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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the
intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote
more exchanges and collaborations among the researchers in the community and
contribute to further advancements in this rapidly growing field.

The monograph by Ravi Balasubramanian and Veronica Santos is an edited
collection of authoritative contributions in the area of robot hands which stemmed
from a well-attended workshop organized by the first coeditor with Yoky Mats-
uoka as part of the Robotics: Science and Systems conference in Seattle in 2009.
The 24 chapters discuss the field of robotic grasping and manipulation viewed in
light of the human hand’s capabilities and push the state-of-the-art in robot hand
design and control. Topics discussed include human hand biomechanics, neural
control, sensory feedback and perception, and robotic grasp and manipulation.

The results described in the volume are expected to lead to more robust,
dependable, and inexpensive distributed systems such as those endowed with
complex and advanced sensing, actuation, computation, and communication
capabilities. A very fine addition to STAR!

Naples, Italy, August 2013 Bruno Siciliano



Preface

Are Robot Hands Necessary?

As identified in the 2013 roadmap for US robotics, robotics is expected to impact
society on a massive scale in the coming decades economically and socially in the
manufacturing, healthcare, medical, and defense sectors. In addition to the tradi-
tional use of robots for automation in factories, recent advances in the human
sciences have energized the field of robotics toward the development of personal
robotic assistants and brain-machine interfaces for assisting the disabled. While
great strides have been made in the areas of computer vision and autonomous
navigation that have enabled autonomic robotic cars, one of the biggest drawbacks
with robots so far is that they cannot accomplish physical interaction tasks in
everyday settings. Specifically, robots cannot grasp and manipulate objects in
unstructured environments, or environments for which they have not been
designed. A lack of robotic hands that are capable of robust grasping and dexterous
manipulation is holding back the robotics field. Thus, there is an increased interest
to solve the robotic manipulation problem. The reasons for this deficiency are
many, including the lack of robust hardware, primitive sensing methods, and a
limited understanding of how to integrate sensory information and motor control.

A key goal of the robotics community is to build robotic hands that can
accomplish human grasping and manipulation tasks in human environments by
physically interacting with humans and objects. Such robot hands will have an
immediate impact on applications such as teleoperated search-and-rescue opera-
tions, semi or fully autonomous robot applications (e.g., planetary rovers), rapidly
reconfigurable manufacturing, and medical and healthcare operations. In addition
to automating operations in these different fields, advances in robot hands will also
advance upper-extremity prostheses. Note that the most popular prosthesis to date
remains the single degree of freedom, body-powered split hook, because of its
robustness and the human ability to learn how to use it. There have been significant
advances in myoelectric prostheses, but challenges remain in providing control
signals in an intuitive manner to control numerous degrees of freedom in more
sophisticated prostheses.

vii



viii Preface

The Human Hand as Inspiration

The human hand has been the “gold standard” for robotic hand designers for
decades. There are several reasons for this. First, the human hand exhibits tre-
mendous dexterity and flexibility, and designers are keen to achieve such dexterity
in robot hands. Second, everyday tools, objects, and environments are designed for
use by a human hand (for example, where handles are placed on objects), and thus
it is advantageous to mimic the human hand when designing robot hands to operate
those same tools and objects in human environments. Third, the anthropomorphic
form factor is highly relevant to prosthetic applications. Thus, most robot hand
designs mimic the human hand.

However, the human hand is difficult to mimic since it is a complex system. In
terms of “hardware,” the human hand contains 22 joints driven by nearly 38
muscles through a complex web of tendons. In addition, it has thousands of
embedded sensors which provide information about posture, muscle and tendon
forces, contact, interaction forces, vibration, and temperature. In terms of “soft-
ware,” there are millions of neurons in the brain and the spinal cord that integrate
information from the raw sensory signals before providing control signals through
synergistic control inputs and reflex loops. Together, these different features
enable the hand to perform a variety of dexterous tasks, but the roles that each
component plays in different tasks is not entirely clear.

Roboticists want to understand what physical and computational features from
the biological hand would benefit the design and control of highly capable robotic
hands. This is the focus of this book. By bringing together the latest research on
biological hands and the state-of-the-art in robotic hand technology in one book,
we hope to inspire new ideas that will foster a deeper understanding of the human
hand, accelerate the advancement of robotic hand research, and bridge multiple
research communities through common interests in hands.

Note that some researchers are moving away from using the human hand as the
template for robotic hands because of the difficulty in mimicking its compactness,
form, and control. Specifically, they are designing “underactuated robotic hands”
with many degrees of freedom but reduced number of actuators. These designs utilize
tendon-driven systems or linkage mechanisms for creating movement and achieving
human-like grasping capability. Such hands can surely address design criteria such as
robustness and simplicity of sensing and control for static grasping. However, much
work is still required to achieve human-like dexterity for manipulation.

How this Book Came About

The idea for a book on human and robot hands arose during a workshop organized
by Dr. Ravi Balasubramanian (coeditor of this book) and Dr. Yoky Matsuoka as
part of the Robotics: Science and Systems conference in Seattle in 2009. The
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workshop was a forum for researchers to discuss the field of robotic grasping and
manipulation viewed in relation to the human hand’s capabilities, and to push the
state-of-the-art in robot hand design and control. Topics discussed at the workshop
included human hand biomechanics, neural control, sensory feedback and per-
ception, and robotic grasp and manipulation. Over seventy researchers attended.
Since no book existed that combined research on human and robot hands, it was
decided to assemble a comprehensive work that discusses the latest developments
in these fields by building on the workshop’s proceedings. Dr. Veronica Santos
joined as a co-editor due to her expertise in bioengineering.

Book’s Expected Audience

We expect that this book will benefit researchers from diverse areas such as
robotics, biomechanics, bioengineering, neuroscience, and anthropologists.
Together, these different fields can synergistically learn and apply each other’s
techniques to their problems. For example, the mathematical underpinnings of
creating contact forces through a robot’s motors can be applied to the analysis of
using the hand’s muscles to create fingertip forces. Integration of sensory data,
reflex algorithms, and grasping strategies from humans can be used to develop
advanced control algorithms for robots.

Book Layout

The book is divided into two Parts. Part I focuses on the human hand’s anatomical
structure and function and the state-of-the-art methods that are used to derive
insights into those aspects. Part II provides a broad perspective on the approaches
for human-inspired robotic hand design and control. Brief descriptions of the
chapters in each section are below.

Part I: The Rich Complexity of the Human Hand
and Its Control

The first four chapters of the book detail the neural control, kinematics, and
musculotendon properties of the human hand as they relate to motion and force
production capabilities. Chapter 1 by Schieber describes the cortical control of the
human hand as a widely distributed network that can drive fixed synergies for
grasping, act as diverse elements for individuated finger movements, and flexibly
recombine elements for motor learning and reorganization after injury. Chapter 2
by Santello describes the phenomenon of common neural input as one of the
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mechanisms through which the central nervous system might coordinate the neural
activation of groups of hand muscles acting on a single digit or multiple digits.
Chapter 3 by Stillfried et al. explores the use of magnetic resonance imaging to
determine the locations and axes of rotations of finger joints which can have
significant impact on hand function. Chapter 4 by Lee and Kamper investigates the
mechanisms of musculotendon force transmission such as finger posture, passive
joint impedance, anatomical pulleys, and the tendon extensor hood for mapping
muscle forces to index finger kinematics and dynamics.

The next three chapters discuss the characteristics and roles of tactile and
proprioceptive sensory feedback mechanisms in the human hand. Chapter 5 by
Jones presents the roles played by mechanoreceptors, or mechanical sensors,
embedded in the human hand for the perception and control of finger forces.
Chapter 6 by Walsh et al. describes the sense of proprioception with a focus on
recent evidence that perception of posture can be affected by muscle contraction
history, and that illusions of joint position and movement can be induced by
simultaneous activation of slowly adapting and fast-adapting cutaneous receptors.
Chapter 7 by Bensmaia and Helms Tillery reviews the combined roles of tactile
and proprioceptive sensation in hand function, with a focus on the integration of
multiple inputs to extract information about haptic interactions and to create
somatosensory images for upper-limb neuroprosthetics.

The next two chapters address two ways in which sensory feedback is used:
reactive control of fingertip forces, and active haptic perception. Chapter 8 by De
Gregorio and Santos reviews how precision grip forces are affected by intrinsic
object properties, anticipation, load direction, and sensory feedback, and then
presents evidence that unexpected torque loads can elicit reactive, pulse-like
increases in grip forces whose strength depends on orientation of the load relative
to the hand. Chapter 9 by Tavakoli discusses how tactile feedback and kinesthetic
feedback together influence the human ability to distinguish objects though haptic
recognition of material and shape properties of objects.

