, written as the sum of the non-resonant
amplitude f0 and the real and imaginary resonant parts f ′+ i f ′′, the optical
theorem identifies f ′′ as proportional to the optical absorption spectrum, be-
cause, in the case of forward scattering, k−k′ = 0 , f0 is purely real. In our
formulation, we can write f = f0c + f0m + fres and, for the pure real character
of the charge (or Thomson) part f0c, see (3.23); and the magnetic part, f0m,
(3.47) , it vanishes altogether as the orbital term is zero for q = 0 and PS is
also zero under forward conditions (this requires a bit of vector algebra). So,
in conclusion, the only contribution comes from the resonant amplitude. This
result has general validity. However, in the spirit of concentrating on the con-
ditions that are met in the investigation of magnetic systems, we shall make
use of the expressions derived in the previous section under the assumptions
underlying the results of Hannon and Trammel, that, as discussed there, are
well suited for this case.

Considering the application of the theorem to the expression derived at the
dipole level, (3.82), which provides the most intense resonances, gives the
following expression [43] for the absorption cross section

σt =−λ r0[Im(Fe
1,1 + Fe

1,−1)− i(e∗× e) · ẑ Im(Fe
1,1−Fe

1,−1)

+|e · ẑ|2 Im(2Fe
1,0−Fe

1,1−Fe
1,−1)] (3.102)

where λ = 2π/k is the photon wavelength.Notice that the expression (e∗×e)
vanishes for a real polarization vector (i.e. for linear polarization) and is
purely imaginary in other cases.Therefore the imaginary part of the expres-
sions (3.80) is determined by

ImFe
1,m = me∑

n

[E(Ψn)−E(0)]3

h̄3ωk

−Γn/2
(E(0)−E(Ψn)+ h̄ωk)2 +(Γn/2)2

ImFe
1,m ≡ −we

1,m (3.103)

so that the absorption spectrum is described as a sum of Lorentzians, we
1,m,

each with the broadening parameter determined by the inverse lifetime of the
corresponding excited state.
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In terms of this quantity the absorption cross section is written

σt = λ r0[(we
1,1 +we

1,−1) − i(e∗× e) · ẑ(we
1,1−we

1,−1)

+|e · ẑ|2(2we
1,0−we

1,1−we
1,−1)] . (3.104)

and this expression is very convenient because it explicitly shows the depen-
dence on photon polarization and is therefore immediately applicable to de-
scribing various forms of dichroism. As a first example, consider linear polar-
ization; in the case e ‖ ẑ or e⊥ ẑ one finds respectively

σ‖ = 2λ r0we
1,0 (3.105)

σ⊥ = λ r0
(
we
1,1−we

1,−1
)

(3.106)

so that linear dichroism is expressed as

σ‖−σ⊥ = λ r0
(
2we

1,0−we
1,1−we

1,−1
)

. (3.107)

In the same way we can derive general expressions for the circular dichro-
ism, a technique of very wide use in the study of magnetic systems since the
discovery of sum rules [44, 45]. Consider first the Faraday geometry, in which
k= ẑ . The two circular polarization states are: e+ =−i x+iy√

2
,e− = i x−iy√

2
, and

with the help of the expressions

e∗+× e+ =−e∗−× e− = iẑ (3.108)

we easily derive the circular dichroism formula

σ+−σ− = 2λ r0
(
we
1,1−we

1,−1
)

. (3.109)

In the more general case of a propagation direction forming an angle θ

with the direction of magnetization ẑ, that coincides with a symmetry axis of
a cubic or hexagonal ferromagnet, some trigonometry delivers the following
results for the absorption of photons circularly polarized in the plane normal
to the propagation direction

σ+ = λ r0
[(
we
1,1 +we

1,−1
)

+ cosθ
(
we
1,1−we

1,−1
)

+
1
2
sinθ

2 (2we
1,0−we

1,1−we
1,−1
)]

(3.110)
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σ− = λ r0
[(
we
1,1 +we

1,−1
)
− cosθ

(
we
1,1−we

1,−1
)

+
1
2
sinθ

2 (2we
1,0−we

1,1−we
1,−1
)]

(3.111)

so that the circular dichroism is, in this more general case

σ+−σ− = 2λ r0 cosθ
(
we
1,1−we

1,−1
)

. (3.112)

3.6 Resonant Inelastic X-ray Scattering

Fig. 3.4 Photon scattering from an atom chain. Upper panel: elastic scattering, the final
state is the same, irrespective of which of the atoms is scattering the photon (the first one
in a, the N-th in b). The amplitudes for the N different ways to reach the same final state
must be first summed and than squared. Bottom panel: inelastic scattering: the final state is
different, depending on which atom scatters the photon and is promoted to an excited state
(the first in c or the N-th in d), therefore the amplitudes are first squared and then added.

In this Section inelastic processes are considered, in which the state of the
material system after the scattering event (the final state) has a different energy
than the initial state (for simplicity assumed to be the ground state). In recent



132 Massimo Altarelli

years, inelastic scattering with synchrotron radiation has acquired a growing
importance.

Inelastic processes can take place in the non-resonant as well as in the reso-
nant regime. The two regimes provide different information on the properties
of the system, and both of them are in general extremely valuable. Here we
shall mostly discuss the resonant regime, defined as usual by the condition
that the incoming photon energy is close to one of the absorption edges of the
system: this is because resonant inelastic scattering is much more relevant for
the investigation of magnetic properties.

One thing that is important to underline at the outset is that inelastic scat-
tering is a photon-starved technique. There is indeed a very large intensity
difference between elastic and inelastic scattering: a simple argument to see
that [46], at least in the limit of wavelength larger than the inter-atomic dis-
tance, is that the intensity of elastic scattering is proportional to N2, the square
of the number of scattering atoms; the intensity of inelastic scattering to N.
A schematic illustration of the reason is offered in Fig. 3.4, for a chain of
identical non-interacting atoms. The difference is that in elastic scattering,
scattering processes through different atoms represent different paths through
which the same final state is reached: the laws of quantum mechanics say
that one must add the amplitudes for different paths, and then square; on the
other hand, in the inelastic case, the atom contributing to an inelastic scat-
tering process is left with some energy, i.e. in an excited state: scattering on
different atoms lead therefore to different final states and now intensities must
be added, after squaring the amplitudes. The argument can be carried over to
the more realistic cases in which atoms are interacting, electrons are tunnel-
ing from one to the other and the energy eigenstates are Bloch states, and even
electron-hole interactions can be included.

In the non-resonant case, we can proceed by generalizing the treatment
of Section 3 (equation (3.27)) to include scattering from the initial electronic
state |ie〉, with energy Ei, to a different electronic state | fe〉 with energy E f
(see (3.21)). One can show that the Thomson scattering analog becomes(

d2σ

dO′dωk′

)
= r20

ωk′

ωk

(
e′∗ · e

)2 S(q,ω) (3.113)

where the dynamic structure factor S(q,ω), with ω = ωk−ωk′ , is defined as
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(q,ω) = ∑
f

∣∣∣∣∣〈 f |∑j eiq·r j |i〉
∣∣∣∣∣
2

δ

(
E f −Ei

h̄
−ωk +ωk′

)
. (3.114)

In a famous paper, Van Hove [47] showed how S(q,ω) is related to a
density-density correlation function, in space and in time, of the system

S(q,ω) =
∫

drdtei(q·r−iωt)
∫

dr′〈i|ρ(r′,0)ρ(r+ r′, t)|i〉 . (3.115)

This shows, not surprisingly, that the inelastic analog of the non-resonant
charge scattering (Thomson scattering) allows to explore the spectrum of
charge density fluctuations; this allows to investigate phonons, electronic exci-
tations, plasmons [48]. One can expect that magnetic information is delivered
by the inelastic analog of the non-resonant magnetic scattering terms: this is
in principle the case, but if you remember that magnetic scattering amplitudes
are reduced by the factor h̄ω/mc2 with respect to charge scattering ampli-
tudes, and that already magnetic elastic scattering is an experiment suffering
from low-count rate, you can anticipate that non-resonant inelastic magnetic
scattering shall be extremely difficult to measure; in fact, except for early
magnetic scattering experiments in the Compton limit (when the transferred
energy is much larger than the ionization energy) [48], there are hardly any
further attempts in the literature.

We shall therefore turn to the resonant inelastic x-ray scattering (RIXS)
case, defined as usual by the condition that the incoming photon energy is
close to one of the absorption edges of the system. In this case one can con-
sider the dominant resonant terms only, and obtain, in full analogy to (3.63)

w =
2π

h̄ ∑
f

∣∣∣∣∑
n

〈 f |H ′2|n〉〈n|H ′2|i〉
E0−En + h̄ωk + iΓn/2

∣∣∣∣2 δ (h̄(ωk−ωk′)− (E f −Ei)) .

(3.116)

Figure 3.5 shows schematically how an inelastic scattering process can
leave the system in a final state with an electron-hole pair in the valence lev-
els or with a pair where the hole is in a core shell. In the latter case the term
“resonant x-ray Raman scattering” is used. There an obvious similarity be-
tween resonant inelastic x-ray scattering (RIXS) and other techniques such as
x-ray fluorescence spectroscopy and absorption spectroscopy in the fluores-
cence detection mode. The presence of an electron-hole pair in the final state
also suggests an analogy with absorption spectroscopy, either in the visible-
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UV region, for valence holes, or in the soft x-rays for the Raman case. There
are however significant differences, because the inelastic scattering process
has different selection rules, and the sampling depth of a technique using hard
x-rays is always larger than that of soft x-ray spectroscopies. A good illus-
tration of the relationship between inelastic scattering and absorption spec-
troscopy is provided by the results by Hämäläinen et al. [49] on the Dy L3
edge in dysprosium nitrate. After quadrupolar excitation from the 2p3/2 to the
4 f manifold by the incoming photon, a high resolution analyzer accepts only
a narrow band of the outgoing photons corresponding to 3d5/2 electrons filling
the 2p3/2 holes.

Fig. 3.5 Schematic description of resonant inelastic scattering processes

The outgoing photons can be analyzed both in energy and in momentum:
this gives the possibility to map the momentum dispersion of elementary ex-
citations. In order to be really interesting for the study of many-body systems,
however, this must be done with an appropriate resolution; and although the
enhancement due to the resonance is brought to bear, a RIXS experiment is
always a compromise between resolution and count rate. They are therefore
performed at modern high brilliance synchrotron sources; in addition, in re-
cent years, a tremendous progress in the design of spectrometers has taken
place and nowadays the best instruments are able to deliver spectra with re-
solving power ∆E/E exceeding 10,000. A figure of 33,000 around 1 keV is
quoted for the instrument ADRESS at the Swiss Light Source, and the trans-
mission of the beamline is delivering some ' 1011−1012 photons per second
on the sample [50].
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To exemplify the remarkable progress of RIXS spectroscopy (for reviews,
see [51, 52]), we shall briefly mention recent investigations of high-temperature
cuprate superconductors and related compounds with strongly correlated elec-
trons. Here the L2,3 edges of Cu, in an energy region around 940 eV are con-
veniently investigated, as they are dipole-coupled to the Cu d-electrons, that
are universally considered to play a key role in the superconductivity. In ad-
dition, the complex perovskite crystal structures of the cuprates have rather
large unit cells, therefore rather small Brillouin zones; so that the momentum
transfer region accessible to the soft x-ray photons near these edges covers
about 80% of the way from the zone centre to the edge [53]. The study of
momentum dispersion for a variety of excitations becomes therefore possible
and can be of high value. Interestingly, besides charge and inter-orbital (d−d
electron) excitations, also magnetic excitations (spin waves) and their disper-
sion are accessible to this technique [54]. In the case of elastic scattering,
we already explained the sensitivity to magnetic order of a resonant elastic
scattering process based on electric dipole transitions (see the discussion in
subsection 3.4.1) in terms of the strong spin-orbit interaction for electrons in
the L2,3 core levels. A similar argument [55] explains the possibility to ex-
plore magnetic excitations (i.e. spin-flip excitations) by RIXS. With reference
to Fig. 3.6 , and to our previous discussion, we can understand how the mixed
spin-up / spin-down character of the core wavefunctions allows to populate a
spin-down level near the Fermi edge with the incoming photon, and to fill the
hole by removing a spin-up electron near the Fermi level with the outgoing
one, leaving a spin-flip excitation in the system. Remarkably, the dispersion of
spin-waves measured by RIXS [54] agrees with that obtained by neutron scat-
tering, and offers the possibility of a complementary technique in those cases
(e.g. samples too small, low momentum region) where neutron techniques are
difficult.

The complexity and variety of information contained in RIXS spectra
makes theoretical calculations a major challenge. The approaches which have
so far been applied most frequently are based either on atomic multiplet mod-
els, or on their extension to include the neighbouring ligands via Anderson
impurity models or small cluster calculations [51, 52]. On the other hand,
from the experimental point of view, this technique, in spite of all the diffi-
culties connected to the low cross-section and the limitations in resolution,
can provide rather unique information of importance for many-body physics.
In conclusion, one can say that RIXS is a technique with great promise, as
advances in instrumentation should lead to continued improvement in energy
resolution.
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Fig. 3.6 Schematic description of spin-flip resonant inelastic scattering processes at the L3
edge
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Chapter 4
Free Electron Lasers

Andreas Fognini and Yves Acremann

Abstract Data storage applications of magnetism utilize dynamic processes
on sub-nanosecond time scales and on length scales of less than 100 nanome-
ters. Magnetization dynamics on the sub-picosecond time scale has been ob-
served and may lead the way to novel devices. In order to investigate these
processes it is essential to have a method-combining sub-micrometer spa-
tial with sub-picosecond temporal resolution. Ultrafast x-ray pulses now of-
fer this possibility. The radiation of free electron lasers (FELs) consists of
sub-picosecond x-rays with unprecedented peak brightness. This chapter ex-
plains the basic principles of FELs. The peak intensity offers the possibility
of imaging a fluctuating system (for example a ferromagnetic domain struc-
ture) within a single pulse. These imaging techniques as well as spectroscopic
methods are explained. In order to perform time resolved experiments using
large scale facilities it is essential to understand the techniques used to deter-
mine the timing between the pump laser and the x-ray probe pulses, a topic
laid out.
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4.1 Introduction

Today, we are living in the information age. There is a huge demand to
process, transmit, and store more and more data. This creates the need for
faster processors, faster links, and smaller memory cells. This can only be
achieved by making these devices smaller. State of the art transistors and
magnetic bits in hard drives have a length scale of a few 10nm. Saturation
electron velocities in semiconductors are on the order of vd = 107 cm/s. The
time it takes for such an electron to pass through a transistor with l = 10nm
gate length is l/vd ≈ 100fs. For the study of novel devices and materials a
microscope is needed which can resolve these length- and timescales and be-
yond. Hence, light sources are necessary which provide photon pulses in the
femtosecond regime with enough photon energy and brightness. The Heisen-
berg uncertainty ∆x∆E/c ≈ h̄ tells us that we need a photon energy of about
10 eV to resolve a 10 nm structure. To look even deeper at the dynamics of the
building blocks of matter, the atoms, hard x-rays > 1keV are need.
Pump-probe techniques can see the dynamics of repeatable processes like
magnetic switching in well defined structures and precessional dynamics.
However, all fluctuating system like the critical fluctuations near a phase tran-
sition can not be viewed through the classical pump-probe approach. A single
shot imaging method would be of great interest for all fluctuating systems. A
light source which can provide photon pulses with the above required energy-
and time-scale is a free electron laser.

4.1.1 Timescales in solids

Technology and ultrafast processes in solids are strongly connected. In Fig-
ure 4.1 we can see the time scales of processes in nature and in technologi-
cal applications. The fastest technology today is based on femtosecond laser
sources, which are the backbone for time resolved experiments. The fastest
lasers pulses are a few cycles of the carrier long. Light pulses below a few
femtoseconds can only be achieved by going to shorter wave lengths using
high harmonic generation from femtosecond IR lasers. Electronic circuits in
large-scale logic circuits operate at clock frequencies in the GHz range. The
clock frequency is thereby not limited by the intrinsic switching time of the
transistors, but by the heating power of the devices. Small and highly spe-
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gular momentum from the spin system to the lattice often limits the techno-
logically achievable switching speed.

Fig. 4.2 A solid contains of three reservoirs which can be excited and have their inde-
pendent temperatures: The electron bath, the lattice, and the spin system. Each of these
reservoirs can show nanoscale dynamics.

4.1.2 Length- and timescales in magnetism

Magnetism arises because of the interplay between Coulomb energy and the
Pauli principle. The balance of both causes very rich physics with largely
varying length- and timescales. The length scales in magnetism can reach
from macroscopically magnetized samples down to the lattice constant in an-
tiferromagnets. The time scales span also over several order of magnitudes.
Magnetite can be used to analyze the orientation of the ancient earth mag-
netic field million of years ago, whereas we don’t even know yet what is the
fastest time to manipulate the magnetization. The following tables (Tab. 4.1
and 4.2) give a brief overview of the time- and length-scales associated in
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magnetism: kF is the Fermi wave vector, J is the exchange energy, K the
magneto-crystalline anisotropy constant.

RKKY wavelength of spin density oscillation near a magnetic ion ≈ πk−1F ≈ 0.2nm

Minimum size of a magnetic particle before superparamagnetic breakdown ≈ 10nm

Domain wall width ≈
√

J/K ≈ 20nm

Table 4.1 Length scales in magnetism

Ferromagnetic damping ≈ 1ns

Magnetic precession ≈ 100µeV �≈ 50ps

Data retention hard drive ≈ 10years

Magnetic polarization in magnetite > 106 years

Table 4.2 Energy- and time-scales in magnetism

4.2 Pulsed x-ray light sources

4.2.1 The slicing source

A slicing source offers pulses of 100 fs in the soft- and hard x-ray spectrum.
The source is based on the idea of selecting a short part (or slice) of the pi-
cosecond x-ray pulse of a synchrotron and blocking the rest of the pulse. This
way a short x-ray pulse can be obtained which can be used with any kind of
detector. Figure 4.2.1 illustrates the principle of the source. The electric field
of light in free space is purely transversal. Co-propagating a laser beam with
an electron beam will not result in any transfer of energy between the two
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beams. The situation is different in an undulator. There the electrons follow
a sinusoidal motion. In some places the electron trajectory has a component
parallel to the electric field of the laser. In an undulator we have the desired
coupling between the electron- and the laser beam. An additional condition
needs to be satisfied: The electric field of the laser must interact with the elec-
tron bunch in such a way that the part of the bunch to be influenced is affected
by the same phase of the optical laser at every magnet of the undulator. This
so called phase matching condition can be achieved by the fact that the elec-
tron bunch follows a longer trajectory than the light pulse which corresponds
to the resonance condition of the undulator.

A slicing source consists of three parts:

• A modulator which allows for modulating the electron energy by a laser
pulse

• A bending magnet which separates electrons of different energies
• The radiator (in form of a bending magnet or an undulator) which generates

the x-ray radiation
• Apertures in the beamline to select the sliced part of the beam.

To perform experiments at a slicing source is challenging: The intensity of
the sliced beam is weak compared to the intensity of the unsliced beam. The
two beams are very close together and need to be separated very carefully.
This requires also beamline optics which create very little stray light from the
unsliced beam.

Fig. 4.3 Principle of a slicing source. From[1]. Reprinted with permission from AAAS.
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4.2.2 The free electron laser

A free electron laser (FEL) can be viewed as a slicing source which uses the
radiation generated by the undulator to slice the beam. If an ultrashort elec-
tron bunch is sent through an undulator it will spontaneously start to emit
synchrotron radiation. The synchrotron radiation is emitted at the resonance
of the undulator and will start to interact with the electron bunch itself. It turns
out that the modification of the electron bunch is such that more synchrotron
radiation will be emitted by the modified part of the bunch. If the charge of
the bunch is large enough and the bunch length is sufficiently short (below
a picosecond) the bunch can start to lase in the x-ray range. This process is
called SASE (self-amplification of spontaneous emission). This way ultra-
short pulses (<100 fs) of x-ray radiation can be generated. In contrast to a
slicing source large pulse energies in the range of several mJ can be obtained.
Currently several x-ray FELs are operational, for example FLASH (Hamburg)
and LCLS (Stanford). Several sources are planned or under construction. The
properties of FEL radiation are completely different compared to synchrotron
radiation:

• FEL radiation is coherent
• The peak intensity dwarfs any other man-made x-ray source
• The beam tends to be unstable as the lasing process starts from noise
• The large size of the machine requires special timing stabilization measures
• Beamtime is very difficult to obtain

The necessary gain of a SASE free electron laser can only be achieved if
electron bunches of a length below a picosecond of nanocoulomb charge are
sent through the undulator. Due to space charge this cannot be achieved at
synchrotron sources as Coulomb repulsion of the charge within one bunch
would lead to instabilities of the electron bunch. In a synchrotron the electron
bunch must be stable for hours. In contrast with a linear accelerator the elec-
tron bunch only needs to be stable for one pass through the accelerator. Time
dilatation further increases the possible charge per electron bunch. Today’s x-
ray FELs are based on linear accelerators. The size of these machines imposes
challenges in terms of stability and timing synchronization between the FEL
and pump lasers.
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4.2.3 The timing

Free electron lasers are large machines. For example the FEL in Hamburg
(FLASH) measures from the injector down to the experimental hall roughly
300m. This makes the synchronization of the FEL pulses to the pump laser
next to the experiment very challenging. One degree of temperature change
would already expand the length of FLASH by ≈ 5mm and impose a time
drift of ≈ 20ps! But the experiment needs to have a time resolution < 100fs.
An elegant solution is to measure the arrival time of the relativistic electron
bunch directly before the undulator with the voltage pulse which is induced
by the relativistic electron bunch in small metal plates placed closely to the
beam. This is accomplished by sampling this pulse (bandwidth 10GHz) with
the reference laser clock (sub-100 fs) in a Mach-Zehnder type electro-optic
modulator (EOM) [2]. There is no time delay if the reference laser falls to-
gether with the zero crossing of the electrical pulse. The reference laser is
transmitted over a length compensated fiber to exclude drifts from the ref-
erence side. The amplitude of the laser at the output of the EOM is hence
a precise measure of the electron bunch arrival time. Interestingly, with an
electrical bandwidth of “only” 10GHz it is possible to achieve a RMS time
resolution of 9 fs over 1.5 h [2].

Fig. 4.4 Working principle of the beam arrival monitor at FLASH. The electric signal is
compared to the reference laser in a EOM. If the electron bunch is late compared to the
reference laser the signal is smaller and if it is early the signal is larger compared to no
time delay. Reprinted with permission from [2]. Copyright 2010 by the American Physical
Society .
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4.3 Applications

4.3.1 Lensless imaging

At a free electron laser the pulse energy from a single FEL pulse can be too
large for x-ray zone plates. The pulse fluence would destroy the zone plate.
In addition, the coherent nature of the FEL radiation causes speckles on the
sample, and is therefore not suitable for operating a transmission x-ray mi-
croscope. If single shot imaging is required, any scanning technique is ruled
out as well. For single shot experiments at a free electron laser it would be
desirable to avoid any optical element not needed.

The scattered wave of a sample illuminated by a plane wave is just the
Fourier transform of the sample transmission. Unfortunately, x-ray detectors
can only detect the square amplitude of the wave, but not the phase. The phase
problem can be solved by several approaches which will be discussed briefly.

Phase retrieval

The classical phase retrieval algorithm has been developed by J. Fienup [3].
It is an iterative algorithm using known facts from the real space image and
the diffraction pattern. In this algorithm, we assume we know the amplitudes
of the scattering pattern, but we also have some knowledge of the real space
image. In most cases, we know the size of our real space image as we may
know that the sample is located inside an opaque frame. Initially, we start with
the amplitudes from the scattering pattern and assign random phases to start.
Here is the algorithm in pseudocode :

while (not converged){
// assign the correct amplitudes in the
// scattering pattern, keep the amplitudes.
G = sqrt(I)*exp(i * phi);
// now go to real space
g = backFourierTransform(G);
// multiply with 0 where there is no sample
g = g * realSpaceSupport;
// go back into reciprocal space
G = fourierTransform(g);

}
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There are many variations and improvements of this algorithm which help
conversion, and add additional information which may be available as support.
There has been a lot of progress in this field. Still, the reconstruction of the
real space image from a diffraction pattern is difficult, especially if some in-
formation is missing (for example if the center of the scattering pattern needs
to be blocked in order to protect the detector from the intense unscattered
beam).

X-ray holography

In x-ray holography we add a small reference scatterer to the sample. This
method has been developed for x-ray imaging by S. Eisebitt et al. [4], see
figure 4.3.1. As a reference scatterer a small hole was drilled through the sili-
con nitride membrane next to the sample. The sample consisted of a magnetic
worm domain pattern which was imaged by circular dichroism. The sample
wave interferes on the detector with the reference wave generated by the ref-
erence hole. In this case the intensity on the detector reads

I = |R̂+ Ŝ|2 = |R̂|2 + |Ŝ|2 + R̂ ˆ̄S+ Ŝ ˆ̄Ri , (4.1)

where S is the sample’s transmission function and R the transmission function
of the reference.ˆdemotes the Fourier transform. There are the non-interfering
scattering patterns between the sample wave and the reference wave, but there
are also two interference terms! If we now take the back-Fourier-transform
into real space and use the convolution theorem, we get back the real space
image of the sample!

Ǐ = · · ·+R∗ S̄+S∗ R̄ (4.2)

∗ denotes the convolution. Figure 4.3.1 shows the Fourier back transform of
the scattering pattern. In the center we can see the auto-correlations R ∗ R
plus S ∗ S. But next to the autocorrelation, we can see the real space image
of the sample being the convolution of the sample with the reference. So, the
smaller we make the reference scatterer, the better resolution can be achieved.
However, in this case the reference wave gets weaker so there is a trade-off
between resolution and efficiency.
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Fig. 4.5 Left: X-ray holography method developed by S. Eisebitt et al.. Right: Fourier
back-transform of the holographic scattering pattern: next to the autocorrelation of the ref-
erence and sample structure we can see the convolution of the reference with the sample
as a real space image of the sample. Reprinted with permission from Macmillan Publishers
Ltd: Nature [4].

4.3.2 The Fresnel zone plate as a hologram

The use of Fresnel zone plates offers the highest spatial resolution and is dis-
cussed in detail in this section. The easiest way to understand the focusing
properties of a zone plate is by viewing it as just being a hologram of a point
source with a plane wave as the reference wave. If we illuminate this holo-
gram by a plane wave, it will re-create the spherical wave which originates
from the point source. Therefore, the zone plate focuses a plane wave onto a
point.

Let us construct the zone plate as a hologram (in fact this has been the
way of manufacturing zone plates before high resolution electron beam litho-
graphy techniques were available). To make a hologram, we interfere a plane
wave reference beam with a spherical wave. As the detector is perpendicular
to the k-vector of the plane wave, it’s phase is constant. We define the wave
function to be 1 on the plane. The spherical wave on the plane reads

ψR = 1; ψP =
1
r
eikr =

1√
x2 + f 2

eik
√

x2+ f 2 , (4.3)
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where x is a coordinate on the plane and f is the distance of the plane to the
point source; this is just the focal length! The interference pattern on the plane
reads

|ψR +ψP|2 = · · ·= 1+
1
r2

+
2
r
cos(kr) . (4.4)

For the zone plate only the oscillatory part is interesting

2√
x2 + f 2

cos(k
√
x2 + f 2) . (4.5)

For technical reasons we build binary zone plates, meaning that only trans-
parent and opaque parts exist. To find the boundaries of the zones we need to
find the zero-crossings

2π

λ

√
x2 + f 2 =

π

2
+nπ . (4.6)

Solving for x:

x =

√
λ 2

4

(
1
2

+n
)2

− f 2 (4.7)

The minimum of n is nmin = 2 f
λ
− 1

2 . Nowwe re-define n= n−nmin and obtain

x(n) =

√
λ 2

4
n2 +λ f n≈

√
λ f n . (4.8)

The inner zones are large and as we go to the outer zones the zones get smaller.
The width of the nth zone is

w =
λ f
2xn

. (4.9)

For example, for a zone plate with a focal length of 5mm, the wavelength of
2 nm and a radius of 100 µm we get an outer zone width of 50 nm! The man-
ufacturing process of high resolution zone plates is very difficult and requires
advanced electron beam lithography techniques. The outermost zone does not
only need to be small, but also very precisely placed relative to the center of
the zone plate!
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4.3.3 Photoemission for ultrafast magnetodynamics

The ultrafast reduction of the magnetization in nickel upon exciting the sys-
tem with a high intensity (≈ 10mJ/cm2) infrared laser beam has been demon-
strated in 1996 by Beaurepaire et al. [5]. In this experiment, the magneto opti-
cal Kerr (MOKE) effect has been employed where the polarization change
of a reflected laser beam is a measure for the magnetic polarization state
of the sample. Since MOKE is depending on the band structure around the
Fermi level, a debate has been lead weather or not MOKE is a proper tech-
nique to measure magneto dynamics on < 100fs timescale [6, 7]. Nowa-
days, a consensus has been reached that ultrafast demagnetization truly exists.
Complementary measurement techniques like x-ray magnetic circular dichro-
ism [8, 9, 10, 11], photoemission [12, 13, 14], two photon-photon emission
[15, 16], and second harmonic generation [6] showed the same ultrafast mag-
netic effect. After more than a decade of research, the fundamental principle
of the ultrafast quenching of the magnetization is still poorly understood. The
unresolved question is: Through which pathway(s) can the majority electrons
transfer their spin to the phonon system? In terms of temporal magnetic reac-
tion to a IR pump beam, three classes of materials can be distinguished:

The transition metal ferromagnets: Iron, Nickel, Cobalt, and certain alloys
thereof show all an ultrafast quenching of the magnetization upon excite-
ment by an intense IR laser.

The rare earth ferromagnets: Gadolinium and Terbium. These ferromagnets
show a much slower quenching of the magnetization with respect to the
transition metals on the order of several 100-femtoseconds. It is believed
that the energetic and spacial separation of the 4 f states which carry the
magnetic moments to the conduction electrons (5d) lead to such a slow
down.

Half- and semi- half metals: In these materials predominantly majority elec-
trons have empty states above the Fermi level. This class shows the slowest
quenching of the magnetization, in the order of picoseconds. For this ma-
terial class the effect can be understood as a state blocking effect. Fermi’s
golden rule

Ti→ f =
2π

h̄

∣∣〈 f |H ′ |i〉∣∣2 ρ f (4.10)

implies that the transition rate Ti→ f from an initial state |i〉 to a final state
| f 〉 is proportional to the density of empty minority states ρ f , in our case.
Nevertheless, this argumentation does not provide insight into the interac-
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tion Hamiltonian H ′, and hence does not answer our initial question. The
velocity of the quenching of the magnetization in half-metals can even be
used to classify the degree of half-metallicity [17] since it is a measure of
the empty states of the minority electrons.

A tool to further elucidate the nature of the ultrafast magnetization change
is time- and spin-resolved photoemission. During the photoemission process
the spin state is not altered in the dipole approximation. Hence, it can be used
to study the dynamics of magnetization at different energy levels in the Fermi
sea. Experimentally, this task is demanding for two reasons: Typically photo-
absorption cross sections are small, and spin detectors have a low yield. This
can be compensated by using high brightness light sources such as a FEL. Un-
fortunately, the FEL pulse can be so intense that the number of photoelectrons
is so large that they start to interact with each other (space charge effect). Typ-
ically, space charge results in shifted and smeared out spectra. Space charge
is unavoidable at photoemission experiments at FEL’s. Therefore, at the start
of every photoemission experiment at a FEL, the FEL beam needs to be atten-
uated to a level where the space charge effect is still bearable. If it is possible
in the experiment, the photon energy can be lowered which results in less cas-
caded electrons and less space charge.
In our experiment, we used the electron cascade generated by FEL pulses of
180eV photon energy. The cascaded electrons provide an inherent gain in the
amount of electrons released by one photon and in the amount of the spin po-
larization, which is more than two times larger. This is due to the spin filter
effect which states that electrons with the same magnetic polarization as the
sample live longer, and therefore their probability of escape is larger. By us-
ing these gain features of the cascade, it is possible to compensate for the low
efficiency of spin detectors and the low photoemission cross section. Our find-
ings show that, indeed, the magnetization state of an 8ML Fe film on W(110)
can be altered by an intense IR beam below 100 fs. In future, time resolved
photoemission studies might shed more light on the microscopic origin of the
ultrafast demagnetization since photoemission has the unique capability to
distinguish between spacial (surface, bulk), energy, and the symmetry of the
states involved.
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Chapter 5
Magnetic imaging with polarized soft x-rays

Peter Fischer

Abstract Magnetic imaging with polarized soft x-rays offers several advan-
tages compared to other techniques, which are available to visualize magnetic
structures and magnetic behavior on microscopic levels. The ultimate spatial
resolution for soft x-ray techniques, i.e. the diffraction limit set by the wave-
length, will be in the few nm regime. The temporal resolution, given by the
length of a single x-ray pulse is at 3rd generation synchrotron sources in the
sub 100 ps regime, but should reach out into the fs regime at next generation
x-ray sources, where single shot imaging should become feasible due to a
sufficiently large number of photons per single x-ray pulse. The interaction
of polarized soft x-rays with magnetic (ferromagnetic and antiferromagnetic)
materials exhibits for element specific photon energies, which correspond to
inner core electron binding energies significant magnetic cross sections. These
magnetic dichroism effects serve as magnetic contrast mechanism for imag-
ing and give quantitative information about magnetic ground state properties,
such as magnetic spin and orbital moments. A full 3 dimensional informa-
tion, specifically access to magnetic structures at interfaces can be obtained
by imaging under certain geometries, as well as from computational magnetic
tomography of 2 dimensional projection images.
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5.1 Introduction

One of the major science drivers during the last decade was nano-science and
nano-technology which was set out to observe, understand and control matter
down to atomic levels, where quantum behavior dominates. Nanomagnetism
is one particular example, since the basic building blocks in magnetism, the
spin of the electron is inherently of quantum mechanical origin. New and fun-
damental insight into the origin of magnetism can therefore be expected from
nanomagnetism studies and, indeed, great achievements have been made so
far [1]. In addition to the scientific curiosity in magnetism and magnetic ma-
terials, there is also a wealth of technological relevance in nanomagnetism
research, which is evidenced for example by the achievements in magnetic
information and sensor technologies. The increase of several orders of mag-
nitude in magnetic storage density obtained over just a decade, i.e. from giga-
bytes to terabytes and beyond, can be considered as a success story in tech-
nological performance which is hardly bypassed by any other technology in
history.

There are three essential components which need to come together to en-
able such progress:

• state-of-the-art synthesis, i.e. fabrication,
• analysis, i.e characterization, and
• theoretical description, i.e. modeling and understanding.

In synthesis, milestones in nanomagnetism were set by the capability to fabri-
cate nanoscale magnetic systems, such as thin magnetic films and multilayers
of high quality, nanopatterning e.g. by e-beam lithography, and to design novel
magnetic materials, e.g. via molecular beam epitaxy (MBE) exhibiting un-
precedented properties. Theory advances in nanomagnetism benefit from both
advanced modelling as well as from increasing computing power and par-
allelized computing algorithms. Finally, novel characterization approaches,
i.e. instrumentation and analytical techniques with nanoscale magnetic sen-
sitivity, both spatial as well as elemental and temporal, are indispensable to
nanomagnetism research.

Polarized soft x-rays techniques have become a major tool for probing
magnetic materials, and magnetic imaging is among the most intriguing ones.
Although there is a plethora of other magnetic imaging techniques (see e.g.
[2]), which can be categorized according to the probes they are using into
electron, photon or scanning probe techniques, soft x-ray microscopies stand
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out by offering a unique combination of key advantages, which no other probe
can easily offer.

• The spatial resolution which, due to the wavelength of soft x-rays in the
nanometer regime, has its diffraction limit accordingly in the nanometer
regime.

• The interaction of soft x-rays with matter, which is primarily photoabsorp-
tion, exhibits pronounced resonances for photon energies matching inner-
core electron binding energies, thus providing images with inherent ele-
mental specificity.

• The interaction of polarized soft x-rays with magnetic materials gives rise
to strong magnetic dichroism effects, which allow for both quantitative
information on spin and orbital magnetic moments, and which can be used
in imaging as a strongmagnetic contrast mechanism.

• The pulsed structure of soft x-rays at synchrotron sources enables to im-
age the spin dynamics with a temporal resolution limited by the length of
the x-ray pulses, which range from the sub–100 ps regime at current syn-
chrotrons down to fs time scales at upcoming free electron lasers or high
harmonic generation laboratory sources.

• The high intensity of x-rays, particularly at next generation light sources,
enables to study small magnetic cross-sections, e.g. highly diluted mag-
netic samples, and to take snapshot images of the dynamics.

• Soft x-ray spectromicroscopy allows to image both surface and bulk prop-
erties depending on whether the limited escape depth of electrons or the
penetration of x-rays is utilized.

• Finally, three dimensional information can be obtained in various ways,
which allows to study in particular buried interfaces and complex magnetic
structures.

This chapter will give an overview of the current capabilities of magnetic
imaging with polarized soft x-rays by selected examples from current re-
search. We will start with detailing the magnetic contrast and its specific fea-
tures. We will then explain briefly the various types of soft x-ray microscopes,
followed by a brief overview on the achieved spatial resolution. Combining
the high spatial resolution with temporal resolution allows to image spin dy-
namics, i.e. the functionality of magnetic structures. The future possibilities at
upcoming x-ray sources, such as free electron lasers or lab based x-ray sources
providing ultrashort and intense x-ray pulses will enable to address both fun-
damental length and time scales in magnetic systems. Finally, we will briefly
address the current efforts towards full 3-dimensional (3D) magnetic imaging.
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5.2 Magnetic contrast with polarized soft x-rays

The interaction of polarized light in the optical regime with magnetic materi-
als is described by the magneto-optical effects, which are well known for al-
most two centuries. The most prominent magneto-optical effects are the Kerr
effect [3] and the Faraday effect [4]. The latter was discovered in 1845 by
Michael Faraday, who found that the plane of linearly polarized light was
rotated by passing through a flint glass in the presence of a magnetic field.
Somewhat later a corresponding effect was discovered by John Kerr, who
found that the polarization of light was rotated upon being reflected from the
surface of iron. Various geometries, characterized by the relative orientation
between the applied magnetic field and the direction and plane of the incom-
ing light have been established and are named as polar Kerr effect when the
magnetization is perpendicular to the magnetic surface, and as longitudinal
Kerr effect when the magnetization is parallel to the surface and along the
plane of the incident light, and lastly, as the transversal Kerr effect when the
magnetization is in-plane of the surface but orthogonal to the plane of the
incoming light. A theoretical model for the Kerr and the Faraday effect was
established by Lorentz already in 1884 [5], who proposed that left and right
circularly polarized light couples differently to the classical electron oscilla-
tors in the solid. Although the Faraday and the Kerr effect per se are rather
weak for most materials and therefore provide only a weak magnetic con-
trast mechanism for magnetic imaging, the introduction of video microscopy
and digital image processing has made magneto-optical microscopy based on
the Faraday and the Kerr effect a widespread magnetic imaging technique
[6]. Particularly, the availability of ultrashort optical laser pulses allows for
studies of ultrafast spin dynamics [7]. However, there are two major short-
comings with magneto-optical imaging, namely the diffraction limited spatial
resolution, which prevents to address the true nanoscale, and the very limited
elemental sensitivity.

More than 35 years ago, Erskine and Stern [8] predicted strong dichroism
effects in the x-ray regime and with the availability of polarized x-rays at syn-
chrotron sources, first experiments were performed in the mid to late 1980s.
Particularly, the first demonstration of strong x-ray magnetic circular dichro-
ism (XMCD) effect at the L-edges of Fe, Co and Ni [9] (Fig. 5.1) at photon
energies between 700 and 900 eV launched a “gold rush” towards exploiting
those phenomena for the studies of magnetic properties in nanoscale mag-
netic systems. This excitement was further amplified with the formulation of
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the so-called magneto-optical sum rules, which allowed to deduce from spec-
troscopic data in a quantitative and element specific manner the spin [10] and
orbital [11] moments separately.