Chapter 10 by Dollar discusses how human hands are used and presents clas-
sification and taxonomy schemes for grasping and manipulation behaviors based
on hand-centric and motion-centric categorization. Such classifications of hand use
can be applied to the fields of biomechanics, rehabilitation, prosthetics, and robotic
manipulation.

Part II: Human Hand-Inspired Robotic Hand Design
and Control

Chapter 11 by Controzzi et al. provides a historical perspective about robotic hand
design, including simple prostheses from the Roman times to highly advanced
anthropomorphic robotic hands with a multitude of joints, sensors, and motors.
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The next four chapters discuss the modeling of hand motion and force pro-
duction using robotics techniques, with a focus on how anatomical structures like
tendons and fingertip shape and compliance influence grasping capability. Spe-
cifically, Chap. 12 by Inouye et al. describes a novel, systematic approach to
analyze and optimize tendon routing and pulley size for three-dimensional force
production by a tendon-driven finger. Chapter 13 by Sueda and Pai provides a
novel method for dynamically simulating human hand movement, while factoring
in aspects such as the sliding of tendons over bones beneath the skin. Chapter 14
by Inoue and Hirai presents an analytical exploration into how hand compliance
provides robustness to grasps even if there are significant delays in conveying
control input through the biological neural system. Chapter 15 by Arimoto and
Yoshida describes a method for computationally modeling the stability of “blind”
multifinger grasps for which there is no tactile or visual information.

The next four chapters discuss the development of robotic hardware compo-
nents: haptic devices that can apply forces to human fingertips, and tactile sensors
which are critical for robotic hands to sense physical interactions with the external
world. Specifically, Chap. 16 by Endo and Kawasaki present the design and
control of multifinger haptic devices with the goal of understanding the perception
of fingertip forces in the human hand. Chapter 17 by Buttolo and Hannaford
describes devices for quantifying properties of multifinger haptic interaction such
as hand stiffness in pen-like grasps and sensory thresholds of multifinger versus
single finger haptic exploration. Chapter 18 by Cutkosky and Ulmen present the
development of miniature tactile sensors that mimic the slowly adapting and
fast-adapting tactile units in the human hand with the goal of achieving dynamic
tactile sensing in robots. Chapter 19 by Wettels et al. describes the development
and use of a deformable, multimodal, biomimetic tactile sensor that provides
simultaneous sensing of contact forces, microvibrations, and temperature.

Chapters 20 and 21 discuss two examples of the development of complete
robotic hand hardware. Specifically, Chap. 20 by Varol et al. describes the chal-
lenges in designing biomimetic transradial prostheses, particularly addressing the
constraints of housing many actuators and sensors in the small volume of a
human-sized hand. Chapter 21 by Deshpande and Matsuoka discuss the design and
control of an “anatomically correct testbed” robotic hand, in which bone shapes
and tendon routing within the human hand are mimicked.

The book concludes with three chapters that focus on developing advanced
grasping and manipulation strategies for robots either by learning from humans or
through physics-based modeling and computation. Chapter 22 by Balasubrama-
nian et al. presents a novel experiment to identify human heuristics for grasping
tasks and the use of those heuristics to improve automatic robotic grasping per-
formance. Chapter 23 by Chang and Pollard explores the preparatory physical
interactions humans have with objects prior to grasping an object with the goal of
programming robots to exploit similar interactions to improve robotic grasping
capability. Finally, Chap. 24 by Allen et al. presents a unique look at advancing
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robotic grasping by using massive computing power to identify appropriate grasps
for previously unseen and incomplete shapes by drawing relationships to grasps
achieved on well-defined training objects.
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Part I
The Rich Complexity of the Human Hand

and its Control



Chapter 1
Constraints and Flexibility in Cortical
Control of the Hand

Marc H. Schieber

Abstract The hand performs a variety of functions, from simple grasping to
delicate manipulation, largely under the control of the primary motor cortex.
Perhaps as a result of biomechanical interactions between the digits at the
periphery, cortical control works as a widely distributed network. Whereas for
grasping the cortex may drive a limited number of fixed synergies, for more
individuated finger movements cortical neurons act as diverse elements to generate
a remarkable degree of flexibility. In addition to providing a substrate for motor
learning and for plastic reorganization after injury, this flexible network permits
rapid re-combination of elements that can promptly create entirely novel move-
ments. Such rapid flexibility enables cortical neurons to become dissociated from
bodily movement during mental imagery and during closed loop control of brain
machine interfaces.

Keywords Biological neural networks - Brain machine interfaces - Neural
prosthesis - Neurocontrollers

1 Introduction

The human hand has evolved from an ancestral locomotor appendage to a modern
organ capable of amazing dexterity. The pectoral fins of fish have boney rays like
the digits of the hand, and in amphibians and reptiles the homologous parts of the
distal forelimbs are used as feet for locomotion. But in mammals, including
rodents, cats and monkeys, the paws of the forelimbs also can be used to grasp
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4 M. H. Schieber

food and other objects. Even in humans, the most frequent daily use of the hand
still is simply to grasp objects [1].

In various types of grasp, multiple digits must first spread open and then close
around the object. All grasping is not the same, however. Progressing from rodents
to cats to monkeys to humans, shaping of the paw or hand to conform to the object
being grasped becomes increasingly dexterous [2]. In monkeys and humans, a
number of canonical grasps can be recognized, such as power grasp, precision
pinch and hook grip [3, 4]. From monkeys to humans, the increasing dexterity of
grasping reflects an increasing ability to produce differential movement of the
digits, conforming more accurately to a wider variety of object shapes.

To some extent in monkeys, but dramatically more so in humans, this ability
has evolved to move particular fingers relatively independently of the mass action
of grasping, i.e. the ability to individuate finger movements. Monkeys extend a
single digit, typically the index or middle finger, to “winkle” a piece of food out of
a small hole. Macaque monkeys also have been trained to make individuated
movements in which each digit is flexed or extended more than the others [5]. In
humans, this ability to individuate movements of particular digits enables
sophisticated manipulation of small objects as in tying one’s shoelaces, as well as
complex, non-manipulative performances such as finger spelling in sign language,
typing at a keyboard, or playing a musical instrument.

Nevertheless, even in humans, movements of the fingers are not entirely
independent or unconstrained. The biomechanical structure of the hand enables
considerable flexion of the fingertips to touch the palm, for example, but does not
permit equivalent extension of the fingertips to touch the back of the hand. And
though the thumb can be rotated to oppose the fingers, the fingers cannot be rotated
to oppose one another. Furthermore, although we can think about moving a single
digit, measuring the motion of all digits simultaneously typically reveals some
smaller parallel motion of other digits [2], which can be viewed as a vestige of
grasping. The evolutionary process that has provided humans with individuated
finger movements thus has not eliminated all the peripheral or central constraints
on finger independence. The hand’s dexterity, then, is largely attributable to
control from the primary motor cortex, which functions as a distributed network of
diverse elements, controlling the entire hand even during movements of a single
digit. Such a neural substrate provides both for long-term plasticity and for rapid
flexibility of dexterous manipulation.

2 Peripheral Constraints
2.1 Passive Biomechanical Coupling of the Digits

In contrast to robotic hands that typically are designed with mechanically inde-
pendent digits, natural fingers are coupled significantly by the passive biome-
chanics of the hand’s soft tissues. In humans, such passive biomechanical coupling



1 Constraints and Flexibility in Cortical Control of the Hand 5

accounts for most of the motion observed in other digits when normal subjects
attempt to move a given digit by itself [6]. Some of this coupling between adjacent
digits is produced by the skin and connective tissue in the web spaces between the
fingers.

Additional passive coupling is produced by interconnections between the ten-
dons of certain muscles [2]. Several extrinsic finger muscles, with bellies in the
forearm and long tendons that cross the wrist and palm to reach the digits, send
tendons to multiple fingers. The digital tendons of such multitendoned muscles are
interconnected to varying degrees. The macaque flexor digitorum profundus
(FDP), for example, sends tendons to all five digits, but the interconnections
between these tendons are strong enough to cause tension exerted at one point on
the proximal tendon sheet to be distributed to the distal insertions on multiple
digits [7]. In humans, the homologous thumb tendon comes from an entirely
separate muscle, flexor pollicis longus, rendering the human thumb substantially
more independent than that of the macaque. Likewise, the FDP tendons to the four
fingers in humans are more independent than those in the macaque, particularly the
tendons to the index and middle finger. But even in humans, these tendons are
mechanically interconnected in the palm, both by thin sheets of inelastic con-
nective tissue and by the origins of the lumbrical muscles. Such species differences
contribute to the greater ability of humans to individuate finger movements.

2.2 Active Coupling at the Periphery

When a single finger is moved actively by a normal human subject, other fingers
move somewhat more than when the same finger is moved passively [6]. Part of
this active component of coupling between digits may result from the structure of
motor units in the extrinsic multitendoned finger muscles. If single motor units
have different muscle fibers that insert on tendons to adjacent digits, then these
motor units will act on both digits simultaneously. In macaque monkeys, the
extensor digiti quarti et quinti has a significant fraction of single motor units that
act on both the ring and little finger tendons [8]. In humans, the homologous
muscle, extensor digiti quinti, has no tendon to the ring finger and therefore acts
exclusively on the little finger, eliminating any coupling that might be produced by
motor units acting on both tendons. But in other human multitendoned muscles,
including FDP and extensor digitorum communis, the contraction of many single
motor units is statistically associated with a large rise in force on one finger, and a
small rise in force on one or more adjacent fingers [9, 10]. Single motor units in
multitendoned muscles thus may exert force on multiple digits.

Additional active coupling arises from the divergence of last-order descending
inputs among the spinal motoneuron pools. Two motor units may discharge more
action potentials within a few milliseconds of one another than attributable to
chance alone, indicating that both members of the pair receive a shared input that
excites the two simultaneously. Such short-term synchronization of motor units in
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the same muscle can be attributed to axons that ramify and synapse on multiple
motoneurons of the same muscle. Short-term synchronization can also be seen,
however, between motor units that act on different fingers, indicating that single
pre-motor input neurons make connections to motor units that act on different
fingers [11, 12]. Although the branching pre-motor neurons responsible for short-
term synchronization of motor units in theory might be any last-order inputs to the
motoneuron pools, in humans lesions of the corticospinal system eliminate most
such synchronization, implying that the responsible last-order inputs are primarily
corticospinal axons that synapse directly on motoneurons [13, 14]. Both the
simultaneous synaptic excitation of motoneurons that act on different fingers, and
single motor units that act on multiple digits thus may contribute to some degree of
active coupling between digits.

2.3 Biomechanical Interactions and Stabilizing Contractions

Because of both the passive and active biomechanical coupling between digits,
muscle activity intended to move one digit will tend to move adjacent digits as
well. Moreover, contraction of any of the extrinsic finger muscles will produce
torque around the wrist. To move one digit more individually then, additional
muscles must be activated to check the coupled motion of the adjacent digits and
the wrist. As a monkey flexes its little finger, for example, extensor digiti secundi
et tertii contracts to minimize simultaneous flexion of the index and middle fingers
[15]. And in humans, the portion of FDP that acts chiefly on the middle finger
contracts when the subject extends either the index or the ring finger [16]. The
combination of contractions in some muscles to move the intended finger(s) and in
other muscles to stabilize other fingers and the wrist thus requires descending
neural control of the entire hand, even when a normal subject is moving a single
digit.

3 Cortical Control

For many years the primary motor cortex (M1) was thought to contain a point-to-
point representation of different muscles and/or different movements. Activation at
a particular locus then would elicit either a given muscle contraction or a given
movement, just as striking a particular key on a piano elicits a given note. M1 then
was viewed as a well-ordered array of “upper motor neurons,” each providing
cortical output to a particular muscle. Using this array, available muscles and/or
movements could be accessed as needed by higher cortical areas. More recently,
the demonstration of a number of organizational principles has revised this view of
M1 [17].
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3.1 Convergence from Cortex to Spinal Motoneuron Pools

Rather than a given muscle being controlled from a particular locus in the motor
cortex, any particular muscle now is known to receive outputs from a relatively
large territory in M1. Conversely, given the number of muscles, the territories
from which different neighboring muscles receive M1 output necessarily overlap.
This principle of converging input on each muscle from a substantial M1 territory
was defined originally using electrical stimulation of the cortical surface, and
subsequently confirmed with intracortical microstimulation (ICMS) [18]. Much of
the projection from M1 to the spinal motoneuron pool innervating any given
muscle is oligo-synaptic, mediated via connections from M1 neurons to the red
nucleus, reticular formation, and/or spinal interneurons [19]. But in macaque
monkeys, apes and humans a substantial fraction of M1 neurons that project to the
spinal cord make mono-synaptic connections to spinal motoneurons and hence are
referred to as cortico-motoneuronal (CM) cells. Recently, retrograde transneuronal
labeling with rabies virus has demonstrated anatomically that the sets of CM-cells
that project to different finger muscles occupy extensively overlapping cortical
territories [20].

3.2 Divergence of Output from Single Cortical Neurons

Spinal motoneurons each project to muscle fibers in a single muscle. In contrast,
many individual M1 neurons each project to the spinal motoneuron pools of
multiple muscles. Again, though much of this divergence may be mediated
through oligo-synaptic connections, the principle of divergent output from single
M1 neurons to multiple muscles has been demonstrated in macaque CM-cells both
anatomically and physiologically. Anatomically, single corticospinal axons filled
with horseradish peroxidase have been shown to ramify and terminate in the
motoneuron pools of multiple muscles [21]. Physiologically, segments of a mus-
cle’s rectified electromyographic activity (EMG), aligned at the time of spikes
discharged by an M1 neuron and then averaged, often demonstrate a post-spike
facilitation (or suppression) of the motoneuron pool at a short (e.g. 5-16 ms), fixed
latency, consistent with conduction from the cortical neuron to the spinal cord, a
monosynaptic connection to motoneurons, and then conduction from the moto-
neurons to the muscle. In macaque monkeys, such post-spike effects (PSEs) are
found in ~27 % of CM-cells selected for a relationship between their firing rates
and wrist movements [22], and in ~55 % of CM-cells with a corticospinal axon
and a relationship to precision pinch [23]. When an M1 neuron is found to produce
PSEs, identifying it as a CM-cell with monosynaptic connections to spinal
motoneurons, it often produces PSEs in the EMG activity of multiple arm and



8 M. H. Schieber

hand muscles. In humans, the short-term synchronization of single motor units in
different hand and finger muscles (described above in Sect. 2.2) provides further
evidence of the presence of corticospinal axons that diverge to innervate the
motoneuron pools of multiple muscles.

Divergence of output from single M1 neurons to multiple muscles might be
viewed as a means of creating muscle synergies, that is, a mechanism for facili-
tating (or suppressing) the activity of a particular set of muscles in parallel. The
synaptic effect from any single M1 neuron, however, constitutes only a small
fraction of the tens of thousands of synaptic inputs received by any given moto-
neuron. To drive a muscle synergy, many M1 neurons providing the same pattern
of inputs to different motoneuron pools would be needed.

Do such cortically driven muscle synergies exist? When spike-triggered aver-
ages from a single M1 neuron show a pattern of PSEs in certain muscles and not
others, stimulus-triggered averages formed using single-pulses of ICMS at the
same electrode location often show much larger post-stimulus effects, but with the
same pattern of muscles facilitated and/or suppressed [24]. These observations
suggest the presence of local groups (or perhaps more distributed networks) of M1
neurons with outputs to the same set of muscles, as might be expected to drive a
muscle synergy. Furthermore, during reaching movements, applying cluster
analysis to cross-correlations between the firing rates of M1 neurons and the EMG
activity of multiple muscles has indicated the presence of groups of M1 neurons
with similar patterns of cross-correlation with particular subsets of muscles [25]. In
contrast, during individuated finger and wrist movements, groups of M1 neurons
with similar patterns of activity that might drive a limited set of muscle synergies
were less evident, suggesting that the control of such individuated movements may
not be achieved through fixed muscle synergies [26].

The extent to which M1 functions to control muscles via a limited set of
synergies remains a topic of ongoing investigation, however. M1 neurons might
drive a limited set of muscle synergies which, when combined in different pro-
portions at different times, could be used to generate a wide range of movements,
from grasping to typing [27]. Alternatively, M1 neurons might drive different sets
of synergies for particular tasks: one set of synergies for grasping and another for
typing. A third possibility would be that M1 neurons with dissimilar sets of outputs
might be activated in a wide variety of combinations to produce a continuously
varying repertoire of muscle activations that vary from power grasp to precision
grip to typing movements. These three possibilities, of course, are not mutually
exclusive. For example, power grasping might be driven as a fixed synergy, pre-
cision pinch as a task-specific synergy, and typing movements as various com-
binations of M1 neurons with dissimilar outputs. Moreover, M1 neurons might act
sometimes to activate, and sometimes to fractionate muscle synergies organized in
the brainstem or spinal cord [28-30].
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3.3 Distributed Activation in the Hand Representation

Whereas the classic view would predict that distinct patches of M1 cortex would
be active for movements of different fingers, active neurons are found throughout
the M1 hand representation when any single finger is moved, and similar territories
are activated for movements of different fingers. In monkeys, single M1 neurons
typically discharge in relation to multiple different individuated finger and wrist
movements [26, 31]. Often, a given neuron discharges in relation to movements of
non-adjacent digits. The distribution of neurons active during movements of
particular digits gives little if any evidence of somatotopic segregation of neurons
controlling different digits, or of functional groups of neurons that might represent
particular movements or movement primitives. Horizontal intracortical axon col-
laterals that interconnect the entire M1 hand representation therefore may coor-
dinate the necessary pattern of outputs to multiple muscles simultaneously [32].
Similarly in humans, functional magnetic resonance imaging (fMRI) shows a base
of widespread activation throughout the hand representation no matter which digit
is moved [33]. In humans however, subtraction of the widespread activation
common to all finger movements leaves a remainder of specific activation for each
digit; and this remainder shows some degree of somatotopic segregation for
movements of different digits [34].