Fig. 5.1 First experimental demonstration of strong XMCD effect at the L edges in Ni.
Reprinted figure with permission from [9]. Copyright (1990) by the American Physical
Society

The x-ray magnetic circular dichroism effect describes the change in x-
ray absorption, which is quantified by the very characteristic x-ray absorption
coefficient µ . µ depends on the photon energy E and can be determined in
an x-ray transmission experiment, where the incoming photon intensity I0(E)
is reduced to I(E) after the photons have penetrated a sample thickness d,
following the well known exponential Beer-Lambert absorption law
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I(E,d) = I0(E)e−µ(E)d . (5.1)

For circularly polarized x-rays the additional change in µ in magnetic ma-
terials, i.e. the XMCD effect, depends on the relative orientation between the
helicity of the photons σ and the magnetization direction in the ferromagnetic
sample M. The XMCD signal scales with the scalar product between those
two quantities

XMCD∼ σ ·M (5.2)

and therefore the largest change occurs between the parallel and antiparallel
orientation of the magnetization and the polarization of the photons. It also
scales with the amplitude of the magnetization and the degree of circular po-
larization. For a full (100%) polarization of the photons XMCD values can
yield up to tens of percent.

Although the exchange interaction favors a parallel orientation of two indi-
vidual spins, the energetic groundstate of an extended ferromagnetic system,
i.e. the orientation of all the spins e.g. in a bulk magnet or a thin ferromag-
netic film, is in general not the single domain state where all spins are parallel
to each other, other competing interactions, most notably the magnetostatic,
anisotropy and Zeeman interactions, yield a groundstate which is character-
ized by magnetic domains [2]. Each of those domain is uniformly magnetized
and neighboring domains are separated by so-called domain walls to accom-
modate the transition from the spin orientation of one domain to the neigh-
boring one. The size of these domains and domain walls depends on inherent
materials parameter, such as anisotropy and exchange constants. For thin mag-
netic films and small confined structures, the relevant length scales are in the
submicrometer regime and are therefore target for microscopic studies.

5.3 Types of magnetic soft x-ray microscopes

Rather soon after the discovery of the strong magnetic XCMD effects in the
late 1980s, it was realized that XMCD can be used to image the magnetic
domain structure and suitable x-ray microscopy techniques were employed
for that purpose.

The first experimental demonstration in 1993 [12] used an x-ray photoe-
mission electron microscope (X-PEEM) to image the magnetic domain struc-
ture in a ferromagnetic film for magnetic storage, where bit patterns were cre-
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ated by switching the magnetization through locally applied magnetic fields
(Fig. 5.2a). In an X-PEEM, the secondary electrons generated in the x-ray ab-
sorption process can escape the sample’s surface and are transferred into an
electron optical lens system to form an image on the CCD detector. The lim-
ited escape depth of those electrons to about 5–10 nm makes PEEM imaging
an inherently surface sensitive technique. Further, the detection of electrons
and the need to trace exactly their local position, imposes severe limitations
for applying magnetic fields during the image recording process, which is of
interest e.g. for the study of magnetization reversal on a microscopic length
scale. X-PEEM samples should be conducting to avoid charging effects, but
do not require particular sample fabrication, e.g. they can be deposited on
various substrates as long as the sample’s surface is smooth.

Fig. 5.2 a First magnetic soft x-ray microscopy image obtained with X-PEEM [12]. b First
magnetic soft x-ray microscopy image obtained with a full-field zone plate based transmis-
sion microscope [13]

A complementary approach for magnetic soft x-ray microscopy utilizes
x-ray microscopes, which directly use the photons for recording the images.
This requires the availability of suited x-ray optics. W.C. Roentgen already
pointed out in 1885 [14] that conventional lenses cannot be used to focus
x-rays due to their refraction index for x-rays close to unity. It took nearly
85 years after Roentgen’s discovery until x-ray optics were developed, which
now allow for soft x-ray microscopy. With the advent of e-beam lithographic
tools, first developed to generate small structures in semiconductor industry,
and the availability of high intense x-ray sources at synchrotron facilities,
made possible the development of Fresnel zone plate (FZP) optics, and thus
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the first x-ray microscopes [15]. FZPs are diffractive elements [16]. They are
essentially circular gratings where the line density increases with increasing
radius (Fig.5.3). The performance of a FZP in terms of spatial resolution,
numerical aperture (N.A.), focal length, depth of focus, etc. is in general de-
termined by a few zone plate parameters only, so that state-of-the-art nanofab-
rication processes can tailor those optics to fit the experimental requirements.
The width of the outermost zone ring ∆r determines largely the spatial res-
olution, the focal length is set by the number of zones N, and the spectral
bandwidth ∆λ/λ is inversely proportional to N. With the photon wavelength
λ , the following relations hold

spatial resolution ∼ ∆r ∼ λ/N.A. (5.3)
focal length ∼ 4N(∆r)2/λ (5.4)

spectralbandwidth ∼ ∆λ/λ ∼ 1/N. (5.5)

The first magnetic image taken with the full-field transmission soft x-
ray microscope at BESSY I in Berlin in 1996 studied the magnetic domain
structures in a perpendicularly magnetized thin film of a GdFe alloy [13]
(Fig. 5.2b). Both PEEM and magnetic transmission soft x-ray microscopy
(MTXM) have since then been used for a plethora of magnetic studies.

As with the X-PEEM technique, MTXM uses XMCD as magnetic con-
trast mechanism. Whereas the X-PEEM is surface sensitive, the MTXM tech-
nique, detecting the photons transmitted through the specimen, is complemen-
tary to X-PEEM by probing the bulk properties. The upper limit in thickness
for MTXM is about 150–200 nm. The thinnest magnetic film, where mag-
netic domains could be observed so far in MTXM was a multilayered NiCo
film with perpendicular magnetic anisotropy. Magnetic domains could be ob-
served down to about 1 nm of Co thickness [17], which links nicely to the
limited probing depth of X-PEEM, as mentioned in the previous paragraph.
As a photon-only technique, MTXM can record the magnetic images in ap-
plied magnetic fields, which allows to study magnetization reversal processes
in detail [18]. The sample fabrication for MTXM has to take into account
the limited penetration depth of soft x-rays, which requires the specimens
to be deposited onto x-ray transparent substrates. This problem is similar
to transmission electron microscopy samples, and therefore MTXM can uti-
lize largely techniques and substrates developped by this community. Com-
mercially available Si3N4 membranes are generally substrates of choice for
MTXM studies, but recently, great effort is made to develop x-ray transparent
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Fig. 5.3 Scanning electron microscopy image of a typical Fresnel zone plate, which is used
for transmission soft x-ray microscopies. Typical values for the diameter are D = 50µm,
number of zones N = 500, and ∆r≈ 20−25 nm. Focal lengths at 700 eV photon energy are
typically less than 1mm

substrates, where epitaxial growth of films is also feasible. Ion beam assisted
deposition (IBAD) onto MgO is one of the avenues at the moment [19, 20].

Similar to transmission electron microscopies, there are two different ver-
sions of TXM concepts using Fresnel zone plate optics. There are full-field
Transmission soft x-ray Microscopes (TXM) (Fig. 5.4b) and Scanning Trans-
mission x-ray Microscopes (STXM) (Fig. 5.4a).

The optical design of a full-field transmission soft x-ray microscope (TXM)
is very similar to a conventional optical microscope. The main components
are the source, the condenser, the sample, the objective lens and the detector.
The full-field TXM XM-1 at the Advanced Light Source, will serve in the
following as an example to explain the basic concepts (see Fig. 5.5).

XM-1 is using the radiation emitted at a bending magnet. At XM-1 both
condenser and objective lenses are FZPs. The condenser zone plate (CZP)
together with a small pinhole close to the sample provides a hollow cone illu-
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Fig. 5.4 There are 3 variants of soft x-ray microscopes, which are used for magnetic imag-
ing in real space. a Scanning Transmission soft x-ray Microscopy (STXM), b Full-field
Transmission soft x-ray Microscopy, and c x-ray PhotoEmission Electron Microscopy (X-
PEEM). From [1]

mination of the sample and serves as monochromator, however, with a spectral
resolution of only about 500, which translates into 1 eV at 500 eV. A second
FZP downstream the sample, the so called micro zone plate (MZP), acts as
the objective lens and generates a magnified image onto the CCD detector.
The MZP provides largely the spatial resolution (see Sec.5.4). Time-resolved
images with a temporal resolution down to about 70 ps can be obtained in a
stroboscopic pump and probe scheme (see Sec.5.6). Circularly polarized light
is obtained by masking the upper or lower half of the bending magnet radia-
tion. However, linear polarization which is emitted in the plane of the electron
orbits in the storage ring and which would allow to study e.g. antiferromag-
netic systems cannot be used here. Since this instrument was originally not
designed to do magnetic imaging, magnetic fields up to only several kOe field
strengths can be achieved. And with the sample being in ambient conditions,
experiments at variable temperatures, particularly at low temperatures, can
neither be performed with this instrument.

The latest developments of full-field transmission soft x-ray microscopy
has the potential to overcome the shortcomings of XM-1. The current full-field
TXM at the synchrotron BESSY in Berlin, Germany uses an undulator source
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Fig. 5.5 Overview photograph of the full-field soft x-ray transmission microscope endsta-
tion XM-1 located at beamline 6.1.2 at the Advanced Light Source in Berkeley CA

which provides much higher intensity and better spectral purity. A plane grat-
ing monochromator allows high spectrally resolved imaging up to about 104

spectral resolution so that high resolution spectro-microscopy becomes feasi-
ble. The monochromatizing and the illuminating parts are separated and the
illuminating concept of the sample utilizes a capillary condenser. Full-field
images up to 15µm field of view recorded in about 1 s with a spatial reso-
lution down to 20 nm have been demonstrated [22]. A next generation TXM
utilizing an elliptical polarized undulator (EPU) is currently being proposed
for the Advanced Light Source (Fig. 5.6). This XM-3 instrument will be dedi-
cated to spectro-microscopies studies in materials, environmental and energy
related sciences, including magnetic materials. The undulator will allow to
control the polarization and higher spectral purity, and the high intensity en-
ables higher spatial resolution. Since the sample would be in a vacuum cham-
ber, low temperatures and larger magnetic field will be feasible. Images will
also be recorded in reflection geometry to gain access to buried interfaces, and
hence to 3D information (see Sec. 5.7).

A scanning transmission x-ray microscope (STXM) uses the high reso-
lution FZP used as objective lens in the TXM concept downstream of the



166 Peter Fischer

Fig. 5.6 Conceptual drawing of the next generation full-field transmission soft x-ray micro-
scope XM-3 located at an elliptically polarized undulator source providing the capability to
do up to 6-dimensional imaging

sample as a focussing device upstream the sample (see Fig. 5.4a and b)1. The
transmitted intensity from that diffraction limited spot is detected by a point
detector, such as an Avalanche Photo Diode (APD), and an image is obtained
by either scanning the sample or the FZP optics, which makes this instrument
for larger field of views rather slow compared to the speed of a full-field TXM
[22]. However, STXMs have the advantage that they can easily utilize various
detection channels, such as the fluorescence during the absorption process, or
they can detect the sample current point-by-point in a non-transparent spec-
imen. Further, new concepts combining various imaging techniques are be-
ing established. The nanoXAS project at the Swiss Light Source combines a
Scanning Probe Microscope with a STXM to detect simultaneously the mor-
phology of the sample and the x-ray absorption [23]. Another approach is
the ptychographic method [24], which records a diffraction pattern for each
scanning step in a STXM and holds the promise to push the spatial resolution
to the wavelenght limited diffraction. However, enormous efforts in dealing

1 A hybrid soft x-ray microscope combining a STXM and a TXM in one instrument is the
TwinMic project, which is operational at Elettra,Trieste (Italy) [21].
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with the amount of data for each image are still waiting to be resolved. Both
of those latest developments have so far not been used for magnetic imaging.

As an alternative to using x-ray optics for imaging, the concept of lensless
imaging has received a significant interest over the last decade and a large va-
riety of techniques is currently under development. One of them is x-ray holo-
graphic imaging, where the sample is placed behind a lithographically man-
ufactured mask with a micrometer-sized sample aperture and a nanometer-
sized hole that defines a reference beam. Using the resonant x-ray magnetic
circular dichroism effect, magnetic structures at a resolution of about 50 nm
could be retrieved by a direct Fourier inversion of a holographically formed
interference pattern [25, 26, 27]. Although the holographic method is well
established since 1948, when D. Gabor invented holography [28], one of the
major challenges for magnetic x-ray holography is the requirement to gen-
erate the reference wave, which requires a high precision reference hole on
either the sample itself or on a mask which needs to be placed next to the
sample. Another approach is coherent diffractive imaging (CDI), in which a
series of scanned dichroic coherent diffraction patterns is recorded and numer-
ically inverted to map its magnetic domain configuration [29]. However, most
of the studies have been done so far on magnetic samples with strong contrast
and domain sizes around 100 nm. Finally, hybrid approaches between real and
reciprocal space have been attempted. In particular, the x-ray ptychographic
method combines the STXM technique with CDI. Whereas this technique it-
self was developed in the 1970s for electron microscopy and consists of mea-
suring multiple diffraction patterns by scanning a finite illumination on an
extended specimen [30], ptychography has seen a significant revival recently
utilizing x-rays. At each scanning point of a STXM instrument a full diffrac-
tion pattern is collected and then backtransformed into real space [24]. The
promise is that a spatial resolution below 10 nm is easier to achieve than with
CDI where the reconstruction procedures put very stringent requirements on
data quality and sample preparation. Soft x-ray ptychography experiments on
biological specimens in the water window have achieved about 50 nm spatial
resolution [31]. In the hard x-ray regime, x-ray ptychography has been used
for 3D imaging of bone structures with about 100 nm spatial resolution [32].

Since next generation x-ray free electron laser sources (X-FEL) are nearly
fully coherent x-ray sources providing a huge peak intensity within a few fs
short x-ray pulses, an enormous effort is currently underway to explore those
imaging techniques, which require coherent light. However, there seems to be
still a long way to go, particularly in terms of detector development and data
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analysis of the enormous amount of data per single image, before any of these
techniques will be accepted and utilized by a broad user community.

5.4 Pushing spatial resolution to fundamental magnetic
length scales

With the fundamental magnetic length scales being in the sub-10nm regime,
state-of-the-art magnetic imaging techniques aim to push towards such a spa-
tial resolution. Although there are magnetic imaging techniques, such as Spin-
Polarized Scanning Tunneling Microscopies (SP-STM) [33], which have al-
ready achieved atomic resolution in magnetic imaging, they mostly lack of
sufficient time resolution or elemental specificity, and are therefore limited to
mostly static images of spin structures. As mentioned already on page 157 in
this chapter, x-rays have the potential to combine those features in a unique
way. To improve spatial resolution with Fresnel zone plate based x-ray mi-
croscopy the outermost width of the FZP has to decrease (see (5.3)). This
requires advances in nanotechnology to fabricate high-quality devices.

Fig. 5.7 Instead of generating a high density, high aspect ratio FZP in one step, one utilizes
the overlay technique, which breaks this process into multiple steps with less demanding
properties. However, this can only be met, if a high precision alignment of the ZPs during
the multiple steps can be achieved. From [34]

The challenge is that with decreasing ∆r the distance to the neighboring
ring also decreases, meaning that one has to fabricate high density concentric
ring structures. Further, to maintain efficiency, a sufficient aspect ratio is also
mandatory. One way to meet this challenge is the so-called overlay or dou-
ble pattern technology [34] which allows to push the zone-width well below
the one a single exposure pattern could achieve (Fig. 5.7). The challenge is,
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however, that this technique relies on a very accurate overlay, to within just a
few nm, of one pattern to another. This can be accomplished by specialized
alignment algorithms and pattern generators. With this technique, progress
in spatial resolution of FZP based soft x-ray microscope were able to demon-
strate spatial resolution of test structures down to below 10 nm (Fig.5.8). Even
more, this concept can be easily generalized to increase also the aspect ratio,
which yields a higher diffraction efficiency of the zone plates. Hence, ulti-
mately it can be used to do both, increasing spatial resolution and diffraction
efficiency at the same time and thus breaking the currently required trade-off
between these two competing lens properties. This will be requisite to enable
magnetic imaging in a wide variety of applications. Recently, by optimization
of various process steps such as lithography, electroplating, and resist coating,
an aspect ratio of 19:1 has already been demonstrated [35].

Another concept to increase spatial resolution is to combine advanced thin
film technology with e-beam lithography. By a conformal atomic layer depo-
sition (ALD) of high refractive index material onto the side walls of a pre-
patterned template made from a low refractive index material, one can obtain
a doubling of the effective line density of the coated material as compared
with the template. This has been demonstrated recently to achieve a spatial
resolution better than 10 nm [36].

Fig. 5.8 Progress with FZP based soft x-ray microscopy since 2005. Whereas spatial reso-
lution to below 10 nm has been already demonstrated, increase in efficiency is as important
before it can be used for regular magnetic imaging
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The quadratic decrease in focal length with increasing spatial resolution
can be compensated e.g. by using the higher order diffraction of FZPs. Al-
though progress has been achieved, the loss in diffraction intensity has to be
compensated by stronger soft x-ray sources. Therefore higher order imaging
can hardly be an option for bending magnet beamlines, but will require state-
of-the-art undulator sources [37].

5.5 One example: Magnetic vortex structures

As one typical example of magnetic x-ray imaging with high spatial res-
olution, we want to introduce the topic of magnetic vortex structures (see
Fig.5.9), which have attained significant interest in the recent past by the mag-
netism community [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. We will use
this topic to show how soft x-ray magnetic microscopy can not only reveal
details in the static spin configuration [50], but also how the fast dynamics of
vortex structures can be studied (see Sec. 5.6).

Fig. 5.9 Schematics of the spin configuration in a thin ferromagnetic disk.

To minimize its energy, the spin structure in a thin (less than a few hundred
nm) ferromagnetic, e.g. permalloy (Fe19Ni81), disk of sub-micrometer diame-
ter, exhibits a circulating component in the plane of the disk, which basically
follows the shape of the sample. However, towards the center of the disk, the
increase in exchange energy between neighboring spins, which tend to be an-
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Fig. 5.11 a Intensity profiles of polarity images similar to the ones shown in Fig. 5.10b
across the VC in the center for various disk thicknesses (Reprinted figure with permission
from [50]. Copyright (2011) by the American Physical Society.) in comparison with b mi-
cromagnetic simulations (Reprinted figure with permission from [43]. Copyright (2003) by
the American Physical Society)

have predicted that the dipolar field emerging from the VC closes back into
the disk, thus creating a small dip in the intensity profile of the VC structure.
In a recent MTXM study, where the VC profiles were studied as function of
the disk thickness, such a dip could indeed be verified (Fig. 5.11) and was
found in excellent agreement with full 3D micromagnetic simulations [50].
The latter included even a broadening of the VC profile inside the disk vol-
ume, a phenomenon which is described as the barrel structure in [2]. The
decrease of the VC half-width-half-maximum (HWHM) at the surface, which
is included in the barrel model, can also be seen with more surface sensitive
imaging techniques such as Scanning Electron Microscopy with Polarization
Analysis (SEMPA) [54]. Ultimately, the full structure of a VC would be an
interesting research target for magnetic tomography, which will be addressed
in Sec.5.7 further below.

The decrease of the VC size as function of disk thickness2 was also ad-
dressed in this recent MTXM study, as seen in Fig. 5.11a [50]. The depen-
dence of the HWHM values as function of disk thickness for a fixed radius of
500 nm is shown in Fig.5.12. The lines shown are results of micromagnetic
simulations, where both the anisotropy (K) and a broadening value (σ ) was

2 The VC size also decreases with higher anisotropy, e.g. in Co disk of similar geometrical
sizes the HWHM of the VC would be smaller.
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Fig. 5.12 The half-width-half-max (HWHM) values of the VC in permalloy disks decrease
with decreasing film thickness. Values from TXM measurements are shown as data points,
indicating the limit in spatial resolution. The various lines are from full 3D micromagnetic
simulations with varying anisotropy values (K) and broadening (σ ). Reprinted figure with
permission from [50]. Copyright (2011) by the American Physical Society

used as parameter. The good agreement between the experimental and sim-
ulation data is evident. However, the current spatial resolution of FZP optics
does not permit to extend such studies below about 50 nm disk thickness. To
access those scientifically interesting and moreover technologically important
regime, a further improvement of spatial resolution (and efficiency, since with
a decreasing film thickness, the signal/noise ratio for the magnetic contrast
drops significantly) is desperately needed.

5.6 Imaging spin dynamics down to fundamental magnetic
time scales

In order to understand functionality, the dynamics of a system has to be taken
into account. Time-resolved imaging of spin structures has thus received a
great deal of attention. Analogous to the need to image magnetic structures
down to their fundamental length scales, imaging their dynamical behavior
down to fundamental time scales is as demanded. With the exchange inter-
action being the strongest interaction in magnetic systems, the corresponding
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• only the fully reproducible part can be imaged, i.e. non-deterministic
processes such as spin fluctuations cannot be addressed so far.

Fig. 5.14 Schematics of the stroboscopic pump-probe setup for time resolved MTM mea-
surements. Reprinted figure with permission from [55]. Copyright (2008) by the American
Physical Society

As a prototypical example to explain the capabilities of time resolved
MTXM, we will use again magnetic vortices and in particular their gyrotropic
motion. The energetically very stable configuration and the possibility to
encode both C and P independently in a single unit has suggested mag-
netic vortex structures as an interesting concept for novel magnetic storage
[56, 57, 58, 59] and logic units [60, 61]. However, this requires a detailed un-
derstanding of the dynamic behavior upon excitation of magnetic vortex struc-
tures and a plethora of studies have been focussing on those topics. The vortex
ground state leads to a rich spin excitation spectrum, including translational,
radial and azimuthal modes, which have been studied both theoretically and
experimentally [46, 59, 62, 63, 64, 65]. A wealth of details have been stud-
ied and, for example, a good understanding is now available of how to switch
the VC by magnetic field pulses and by spin polarized currents, or how the
accompanying spin waves emerge [44, 49, 63, 65, 66, 67, 68, 69, 70, 71].

Two examples from time-resolved MTXM will now describe what infor-
mation can be retrieved from studies of magnetic vortex structures. In the
first experiment a single permalloy disk was placed between two contact
pads, where a RF pulse sequence was launched to trigger a spin current in-
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duced gyrational motion of the magnetic vortex structure in the permalloy
disk (Fig. 5.14) [55]. The lengths of the x-ray pulses at the ALS are about
70 ps and the spatial resolution is around 25 nm. The gyrational motion of
the VC was observed in this experiment up to a delay between the electronic
pump and the x-ray probe pulse of several ns. From the observed clockwise
gyration, a polarity value of P=-1 could be deduced. More importantly, the
measurement of the gyration radius, which is possible due to the high spatial
resolution as a function of excitation frequency, allowed to derive the polar-
ization of the currents (Fig. 5.15) which yielded a value of 0.67 and which is a
critical quantity to describe the strength of the spin torque acting on the vortex
core [55].

Fig. 5.15 Gyration radius of the vortex core in the permalloy disk as a function of the
excitation frequency. Reprinted figure with permission from [55]. Copyright (2008) by the
American Physical Society

The second example goes one step further towards the realization of a mag-
netic device, which is based on the dynamics of a magnetic vortex. There, the
interaction of neighboring disks has to be studied in detail, first, to understand
potential couplings, and second, to tailor such couplings e.g. in logic devices,
where the coupling could be utilized to propagate a signal.

To address this problem, a sample was prepared where one ferromagnetic
disk (Disk #1) was placed directly on top of a coplanar waveguide, whereas
a second disk (Disk #2) of the same diameter and thickness was located a
certain distance away from the first disk (Fig. 5.16). The gyrotropic motion of
the vortex structure in Disk #1 was then triggered by a short electronic pulse
running through the waveguide. With time-resolved full-field MTXM it was
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Fig. 5.16 Left: Schematics of the electronic pulse, which is launched into the waveguide.
Right: Raw MTXM image showing the two ferromagnetic disks, with one placed on top of
the waveguide [72]

then possible to observe the gyrational motion of both disks at the same time
as a function of delay time between pump and probe pulse. From an analysis
of the experimental data it could be demonstrated that the dipolar coupling
between spatially separated magnetic disks can be utilized as a robust new
mechanism for energy and information transfer with tunable energy transfer
rates, low-power input signals and negligible energy loss in the case of neg-
ligible intrinsic damping (Fig. 5.17). This makes this concept an interesting
alternative for implementation in applications for information-signal process-
ing.

5.7 Towards three-dimensional magnetic x-ray imaging

Over the last decade research on magnetism was dominated by the desire to
understand the properties of magnetic systems on the nanoscale. A reduc-
tionist, i.e. a top-down approach, was applied to dissect the complex mag-
netic behavior on a macroscopic scale to the building blocks on an atomic and
molecular level. Undoubtedly, this scientific era has made great achievements
and fundamental insight into nanomagnetism was obtained. Recently, it has
been recognized, that the next step beyond the nanoscale will be governed by
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Fig. 5.17 Top: Position (x,y) of Disk #1 as derived from MTXM data in comparison with
simulations. Bottom: Same for Disk #2. The oscillations are similar to the motion of coupled
oscillators. From [72]

mesoscale phenomena [73], since those are expected to add complexity and
functionality, which are essential parameters e.g. for the realization of next
generation future devices.

Complexity in mesoscience will comprise both novel and emerging ma-
terials which can be tailored through synthesis, but also the investigation of
buried interfaces and, related to that, the demand to image structures in all
three dimensions, which will advance magnetic imaging to the next level be-
yond e.g. the 2D magnetism in thin films. Three-dimensional soft x-ray to-
mography using Fresnel zone plate based full-field and scanning transmission
soft x-ray microscopies have been developed and are routinely used at vari-
ous synchrotron sources, but almost exclusively for biological imaging [74].
However, a 3D imaging of magnetic structures is of large interest to under-
stand e.g. interfaces in magnetic multilayers, the inner structure of magnetic
nanocrystals, nanowires, nanotubes [75] or the functionality of artificial 3D
magnetic nanostructures. Several x-ray 3D imaging approaches are currently
investigated, such as utilizing standing waves in Bragg conditions [76], x-ray
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Fig. 5.18 Image of the tomography stage at the full-field TXM at the ALS. The sample is
mounted on top of the glass tip

imaging in reflection geometry [77] or computational reconstruction of pro-
jection x-ray images.

One way to get tomographic information with full-field MTXM is to mount
the sample, such as a nanotube onto a rotational symmetric substrate, e.g. a
quartz tip which can be pulled down to less than 100 nm tip size and which
is placed onto a high precision rotary stage to record an angular series (up to
360◦) of high precision 2D projection images (Fig. 5.18). By applying state-
of-the-art reconstruction algorithms [78] it is possible to retrieve the full 3D
structure. Another approach is to utilize the short depth of focus (see (5.4)) to
record images through focus and then reconstruct the tomographic informa-
tion.

5.8 Conclusion

Magnetic imaging with polarized soft x-rays provides a unique combination
of spatial and temporal resolution as well as inherent elemental and quan-
tifiable sensitivity. There is a variety of techniques available, including both
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real space and reciprocal space imaging. Full-field TXM will contribute sig-
nificantly to future studies of mesoscale phenomena, including tomographic
information. At future x-ray sources, such as x-ray free electron lasers single
shot imaging capabilities with nanometer spatial and fs temporal resolution
can be foreseen.
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M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and
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Chapter 6
A Student’s Introduction to Resonant
Inelastic Soft X-ray Scattering

Sorin G. Chiuzbăian

Abstract Recent instrumental advances have opened an important window
for studying magnetic excitations with resonant inelastic x-ray scattering
(RIXS). This contribution outlines the main theoretical and experimental as-
pects underlying this spectroscopic technique. The aspects discussed cover
self-absorption corrections, scattering geometry, resonant scattering cross sec-
tions and methods for identifying and exploiting spectral information. State of
the art diffraction grating spectrometers are assessed in view of RIXS oppor-
tunities that lie ahead.

6.1 Introduction

The last decade has witnessed unprecedented advances in the use of resonant
inelastic x-ray scattering (RIXS) for exploring neutral electronic, magnetic
and vibrational excitations of matter. Amongst the factors that can be iden-
tified as being decisive for this development, we would stress the advances
in the availability and production of highly brilliant x-ray beams, of course,
but also progress in the fabrication of optical elements and very low noise
two-dimensional detector arrays with high spatial resolution. They make it
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possible to progressively zoom-in on the energy scale that is relevant to the
excitations. At present excitations with characteristic energies from several
eV down to few tenths of an eV can be probed with element and momen-
tum sensitivity. The focus of the technique has moved from charge excitations
to studies on magnetic excitations and has opened exciting perspectives for
investigating the magnetism of complex materials. The design of future soft
x-ray instruments target energy resolutions of a few hundredths on an eV.

In the spirit of the Mittelwihr school, this contribution is meant to pro-
vide young scientists with a reliable starting point to develop their interest
in the RIXS technique. Both theoretical and experimental aspects are consid-
ered more for a pedagogical approach than a detailed exploration of particular
scientific cases. The few selected examples are intended to make the subject
more accessible. For concision, they are restricted to RIXS with extreme ul-
traviolet photons (roughly 20 eV to 300 eV) and soft x-rays (300 eV to a few
keV).

Some excellent review papers and books cover the subject in depth. The
progress of RIXS in solids was reviewed by Kotani and Shin [1], Kotani [2]
and more recently by Ament et al. [3]. Studies on strongly correlated electron
systems with hard x-rays were recently reviewed by Rueff and Shukla [4].
The books by Schülke [5] and de Groot and Kotani [6] will provide the reader
with comprehensive explanations. Results and theoretical perspectives for the
use of RIXS in gases were presented by Gel’mukhanov and Ågren [7]. The
contribution by M. Altarelli in this volume delivers a concise but complete
introduction to photon scattering processes. Students are highly encouraged
to consult the book by Stöhr and Siegmann [8] for an excellent introduction
to x-ray spectroscopies and their application to magnetism.

6.2 Recording RIXS spectra

RIXS is a “photon-in photon-out” technique in which monochromatic x-rays
with energy h̄ωin are scattered by a sample via two dipole-allowed transi-
tions, the creation of a core hole and its decay. With hard x-rays higher or-
der transitions, as for instance quadrupole contributions, can be involved. The
sample can be solid, liquid or gaseous. The scattered x-rays are examined by
means of a spectrometer which delivers the number of photons with the en-
ergy h̄ωout scattered within the acceptance angle of the instrument dΩ and
within an energy interval d(h̄ωout). Part of the x-rays are scattered elastically
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(h̄ωout = h̄ωin) and give rise to an elastic peak. The others are inelastically
scattered thus leaving a part of their energy in the sample as neutral excita-
tions: h̄ωtr = h̄ωin− h̄ωout . Very small energy transfers might remain unde-
tected when the energy resolution is not sufficient. In such cases the elastic
peak averages over very small energy losses and is sometimes labeled “quasi
elastic” (h̄ωout ≈ h̄ωin). The scattering is equally accompanied by a momen-
tum transfer h̄qwhich depends on the energy of the photons and the scattering
geometry (scattering angle 2θ , Fig. 6.1): h̄q= h̄kin− h̄kout . For photon energy
losses of less than a few eV and average energies higher than a few hundreds
of eV, one can approximate kin ≈ kout and therefore q≈ 2kin sinθ .

Fig. 6.1 Schematics of the scattering process

6.2.1 The absorption spectrum

For the scattering process to be resonant, the energy of the incoming pho-
tons h̄ωin is tuned to a specific absorption edge. Consequently the first step
of a RIXS experiment is recording an x-ray absorption spectrum (XAS)
to characterize the shape of the resonance and select the excitation ener-
gies across the absorption threshold. Soft x-ray photons cover, for instance,
the M2,3 (3p− 3d) and L2,3 (2p− 3d) edges of 3d transition metals, the
N2,3 (4p− 5d), M4,5 (3d− 4 f ) and M2,3 (3p− 5d) edges of lanthanides as
well as the K (1s−2p) edges of light elements (C to F).

The XAS spectrum describes the number of core-hole excited states as
a function of the energy of the incoming light. Ideally XAS is measured in
the transmission mode. This means recording the x-rays transmitted through
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a sample of given thickness x according to the Beer-Lambert law: I(h̄ω,x) =
I(h̄ω,0)exp [−µ(h̄ω)x], where µ(h̄ω) is the absorption coefficient at the pho-
ton energy h̄ω and has the dimension of [length−1]. The quantity 1/µ(h̄ω) is
called the attenuation length and represents the depth from the surface where
the intensity drops by a factor of e. With soft x-rays the attenuation lengths
are on the order of micrometers or less. Preparing solid samples with such
thicknesses for XAS measurements in transmission mode is difficult in most
cases and therefore some other modes are usually used to record absorption.
When core-holes are created in the soft x-ray range, the Auger decay channel
largely dominates the core-hole filling. Auger electrons travel to the surface
and give rise to electron cascades resulting from inelastic collisions. The mean
free path of the electrons is only on the order of few tens of angstroms, that is
equivalent to a few lattice constants [9]. Electrons reaching the surface with
sufficient energy will overcome the work function and escape from the sam-
ple. By measuring the sample drain current with a picoammeter it becomes
possible to get a measure of the absorption in the total electron yield (TEY)
mode. Similar to the x-ray attenuation length, it is convenient to define an
electron yield sampling depth representing the depth from the surface which
contributes to 63% of the TEY XAS signal [8]. Typical values for the electron
yield sampling depth are on the order of nanometers with soft x-rays. There-
fore, while TEY XAS measurements probe samples deeper than photoelec-
tron emission measurements [9], the spectra originate from a region within
a few nanometers from the surface and thus are subject to enhanced surface
sensitivity.

An alternative for XAS measurements is recording the radiative decay
channel with a photon detector (photodiode or multi-channel plate for in-
stance). Such fluorescence-yield (FY) measurements conserve the probing
depth of the x-rays. However FY XAS measurements should be carefully
interpreted as the signal is not simply proportional to the absorption proba-
bility [10]. In fact the FY intensity contains the energy integrated RIXS cross
section.

In the case of gas samples, the dimensions of the cell containing the gas
can generally be adapted to allow for taking XAS data in the transmission
mode.
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6.2.2 Fluorescence and Raman-like losses

Figure 6.2 displays a model set of RIXS results. The XAS spectrum defines
the incoming light energies for recording the RIXS spectra. To a certain ex-
tent, this means tuning the scattering via some particular core-hole state. In
fact several core-hole states may be excited for a given fixed incoming photon
energy.

Fig. 6.2 Fluorescence and Raman-like spectral features in RIXS spectra. Spectra in left
panel are displayed against transferred energy. The center panel shows same spectra dis-
played with the energy of scattered photons as abscissa. The panel on the right indicates the
shape of the absorption threshold

The RIXS spectrum consists of three main regions:

i) The elastic peak region displaying the photons which are elastically or
quasi-elastically scattered, within the resolving power of the experiment.
Taking the transferred energy h̄ωtr = h̄ωin − h̄ωout as abscissa (Fig. 6.2,
left), the elastic peak will stay at h̄ωtr = 0. Obviously when the spectrum
is represented against h̄ωout (see middle panel of Fig. 6.2), the elastic peak
follows the variation of the incoming light energy.

ii) Certain energy losses can be found at constant transferred energy h̄ωtr
with an intensity modulated by the position of h̄ωin on the XAS spectrum.
These are similar to the Stokes peaks in classical Raman spectroscopy and
are often quoted as resonant Raman peaks. The peaks correspond to well
defined neutral excitations which are brought about during the scattering
process. These will follow the displacement of the elastic peaks when tak-
ing h̄ωout as abscissa.
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iii) Spectral weight which stays at constant emission energy h̄ωout is de-
noted as fluorescence. Indeed, exciting well above the resonance thresh-
old, h̄ωin� A, results in decoupled absorption and emission processes. In
other words the emission does not feature a dependence on the incoming
light energy. Even when the incoming photons are tuned to the resonance,
some of the spectral weight still arises from fluorescence. Disentangling
fluorescence spectral weight from Raman-like features may turn out to be
complicated but remains essential for the interpretation of the RIXS spec-
tra.

6.2.3 Self-absorption effects and sample orientation

The scattered photons are partially absorbed on their way to the surface of the
sample, in the same manner the incoming light is gradually absorbed when
propagating through the sample (see § 6.2.1). This results in a reduction of
the measured RIXS signal and a modulation of the spectral intensities. This
aspect is referred to as “self-absorption” and is briefly illustrated below.

We follow Eisebitt et al. [11] to consider the general case of x-rays im-
pinging on the surface at a grazing angle α , the scattered photons being mea-
sured in a direction making the angle β with the surface (Fig. 6.3). The in-
tensity of incoming photons with the energy h̄ωin along the direction x can
be written as I(h̄ωin,x) = I0 exp(−µinx), where µin = µ(h̄ωin) is the absorp-
tion coefficient for photons with the energy h̄ωin. For the purpose of a sim-
plified presentation we also neglect the non resonant absorption by other
core levels or valence levels. Along dx at distance x from the surface, the
number of absorbed photons is given by: −dI = I0µin exp(−µinx)dx. Part
of these photons are scattered according to the probability PS(h̄ωin, h̄ωout)
which corresponds to the theoretical RIXS spectrum. In other words, a num-
ber PS(h̄ωin, h̄ωout)I0µin exp(−µinx)dx of photons with the energy h̄ωout will
travel to the surface following a path y. Only PS(h̄ωin, h̄ωout)I0µin exp(−µinx)
exp(−µouty)dx of these photons will reach the surface, the rest being absorbed
on the way out. Here µout = µ(h̄ωout) represents the absorption coefficient for
photons with the energy h̄ωout . Neglecting solid angles, the measured inten-
sity is obtained by integrating between 0 and xd where xd = d/sinα with d
the thickness of the sample
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I(h̄ωin, h̄ωout) = PS(h̄ωin, h̄ωout)I0µin

∫ xd

0
exp
[
−
(

µin + µout
sinα

sinβ

)
x
]
dx .

(6.1)

Fig. 6.3 Scheme for calculation of self-absorption effects

By calculating the integral and taking into account that the thickness of the
sample d is far larger than the attenuation length, the measured intensity can
be written as

I(h̄ωin, h̄ωout) = PS(h̄ωin, h̄ωout)I0
µin

µin + µout
sinα

sinβ

. (6.2)

The simplified relation (6.2) makes it easy to exemplify the self-absorption
effects in an idealized case. We consider an XAS spectrum consisting of a
single white line (see Fig. 6.4, upper left panel). For best visualization, the
theoretical RIXS spectrum (upper right panel of Fig. 6.4) is considered to dis-
play an elastic peak and two Raman losses of equal intensity, for all incoming
energies. The latter are marked with arrows on the XAS spectrum and denoted
“1” (−1 eV from the XAS maximum) and “2” (+1 eV from the XAS maxi-
mum) and correspond to the points encompassing the full-width at half max-
imum of the absorption line. It is obvious that orienting the sample at almost
normal incidence results in an inconvenient reduction of the measured inten-
sity. However, even when the grazing incidence is chosen, the self-absorption
can result in modulation of the measured intensities. For instance, if excita-
tion “2” is considered, the elastic peak at h̄ωout = +1 eV and the second loss
at h̄ωout = −1 eV are subject to similar self absorption effects. On the con-
trary, the first loss would come out with a photon energy corresponding to the
absorption maximum and therefore it is measured with reduced intensity.
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Corrections for self-absorption effects are always recommended when es-
sential information is to be extracted from the intensity of the spectral weights
in the RIXS spectra.

Fig. 6.4 Illustration of the self-absorption effects for two geometries at 90◦ scattering (see
text and Fig. 6.3 for more details)

6.2.4 Scattering geometry

As indicated in § 6.2 the momentum transferred to the sample during the scat-
tering process depends on the scattering angle 2θ and the photon energy:
q ≈ 2kin sinθ . The momenta of interest are those that can be used to sample
in sufficient detail and over a sufficient extension the Brillouin zone starting
from the Γ point (center of the zone). Soft x-rays with energies from 500 to
1000 eV have wave vectors ranging from 2.53 Å−1 to 5.07 Å−1. These values
indicate that, in many cases, convenient scattering angles can be selected to
map regions of interest in the first Brillouin zone. To illustrate this, Fig. 6.5



6 A Student’s Introduction to Resonant Inelastic Soft X-ray Scattering 193

shows how photons with energies tuned to the Ni L3 threshold would make it
possible to map a large part of the first Brillouin zone of NiO. For simplicity
we assume that all directions are possible for the incoming light wave vector
with respect to the crystallographic axes. It should be noted, however, that
when dealing with magnetic properties, as for instance the dispersion of mag-
netic excitations, it is necessary to take into account the magnetic Brillouin
zone, which is smaller than the crystal Brillouin zone (see [12] for the case of
NiO).

Fig. 6.5 Brillouin zone corresponding to the crystallographic primitive cell of NiO and the
points (situated on the spheres) which can be accessed in RIXS experiments at the Ni L3
edge (h̄ωin = 853 eV) with variable scattering angle and for all possible orientations of the
sample. The transferred momenta are 0.80 Å−1, 0.61 Å−1 and 0.43 Å−1

Layered materials form a special case. For instance, cuprate superconduc-
tors have well defined sheets of CuO2 planes. The crystallographic c parame-
ter is substantially larger than the a and b lattice parameters. The magnetic
excitations of interacting Cu2+ spins can propagate within the CuO2 planes.
It is therefore of interest to quantify the momentum transfer within the CuO2
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planes. Considering δ the angle between the transferred vector q and the vec-
tor c of the unit cell, the transferred momentum can be written q‖ = qsinδ .
The expression of q‖ indicates that momentum dependent measurements can
be performed at fixed scattering angle (q = const.) by rotating the sample so
as to modify the incidence angles at the CuO2 planes.

6.3 RIXS cross section and Kramers-Heisenberg relation

Assuming constant detector efficiency and spectra corrected for self-absorption
effects, the measured intensities of RIXS signal are directly proportional to
the cross section of the inelastic scattering process. The scattering can be de-
scribed in terms of the differential cross section dσ/dΩ which delivers the
counting rate within a solid angle dΩ in the kout direction (see Fig. 6.1), nor-
malized to the number of photons per unit time and unit surface incident on
the system (see contribution by M. Altarelli in this volume and Ref. [13, 14])

dσ

dΩ
=

ωout

ωin

r20
m2 ∑

f

∣∣∣∣∣∑n 〈Φ f |T (e)|Φn〉〈Φn|T (a)|Φi〉
Ei + h̄ωin−En− iΓn/2

∣∣∣∣∣
2

×δ (Ei−E f + h̄ωout − h̄ωin) , (6.3)

where r0 = e2/(4πε0mc2)≈ 2.82×10−15m is the classical radius of the elec-
tron withm the mass of the electron, T (a) = êinpe+ikinr and T (e) = ê∗outpe−ikoutr
are operators associated to the absorption and emission of a photon with p the
electron momentum coupling to the electromagnetic vector potential A of the
radiation, êin (êout ) the polarization vector of the incident (scattered) photon,
ê∗out being the complex conjugate of êout . The expression (6.3) is known as
the Kramers-Heisenberg relation. The differential cross section retains only
the resonant part of the scattering process. The wave-functions |Φi〉, |Φ f 〉 and
|Φn〉 correspond to the initial state i, the final states f , as well as the interme-
diate states n (see Fig. 6.3.1). The final state can be the same as the initial state
(elastic Rayleigh scattering) or some excited final state with the same number
of electrons. Expression (6.3) contains some important aspects:

i) Effective operators T (a) and T (e)

To calculate transition matrix elements |Φi〉 → |Φn〉 and |Φn〉 → |Φ f 〉, it
is convenient to observe that e+ikr can be evaluated in terms of series ex-
pansion e+ikr = 1+ ikr+(ikr)2/2+ · · · . The series is rapidly converging
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(see M. Altarelli) as kr→ 0. A rough estimation of the kr values can be
obtained from the energies of absorption threshold h̄ωin and the atomic
number Z according to kr ≈

√
h̄ωin/(80Z) [15]. For copper (Z = 29), the

M (3p→ 3d) and L (2p→ 3d) thresholds have approximate energies 75 eV
and 930 eV, respectively, leading to kr on the order of 0.004 to 0.01. The
exponential is practically reduced to 1 which defines what is known as the
electric dipole approximation. Such transition can be visualized by charge
movements along an axis. The remaining expression êp contains both posi-
tion coordinates and momentum but can be expressed in spatial form only
as êr using the relation p = (m/ih̄)[r,H]. One obtains the known form of
the electric dipole transition operators T = êr.

ii) Selection rules
An intuitive approach to selection rules can be obtained from symmetry
considerations (see for example Ref. [16]). In systems with inversion sym-
metry, electric dipole transitions are only possible between orbitals with
different parity, that is between even (gerade or g) and odd (ungerade or u)
orbitals. The well known orbital selection rule forbids direct −d or f − f
electric dipole transitions. The particularity of the x-ray scattering cross
section dσ/dΩ is that it involves two dipole allowed transitions. Therefore
it grants access to excited neutral final states with the same symmetry as
the initial state through u→ g→ u or g→ u→ g sequences. This repre-
sents an important benefit compared to other techniques like electron en-
ergy loss spectroscopy [17] or optical spectroscopy. Though the latter can
access d− d or f − f excitations through relaxation mechanisms, such as
the breaking of the inversion symmetry due to lattice vibrations. Another

Fig. 6.6 (Left) Scattering paths in the total energy scheme. Due to finite width of the inter-
mediate state, several scattering paths are open even if h̄ωin is perfectly defined. (Right) A
direct RIXS process is sketched considering the electron energy as axis of ordinates
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important aspect is the conservation of the spin through a dipole transition
as the electric dipole operator does not act on the spin. However, in the
intermediate state |Φn〉, the presence of a core-hole involved in spin-orbit
coupling results in the spin not being a “good” quantum number for de-
scribing the state of the system [18]. This has opened up the perspective of
being able to study magnetic excitations with RIXS and sparked numerous
studies in strongly correlated electron systems.

iii) Resonance condition
The validity of expression (6.3) is strictly restricted to incoming photon
energies matching an absorption threshold h̄ωin ≈ En−Ei. Away from res-
onance, the expression must be completed with the non-resonant terms, as
for instance the Thomson scattering. The division by zero is avoided by the
complex part iΓn/2 which corresponds to the Lorentzian lifetime broaden-
ing Γn (FWHM) of the intermediate core-hole state |Φn〉.

iv) Core-hole lifetime
Three processes compete for the spontaneous decay of the core-hole: the
radiative channel (emission of a photon), the Auger channel and the Coster-
Kronig decay (ejection of an electron). The time the core-hole “stays” in
the system for interactions is defined by the decay process with the highest
probability. In the case of 3d transition metals, the decay of 2p holes (L2,3
edges) is dominated by Auger processes while 3p (M2,3 edges) holes are
mainly subject to Coster-Kronig decays [19]. Γn is on the order of one eV
for core-holes created in the soft x-ray domain. Actually only about 0.1%
of the core-holes created in the absorption lead to emission of a photon,
which explains the very small scattering cross section. The link between
energy broadening Γn and core-hole lifetime τ is established by the un-
certainty relation Γnτ = h̄. In general Γn is taken to be constant across the
absorption threshold for a given decay channel.

v) Final state broadening
The energy broadening of the core-hole does not propagate into the final
states. Final states are broadened only by the intrinsic lifetime of final states
Γf (Lorentz distribution). The latter is very small or negligible for core-
hole free states having long lifetimes Γf � Γn. To point out this important
aspect, the δ function in (6.3) can be replaced with:

Γf /(2π)
(Ei−E f + h̄ωin− h̄ωout)2 +(Γf /2)2

. (6.4)
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This property is sometimes noted “subnatural” width or “Raman narrow-
ing” of the measured final states.

vi) Scattering paths and interference effects
Among the various possible intermediate states |Φ (1)

n 〉, |Φ (2)
n 〉, · · · , several

can contribute to the global probability for reaching some given final state
as long as selection rules are obeyed (see Fig. 6.3.1). The summation in
(6.3) runs over products of amplitudes 〈Φ f |T (e)|Φn〉〈Φn|T (a)|Φi〉 which
are weighted by the complex denominator. In general this would lead to
a result like: (∑t zt)

2 = ∑t z2t + 2∑t<s ztzs with zt complex values. If the
cross terms ztzs are sufficiently small compared to z2t , the square of the
sum in dσ/dΩ can be simply written as the sum over the squares (see
also [20]). Neglecting constants in (6.3), it becomes possible to write a
simplified form of the scattering spectral shape [21]:

F(h̄ωin, h̄ωout) = ∑
f

∑
n

〈Φ f |T (e)|Φn〉2〈Φn|T (a)|Φi〉2

(Ei + h̄ωin−En)2 +Γ 2
n /4

×δ (Ei−E f + h̄ωout − h̄ωin) . (6.5)

The physical assumption made here to simplify the calculation is that the
scattering probability can be written as a product of absorption and emis-
sion probabilities; each intermediate state can be excited with well-defined
rate and this because there is no interference between “single” scattering
paths |Φi〉→ |Φ (a)

n 〉→ |Φ (b)
f 〉. However, this is generally not the case. Tun-

ing the photon energy to a defined intermediate state also involves reach-
ing the others with a reduced but finite amplitude. This aspect is usually
termed an “interference effect”. It is no longer possible to speak in terms
of the probability of scattering via a well-defined intermediate core-hole
state during the scattering process.

vii) Energy conservation and virtual intermediate states
As mentioned above, the conservation of the energy should be considered
between initial |Φi〉 and final states |Φ f 〉 as indicated by the δ function.
Due to finite broadening of the intermediate state, for the absorption step
to the intermediate states |Φn〉 and emission step from these states, the
energy conservation is relaxed. Therefore |Φn〉 are often termed “virtual”.

viii) Momentum conservation
Analogous to the energy conservation, it is possible to apply momentum
conservation only between initial and final states and precisely determine
the momentum of excitations created during the scattering process.
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ix) Duration of the scattering process
By considering the evolution in time for the wave packet of the intermedi-
ate state, Gel’mukhanov and Ågren [7] introduced the concept of “scatter-
ing duration time” τsc = 1/

√
Σ 2 +(Γn/2)2, where Σ represents the detun-

ing with respect to the absorption edge Σ = h̄ωin−En+Ei. The expression
of τsc indicates that detuning from the absorption threshold grants some
control over the dynamical processes which determine the RIXS spectral
weight.

6.3.1 Elementary excitations

RIXS probes a broad range of excitations, going from inter-site electron trans-
fers (charge transfer excitations) on the order of several eV, down to vibra-
tional excitations (phonons in solids) at a few hundredths of an eV from the
elastic peak (see Fig. 6.3.1). In this section the nature of different excitations
is briefly discussed and accompanied by some examples. The reader may refer
to the reviews indicated in § 6.1 for more extensive explanations.

Fig. 6.7 Energy scale for different types of elementary excitations observed with RIXS in
strongly correlated electron systems (after [3])

6.3.2 Charge transfer (CT) excitations

For an electron to hop between two sites in the crystal, an energy higher than
the electronic gap must be provided. Such excitations across the gap are of
paramount importance for understanding gap formation, as for instance in
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the case of metal to insulator transitions. The relevance of CT excitations is
equally relevant for the superexchange mechanisms of magnetic interactions.

The scientific case of NiO, mentioned in § 6.2.4, turns out to be an ap-
propriate example to illustrate the excitations discussed here (see [22] for an
overview on the NiO electronic structure). NiO features a cubic crystal struc-
ture of NaCl type. Each Ni2+ ion (electronic configuration [Ar]3d84s0) is oc-
tahedrally (Oh) surrounded by six O2− ions. The antiferomagnetic coupling
between the Ni spin magnetic moments is ensured by the superexchange via
the O 2p states.

In strongly correlated materials such as NiO, the gap is determined by com-
bining two different energy scales. One is due to the charge-transfer energy ∆

needed to transfer an electron from a ligand L, here the oxygen, to the metal
site: ∆ = E(dn+1L)−E(dnL) with n = 8 for Ni2+. The other is the Coulomb
repulsion energy U spent for an electron removal from a metal site and elec-
tron addition on another one: U = E(dn+1)+E(dn−1)− 2E(dn). The gap is
ruled by the smallest of these energies (see the original paper by Zaanen,
Sawatzky and Allen [23] or more recently [24]) and accounts for the width
W of the ligand band (here the O 2p; states). Within this framework, NiO is
identified as being in the charge-transfer limit.

What is the mechanism that triggers inter-site electron hopping during pho-
ton scattering? A simplified picture is obtained if one takes into consideration
the intermediate core-hole state: the Coulomb interaction between the valence
electrons and the core-hole pulls down the valence states. Electrons from lig-
and sites can compensate the apparent local charge deficit and therefore final
states with ligand to metal electron transfers can be observed. A more rigorous
description can be obtained within the Anderson impurity model [25]. The Ni
ground state in NiO is described as a mixture between d8L, d9L and d10L2

states; it results in bonding, non-bonding and anti-bonding states which have
finite population probabilities in both final and initial states of the scattering.

The way CT excitations are revealed in RIXS spectra is obviously modu-
lated by the choice of the absorption edge. In the case of RIXS measurements
performed at NiM2,3 threshold in NiO, the intensity of the CT spectral weight
was below the detection limit [26], an aspect confirmed later for by a CoM2,3
RIXS study of CoO [27]. For measurements at Ni L2,3 edge in NiO, CT exci-
tations with large spectral weight were found when exciting about 4 eV above
the L3 maximum [28]. Due to ligand band width W of several eV, the CT
excitations are spread over a relatively broad range of transferred energies. It
is also interesting to mention the hard x-ray studies of NiO at the Ni K edge
[29]; it was shown that the intensity of the CT excitations is almost entirely
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suppressed when applying high pressure (100GPa) on the crystal, while their
typical energies are conserved. It was suggested that the pressure leaves para-
meters like U and ∆ unchanged while W is increased leading to a reduction
of the electronic gap.

More complex CT excitations in NiO were also measured with incoming
photons tuned to the O K edge [30] which revealed Ni to Ni non-local charge
transfers taking place via the O 1s core-hole state.

6.3.3 Orbital excitations

The electronic structure of an isolated 3d transition metal ion with the elec-
tronic configuration dn consists of a single fivefold degenerate energy level.
In the case of Ni2+, the term symbol 2S+1L of the ground state is 3F , four
other terms designate excited states: 1D, 3P, 1G and 1S. The separation be-
tween the energies of these terms arises due to electron-electron repulsion. In
the presence of an octahedral crystal field Oh, the degeneracy of the single
atomic level is partially lifted, the atomic orbital being branched to a doublet
eg and a triplet t2g. The atomic term symbol 3F is spit into 3A2g, 3T2g and
3T1g, the ground state remains 3A2g. The latter corresponds to a filled t2g level
and two spin-up electrons on eg. Further ligand field terms are 1E1g and 1T2g
originating from the atomic term 1D, and 3T1g from 3P. The others are de-
rived in a similar manner (see [15, 31] for further details). The excited states
correspond to a reorganization of the eg and t2g occupancy while the number
of electrons stays constant and equal to eight. The representation of the lig-
and field term energies as function of the 10Dq value separating eg and t2g
is known as Tanabe-Sugano diagram. In the case of the d8 configuration, the
separation between the term of the ground state 3A2g and the first excited term
3T2g matches the crystal field splitting 10Dq.

During the resonant scattering process, any of the crystal field states can
be reached in the final state. This powerful property is based on convenient
orbital and spin selection rules (see § 6.3). Figure 6.8 shows the case of NiM2,3
RIXS measurements of NiO [26]. The spectra show a pure Raman regime,
all losses being identified as orbital d− d excitations. It becomes possible to
“read out” the value of the crystal field splitting 10Dq= 1.05 eV on the RIXS
spectra.

The arguments exposed above were restricted to a local picture of the or-
bital excitations. It can be naively assumed that an on-site d− d excitation
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Fig. 6.8 d− d excitations
at the metal site in NiO
studies with RIXS at the
NiM2,3 threshold (from [26]).
Lower panels shows the
Tanabe-Sugano diagrams
for d8 in Oh field, the middle
panel including the spin-orbit
coupling and an exchange
mean field. Upper panel
displays the RIXS spectra
taken at two energies across
the absorption threshold

should have some impact on the orbital occupancy of the closest metal site
through the mediation of ligand electronic states. Under favorable conditions,
the orbital excitations would propagate through the crystal and give rise to an
orbital wave or “orbiton”, as originally proposed by Saitoh et al. [32]. Such
propagating collective excitations are expected to feature dispersion. Clear ev-
idence of orbital waves measured with RIXS was recently shown in the case
of the spin-chain compound Sr2CuO3 by Schlappa et al. [33] (see Fig. 6.9).

6.3.4 Magnetic excitations

The possibility of exploring magnetic excitations with RIXS represents a ma-
jor breakthrough for the technique. The mechanism that allows spin changes
to be observed in resonant inelastic scattering processes is based on the large
spin-orbit coupling present in the intermediate core-hole state. The angular
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Fig. 6.9 Orbitons in Sr2CuO3
measured with RIXS at the
Cu L3 edge (from [33]). Cu2+

ions have a single hole in the
d orbital; the position of the
hole (3z2− r2, xz, yz or xy) is
indicated for all propagating
orbital excitations

momentum of the photon is L = 1, so that ∆Lz = 0, 1 or 2 can be exchanged
through the coupling. Therefore magnetic excitations with ∆Sz = 0, 1 or 2 can
be created [3]. For simplicity it is instructive to deal with local “spin flips” in
the case of NiO. In the absence of magnetic interactions, the ground state of
Ni2+ in Oh symmetry is 3A2g. NiO features an antiferromagnetic order with
a Néel temperature of 523K. The spin magnetic moments are aligned along
the 〈112〉 crystallographic direction. Each Ni2+ ion is subjected to six inter-
atomic exchange interactions J with the surrounding Ni ions via the O 2p;
states. The result can be modeled as a mean magnetic field acting on the Ni2+

ions with an effective exchange strength Jeff ≈ 6J. The mean field lifts the
degeneracy of the ground state term 3A2g similar to a Zeeman splitting (see
middle panel of Fig. 6.8 where Jeff = 125meV is assumed). Three projections
of the spin S= 1 are possible on the axis of quantization: the ground state with
Sz =−1, as well as excited states with Sz = 0 and +1. According to these con-
siderations, the RIXS spectrum features energy losses at Jeff (single spin-flip
with ∆Sz = 1) and 2Jeff (double amplitude spin-flip with ∆Sz = 2) [34]. On
the site where the resonant scattering takes place, Ni2+ spin momentum is left
behind with a modified orientation, when compared to the antiferromagnetic
magnetic ground state (see Fig. 6.10). Other flip possibilities also have finite
probability, as for instance the flip on two Ni sites (double spin-flip) resulting
in a global ∆Sz = 0 and requiring an energy of 2Jeff.
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Fig. 6.10 Illustration of a local spin-flip in NiO

Fig. 6.11 Collective magnetic modes (magnons, denoted B and C) measured in the layered
superconductor La2CuO4 (from [35]). The right panel shows a comparison for the disper-
sion of the single magnon B to inelastic neutron measurements

The magnetic excitations mentioned above are not localized but propagate
in the crystal as well-defined spin-wave modes (magnons). These are collec-
tive excitations. As the scattering geometry defines the momentum transferred
to the magnons, these photon energy losses provide a direct way for measur-
ing spin wave modes, in a way comparable to inelastic neutron scattering.
The first demonstration by Braicovich et al. [36] (see also Fig. 6.11) sparked a
strong interest in studies on the magnetism of complex systems [3]. While the
energy resolution attained in RIXS is still far from that reached with inelastic
neutron scattering measurements, it provides an important alternate method.
In particular RIXS can be performed on small samples, can probe an energy
range of several eV and provides access to ∆Sz = 2 modes, just to name a few
relevant aspects.
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6.4 Diffraction grating spectrometers for soft x-rays

The flourishing interest for RIXS is intimately associated to instrumental pro-
gresses. It is therefore timely to review the developments in the field.

Spectrometers for extreme ultraviolet photons (roughly 20 eV to 300 eV)
and soft x-rays (300 eV to a few keV) are mostly based on diffraction grat-
ings [37]. Alternatives exist but they are less competitive mainly because of
practical aspects. There have been promising attempts to implement optical
interferometric techniques [38, 39], but they are conditional on extreme me-
chanical precision: optical elements need to be positioned and moved with
precisions comparable to the wavelength of the radiation, i.e. several to a few
dozen nanometers. Moreover, for energies higher than 100 eV, multiple reflec-
tions result in a dramatic drop in efficiency. Crystals have been employed but
in practice their usefulness is very limited compared to their performance in
the hard x-ray region. Large defect-free crystals are needed with inter-atomic
distances comparable to the photon wavelength (see [40] for a selection of
available materials). Crystal spectrometers operating below 800 eV have lim-
ited energy windows (in accordance with Bragg’s law) and have modest en-
ergy resolution.

The challenge for the optical design of modern instruments is to obtain in-
creased energy resolution while maintaining a sufficiently large instrumental
throughput. The latter is obviously needed to compensate for the extremely
small scattering cross sections in the soft x-ray region. These objectives are
antagonistic. Indeed, improving energy resolution can be achieved either with
longer instruments and therefore smaller angular acceptance for a given size
of the optical elements, or with higher line density gratings leading to lower
diffraction efficiency. Both result in reduced photon throughput.

Several schemes for diffraction grating spectrometers are employed at syn-
chrotron light sources around the world. The choice for a particular scheme is
subject to a number of factors involving available space at the beamline, scien-
tific objectives (energy range covered and energy resolution), strategy for the
correction of optical aberrations or quality of available optical elements. Here
the reader is provided with an overview of the salient features of each design
as means of understanding their relevance to a particular research project.

The Rowland-circle mounting depicted in Fig. 6.12a is widely used as it
is relatively straightforward to construct and set-up [41, 42]. It consists of a
spherical or toroidal regularly line spaced (RLS) grating. The source (the sam-
ple itself or the input slit), the center of the grating and the detector are located
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Fig. 6.12 Overview of optical schemes used for resolving the scattered photon spectra.
a Regularly line spaced spherical grating (RLS-SG) or Rowland circle design. b Varied
line spaced spherical grating (VLS-SG) scheme. c Spherical mirror with varied line spaced
plane grating (SM/VLS-PG). d Elliptical mirror with varied line spaced plane grating
(EM/VLS-PG). e Parabolic mirrors with regularly line spaced plane grating (PM/RLS-PG).
f Varied line spaced active grating (VLS-AG) design.

on the Rowland circle with a diameter equal to the meridional radius of the
grating. Spherical RLS diffraction gratings can be manufactured to very high
standards. The key aspect of the Rowland mounting is given by the wave-
length independent cancellation of optical aberrations up to the third order on
condition that the optical magnification be constant and set to one (see [43]
for a concise introduction to grating and mirror aberrations).

High reflectivity even in the soft x-ray region requires small incident graz-
ing angles (0.7◦ to 3◦) at the grating. The Rowland circle radius has to be
large to attain high-resolution. This in turn means that light also impinges on
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the detector at small grazing angles and microchannel plate (MCP) detectors,
which maintain reasonable efficiency at glancing incidence have to be used.
This is not the case for a back-illuminated charge coupled device (CCD). The
energy range covered will depend, amongst other factors, on the distance that
the detector can travel along the circle. Compact Rowland circle spectrome-
ters are currently operational with moderate energy resolution on beamlines
7.0.1 and 8.0.1 of the Advanced Light Source. A high resolution instrument
is under construction on the REIXS (10ID-2) beamline of the Canadian Light
Source. The use of the Rowland mounting for very high resolution, means that
it becomes necessary to take into account the weight of fourth order optical
aberrations.

The use of varied line spacing (VLS) spherical diffraction gratings brings
higher flexibility to the optical design (Fig. 6.12b). The ruling density has a
polynomial dependence along the meridional coordinate which allows for im-
proved correction of aberrations as well as for more convenient orientation of
the focal curves. The groove spacing serves both to diffract the light and to
correct for the optical aberrations of the concave surface. Recent high resolu-
tion implementations of the VLS-SG scheme can be found at the ID08 beam-
line of the European Synchrotron Radiation Facility [44], at the ADRESS
(X03MA) beamline of the Swiss Light Source [45] and the BL07LSU beam-
line of the Japanese light source SPring8 [46]. The VLS-SG holds so far the
highest resolving power value with E/∆E ≈ 104 for the 5m long SAXES
spectrometer [45]. Recently we investigated the potential of this scheme for
ultimate resolving power in a systematic study and established the optimiza-
tion criteria needed to attain an almost straight focal curve [47]. Resolving
powers well in excess of 3× 104 were predicted at 930 eV for a 10m long
instrument.

The VLS-SG design is recommended when the emphasis is on energy res-
olution alone. On the other hand studying complex systems can make high
throughput essential to cope with extremely low counting rates. One way to
meet this demand is to use large x-ray mirrors in conjunction with diffraction
gratings. Thus collecting photons and energy dispersion are handled indepen-
dently. A first successful design of this kind was proposed by Hettrick and
Underwood [48, 49]. It combines a spherical focusing mirror with a plane
VLS grating [Fig. 6.12c]. The grating serves to diffract the light and to correct
for the optical aberrations of the mirror by means of the VLS dependency.
Long mirrors can be manufactured more cost effectively than long gratings
and a long mirror can be used in conjunction with a short grating provided
that the latter is employed in outside diffraction order, m =−1, meaning that
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α < |β |. This limits the line density that can be used since higher line density
means larger |β |. Each of the two optical elements contributes some slope-
errors which affect the overall resolving power. Thus the resolving power at-
tained with an SM/VLS-PG is somewhat reduced compared to a VLS-SG. The
SM/VLS-PG operates at constant included angle 2θ = α−β and the depth of
focus at the detector is large so the detector can be kept at fixed distance from
the grating (fixed exit arm). The energy window at the detector is changed
by simply rotating the grating. A first implementation of this scheme for soft
x-rays was a portable spectrometer presented by Hague et al. [50]. This in-
strument also featured a collecting pre-mirror. The MERIXS end-station on
the 4.0.3 beamline of the Advanced Light Source accommodates a 2m long
SM/VLS-PG instrument designed for the 3p−3d transitions in 3d transition
metal compounds [51]. Another portable instrument designed for large pho-
ton throughput based on the same scheme was tested at the same light source
[52]. The latter was designed to work at inside diffraction orders.

Replacing the spherical mirror of the SM/VLS-PG design with an ellipti-
cal mirror (EM/VLS-PG) represents a significant step forward. The features
of the (SM/VLS-PG) are extended with the added possibility of using var-
ied included angles 2θ to obtain high-resolution over a substantially broader
energy range. This has become possible thanks to recent progress in the man-
ufacturing techniques of aspherical mirrors. A 3m long EM/VLS-PG instru-
ment is installed on the Synchrotron SOLEIL SEXTANTS beamline. It covers
50 eV−1000 eV by means of two diffraction gratings only and offers resolv-
ing powers well in excess of 5000 [53].

The quest for higher photon throughput was also the main motivation for a
PM/RLS-PG/PM design which combines a parabolic collimating mirror with
a plane RLS diffraction grating and a second parabolic mirror which focuses
onto the detector [39]. This scheme should be particularly effective at energies
lower than 120 eV because it involves three reflections and quite large grazing
angles. The original instrument [39] will come into operation on the SPECIES
beamline of the MAX II storage ring in Sweden. Another PM/RLS-PG/PM is
being commissioned at the BESSY II light source in Germany [54]. The latter
design features sagittal focusing for the first parabolic mirror to reduce the
impact of the slope errors.

An novel concept has been proposed at the NSRRC light-source drawing
advantage from the development of “active” optical elements. Bending is used
to provide optimized control of the optical aberrations. The VLS-AG design
is basically the VLS-SG scheme, but it is expected to provide adapted con-
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trol of optical aberrations when used in conjunction with an active grating
monochromator on the beamline [55].

6.5 Conclusion

RIXS has joined the mainstream of x-ray spectroscopic techniques granting
insight into the magnetism of correlated electron systems. The technique is
nowadays rapidly evolving. Its powerful features motivate significant techni-
cal and financial efforts: nowadays very long instruments with a total length
higher or equal to 10m are designed or under construction at the European
Synchrotron Radiation Facility (France), at the future MAX IV facility (Swe-
den), at The Diamond Light Source (UK) or the future The National Syn-
chrotron Light Source II (USA).

In this chapter we addressed the main aspects dealing with RIXS per-
formed with soft x-rays in an attempt to motivate the interest of young sci-
entists for this technique by pointing out its strengths and specific aspects.
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8. J. Stöhr, H.C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics.

Springer Series in Solid-State Sciences (Springer, Berlin, 2006)
9. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988)

10. R. Kurian, K. Kunnus, P. Wernet, S.M. Butorin, P. Glatzel, F.M.F. de Groot, J. Phys.:
Condens. Matter 24, 452201 (2012)

11. S. Eisebitt, T. Böske, J.E. Rubensson, W. Eberhardt, Phys. Rev. B 47, 14103 (1993)
12. M.T. Hutchings, E.J. Samuelsen, Phys. Rev. B 6, 3447 (1972)
13. J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Lebanon, 1967)
14. M. Blume, J. Appl. Phys. 57, 3615 (1985)
15. F. de Groot, J. Vogel, Neutron and X-ray Spectroscopy (Springer, Berlin, 2006), chap.

Fundamentals of x-ray absorption and dichroism: the multiplet approach, pp. 3–66
16. S.F.A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists (John

Wiley & Sons, New York, 2007)
17. B. Fromme, d-d Excitations in Transition-Metal Oxides: A Spin-Polarized Electron

Energy (SPEELS) Study, Springer Tracts in Modern Physics, vol. 170 (Springer, Berlin,
2001)

18. F.M.F. de Groot, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 57, 14584 (1998)
19. O. Keski-Rahkonen, M.O. Krause, Atomic Data and Nuclear Data Tables 14, 139

(1974)
20. J.E. Rubensson, J. Elec. Spec. Rel. Phenom. 110 - 111, 135 (2000)
21. P. Glatzel, M. Sikora, M. Fernández-Garcı́a, Eur. Phys. J. Special Topics 169, 207

(2009)
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Chapter 7
Synchrotron-radiation studies of topological
insulators

Philip Hofmann

Abstract Topological insulators are a recently discovered class of materials
with entirely novel properties. While their bulk electronic structure is that of
an insulator, topological considerations force the surfaces to support metallic
states that bridge the bulk band gap. This Chapter gives an accessible introduc-
tion to these materials, with special emphasis on synchrotron radiation-based
experimental techniques that have been used for their experimental discovery.

7.1 Introduction

Topological insulators (TIs) are a recently discovered [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12] class of quantum materials that are currently attracting a lot of
attention. The most interesting aspect of the TIs is, in fact, not that they are
bulk insulators but that their surfaces support localized metallic states with
some special properties, among others a characteristic spin texture. Most im-
portantly, the existence of these metallic states is not a surface property, it is
required by the topology of the bulk band structure. While the details of the
surface (structure, reconstructions) still matter for the dispersion and Fermi
contour of the surface states, their very existence is, in a sense, a bulk prop-
erty.
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Synchrotron-radiation based angle-resolved photoemission spectroscopy
(ARPES) has been one of the most important tools to prove the existence
of the topological surface states and spin-resolved ARPES has been able to
confirm the predicted non-degeneracy of the states with respect to spin and
the spin texture [10, 11, 13, 14, 15, 16]. The power of ARPES derives from
the possibility of a direct spectroscopic view of the state’s dispersion and of
many-body effects such as the lifetime of the states. ARPES also stands out as
an important technique because it has so far not been easy to probe the trans-
port properties of the surface states directly [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28]. Superficially, this may appear surprising because a metallic
surface on an insulating bulk crystal should be easy to detect. Unfortunately,
this is not the case and many transport measurements have been dominated
by the bulk states. The reason for this is the high bulk conductivity of the ma-
terials, which have a small band gap, many charged impurities and typically
a high dielectric constant leading to poor screening between the impurities.
The surface conductance, on the other hand, is not well known and lifetime
ARPES studies could help to elucidate the processes that limit the lifetime of
excited surface state carriers in transport.

This Chapter is not meant as a comprehensive review of topological insu-
lators or of their study with ARPES but merely as an accessible introduction
to the field for the non-specialist. We do not attempt to describe the historical
development of the important discoveries in detail, nor do we show the orig-
inal figures from such work. Instead, the emphasis is on a didactic presenta-
tion. We also discuss only one single material as an example for the important
concepts, the widely-studied TI Bi2Se3 [13, 12, 29]. There are a number of
excellent reviews on TIs already published [30, 31, 32, 33, 34] and the reader
is referred to these for a comprehensive description of the field.

In the following sections, we will first discuss the basic physical ideas that
lead to the existence of topologically protected surface states on an insula-
tor. Different explanations will be given, ranging from a simple hand-waving
explanation to a practical description of how to determine if a material is a
topological insulator. Following this, we will discuss how different TI states
(bulk and surface) can be detected by ARPES and what their spectroscopic
signature is. The chapter concludes with a discussion of how the electron-
phonon coupling affects the lifetime of the surface states on Bi2Te3.
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7.2 Basic principles behind topological insulators

One of the most interesting questions in TI physics is how it is possible that
the bulk electronic structure implies the existence of metallic surface states
on a insulating material. In the following, we will encounter different pictures
explaining this. Note that the term “topological insulator” might be slightly
misleading because the materials are, in fact, not insulators with a large gap
energy Eg (in the sense that Eg � kBT at room temperature) but small gap
semiconductors with Eg ≈300 meV.

Metallic surface states on semiconductors are not an unusual phenomenon
and simple electron counting arguments often dictate the surface of a trun-
cated bulk semiconductor to be metallic [35]. On the other hand, the surfaces
often undergo geometric reconstructions that change the periodicity parallel
to the surface, leading to larger unit cells and non-metallic states. A simple
model for such rearrangements is a Peierls distortion in a one-dimensional
metallic chain that leads to an energy gain via a metal-insulator transition. On
real surfaces, the picture is much more complex but the essence is that metal-
lic semiconductor surfaces are usually just a coincidence [36]. They are not
stable against, e.g. a structural rearrangement of the atoms.

The existence of topological surface states, on the other hand, cannot de-
pend on the structural details of the surface. A simple explanation for the
stable existence of metallic states between two different semiconducting ma-
terials is given in Fig. 7.1. Consider a “normal” semiconductor with a well-
separated valence band (VB) and conduction band (CB) and the chemical
potential (or Fermi energy EF ) in between. The VB and CB shall each have a
characteristic colour, which for a “normal” material shall be blue and red, re-
spectively. We will later discuss the meaning of the colour in more detail and
we will see that it is related to the parity of the bands (we limit the discussion
to materials with inversion symmetry). Now suppose that we have another
type of semiconductor, a TI, also with a well-defined band gap but an inverted
order of the colours, i.e. a red VB and blue CB. If we join these two mate-
rials under the condition that we can only join states of identical character,
the blue and red states have to cross the Fermi energy at the interface, giving
rise to two metallic states located there. This is the essence of a topologically
protected metallic interface or surface state.

The crucial point is that the existence of the crossing is not a surface prop-
erty but a bulk property. An excellent analogy is the situation that arises when
two countries are to be joined by a road bridge, with the difficulty that the
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Fig. 7.1 Strongly simplified band diagram for semiconductors, showing the valence band
(VB) and conduction band (CB) energies as a function of position (i.e. the edges signify
the macroscopic ends of the sample). a Colour (parity) ordering of VB and CB in a normal
semiconductor. b Semiconductor with an inverted band gap. (c) Joining a semiconductor
with a normal band gap and one with an inverted band gap while maintaining the symmetry
of the states gives rise to metallic interface states

driving rules in one country enforce right-hand traffic and in the other left-
hand traffic. A possible solution to this problem is the traffic flipper bridge
shown in Fig. 7.2, a proposal for a boundary crossing between Hong Kong
with mainland China. In this case, the colour of the bands in Fig. 7.1 is repre-
senting the traffic side (left-hand vs. right-hand) and this is a bulk property of
the two countries, requiring a node in the bridge. The solution is not unique:
the node could be included in a more complex structure road layout, or there
could be a higher number of crossings, as long as the total number of crossings
is odd. But the bulk topology of the countries dictates the existence of at least
one node somewhere near the border and the flipper bridge is the simplest
topological solution to the problem.

In a material, the colour of the bands in Fig. 7.1 represents the parity of the
bulk bands. In a TI, the bulk band structure has an inverted parity ordering due
to the strong spin-orbit interaction. A very simple illustration of this is given in
Fig. 7.3. Consider the most important orbital angular momentum contribution
to the electronic states of a semiconductor near the valence band maximum
(VBM) and conduction band minimum (CBM), assuming a direct band at the
Brillouin zone centre. In a “normal” material the VBM has mostly p character
(negative parity) whereas the CBM has mostly s character (positive parity). If
we now consider materials with a strong spin-orbit interaction, this lifts the
degeneracy of the p level, leading to the creation of j = 1/2 and a j = 3/2
states. If the splitting is sufficiently strong, the j = 3/2 state can move above
the s state, giving rise to the desired band parity inversion and the creation of
a TI material.
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Fig. 7.2 Proposed “flipper bridge” between Hong Kong (left-hand traffic) and mainland
China (right-hand traffic). Design by nl architects (www.nlarchitects.nl). Picture used with
permission

Fig. 7.3 Strongly simplified
illustration of the effect of
spin-orbit coupling on the
symmetry of the valence
band maximum (VBM) and
conduction band minimum
(CBM). For weak coupling,
the CBM has s-orbital char-
acter and positive parity, the
VBM has p character and
negative parity. Strong cou-
pling can move the j = 3/2
level above the s level, leading
to a parity-inverted band gap

VBM: p-band (-)

CBM: s-band (+)

EF

j=3/2 

j=1/2 

s 

These simple pictures give an intuitive explanation for the topological sta-
bility of interface states, but they have a number of severe shortcomings, as
far as the details are concerned, and leave several questions open. Fig. 7.3, for
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instance, explains the origin of the parity inversion but it is merely a picture
derived from atomic states, not bands. This leads to some apparent contradic-
tions, for example that the number of filled states is not conserved. Also, the
pictures above may explain the existence of topologically protected interface
states between two materials, but not the existence of such states at a surface,
between a TI and vacuum. We come back to these points further down in the
text.

For now, we approach the idea of topologically protected surface states
from another angle, by starting out with “normal” surface states in the pres-
ence of strong spin-orbit coupling. Consider a free electron-like surface state
with a parabolic dispersion around the centre of the surface Brillouin zone
(SBZ) Γ̄ , as shown in Fig. 7.4a. Such surface states are commonly found on
the (111) surfaces of the noble metals Cu, Ag and Au [37]. On metals, such
surface-localized solutions of the Schrödinger equation, can only exist in pro-
jected gaps of the bulk band structure. For the noble metal (111) surfaces such
gaps are present around the Fermi energy at the Γ̄ point because of the charac-
teristic shape of the bulk Fermi surfaces which are almost spherical but have
“necks” into the neighbouring Brillouin zone around the L symmetry point
[38]. The projected bulk states and the gap are not shown in Fig. 7.4a.
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Fig. 7.4 a One dimensional cut through the two-dimensional dispersion of a free electron-
like surface state, as found on the (111) surfaces of the noble metals. b The same state
under the influence of strong spin-orbit coupling (Rashba effect). The spin-degeneracy is
lifted and the spin directions of the individual branches are indicated by the arrow heads.
c ARPES measurement of the spin-orbit split surface state on the Au(111) surface. High
photoemission intensity is dark. After Ref. [39]
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A strong spin-orbit interaction changes the dispersion of such a surface
state by lifting the spin degeneracy, as shown in Fig. 7.4b. Formally, this can
be described by the so-called Rashba model [40, 41]. This model was origi-
nally developed to describe the interaction of a two-dimensional electron gas
(2DEG) with an electric field perpendicular to the 2DEG’s plane. A fast-
moving electron in the plane will experience the Lorentz-transformed elec-
tric field as a magnetic field in the plane but perpendicular to its direction
of motion. The electron’s energy depends then on the orientation of the spin
magnetic moment with respect to this magnetic field, parallel or anti-parallel,
lifting the spin degeneracy in the dispersion. The model can be solved an-
alytically, starting from from the free electron Schrödinger equation in two
dimensions with the added energy for the spin-orbit interaction

Hso =− h̄
4mec2

(p×E)σ =− h̄
4mec2

(∇V ×p)σ , (7.1)

where p is the momentum operator, E the electric field perpendicular to the
surface with the generating potential V and σ the Pauli spin operator. The
constants and the electric field strength can be represented by a parameter α

and the interaction is added to the Hamiltonian of the free electron, leading to

− h̄2∇2

2me
ψ(r)+α(n×p)σψ(r) = Eψ(r) , (7.2)

with n being a unit vector normal to the surface. This problem can be solved
analytically and the resulting energies are

E =
h̄2k2

2me
±α h̄k , (7.3)

where the ± sign corresponds to the different spin directions. This dispersion
shown in Fig. 7.4b.