Recent studies have shown that long trains of intracortical microstimulation
(ItICMS) at different cortical locations in alert monkeys can elicit movements of
the upper extremity to particular end postures suggestive of canonical actions,
including reaching, bringing food to the mouth, or defending the head from a blow
[35]. Similarly in cats, concurrent stimulation at two cortical loci elicits a forearm
movement that is the vector sum of the movement evoked by stimulating each
locus separately [36]. The repetitive electrical stimulation of the cortex at a con-
stant frequency used in these studies, however, is quite unlike the natural discharge
of cortical neurons, where various neurons discharge asynchronously and at dif-
ferent frequencies that change differently in time. Furthermore, most of the effect
of repetitive ICMS is not achieved by stimulating local neuron somata, but rather
by stimulating axons that produce trans-synaptic activation of more remote neu-
rons. Consequently ItICMS probably is sufficient to activate neuron populations in
other cortical areas, the brain-stem and the spinal cord. Nevertheless, these ItICMS
studies suggest the possibility that different basic movements of the extremity may
be organized from different cortical locations. A considerable repertoire of
movements then could be generated from the cortex by producing different
combinations of such a basic set of movements. Widespread activity during a
given individuated finger movement then might reflect the combination of a few
basic movements (or “movement primitives”), each represented at a different
cortical location.

The concept of neural representation of only a limited set of basic movements is
meaningful, however, only if: (i) combining a small number of basic movements
can account for a much larger set of observed movements; (ii) neuronal activity
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correlates more strongly with the basic movements than with other features of the
observed movements; and therefore (iii) neuronal activity also shows a limited
number of basic patterns. Recordings of neuronal activity suggest, however, that as
the repertoire of observed movements increases, the diversity of activity observed
in the neuron population increases. Studies of one-dimensional wrist flexion/
extension movements, for example, identified oppositely acting M1 neurons
related either to wrist flexion or to wrist extension [37]. One might have expected
then, that two-dimensional reaching movements would be controlled by two such
sets of neurons, each set controlling movement in one of the two dimensions. But
instead, studies of two-dimensional reaching movements consistently have shown
that individual M1 neurons are broadly tuned with respect to reach direction, and
that the preferred directions of different M1 neurons are distributed across all
sampled movement directions [38]. The same principles extend to three-dimen-
sional reaching movements [39]. Rather than suggesting control by a few sets of
neurons with similar preferred directions, reach-related M1 neurons show a wide
distribution of preferred directions.

Likewise, recordings during individuated finger movements suggest a great
diversity of single-neuron activity patterns. Single M1 neurons tend to be active
during a number of different finger movements, often movements of non-contig-
uous digits, and often movements of digits in opposite directions [26, 31]. Little
evidence has been found for distinct groups of M1 neurons related to particular
finger movements or sub-sets of finger movements, either in the general Ml
population, or in the sub-population (including CM-cells) that produces relatively
direct effects on spinal motoneuron pools [40]. Even the sub-population of M1
neurons that provide input to a given muscle’s motoneuron pool show diverse
patterns of activity across different finger movements, in part because different M1
neurons provide additional inputs to various other motoneuron pools [41]. Rather
than representing a limited number of basic patterns, M1 neurons thus appear to
control individuated finger movements by contributing a wide variety of patterns
of muscle facilitations and suppressions that combine to the pattern needed for a
particular movement, and then recombine flexibly for a different movement. Such
flexible recombination of diverse facilitative and suppressive actions would pro-
vide a repertoire even more extensive than that provided by a limited number of
muscle synergies or basic movements. A challenge for future study is to under-
stand how the combination of M1 neurons used for a given movement is activated
at one time, and the combination for another movement is activated at another
time.

3.4 Advantages of Distributed Organization

Classically the motor cortex was viewed as an ordered somatotopic representation
of movements or muscles. The principles of convergence, divergence and dis-
tributed activation combine to suggest a revised view, illustrated for the M1 hand
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Fig. 1 The primary motor cortex hand representation as a hyper-keyboard. For many years the
primary motor cortex (M1) was thought of as a well-ordered cortical representation of the body’s
muscles, likened to a conventional piano keyboard. The motoneuron pools of the spinal cord,
however, already provide the CNS with an orderly somatotopic representation of the peripheral
musculature. In contrast, the “hyper-keyboard” of M1 contains corticomotoneuronal (CM) cells
with individual projections that diverge to innervate multiple motoneuron pools, depicted here as
colored rectangles, with the connections to particular motoneuron pools shown for some CM-
cells as lines descending to keys on the classic, spinal keyboard. Any given spinal motoneuron
pool then receives input converging from a wide territory in M1, which overlaps extensively with
the territory innervating the motoneuron pools of other hand muscles. Consequently, M1 neurons
projecting to different hand muscles are intermingled, and neurons projecting to particular
muscles or muscle combinations are re-represented in multiple locations. This re-represented and
intermingled organization brings into close proximity a wide variety of combinations. The rwo
ovals indicate two similar red “hyper-keys,” for example, that each lie in close proximity to
different combinations of other hyper-keys. In the musical analogy, a given CM-cell facilitates a
“chord” of activation in a particular combination of muscles. Different hand movements then
might be organized as different “hyper-chords,” each of which involves activation of a particular
combination of M1 neurons such that their outputs converge to facilitate different levels of
activation in various spinal motoneuron pools. (Modified with permission from Fig. 10 of [17].)

representation in Fig. 1. The motoneuron pools of the spinal cord already provide
the central nervous system with a detailed, highly-ordered somatotopic represen-
tation of the peripheral musculature. Another well-ordered somatotopic repre-
sentation in the cortex with a similar level of detail therefore would be superfluous.
Rather than being organized as a second classic keyboard, the M1 hand repre-
sentation might be viewed as a “hyper-keyboard.” The M1 hyper-keyboard has a
wide variety of different output elements, indicated by different colors. Different
outputs are re-represented at multiple, distributed locations, and intermingled in
proximity to a variety of other outputs, as depicted in Fig. 1 by the two ovals
marking two red hyper-keys each surrounded by different combinations of other
hyper-keys. Compared to any more highly-ordered arrangement, the hyper-key-
board vastly increases the number of output combinations represented in close
spatial proximity to one another, which may offer some advantages for neuronal
computations.
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Many of the output elements of the M1 hyper-keyboard, the CM-cells in par-
ticular, project to multiple spinal motoneuron pools, and hence facilitate “chords”
on the spinal keyboard of individual muscle representations. Different muscle
activity patterns for different hand movements then might be generated by acti-
vating different combinations of output hyper-keys in M1. The question of muscle
synergy representations in M1 then becomes: Do the M1 hyper-keys represent a
limited number of muscle chords? Or do no two M1 hyper-keys have identical
outputs to exactly the same set of spinal motoneuron pools? The two orange hyper-
keys highlighted at the lower right, for example, project to similar but not identical
sets of spinal motoneuron pools.

Some pattern of inputs must selectively activate the combination of M1 hyper-
keys needed to generate the muscle pattern for a particular hand movement. Such a
combination M1 outputs can be viewed as a “hyper-chord.” Neural activity from
decision-making and movement-planning processes, vision and somatic sensation,
all may participate in creating, selecting and driving the right hyper-chord at the
right time. These inputs arrive in M1 from premotor and supplementary cortical
motor areas, from the primary somatosensory cortex, and from the basal ganglia
and cerebellum via the motor nuclei of the thalamus. But as yet we know relatively
little about how these cortico-cortical and thalamo-cortical inputs converge on
individual neurons in M1, and whether the neurons that represent hyper-chords lie
in M1 or in the structures from which M1 receives input.

Why should the M1 hand representation have such a distributed, intermingled
organization? As described above in Sects. 1 and 2, the various digits do not move
independently of one another due to both passive and active biomechanical cou-
pling. Consequently, in addition to muscle contractions that produce the intended
motion of certain digits, M1 must drive muscle activity that stabilizes other digits.
Biomechanical interactions in the hand thus require M1 to control the entire hand
during any movement. Even movement of only a single digit requires the proper
forces be generated by multiple muscles that act on that digit, on other digits and
on the wrist. The distributed and intermingled organization of the M1 hand rep-
resentation presumably is optimized for controlling the whole hand all the time.