The analytically predicted dispersion for the Rashba effect has been con-
firmed by high-resolution ARPES measurements of the surface state on
Au(111), the heaviest noble metal with the strongest spin-orbit interaction
[42, 43]. If we, for now, just regard the ARPES intensity as a “picture of the
band structure”, the result of such a measurement as shown in Fig. 7.4c [39]
fits excellently with the prediction of the model.

From equation 7.3 it can be seen that the state is always degenerate at the
SBZ centre. This is not a coincidence or a special feature of the Rashba model
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but a result of time-reversal symmetry which assures the so-called Kramers
degeneracy. Consider a solution of the Schrödinger equation with wave vec-
tor and spin given by (k,←). Time-reversal symmetry guarantees a degener-
ate solution with (−k,→). For k = (0,0) the states must thus be degenerate.
Time-reversal symmetry is assumed to hold at the surface but it could possibly
be broken by a magnetic field.

Degeneracies in otherwise spin-split surface states can also be enforced at
other points in k-space, due to the combination of time-reversal symmetry and
crystal symmetry. Consider for example a hexagonal SBZ in Fig. 7.5a and a
surface state with (k= M̄,←) at the M̄ point. Time-reversal symmetry dictates
a degenerate state with (−k,→) but due to the symmetry of the lattice, −k
is also an M̄ point, equivalent to the staring point. Thus, there must be two
degenerate states at this point (and every equivalent M̄ point) with both spins,
→ and←.
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Fig. 7.5 a Hexagonal surface Brillouin zone with high-symmetry points. The M̄ point can
be identified as a time-reversal invariant momentum. b and c Rashba-split free electron-
like surface state in a projected bulk band gap. The state in b is metallic but it can be
emptied by lifting the entire dispersion above the Fermi level as in c. d and e Topologically
protected spin-split surface state. While the dispersion of the state depends on the details of
the potential, time reversal symmetry protects it against a band gap opening, such that the
situation in f cannot be realized
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Points such as M̄ in the hexagonal lattice are called surface time-reversal
invariant momenta Λa (TRIM). They are characterized by the property that
Λa =−Λa +g where g is a surface reciprocal lattice vector. There are always
four possible TRIMS for the two-dimensional reciprocal lattice spanned by
the vectors b1 and b2. The reciprocal lattice vectors are given by g = nb1 +
mb2. One TRIM corresponds to (m,n) = (0,0) and the other three are placed
half-way to the points for which (m,n) = (1,0),(0,1),(1,1), i.e. the remaining
three independent combinations of the indices.

We now discuss the topological stability from the perspective of the sur-
face states in the presence of strong spin orbit splitting. Consider an insulator
with a hexagonal Brillouin zone and the projection of the bulk bands along
one direction, for example Γ̄ − M̄. This projection is shown as grey areas in
Fig. 7.5. The absolute band gap in a semiconductor is of course also reflected
in a projected band gap around the Fermi energy EF . In Fig. 7.5b we imagine
that the surface hosts a free electron-like surface state, split by the Rashba
effect. The surface state is only partially filled, crosses EF , and the surface is
therefore metallic. There is, however, no special topological protection of this
metallic surface state. We could imagine to hole-dope the surface such that
the entire dispersion is lifted above EF , rendering the surface semiconducting
as in Fig. 7.5c.

The situation is different for the surface state dispersion shown in Fig. 7.5d.
In this case, a change in the dispersion could still be achieved by changing
the potential near the surface. It would, for example, be possible to move
the crossing point of the two spin-polarized branches above the Fermi energy
as in Fig. 7.5e, but it would not be possible to open a gap in the dispersion
as in Fig. 7.5f. This would violate time reversal symmetry that guarantees a
spin-degenerate state at Γ̄ . The state in Fig. 7.5d and Fig. 7.5e is thus a time-
reversal symmetry protected state. Such states are found on the surfaces of the
TIs and the dispersion of the states is very similar to the one shown here.

What is now special about the surface state in Fig. 7.5d compared to the
state in Fig. 7.5b? It is not the dispersion as such. In fact, the dispersion of the
state in Fig. 7.5d could be a magnified version of the usual Rashba dispersion
in the immediate vicinity of the crossing point, with the states disappearing
in the projected bulk state continuum before the k2 term in the dispersion of
(7.3) becomes significant. The important difference is rather the number of
Fermi level crossings between the SBZ centre and the SBZ boundary or, more
precisely, between the surface TRIM at Γ̄ and the surface TRIM M̄ at the SBZ
boundary. If the state shows an even number of Fermi level crossings between
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two surface TRIMS, it can be removed, but if it shows an odd number of
crossings, it is topologically protected.

The important point is now that the number (even or odd) of Fermi level
crossings between two surface TRIMs can be predicted solely by the bulk
band structure of the material. A mere knowledge of the bulk bands thus per-
mits statements about the existence of topologically protected surface states,
not merely interface states as in the simple examples given in the beginning of
this section. A second material is not required for stable states or, in a sense,
vacuum can be viewed as a material with “normal” band ordering. Note that
the topological considerations do not give a detailed prediction of the sur-
face band structure, they merely predict if an odd or even number of surface
state Fermi level crossings is present (actually, the predictions are somewhat
stronger than this [44], but this is of no concern here). Again the analogy with
the bridge in Fig. 7.2 is useful. If we were told that a bridge had been installed
that takes care of the traffic-flip problem, we could predict that there must be
an odd number of crossings built into such a bridge but not how many (given
common sense and budget restrictions, the answer would likely to be one).

We now illustrate how the number of surface state crossings between two
surface TRIMs can be derived from the bulk band structure. This has been
described in detail using the example of the TI Bi1−xSbx by Teo, Fu and Kane
[44]. We follow their treatment here but we use the TI Bi2Se3 as an example.
The bulk structure, bulk band structure as well as the bulk and surface BZ for
the (111) surface of this material are given in Fig. 7.6.

We first define the bulk TRIMs Γi in analogy to the surface TRIMS by
−Γi = Γi +G where G is a bulk reciprocal lattice vector. There are eight
bulk TRIMS. In Bi2Se3 these are Γ , Z, three F points and three L points
(see Fig. 7.6b; note that the BZ actually contains two Z points and six F and L
points, but they are shared between two neighbouring zones). For each TRIM,
the so-called parity invariants δi for the occupied bands are calculated by

δ (Γi) = ∏
n

ξ2n (Γi) (7.4)

where the ξ2n(Γi) = ±1 are the parity eigenvalues of the 2nth occupied band
at Γi, obtained from a bulk band structure calculation. Note that the bulk inver-
sion symmetry of Bi2Se3 causes the bulk bands to be spin-degenerate because
a state at (k,←) has a degenerate partner with (−k,←) due to inversion but
also one with (−k,→) due to time-reversal. The index n in equation 7.4 counts
all the states, i.e. each spin-degenerate band is counted twice. The product is
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therefore only over every other (spin-resolved) band, such that every parity
eigenvalue only appears once.

The topological character character of the bulk insulator is given by the so-
called Z2 invariant ν0. For ν0 = 1(−1) the material is a topological (trivial)
insulator. ν0 can be calculated from the parity invariants at the eight TRIMs
by

(−1)ν0 =
8

∏
n=1

δ (Γi) . (7.5)

For Bi2Se3 , we have 28 valence electrons per unit cell (2×5 from Bi and
3× 6 from Se), giving rise to 14 filled bands. The bulk parity invariants for
the Z, L and F TRIMs are all calculated to be 1 but for the bulk Γ point δi
is found to be -1 [12, 45]. The product of (7.5) is thus found to be −1, hence
ν0 = 1 and Bi2Se3 is established to be a topological insulator.

The bulk parity invariants can also be used to describe fundamental prop-
erties of the surface electronic structure. To do this, the so-called surface
fermion parity πi can be determined for each surface TRIM. Essentially, πi
is obtained by projecting out the bulk parity invariants onto the correspond-
ing surface TRIMs, using the relation π(λa) = δ (Γi)δ (Γj) . 1 We apply this to
the (111) surface of Bi2Se3 with the SBZ shown in Fig. 7.6b. In this case,
π(Γ̄ ) has to be calculated from the parity invariants of the bulk Γ and Z
points, which are -1 and 1, respectively, and hence π(Γ̄ ) = −1 . For M̄, on
the other hand, π(M̄) = δ (L)δ (F) = 1 . Consequently, the surface fermion
parity changes from −1 to 1 along the path from Γ̄ to M̄. Such a change
can be shown to imply an odd number of surface state Fermi level crossings
along the line connecting the two TRIMS, and a closed Fermi contour around
the surface TRIM with π =−1i . These requirements are fulfilled by the elec-
tronic structure shown in Fig. 7.5d and this electronic structure is, indeed, also
observed for Bi2Se3.

1 Note that this treatment is somewhat simplified as the number of occupied bulk bands and
the position of the surface cleavage plane can give rise to sign changes in the π values. This
affects the predictions about the detailed surface electronic structure but not the existence
of the topologically protected states.



222 Philip Hofmann

MΓK

 0.8

 0.6

 0.4

 0.2

0.0

-0.2

1.0

Γ L Z F ZΓ

B
in

d
in

g
 e

n
e

rg
y
 (

e
V

)

 0.8

 0.6

 0.4

 0.2

0.0

-0.2

1.0

B
in

d
in

g
 e

n
e

rg
y
 (

e
V

)

(a) (b)

(c)

M

Z

F

L
q

u
in

tu
p

le
 l
a

y
e

r

(111)

Fig. 7.6 a Crystal structure of Bi2Se3 with the quintuple layer building blocks. b Bulk
and surface Brillouin zones with bulk time-reversal invariant momenta (TRIMs) and their
projection to surface TRIMs. c Bulk band structure along selected high symmetry points
and projection on the (111) surface after Ref. [46]

7.3 Angle-resolved photoemission spectroscopy (ARPES)

ARPES has without question been a key-technique in identifying the topo-
logical surface states on TI and we will illustrate the power of the technique
in the next section. Here we briefly discuss the principle of ARPES as far
as required for the rest of this Chapter. For more detailed information about
this well-established technique, the reader is referred to a number of excellent
reviews and books [47, 48, 49, 50, 51, 52]).

The working principle of ARPES is illustrated in Fig. 7.7. Incoming UV
photons cause the emission of photoelectrons from the solid and these elec-
trons are detected by a spectrometer. The emission is only studied in a small
range of solid angle, defined by the emission angles θ and φ . The photoe-
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mission intensity of the emitted electrons is measured as a function of kinetic
energy and intensity maxima in this distribution are assigned to emission from
particular states in the sample. Thus, one measures the kinetic energy and the
k-vector for such states outside the surface and the objective of the analysis
is to work back to the binding energy and k-vector inside the solid, i.e. to the
band structure. It is also possible to measure the spin of the photoelectrons
and to use this in order to draw conclusions about the spin of the states in the
sample. This technique of spin-polarized ARPES suffers from very inefficient
detectors and therefore poor resolution and statistics. For identifying the spin
texture of the topological surface states, however, it is indispensable.

electron 
analyzer

hν
e
-

z

Θ

φ

      ASTRID

(synchrotron rad.)

Fig. 7.7 Working principle of angle-resolved photoemission spectroscopy (ARPES). The
technique is based on the photoelectric effect where the absorption of UV-photons leads to
electron emission. The electron emission current is measured as a function of direction with
respect to the sample surface normal and as a function of kinetic energy. This is achieved
by a hemispherical electron analyser with an entrance lens and an electron counter. It is also
possible to measure the spin of the photoelectrons by replacing the electron counter with a
spin-sensitive detector

It is useful to first establish the purely kinematic conditions for the obser-
vation of a state in ARPES. Energy conservation demands that emission from
a state with binding energy Eb (with respect to the Fermi level) leads to a pho-
toelectron with kinetic energy Ekin = hν −Eb−Φ , where hν is the photon
energy and Φ the sample’s work function. Momentum conservation, on the
other hand, is more involved because the introduction of the surface breaks
the translational periodicity of the crystal in the z direction. The wave vector
in that direction kz is thus no longer well-defined. The components of the wave
vector parallel to the surface (k‖), on the other hand, are still well defined and
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must be conserved in the photoemission process. k‖ of the electron outside
the surface (and thus also from the state inside the surface) is obtained from

k‖ = (sin(φ)x̂+ cos(φ)ŷ)sin(θ) ·
√

2meEkin

h̄2
. (7.6)

For surface-localized states, such as the topological state, the dispersion of
the band only depends on k‖; kz is not a relevant quantum number and the
kinematic conditions are sufficient to extract the surface state dispersion from
the measured photoemission intensity.

The fact that the surface state binding energy is independent of kz also
implies that the state will be observed to be at the same binding energy, re-
gardless of the photon energy used in the experiment. To see this, consider
Fig. 7.8a that shows the dispersion of a bulk initial state, a surface state, and
a final state as a function of kz. The surface state energy does not depend on
kz but the energy of the two other states does. In the photoemission process,
occupied initial states are excited into unoccupied final states and the photon
energy thus determines the permitted kz for the transition from initial state to
final state. For the surface state, the kinetic energy of the photoemitted elec-
tron depends on the photon energy but the measured binding energy (with re-
spect to the Fermi energy) does not. The absence of dispersion upon a change
in photon energy is thus a necessary condition for identifying a state as a sur-
face state.

As pointed out above, the wave vector in the z direction is not a good
quantum number near the surface because the translational symmetry in this
direction is broken. Even if we ignore this fundamental problem for the time
being, it would not be possible to recover kz inside the sample from the value
measured outside because in order to do this the dispersion of the final states
would have to be known [51]. This is evident from Fig. 7.8b that shows illus-
trates photoemission from a bulk band at two different photon energies. The kz
value of the emitted electron depends on the dispersion of initial state and fi-
nal state, as these define the kz value for which the photon energy corresponds
to the energy difference between these bands.

Despite these difficulties, it is often still possible to recover kz of the initial
state from photoemission spectra taken as a function of hν , at least for high
symmetry points in the BZ where the dispersion reaches an extremum. Once
the photon energy for these extrema is known, a frequently used approach to
recover kz for the remaining dispersion is the assumption of free electron final
states. kz plus or minus a reciprocal lattice vector can then be calculated by
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Fig. 7.8 Schematic picture
of the photoemission process
from different types of elec-
tronic states. EF and EV are
the Fermi and vacuum level,
respectively. Φ is the work
function. Shown is the disper-
sion of different states as a
function of wave vector per-
pendicular to the surface kz.
a The dispersion of a surface
state does not depend on kz
and therefore the observed
binding energy for this state
(distance from EF ) does not
depend on the photon energy
hν . b Bulk states measured
with different photon energies
appear at different binding
energies in the spectrum, i.e.
they show dispersion. The
fact that kz is not well-defined
leads to a broadening δkz
that is then reflected in an
energy broadening δE of the
observed peaks
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kz =
√
2me/h̄2(V0 +Ekin) , (7.7)

where V0 is the so-called inner potential. V0 can be determined iteratively by
requiring the resulting kz to be consistent with the binding energy extrema at
high symmetry points.

The problem that kz is not well-defined anymore cannot be neglected ei-
ther. In particular, the finite escape depth of the photoelectron leads to a kz
broadening δkz. As the bulk state disperses in the kz direction, this also leads
to an energy broadening δE, as illustrated in Fig. 7.8b.

For surface states, and two-dimensional states in general, there is no addi-
tional broadening and this permits a much more far-reaching interpretation of
the photoemission intensity. Indeed, the photoemission intensity can be can
be interpreted in terms of the state’s hole spectral function A weighted by the
Fermi-Dirac distribution f and a matrix element |M f i|
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I(Ekin,k) ∝ |M f i|2 f (hν−Ekin−Φ ,T )A (hν−Ekin−Φ ,k) , (7.8)

at least when infinitely good energy and angular resolution are assumed. The
spectral function can be written as

A (ω,k,T ) =
π−1|Σ ′′(ω,k,T )|

[h̄ω− ε(k)−Σ ′(ω,k,T )]2 +Σ ′′(ω,k,T )2
, (7.9)

where ε(k) is the single-particle dispersion. Σ ′ and Σ ′′ are the real and imag-
inary part of the so-called self-energy that contains the information about
many-body effects. As evident from (7.9), Σ ′ leads to a deviation of the state’s
dispersion from the single-particle case and Σ ′′ gives rise to a broadening that
corresponds to a finite hole lifetime τ = h̄/2Σ ′′ . The possibility to access the
self-energy by ARPES thus gives direct information on the state lifetime and
this is determined by many-body effects, such as electron-defect scattering or
electron-phonon scattering.

7.4 Measured electronic structure of topological insulators

In this final section we show how the surface electronic structure of the pro-
totypical TI Bi2Se3 can be determined by ARPES. We will illustrate how
the topological states are identified, how their spin texture is confirmed by
spin-resolved ARPES and how information about many-body effects can be
obtained, using the example of the electron-phonon coupling.

7.4.1 Observation of the topological surface states

We address the situation for the (111) surface of Bi2Se3 which is the only
surface of this material that could be prepared so far. The reason why inves-
tigations are restricted to the (111) surface derives from the bulk structure of
Bi2Se3 that is a stack of covalently bonded quintuple layers, separated by gaps
with largely van der Waals bonding (see Fig. 7.6a. The (111) surface of the
material can very easily be prepared by cleaving the sample parallel to the
quintuple layers. However, cleaves in other directions have not been achieved
yet.
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Turning back to the topological considerations, we have found that Bi2Se3
(111) shows a change of surface fermion parity values between Γ̄ with π =−1
and M̄ with π = 1. As stated above, this implies an odd number of Fermi level
crossings between these surface TRIMS. Actually, the topological predictions
are even stronger than this, requiring that the surface TRIM with the negative
surface fermion parity must be enclosed by an odd number of Fermi contours.

Fig. 7.9 shows cuts through a three-dimensional ARPES data set taken in
the vicinity of the Γ̄ point of Bi2Se3(111). Two types of cuts are show. On
the left hand side the photoemission intensity is shown as a function of k‖ =
(kx,ky) at fixed binding energies and on the right hand side it is shown as
a function of binding energy and a specific high-symmetry direction in the
k‖ plane. Clearly a cone-shaped state is identified that is very similar to the
schematic state shown in Fig. 7.5d. The state crosses the Fermi energy where
the photoemission intensity drops to zero. At a binding energy of≈ 0.3 eV, the
dispersion meets in the degeneracy point at Γ̄ . This particular dispersion and
this point are often referred to as the Dirac cone and Dirac point, respectively.
From such a data set alone, is very tempting to identify the Dirac cone as the
topological surface state because of its metallic nature and its dispersion that
is consistent with the topological predictions.

Apart from the Dirac cone, broader features are observed at higher bind-
ing energies. These will be shown to derive from the uppermost valence band
in Bi2Se3. Finally, a diffuse intensity at the Fermi energy is observed in the
centre of the SBZ. This is caused by conduction band states, implying that
this band is at least partly occupied. Indeed, the sample in question is de-
generately n-doped, something that is frequently observed in pristine Bi2Se3
samples. This degenerate n-doping does not affect the possibility to observe
the topological surface states by ARPES but it renders it very difficult to mea-
sure their contribution in transport experiments where the strongly doped bulk
dominates.

Before we discuss the further experimental evidence that the cone-shaped
state is in fact the topological surface state, consider a sketch of this state in
Fig. 7.10a. The state has a cone-line shape, it is not spin degenerate except for
the Γ̄ point and it is centred around this point. The general topology of this
state is consistent with the the predictions based on the surface fermion parity.
There is an odd number (one) of Fermi level crossings between Γ̄ and M̄ and
the Γ̄ point is encircled by an odd number of Fermi contours (also one). No
other surface states have been observed in the rest of the surface Brillouin
zone of Bi2Se3 .
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Fig. 7.9 Photoemission inten-
sity from Bi2Se3 in the vicin-
ity of the surface Brillouin
zone centre. Different cuts
through a three dimensional
data set of the photoemis-
sion intensity I(kx,ky,Eb) are
shown. The left hand side
shows cuts in k‖ at different
binding energies. The right
hand side shows the the dis-
persion of the states along
two high-symmetry direc-
tions. The Dirac-cone shaped
topological surface state can
be easily identified, as well
as states from the valence
band and the conduction band
(adapted from [53]
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An important characteristic of the state is the non-degeneracy with respect
to spin and the spin texture. The spin is expected to rotate on the constant
energy surfaces of the cone while being perpendicular to the k‖ of the state.
The sense of rotation is the same as for the inner branch of a Rashba-split state
(see Fig. 7.5), as the state can be viewed as derived from a Rashba state. Time-
reversal symmetry for a non-degenerate state dictates that the spin of a state
with k‖ is anti-parallel to that of the state with −k‖. Consequently, these two
states are orthogonal and one expects a lack of backscattering in the system. In
other words, a hole on one side of a constant energy surface cannot be filled by
an electron on the opposite side (see Fig. 7.10). This is a celebrated result for
topological insulators and can be made visible by experiments with scanning
tunnelling spectroscopy [54, 55]. Not surprisingly, the same behaviour had
also been found earlier for surface states on materials with very strong Rashba
splitting in the surface states, which leads to an electronic structure that is
very similar to that in the topological insulators [56]. For the later discussion,
it is important to note that, strictly spoken, only direct backscattering is spin-
forbidden. Near-backscattering is merely unlikely (because the spin projection
is still small) and near-forward scattering is hardly affected by the spin texture.
Formally, this is described by a factor of 0.5(1+ cosα), where α is the angle
between the two k‖ vectors involved in the scattering process [39].
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Fig. 7.10 Schematic repre-
sentation of the surface state
dispersion, the spin texture
and possible scattering events
for Bi2Se3. A hole at a con-
stant energy surface on the
left cannot be filled by elastic
scattering of an electron at
the opposite side of the Fermi
contour because this process
is spin forbidden. But it can
be filled by scattering from
any other state on the Fermi
contour
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The surface character of the observed state can be confirmed by performing
experiments at different photon energies. According to the previous section,
the surface state binding energy should not be affected by the choice of pho-
ton energy, in contrast to the energy of the bulk states. The result of such
an energy scan is shown in Fig. 7.11. The upper panel of Fig. 7.11a-b shows
the the photoemission intensity as a function of binding energy and k‖ for
two photon energies (19.2 and 26.6 eV, respectively). Clearly, the topologi-
cal surface state is observed at the same position, confirming the assignment
as a two-dimensional state. The bulk VB and CB, on the other hand, change
their appearance somewhat. This is more clearly seen in the data shown in
Fig. 7.11c that shows the photoemission intensity in normal emission only
(i.e. the centre of the images in (a),(b)) as a function of binding energy and
kz. kz has been determined using free electron final states (7.7) with an inner
potential of V0 = 11.8 eV. In this representation of the data, the dispersion of
the CB and VB is clearly visible and high symmetry points can be identified
(Γ and Z). Such scans permit the determination of parameters such as the size
of the band gap and width of the bands.

While the surface assignment of the topological state has thus been con-
firmed, we are lacking the confirmation of the expected spin texture and in
particular of the non-degenerate character of the state. This is crucial for being
able to assign the observed dispersion to a topological surface state rather than
to an ordinary surface state. Fig. 7.12 shows the result from a spin-resolved
ARPES experiment [57, 58]. The data points show the spin polarization in a
scan along the Γ̄ − M̄ direction that includes the two Fermi level crossings of
the topological state, as indicated in the inset of the figure. The degree of spin
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Fig. 7.11 a and b Photoemis-
sion intensity from the surface
and bulk states in Bi2Se3 at
two different photon energies
(19.2 and 26.6 eV, respec-
tively). c Photoemission in-
tensity in normal emission,
showing the dispersion of the
bulk CB and VB (emphasized
by dashed lines). Note that
the entire electronic struc-
ture gradually shifts to higher
binding energies over time,
an effect that is caused by
contamination-induced band
bending [14, 53]. The shift
results in the small shift of
the Dirac point (DP) (and the
entire surface state dispersion)
over the width of the scan

polarization is measured in the direction parallel to the surface but perpendic-
ular to the scan direction. The states crossing the Fermi level are found to be
strongly spin-polarized but in opposite directions, consistent with the expected
polarization in a Rashba model. This does not only confirm the expected spin
texture but also the assumption that the state is not spin-degenerate, apart from
at the Γ̄ point.

With this, it is firmly established that the observed state is in fact the
predicted topological surface state. The combination of high-resolution spin-
integrated ARPES and spin-resolved ARPES has been used to identify topo-
logical states on many different TI materials [11, 14, 16, 59].

Recently, a number of studies have reported the observation of a strong
circular dichroism in the ARPES intensity from topological surface states [60,
61, 62, 63, 64] and it has been discussed if and how this can be related to
the spin texture of the state. An example of the observed circular dichroism
is given in Fig. 7.13 that shows polarization-dependent measurements of the
photoemission intensity as a function of k‖ at an energy 150 meV above the
Dirac point in Bi2Se3 ((a) and (b)), as well as circular dichroism obtained from
these two data sets in an equivalent image (c) and quantitatively along the
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Fig. 7.12 Spin polarization
of the topological surface
state on Bi2Se3 measured by
spin-resolved ARPES. The
data show the determined
polarization in the direction
parallel to the surface and
perpendicular to Γ̄ − M̄ at a
binding energy ≈ 100 meV
above the Dirac point. The
direction of the scan and the
resulting spin polarization are
indicated in the inset [58]
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circumference of the circular contour (d) [64]. The strong effect of the light’s
polarisation is evident . The observed circular dichroism has been linked to
the spin texture of the surface state and the technique has been proposed as an
effective method to determine this spin texture. The detailed mechanism for
this is still disputed but it appears likely that the circular dichroism is actually
a consequence of the orbital texture rather than the spin texture. However,
since spin and orbital degrees of freedom are very strongly coupled in a TI
surface state, it may be possible to exploit the circular dichroism as a viable
and efficient way to gain information about the state’s spin texture.

7.4.2 Dynamics of the surface states: Electron-phonon
coupling

With the existence of the topological surface states firmly established, ARPES
can be used to study the dynamics of these states. Of particular interest in this
context is the sensitivity of the surface state electrons to defect scattering or
electron-phonon scattering. After all, these processes limit the lifetime of ex-
cited carriers and thereby the surface channel conductivity. This is especially
important because the bulk TI materials are found to be rather conductive, as
explained above, and the desired transport situation is to have the surface state
conductance dominate over the bulk conductance.

Possible scattering process for the surface state electrons were summa-
rized in Fig. 7.10. These processes are related to elastic scattering, i.e. defect
scattering. The situation for electron-phonon scattering is not very different.
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Fig. 7.13 Circular dichroism in ARPES from the topological surface state on Bi2Se3, ap-
proximately 150 meV above the Dirac point. a and b Photoemission intensity for light with
right and left circular polarization, respectively. c Normalized difference between the two.
d Quantitative dichroism along the circular contour. Data from [64]

Instead of taking the required momentum from an impurity scattering event,
it is provided by the emission or absorption of a phonon. The process is not
strictly elastic because the phonon energy has to be taken into account. How-
ever, since this energy is usually very small, it is often sufficient to consider
the so-called quasi-elastic approximation where it is entirely neglected [65].
In this case, the situation is very similar to Fig. 7.10. In particular, the phase
space restriction due to the spin texture is identical.

In contrast to defect scattering, however, it is easy to probe the strength of
the electron-phonon coupling by changing the number of available phonons
for scattering processes via the sample temperature. Fig. 7.14a-c show the dis-
persion of the surface state on Bi2Se3 measured at three different temperatures
(after Ref. [66]). The temperature effect over this range is not very big and the
state appears sharp over the tested temperature range.

A more systematic analysis of the temperature-dependent width is given in
Fig. 7.14d that shows the temperature-dependent width of the state measured
for many different sample preparations (via cleaving bulk crystals) but for
only two temperatures per sample cleave. The reason why not more temper-
atures were measured is the rapid change of the surface electronic structure
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Fig. 7.14 Electron-phonon scattering on Bi2Se3 studied by ARPES. a to cDispersion of the
topological surface state at three temperatures. The shaded area indicates the energy range
used for a quantitative determination of the linewidth. d Temperature-dependent width (ex-
pressed by the imaginary part of the self-energy) for different sample preparations. e The
same data but with individual data sets rigidly shifted in order to account for different
amounts of defect scattering. The dashed line shows a Debye model fit to the width and
the solid line the high temperature (linear) limit. Data from Ref. [66]

after cleaving. Two temperatures could be measured in a time interval short
enough for this not to be an issue.

The width of the state is expressed in terms of the imaginary part of the self-
energy Σ ′′. This quantity is related to the inverse lifetime of the photohole via
Σ ′′ = h̄/2τ and it is thus found that the lifetime increases at low temperatures,
as expected. The data points have been collected in the energy range where the
surface state is far away from the bulk bands, such that bulk-surface scattering
cannot play a role. We see that the absolute Σ ′′ values for the different data
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sets are quite different but the difference between the two temperatures is
similar. This is, in fact, to be expected because different sample cleaves lead
to surfaces with a different amount of static defects. These give rise to an offset
between the measurements but they do not affect the temperature dependence.

Fig. 7.14e shows the same data but the different data sets have been shifted
rigidly in energy in order to account for the different defect concentrations,
and such that the data can be fitted by a theoretical model with a constant
defect concentration. The theoretically expected Σ ′′ in the Debye model is
shown as a dashed line and its high temperature limit as a solid line [52].
Qualitatively, the shape of the dashed line is easy to understand: Far below
the Debye temperature of the sample, the phonons are frozen out and the
electron-phonon contribution to the (inverse) lifetime of the state is constant.
At very high temperatures, on the other hand, the temperature dependence is
linear, independent of the model used for the phonon dispersion. The slope is
given by 2πkBλ , where λ is the so-called electron-phonon mass enhancement
parameter. The transition between these two regions is more complicated and
depends on the model used.

The result of this type of analysis is a value for λ , quantifying the electron-
phonon coupling strength. In the analysis shown here, λ = 0.25± 0.05 was
found. To put this into context, λ values for strong coupling BCS-type su-
perconductors are found to be around 1, whereas they are around 0.1 for a
weak-coupling good conductor, such as copper. It is thus evident that the cou-
pling strength for the surface state of Bi2Se3 is not especially small. We can
also compare the λ value to the fictitious situation of an isolated surface state,
i.e. a surface state without the bulk present, such that only intra-state scat-
tering is possible. This has been calculated for the well-studied noble metal
surface states and for the Ag(111) state it has been found to be much weaker
that the for Bi2Se3 (λ = 0.02) [67].

7.5 Conclusion

We have illustrated that synchrotron radiation-based ARPES is an essential
experimental technique to study the surface electronic structure of TIs. It
can be used to observe the topological surface state band dispersion and to
distinguish these states from bulk states. Spin-resolved ARPES and possi-
bly also circular dichroism ARPES can give essential information about the
spin texture of the states. Further research on these materials will almost cer-
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tainly involve other synchrotron radiation-based techniques that have not been
discussed here. An interesting research field is the adsorption of potentially
magnetic impurities on the surface, something that could locally break time-
reversal symmetry. Here x-ray magnetic circular dichroism is an essential
technique to determine the magnetic properties of the adsorbate [68]. Another
example is the structural determination of TI surfaces. The standard technique
for this is low-energy electron diffraction but due to the complex structure and
the distance of the interesting van der Waals gaps below the surface, it can be
foreseen that synchrotron radiation-based surface x-ray diffraction may play
an important role.
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Chapter 8
Anisotropic x-ray magnetic linear dichroism

Gerrit van der Laan

Abstract In this Chapter, the reader will be able to gain a deeper understand-
ing in the angular dependence of x-ray absorption (XA) and x-ray magnetic
linear dichroism (XMLD). The scattering tensor provides a general frame-
work for the XA intensity, which is a function of the relative orientation of
the magnetization M, the x-ray polarization E and the crystalline axes. In
cubic crystal field, the XMLD is a linear combination of two independent
spectra, which means that the maximum of the XMLD will be photon energy
dependent and no longer at E ‖M. The angular dependence of the XMLD can
be separated into an isotropic part, which rotates with M, and an anisotropic
part, which depends on the orientation of the crystal axes. At the Ni2+ L2
edge, where the isotropic part vanishes, the angular dependence is fully de-
termined by the anisotropic part, which obtains maximal intensity when E
and M have equal but opposite angles with respect to the [100] direction. In
the past this complication has not been appreciated, leading in confusion and
misinterpretation in the literature.
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8.1 Introduction

Why would we revisit x-ray magnetic linear dichroism (XMLD)? Well, there
are good reasons for this. Compared to its circular sibling, XMLD has long
been regarded as an ugly duckling, but one day it flies out as a beautiful
wild swan. XMLD is the only substitute of x-ray magnetic circular dichroism
(XMCD) for studying antiferromagnets. It is important for magnetic domain
imaging with photoemission electron microscopy (PEEM), and forms the ba-
sis for x-ray resonant processes, such as x-ray resonant scattering, resonant
Raman, resonant photoemission, etc. However, XMLD is more complicated
than previously thought. Until recently, the complexity of its angular depen-
dence has not been fully realized—not even in the text book by Stöhr and
Siegmann [1].

XMLD has since long been established as a probe to study antiferro- as
well as ferro- and ferri-magnetic materials [2, 3, 4, 5, 6]. The L2,3 spectra of
localized 3d transition metal ions for different crystal field strengths have been
successfully calculated using multiplet theory [7]. For itinerant 3d metallic
systems the line shapes of the L2,3 XMLD spectra can be explained using the
effective exchange field splitting of the core hole [8]. Sum rules for XMLD
relate the integrated intensity over the L3 and L2 edges to the expectation
values of the charge quadrupole moment and the anisotropic spin-orbit inter-
action [9]. Although the integrals in the case of XMLD are smaller than for
XMCD, their study has provided important insights in the microscopic ori-
gin of the magnetocrystalline anisotropy [10, 11] . Kunes̆ and Oppeneer [12]
calculated a huge magnetocrystalline anisotropy of the XMLD spectra at the
L2,3 edges of cubic Fe, Co, and Ni metal, which displayed an opposite sign
along the different high-symmetry quantization axes. The anisotropy in the
XMLD line shape of itinerant metals was explained using the model for the
effective exchange field splitting of the core hole [8]. The sign reversal of
the XMLD signal was observed in LaFeO3 [13] by Czekay et al. The large
anisotropy in the XMLD was confirmed by multiplet structure calculations by
taking properly into account the core-valence Coulomb and exchange inter-
actions [14, 15]. Freeman et al. [14] found experimentally a large anisotropy
in the XMLD line shape at the Mn2+ L2,3 edge in (Ga,Mn)As, in good agree-
ment with atomic multiplet calculations. Since the half filled 3d shell of Mn
carries no orbital moment, the angular dependence can not be ascribed to the
magnetocrystalline anisotropy and indeed the integrated intensities of the L2,3
XMLD vanish. The calculations showed that the 3d spin-orbit interaction has
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little or no effect on the XMLD line shape and that the angular dependence
disappears when the crystal-field interaction is switched off.

Using vector magnet magnetometry the full angular dependence of the
XMLD has been investigated and compared to multiplet calculations for the
transition metal L2,3 edges of Ga1−xMnxAs [14], Fe3O4 [15], NiFe2O4, NiO
[16, 17, 18], CoFe2O4 [19], Co-based Heusler alloys [20], La0.7Sr0.3FeO3
[21], and GaxFe1−x [11], as well as the rare earth M4,5 edges of EuO [22]. It
was found that in cubic symmetry the angular dependent XMLD could be de-
scribed by a linear combination of two independent spectra, which are called
fundamental spectra [14, 15].

For antiferromagnetic systems, the spin orientation has been studied using
the linear polarization dependence of the intensity ratio of the two peaks of
the L2 XA edge. Alders et al. [23, 24] have measured a NiO sample with a
statistical distribution of 〈±1±1±2〉 possible spin directions. In their analy-
sis, which is correct for axial symmetry, the spin orientation with respect to
the crystallographic axes was not explicitly taken into account. However, the
same approach was later used to analyze the antiferromagnetic domain struc-
tures of LaFeO3 [25, 26, 27] and NiO [28, 29, 30, 31, 32, 33], not realizing
that the XMLD strongly depends on the crystal field orientation. It was first
demonstrated by Arenholz et al. [16] that for a correct interpretation of the
XA and XMLD spectra the relative orientation of light polarization and mag-
netization with respect to the crystal frame have to be taken into account.
This has subsequently been applied in several recent studies of various NiO
surfaces and interfaces [17, 18, 34, 35, 36].

8.2 Wonderful symmetry

A change in magnetization direction results in a different distribution over the
magnetic sublevels m of the atom in a crystal field. A change in polarization
direction gives different selection rules (∆m = 0, ±1) for the electric-dipole
transitions from ground to the final state. Changing both the magnetization
and polarization direction can under symmetry conditions result in the same
spectrum.

The ground state in octahedral crystal field splits into E and T2 orbitals
with charge densities along different directions. The E orbitals are aligned to-
wards the neighboring atoms whereas the T2 orbitals point in between. The
energy splitting allows us to spectroscopically distinguish between both types
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of orbitals. Generally, when the energy degeneracy is broken, each level set
obtains a different angular dependence. Therefore, energy splitting and angu-
lar distribution are two different sides of the same coin.

Insight in (dis)symmetry can be gained from the Neumann’s principle
(1885), which states that “the symmetry elements of any physical property of a
crystal must include the symmetry elements of the point group of the crystal”,
or from a general principle formulated by Pierre Curie in 1893: “When defi-
nite dissymmetry is found in some phenomena, the same dissymmetry should
be found in the causes that produced them” [37, 38]. Applying this wisdom
to XA, this means that in spherical symmetry (SO3) there will be two dif-
ferent XA spectra (i.e. for light polarization parallel and perpendicular to the
magnetization) and the difference of these XA spectra lead to single XMLD
spectrum. If the magnetization (with symmetry C∞) is along a high symme-
try axis of a cubic crystal there will be only one XMLD spectrum. However,
when the magnetization is along arbitrary direction there should be more than
one XMLD spectrum. The number of distinct XA spectra is determined by
the number of different irreducible representations (irreps) in the point group
of the crystal. The number of independent XMLD spectra is one less than the
number of XA spectra.

We first need to remind ourselves of some elementary point group theory.
Starting from the states |`m〉 in SO3 symmetry we can branch down to the
irreps |`Γ 〉 = ∑m |`m〉〈`m|`Γ 〉 in point group G and then further down to the
irreps |`Γ γ〉 = ∑Γ |`Γ 〉〈`Γ |`Γ γ〉 in point group g of lower symmetry. The
different partners in the relevant point groups are shown in Fig. 8.1, and we
will rely heavily on these new friends in the next section.

Taking the magnetization M̂ and electric-dipole polarization Ê and Ê′ for
incident and scattered x-rays along arbitrary directions, the spectral intensity
is separated in an angular and a physical part

I(Ê, Ê′,M̂,ω) = ∑
kΓ Γ ′Γ ′′γγ ′γ ′′

[
C(1)

Γ ′γ ′(Ê′) ,C(1)
Γ ′′γ ′′(Ê) ,C(k)

Γ γ
(M̂)

](0)
0

F(k)
Γ γ

(ω) ,

(8.1)
where the sum runs over all irreps γ of the point group of the crystal. The angu-
lar part is formed by the invariant triple tensor product containing polynomial
functions C(`)

Γ γ
(θ ,φ) of rank ` and irrep Γ γ . The physical part is formed by

F(k)
Γ γ

(ω), which gives the frequency dependent intensity as a scalar property
[39, 40, 41]. It is independent of M̂, but is different for each irrep.

We define the k-th rank tensors
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k terms, however their magnitude is often small. Furthermore, from now on,
we will no longer explicitly carry along the ω in the variable specification.