Though less direct, the elbow and shoulder will also have biomechanical
interactions with the digits, as when a reaching movement transports the hand to
grasp an object. Hence M1 outputs to elbow and shoulder muscle also are inter-
mingled to a considerable extent with outputs to finger and wrist muscles [42, 43].
As body parts become more completely biomechanically independent, such as the
face and the hand, their representations in M1 become more completely
segregated.

Finally, the distributed array of multiply re-represented and highly varied
output elements offered by the M1 hyper-keyboard may facilitate the initial
selection and generation, as well as the subsequent refinement of new combina-
tions of outputs, i.e. new hyper-chords. Such a distributed organization provides a
substrate better suited to produce both the long-term plastic changes that are
sustained over many days, weeks and months, and the rapid flexibility that enables
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outputs to be changed within minutes. Such a substrate might provide both for
normal learning and for recovery after injury.

4 Plasticity of the Motor Cortex
4.1 Motor Learning

Because no territory is entirely devoted to a particular muscle, body part or
movement, the distributed organization of the motor cortex provides a substrate
that can change during motor learning. For example, when squirrel monkeys
practice hand movements by repeatedly extracting pieces of food from small holes,
the M1 territory from which ICMS evokes movement of the distal forelimb and
hand increases [44]. Similarly in humans, repeated practice of a thumb movement
in a particular direction changes the direction of movement evoked by transcranial
magnetic stimulation (TMS) toward the practiced direction [45]. Practicing par-
ticular movements thus leads to plastic changes which increase the M1 output
representation of the practiced movement(s). ICMS delivered conditionally in M1
also can change M1 output. When ICMS at a wrist extensor site was triggered by
spikes from an M1 neuron that discharged during wrist flexion, the effect of ICMS
at that site changed progressively from wrist extension to wrist flexion [46]. The
net output evoked by stimulation at a given M1 site thus is not fixed, but can be
changed depending on recent conditioning and practice.

The activity of M1 neurons also changes during motor learning [47]. As
monkeys adapt to reaching movements in a novel force field, the directional tuning
of some M1 neurons changes as the monkey practices in the novel field, and then
de-adapts to the prior tuning when the force field is turned off. Other M1 neurons,
however, show no change in tuning as the monkey adapts to the novel field, but
then do change when the force field is turned off. These observations suggest that
the activity of individual neurons is being adjusted continually, such that the total
M1 population can best produce the required movements [48].

4.2 Reorganization After Injury

Plastic reorganization of M1 occurs after many types of central or peripheral
nervous system injury. In non-human primates, for example, if the M1 represen-
tation of the distal forelimb is infarcted experimentally, and the animal afterwards
is required to obtain food using the impaired hand, territory that had provided
output primarily to proximal upper extremity muscles comes to provide more
output to the distal musculature [49]. Similar flexible reorganization of M1 output
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may underlie the improvement in functional recovery after stroke obtained by
requiring patients to make use of their impaired hand.

Studies of amputees have provided valuable insights into the extent to which
cortical output can be plastic while also retaining a permanent native organization.
After amputation of an extremity, the M1 region that previously had represented
the distal, amputated body part comes to provide output to remaining, proximal
body parts. Such plastic reorganization, in which representation of the proximal
stump muscles “expands” into cortical territory that previously had primarily
represented the distal amputated part, has been observed in human upper extremity
amputees using either TMS [50] or fMRI [51], and in non-human primates using
ICMS [52].

Amputation can be simulated, from the point of view of the nervous system, by
nerve block. For example, inflation of a blood pressure cuff above arterial pressure
produces ischemia that leads to temporary block of both motor and sensory con-
duction in nerves distal to the cuff. The distal extremity is then both paralyzed and
numb, as when one’s arm “falls asleep.” Within minutes, TMS over M1 then
elicits larger EMG responses in the proximal musculature. Although this might
suggest that territory previously devoted to distal musculature now provides output
to the proximal musculature, intra-neural recordings have revealed that the cortical
output to muscles both proximal and distal to the block is increased [53]. The
expansion of output to proximal muscles into the territory that normally represents
distal muscles thus does not require elimination of distal representation in the
cortex.

Similarly in humans with actual amputations, representation of movements of
the amputated body part remains resident to some extent in the CNS. Many
amputees have the impression that they still can move their phantom limb. TMS of
M1 can elicit the perception that the phantom has moved [54]. And EMG
recordings from stump muscles during volitional “movement” of the distal
phantom show patterns of activity that are distinct from those used to move the
proximal stump [55]. All these observations suggest that representations of distal
movements remain in the cortex long after amputation of the extremity.

Furthermore, when the truncated ends of nerves (radial, median and ulnar) that
had innervated the distal musculature are surgically repositioned to innervate
remaining proximal musculature, volitional movement of the distal phantom
produces specific patterns of EMG activity in the re-innervated muscle [56], and
touch of the overlying skin elicits the perception that the distal phantom has been
touched in a nerve-specific location [57]. Hence long after amputation, the motor
output to the amputated muscles continues to be sent down the severed nerves, and
activation of the sensory fibers elicits sensations of touch in the phantom.

Some human amputees have received hand transplants. Within a few months of
the transplantation, fMRI studies indicate that the expanded representations of
proximal muscles have receded to their pre-amputation size, and representation of
the hand in M1 has re-emerged [51]. So although the cortex reorganizes to a
considerable extent after amputation, native representation of the amputated part
may never be completely eliminated.
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5 Rapid Flexibility in Cortical Control of the Hand
5.1 Ability to Perform Novel Movements

The motor cortex enables normal subjects to perform an extremely wide repertoire
of dexterous hand and finger movements. While subcortical descending pathways
such as the reticulospinal system may contribute to basic opening and closing of
the hand, the variation in hand shapes used to grasp different objects (such as
power grip versus precision pinch), and especially then to manipulate them with
dexterity, requires control from M1. Beyond grasping objects of different shapes,
the individuated finger movements used for typing or playing a musical instru-
ment, as well as for haptic manipulation of an object hidden in one’s pocket or
purse, depend heavily on control from MI1.

The flexibility of control from M1 enables normal human subjects to perform a
wide variety of what might otherwise be considered ‘unnatural’ finger movements.
The complex finger gestures used to communicate “OK” or to spell words in sign
language, have no clear relationship to manipulative use of the hand. While these
examples might be considered highly practiced hand movements, humans also can
rapidly produce novel finger movements that have neither manipulative utility nor
communicative purpose. Perhaps you have never flexed your index and ring fin-
gers, and held their tips together in front of your palm by flexing your thumb,
while simultaneously extending your middle and little fingers, but you can do it
right now if you try.

Humans also can rapidly learn to make use of such novel movements. When
required to use the 22 degrees of freedom in the hand to move a cursor in an
arbitrarily defined two-dimensional space, normal human subjects learned quickly
to move the cursor linearly in the two-dimensional space, although this required
the fingers to move through postures uncommon in daily hand movements [58].
Similarly, human subjects can rapidly learn to contract muscles in arbitrary
combinations to control a cursor [59]. Interestingly, performance is better with
hand muscles than with more proximal arm muscles, suggesting that control of the
hand may be particularly flexible. Such flexibility enables humans to adapt their
hand and finger movements to an extraordinarily wide variety of task constraints.

5.2 Dissociation from Movement

The extreme consequence of flexibility in motor cortical output is the ability to
dissociate cortical neuron activity from particular movements per se. In seminal
studies, Fetz and colleagues found that monkeys could be conditioned in single
sessions to modulate the firing rate of an M1 neuron voluntarily, dissociating the
activity of the conditioned M1 neuron from that of the muscles with which it
correlated during normal movements [60, 61]. These observations recently have
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been extended to show that such voluntary modulation can be used by the monkey
for closed-loop control of wrist muscles, even when the controlling neuron(s) had
no prior relationship to wrist movement [62]. Furthermore, the same M1 neurons
that have relatively direct, even monosynaptic, connections to particular spinal
motoneuron pools recently have been shown to have functional throughput con-
tributing to muscle contraction during some motor behaviors, but no effective
throughput during other behaviors [63]. So although M1 neurons make a necessary
contribution to the control of dexterous hand movements, especially individuated
finger movements, under some circumstances even some CM-cells can be disso-
ciated rapidly from the muscle contractions that produce movements.