For electric dipole radiation the scattering tensorF is composed of a scalar
F (0), a pseudovector (antisymmetric) tensorF (1)(M̂) and a symmetric tensor
F (2)(M̂), and the scattering intensity is generally given as

I(Ê, Ê′,M̂) = (Ê? · Ê′)F (0)− i(Ê?× Ê′) ·F (1)(M̂)+ Ê? ·F (2)(M̂) · Ê′ ,
(8.3)

with magnetization unit vector M̂ = (x̂, ŷ, ẑ) and polarization unit vector Ê =
(ε̂x, ε̂y, ε̂z) . For x-ray absorption we take Ê′ = Ê .

8.3 Scattering intensity for different symmetries

We aim to write out (8.3) explicitly as a function of M̂ and F(k). Armed with
the gained knowledge about the symmetry groups we are able to write out
the scattering intensity in Cartesian tensor form, which is most useful from
viewpoint of experimental geometry.

8.3.1 Spherical symmetry

In spherical symmetry (SO3) it is straightforward to write out (8.3 as a vector
product in M̂, since all F(k) have only a single irrep. Fig. 8.1 shows that F(0)

has irrep 0 = {1}, F(1) has irrep 1 = {x, y, z} and F(2) has irrep 2 = {z2− 1
3 r

2,
x2− y2, xy, yz, xz}. In order that F (2)(M̂) has zero trace, we take F (0) =
F(0)− 1

3F
(2) . The scattering intensity of (8.3) becomes

I(Ê, Ê′,M̂) = Ê? · Ê′
[
F(0)− 1

3
F(2)

]
− i(Ê?× Ê′) ·M̂ F(1)

+ (Ê? ·M̂)(Ê′ ·M̂)F(2) . (8.4)

For Ê′= Ê this gives the x-ray absorption, which depends only on the included
angle (Ê,M̂), as expected for spherical symmetry.

With magnetization unit vector

M̂ = (x̂, ŷ, ẑ) = (sinθ cosφ ,sinθ sinφ ,cosθ) , (8.5)
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i.e., x̂2 + ŷ2 + ẑ2 = 1, the scattering tensor can be cast in the Cartesian form

FSO3‖[xyz] =

F(0) +(x̂2− 1
3 )F

(2) −ẑF(1) + x̂ŷF(2) ŷF(1) + x̂ẑF(2)

ẑF(1) + x̂ŷF(2) F(0) +(ŷ2− 1
3 )F

(2) −x̂F(1) + ŷẑF(2)

−ŷF(1) + x̂ẑF(2) x̂F(1) + ŷẑF(2) F(0) +(ẑ2− 1
3 )F

(2)

 .

(8.6)
Taking M̂ = ẑ = (0,0,1), (8.6) simplifies to the familiar result [42, 43, 44, 45]

FSO3‖[001] =

F(0)− 1
3F

(2) −F(1) 0
F(1) F(0)− 1

3F
(2) 0

0 0 F(0) + 2
3F

(2)

 , (8.7)

which is clearly invariant under φ rotation about the z axis.

8.3.2 Cubic symmetry

For octahedral crystal field symmetry it is seen from Fig. 8.1 that F(0) has
irrep A1 = {1}, F(1) has irrep T1 = {x, y, z} and F(2) has irreps E = {z2− 1

3 r
2,

x2 − y2} and T2 = {xy, yz, zx}. Thus F(2) splits into diagonal elements of
irrep E and non-diagonal elements of irrep T2, which means that the intensity
depends on the crystal field orientation. The scattering intensity of (8.3) can
be written as

I(Ê, Ê′,M̂) = Ê? · Ê′
[
F(0)
A1
− 1

3
F(2)
A1

]
− i(Ê?× Ê′) ·M̂F(1)

T1

+ (Ê? ·M̂)(Ê′ ·M̂)F(2)
T2
−∑

i
E?
i MiE ′iMi

[
F(2)
E −F(2)

T2

]
.

(8.8)

Note that the linear XA is symmetric upon exchange of M̂ and Ê. It should fur-
ther be pointed out that, as allowed by (8.3), F (1)(M̂) contains also a higher
order term M̂(M̂2− 3

5 )F
(3)
T1

. Although this term is much smaller than M̂F(1)
T1

,
it has never the less been observed experimentally [46]. Likewise, F (2)(M̂)
can contain higher order terms with F(4)

E and F(4)
T2

, although so far these have
not been observed.
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Using the symmetry considerations the Cartesian tensor along C4 ‖ 〈001〉
with M̂ = (x̂, ŷ, ẑ) is

FO =

F(0)
A1

+(x̂2− 1
3 )F

(2)
E −ẑF(1)

T1
+ x̂ŷF(2)

T2
ŷF(1)

T1
+ x̂ẑF(2)

T2
ẑF(1)

T1
+ x̂ŷF(2)

T2
F(0)
A1

+(ŷ2− 1
3 )F

(2)
E −x̂F(1)

T1
+ ŷẑF(2)

T2
−ŷF(1)

T1
+ x̂ẑF(2)

T2
x̂F(1)

T1
+ ŷẑF(2)

T2
F(0)
A1

+(ẑ2− 1
3 )F

(2)
E

 .

(8.9)

8.3.3 Orthorhombic symmetry

For orthorhombic crystal field symmetry the scattering intensity obeys the
general form in (8.3), where both F (1)(M̂) and F (2)(M̂) depend on the di-
rection of M̂ with respect to the crystal frame.

Fig. 8.1 shows that for orthorhombic (D2h) symmetry F(0) has irrep A1 =
{1} , F(1) has irreps B1 = {z} , B2 = {y} and B3 = {x} , and F(2) has irreps A1
= {z2− 1

3 r
2, x2− y2} , B1 = {xy} , B2 = {zx} and B3 = {yz} . The Cartesian

tensor alongC2 ‖ 〈001〉 with M̂ = (x̂, ŷ, ẑ) is

F
(0)
D2

=

F(0)
A1
− 1

3F
(2)
A1

0 0

0 F(0)
A1
− 1

3F
(2)
A1

0

0 0 F(0)
A1
− 1

3F
(2)
A1

⇒ [F(0)
A1
− 1

3
F(2)
A1

]
,

F
(1)
D2

=

 0 −ẑF(1)
B1

ŷF(1)
B2

ẑF(1)
B1

0 −x̂F(1)
B3

−ŷF(1)
B2

x̂F(1)
B3

0

⇒
 x̂F(1)

B3
ŷF(1)

B2
ẑF(1)

B1

 ,

F
(2)
D2

=

 x̂2F(2)
A1

+(ŷ2− ẑ2)F(2)
A1

x̂ŷF(2)
B1

x̂ẑF(2)
B2

x̂ŷF(2)
B1

ŷ2F(2)
A1

+(ẑ2− x̂2)F(2)
A1

ŷẑF(2)
B3

x̂ẑF(2)
B2

ŷẑF(2)
B3

ẑ2F(2)
A1

+(x̂2− ŷ2)F(2)
A1

 ,

(8.10)
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which for clarity is written out in tensors of different rank.F (2) contains three
different irreps A1 which form linear combinations. Note that the linear XA is
in this low symmetry is no longer symmetric upon exchange of M̂ and Ê [19].

Table 8.1 Linear x-ray absorption IXA in cubic crystal field for M̂ and Ê along different
high symmetry directions. The last column gives Ê ·F (2)(M̂) · Ê in spectroscopic notation.
Note that Ê ·F (0) · Ê = F(0)

A1
− 1

3F
(2)
E = IisoXA−

1
3 I0

M E IXA (O symmetry) IXA (spectr. notation)

[100] [100] F(0)
A1

+ 2
3F

(2)
E I0

[100] [010], [001] F(0)
A1
− 1

3F
(2)
E 0

[110] [110] F(0)
A1

+ 1
6F

(2)
E + 1

2F
(2)
T2

1
2 (I0 + I45)

[110] [110] F(0)
A1

+ 1
6F

(2)
E −

1
2F

(2)
T2

1
2 (I0− I45)

[110] [001] F(0)
A1
− 1

3F
(2)
E 0

[111] [111] F(0)
A1

+ 2
3F

(2)
T2

1
3 (I0 +2I45)

[111] [112], [110] F(0)
A1
− 1

3F
(2)
T2

1
3 (I0− I45)

8.4 Various ways to obtain the XMLD

So far we only looked at the scattering and XA, but we will now consider the
XMLD in more detail. Assume three orthogonal linear polarization directions
E1, E2 and E3 and with magnetization direction M1 ‖ E1. The isotropic XA is

IisoXA ≡
1
3

[IXA(E1,M1)+ IXA(E2,M1)+ IXA(E3,M1)] , (8.11)

which is invariant, i.e., orientation independent. Ideally, one would like to
define the XMLD as

IXMLD(E1,M1)≡ IXA(E1,M1)−
1
2
IXA(E2,M1)−

1
2
IXA(E3,M1) . (8.12)

Such a geometry with three orthogonal vectors is not practical to measure, so
that one normally settles for
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IXMLD(E1,M1)2 = IXA(E1,M1)− IXA(E2,M1) ,

IXMLD(E1,M1)3 = IXA(E1,M1)− IXA(E3,M1) . (8.13)

Substitution gives

IXMLD(E1,M1) =
1
2
IXMLD(E1,M1)2 +

1
2
IXMLD(E1,M1)3 . (8.14)

Note that IXMLD(E1,M1) is only unambiguously defined for M1 ‖ C3, C4, C6
andC∞ axes, otherwise the E2 and E3 directions give different results.

The XA and XMLD spectra can be readily obtained using multiplet cal-
culations [7]. In this Chapter we are primarily interested in the angular de-
pendence of the XMLD, which is governed by symmetry arguments, without
having to make assumptions about the energy dependence of the spectra, so
that we can make use of generic spectra along the high symmetry axes.

Table 8.1 gives the XA intensity in cubic symmetry along high symmetry
axes obtained from (8.9). It can be verified that for M̂ ‖ [100] and M̂ ‖ [111]
the IXA in the perpendicular plane is constant, which is due to the C4 and C3
symmetry axis, respectively. This is not true for other directions, as e.g. is
seen for M̂ ‖ [110].

We will now change from the group symmetry notation to a spectroscopic
notation. Using the XMLD in the cubic symmetry, we define

I0 ≡ I(E[100],M[100])− I(E[010],M[100]) = F(2)
E ,

I45 ≡ I(E[110],M[110])− I(E[110],M[110]) = F(2)
T2

,

I[111] ≡ I(E[111],M[111])− I(E[112],M[111]) = F(2)
T2

,

IisoXA ≡
1
3
[
I(E100],M[100])+ I(E[010],M[100])+ I(E[001],M[100])

]
= F(0)

A1
,

where the results at the right-hand site are obtained from the XA given in
Table 8.1. The I0 and I45 are two independent spectra with different ω depen-
dence, i.e., different spectral shape, which are sometimes called ‘fundamental
spectra’. Since I[111] is equal to I45, it does not give an extra fundamental spec-
trum.
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8.5 XMLD in the (001) plane

We will now illustrate the consequences of the theory for the (001) plane in
cubic symmetry. This geometry gives simple expressions for the XMLD angu-
lar dependence, yet it clearly reveals the dependence on the crystallographic
axes and shows the details to be taken into account. Moreover, this plane is
often studied experimentally.

Using (8.9), the XA in the (001) plane is

F
(001)
O =

[
Iiso−

1
3
I0

]
+
(

x̂2I0 x̂ŷI45
x̂ŷI45 ŷ2I0

)
. (8.15)

Using
IXMLD(ε,µ)≡ IXA(ε,µ)− IXA(ε +90◦,µ) , (8.16)

where ε and µ are the angles of Ê and M̂ with respect to the [100] axis, i.e.,
Ê = (ε̂x, ε̂y) = (cosε,sinε) and M̂ = (x̂, ŷ) = (cosµ,sinµ) , gives an angular
dependence

IXMLD(ε,µ) = I0 cos2ε cos2µ + I45 sin2ε sin2µ

=
1
2
(I0 + I45)cos(2ε−2µ)+

1
2
(I0− I45)cos(2ε +2µ) .

(8.17)

where I0 is the IXMLD(ε,µ) for ε = µ = 0◦ and I45 is that for ε = µ = 45◦ .
Equation (8.17) is a sum over terms containing an angular and an energy

dependent factor. As an illustration, the ε dependence of the XA spectra and
corresponding XMLD for fixed µ is shown in Fig. 8.2a and its decomposition
into the terms with I0 and I45 is displayed in Fig. 8.2b. Obviously, the I0 and
I45 terms have maximum intensities at ε = 0◦ and 45◦, respectively. In the
(001) plane, with only two instead of three spectra, the average XA is IavXA =
IisoXA + 1

6 I0.
It can be immediately verified that along high symmetry axes there is only

one XMLD spectrum. Substitution of either µ = 0◦ or 45◦ into (8.17) leads to

IXMLD(ε,µ = 0◦) = I0 cos2ε ,

IXMLD(ε,µ = 45◦) = I45 sin2ε , (8.18)

for arbitrary ε . Only in the special cases with M̂ along a high-symmetry axis
(〈100〉 or 〈110〉) one measures a single spectrum (I0 or I45, respectively) where
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the direction of Ê affects the magnitude of the XMLD but not its spectral
shape. At µ 6= 0◦ and 45◦, the IXMLD is a linear combination of I0 and I45.
Thus in the frequently encountered geometry with M̂ along a high-symmetry
axis the full angular dependence of the XMLD remains hidden, which might
explain the ignorance in much of the literature. In order to study the angular
dependence, M̂ has to be forced along a non-symmetry direction using an
applied magnetic field or bias field.

8.6 Separation into the isotropic and anisotropic part

The angular dependence of the XMLD in (8.17) can be written as a sum over a
rotational invariant term, which is independent of the crystal axes, and a term
which depends on the orientation with respect to the crystalline axes,

IXMLD(ε,µ) = IisoXMLD(ε,µ)+ IaniXMLD(ε,µ) . (8.19)

The decomposition of the angular dependent XMLD into isotropic and anisotropic
parts is illustrated in Fig. 8.2c.

The isotropic part, i.e., the rotational invariant contribution,

IisoXMLD(ε,µ) =
1
2
(I0 + I45)cos(2ε−2µ) , (8.20)

depends only on the difference |ε−µ| between the angles of Ê and M̂. Hence,
the angular distribution is rigidly fixed to the direction M̂ and does not depend
on the crystal frame orientation. This can be verified in Fig. 8.2c, which shows
that for IisoXMLD [red (dark) line] the maximum is along M̂, i.e., at ε = µ . Thus
the isotropic part of the XMLD behaves as what could be considered “normal”
for a situation where the crystal field can be neglected. The isotropic part can
be measured directly at ε = µ = 22.5◦ , where the anisotropic part vanishes.

The anisotropic part, i.e., the rotational dependent contribution,

IaniXMLD(ε,µ) =
1
2
(I0− I45)cos(2ε +2µ) , (8.21)

depends on the directions of Ê and M̂ with respect to the crystal axes. It can
be verified from Fig. 8.2c that for IaniXMLD [green (gray) line] the maximum is
at ε = −µ . The anisotropic part is responsible for the “bad” behavior of the
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Fig. 8.2 (Color online) Polar
plots of the XA and XMLD
intensities in the (001) plane
as a function of the angle
ε for the linear polarization
Ê with fixed angle µ for
the magnetization axis M̂
(indicated by the thick line)
obtained using (8.17) for the
chosen parameter values IavXA
= 2, I0 = 0.6, I45 = −1, and
µ = −30◦ with respect to
the [100] crystal axis. This is
representative for a situation
where I0 and I45 have opposite
sign but not completely cancel
each other. Drawn (dashed)
lines correspond to positive
(negative) intensities. a IavXA
(thin black line), IXA(ε,µ)
[red (dark) line], IXA(ε,µ +
90◦) [green (gray) line], and
their intensity difference,
IXMLD(ε,µ) (thick black
line). b Decomposition of
IXMLD (thin black line) into
contributions from I0 [red
(dark) line] and I45 [green
(gray) line]. c Decomposition
of IXMLD (thin black line) into
its isotropic and anisotropic
part, IisoXMLD [red (dark) line]
and IaniXMLD [green (gray) line].
As seen the maximum of
IisoXMLD is along M̂, i.e., at
ε = µ = −30◦, whereas the
maximum of IaniXMLD is at
ε =−µ = 30◦ (Ref. [36])
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XMLD, resulting in a situation where the maxima of the XMLD and XA do no
longer coincide with the direction of M̂ (c.f. Fig. 8.2). Hence, the separation
of the XMLD into its isotropic and anisotropic parts offers a powerful way to
find the influence of the crystal-field interaction.

8.6.1 Weak crystal field

In the absence of crystal field symmetry, I45 = I0 , so that the anisotropic part
vanishes and the XMLD is proportional to I0 cos(2ε − 2µ) , which depends
only on the difference between the two angles. The XMLD is maximum for
ε = µ , i.e., M̂‖ Ê .

An interesting case arises in rare earths and actinides, where the crystal
field is weak compared to the spherical symmetric potential due to spin-
orbit and electrostatic interactions. This makes the separation of the XMLD
into anisotropic and anisotropic parts particularly beneficial. For weak crystal
field, the anisotropic part in the XMLD is small, i.e., |I0− I45| � |I0 + I45| .
For the EuM4,5 XMLD of ferromagnetic EuO, a small I0− I45 spectrum could
be extracted with a magnitude proportional to the effective crystalline electric
field. [22]

In the next section we will show that precisely the opposite situation occurs
for the Ni2+ L2 edge, where the XMLD contains only an anisotropic part.

8.7 The peculiar case of the Ni2+ L2 edge

Theoretical spectra can be obtained using atomic multiplet calculations [7,
47, 48] for the electric-dipole transition Ni2+ 3d8 → 2p53d9 in octahedral
crystal field of 10Dq = 1.4 eV, which has a ground state (t62e

2,3A2)T2 . In
the calculation the directions of the magnetization and x-ray polarization can
be chosen along arbitrary directions. Multiplet calculations performed with
Ê and M̂ separately incremented in steps of 5◦ over the full angular range
confirmed the analytical relation in (8.17) to high accuracy, which suggests
that possible higher-order terms must be very small [36].

The calculated I0 and I45 spectra are shown in Fig. 8.3b together with the
experimental results for different Ni2+ compounds. For the entire L2 edge,
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I45 ≈ −I0 , however, the L3 edge shows a strongly different I45 and I0 as a
function of photon energy.

Fig. 8.3 Comparison of the
experimentally obtained fun-
damental XMLD spectra
together with results from
atomic multiplet calculations.
a Measured Ni L2,3 XA for
NiFe2O4/SrTiO3 . b Calcu-
lated XMLD spectra I0 and
I45. Experimental data for
NiFe2O4/SrTiO3 (011) and
(001) and Co/NiO (001). The
multiplet calculations are
shown by solid lines. For the
L2 edge, it is clearly seen
that I45 ≈ −I0 , so that the
isotropic XMLD vanishes and
only the anisotropic XMLD
remains (Ref. [16])

 

The expressions for the angular dependence given in Sec. 8.3 are valid for
the entire L2,3 spectrum. If we now restrict us to the Ni2+ L2 edge a more
specific rule can be derived [16].This rule uses the fact that at this edge,
I45 ≈ −I0 , as evidenced by the calculated and experimental spectra shown
in Fig. 8.3b. It should be noted that this relation is a peculiarity of the Ni2+

L2 edge and is not true for the L3 edge, [14, 15] but it holds to some extent
for other L2 edges, such as for Co2+ (Ref. [19]), Fe3+, and Mn2+ (Ref. [14]).
The reason that the two fundamental spectra for the L2 XMLD have approxi-
mately the same shape is related to the reduced number of allowed transitions
for the j = 1

2 core-hole state. The electric-dipole selection rules restrict the set
of final states that can be reached.

Substitution of I45 =−I0 reduces (8.17) to

IL2XMLD(ε,µ) = I0 cos(2ε +2µ) , (8.22)

which removes the isotropic part and retains only the anisotropic part. There-
fore, the XMLD at the L2 edge is strongly dependent on the orientation of M̂
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and Êwith respect to the crystal axes. The maximal intensity is obtained when
M̂ and Ê have equal angles of opposite sign with respect to the [100] axis.

In the past, the orientation of the Ni spins has been determined under the
assumption that the second peak in the L2 absorption edge is maximal when
M̂‖ Ê . However, this is only correct if the crystal field symmetry would play
no role. As was recently found [16], a proper description of the angular de-
pendent XMLD in cubic symmetry requires a linear combination of two fun-
damental spectra, I0 and I45. Taking into account the angular dependence, two
extreme cases occur in the (001) plane: For M̂‖ 〈100〉 the XMLD is pure I0
and for M̂‖〈110〉 the XMLD is pure I45. The L2 absorption edge consists of
a well resolved double peak structure which is well suited to study the spin
orientation. The relation I45 ≈−I0 means that the second peak is maximal not
only for Ê ‖ M̂ ‖ 〈100〉 but also for Ê⊥ M̂ ‖ 〈110〉 . While in the latter case
the spins are perpendicular instead of parallel to Ê, both orientations give the
same Ni2+ L2 XA spectrum. It is therefore vital in the analysis of PEEM im-
ages to take into account the angular dependence of the XMLD with respect
to the crystal frame in order to retrieve the spin axes of the antiferromagnetic
NiO domains.
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Chapter 9
25 years of magnetic x-ray dichroism

Gerrit van der Laan

Abstract A historical overview of magnetic x-ray dichroism is presented. I
describe the first theoretical and experimental results that have led to the de-
velopment of this powerful technique for element-specific magnetometry. The
theoretical progress of the sum rules is also described, starting with the spin-
orbit sum rule for the isotropic spectrum which led on to the spin and orbital
moment sum rules for x-ray magnetic circular dichroism. The latter has been
particularly useful to understand the magnetic anisotropy in thin films and
multilayers. Further developments of circular dichroism in (resonant) photoe-
mission and Auger, as well as x-ray detected optical activity, also are summa-
rized. Currently, magnetic x-ray dichroism finds a wide application in x-ray
spectroscopy and imaging for the study of magnetic materials and it is consid-
ered to be one of the most important discoveries in the field of magnetism in
the last few decennia. It is hard to imagine modern research into magnetism
without the aid of polarized x-rays.
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9.1 Introduction

A variety of techniques exists to measure the magnetic properties of materials.
Most of them provide a macroscopic measurement. They are sensitive to the
total magnetization of the measured system and can not discern between the
contributions of different atoms in an alloy or multilayer, or between different
origins, such as orbital and spin contributions. Furthermore, the tiny quanti-
ties of materials present in many technologically interesting samples, such as
magnetic nanostructures, or difficult to obtain samples, such as nanocrystals
or biomaterials, necessitates a very sensitive measuring method. Such mea-
surements have become possible using the element-specific technique of x-ray
absorption spectroscopy (XAS), in which magnetic sensitivity is obtained by
using circularly or linearly polarized x-rays. In XAS, the atom absorbs a pho-
ton, giving rise to the transition of an electron from a core shell to an empty
state above the Fermi level. Due to the (electric-dipole) selection rules, which
depend on the polarization of the light, the allowed final states become sensi-
tive to the symmetry of the initial state. Magnetic x-ray dichroism (MXD) is
the difference in the absorption by a magnetic material of x-rays with different
polarization state.

Only a quarter of a century ago, it was first observed that the x-ray ab-
sorption edge structure of a magnetically ordered material can be polarization
dependent. The resulting x-ray circular or linear magnetic dichroism (XMCD
or XMLD) is linear or quadratic proportional, respectively, to the magnetic
moment. The analysis of the measurements has been considerably simplified
by the discovery of the sum rules, which offer an element- and shell-specific
method to determine the ground-state properties of the local electronic struc-
ture of metal compounds and alloys. For the isotropic x-ray absorption spec-
trum the branching ratio of core-valence transitions is linearly related to the
expectation value of the angular part of spin-orbit operator in the valence
states. For the XMCD, the sum rule analysis relates the integrated intensi-
ties to the orbital and spin magnetic moments. The orbital moment provides
an insight into the microscopic origin of anisotropic magnetic properties, such
as the magnetocrystalline anisotropy and easy-magnetization direction, which
are of great technological importance.

The origin of dichroism in x-ray photoemission differs from that of x-ray
absorption. Dichroic photoemission requires either core-valence interaction
or an effective spin field on the core state. Sum rules were derived for pho-
toemission from an incompletely filled localized shell, such as the 4 f in rare
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earths, relating the integrated intensities to various ground state spin-orbital
coupled moments. The angular dependence of the polarized photoemission
can be separated from the physical properties and provides a way to measure
higher magnetic moments.

9.2 A sensational discovery of invisible rays

On 8 November 1895, Wilhelm Conrad Röntgen accidentally produced and
detected electromagnetic radiation in a wavelength range known today as x-
rays or “Röntgenstrahlung” [1], an achievement that earned him the first No-
bel Prize in Physics in 1901. His discovery became quickly known to the
world, not through the scientific channels but through the press who eagerly
picked up on “a sensational discovery of invisible rays” which made it possi-
ble to see through clothing and human flesh. It resulted in a worldwide frenzy
among scientists, free to produce x-rays using cathode-ray tubes [2]. Röntgen
had deliberately not patented his discovery, convinced it belonged to the world
at large. The physical properties of x-rays and their interaction with matter
were soon studied at every major laboratory in the world [3, 4]. Already by
the end of 1896, well over a thousand books and papers had been published
on x-rays and their applications.

It was soon realized that the optical properties of x-rays greatly differ from
those of visible light. The short wavelength makes a description of light-
matter interactions as a continuous dielectric tensor, as used in the visible,
less appropriate, and a better description is given by atomic scattering factors
[5]. Away from the atomic absorption edges, the refractive index deviates only
a small amount from unity [6].

Hard x-rays have high penetration power and their wavelength is compara-
ble to the size of atomic spacings, leading to diffraction effects, which became
an important tool in crystallography to study the periodicity of materials. To
date, 28 Nobel Prizes have been awarded to scientists working with x-ray
crystallography, an indication of its crucial importance. A century ago, Max
von Laue (Nobel Prize 1914) undertook seminal experiments and William
Bragg and his son Lawrence (Nobel Prize 1915) discovered ‘Bragg’s law’ for
x-ray diffraction. This transformed our perception of crystals and their atomic
arrangements, and led to some of the most significant scientific findings of
the last century–such as revealing the structure of DNA by James Watson and
Francis Crick (Nobel Prize in Medicine 1962) and hemoglobin and myoglobin
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by John Kendrew and Max Perutz (Nobel Prize in Chemistry 1962). Charles
Barkla (Nobel Prize 1917) obtained polychromatic scattered x-rays with a po-
larization rate close to 100% [7, 8], while he also demonstrated that the atomic
number Z can be obtained with x-rays. Further on the honors list are Karl Sieg-
bahn (Nobel Prize 1924 for x-ray spectroscopy) and Arthur Compton (Nobel
Prize 1927 for ‘Compton scattering’).

Moving on to the development of magneto-optics in the visible, in 1845,
Michael Faraday discovered the “Faraday effect”. This causes a rotation of the
plane of polarization of the light, which is linearly proportional to the com-
ponent of the magnetic field in the direction of propagation. In 1886, Pieter
Zeeman discovered the “Zeeman effect” of splitting a spectral line into sev-
eral components in the presence of a static magnetic field, which gave rise
to magnetic dichroism [9]. Such magneto-optical effects in the visible were
also anticipated for x-rays but it would take until 1986 before these effects
were actually demonstrated for x-rays. This discovery had to await the advent
of the synchrotron, capable of producing intense, monochromatized and low
divergent x-ray beams.

9.3 An early attempt to observe the x-ray magneto-optical
effect

In 1975, Erskine and Stern [10] predicted that by using circularly polarized
light the x-ray absorption at core valence transitions can provide magnetic
information about the ground state of the material. This was based on the ex-
pressions for the Faraday effect in terms of the conductivity tensor in a mag-
netic field similar to the visible range [11]. In the visible and near-uv range
the magneto-optical absorption is typically of the order of 10−3 of the ordi-
nary optical absorption, however, for core levels the anticipated effect would
be much larger due to the strong spin-orbit interaction.

The theoretical approach was cast into a single-particle model of optical
transitions from a core state of prescribed symmetry described by atomic wave
functions into component conduction-band states with symmetry correspond-
ing to the allowed optical transitions. In the transition matrix elements the
small energy variation of the radial part was neglected.

The calculations for the magneto-optical Kerr effect (MOKE) at the M2,3
(3p→ 3d) edge of Ni (∼64 eV) predicted a change of ∼10% in reflection of
p-polarized light due to magnetic dichroism. TheM2,3 magneto-optical effect
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results predominantly from spin-orbit splitting of the 3p core state in conjunc-
tion with the final 3d-state spin polarization. The calculated spectrum exhibits
features that are directly related to electronic structure parameters, including
the 3p core spin-orbit splitting and the unfilled 3d-band spin polarization.

In pursuit of confirming the predicted x-ray magneto-optical effect, Keller
and Stern performed a search for circular dichroism at the Gd L3 edge (2p→
5d, 7.24 keV) of a foil of Gd18Fe82 amorphous alloy in transmission geometry.
The alloy was ferrimagnetically ordered at room temperature employing a
small electromagnet. Circularly polarized x-rays were obtained at the Cornell
High Energy Synchrotron Source (CHESS) using radiation from a bending
magnet above and below the orbital plane (the so called inclined angle view)
and at the Stanford Synchrotron Radiation Lab (SSRL) using a 43 µm thin
silicon phase plate. Lock-in techniques were used to enhance the sensitivity,
however, no dichroism could be measured above the noise level. It was stated
that the magnetic x-ray absorption coefficient was at least 0.0005 smaller than
the linear absorption coefficient at the Gd white-line energy.

9.4 Emerging opportunities with soft x-rays

After the discovery of synchrotron radiation in 1947, parasitic use of syn-
chrotron radiation for experiments began in the early sixties. The first dedi-
cated second-generation synchrotron radiation source to produce x-rays open-
ed in 1981, which was the Synchrotron Radiation Source (SRS) at Daresbury
Laboratory in Cheshire, England, soon followed by other facilities around the
globe. Such sources offered a broad spectrum (from microwaves to hard x-
rays), high flux, high brilliance, high stability (submicron source stability) as
well as properties that were only fully appreciated later, such as polarization,
spatial coherence and pulsed time structure.

In the eighties, grating monochromators were available for the UV and
VUV region, but their performance in the soft x-ray region was limited and
insufficient to resolve the details of the near-edge structure. Also multilayers
as monochromator elements offered insufficient energy resolution [12]. The
only possibility therefore was to push down the lower energy limit of double-
crystal monochromator by using crystals of larger d spacing, which had to
be resistant to the heat load of the beam. Acid phthalate crystals, such as
KAP(100), can be used above 550 eV, but suffer severely from radiation dam-
age, unless protected by a multilayer as first optical element [13]. The natural
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mineral beryl (morganite) gave access to the soft x-ray energy range 800-
1550 eV, which includes the Ni L2,3 [14] and Cu L2,3 edges [15], but leaves
the lighter 3d transition metal edges out of reach. Beryl(1010) also covers all
the M4,5 edges of the rare earths with an energy resolution gradually increas-
ing from a Gaussian standard deviation σ = 0.25 eV for 800-900 eV to σ =
0.4 eV for 1200-1500 eV, which is comparable to the core-hole lifetime width
[16]. Although measurements in the soft x-ray region had to be done under
high vacuum, this technology was readily available as it was part and parcel
of the operation of the storage ring.

Thole et al. [16] measured the M4,5 absorption spectra of all the rare-earth
metals and showed that there was an excellent agreement with multiplet cal-
culations performed for the transitions 3d104 f n→ 3d94 f n+1. The high energy
resolution of the beryl crystal monochromator allowed the observation of the
details of the multiplet structure. The electron localization increases along the
f series [17], which means that most rare earth solids have localized 4 f elec-
trons, except for the lighter elements, such as cerium. For given localized 4 f n

configuration the line shape of the XAS spectrum is the same, since the crystal
field interaction and hybridization are considered to be very weak.

9.5 Prediction and first observation of x-ray magnetic
dichroism

In 1985, Thole et al. [18] predicted that the line shape of the M4,5 absorption
edges of a rare earth ion, whose ground state is split by a magnetic field,
depends on the relative orientation between the magnetization direction and
the polarization vector of the x-rays. Since the electric-dipole transitions from
the ground state can reach only a limited subset of final states, they provide
a fingerprint for the specific ground state, which gives a high sensitivity to
crystal field, spin-orbit interaction, site symmetry and spin configuration. The
light polarization dependence makes the absorption sensitive to the magnetic
ground state, which leads to a difference in intensity. It is worth noting that
the strong magnetic dichroism arises from electric-dipole transitions and not
from magnetic-dipole transitions.

These calculations by Thole et al. [18] demonstrated that x-ray absorption
can be used to determine the local magnetic moment of rare-earth atoms in
a magnetically ordered material, the orientation of the local moment relative
to the total magnetization direction, as well as the temperature and field de-
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pendence thereof. The relative magnitude of the dichroism with respect to the
XAS is a measure for the magnetic moment. The XMCD is proportional to
〈Jz〉 = 〈M〉. The XMLD is proportional to 〈J2z 〉 = 〈M2〉, which means this
latter technique is useful for antiferromagnets where 〈M〉= 0.

In 1986—one year after the theoretical prediction—the experimental proof
of XMLD was given by van der Laan et al. [19]. The measurements were per-
formed at the 540 MeV storage ring l’Anneau de Collision d’Orsay (ACO)
at the Laboratoire pour l’Utilisation du Rayonnement Electromagnétique
(LURE) in Orsay near Paris. The setup of the original experiment is shown in
Fig. 9.1a [19]. A single crystal of the terbium iron garnet, Tb3Fe5O12 (TbIG)
was mounted on a rotatable helium-flow cryostat in an ultrahigh vacuum of
10−10 Torr. The temperature obtained at the surface of the sample was 55 K.
A Co5Sm permanent magnet provided a field of 2 kG along the [111] surface
normal, which is the easy direction of magnetization of TbIG. Synchrotron
radiation from ACO with 100 mA ring current was monochromatized using a
constant-deviation double-crystal monochromator equipped with beryl crys-
tals. The emitted radiation in the equatorial plane of the storage ring is linearly
polarized. In the actual setup it was s polarized with respect to the beryl crys-
tals and p polarized with respect to the sample. The x-ray absorption at the Tb
M5 (3d5/2 → 4 f ) edge was measured using the total-electron yield method,
and obtained for different angles, α , between the polarization vector of the
incident radiation and the [111] magnetization direction.

The measured spectra give a good agreement with the Boltzmann-averaged
sum of the absorption intensities for transitions with linearly polarized x-
rays. The experimental Tb M5 spectra for various values of α are shown in
Fig. 9.1b, where the solid lines are theoretical fits. As seen, the intensities of
the two major peaks have a strongly different polarization dependence. As
confirmed by the calculation in Fig. 9.1c, parallel polarization with respect to
the net magnetization enhances the low-energy peak, whereas perpendicular
polarization increases the high-energy peak.

9.6 X-ray magnetic circular dichroism in absorption

In 1987, Schütz and co-workers [20] measured the magnetic circular dichro-
ism with hard x-rays.1 The measured transmission of synchrotron radia-

1 Note that in the older literature, XMCD is usually denoted as CMXD.
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Fig. 9.1 Experimental proof of x-ray magnetic dichroism. a Experimental set-up. b Exper-
imental M5 absorption spectra of TbIG at various values of α , which is the angle between
the polarization vector of the x-rays and the magnetization direction. The solid lines are fits
giving the value of C, which contains the measurement angle α , the umbrella angle of the
garnet structure, and the temperature dependent magnetization (C = 0 at the magic angle
α = 54.7◦) [19]. (c) Calculated Tb M5 (3d5/2→ 4 f ) spectra for unpolarized x-rays (solid)
and polarized x-rays with H ‖ E (dashed) and H⊥ E (dotted).

tion through a magnetized iron foil at energies above the K-absorption edge
showed relative differences for right and left circular polarization of several
times 10−4. The observed spin dependence of the near-edge photoabsorp-
tion is proportional to the difference of the spin densities of the unoccupied
bands. The unoccupied spin-bands are otherwise only accessible with great
difficultly, such as by spin-polarized inverse photoelectron spectroscopy.

In the XMCD experiment, x-rays from the storage ring DORIS at the
Deutsches Elektron Synchrotron (DESY) in Hamburg were monochromatized
using a Si(311) double-crystal monochromator. The incident x-rays passed a
vertically adjustable double slit, which is fixed to a double-ionization cham-
ber so that two beams symmetrically to the electron orbit passed with oppo-
site sense of elliptical polarization. The targets were placed inside a water-
cooled solenoid, producing a magnetic field of up to 0.2 T with its direction
(anti)parallel to the photon propagation direction. The direction of the mag-
netic field was flipped every second. The foil had to be placed into the beam
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by an angle relative to field direction which causes a reduced effective polar-
ization. The measurements were performed at room temperature.

The data could be explained using a simple two-step picture in a single par-
ticle model. In the first step circularly polarized x-rays excite a spin-polarized
electron from the unpolarized core hole. In the second step this electron drops
into the exchange split unoccupied density-of-states. The dipole-transition-
matrix elements from the 1s state to a continuum p1/2 and p3/2 doublet are
slightly different because of their spin-orbit splitting which gives a photo-
electron polarization of ∼10−2. Therefore, the K absorption contains a small
spin-dependent part if the unoccupied valence p states are spin polarized as in
magnetic materials. Comparison of the calculated differences of the spin den-
sities of the empty states as a function of energy gave a good agreement with
calculations obtained by the Korringa-Kohn-Rostoker (KKR) band-structure
method. Soon after, Ebert et al. [21, 22] gave a description of the absorption
of circularly polarized x-rays based on a spin-polarized version of relativistic
multiple-scattering theory. The effect results in analogy to the Fano effect [23]
in the visible from the conservation of the angular momentum in the absorp-
tion process together with the spin-orbit coupling acting on the initial and/or
final states.

The measurement of the spin-dependent variation in the absorption near
the K edge in ferromagnetic iron was repeated by Collins et al. [24] using
circularly polarized x-rays from the Synchrotron Radiation Source (SRS) at
Daresbury Laboratory by monitoring the fluorescence signal with a solid state
Ge detector at 90◦ to the incident beam. They found that the magnetic mod-
ulation of the absorption coefficient was in agreement with a first-principles
spin-polarized band calculation, but that the dichroism was about twice as
small as reported by Schütz et al., who overestimated the degree of circular
polarization.

Since the XMCD is caused by the spin-orbit coupling in the p final states,
the dichroism at the K edge is rather small. Larger effects can be found at the
L edges, where the angular part of the dipole matrix elements leads to a big-
ger electron polarization. Schütz and co-workers [25] measured the magnetic
dichroism spectra of a wide range of other ferromagnetic materials, such as
the L2,3 edges of Gd and Tb and 5d-impurities in iron.

Schütz and co-workers [20] also observed a small spin-dependent absorp-
tion in the extended x-ray absorption fine structure (EXAFS) region up to 200
eV above the Fe K edge. The absorption fine structure results from interfer-
ence between outgoing electron waves and those backscattered by neighbor-
ing atoms. If the outgoing electron wave is polarized after absorption of cir-
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cularly polarized x-rays, the backscattering amplitude will be sensitive to the
spin polarization of the neighbors resulting from exchange interaction. This
effect gives information on the magnetic neighborhood of the absorbing atom.

9.7 XMCD at the 3d transition metal L2,3 edges

From a spintronic perspective, the 3d transition metal L2,3 absorption edges
are probably the most important edges, however their dichroism was only first
measured in 1990. As mentioned in Sec. 9.4, this was mainly due to the poor
accessibility of the soft x-ray range below 800 eV. Fortunately, improvements
in the performance of grating monochromators, especially the design of the
double-headed Dragon, opened up this new territory [26].

Kao et al. [27] measured the specular reflectivity of p-polarized light near
the Fe L2,3 absorption edges from a single-crystal iron film with an external
magnetic field perpendicular to the scattering plane. Large changes in reflec-
tivity were observed upon reversal of the direction of the magnetic field. This
resonant magnetization-sensitive effect can be attributed to the interference
between magnetic and nonmagnetic contribution to the resonant scattering.
Similar effects can be expected in other ferromagnetic and ferrimagnetic sys-
tems. The reflectivity and scattering spectra at resonance contain both the real
imaginary part of the scattering cross section, which makes the analysis more
complicated compared to absorption spectra [28, 29].