Such dissociation of M1 activity from movement also becomes apparent in
closed-loop control of brain—machine interfaces (BMIs). When non-human pri-
mates practice switching from controlling movement of a cursor with movement of
their native limb (e.g. holding a joystick) to controlling the cursor through a BMI
by activating a recorded sub-population of M1 neurons, many of the recorded M1
neurons change their directional tuning over several days of practice [64]. Even-
tually, the monkey may stop making overt arm movements, and even stop con-
tracting muscles. Meanwhile, the cortical neurons continue to be active to control
the cursor in the absence of detectable movement or muscle contraction. Within a
single session, and then across sessions, the directional activity of neurons adapts
to improve direct, closed-loop control of the cursor, such that after several days of
practice a small population of neurons can switch readily between control of the
native limb and control of the BMI [65].

Dissociation of M1 neuron activity from movement of the native limb might
seem to be a bizarre consequence of the unnatural paradigm provided by BMIs.
Yet for many years it has been known that certain M1 neurons, including many
that send axons to the spinal cord, discharge for hundreds of milliseconds during
instructed-delay periods as the subject waits to execute an instructed movement
without actually moving. Given that the spikes of CM-cells influence EMG
activity with latencies in the range of 5-20 ms, such instructed-delay period
activity constitutes a form of temporal dissociation of M1 neuron activity from
movement. In behaviors that separate target direction from movement direction,
other M1 neurons dissociate from the limb movement per se and discharge instead
in relation to the target direction [66]. Furthermore, some corticospinal neurons
recently have been shown to have mirror properties [67]. Such neurons discharge
similarly whether the subject executes a particular hand movement or observes
another monkey (or human) performing a similar hand movement. Mirror neurons
thus appear to discharge during movements the subject performs with the native
limb, and discharge as well when the subject visually observes a similar movement
performed by another primate, during which the subject’s own limb is quiescent.
Dissociated activation of M1 while a subject withholds movement, including
increased excitability of corticospinal neurons, presumably underlies the fMRI
activation evident when human subjects imagine performing particular movements
[68], something humans do quite naturally.
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6 Conclusions

Cortical control of the hand thus is constrained by both peripheral and central
factors. Many of the constraints present in the human hand—including passive
coupling by soft tissues and tendons, incomplete compartmentalization of muscles,
and short-term synchronization between motor units in different muscles—can be
viewed as the remainder of an evolutionary process that has favored independence
of the fingers, but has not yet achieved complete independence. To the extent that
many fundamental uses of the hand for basic grasping (as can be observed in
rodents and cats) do not actually require independent finger movements, cortical
control may take advantage of representations of limited sets of movement
primitives (involving the simultaneous motion of multiple joints in fixed propor-
tion) and/or muscle synergies (involving the simultaneous contraction of multiple
muscles in fixed proportion), which might be organized largely in the evolution-
arily older centers including the spinal grey matter, the brainstem reticular for-
mation and the red nucleus.

To achieve more dexterous control, however, the motor cortex in monkeys, and
especially in humans, appears to have evolved the capacity to express even greater
flexibility than that available from the numerous possible combinations of
movement primitives and muscle synergies. The ability to influence spinal
motoneurons directly in a great diversity of combinations may enable the motor
cortex to sculpt basic synergies so as to individuate finger movements. This
flexibility is achieved in part by enabling the discharge of a given M1 neuron to
participate in some active movements but not in other similar movements, and to
discharge in the absence of movements at other times. Understanding the factors
that constrain such flexibility remains a challenge for future investigation.

This same flexibility also poses a challenge for the development of practical
brain-machine interfaces. If the activity of cortical neurons were invariably related
to particular kinematic or dynamic features of intended movement, whether the
movement of the native limb or not, then the intended movement could be decoded
from the activity of those neurons. But if the activity of M1 neurons changes
depending on the movement context—native limb versus cursor; actual limb
movement versus observed or imagined—then decoding M1 activity to control
movement of a prosthetic limb through a BMI may be complicated by rapid
changes in the discharge properties of M1 neurons. The subject may need to learn
to produce the patterns of activity required to drive the BMI. Once again,
understanding the factors that are responsible for the flexibility of M1 neuron
activity, as well as the factors that constrain such flexibility, remains a challenge
for future investigation.
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Chapter 2
Synergistic Control of Hand Muscles
Through Common Neural Input

Marco Santello

Abstract Skilled grasping and manipulation rely on spatial and temporal coor-
dination of multiple hand muscles. This chapter describes the phenomenon of
common neural input to hand muscles as one of the mechanisms through which the
Central Nervous system might coordinate the neural activation of groups of hand
muscles acting on a single or multiple digits. The heterogeneous distribution of
common input to intrinsic and extrinsic hand muscles is discussed in relation to its
functional role for the coordination of hand muscles.

Keywords Synchrony - Coherence - Motor units - EMG

1 Introduction

The objective of this chapter is to provide an overview of how the Central Nervous
System (CNS) controls hand muscles in tasks that require dexterous digit force
control. The chapter focuses on studies that have characterized the neural control
of hand muscles through the application of time and frequency domain analyses of
electromyographical (EMG) signals. By determining and quantifying neural inputs
that are common to concurrently active motor units of hand muscles, this work can
provide significant insights into how the CNS coordinates the activity of multiple
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muscles during skilled grasping and manipulation. Therefore, the chapter discusses
how experimental evidence from research on common neural input could be used
to improve our understanding of muscle synergies and their implications for neural
control of the hand.

The chapter starts by introducing the complex interactions between descending
and ascending inputs to spinal motor nuclei of hand muscles (Sect. 2). A review of
the most commonly used techniques to quantify common neural input follows,
together with a brief review of the literature on their applications to characterize
correlated inputs to motor unit pairs and populations (Sect. 3). The phenomenon of
heterogeneous distribution of common neural input across intrinsic and extrinsic
hand muscles is then discussed in relation to recent work on motor unit coherence
(Sect. 4). Lastly, common neural input is discussed within the theoretical frame-
work of synergies (Sect. 5), followed by a discussion of open questions and
directions for future research (Sect. 6).

2 Neural Control of Hand Muscles
2.1 Inputs to Motor Units of Hand Muscles

The spatial and temporal convergence of several inputs onto alpha motor neurons
dictates its final output to skeletal muscle fibers, hence motor neurons are referred to
as the ‘final common path’ [1]. Descending inputs are mediated by highly divergent
cortical inputs (corticospinal tract), as well as rubrospinal and reticulospinal tracts,
whereas peripheral inputs are mediated by networks integrating signals from indi-
vidual sensory modalities (muscle spindles, Golgi tendon organs, tactile afferents,
joint receptors). Spinal interneurons contribute to the processing of descending and
ascending inputs. The divergence of descending inputs to alpha motor neurons of
hand muscles is the subject of ongoing investigation (for more details see Chap. 1).
It should be emphasized that the divergence of inputs to several hand muscles does
not seem to be a characteristic that is unique to descending inputs. Specifically,
cutaneous reflex EMG responses elicited by stimulation of digital nerve branches of
one digit occur not only at the muscles acting on the stimulated digit, but also at
muscles innervating other digits (e.g., [2-4] unpublished observations). The fol-
lowing section discusses the approaches investigators have used to characterize and
understand the functional significance of the organization of inputs onto the spinal
motor nuclei of hand muscles.

2.2 Experimental Approaches

Inferences about neural control of hand muscles can be performed through a variety
of experimental approaches, such as invasive and non-invasive recordings of
cortical neuronal activity, transcranial magnetic stimulation, intraneural recording
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or stimulation of peripheral nerves, and recording of electrical activity of hand
muscles. This chapter focuses on inferences that have been made through the
analysis of the EMG signals of hand muscles, and in particular on the quantification
of temporal relationships between the activity of individual units (single motor unit
recordings) and populations of motor units (interference EMG).

3 Common Neural Input: Methodological Considerations

3.1 Time and Frequency Domain Measures of Correlated
Inputs

This section describes two techniques that have been widely used to quantify
correlated inputs to motor units. One technique, motor-unit synchrony, quantifies
synchronous activity of motor unit in the time domain, whereas the second tech-
nique, motor-unit coherence, quantifies correlations of motor unit activity in the
frequency domain. Common neural input to motor units has also been defined by
correlations between the firing rates of individual motor units, i.e., common drive
[5-9]. For a discussion on methodological aspects of the common drive technique,
the reader is referred to a simulation study by Lowery and Erim [10].

3.2 Motor-Unit Synchrony

The correlation for continuous functions x(7) and y(#) is computed by the cross-
correlation function

Ryx(z) = (1/T) / Y(Ox(t — 2)di (1)

where 7 is the time interval and T is the period of integration. The special case of
cross-correlation between spike trains uses computations based on peri-spike
histograms [11, 12]. Motor-unit synchrony is defined as greater than chance ten-
dency for concurrently active motor units to discharge at short time intervals from
each other, e.g., [13] and has been used as an indirect measure of common synaptic
input across motor neurons. More specifically, motor-unit synchrony has been
attributed to excitatory or inhibitory postsynaptic potentials that arise from
branched axons of common presynaptic neurons ([13-15]; Fig. 1). Motor unit
synchrony can be subdivided into short- and long-term synchrony based on the
width of the cross-correlogram peak, the latter type of synchrony being defined by
time lags between motor unit discharges of larger than a few milliseconds [16].
Broader cross-correlogram peaks are thought to reflect synchrony due to separate
presynaptic inputs onto the motor neurons (top, Fig. 1).
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Fig. 1 Schematic description of common neural input through synchronized separate excitatory
inputs and branched inputs to alpha motor neurons innervating two hand muscles

The strength of motor-unit synchrony is generally quantified by computing the
ratio between the number of motor unit discharges within the central peak of the
cross-correlogram histogram and that outside of the peak, e.g., time intervals
between discharges of concurrently active motor units that are uniformly distrib-
uted and, therefore, not associated with synchronous discharges of the motor unit
pair (Fig. 2a). The quantification of motor-unit synchrony focuses on well-defined
temporal criteria. In contrast, frequency domain measures capture other features of
relations that might exist in the discharges of two concurrently active motor units
(see Sect. 3.3). Two examples of some of the most widely used techniques to
quantify the strength of motor-unit synchrony are common input strength
(CIS; [13]) and & [17]. The strength of motor-unit synchrony depends not only on
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Fig. 2 a Cross-correlogram histogram obtained from cross-correlation of two motor unit spike
trains. The horizontal line denotes mean counts outside of the cross-correlogram peak.
b Coherence between spike trains of two motor units. The horizontal line denotes threshold for
statistical significance

the number of shared inputs but also on complex interactions among several other
factors such as background excitation and inhibition as well as the intrinsic
properties of motor neurons [18-20].

3.3 Motor-Unit Coherence

Correlations in the discharge of a motor unit pair can occur at time intervals that
might be longer than those defined by the quantification of short- or long-term
motor-unit synchrony. These correlations are revealed by peaks and troughs
occurring at consistent time intervals in the cross-correlogram and denote period-
icities of correlated motor unit firing [21, 22]). Coherence can detect the existence
of such periodicities by quantifying the linear relation between two motor unit spike
trains in the frequency domain. Therefore, motor-unit coherence at a given fre-
quency denotes correlated rhythmic activity between two motor units, which is
thought to indicate the existence of a common periodic synaptic input ([23, 24]).
Coherence is computed as the modulus of cross-spectrum (f,,) of two motor
unit spike trains squared and normalized by the product of the autospectrum (f,,,
f,,) of each spike train at each frequency (4) in the frequency band of interest:

Ry (2) = [£0(2)|/ (Ex(2)E3y(2)) (2)

After determining the frequency at which significant coherence occurs [25], the
strength of coherence, bounded between 0 and 1, can be interpreted similarly to
the strength of the coefficient of determination in linear statistics (Fig. 2b).

2
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Most commonly, motor unit coherence studies focus on the peak value of
coherence or the integral of coherence within specific frequency intervals (typi-
cally 0-55 Hz). Similar to motor-unit synchrony, motor-unit coherence reflects the
efficacy with which a multitude of common inputs (see Sect. 2) of different
strength and timing can elicit action potentials of the motor unit pair under
investigation. Therefore, one may equate the strength of significant coherence and
the frequency at which it occurs with the number of action potentials across two
motor units that occur at similar times relative to the common input signal and the
variability in the timing of discharges around the common input frequency.
Coherence can also be computed from signals comprised of populations of motor
units, e.g., interference EMG recorded through surface or intramuscular electrodes.
In these circumstances, the strength of coherence will also depend on how many of
the recorded motor units receive common neural input [26].

Besides assessing whether significant coherence may or may not occur between
two motor units, often investigators are also interested in determining the fre-
quency bands at which significant coherence occurs. This approach has been
informative due to the fact that modulation of within- or across-muscle coherence
to task conditions is often confined to specific frequency ranges (see Sect. 4.4 for
more details). Furthermore, there is evidence to suggest that the sources of
coherence differ across frequency bands. For example, healthy subjects exhibit
significant coherence in both 1-12 and 16-32 Hz frequency bands. In contrast,
coherence is markedly reduced in patients affected by cortical strokes, but only in
the 16-32 Hz frequency band [22]. These authors suggested that the 1-12 Hz
frequency may therefore reflect subcortical common inputs to hand muscles, as
opposed to the 16-32 drive for which intact cortical inputs appear to be necessary.

3.4 Relation Between Motor-Unit Synchrony and Coherence

As indicated above, motor-unit synchrony and coherence capture different aspects
of common neural input. Linear regression analysis has often been used to assess
the extent of overlap in the information provided by motor-unit synchrony and
coherence (e.g., [27]). The existence of significant linear correlations between
these two measures of common neural input are interpreted as reflective of
common periodic input to the motor neurons through branched presynaptic
pathways [22, 28]. Overall, the literature suggests that linear correlations between
across-muscle motor-unit synchrony and coherence are very weak and vary
broadly across muscle pairs. This suggests that common neural inputs to hand
muscles are delivered through different combinations of indirect and direct bran-
ched presynaptic pathways, as well as, independent pathways (weak motor-unit
synchrony and coherence; [27]). The finding that motor units can exhibit signifi-
cant motor-unit coherence and no motor-unit synchrony (e.g., [29, 30]) emphasizes
the need to use both measures, when possible, to further delineate the nature of
divergent inputs to motor units. For further discussion on the relation between
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time- and frequency-domain measures of common neural input to motor units, the
reader is referred to Semmler et al. [31, 32] and computational modeling by Enoka
and colleagues [19, 20, 33] and Lowery et al. [34]. Additional methodological
issues, such as assessing EMG-EMG coherence through recording EMG activity
of motor unit pairs versus motor unit populations, or the effect of EMG signal
rectification on coherence estimation, are discussed in [26].

4 Common Neural Input to Hand Muscles: Experimental
Evidence

4.1 Functional Considerations

The extent to which hand muscles in humans receive common input has been
extensively studied by recording EMG from single motor units. These studies can
be broadly classified based on whether they target correlated neural activity of
motor units belonging to the same or different muscles, i.e., within- or across-
muscle common neural input. Early studies of within-muscle motor unit synchrony
of hand muscles were performed to quantify the strength of divergent inputs to
motor units innervating a single hand muscle (often the first dorsal interosseus,
FDI; [35]) or for comparing the strength of motor unit synchrony among hand
muscles [36] as well as other upper or lower limb muscles [6, 37]. Studies of
correlated neural activity across motor units belonging to different hand muscles
often aimed at comparing the strength of synchrony of motor units belonging to the
same versus different muscles. An important observation is that motor-unit syn-
chrony across hand muscles tends to be weaker than within-muscle synchrony
([37-40]; but see Sect. 4.2). Similar considerations and experimental questions
motivated studies of coherence between motor units within and across hand
muscles (see Sect. 4.3).

More recently, however, the objective of quantifying correlated neural activity
across hand muscles has been pursued to better understand constraints that might
contribute to the coordination of digit movement or forces. Specifically, tasks
involving individuated digit motion or forces, as well as reaching to grasp object
with different shapes, have described the tendency for joint excursions and forces
across digits to be correlated (this is discussed in more detail in Sect. 6). There-
fore, correlated neural input across motor units of hand muscles has been studied
as a potential mechanism that might contribute to constrain neural drive to hand
muscles, hence contributing to the synergistic coupling of digit actions.

An important distinction, however, should be made between the contexts in
which common neural input affects the hand behavior. Specifically, tasks that
require independent action of one digit (e.g., index finger) would be potentially
penalized by the existence of common neural input to muscles acting on
the ‘instructed’ digit as well as the digits that are required to remain stationary
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(e.g., thumb, middle, ring, and little finger). Thus, it has been suggested that
common neural input across finger muscles is one of the factors responsible for the
limited extent to which fingers can move or generate forces independently [41, 42],
therefore causing ‘unwanted’ coupling among the digits [43, 44]. Besides
peripheral constraints such as passive linkages among muscles and tendons, central
limitations contribute to limit the degree to which fingers can be controlled
independently. However, superficial finger flexors appear to be under more inde-
pendent volitional control than deep flexors [45] (for recent studies on the issue of
independent finger control, the reader is referred to [46] and [47]; the interaction
between central and peripheral factors in hand control is discussed in more detail
in Chap. 1).