Chen et al. measured the XMCD at the L2,3 edges (2p→ 3d transitions) of
Ni [30]; followed by that of Co and Fe ferrites and garnets [31]. The measure-
ments were performed using the Dragon monochromator at the National Syn-
chrotron Light Source in Brookhaven. The transitions from the 2p core level
take place directly to the empty 3d states, which are magnetically polarized,
hence giving a strong dichroism. In the Ni L3 edge, the XAS shows a satel-
lite at 6.3 eV, whereas the XMCD shows a satellite at 3.7 eV. This could be
explained with multielectron calculations including configuration interaction
on the basis of the Anderson impurity model, which shows that the spectrum
contains a main peak p5d10 and a satellite peak p5d9 [32, 33].

Koide et al. [34] measured the XMCD in the 3d-metalM2,3 edges (2p→ 3d
transitions) which shows a strong Fano line shape. The experimental XMCD
of Ni metal is quite different that predicted by the exchange-split-valence-
band model of Erskine and Stern [10], but it could be explained by multielec-
tron calculations [33].
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9.8 Other noteworthy developments

In 1990, Carra and Altarelli [35] presented a theoretical formulation of lin-
ear and circular dichroism in the absorption of x-rays in terms of the electric
multipole-expansion. These authors demonstrated that the usually neglected
electric quadrupole transitions can be as important as the dipole terms for
the interpretation of magnetic dichroism experiments in transition metals and
rare earths. The quadrupolar effect in XMCD was unambiguously evidenced
in 1995 by measuring the temperature and angular dependences at the L edges
of rare earths compounds [36, 37].

The magnetization profile of magnetically ordered patterns in ultrathin
films was determined by circular dichroism in x-ray resonant magnetic scat-
tering [38] When this technique was applied to single crystalline FePd alloy
layers, magnetic flux closure domains were found whose thickness can con-
stitute a large fraction (∼25 %) of the total film. It was demonstrated that soft
x-ray resonant scattering can be used to obtain the magnetization profile of
magnetic patterns in thin films by using the circular dichroism to recover the
phase relation [38].

9.9 Multiplet calculations

In the development of XMCD, experimental and theoretical results followed
each other very closely and often they went hand-in-hand. As already men-
tioned in Secs. 9.4 and 9.7, a one-electron model is not suitable to calcu-
late localized 3d and 4 f metal compounds due of the presence of electron-
correlation effects in these materials. An atomic multi-electronic approach
which puts electrostatic (Coulomb and exchange) interactions on an equal
footing and also includes crystal- or ligand-field interactions, has shown to
give an excellent agreement with experimental x-ray absorption spectra, as
demonstrated by multiplet calculations for the 2p63dn → 2p53dn+1 transi-
tions in 3d compounds [39, 40, 41].

Such atomic multiplet calculations were also able to give accurate MXD
spectra, which are likewise determined by angular momentum coupling. This
was already demonstrated for rare-earth materials, where the magnetic inter-
action can be treated as a perturbation of the spherical symmetry [18]. In the
case of the 3d metals, the ground and excited states are calculated in the pres-
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ence of crystal field symmetry, which gives an energy splitting of magnetic
sublevels with different |m| values [42]. Multiplet calculations in crystal field
symmetry are performed using the chain of groups approach, exposed by But-
ler [43]. This approach starts with the calculation of the reduced-matrix ele-
ments of the necessary operators in the spherical group using Cowan’s atomic
multiplet program [44]. The Wigner-Eckart theorem is then applied to obtain
the reduced matrix elements in the desired point group, where the required
isoscalar factors are obtained from Butler’s point-group program [45].

9.10 The rise of magneto-optical sum rules

The postulation of the orbital sum rule in 1992 [46] transformed XMCD into
the very powerful technique that it is today. Here we will describe the devel-
opment of the x-ray magneto-optical sum rules from its beginning.

In 1972, Starace [47] showed that the integrated intensity of the isotropic
XAS is proportional to the number of holes, nh, in the valence 3d or 4 f shell.
While absolute measurements of the intensity are difficult, this first rule turned
out to be most useful to normalize the intensity of the dichroism spectra on a
per hole basis. Never the less, the number of holes will have to be estimated
using, e.g., band structure calculations.

In 1988, Thole and van der Laan derived a sum rule for the branching ratio
of the isotropic x-ray absorption, which was shown to be linearly proportional
to the expectation value of the angular part of the ground-state spin-orbit op-
erator per hole [48, 49, 50]. It was already known that the branching ratio of
the L2,3 XAS depends on the relative population of the jd = 3

2 and 5
2 levels

in the ground state of a d metal. This is because for dipole selection rules the
p→ d transitions at the L3 edge are allowed from jp = 3

2 to jd = 3
2 and 5

2 ,
whereas at the L2 edge the transitions from jp = 1

2 are only allowed to jd = 3
2 .

For p→ d transitions, the spin-orbit sum rule can be stated as

B≡ I(L3)
I(L3)+ I(L2)

=
2
3

+
1
3
〈w〉
nh

, (9.1)

where

〈w〉 ≡ 〈g|
h

∑
i=1

`i · si |g〉=−
3
2
nh3/2 +nh5/2 , (9.2)
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is the expectation value of the angular part of the spin-orbit interaction for the
d hole ground state, and nh3/2 +nh5/2 = nh . Note that 〈w〉 is different from the
spin-orbit interaction term in the Hamiltonian, HSO = ζ3dL ·S .

For j = `+ s = 5
2 holes, 〈w〉/nh = 1 , which results in the maximum value

B = 1 . For j = `− s = 3
2 holes, 〈w〉/nh = − 3

2 , which gives the minimum
value B= 1

6 . In absence of d spin-orbit interaction, B= 2
3 . As the j = 5

2 holes
are energetically more favorable (at least in absence of other interactions),
〈w〉 ≥ 0 and B≥ 2

3 .
A rigorous proof of the spin-orbit sum rule was given using angular mo-

mentum coupling [48]. It is interesting to note that the various steps of the
derivation can be found back in all magneto-optical sum rules.

This result shows that the branching ratio of the XAS is determined by the
spin-orbital character of the ground state, which at first was seen as surpris-
ing because the prevailing opinion was that the XAS spectra were dominated
by final state effects. It is of course much more interesting to measure the
properties of the ground state than those of the final state. The model is gen-
erally applicable and explains the strong deviations of the L2,3 branching ratio
from the statistical value for in 3d transition metals, alloys, and compounds
[49]. Since the spin-orbit interaction is obtained per hole, its influence on the
branching ratio is stronger at the end of the transition series, although in rare
earths it is still easily observable in Ce compounds [51].

When the core level j is not a good quantum number, the sum rule is no
longer exact. The presence of a strong core-hole interaction gives a large mix-
ing of the two core j levels (called j j mixing), which leads to an addition
contribution in the branching ratio [49]. Only under favorable conditions such
as for the N4,5 andM4,5 edges of the actinides, the j j mixing is small [17, 52].

Application of the spin-orbit sum rule to actinides showed that for curium
metal the 5 f angular momentum coupling plays a decisive role in the forma-
tion of the magnetic moment [53]. The Cm 5 f 7 state in intermediate coupling
is strongly shifted towards the LS coupling limit due to exchange interaction,
unlike Pu 5 f 5 and Am 5 f 6, where the effective spin-orbit interaction prevails.
Essentially, the lowest energy spin-orbit level j = 5

2 cannot contain more than
six f electrons, hence the additional f electron in Cm has to go into the ener-
getically unfavorable j = 7

2 level, which leads a lower exchange energy.
Recently, the spin-orbit sum rule has been generalized for electric-multipole

transitions in non-resonant inelastic x-ray scattering [54]. It gives the counter-
intuitive result that the different ranks of the multipole transitions from a deep
core hole have a strongly different sensitivity to the valence spin-orbit inter-
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action of the material. In actinides, the proportionality factor between the 5 f
spin-orbit interaction and the core-level branching ratio is opposite in sign for
octupole and triakontadipole transitions [55].

9.11 The XMCD sum rules

In 1992, Thole et al. [46] derived the famous sum rule that relates the in-
tegrated signal of the XMCD to the ground-state orbital magnetic moment
〈Lz〉. A simple intuitive demonstration of this sum rule for one-electron wave
functions (Slater determinants), which are eigenstates of Lz, was published by
Altarelli [56] using the properties of the squared 3 j symbols, while a pictorial
demonstration was provided in Ref. [57]. Carra et al. [58] derived a second
sum rule for XMCD, which gives the relation between the branching ratio
of the XMCD and the spin magnetic moment 〈Sz〉 and magnetic dipole term
〈Tz〉 in the ground state. Carra et al. first reported the quadrupole moment sum
rule for XMLD and also extended the results to electric-quadrupole transitions
[59].

9.11.1 The machinery spitting out the sum rules

First, the expression for the transition probability is separated into a dynamic
and a geometric part. The former gives the radial part, while the latter gives
the angular dependent part. The radial part is assumed to be constant over the
region of the spectrum and hence can be factored out. The transition proba-
bilities of the polarized spectra are then obtained using Fermi’s golden rule.
The integrated intensities ρq for q polarized light are obtained by summing
the c→ ` transition probability over the final states f and the components γ

and m of c and `, respectively, where for simplicity we assume diagonal basis
states m′ = m, σ ′ = σ and γ ′ = γ , as in SO2 symmetry,

ρq = ∑
f γmσ

〈g|`mσc
†
γσ | f 〉〈 f |`†mσcγσ |g〉

(
` 1 c
−m q γ

)2
. (9.3)

The values q = −1,0,+1 correspond to right-circularly, z, and left circularly
polarized radiation, respectively. The relative intensities lm→ cγ are given
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by the squared 3 j-symbol (denoted by the parentheses), which is nonzero for
m= q+γ , and `†m,σ (c†γ,σ ) and `m,σ (cγ,σ ) denote the creation and annihilation
operators of the valence (core) electron.

Final states | f 〉 that cannot be reached in the dipole transition do not con-
tribute to the intensity. By extending the set of final states to the whole Hilbert
space and using the completeness relation, one can remove the core-hole op-
erators and so obtain integrated signals which depend only on ground state
operators, and since |c†〉= 〈c|= 0 we can write

∑
f γmσ

〈g|`mσc
†
γσ | f 〉〈 f |`†mσcγσ |g〉= ∑

m
〈g|`mσ `†mσ |g〉= ∑

mσ

nmσ , (9.4)

where nmσ is the number of holes with indices m and σ .
Substitution of (9.4) into (9.3) and recoupling the angular momenta by

rewriting the squared 3 j-symbol using theorem 4 of Yutsis, Levinson, and
Vanagas (YLV4) [60] gives

ρq = ∑
mσx

nm,σ (2x+1)
{

` x `
1 c 1

}(
1 x 1
−q 0 q

)(
` x `
−m 0 m

)
. (9.5)

We now define the integrated intensities ρx of the fundamental spectra as
linear combinations of the integrated intensities ρq of the primitive spectra,

ρ
x ≡∑

q
(−1)1−q

(
1 x 1
−1 0 1

)−1( 1 x 1
−q 0 q

)
ρq . (9.6)

This simply gives ρ0 ≡ ρ1 +ρ0 +ρ−1 , ρ1 ≡ ρ1−ρ−1 , and ρ2 ≡ ρ1−2ρ0 +
ρ−1 , where x = 0, 1, and 2 denote the isotropic spectrum and the circular and
linear dichroism, respectively.

For the ` = c+1 case (e.g., p→ d or d→ f ) substitution of (9.5) into (9.6)
gives

ρ
0 =

1
2`+1 ∑

mσ

nmσ =
1

2`+1
nh , (9.7)

ρ
1 =

1
` ∑
mσ

nmσm =
1
`
〈Lz〉 , (9.8)

ρ
2 =

3
`(2`−1) ∑

mσ

nmσ

[
m2− 1

3
`(`+1)

]
=

3
`(2`−1)

〈Qzz〉 , (9.9)
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which gives the number of holes nh in the ` shell, its orbital moment and
charge quadrupole moment, respectively. In intermediate coupling and in the
presence of hybridization the occupation numbers have of course non-integer
values.

The use of the sum rules can be demonstrated by the example of the tran-
sition p6dn→ p5dn+1 in a transition metal. The transition probabilities of the
primitive spectra with different polarization are calculated using the square
of the 3 j symbol in (9.3), and the results are displayed in Fig. 9.2a. Left-
circularly polarized light (L) with selection rule q = −∆m = +1 gives tran-
sition probabilities of 1

30 ,
1
10 and 1

5 for excitation into the m = 0, 1 and 2
sublevel, respectively of the ground state d state to the γ = −1,0,+1 level
of the c core hole. Using time-reversal symmetry, {L,±m}↔ {R,∓m}, gives
the transition probabilities for right-circularly polarized light (R). Z-polarized
light (perpendicular to the plane of L and R) gives transition probabilities of
2
15 ,

1
10 and 0 for excitation into the |m| = 0, 1, and 2 sublevels, respectively.
The fundamental spectra, shown in Fig. 9.2b, are linear combinations of the

primitive spectra using (9.6). In the isotropic spectrum, the transition proba-
bility is constant, i.e., independent of m. In the XMCD, the transition prob-
ability is linear in m. In the linear dichroism, the transition probability has
the shape of a parabola, and is thus quadratic in m. For an arbitrary initial
state, the integrated intensity is the sum over m and spin σ of the occupa-
tion number nm times the transition probability. For the isotropic spectrum,
XMCD and XMLD this gives 〈n〉, 〈Lz〉, and 〈Qzz〉, respectively. Applying the
Wigner-Eckart theorem to obtain the reduced matrix elements in the desired
point group [44], the sum rules can be extended to crystal field symmetry [57].

Sum rules that involve the spin need a separate integration over the inten-
sity of spin-orbit split core levels. This demands that the angular momentum
j of the core hole is a good quantum number, which is fulfilled when the core
spin-orbit interaction is much larger than the core-valence interactions. Tak-
ing the weighted difference over the spin-orbit split core levels the sum rule
gives

δ
1 ≡

 ∑
j=c+ 1

2

−c+1
c ∑

j=c− 1
2

ρ
1 =

2
3
〈Sz〉+

2
3
2`+3

`
〈Tz〉 . (9.10)

In the limit of small 3d spin-orbit interaction, the magnetic dipole term,
〈Tz〉= [∑i si−3r̂i(r̂i · si)]z , describes the difference between the charge quadru-
pole moment for spin down and spin up electrons, T = 1

2 (Q
↓−Q↑)Ŝ . Since
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a) Transition probabilities of primitive spectra 

b) Transition probabilities of fundamental spectra 

Isotropic = L + R + Z XMCD = L - R XMLD = L + R - 2Z 

Left circ. pol. (L) Z lin. pol. (Z) Right circ. pol. (R) 
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Fig. 9.2 Pictorial demonstration of the sum rules. a The transition probabilities of each
magnetic d shell sublevel m for the p→ d absorption excited with left-circular (L), linear
(Z) and right-circular (R) polarized x-rays. b The transition probabilities for the resulting
isotropic spectrum, XMCD and XMLD, which multiplied by the occupation numbers, nm,σ ,
and summed over m and σ give the expectation values of the number of holes, n, the orbital
moment, Lz, and the quadrupole moment, Qzz, respectively.

the quadrupole moment is a second rank tensor with vanishing trace, the con-
tributions of T over three orthogonal directions should be zero [61]. Alterna-
tively, one can determine 〈Sz〉 at the magic angle (54.7◦), where 〈Tz〉 has to
vanish [62].

While 〈Tz〉 is often small in cubic 3d transition metals, this is not the case
in 4 f and 5 f metals [63]. Collins et al. [64] measured the XMCD in a ferro-
magnetic uranium monosulphide crystal by monitoring the fluorescence sig-
nal over the uranium M4,5 edges. The contribution of 〈Tz〉 to the dichroism
signal in US is larger than that of 〈Sz〉.
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nh 

l.s 

Lz 

Sz 

Tz 

L3 
L2 

Relative photon energy (eV) 

Fe XMCD 

Fig. 9.3 Relative contributions to the energy dependence of the Fe 2p XMCD spectrum
arising from the various ground state moments for iron metal. nh = number of holes, ` · s
= scalar part of spin-orbit interaction, Lz = orbital moment, Sz = spin moment and Tz =
magnetic dipole term. The red and blue spectra relate to the sum rules for the orbital and
spin magnetic moments, respectively. The upper spectrum shows the sum of all contribu-
tions, which resembles the experimental Fe L2,3 XMCD spectrum. For further details see
Ref. [65].

9.11.2 Energy dependence of the ground state moments

It is also illustrative to demonstrate the sum rules from the perspective of the
ground-state moments [66]. In Fig. 9.3, the Fe L2,3 XMCD spectrum is de-
composed into its contributions from the separate ground-state moments [65].
It is seen that the shape and magnitude of the XMCD are mainly determined
by nh and Sz. However, only for Lz, the XMCD has a non-zero intensity inte-
grated over both edges. For Sz and Tz the XMCD does not vanish over each
separate edge but integrated over both edges the intensity is zero. For nh and
the spin-orbit interaction, ` · s, the integrated intensity of of XMCD vanishes
for each edge, but these still contribute to the energy dependence across each
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edge. This is also the case for the higher moments, such as Qzz, as shown in
Ref. [65]. Hence, this not only illustrates that the integrated intensities over
the L3 and L2 edges are related to the orbital and spin moments, but also that
they do not depend on the other ground-state moments. It also means that a
correct differential formulation of the sum rules needs to include all ground
state moments!

9.11.3 Possible causes of concerns

It should be mentioned that at first not everyone was equally convinced by the
sum rules. One of the “objections” commonly heard was that the 3d metals
are spin-only magnets which have no orbital magnetic moment, as was rein-
forced by some standard solid-state text books. However, this can be readily
dismissed. While in 3d metals the orbital part to the magnetic moment is
small, it is manifestly present in, e.g., the magnetic anisotropy [67].

Another objection was that in intermediate coupling there might be cross
terms, leading to interference terms. However, the sum rules can also be de-
rived for j j-coupled operators. By including cross terms between the j= `± 1

2
levels, it could be shown that the sum rules are generally applicable in inter-
mediate coupling [63, 68].

A further commonly heard argument was that the sum rules are valid for
the atomic case but not for the band structure case, or vice versa, valid for
the band structure case but not for the atomic case. However, several theo-
rists successfully rederived the sum rules for the band structure case, such
as Ankudinov and Rehr [69] using the independent electron approximation,
Ebert [70] using first-principles spin-polarized relativistic multiple-scattering
calculations, and Wu et al. [71] using local density band structure calcula-
tions. Furthermore, in an atomic model the sum rules are exact as long as j j
mixing can be neglected. Large deviations due to j j mixing arise when the L3
and L2 start to overlap, such as in the Mn L2,3 spectrum, which can be taken
into account by a correction factor [72].

Another argument was that hybridization effects could spoil the sum rule.
However, Benoist et al. [73] derived corrections to the atomic orbital sum rule
for XMCD in solids using orthonormal linear muffin-tin orbitals (LMTOs) as
a single-particle basis for electron band states.

Nowadays doubts about the sum rules have evaporated, but only to be re-
placed by repetitive discussions about their accuracy. Under the proper as-
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sumptions (such as the absence of j j mixing) the derivation of the sum rules
is exact. The practical limitations of the sum rules are well known (see, e.g.,
Refs. [74, 75]) and an error bar of 5-10% is nowadays commonly accepted.

9.11.4 Sum rules for other x-ray spectroscopies

Sum rules for integrated dichroism were also derived for other x-ray spectro-
scopies, using a similar methodology as for XAS and XMCD sum rules, by
using angular momentum coupling to describe the angular part of the transi-
tion matrix elements, and by treating the radial part of the matrix element as
a constant factor. Luo et al. [76] gave sum rules for resonant x-ray magnetic
scattering, using the fast collision approximation. Thole and van der Laan
[77, 78] derived sum rules for spin resolved and dichroic photoemission, par-
ticularly the 4 f photoemission from rare earths. Carra and Thole [79] gave
rules for anisotropic x-ray anomalous diffraction in the presence of crystal
field symmetry.

Sum rules were furthermore derived for spectroscopies that required to take
into account the angular dependence of the emitting photon or electron, such
as resonant photoemission [80] and resonant inelastic x-ray scattering (reso-
nant Raman scattering) [81, 82, 83].

9.12 Determining the magnetic anisotropy

In 3d transition metals, the spin-orbit constant is between 40 and 80 meV
[41], which is small compared to the bandwidth of a few eV, so that a pertur-
bative treatment is justified. Bruno [84] showed using perturbation theory that
the dependence on the electronic structure can be separated from the angular
dependence, which allows us to calculate the different anisotropy constants di-
rectly from the unperturbed band structure. While perturbation theory enables
to calculate directly the anisotropy constants without having to calculate ex-
plicitly the total energy of the system as a function of the magnetization direc-
tion, it would not take into account any changes of the Fermi surface. Bruno
[84] showed that if the majority spin band is completely filled, the magne-
tocrystalline anisotropy energy (MAE) is proportional to the anisotropy in the
orbital magnetic moment. Wang et al. [85] and van der Laan [67] showed that



9 25 years of magnetic x-ray dichroism 277

the MAE contains additional contributions due to the spin-flip term and the
magnetic dipole term.

Since the sum rule relates the integrated XMCD signal to the orbital mo-
ment projected along the beam direction, the anisotropy in the orbital mo-
ment can be obtained from the angular dependence of the integrated XMCD.
This was experimentally confirmed for a Au/Co/Au staircase structure by
Weller et al. [86, 87], although a proportionality factor is required to scale
the anisotropic part.

Instead of obtaining the MAE from XMCD measurements along two dif-
ferent beam directions, the magnetic anisotropy can actually also be obtained
from a single XMCD measurement in transverse geometry (M⊥ P) [62, 88].
By forcing the electron spins out of the easy direction using an external mag-
netic field and measuring the perpendicular component of the orbital moment
with the photon helicity vector perpendicular to the magnetization direction it
is possible to determine directly the element-specific easy-direction of mag-
netization. The relation between the angular dependence of XMCD with arbi-
trary directions ofM and P and its anisotropic ground-state moments is found
in Ref. [89]. The angular dependent XMCD is strongly sensitive to the strain-
induced electronic structure changes in magnetic transition metal oxides. It
can be described as a sum over an isotropic and anisotropic contribution, the
latter linearly proportional to the axial distortion due to strain [90].

An even a more direct way to obtain the MAE is to measure the anisotropy
in the spin-orbit interaction, which is proportional to the branching ratio of the
XMLD [91]. Although XMLD has a much smaller sensitivity than XMCD, it
could be measured on GaFe alloy thin films, which show large magnetostric-
tive properties [92].

9.13 Circular dichroism in x-ray photoemission

In 1990, Baumgarten et al. [93] reported magnetic circular dichroism in the
Fe 2p core-level photoemission from ferromagnetic iron, which they ascribed
to the exchange splitting of the core-hole levels.

An explanation of circular dichroism in photoemission was given in terms
of core-valence interaction using a multi-electron model [94, 95], which can
be applied to localized transition-metal, rare-earth and actinide compounds.
In contrast to x-ray absorption, the angular-dependent part of the electrostatic
interaction between the core hole and localized valence holes is essential for
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circular dichroism in core-level photoemission. In absorption the dichroism
is a consequence of the Pauli principle. The polarized light creates polarized
electrons which cannot go freely into the magnetic 3d shell. In contrast, in x-
ray photoemission spectroscopy the core electron is ejected into a continuum
shell which has no interaction, and the dichroism arises from the electrosta-
tic interaction between the core hole and the polarized 3d electrons. The p-d
Coulomb and exchange interactions couple the dn spin to the spin of the core
hole and then the 2p spin-orbit interaction couples this spin to the core elec-
tron orbital, which interacts with the light. An itinerant-electron model cannot
describe the multiplet effects arising from the many-electron Coulomb and
exchange interactions, so that in this case the assumption is that the splitting
occurs by an effective spin field in combination with spin-orbit interaction
[96].

In a series of three papers, Thole and van der Laan present a general theory
for spin polarization and magnetic circular and linear dichroism in photoe-
mission from core and valence states in localized magnetic systems using a
multi-electron approach [97, 78, 98].

The first paper [97] explain the origin of the spin polarization and magnetic
dichroism . The six different ways to orient the polarizations of the magneti-
zation, the electric vector of the light, and the spin of the photoelectron allow
measurements of different kinds of correlations between the corresponding
atomic properties: the valence spin, the core hole orbital momentum and the
core hole spin, respectively. The fundamental spectra can be defined as those
linear combinations of the polarized spectra that are directly connected to
physical properties. This allows us to analyze exchange and hybridization ef-
fects, as was illustrated by the 2p and 3p photoemission of ferromagnetic Ni
metal. A large enhancement of the surface orbital magnetic moment at the
surface of Ni(100) was evidenced by magnetic circular dichroism in photoe-
mission [99], as predicted by band structure calculations.

The second paper [78] showed that for the emission from an incompletely
filled localized shell, such as the 4 f shell in the rare earths, the integrated
intensities of the magnetic circular dichroism and spin spectrum are propor-
tional to the ground-state orbital and spin magnetic moment, respectively. In
fact, each fundamental spectrum can be related to a particular ground state
property.

The third paper [98] gives a detailed analysis of the angular dependence of
the photoemission. The geometry can be separated from the physical proper-
ties and the angular dependence provides a way to measure higher magnetic
moments. The interference term between the `− 1 and `+ 1 emission chan-
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nels allows us to measure the odd magnetic moments using linearly polarized
light. In angle-integrated photoemission these magnetic moments can only be
measured using circularly polarized light. This chiral geometry is the origin
of the effect observed by Roth et al. [100], who in 1993 reported a new type of
magnetic linear dichroism in angle dependent photoemission. For p-polarized
light under oblique incidence the Fe 3p core level peak position and line shape
change when the sample magnetization is reversed.

9.14 Circular dichroism in resonant x-ray processes and
Auger

Magnetic dichroism plays furthermore an important role in second-order co-
herent processes, such as resonant diffraction, resonant inelastic x-ray scatter-
ing (RIXS), and resonant photoemission (RESPES). Thole et al. [101] demon-
strated that the possibilities of XAS are greatly extended by detecting the
polarization of the core hole using the angle dependence of the resonant pho-
toemission, where the polarization of the hole is transferred to the localized
final state and the emitted photoelectron. In the transverse geometry, where
the dichroism in the 2p absorption is forbidden, a circular dichroism of 9%
was observed in the autoionization decay into a 3p4 state.

Consider the resonant photoemission as a two-step process, starting with
an excitation from a core level to the valence shell, after which the core hole
decays into two shallower core holes under emission of an electron. The two
core holes form well defined states, which can be selected by the energy of the
emitted electron. The non-spherical core hole and the selected final state cause
a specific angle and spin distribution of the emitted electron. The experiment
is characterized by the magnetic and nonmagnetic moments being measured,
the polarization and direction of the light and the spin and angular distribution
of the emitted electron. The intensity is a sum over ground state expectation
values of tensor operators multiplied by the probability of creating a polarized
core hole using polarized light multiplied by the decay probability of such a
core hole into the final state [80]. Spin polarization is due to odd moments of
the core hole. This core polarization analysis generalizes the use of sum rules
in XAS where the integrated peak intensities give ground state expectation
values of operators such as the spin and orbital moments. The photoemission
decay makes it possible to measure new linear combinations of operators. The
general formulation for second-order processes shows that in the presence of
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core-valence interactions the two-step model may break down due to interfer-
ence terms between intermediate states separated by more than their lifetime
width.

Dürr et al. [102] observed a strong magnetic circular dichroism in the
L3M2,3M2,3 Auger-electron emission spectra measured on Fe and Co metal
in the off-resonance energy region with the light helicity vector perpendicular
to the magnetization direction, despite the fact that this emission is expected
to be symmetry forbidden in this geometry. The effect was ascribed to spin-
dependent screening of the intermediate core-hole state. The experimental re-
sults could be explained quantitatively by taking into account the exchange
interaction of the spin-orbit split core states with the spin-polarized valence
band [103]. This behavior is completely different from the measurements at
resonance, i.e., at the L3 absorption edge, where the strong MCD signal for
Fe, Co, and Ni is due to the large spin polarization of the 2p core hole which
is caused by unoccupied 3d states with predominantly minority spin in the
vicinity of the Fermi level.

9.15 X-ray detected optical activity

In the absence of magnetism, linear dichroism arises from the charge anisotropy,
as theoretically analyzed in detail by Brouder [104] for crystal fields lower
than cubic symmetry, which was later generalized using group theory [57].
The linear dichroism in anisotropic crystals can be very large, as was, e.g.,
observed at the Fe L2,3 edge of gillespite BaFeSi4O10, where the Fe d6 ion
has as square planar coordination [105].

The optical activity discussed in the previous sections is induced by pure
transitions and has even parity. Optical transitions can be expanded in mul-
tipole terms, such as electric dipole (E1 = parity odd, time even), electric
quadrupole (E2 = parity even, time even), magnetic dipole (M1 = parity even,
time odd) and higher-order terms that can normally be neglected [106]. Opti-
cal activity induced by pure transitions must have even parity; only interfer-
ence terms can give odd parity. In the visible the E1M1 interference allows the
detection of natural circular dichroism or optical rotation in powdered sam-
ples or in solution and single crystals. However, in the case of x-ray absorp-
tion, which involves core to valence shell excitations, the M1 transitions are
practically forbidden due to the restriction imposed by the monopole selection
rule for the radial part. While in the visible region the E2 transitions are neg-
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ligibly small, their magnitude increases with photon energy, so that for harder
x-rays the E1E2 interference can become significant. In this way, Goulon et
al. [107] were able to observe x-ray natural circular dichroism (XNCD) at the
I 2s and 2p edges of lithium iodate, a compound lacking inversion symme-
try. These measurements were made possible thanks to the intense circularly
polarized x-ray beams produced by the insertion device on beamline ID12A
at the ESRF. Natoli et al. [108] showed that the measured dichroism was in
agreement with theoretical model calculations. While XMCD requires parity
even and time odd symmetry, XNCD requires parity odd and time even sym-
metry. Non-reciprocal linear dichroism, which is parity odd and time odd,
which in 2000 was observed by Goulon et al. [109] in the low-temperature
antiferromagnetic insulating phase of a Cr-doped V2O3 crystal in which one
single antiferromagnetic domain was grown by magnetoelectric annealing.
This field has continued to flourish and more recent developments have been
described in Ref. [110]. Sum rules for x-ray detected optical activity have
been reviewed in Refs. [45, 110, 111].

9.16 Epilogue

After its discovery a quarter century ago, x-ray magnetic dichroism quickly
attracted the attention of the wider magnetism community working with syn-
chrotron radiation. At the first Mittelwihr School on Synchrotron Radiation
and Magnetism [112] in 1989, x-ray magnetic dichroism figured already as
high as spin-resolved photoemission, which nowadays it has overtaken as the
preferred standard method to obtain spin dependent information from mag-
netic materials.

The derivation of the sum rules enormously simplified the analysis of
XMCD, leading to an explosion in the use of this technique for wider ap-
plications. The sum rules are independent of the theory, because they apply
to both atomic and band structure models. The development of XMCD has
greatly benefitted from the strong theoretical involvement of pioneers, such as
Theo Thole and Paolo Carra, who both unfortunately deceased at a too young
age. An obituary of Theo Thole can be found in Ref. [113] and a special issue
of Journal of Electron Spectroscopy is dedicated to his work [114].

The usefulness of XMCD was not equally recognized in all corners of the
scientific community. A press release from the The Royal Swedish Academy of
Sciences issued on 12 October 1994 [115], which announced the Nobel Prize



282 Gerrit van der Laan

in Physics to Bertram Brockhouse and Clifford Shull for the development of
the neutron diffraction technique, contained the following rather surprising
paragraph:

“Magnetic structures: Neutrons are small magnets, as are the atoms of a magnetic
material. When a neutron beam strikes such material, the neutrons can therefore
change direction through magnetic interaction with the atoms of the material. This
gives rise to a new type of neutron diffraction (the type described earlier is based on
neutron interaction with atomic nuclei) which can be used to study the relative orien-
tations of the small atomic magnets. Here, too, the x-ray method has been powerless
and in this field of application neutron diffraction has since assumed an entirely
dominant position. It is hard to imagine modern research into magnetism without
this aid.”

On the contrary, it would be fair to say that—certainly since 1994—x-rays
have taken over the dominant position from neutrons, and that nowadays it is
hard to image modern research into magnetism without the aid of polarized
x-rays. This was recognized by the 2000 Agilent Technologies Europhysics
Prize for Outstanding Achievement in Condensed Matter Physics for “Pio-
neering work in establishing the field of magnetic x-ray dichroism”, which
was awarded to Paolo Carra, Gisela Schütz-Gmeineder and Gerrit van der
Laan [116].

Today, the applications of XMCD are vast and provide almost endless pos-
sibilities to study magnetic materials [117]. XMCD can be used for mag-
netic imaging on the nanoscale using x-ray transmission microscopy and
for x-ray holography, using the coherent properties of synchrotron radia-
tion [118, 119, 120]. Another recent development is ferromagnetic resonance
(FMR) detected by time resolved XMCD, which makes FMR element- and
site-specific [121, 122]. By exploiting the pulsed time structure of the stor-
age ring synchrotron radiation the relative phase of precession in individual
magnetic layers of of a spin valve structure can be studied [123].

XMCD can be used also to study the origin of magnetism and anisotropy
in ferromagnetic semiconductors, such as in (Ga1−xMnx)As [124]. While
most applications have been in solid-state physics and technology, more re-
cently the field of research has broadened considerably. New applications have
emerged in areas such as chemistry, biology and earth sciences. For instance,
in environmental sciences and microbiotechnology, XMCD has become a
unique and powerful technique to determine the relative site occupations in
(bio)spinels and other ternary oxides [125, 126].

Rapidly increasing information density of modern magnetic data storage
devices requires an answer to the question of the fundamental limits in bit
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size and writing speed. Time-resolved XMCD with femtosecond laser exci-
tation is used to study magnetic switching, giving information of the driving
force behind femtosecond spin-lattice relaxation [127]. In soft x-ray resonant
emission the core-hole clock effect can be used to study the spin dependent
screening in ferromagnetic metals on a femtosecond timescale [128].

References
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101. B.T. Thole, H. Dürr, G. van der Laan, Phys. Rev. Lett. 74, 2371 (1995)
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118. S. Eisebitt, J. Lüning, W.F. Schlotter, M. Lürgen, O. Hellwig, W. Eberhardt, J. Stöhr,
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Chapter 10
Advanced Instrumentation for x-ray
Magnetic Circular Dichroism
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Abstract This chapter accounts for selected instrumentation developments
carried out over the past 15-20 years at the ESRF beamline ID12 which is
dedicated to polarization dependent x-ray spectroscopy in the energy range
2.0 ≤ h̄ω ≤ 15 keV. Emphasis is laid on problems associated with either the
control or the conversion of the polarization state of the x-ray beam as well as
advanced x-ray detection systems. We highlight two recent science-driven in-
strumentation developments initiated at the ID12 beamline: the first one deals
with measurements of x-ray Magnetic Circular Dichroism (XMCD) under
high static magnetic field up to 17 teslas; the second example concerns x-ray
Detection of Magnetic Resonance (XDMR).
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10.1 Introduction

Discovery of x-ray Magnetic Linear Dichroism (XMLD) in 1986 [1] and x-
ray Magnetic Circualr Dichroism (XMCD) in 1987 [2] ushered in a new era of
magnetism research with objectives that previously would have been unattain-
able. Because of their inherent element and orbital specificity and ability to
probe extremely small sample volumes, these spectroscopies have become an
essential tool in understanding the magnetism of complex materials. Deriva-
tion of magneto-optical sum rules [3, 4] has greatly strengthened the XMCD,
making this technique capable to disentangle orbital and spin contributions to
the total magnetic moment carried by the absorbing atom.

It is also in the beginning of 1990s, that the advent of the third genera-
tion synchrotron radiation facilities offered the scientific community the x-
ray spectroscopy beamlines with greatly improved flux and full polarization
control. As a result, polarization dependent x-ray spectroscopy in the last 25
years has become a standard tool in modern magnetism research, leading to
a deeper understanding of the microscopic origin of magnetic state of mat-
ter, as well as to major technological advances. To remain at the forefront in
new emerging areas of magnetism research, however, requires continued im-
provements to both the instrumentation and optics in order to provide greater
flux, improved polarization control, higher detection sensitivity and enhanced
sample environments.

In the present paper, we describe the ESRF beamline ID12 which has been
precisely optimized for spectroscopic applications requiring a full control of
the polarization of x-ray photons in the energy range 2.0 ≤ h̄ω ≤ 15 keV
[5, 6]. The beamline has been in the user operation since the beginning of
1995. From the very beginning, there was the implicit commitment to try to
push the frontiers of x-ray Absorption Spectroscopy. Moreover ID12 beam-
line has been used during the construction phase of the ESRF as a test-bench
for advanced instrumentation in x-ray absorption spectroscopy (XAS). This is
because measurements of tiny dichroic signals free of any experimental arte-
facts are extremely demanding from the quality of the whole beamline. Much
time and efforts have been invested, day after day, to improve the quality and
the reliability of the instrumentation including optical components, in partic-
ular, x-ray monochromator but also various types of x-ray detectors [7]. We
would like to stress that all technical developments have always been driven
by the need to optimize a critical instrumentation in order to tackle a new
scientific problem.
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Over the years, ID12 beamline has contributed to spectacular progress
observed in polarization dependent x-ray Absorption Spectroscopy with the
emergence of a rich variety of dichroisms exploiting either:

• Magneto-Optical effects: e.g. x-ray Magnetic Linear Dichroism; x-ray
Magnetic Circular Dichroism; x-ray ResonantMagnetic Scattering (XRMS),

• Optical Activity1 [8]: i.e. x-ray Natural Circular Dichroism (XNCD),
Circular Dichroism in Diffracted Anomalous Near Edge Structure (CD-
DANES), x-ray Magnetochiral Dichroism (XMχD), Non-Reciprocal x-ray
Magnetic Linear Dichroism (NR-XMLD).

10.2 Description of the beamline

10.2.1 Sources of polarized x-rays

What makes beamline ID12 fairly specific is that the users can have a full
control of the polarization state of the x-ray beam over a wide energy range
from 2 to 15 keV. Either circularly or linearly polarized x-ray photons can be
generated by helical undulators installed at the ID12 straight section of the
storage ring, i.e. HELIOS-II and APPLE-II.

The HELIOS-II undulator [10] consists of two planar arrays of permanent
magnets: the upper one produces a vertical sinusoidal magnetic field while
the lower produces a horizontal field, both field distributions featuring the
same spatial periodicity (λu = 52mm). The undulator has three degrees of
freedom: two vertical translations (i.e. one for each individual girder resulting
in a change of the horizontal and the vertical half-gaps respectively) and one
axial translation of the upper girder resulting in a variation of the phase (Φ)
between the horizontal Bx and vertical Bz magnetic fields. Whenever Φ is set
to λu/2 or to zero, then the emitted radiation is linearly polarized in a plane
making an angle α = arctan(Bx/Bz)with respect to the orbit plane. Moreover,
x-ray photons with pure vertical or pure horizontal linear polarizations can be

1 X-ray Optical Activity is very valuable tool to study systems with broken inversion sym-
metry. Such systems play a fascinating role not only in physics but also in chemistry and
in life sciences, where molecular recognition processes are controlled by chirality. More-
over, x-ray optical activity appears as a new element specific spectroscopy to study orbital
magnetism in parity non-conserving solids, and offers unique experimental access to orbital
anapole moments and to a whole family of related operators [9].
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generated by opening completely either the vertical or the horizontal half-gap
so that Bz = 0 or Bx = 0. Circularly polarized x-rays are emitted when Bx is
equal to Bz and the phase is set either to π/2 or to −π/2. The change of the
helicity of the x-rays can, therefore, be done easily by translating the upper
girder by 26 mm (from +λu/4 to −λu/4). The time required for this motion
is typically less than 3 seconds. After the installation of a narrow-gap vacuum
chamber within the ID12 straight section, the smallest half-gaps of HELIOS-
II undulator could be closed down to 6.2mm. Thus, the energy range that can
be covered with the first harmonic of HELIOS-II operated in the pure heli-
cal mode was considerably extended toward the soft x-ray range. At present,
dichroism experiments can be performed with this undulator over an energy
range which extends from 2.05 keV (limited by Si < 111 > monochromator)
up to 6.2 keV.

For the experiments at higher photon energies (h̄ω ≥ 5 keV) it is preferable
to use radiation emitted by an APPLE-II type helical undulator which is also
installed on the straight section ID12. Its fundamental harmonic in pure heli-
cal mode spans from 5.1 to 8.5 keV. An APPLE-II undulator consists of four
identical arrays of permanent magnets arranged in four quadrants around the
axis. Two arrays (upper right and lower left) are movable while two others are
fixed. In the APPLE-II undulator, the variation of the phase is accomplished
by translating movable magnetic rows longitudinally in the same direction.
The position of these rows corresponding to pure helical mode is approxi-
mately equal to ±λu/3. The helicity of the emitted x-rays can be changed
in about 2 seconds. Note that not only the helicity but also the spectrum of
APPLE-II undulator depends strongly on the value of phase. Unfortunately,
the phase reversal of APPLE-II is a process which results in a huge change of
the emitted power and in a dramatic redistribution of the relative intensities
of high-order harmonics. This places additional constraints on the stability of
the various optical components of the beamline.

It is important to underline that any changes of the undulator gaps and/or
phases do not affect the position and the angles of the x-ray beam emitted by
undulators. Equally important is the fact that the closed orbit and the dynamics
of the electron beam in the storage ring are also unperturbed by the gaps or
phase changes and the use of the undulators is fully transparent for any other
beamline around the storage ring.
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10.2.2 Beamline optics

The critical choice has been made from the beginning to operate beamline
ID12 systematically windowless: this is desirable not only to preserve a high
flux at low energy (i.e. below 4 keV), but also because it is mandatory to keep
all optical components clean over long periods of operation. This choice had
indeed strong implications regarding the design of UHV components and their
cost. The first component of the beamline is a non-standard but very accurate
primary slits which are used to extract the on-axis radiation from the undula-
tors. A UHV-compatible mechanical chopper consisting of a rotating slotted
Al disc is installed immediately after the slits. The chopper causes a square-
wave modulation of x-ray beam at a typical frequency of ca. 67Hz and also
contributes in reducing (by a factor of 2) the heat load on the beamline optics.

The monochromator is the most critical component of any beamline de-
signed for spectroscopy applications. This is because the quality of the spectra
can be dramatically spoiled by a poor energy resolution, by the transmission of
unwanted harmonics or by instabilities of the exit beam during energy scans,
etc. Beamline ID12 is equipped with a UHV compatible, fixed-exit, double-
crystal monochromator manufactured by KoHzu Seiki Co. following specifi-
cations imposed by the ESRF. The exceptional quality of the mechanics, in
particular the high precision of the translation stages, allows one to obtain a
fixed exit beam (within± 5 µm) over the whole range of Bragg angles that are
accessible (6◦ - 80◦). The monochromator is most often equipped with a pair
of Si < 111 > crystals. Note that the temperature of each individual crystal is
kept at−140◦C (±0.2◦) using a cryogenic cooling system developed in-house
and which proved to be totally free of undesirable vibrations. Given the mod-
est power density delivered on-axis by helical undulators in pure helical mode
(compared to a standard planar undulator or a wiggler), it is not surprising that
the heat-load effects are now practically undetectable (the measured stability
of the rocking curve is better than 0.1 arcsec over periods of several hours).
For two consecutive energy scans we obtained an excellent reproducibility of
typically 1meV or even better.

A major concern in circular dichroism experiments is the determination of
the circular polarization rate of the monochromatic beam, which depends not
only on the polarization of the undulator radiation but also on the polariza-
tion transfer by all optical components including the monochromator [11]. In
fact, the monochromator does not preserve the initial degree of polarization
of the undulator beam, except for pure σ or π linearly polarized beams. In
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the case of Si < 111 > monochromator, high circular polarisation rate of the
x-ray undulator beam (≥ 97%) drops down to very low values at photon en-
ergies around ca. 2.8 keV: this implies that x-ray circular dichroism measure-
ments should be most difficult in the corresponding energy range. Moreover,
when the helicity of the incident x-ray beam is reverted, indeed the circu-
lar polarization rate of the monochromatic x-ray beam is altered, but there is
also a quite significant change affecting the Stokes-Poincaré component P′2,
i.e. the linear polarization rates at 45◦ and 135◦ respectively, whereas Stokes-
Poincaré component P′1 remains totally unaffected. This can have dramatic
consequences for all types of circular dichroism measurements (i.e. XMCD
as well as XNCD) on biaxial crystals because the weak XNCD signal can of-
ten be masked by a much stronger linear dichroism signal. Similar difficulty
is also to be expected for circular dichroism measurements on uniaxial crys-
tals, i.e. whenever the optical axis of the sample is not strictly parallel to the
direction of propagation of the x-rays.

It is therefore highly desirable to perform x-ray polarimetry measurements
which is usually done by combining a quarter-wave plate with a linear po-
larization analysis. X-ray phase plates exploit the birefringence of perfect
crystals under the conditions of Bragg diffraction: it means that the refrac-
tion indices are different for the σ and π polarization components [12]. The
most convenient experimental configuration consists in using the forward-
diffracted beam outside the range of total reflection since the transmitted beam
is not deviated [13]. Due to the difference in the refraction indices, the dif-
fraction by a perfect crystal induces a phase shift φ between the σ and π

components of the wave transmitted by the crystal

φ ∝−(π/2)
A · z
∆Θ

(10.1)

where z is the beam path inside the crystal, Θ is the angle between the
incident-beam wavevector and the normal to the crystal surface, ∆Θ is the
angular offset (defined as the difference between the true angle of incidence
Θ and the Bragg angle Θ0 at the middle of the reflection profile) and A is a
factor that depends on photon energy and on the nature of the crystal.

Whenever the angular offset is adjusted so that the phase shift φ is equal
to ±π/2, then the crystal acts as a quarter wave plate (QWP) and an in-
coming circularly polarized x-ray beam is converted into a linear polarized
beam. For a given crystal, the best efficiency is obtained for strong reflec-
tions. Since one uses the forward diffracted beam rather far from the Bragg
condition, the absorption by the crystal is very little affected by the Bormann
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effect and the transmitted intensity can be approximated by 1− exp(−µ0 · z) .
However, the σ and π components may not be attenuated in the same pro-
portions so that the polarization vector is rotated (with respect to the plane of
diffraction of the phase plate) by the angle α 6= 45◦ satisfying the condition:
α = arctan(

√
Iσ /Iπ) [14]. Owing to the necessity to minimize the absorption

losses, diamond crystals are usually preferred for experiments above 3 keV
even though ultra-thin silicon crystals have been successfully used at photon
energies of 3.1 keV [15] or even of 2.8 keV [14].

To fully characterize the polarization state of the monochromatic beam,
we found most convenient to insert downstream with respect to the mono-
chromator a UHV compatible QWP chamber equipped with a diamond single
crystal. A 0.9mm thick < 111 > diamond phase plate exploiting the asym-
metric (111̄) reflection is typically used in the energy range 5 - 10 keV with
the incident beam nearly perpendicular to the crystal surface. The QWP can
be easily inserted into the monochromatic x-ray beam or be removed from
the beam. It is combined with a linear polarimeter which consists of either a
kapton foil scattering at 90◦ or a single crystal diffracting at 90◦.

We have reproduced in Fig.10.1a typical profile of the (111̄) diamond
QWP at 6.45893 keV recorded by monitoring the intensity of the vertically
polarized component. Polarization analyzer was a Si < 400> crystal diffract-
ing at 90.0083◦. The typical offset value resulting in the desired ±π/2 phase
shift was of the order of ±135 arcsec whereas the Darwin width of (111̄)
reflection was only≈ 9 arcsec. For these measurements we have used the fun-
damental harmonic of the APPLE-II undulator with the gap of 19.1mm and
undulator phase set to +12.69mm corresponding to the right circular polar-
ization. The measured circular polarization rate of monochromatic x-rays was
of the order of 91%.

A pair of vertically focusing mirrors (VF-2M device) was also installed
downstream of the monochromator. The choice of this configuration was dic-
tated by two considerations: (i) the VF-2M device should not affect the energy
resolution of the monochromator; (ii) large demagnification factors could be
obtained for samples located close enough to the mirrors assuming that the
curvature of the mirrors can be increased without damaging their figure slope
error. The transmission of the VF-2M was measured to be ca. 70% at 8mrad
incidence angle using an x-ray beam of about 3 keV. Vertical focus sizes of
the order of 20 µm (FWHM) is typically obtained at the sample location us-
ing a full undulator beam. For delicate experiments at low photon energy, the
VF-2M device indeed can be exploited as a highly efficient harmonic filter.
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Fig. 10.1 Intensity profile measured by the Si < 400 > linear analyzer on varying the offset
of the diamond QWP. The fundamental harmonic (peaking at ≈6.45 keV) of the APPLE-II
undulator in a pure circular mode with the phase set to +π/2

Since their development almost 15 years ago [16], the use of x-ray refrac-

tive lenses has rapidly expanded and they are now a standard optical element

on many beamlines. Compared to other focusing elements, refractive lenses

present several attractive features, being simple to align and relatively insen-

sitive to misorientations. Since refractive lenses are in-line optics, they are

more stable with respect to angular variations in comparison with deflect-

ing optics. Surprisingly, it is a general belief that they can be used only with

high energy photons, typically above 6 keV. In fact, as we have shown, Be

refractive lenses can be perfectly used at lower photon energies down to, at

least, 2 keV. This became possible with improved lens fabrication technology

making available Be lenses with small radius of parabola apex and very thin

sidewalls. The focal spot of ≤ 1.5 μm (FWHM) with the flux gain of about

300 was achieved at 2.5 keV using only two parabolic lenses with parabola

apex radius of 200 μm. The measured focal distance of the set-up was 95 cm.

Such a long focal distance is another great advantage of refractive lenses, in

particular for spectroscopic applications. This leaves enough space not only

to mount an I0 monitor but also to use a rather complex sample environment,
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e.g. superconducting magnet. Translation of the lenses along the x-ray beam
allows one to correct easily for chromatic aberrations and to perform x-ray
absorption spectroscopy, including dichroism, experiments with a spatial res-
olution of the order of 1 µm and even better.

10.2.3 x-ray Detectors

All standard fluorescence detectors, all beam intensity monitors or beam po-
sition monitors at the beamline are (single- or multi-anode) ion implanted Si
P+NN+ photodiodes developed in close collaboration with Canberra-Eurisys.
The very high efficiency, the fast response time and the excellent linearity
make photodiodes the best detectors for x-ray spectroscopy. Photodiodes also
benefit from the great advantage to be fully UHV compatible: this is not a
marginal advantage given the wide energy range covered by beamline ID12.
Another valuable advantage regarding XMCD experiments is that the photo-
diodes are not sensitive to magnetic fields, at least up to 20 T. Unfortunately,
photodiodes exhibit a rather large dark current which is temperature depen-
dent and may drift with time. A very efficient way to get rid of all these short-
comings is to exploit a synchronous detection technique based on a square
wave modulation of the incident x-ray beam using a chopper.

A lot of efforts has been invested into the design and the commissioning
of highly sensitive intensity monitors (I0 monitors) featuring low insertion
losses. Recent attempts to use CVD diamond diodes on ID12 failed because
such detectors do not meet (yet) the highly demanding linearity criteria of
x-ray Absorption Spectroscopy or x-ray dichroism [17]. According to our ex-
perience, the most reliable option is still to detect the x-ray fluorescence of
a thin foil in the backward direction. Using a photodiode with a central hole
(circular or oblong) we could make the design of the I0 chamber very com-
pact. Since the foil is mounted normal to the incident beam, the absorption
losses are minimized whereas the distance to the diode can be optimized to
maximize the solid angle in which the fluorescence photons are collected and
thus maximize the detection sensitivity. Due to its high symmetry this detector
is not sensitive to small changes of the beam energy profile. Much attention
had to be paid to the thickness uniformity of the foil: the most frequently used
foils are either a 4 µm Ti foil (for photon energies above 6 keV) or a 0.5 µm
thick Si3N4 membrane (for energy range above 2keV ). Such I0 monitors can
easily be transformed into semi-transparent beam position monitors by using



298 A. Rogalev et al.

Fig. 10.2 Picture of a beam intensity (position) monitor; a scattering Si3N4 membrane is
well apparent whereas the translator is slightly moved away allowing two quadrants of the
diode with its (oblong) hole to be visible (reproduced from Ref. [7])

a 4-quadrant photodiode with a central hole. We checked that such a beam po-
sition monitor could really offer a vertical or lateral resolution which was of
the order of 1-2 µm. A picture of one of our beam intensity/position monitors
is shown on Fig. 10.2.

The square modulated diode photocurrent is first pre-amplified using an ul-
tra low-noise electrometer manufactured by NOVELEC S.A. The noise level
of a standard fluorescence detector was measured at highest gain setting and
was found to be ≤ 5 fA RMS in a 3Hz bandwidth. Under normal operation
conditions, the readout electronics provides the user with a dynamic range
reserve truly in excess of 106: this is essential to record high quality x-ray
dichroism spectra. The output of each electrometer includes a fast voltage-to-
frequency converter operated from 1 to 10MHz with a residual non-linearty≤
70 ppm. Optical fibers link the electrometer to a gated digital lock-in exploit-
ing the low-frequency modulation of the x-ray beam: the so-called Frequency
Integrated Digital Lockin (FIDL) boards which were developed in-house. The
FIDL boards combine 12 lock-in channels, all perfectly synchronized. The
FIDL boards also offer following advantages: (i) the raw data are stored in
“on-board” SDRAMs with local pre-processing capabilities; (ii) each channel
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can accommodate a “double modulation” which is a very attractive option for

dichroism experiments exploiting ac modulation techniques; (iii) modulation

frequencies can be as high as 50 kHz.
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Fig. 10.3 Fe K-edge XANES (thin black line) and XMCD spectra (thick blue line and red
squares) of Y3Fe5O12 thin film measured by detecting the high frequency time structure
of the x-ray beam at 1.4 MHz in the 4 bunch filling mode. The XMCD spectra recorded
under the same conditions but in multibunch mode using a standard detection system is also
shown for comparison

Over the years, much efforts have been invested by the beamline staff in

order to develop new solid state detectors optimized for our specific appli-

cations. A recent example concerns the development of fast detectors which

have the capability to fully exploit the time structure of the x-ray beam of the

ESRF arising from both the bunch structure of the beam and the storage ring

filling pattern. With exception of the uniform filling mode, all other modes

exhibit fundamental beam modulation frequencies in a few MHz range (from

355 kHz up to 5.6 MHz). These values are easily compatible with the imple-

mentation of digital techniques to process the signal with front end ADCs. To

reach their ultimate detection speed, photodiodes should be properly reverse
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biased in order to maximize the thickness of the depleted layer and mini-
mize the diode capacitance. On the other hand, when the photodiode is re-
verse biased, its finite shunt resistance will cause an undesirable, temperature
dependent (noisy) DC dark current. The in-house development of wide band
preamplifiers allowed us to implement a gated synchronous time-average data
acquisition technique [18] exploiting the natural modulation of the x-ray beam
up to, at least, 1.4MHz. This particular implementation of a digital lockin
comes with decisive advantages over traditional analog lockin amplifiers: the
system is naturally locked, independently of the signal level and it is not sensi-
tive to the modulation and signal shapes. Moreover, the digital system returns
the true signal shape and all its harmonics (as far as the sampling frequency
allows).

The performances of the new detection system are illustrated in figure 10.3
in which we have reproduced the Fe K-edge XMCD spectrum of a YIG thin
film: the corresponding spectrum was recorded with a readout electronics ex-
ploiting directly the modulation of the x-ray beam at 1.4MHz in the standard
4-bunch operation mode, i.e. with a beam current of only ≈ 20mA. For the
sake of comparison, we added on the same plot the XMCD spectrum recorded
on the same sample in the standard multibunch operation mode, i.e. with a
beam current of ≈ 200mA). The latter spectrum was recorded with a stan-
dard detection system exploiting the modulation of the x-ray beam at 67Hz
using a mechanical beam chopper. Indeed, the signal-to-noise ratio achieved
with both detection systems is excellent eventhough the experiment carried
out in the 4-bunch mode at low current was much more demanding.

For the experiments requiring energy resolution, a 35 element silicon drift
diode (SDD) detector array has also been developed in collaboration with
Eurisys-Mesures (now Canberra Eurisys). This detector consists of an array
of 7× 5 cylindrical Si drift-diodes with an active area of 10mm2 for each
diode. The detector is cooled down to the optimum temperature (T ' 143K).
The FWHM energy resolution of the individual diodes measured with a 55Fe
source was as good as 129 eV using a standard pulse processing time of 12 µs
whereas a peak-to-background (PTB) ratio in excess of 1000 was obtained.
Under normal operating conditions at beamline ID12, the peaking time can be
reduced down to 0.5 µs in order to maximize the counting rate (≥ 105 counts
per second) but at the expense of some deterioration of the energy resolution.
The detector is systematically operated windowless: this allowed us to extend
the operation of the detector down to the soft x-ray range where scattering is
a major problem.
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Fig. 10.4 XANES and XMCD spectra of Fe30ML/Pd0.25ML/Fe30ML trilayer at the Pd LII,III
edges. Measurements were performed at room temperature and under applied magnetic field
of 0.3T. Insert: x-ray emission spectrum of the sample with excitation at the Pd LII-edge

To illustrate the excellent performances of the 35-element Si drift diode

detector, we have reproduced in Fig. 10.4 the XMCD spectra recorded at the

Pd LII,III absorption edges from only of a quarter of a monolayer of Pd sand-

wiched between 30 atomic layers of Fe deposited on MgO support and capped

with 12 atomic layers of Cr. As one can see on the insert of the Fig. 10.4, the

emission spectrum is strongly dominated by the Mg Kα emission line, while

not resolved Cr Lα , Fe Lα and O Kα lines are of about the same intensity

as Pd Lα,β lines. This shows that the working energy range of SDD is ex-

tended down to at least 500 eV. Remember that the circular polarization rates

of the monochromatic beam at the Pd LII,III-edges are only 12% and 19%, re-

spectively: this clearly indicates that the corresponding XMCD spectra were

recorded under particularly unfavorable experimental conditions. The count-

ing rates (counts per second, cps) in the Pd Lα line was ca. 2× 104 cps per

single SDD with a peaking time of 0.5 μs. Although the x-ray beam was im-

pinging on the sample with an angle of incidence of ca. 15◦, the beam foot-
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print was quite small: 300×30 µm2. This is because we had to close down
the slits in order to avoid the saturation of the detector by the intense soft x-
ray fluorescence signal from the substrates. Note that this is the first time that
high quality XMCD spectra could be measured on buried submonolayers in
the hard x-ray range.

10.3 Experimental methods and related instrumentation

10.3.1 High Field x-ray Magnetic Circular Dichroism

So far, XMCD has been extensively used to investigate mainly ferro- or ferri-
magnetic materials, and only very few studies have been performed on para-
magnetic compounds. This is partly because a sufficiently high magnetic field
for magnetizing paramagnetic or antiferromagnetic materials was not avail-
able at synchrotron facilities. Fields of 1-2 T are generally used for conven-
tional XMCD experiments. However, a high magnetic field could be the es-
sential parameter to explore new phenomena in materials with important mag-
netic degrees of freedom. In order to achieve this goal, the external magnetic
field has to be comparable with the magnitude of the basic magnetic interac-
tion energies. This typically requires magnetic fields of the order of several
10 T.

Anticipating the growing interest in research under high magnetic fields, a
new experimental station dedicated to high field XMCD has been opened to
users in 2010. It is based on a high-vacuum (< 10−7mbar) 52mm cold bore
solenoid superconducting magnet producing an horizontal magnetic field of
17 teslas. The magnet is equipped with 2 access ports (CF 100) along the
horizontal axis (parallel to the field), one for the incoming x-ray beam and
detector insert and another one for the sample cryostat. The superconduct-
ing solenoid coil built by Cryogenic Ltd is wound in three main section, the
outer being of copper stabilized filamentary NbTi, and the inner of filamen-
tary Nb3Sn conductor. This assembly design offers the advantage to reduce
the nominal inductance of the magnet. This has a direct consequence to re-
duce the helium consumption, to minimize the remnant field and, most im-
portant, to minimize the total stored energy. The coil is energized by a a 15V,
150A high-resolution (20-bit) four-quadrant power supply with an integrated
low-current option. This power supply is specifically designed to ensure a fast
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sweep ramping of 2 teslas/minute. The integrated low-current facility allows
obtaining very low field in the region of ±0.05 T with a resolution of 10−6 G
and avoiding a significant remnant field in the magnet. The field homogeneity
is better than 0.1% in a 10mm diameter spherical volume. The temporal drift
of the field is about 2×10−5 per hour while the long term stability of the mag-
netic field is better than 0.01% over a period of 12 hours. It is very important
for XMCD measurements that for opposite directions of the field the relative
difference in amplitudes does not exceed 5×10−5.

The helium continuous flow cryostat was built by the ESRF Sample Envi-
ronment Support Group. Its main feature is that it is “amagnetic”. All pieces
of the cryostat were machined using ceramic based tools in order to avoid
any metallic contamination. The absolute value of magnetic susceptibility of
parts exposed to the magnetic field, in the zone where it is above 1 T, is of the
order of 10−5 or less. The temperature on the sample can be set in the range
2.05K to 325K with a stability ∆T/T < 10−3. All spectra are measured us-
ing total fluorescence yield detection mode. A Si photodiode with an oblong
hole mounted on a liquid nitrogen shield of the magnet and is collecting the
fluorescence photon in a “backscattering” geometry over a wide solid angle.

This new high-field experimental station becomes a unique experimental
platform for basic research on magnetism and appears to be the workhorse
of our XMCD measurements. For example, it has been of great help to un-
ravel the origin of paramagnetic response in pure metallic Au nanoparticles
[19]. Pure metallic Au nanoparticles with diameters of a few nm have been
grown onto the naturally thiol-containing proteinatious surface layer (S layer)
of Sulfolobus acidocaldarius without any chemical functionalization by thiol
groups. Macroscopic magnetization measurements using SQUID (1.8K < T
< 300K and 0 < H < 7 T) reveal that these nanoparticles are superparamag-
netic at low temperatures. XMCD measurements performed at the L2,3-edges
of Au unambiguously confirmed that magnetic signal is intrinsic and origi-
nates from 5d states of gold. Analysis of XMCD data, shown on Fig. 10.5a,
using sum rules yields mL = 0.0113(3) µB and mS = 0.0397(5) µB giving a net
average magnetic moment per Au atom mAu = 0.051(1) µB at T = 2.2K and H
= 17T. The observed magnetic moment is about 100 times larger than those
previously found by XMCD in Au-thiol capped nanoparticles. Note, that the
Pauli paramagnetic contribution amounts to only 7% of the total XMCD sig-
nal [20].
Isothermal field-dependent XMCD data were recorded by flipping the helicity
of the x-ray beam, at the photon energy corresponding to the maximum of
XMCD signal at the L3 edge, while varying the field −17 < H < +17 T, at
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Fig. 10.5 a XMCD spectra at the L2,3 edges of Au nanoparticles measured under applied
field of 17 T and at 2.2 K ; b XMCD(x) curves measured at T = 2.2, 4.5 and 10 K up to H

= 17 T where x = Mpart H
kBT , with Mpart = 2.4(1) μB. They are fitted by a Langevin function

(solid line)

T = 2.2, 4.5 and 10 K, as shown in Fig. 10.5b. The field dependence of the

magnetization is well described by the classical Langevin function

M(H) = mat

[
coth

(
MpartH

kBT

)
− kBT

MpartH

]
(10.2)
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where mat is the average magnetic moment per Au atom, and Mpart the mean
magnetic moment per Au particle. The shape of the Langevin curve gives,
therefore, information on the magnetic moment of each individual particle.
The data are plotted in Fig. 10.5b as a function of x = MpartH

kBT
, with Mpart =

2.4(1) µB . Making a very rough assumption that all Au atoms are equally
magnetically polarized, then we deduce that average size of nanoparticles is
about 45 atoms. Besides, the EXAFS recorded at the Au L3-edge shows that
the internal structure of Au nanoparticles is fcc, and Au-S bonds are located
at the particle surface. The latter were also unambiguously confirmed by S
K-edge x-ray absorption measurements. This is precisely the charge transfer
between S-layer and Au 5d states, leading to an increase of the hole charge
carrier density in the Au 5d band, that explains the magnetism of pure metallic
Au nanoparticles.

10.3.2 Natural and Magnetic Linear Dichroism with a QWP

The use of a Quarter Wave Plate on ID12 is by no means restricted to po-
larimetry measurements. It was particularly attractive to use it for x-ray lin-
ear dichroism experiments at ID12 because a circularly polarized x-ray beam
emitted by a helical undulator can be easily converted with a QWP into lin-
early polarized beams with a full control of the orientation of the polarization
vector: we simply need to rotate the QWP around the beam direction. This
is a fairly substantial advantage for polarization dependent XAFS studies on
anisotropic systems since we no longer need to rotate the crystal in Natural
Linear Dichroism experiments or to change the direction of the magnetic field
in Magnetic Linear Dichroism. Moreover, direct measurements of the differ-
ential absorption spectra for two orthogonal polarizations are highly desirable
in linear dichroism experiments: instead of rotating the QWP (or the sam-
ple) by 90◦, it is much faster to invert the angular offset (ca. ±100 arcsec
for a 0.9mm thick diamond < 111̄ > crystal) because this can be done very
quickly using a digital piezoactuator. In this way, it becomes feasible to rotate
the polarization vector by 90◦ several times for each data point of XANES or
EXAFS scans. Obviously, such an experiment becomes inherently much less
sensitive to low-frequency instabilities of the source and small linear dichro-
ism signals can be measured more accurately.

To illustrate the potentiality of this technique we have reproduced in
Fig. 10.6 the FeK-edge x-ray linear dichroism spectra recorded on a Y3Fe5O12
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Fig. 10.6 X-ray absorption and linear dichroism spectra in the vicinity of the Fe K-edge in
a Y3Fe5O12 single crystal

single crystal. Since the crystal symmetry is cubic, the observed x-ray linear

dichroism (XLD) signal can be assigned only to pure quadrupolar transitions

1s → 3d located as expected at the pre-edge peak of the XANES spectrum.

The x-ray magnetic linear dichroism spectrum was obtained from a direct dif-

ference between XLD spectra recorded with a magnetic field of 0.5 T applied

perpendicular to the beam direction and with zero field. The XMLD spec-

trum is still dominated by 1s → 3d transitions and has nearly the same spec-

tral shape but its amplitude hardly exceeds 2×10−4 with respect to the edge

jump. For comparison the XMCD signal at the Fe K-edge in Yttrium Iron Gar-

net [21] is nearly 30 times larger than the XMLD signal and the corresponding

spectral distributions are fairly different although electric quadrupole transi-

tions are certainly contributing in both cases. This comparison clearly shows

that the two experiments yield complementary information especially in the

energy range where the electric quadrupole transitions to the localized 3d
states are expected to contribute. Even though the XMLD signal is much

weaker than the XMCD signal, the signal-to-noise ratio achieved with only
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a few averaged scans was already excellent. We would like to mention that
high quality measurements of x-ray Linear Dichroism appear to be crucial
to identify the origin of magnetism in diluted magnetic semiconductors with
wurtzite structure, e.g. GaN:Mn [22] or ZnO:Co [23].

10.3.3 X-ray Detected Magnetic Resonance

Another illustrative example of the science-driven instrumentation develop-
ment initiated at the ID12 beamline is X-ray Detection of Magnetic Reso-
nance (XDMR) [24], in which XMCD is used to probe the resonant preces-
sion of the magnetization pumped by microwave radiation. This pump-probe
technique is the only spectroscopy that allows one to study dynamical aspects
of orbital and spin magnetism separately, and therefore, could be seen as the
dynamic extension of XMCD. In favorable cases, XDMR can be even site-
selective probe [24]. Particularly interesting, XDMR experiments carried out
at K-edges can be a unique source of information regarding dynamical aspects
of orbital magnetism, a subject that could not be investigated experimentally
before. Over the past decade, XDMR has emerged as a powerful experimen-
tal tool to study magnetization dynamics [25, 26, 27, 28] and is expected to
become a state-of-the-art technique at XFEL facilities.

However, there is a serious difficulty with XDMR which is that, within the
existing technology, there is no x-ray detector fast enough to record directly a
signal oscillating at microwave or even radio frequencies (RF). This consid-
eration led us to concentrate first on measurements carried out in longitudinal
detection geometry, i.e. with the x-ray wavevector parallel to the external bias
field H0: in this configuration, one measures a dc signal proportional to the
pumping power which can be modulated at low frequency. The price to be
paid is in the very weak intensity of the measured signal which is inherently
a non-linear second order effect. To enhance sensitivity, it is desirable to in-
crease the microwave power at the expense of running into the non-linear
foldover regime of ferromagetic resonance (FMR) [29].

Further efforts were invested next in a frequency down conversion or
(super-) heterodyne detection of the XDMR signal oscillating at the mi-
crowave frequency. This is the case of transverse detection geometry since
the x-ray wavevector is perpendicular to the external bias field H0: in this
configuration one measures an ac signal proportional to magnetization oscil-
lating at microwave frequency. Indeed, the time structure of the x-ray beam
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in the storage ring was most propitious for a super-heterodyne detection of
the XDMR spectra. This can be easily understood by observing that, in the
frequency domain, the Fourier transform spectrum of the x-ray bunches con-
sists of a series of discrete harmonics of the RF frequency (352.2MHz) with
a Gaussian envelope. Assuming that the ESRF bunch length is typically of
the order of 50 ps, the FWHM of the Gaussian distribution in the frequency
domain is expected to be 8.79GHz which corresponds to the 25th harmonics
of the RF frequency of the machine. In other terms, it would be a lot easier to
detect a weak XDMR signal at an intermediary IF frequency (e.g. 455 kHz)
corresponding to the beating frequency of the microwave pump field and the
high frequency modulation of the incident x-ray typically associated with the
relevant nth harmonic of the RF frequency in the storage ring. This strategy
has, however, four major implications:

• The resonance frequency of the cavity has to be carefully adjusted accord-
ing to the following equation: Fcav = n×RF± IF.

• There is still the need to develop x-ray detectors having the capability of
detecting a very weak signal (≈ 10 pA) at the selected IF frequency

• The frequency stability of the microwave spectrometer has to be compa-
rable with the stability of the RF frequency of the machine because one
wants to achieve the highest spectral purity of the IF signal

• The x-ray source should exhibit a negligible noise level at the IF frequency.
Moreover the time structure of each individual bunch should be perfectly
reproducible and very stable in order to avoid large, noisy fluctuations of
the intensity of the IF beating signal.

Conceptually, one would expect the proposed heterodyne detection mode to
benefit of shorter bunch lengths in the time domain. At present, given the
specification of the ESRF storage ring, the sensitivity of the method will drop
down above 20GHz.

A spectrometer has been built at the ESRF which should allow us to record
XDMR spectra at high microwave pumping power over the whole microwave
frequency range 1-18GHz. All experiments reported below were performed
on inserting the sample into home-made TE102 rectangular X-band cavities.
In this cavity, the electrical continuity of the walls was preserved using a pol-
ished Be window (� 31mm; thickness: 25 µm) which made it also possible
to collect the x-ray fluorescence photons over a large solid angle using a Si
photodiode located very close to the sample. The photodiodes designed for
this experiment have a large active area (300mm2) and a 4mm � hole at
their center to let the incident x-ray beam pass through the Si wafer and en-
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ter the microwave cavity. For a transverse XDMR experiment, the resonance
frequency of the microwave cavity should obviously match as closely as pos-
sible the frequency of selected RF harmonics. Special resonators were thus
carefully optimized for these experiments which also require a very high fre-
quency stability and a very low phase noise. In this paper, we present only
an experiment carried out in the transverse geometry using the 24th harmon-
ics of the RF frequency. The resonance frequency of the empty cavity was
Fcav ≈ 8.4517GHz with QL still in excess of 4000.

Considerable improvement in the detection sensitivity was achieved re-
cently with a super-heterodyne detection in which we exploit a 180◦ bi-phase
modulation technique (BPSK). In this experiment, we found it essential to
drive the microwave generator (Anritsu MG-3692A) with the same (ultra-
stable) external 10MHz reference clock as the one used to drive the RF master
clock generator of the storage ring. Moreover, the microwaves were phase-
modulated at a very low modulation frequency: Fbpsk = RF/(992× 132) =
2.68948 kHz. Defining next the XDMR resonance frequency as FMW = 24×
RF +IF, we are interested in measuring in the photodiode output not only
the beating signal at the intermediate frequency IF, but also the modulation
satellites at frequencies IF ± Fbpsk. It is the aim of some additional electron-
ics to carry out a translation in the frequency domain of the detector output
signal by a frequency shift strictly equal to IF. This was achieved by properly
combining a comb generator delivering a reference signal for LO = 24×RF
= 8.45266GHz, a microwave mixer with outputs in phase quadrature and
two RF mixers. Two distinct channels of the Agilent Vector Signal Analyser
(VSA) are then used to carry out a vector decomposition of the XDMR signal
providing us with the whole phase information of the resonance. It is a major
advantage of the proposed detection electronics to be now insensitive to any
undesirable changes of the RF frequency of the machine required to stabilize
the electron beam in the storage ring.

In order to illustrate the performance of the ESRF XDMR spectrometer
in the transverse geometry, we present spectra recorded at the Fe K-edge in
yttrium iron garnet. A high quality 8.9 µm thick film of yttrium iron garnet
(YIG) grown by liquid phase epitaxy on a gadolinium gallium garnet (GGG)
crystal substrate cut parallel to its (111) planes. Samples (2× 2mm2) were
glued on low loss sapphire rods (� 4mm) having a flat surface parallel to the
rod axis. For the experiments reported here, the YIG film was rotated around
the rod axis at the magic angle: β ′′ = 54.73◦. The XDMR spectra displayed
in Fig. 10.7a were recorded in the field-scan mode at the Fe K-edge, the x-ray
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monochromator being preset at energy E=7114.3 eV, i.e. the energy of the first

extremum in the Fe K-edge XMCD spectrum (see Fig. 10.3).
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film rotated at the magic angle; the spectra were recorded in the field-scan mode at the Fe
K-edge; b Comparison of the static Fe K-edge XMCD spectrum with Transverse-XDMR
spectrum recorded in energy-scan mode

The absorptive and dispersive components of the XDMR detected reso-

nance were obtained in exploiting the two VSA channels. Both spectra ex-

hibit a rather impressive signal-to-noise ratio although the pumping power

was only 10 mW, i.e. two orders of magnitude smaller than in the experiments

typically carried out in the longitudinal geometry and shown in Fig. 10.7a.

With such a low pumping power, there is no significant foldover distortion

and the linewidth was narrowed down to 7.5 G. We also reproduced in fig-

ure 10.7b transverse-XDMR spectra recorded in the energy-scan mode, i.e.

as a function of the x-ray photon energy across the Fe K-edge. Note the out-

standing signal-to-noise ratio in the spectrum: even the first magnetic EXAFS

wiggles can be seen. Of course, we have checked that the sign of the XDMR

spectra recorded with right- and left- circularly polarized x-rays is nicely in-
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verted while the amplitude of the signal remains constant. This is a critical

test which establishes the full reliability of our measurements.
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For the sake of comparison, we also added in Fig 10.7b the static Fe K-

edge XMCD spectrum normalized to the edge jump: interestingly, there is

no significant difference between the reference XMCD spectrum and the

Transverse-XDMR spectrum. One important implication of this result is that

the opening angle of precession (θ0) should remain constant over the whole

band of final states probed by the excited photoelectrons even in the domain

of magnetic EXAFS. In other terms, θ0 should be the same at energies corre-

sponding to two extrema of the XMCD spectrum: this might cast doubt about

the small variations of θ0 which we found in exploiting the measurements

carried out in longitudinal geometry [29]. It would be premature to draw such

a conclusion because: (i) the incident power was much lower; (ii) there are

strong arguments to suspect that the longitudinal and transverse magnetization
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components should not be affected in the same way by 2-magnon annihilation
processes. At this stage, let us point out that it is not a trivial exercise to extract
the opening angle θ0 from a transverse-XDMR signal measured with the de-
scribed super-heterodyne detection even though this signal is proportional to
sinθ0: the difficulty arises from the fact that the proportionality factor depends
on the amplitude of the 24th harmonics of the RF, the amplitude of which -in
turn- depends on the true shape of the electron bunches in the machine which
we assumed (for simplicity) to be Gaussian with a constant bunch length.

Remarkable sensitivity of the super-heterodyne detection makes it never-
theless very attractive: high quality Fe K-edge XDMR spectra of YIG thin
films could be recorded with microwave power as low as 100 µW. As illus-
trated by Fig. 10.8a, transverse-XDMR signal is linear with the microwave
field h ∝

√
(P), where P is the incident power, up to 10mW incident power,

whereas the saturation being clearly observed above ca. 40mW. There are
other options to enter into the non-linear regime: (i) one can tune the mi-
crowave frequency closer to the resonance of the cavity; (ii) with overcoupled
cavities, one can approach closer to the so-called critical coupling. In fig-
ure 10.8b, we have reproduced two XDMR spectra recorded in the saturation
regime while keeping an incident power of 10 mW: we simply detuned the
cavity by 3.5MHz and by 3.0MHz. Both Forward- and Backward- low order
magnetostatic waves satellites start now growing and become rapidly rather
broad. These spectra clearly indicate that orbital magnetization components
precessing at the iron sites can couple to magnetostatic waves most probably
through dipole-dipole interactions.
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Chapter 11
Ultrafast magnetization dynamics
investigated with femtosecond time-resolved
x-ray magnetic circular dichroism

Uwe Bovensiepen and Nicolas Bergeard

Abstract X-ray magnetic circular dichroism is well known to provide quan-

titative and element-specific information on the magnetic moment in magnet-

ically ordered materials. In recent years magnetic order in optically excited

states and the respective ultrafast relaxation dynamics became a topic of con-

siderable interest. On pico- and femtosecond timescales such dynamics is ana-

lyzed by pump-probe experiments which are nowadays carried out employing

table-top femtosecond laser setups and large scale facilities like synchrotron

light sources or free electron lasers. Here, we motivate the problem of ultra-

fast, laser-induced magnetization dynamics and review results of near-infrared

laser pump and x-ray magnetic circular dichroism probe experiments.

11.1 Introduction

In the last two decades magnetization dynamics driven by the shortest avail-

able laser pulses in the range of pico- to femtoseconds have been widely inves-

Uwe Bovensiepen
Faculty of Physics, University Duisburg-Essen Lotharstrasse 1, 47057 Duisburg, Germany,
e-mail: uwe.bovensiepen@uni-due.de

Nicolas Bergeard
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tigated in magnetically ordered materials [1]. On the one hand, these efforts

were motivated by the expectation that an analysis of magnetization dynam-

ics directly in the time domain will lead to novel information which is com-

plementary to the more established frequency domain methods. On the other

hand, the laser-excited non-equilibrium state of a magnetic material could fea-

ture properties different from the thermodynamic ground state. Such phenom-

ena have the potential for applications in, e.g., extremely fast memory or logic

devices [2].

Fig. 11.1 Illustration of the degrees of freedom and their mutual interactions in a solid.
The discussion provided here is based on a primary excitation of electrons by the femtosec-
ond laser pulse of photon energy hν = ΔE. Phonons represent excitations of the lattice by
a displacement Δu of the ion core. Spin precession around an external magnetic field or
spin wave excitations represent the dynamics of the spin systems. The orbital and angular
moments are important in understanding spin-lattice interaction, as discussed below

However, the understanding of even the most basic phenomena in ultrafast

magnetization dynamics like the photo-induced reduction of a magnetization

after optical excitation by a femtosecond laser pulse [3, 4, 5], is still controver-

sial [6, 7] and not understood. For the analysis of femtosecond laser-induced

dynamics it is helpful to consider the charge, lattice, spin, and orbital de-

grees of freedom of a solid, which are illustrated by Fig. 11.1 together with

their mutual interactions. The pump laser pulse deposits energy in the solid

through absorption of photons and excitations of hot electrons and holes. This



11 Ultrafast magnetization dynamics investigated with tr-XMCD 317

excess energy is dissipated subsequently, according to the respective inter-

action strength, as excitations of the further degrees of freedom. The use of

femtosecond laser pulses in combination with time-resolved detection specific

to these degrees of freedom offers opportunities to analyze the energy redistri-

bution directly in the time domain and to determine the respective interaction

strength. To reach this goal several time-resolved methods have to be com-

bined and employed on similar or comparable materials and samples. In this

chapter we will focus on time-resolved photoelectron spectroscopy and x-ray

magnetic circular dichroism as examples of methods which probe the electron

and spin subsystems. Based on modelling we will conclude on the role of the

lattice degree of freedom. The relevance of the orbital degree of freedom will

be studied by comparison with appropriate materials.

The chapter is structured as follows. In the remaining introductory part of

this section, equilibrium spin-wave dynamics and photo-excited non-equili-

brium conditions in metallic ferromagnets will be addressed. In Section 11.2,

the generation of femtosecond x-ray pulses in the so-called slicing opera-

tion and the experimental realization at BESSY II synchrotron light source

at the Helmholtz Zentrum Berlin, Germany, will be described. Section 11.3

provides a review of recent experimental results which have been obtained

using time-resolved x-ray magnetic circular dichroism on the femtoslicing fa-

cility at BESSY II. We do not intend to provide a complete review of the field

but aim at a reader with a background in x-ray absorption who is interested in

a basic understanding of ultrafast magnetization dynamics with an emphasis

on time-resolved soft x-ray spectroscopy. Therefore, we restrict ourselves to

discuss selected examples of this rather new approach to ultrafast magnetiza-

tion and spin dynamics by femtosecond time-resolved x-ray magnetic circular

dichroism.

11.1.1 Spin dynamics in metallic ferromagnets

The excitations of a ferromagnetically ordered system with a magnetization

M are described by the dispersion relation of magnons or spin waves Ω(q).
The involved frequencies range from GHz for modes in the center of the Bril-

louin zone 1, which are investigated with ferromagnetic resonance or Brillouin

light scattering [8], to high frequency magnons towards the Brillouin zone

1 A frequency of 10 THz corresponds to an energy of the mode of h̄Ω = 41.4 meV.
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boundary at 10 – 100 THz. These are typically probed by inelastic neutron

scattering [9] in the bulk of ferromagnetic materials. At surfaces, the energy

loss of reflected spin-polarized electrons is analyzed in spin-polarized energy

loss spectroscopy [10]. Both methods provide information on the frequency

and the lifetime of magnons by means of the energy change and the line

width in the spectrum, respectively. In ferromagnetic metals, the line width of

magnon signatures strongly depends on the magnon frequency. For zone cen-

ter modes analyzed by ferromagnetic resonance the line width is usually about

0.1 – 5 μeV [11, 12] which provides an estimate of the respective relaxation

times τ = h̄/Γ ranging from 7 ns to 140 ps. The line width of high frequency

magnons is typically 10− 100 meV and therefore considerably broader. The

relaxation time becomes as short as several 10 fs [10]. Such short relaxation

times are explained by very efficient relaxation channels for these excitations.

For metallic ferromagnets the high frequency spin waves interact in particular

with electronic excitations [13, 14]. Low frequency spin waves have obviously

a smaller phase space available for their relaxation and couple to phonons and

other magnons. It is important to note that in such a line width discussion,

inelastic and elastic relaxation, which result respectively in population decay

and phase decoherence, add up to the total line width following Matthiesen’s

rule. Therefore, it is more appropriate to refer to a relaxation time rather than

to a life time.

We consider spin waves as the quantized excitations of a ferromagnet in

a single particle limit where the magnetization M remains essentially un-

changed taking the sensitivity of experimental methods into account. In the

following we will discuss on what time scale M can be modified by an optical

excitation. To generate a sizeable photo-induced change like several percent

of M, many particles have to be excited. Since generation of magnons might

be a reasonable starting point to reduce the magnetization we can expect that

the magnetization can be modified on a time scale at which magnons are gen-

erated and / or relax, which is in the femtosecond time regime (see above).

Such ultrafast time scales can be investigated by pump-probe experiments

which are based on a separation of an excitation (pump) and a time-delayed

detection (probe) by employing correlation techniques [15].

A first experiment was carried out by Vaterlaus et al. on a Gd film by time-

and spin-resolved photoelectron detection [16]. In this study a 10 ns laser

pulse at 2.15 eV photon energy served as a pump pulse. It was synchronized

to a 60 ps probe pulse at 3.2 eV which generated the photoelectrons analyzed

regarding their spin polarization. Albeit the time-resolution of this experiment

was limited, a response of the detected spin polarization, which was delayed
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with respect to the optical excitation, was observed. The determined delay of

(100±80) ps was assigned to the spin-lattice relaxation time of Gd. Few years

later Beaurepaire et al. performed a femtosecond time-resolved experiment by

detecting the magneto-optical Kerr effect in a Ni film. A drop in the magneto-

optical signal close to 50% was found to occur within a delay of 1 ps after

optical excitation and represents the first observation of femtosecond magneti-

zation dynamics [3]. An independent experiment by Hohlfeld et al. confirmed

this observation [4] soon after and was followed by many reports since then

[1]. At the time, this was an unexpected result because the change in M of the

sample as a whole requires a transfer of the respective angular momentum to

another degree of freedom like the crystal lattice as suggested by the Einstein-

de Haas effect. However, the problem was, and we have to say, still is that the

magnetization change occurs on a time scale at which spins cannot a priori
be assumed to interact with the lattice efficiently [6, 7]. Up to now, no agree-

ment on the process underlying femtosecond demagnetization has emerged,

although several scenarios are under discussion. Here, we do not aim at a com-

plete review of this discussion since it is ongoing. We will restrict ourselves to

a brief description of the mechanisms under consideration which is useful for

our focus on time-resolved x-ray magnetic dichroism. These mechanisms are

(i) phonon- or defect-mediated spin-flip scattering which transfer with each

scattering event magnetic moment from the spin system to the lattice [17];

(ii) magnon emission at so-called hot-spots of the exchange-split electronic

band structure originating from spin-orbit coupling [18]; (iii) superdiffusive

spin-dependent transport phenomena, which are proposed to transfer spin-

polarization out of the sample part probed experimentally [19]. While the first

two scenarios imply a reduction of M, the latter one proposes a constant M
combined with a spatial rearrangement of the local spin density within the

sample.

Note that laser-induced magnetization dynamics was also observed in di-

electric and semiconducting materials. However, so far no femtosecond x-ray

experiments were performed. For a review and further literature covering dy-

namics in these materials see Ref. [1].
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11.1.2 The photo-excited state and its relaxation in metallic
ferromagnets

Interaction of femtosecond laser pulses with metals consists primarily of a

transient polarization of the quasi-free electron density which is driven by

the optical field. In case of reflection, this transient light polarization decays

by emission of photons. In case of photon absorption, the transient polariza-

tion transforms into electron-hole pairs whose difference in binding energies

equals the energy of the absorbed photon. Under the employed experimental

conditions hot electron densities of 1018 − 1022 cm−3 are excited. Therefore,

the excited charge carriers scatter with each other, which leads within several

100 fs to a thermalized electron distribution function which is characterized

by electron temperature Te on the order of 1000 K [20, 21, 22].

Fig. 11.2 The optically excited state of a 20 nm epitaxial film Gd(0001)/W(110) is analyzed
by femtosecond time-resolved photoelectron spectroscopy. Left panel: Scheme of the ex-
periment. Center panel: Symbols represent the photoelectron intensity in normal emission
direction on a logarithmic scale at selected time delays; solid lines indicate thermalized
electron distribution functions. Right panel: Electron temperatures extracted from the ther-
malized distribution functions are shown by circles and the result of a calculation following
the two-temperature model for the time-dependent electron and lattice temperatures Te and
Tl are depicted by solid and dashed lines, respectively. Data were recorded at 10 K equilib-
rium temperature, at 0.25 mJ.cm−2 absorbed pump laser fluence, and are taken from [22]
with permission of IOP publishing, copyright 2007

Such excited electron distributions are analyzed experimentally e.g. by

time-resolved optical [20] and photoelectron spectroscopy [22]. In the latter,

an infrared (IR) pump pulse is followed by an ultraviolet (UV) probe pulse

which generates photoelectrons as illustrated by Fig. 11.2, left. These are ana-

lyzed regarding energy and momentum by an electron spectrometer [23, 24].
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Such experiments were carried out for noble metals [23] as well as for the

model ferromagnets Ni [21] and Gd [22]. The center panel shows exemplary

data for Gd(0001). Thanks to the large dynamical range of the spectra the

time-dependent evolution of the electron distribution can be analyzed directly.

During the optical excitation, i.e. at a time delay of 0 fs, the distribution func-

tion is clearly non-thermal, which is recognized from the spectrum shown on

a logarithmic intensity axis in Fig. 11.2, center panel. It presents a kink at

the Fermi energy EF and a cutoff near the sum of the pump photon energy

hνpump = 1.5 eV and EF. With increasing time delay the deviation between

a thermalized and the measured distribution function recedes and becomes

negligible after 300 fs. Therefore, the so-called two-temperature model [25],

which assumes that the energy absorbed from the pump laser pulse is con-

verted directly into an increase of Te, is in fact a simplification of the real situ-

ation. However, its estimations can still be a good guidance for a quantitative

discussion in many metals. The reason is that beside the non-equilibrium state

in the electronic system it provides quantitative information on heat transfer to

the lattice by e-ph coupling and cooling of Te. 2 Returning to Fig. 11.2 we con-

sider in the next step the thermalized part of the electron distribution function

for all delays and plot the respective, experimentally determined Te in the right

panel as a function of time delay. A calculation by the two-temperature model

employing known material constants and experimental parameters provides

a very reasonable quantitative description, see Ref. [22] for details. Within

100 fs a Te near 1000 K is reached. This high value only takes the thermal-

ized electrons into account and relaxes within 1.5 ps due to e-ph coupling to

a temperature of 200 K, which is 100 K above the equilibrium temperature at

which the experiment was carried out. This value of 200 K also represents the

equilibrated state of the charge and the lattice degrees of freedom with Tl = Te

at this delay. Note that time-resolved electron diffraction experiments provide

the complementary experimental information on lattice excitations by analyz-

ing the transient Debye-Waller Factor [28]. In Fig. 11.2 small deviations be-

tween the experimental data and the modelling of Te(t) occur within the time

regime of electron thermalization up to about 200 fs since non-thermal elec-

trons are neglected. Later for delays > 1.5 ps Te drops faster than suggested by

the model, which is attributed to transport effects across the W-Gd interface

not taken into account here. For a more extensive discussion of this model we

refer to the literature [20, 29, 26]. For the purpose of the present overview, we

2 Note that in some metals pronounced deviations from the two-temperature model were
reported due to transport effects [26, 27]
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conclude that the two-temperature model provides a reasonable quantitative

estimate of the (i) time-dependent electronic temperatures and the respective

excess energy densities reached by a fs laser excitation and (ii) energy dis-

sipation by e-ph coupling to the lattice. Fig. 11.2, right, shows directly that

under excitation conditions typically applied in experimental studies of ultra-

fast magnetization dynamics electronic temperatures of 1000 K or above are

reached within few 100 fs. Furthermore it highlights that the excess energy in

the electronic subsystem is dissipated to and equilibrates with lattice excita-

tions in about 1 ps. 3

11.2 Experimental aspects

Various forms of x-ray dichroic spectroscopy are well known for their unique

way to investigate magnetic properties on short length scales with element

specificity and orbital/spin momentum sensitivity [32]. In particular, XMCD

[33] and X-ray Magnetic Linear Dichroism (XMLD) [34] in the soft x-ray

energy range can be considered as milestones here. For XMCD, the so-called

sum rules are established as a powerful tool to distinguish the orbital and

spin contribution of the magnetic moment in the case of transition metals

[35, 36, 37, 38]. To add femtosecond time-resolution here, a serious tech-

nological challenge had to be solved, i.e. the generation of sub-picosecond

light pulses in the soft x-ray regime, preferably with circularly polarization.

Nowadays, sub-picosecond x-ray pulses are available from table-top laser se-

tups [39, 40, 41] and at free electron laser such as FERMI@elettra (Trieste),

FLASH (Hamburg), or LCLS (Stanford), as well as in the third-generation

synchrotron light sources, the ALS (Berkeley), BESSY II (Berlin), and the

SLS (Villigen). It is worth to emphasize in the present context that BESSY

provides circularly polarized x-ray pulses from an insertion device, in the soft

x-ray energy range with a duration around 100 fs [42, 43, 44]. 4 In this section

we therefore discuss the generation of sub-picosecond x-ray pulses and the

setup used to perform pump-probe experiments on the fs-slicing endstation at

BESSY II.

3 For higher laser pump fluence this time scale increase but remains near 1 ps [30, 31].
4 Ultrashort circularly polarized pulses are also available at the LCLS. The polarization is
obtained by transmission through a thin ferromagnetic film [45].
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11.2.1 Generation of sub-picosecond x-ray pulses employing
bunch slicing

In synchrotron radiation (SR) facilities, x-rays are emitted as pulses, whose

duration is determined by the length of electron bunches in the storage ring.

In normal mode operation the time duration of x-ray pulses is between 30

and 100 ps. It can be reduced to few picoseconds if the electron optics in

the storage ring is operated in the so-called low-α mode [46]. This mode

was initially developed to produce intense and coherent THz emission [47],

but it also offers the possibility to perform time-resolved spectroscopy with

picosecond resolution [48]. The duration of x-ray pulses in the low-α mode

is limited to picoseconds due to stability requirements of the electron orbit in

the storage ring.

Fig. 11.3 Scheme of the part of the storage ring BESSY II essential for generation of fs
x-ray pulses with polarization control. In the first undulator (modulator) the electron energy
is modified by interaction with the laser pulse within an ultrashort slice of the bunch. In
the bending magnet the different fractions of the bunch are dispersed spatially according
to their respective energy. In the second undulator (radiator) the femtosecond x-ray pulses
are generated. The figure is extracted from Ref. [44]. Copyrighted 2006 by the American
Physical Society

A further reduction of the x-ray pulse duration to the sub-picosecond

regime is possible in the so-called femtosecond slicing [42]. This mode, which

was first realized at the ALS in Berkeley [43], employs energy modulation of

an ultrashort “slice” of the full electron bunch inside an insertion device. This

slice is generated by interaction of a fraction of the electrons in a bunch with

a femtosecond laser pulse and is used subsequently for generation of the x-

ray pulse. We will outline below the underlying concept and the experimental

realization. For a more detailed and complete description we refer the reader

to the original literature [42, 44].
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Fig. 11.3 depicts the setup at the slicing facility at BESSY II. It employs

two insertion devices which are separated by a bending magnet. The first in-

sertion device acts as a modulator in which by interaction with the laser pulse

the electron energy is modulated within the slice, whose length corresponds

approximately to the duration of the driving laser pulse. The principle of the

energy modulation is well-known from accelerator physics [49]. In brief, an

undulator is required in order to enable energy transfer between an electron

bunch with a copropagating laser beam by introducing a transversal velocity

component to the electron bunch. Energy transfer between the electrons in the

bunch and the laser field is determined by the phase of the laser field experi-

enced by an electron at the entrance of the undulator. Energy is transferred to

or from that electron which results in a sinusoidal energy modulation with the

period of one laser wave length. In femtosecond slicing energy is transferred

from the laser pulse to the sliced electrons in the bunch. This laser-modified

bunch is send through a bending magnet in which electrons are dispersed

according to their energy and propagate further into the second insertion de-

vice which is termed radiator. As shown in Fig. 11.3, the femtosecond part of

the bunch emits the x-rays generated in the radiator in a different direction

than the ps part of the bunch. The latter part of x-rays can be blocked by an

aperture while the fs fraction enters the beamline and becomes available for

pump-probe experiments.

The photon flux provided by the sliced electrons is four orders of mag-

nitude lower than for the full bunch. In the configuration used at BESSY II,

103 to 104 photons per pulse and per 0.1%bw are emitted by the undulator

from the sliced bunch [44]. The radiator allows to set a particular polarization

and energy required for a certain experiment. The actual duration of x-ray

pulses is mostly determined by the duration of the sliced electron bunch. Al-

though the latter is elongated due to energy-dependent path length differences

between the modulator and the radiator, a duration of 100 fs is achieved for x-

ray pulses. Since the radiation is generated by an undulator, the photon energy

is tunable between 400 and 1400 eV. In addition, the radiator design allows

polarization control, from linear to circular. Thereby, the requirements to per-

form time-resolved x-ray spectroscopy including XMCD are met in combina-

tion with sub-picosecond time resolution. What remains is to provide spatial

and temporal overlap of the x-ray pulses with the pump pulses at the sample

of interest.
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11.2.2 Experimental setup for time-resolved XMCD

Considering typical foci of 100 μm and a propagation length on the experi-

mental floor of several 10 m, the challenge in ensuring spatial and temporal

overlap becomes quite obvious. Employing beam pointing stabilization and

solid optical mounts a successfully operating beamline was established as a

user facility in recent years. The setup used for the experiments discussed

in Sec. 11.3 is sketched in Fig. 11.4. Very recently, the setup was upgraded

regarding the laser system and the beamline, which is to be discussed in a

forthcoming publication.

The Ti:Sapphire femtosecond laser system provides laser pulses of 780 nm

wave length with 2 mJ energy per pulse at a repetition rate of 1 kHz. Its output

is split by a beam splitter to generate pump and probe pulses. One part of the

pulse is sent into the insertion device for generation of the femtosecond x-ray

pulses. The remaining part is sent on the sample following a variable optical

delay in order to scan the time delay between pump and probe. X-rays are

detected in transmission through thin film samples supported by a thin foil.

Fig. 11.4 Scheme of the pump-probe experiment at the fs slicing beamline at BESSY II.
The chopper allows separation of spectral features for the pumped with respect to the un-
pumped state. The variable delay facilitates the analysis as a function of pump-probe delay.
X-rays transmitted though the sample are detected by an avalanche photodiode detector for
different applied magnetic fields. Reprinted by permission from Macmillan Publishers Ltd:
[Nature] [5], copyright 2007

We turn to a first example of laser-induced changes in x-ray transmission

for Ni which were investigated by employing the full 50 ps bunch as a start-

ing point [50]. The XAS spectrum is measured by recording the transmis-

sion through a thin film sample as a function of the photon energy of x-ray

pulses with linear polarization. Measuring the XMCD spectrum required the
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transmission spectrum of the sample with circular polarization for two oppo-

site orientations of the sample’s magnetization. The XAS and XMCD spectra

measured at the L3 edge of a 35 nm thick Ni layer deposited on a 500 nm thick

Al foil without and with laser excitation are displayed in Fig. 11.5. The time

delay was fixed in this case to 100 ps. While the absorption spectrum does not

show pronounced changes, comparison of the dichroic spectra demonstrate

a pronounced laser-induced loss of magnetization of more than half com-

pared to the state before laser excitation. This example shows clearly that the

method is sensitive to laser-induced changes of the magnetization on picosec-

ond timescales. Considering the discussion of the transient electron and lattice

temperatures in Sec. 11.1, electron and lattice subsystems can be considered

to be equilibrated at this 100 ps delay. Therefore a temperature increase as a

consequence of laser excitation can explain the observed reduction of magne-

tization well.

Fig. 11.5 a XAS spectra recorded in the normal operation mode of BESSY II in the vicinity
of the L3 edge of a 30 nm Ni layer before (unpumped) and 100 ps after optical excitation
(pumped). b Respective XMCD spectra. The solid line indicates that the pumped spectrum
is identical to the unpumped one if it is multiplied by a factor of 2.3. Figures adapted with
permission from [50]. Copyrighted 2009 by the American Physical Society
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Such an experiment in the normal operation mode with several 10 ps x-

ray pulse duration is very useful for preparation purposes of the femtosecond

analysis, which is discussed in the subsequent section.

11.3 Experimental results of fs time-resolved XMCD for 3d
and 4 f ferromagnets

The advantages of XMCD spectroscopy are its element specificity including

the sensitivity to the 4 f magnetic moments in rare-earth compounds and the

separation of the spin and the orbital magnetic moments in transition metals

[35, 36]. In this section, we review selected experiments performed at the fem-

toslicing beamline at BESSY II, which employed femtosecond time-resolved

XMCD.

11.3.1 Itinerant systems

We start with itinerant systems and discuss two experiments analyzing the

ultrafast dynamics in Ni [5, 51] and in a Co50Pd50 alloy [52].

11.3.1.1 Ultrafast magnetization dynamics in Ni

The first experiment using femtosecond time-resolved XMCD (tr-XMCD)

was carried out with Ni [5]. The energy of x-ray pulses was kept fixed and

set to the maximum XMCD at the L3 edge before optical pumping. The de-

crease of the transient XMCD, which is displayed on Fig. 11.6, demonstrates

that the ferromagnetic order in Ni is reduced by more than 50% with a charac-

teristic time scale of (120±70) fs, which is in agreement with previous optical

experiments [3].

11.3.1.2 Validity of sum rules on the sub-picosecond range

In order to apply the sum rules, both the XMCD and the isotropic XAS spec-

tra are needed [38, 32]. It is essential to cross check the validity of sum
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Fig. 11.6 Time-dependent XMCD at the L3 edge of Ni (symbols) within 1 ps and fit by a
single exponential decay (solid line). Reprinted by permission from Macmillan Publishers
Ltd: [Nature] [5], copyright 2007

rules in the optically excited, non-equilibrium state. With this goal XAS and

XMCD spectra were computed at the L2,3 edges of a transition metal in the

optically excited state by Oppeneer and coworkers [53]. Ab initio calcula-

tions taking into account the laser-induced repopulation of electronic states

and an enhanced transient electron temperature (see Sec. 11.1.2) were car-

ried out 5. The repopulation of electrons causes a shift of the XAS line at

the L3 edge towards lower energy as well as a broadening of the edge, as

depicted on Fig. 11.7a (top panel). This can be understood by the following

argument: On the one hand, some states accessible in the x-ray absorption

process (hν = 851 eV) at equilibrium become occupied due to the absorption

of pump photons (hν = 1.5 eV), which reduces the x-ray absorption yield at

higher energy, just above the absorption edge. On the other hand, states which

are occupied under equilibrium conditions become available for x-ray absorp-

tion just below the edge, explaining the increased absorption yield at lower

x-ray photon energy. The difference of XAS spectra before and after pumping

are displayed Fig. 11.7a (bottom panel) and compare well with the experi-

mental data obtained by Stamm et al. in Fig. 11.7b [5]. The computed spectra

reproduce the features observed experimentally at the L2,3 edges of Ni.

The calculated XMCD spectra at the Ni L2,3 edges before and after pump-

ing [53] are shown in Fig. 11.7c. Repopulation and a thermalized hot distribu-

5 The employed computational method has already been used to compute XAS and XMLD
spectra under static conditions before [54, 55].
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Fig. 11.7 a top: Computed XAS spectra at the L3 edge of Ni before (solid line) and after
(dashed lines) the pump excitation; bottom: Difference between XAS spectra before and
after the pump excitation. b Difference between experimental XAS spectra at the L3 edge
of Ni before and at a delay of 200 fs (data taken from [5]). c Calculated XMCD spectra at
the L2,3 edges of Ni before and after the pump laser excitation. Figures extracted from [53]
and figure 11.7b reprinted with permission from Macmillan Publishers Ltd: [Nature] [5],
copyright 2007

tion of electrons, cause a decrease of XMCD at both edges. Electronic repopu-

lation induces in addition a modification of the XMCD spectrum. As a conse-

quence, the reduction of XMCD is not linearly distributed over the absorption

edge. Therefore, changes over the whole absorption edge have to be taken into

account. This is achieved experimentally by averaging over an energy range

determined by the resolution of the femtoslicing beamline monochromator,

which is on the order of the broadening of a typical L3 edge [56].

In a next step, the sum rules were applied to determine the orbital and spin

magnetic moment of Ni on a fs time scale theoretically. In the case of repop-

ulation of electrons, the total spin should be conserved, since spin flips due

to photon absorption are forbidden in the dipole approximation. The effective

orbital momentum measured in XMCD can be modified in response to the

optical excitation among 4sp and 3d states. In the case of thermalized elec-

trons at higher temperature, both the spin and the orbital magnetic moments

are expected to decrease, which is observed in the calculations. Based on this

result, it was concluded that the sum rules remain valid on the sub-picosecond

time scale.
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11.3.1.3 Experimental determination of the transient spin and orbital
magnetic moment

The first experimental observation of ultrafast dynamics in the orbital and

spin magnetic moment was reported for Ni [5, 50, 51]. In order to apply the

sum rules, XMCD and XAS spectra at the L3 and L2 edges of Ni have been

recorded. The relations between the XMCD amplitude at the L3 and L2 edges

and the spin and the orbital magnetic moment with quantum numbers S and

L, respectively, are given by Eqs. 11.1 and 11.2 [51]. D3 and D2 denote the

XMCD while A3 and A2 denote the integrated signal of the XAS spectra at L3

and L2 edges respectively 6, h̄ is the Planck constant divided by 2π , and nh is

the number of holes in the valence band 7.

Sh̄ = −1

2

D3 −2D2

A3 +A2
h̄nh (11.1)

Lh̄ = −2

3

D3 +D2

A3 +A2
h̄nh (11.2)

XAS spectra of the Ni L3 and L2 edges were measured before and 200 fs

after the pump excitation. The XAS integrated over the whole L2,3 edges is

constant within error bar of the experiment. As a consequence, the authors

of Ref. [51] considered A3 + A2 to be constant as a function of time delay.

The resulting time-dependent XMCD at the Ni L3 and L2 edges are shown in

Fig. 11.8a. The time-dependent spin and orbital magnetic moment obtained

by Eqs. 11.1, 11.2 are depicted in Fig. 11.8b.

The orbital contribution to the static magnetization in Ni is about 10% [2].

The larger spin part explains the different amplitudes observed in Fig. 11.8b.

The quenching of the spin magnetic moment occurs within (130±40) fs,

which is in agreement with previous experiments on the full magnetization

[3, 5]. Due to the limited experimental accuracy for the orbital part it was dif-

ficult to extract a separate characteristic time here. However, the exponential

function used to fit the data for S also fits the variation of L. On this basis

Stamm et al. concluded that within the experimental accuracy, orbital and

spin magnetic moments are reduced in Ni simultaneously [51]. According

to this observation, electron orbits do not act as an angular momentum sink

6 The absorption of photon in the continuum, which is superimposed with the resonant 2p
to 3d absorption, is removed by a double step function (see [51]).
7 The dipolar term, which leads to errors in the order of 0.1, is neglected [32].
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Fig. 11.8 a Transient XMCD at the L3 (open squares) and at the L2 (filled squares) edges
of a 17 nm Ni layer as a function of time delay. The data are fitted with an exponential
decay and the time constant is 130 fs for both data sets (solid lines). b Spin (S) and orbital
(L) momentum as a function of time delay. S and L have been calculated using XMCD at
the L3 and L2 edges and Eqs. 11.1 and 11.2. Note that L,S refer in Ref. [51] to magnetic
moments, rather than to quantum numbers as in Eqs. 11.1 and 11.2. The data are fitted with
exponential decay function with a 130 fs time constant (solid lines). Figures adapted with
permission from [51]. Copyrighted 2010 by the American Physical Society

and another spin-lattice relaxation channel has to be active, as for instance

phonon-mediated spin-flips [6], to explain the loss of magnetic order.

11.3.1.4 Spin and orbital magnetic moment dynamics in Co50Pd50

A similar experiment was conducted for a Co50Pd50 alloy, which displays per-

pendicular magnetization anisotropy (PMA). The dynamics of spin and orbital

magnetic moments, extracted also following Eqs. 11.1 and 11.2, are displayed

in Fig. 11.9a while the ratio between Lz and Sz is displayed on Fig. 11.9b. A

variation of 29% of this ratio was reported in connection with different char-

acteristic times for the reduction spin and orbital magnetic moments, which

are τS = (280±20) fs and τL = (220±20) fs, respectively.

This work on CoPd reports a dynamics of orbital and spin magnetism with

two different time constants. The fact that the reported difference is barely

outside the error bar shows that both contributions to the magnetic moment

exhibit very similar dynamics also in this material. The study suggests an in-

fluence of the magnetic anisotropy on the ultrafast magnetization dynamics

on the femtosecond time scale. Another report, which is reviewed in the next

section, concludes, however, that the magnetic anisotropy acts on the picosec-

ond time scale. Therefore, a quantitative description of the influence of mag-
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Fig. 11.9 a Sz (top) and Lz
(bottom) representing the spin
and orbital magnetic moment
along the sample surface
normal direction of a 15 nm
Co50Pd50 layer as a function
of time delay. b Ratio between
Lz and Sz as a function of
time delay. The data are
fitted with exponential decay
function (solid lines). Figures
adapted by permission from
Macmillan Publishers Ltd:
[Nature] [52], copyright 2010

netic anisotropy on ultrafast magnetization dynamics would be very helpful

to achieve understanding of this aspect.

11.3.1.5 Discussion

At the end of the section on magnetization dynamics of itinerant systems we

would like point out that at present the mechanism facilitating transfer of an-

gular momentum on the femtosecond time scale is controversial. The simul-

taneous reduction of spin and orbital magnetic moments in Ni has been in-

terpreted by Stamm et al. [5, 51] as an indication that the transfer of S to the

lattice is realized without transient increasing of L in agreement with phonon-

or defect-mediated spin-flips [17, 6]. However, the phonon-mediated spin-flip

scenario was recently questioned due to quantitative arguments regarding the

spin-flip efficiency [7]. On another hand, superdiffusive spin currents excited

by the pump laser provide a realistic description of the Ni experiment [19].

Future studies can be expected to clarify this point.
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11.3.2 Lanthanide based systems

In lanthanide elements, the magnetic moment is carried mainly by the 4 f
electrons. These electrons are localized around the nucleus and the long range

magnetic order is mediated by indirect exchange coupling through 5d6s elec-

trons [57]. In rare-earth/transition metals (RE/TM) alloys, the macroscopic

ordering of 4 f magnetic moments has the same origin, but it is affected by the

3dTM electrons [58].

In pump-probe experiments, the IR laser pump pulse excites delocalized

electrons [59]. In the introduction of this chapter, we pointed out that previous

experiments in Gd observed laser-induced demagnetization on a time scale of

100 ps [16], which was recently confirmed by time-resolved linear magnetic

dichroism in photoemission from the 4 f electronic states [30]. However, in the

latter experiment the time resolution suffered from the pulse duration of 50 ps

of the probe pulse, since the full bunch of a synchrotron pulse was employed.

Recently, the dynamics of the 4 f magnetic moments has been observed in

lanthanides on a time scale faster than the equilibrium spin-lattice coupling

time [16, 30] by employing tr-XMCD at the M5 edge of Tb and Gd with

femtosecond resolution [48]. Later, tr-XMCD with femtosecond resolution

has been used to investigate the dynamics of Gd and Fe in an Gd25Fe65.6Co9.4

amorphous alloy [60]. Those two experiments will be discussed now.

11.3.2.1 Two-step ultrafast demagnetization in ferromagnetic
lanthanides

Gd and Tb differ in the electron population of the 4 f level by one electron.

This results in a clear difference of L = 0 and 3, respectively, leading to an

about 100 times larger, single ion magnetic anisotropy of Tb, and a slightly

smaller lattice constant for Tb [61]. The valence electron properties are, how-

ever, barely affected. The laser-induced demagnetization of 4 f magnetic mo-

ments in Gd and Tb was measured by XMCD at first in the low α mode

with a x-ray pulse duration of 10 ps (see Sec. 11.2.1). The obtained data are

shown in Fig. 11.10a. The transient XMCD signal for both elements are quite

different. For Gd, half of the demagnetization occurred in the first 10 ps and

the magnetization reaches a minimum only after 200 ps. For Tb, the mini-

mum of demagnetization is reached already after 20 ps and the recovery of

the magnetization before excitation is progressing from this delay time on,
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which is clearly earlier than in Gd. In the case of Gd this remagnetization pro-

ceeds within 500 ps. This delay regime was not investigated in the x-ray mea-

surement, but the recovery behavior of M(t) is known from magneto-optical

pump-probe experiments [62, 31].

Fig. 11.10 a Transient XMCD at the M5 edge of Gd (top) and Tb (bottom) as a function
of time delay recorded with 10 ps x-ray pulse duration. The inset (top) displays a smaller
time window for Gd dynamics to emphasize the two steps demagnetization. b Transient
XMCD at the M5 edge of Gd (top) and Tb (bottom) as a function of time delay recorded
by employing 100 fs x-ray pulses. Data are fitted with double exponential decay functions
(solid lines). Figures adapted with permission from [48]. Copyrighted 2011 by the Ameri-
can Physical Society

To resolve the magnetization dynamics of Gd during the first 10 ps, the

experiment was done with femtosecond resolution employing fs slicing. The

transient XMCD at the M5 edges of Gd and Tb is depicted in Fig. 11.10b

as a function of time delay. A demagnetization of 30% for Gd and 50% for

Tb is observed within 2 ps after excitation. For subsequent delays, a slower

demagnetization is observed for both elements. These experimental results

establish a two step demagnetization of 4 f magnetic moments in Gd and Tb,

which is characterized by a faster and a slower time scale, referred to as τ1

and τ2, respectively. A quantitative analysis employing double exponential
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decay functions provided τGd
1 = (0.76±0.25) ps, τGd

2 = (40±10) ps and τTb
1 =

(0.74±0.25) ps, τTb
2 = (8±3) ps as the characteristic times. It is concluded that

the slower time scales differ and the faster ones are identical for Gd and Tb

within the experimental uncertainty.

As discussed in Sec. 11.1.2 of this chapter, equilibration of the photoex-

cited electrons with the lattice requires about 1 ps in Gd [22]. Thus, the faster

demagnetization step occurs during the presence of hot electrons, i.e. in a

non-equilibrium regime, and the slower demagnetization proceeds in a time

regime after electron-lattice thermalization, i.e. in a quasi-equilibrium regime.

The difference in the slower time constants (τGd
2 = 40 ps and τTb

2 = 8 ps)

is attributed to the difference in direct spin-lattice coupling of 4 f magnetic

moments in the two elements. The 4 f electrons of Tb have a large orbital

momentum (L = 3) and exhibit a strong spin-lattice coupling, which provides

a more efficient channel to transfer angular momentum in Tb directly. The L =
0 of 4 f electrons in Gd requires 5d electrons to explain spin-lattice coupling,

which is weak under equilibrium conditions [61] and considered as indirect

[48]. The experimental finding τGd
2 > τTb

2 implies that the indirect coupling is

also weaker dynamically and therefore affects the magnetization on a longer

time scale.

The characteristic times obtained for the fast demagnetization are within

the accuracy identical for Gd and Tb. Based on the very similar 5d elec-

tronic structure of Tb and Gd, hot electron driven enhancement of spin-lattice

coupling has been suggested [48]. In this picture, spin-flip scattering (see

Sec. 11.1.1) occurs among hot 5d electrons [6], which interact with the 4 f
electrons and their magnetic moments. After relaxation of hot 5d electrons,

i.e. after 1 ps, this channel is therefore no longer available. Recently, time-

resolved photoemission experiments provided further insight into the dynam-

ics of majority and minority 5d electrons [63].

11.3.2.2 Transient ferromagnetic order in ferrimagnetic
rare-earth/transition metals alloys

Having discussed the spin dynamics in 5d6s electronic bands and their in-

teraction with 4 f electrons according to the intraatomic 4 f -5d interaction

in elemental Gd and Tb, we turn now to systems combining lanthanides

and transition metals. For GdFe alloys, the ordering of Gd magnetic mo-

ments is also explained by indirect exchange coupling, however, 5dGd and

3dFe electrons are contributing as itinerant electrons. Antiferromagnetic inter-
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atomic coupling between 3dFe and 5dGd electrons competes with ferromag-

netic intraatomic exchange coupling between 4 fGd and 5dGd electrons [58].

This competition leads to ferrimagnetic order since two antiferromagnetically

coupled sublattices with different sublattice magnetization are formed, as il-

lustrated in Fig. 11.11a. Employing the element-selectivity of time-resolved

XMCD, an analysis of the separate dynamics of the two sublattices becomes

feasable. Such results can be expected to provide insight into the role of ex-

change coupling on ultrafast magnetization dynamics.

Radu et al. studied the magnetization dynamics of Gd and Fe in a Gd25Fe65.6

Co9.4 ferrimagnetic alloy by time-resolved XMCD [60]. The composition of

the alloy has been chosen in order to obtain a temperature of magnetic com-

pensation Tcomp = 250 K 8. The initial temperature of the sample was set to

T = 80 K and the fluence of the pump laser was set in order to heat the lattice

above Tcomp in the presence of a magnetic field to trigger a magnetization re-

versal [64]. The dynamics of both sublattices was recorded with femtosecond

time resolution. The observed transient XMCD recorded at the Gd M5 and the

Fe L3 edge is shown in Fig. 11.11b.

At negative delays, the XMCD signals of Gd and Fe exhibit an opposite

sign, which is consistent with an antiferromagnetic coupling [65]. At delays

t > 2 ps, XMCD of Gd and Fe shows again an opposite sign, but the sign of the

total magnetization is reversed with respect to the state before optical excita-

tion, i.e. the magnetization direction was switched. Considering the temporal

evolution of both sublattice magnetizations one recognizes that they exhibit

different characteristic times τFe
1 = (100± 25) fs and τGd

1 = (430± 100) fs.

The reversal of Fe sublattice magnetization occurs 300 fs after laser excita-

tion, while it is found at 1.5 ps for Gd. Therefore, the magnetization dynamics

of the ferrimagnet results in a transient ferromagnetic state which is observed

between 300 fs and 1.5 ps. In this time window the two sublattice magneti-

zations point in the same direction [60] and a novel non-equilibrium state of

magnetic order has been identified by the help of time-resolved XMCD. This

transient ferromagnetic state has recently been used to explain ultrafast mag-

netization switching in similar films in absence of magnetic fields [66].

8 The temperature of magnetic compensation is the temperature at which the magnetization
of the Fe sublattice compensates the magnetization of the Gd sublattice as a consequence
of the different temperature dependence of the two sublayer magnetizations. The magneti-
zation of Gd is larger compared to the Fe magnetization for T <Tcomp. For T >Tcomp, the
magnetization of Fe becomes larger. For all temperatures, the larger magnetization points
along the external magnetic field.
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Fig. 11.11 a Sketch of the antiferromagnetic coupling between the Gd (longer arrows) and
Fe (smaller arrows) sublattices. b XMCD signal as a function of time delay at the Gd M5

edge (filled circles) and at the Fe L3 edge (open circles). The experimental time resolution
of 100 fs is depicted by the filled area of a Gaussian curve at 0 fs. The data are fitted with
a double exponential decay (solid lines). Figures adapted by permission from Macmillan
Publishers Ltd: [Nature] [60], copyright 2011

11.4 Summary

In this overview, we highlighted time-resolved x-ray magnetic circular dichro-

ism as an unique tool to investigate ultrafast magnetization dynamics. We

started by a general introduction to magnetization dynamics, focusing on ul-

trafast laser-induced dynamics. We proceeded by discussing the generation

of femtosecond x-ray pulses in the femtosecond slicing mode at BESSY II of

the Helmholtz-Zentrum Berlin, Germany. We finally presented selected exper-

iments which have exploited the opportunities of femtosecond time-resolved

XMCD. We discussed the laser-induced quenching of the 3d magnetic mo-

ment in Ni as well as the spin and orbital dynamics in Ni and Co50Pd50.

In lanthanides a two-step demagnetization dynamics was observed at the 4 f
magnetic moments in Gd and Tb. Finally, the element specificity of tr-XMCD

was used to investigate the separate sublattice magnetization dynamics of Gd

and Fe in a ferrimagnetic alloy. It revealed an novel transient ferromagnetic

state. In all the results presented here, the transient transmission of a thin mag-

netic layer deposited on thin membranes was measured. This approach results

in considerable limitations due to heat accumulation within the sample. The

development of time resolved resonant soft x-ray reflectivity and scattering

[67] will widely increase the range of materials and the respective transient
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phenomena which can be tackled by time-resolved soft x-ray spectroscopies

in near future.
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