It has also been suggested that such neural constraints, limiting the independent
action of the fingers, might be considered as a desirable feature in contexts where
coupling of digit actions is required by the task, e.g., to prevent object slip while
holding an object against gravity [48]. Specifically, a tendency for correlated
inputs to motor units acting on different hand muscles or compartments of a multi-
tendoned muscle, e.g. flexor digitorum profundus (FDP), would enhance the
temporal coupling of digit forces [49, 50]. These considerations motivated studies
of common neural input across hand muscles to address the following main
questions: What is the strength of correlated neural inputs across motor units of
hand muscles? Does the strength of common neural input vary across hand
muscles? Is the strength of correlated neural input task-dependent?

4.2 Strength and Distribution of Across-Muscle
Motor-Unit Synchrony

Motor unit studies of force production and object hold tasks have reported mod-
erate to strong common neural input across thumb and extrinsic finger muscles and
compartments, as well as across compartments of finger flexors and extensors [30,
40, 42, 48, 51]. Interestingly, the strength of common neural input is not uniformly
distributed across hand muscles or muscle compartments. For example, Winges
et al. [52] found moderate to strong synchrony across motor units innervating FDP
compartments as well as between FDP compartments and flexor pollicis longus
(FPL). However, synchrony across FPL and the FDP index finger compartment
was significantly stronger than for FPL and any other FDP compartment.
Similarly, significant differences have been found when comparing motor unit
synchrony measured on extrinsic versus intrinsic muscle pairs. Specifically,
intrinsic muscle pairs (FDI and palmar interossei, FPI) are characterized by weaker
across-muscle motor unit synchrony than extrinsic muscles [48, 53]. This is a
striking finding when considering that within-muscle synchrony to FDI and FPI is
significantly stronger than across them [30, 48]. Therefore, there appears to be an
important difference between within- and across-muscle common neural input,
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which has led to the speculation that these two forms of correlated inputs and their
distribution among hand muscles may reflect differences in the muscles’ functional
roles (this is further discussed in Sect. 4). Another important observation is that
motor units of adjacent finger flexor compartments tend to receive stronger
common neural input to motor unit pairs than non-adjacent compartments [36, 42],
thus lending support to the above notion that common input may contribute to the
limited ability of moving adjacent fingers independently (see also a recent study on
motor units of extensor digitorum profundus by van Duinen et al. [46]). The
distribution of common neural input across motor units of thumb and finger flexor
muscles during object hold does not follow the same gradient, however, this
difference is likely due to methodological and task differences (see [48] for
details).

4.3 Strength and Distribution of Across-Muscle
Motor-Unit Coherence

Johnston et al. [27] reported significant across-muscle coherence across a thumb
flexor muscle, FPL, and FDP compartments, as well as across FDP compartments
during a five-digit object hold task. Interestingly and consistent with the above
results on motor-unit synchrony, coherence across FPL and the index finger
compartment of FDP was significantly stronger than across FPL and other FDP
compartments. From a functional perspective, it is noteworthy that coherence
between thumb and index finger forces in the low-frequency range (2—-10 Hz) was
significantly stronger than across thumb and other fingers [54]. Examination of
across-muscle coherence to hand muscles has recently been extended to a larger
number of muscles comprising intrinsic and extrinsic muscles of thumb, index, and
middle fingers [55, 56]. This work has also revealed the existence of significant
across-muscle coherence occurring primarily at low frequencies (<15 Hz), even
though coherence strength varied significantly across muscle groups (the hetero-
geneous distribution of coherence across hand muscles is further discussed in
Sect. 4).

4.4 Task-Dependency of Common Neural Input

Motor unit studies of within- and across-muscle synchrony have also addressed the
question of whether and the extent to which correlated neural input is task-
dependent. To date, a definite answer to this question is not available; therefore a
general consensus has yet to be reached on whether the above described
distribution of common input to motor neurons of hand muscles can be changed
acutely or chronically. Lack of a clear answer is mostly due to differences in how
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task-dependency has been studied or defined, as well as contrasting results from
studies of motor-unit synchrony versus coherence. It is also important to note that
clear evidence for task-dependency would imply a functional role for common
neural input in relation to a behavioral goal, e.g., coordinating multi-digit move-
ments to grasp an object (this is further discussed in Sect. 5). However, the
literature discussed below suggests that common neural input appears to be
sensitive to some task parameters but not others.

Task-dependency has been described for motor-unit synchrony within and
across hand muscles as a function of finger movement direction [57]. The strength
of within-muscle motor-unit synchrony is also sensitive to the type of muscle
contraction, e.g., motor unit synchronization is greater during lengthening than
shortening contractions [28]. Task-dependency of motor-unit synchrony has also
been studied in the context of grasping, in particular on the effects of grip type
(power vs. precision). Winges et al. [30] hypothesized that synchrony between
hand muscle motor units will be dependent on grip type. This expectation was
based on evidence from a study of hand muscle interference EMG [58] indicating a
higher synchronization for power than precision grips. The interpretation of this
finding was that the control of power grip might be simplified by having common
neural drive to all digits, whereas precision grips might require a higher degree of
independence among digits. Winges et al. [30] asked subjects to hold the same grip
device using either thumb and index or thumb and middle finger while measuring
EMG from single motor units of FPL, FDP2 and FDP3. The experimental question
was whether the weaker synchrony exhibited by thumb-middle finger flexors
relative to that of thumb-index finger muscles when holding the object with five
digits [48] would still be found when using two-digits. Such result would support
the notion of muscle-pair specificity of common neural input despite the
re-organization of force relations required to hold an object with two instead of five
digits. If, however, thumb-middle finger flexors had exhibited a significantly
stronger synchrony when holding the device with two versus five digits, the
authors would have concluded that across-muscle motor-unit synchrony can be
modulated based on grip type. It was found that across-muscle motor unit
synchrony of thumb and index finger flexors was stronger than that from thumb
and middle finger flexors regardless of the number of digits (five vs. two) and the
digit pair (thumb-index finger or thumb-middle finger) used to hold the device.
The stronger common motor-unit synchrony across motor nuclei of thumb and
index finger muscles could reflect neuromuscular adaptations to their greater
degree of involvement in many types of dexterous manipulation relative to other
digit pairs. Specifically, thumb and index finger are engaged in nearly all hand-
object interactions, whereas other thumb-fingers pairs are not. Winges et al. [30]
therefore concluded that common neural input is distributed in a muscle-pair
and/or specific fashion, a proposition that received further support through studies
of EMG-EMG coherence (this is further discussed in Sect. 4).

It should also be noted that motor unit synchrony is not correlated with digit
force output during five-digit object hold. Specifically, Winges et al. [48] reported
that motor unit synchrony was strong (CIS: 0.48) across FDP muscle compartments
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(e.g., FDP3-5) innervating digit pairs (middle-ring fingers) that exerted signifi-
cantly less normal forces than most digit pairs. However, the long flexors of the
thumb and index finger were characterized by synchrony of similar strength (CIS:
0.49) and were also the digits that exerted the largest grip force. The lack of
correlation between the strength of common neural input and forces exerted by
most muscle pairs receiving such input indicates that motor unit synchrony is not
directly associated with grip force. Later studies have extended this observation by
showing that a significant increase in maximal index finger abduction force elicited
by strength training (4-8 weeks) does not affect synchrony of motor units inner-
vating an intrinsic muscle (FDI; [59]).

With regard to evidence from studies of coherence, two main frequency ranges,
~1-12 Hz and ~16-32 Hz, have been defined based on the extent to which the
strength of coherence can be modulated to task requirements. Coherence in the low
frequency band (~ 1-12 Hz) is stronger during position holding and lengthening
muscle contractions when compared to shortening contractions [28]. It has been
suggested that coherence in the higher frequency range reflects a “binding”
mechanism [60] enabling efficient activation of task-related groups of neurons
[61, 62]. In contrast to coherence occurring at higher frequencies, the low fre-
quency range does not appear to be affected by the degree of object compliance
during grasping [63], although a later study showed that displacement accounted
for the coherence modulation [64]. Furthermore, Kakuda et al. [65] observed an
increase in the magnitude of 612 Hz coherence between motor units from the
Extensor Carpi Radialis during slow wrist movements versus position holding.

Evidence for task-dependent modulation of common neural input in the low
frequency range has also been provided by studies of grasping. Winges et al. [30]
found that coherence was significantly stronger during two- than five-digit object
hold although, importantly, this observation was not associated with a re-distribution
of common neural input across different muscle pairs for variations in task
requirements (two vs. five-digit grip). Specifically, coherence across FPL and
FDP2 was still stronger than across FPL and FDP3. The authors interpreted these
findings as indicative of an invariant muscle-pair specific distribution of common
neural input that, nevertheless, still allows for modulation of common neural input
strength. It should also be noted that grip type affected across-muscle coherence
but not motor-unit synchrony [30], further stressing the potential independence of
these two mechanisms underlying correlated neural input and suggesting that
motor-unit coherence might be more sensitive to modulation of neural drive as a
function of task characteristics. This might be mostly due to the ability of
coherence to detect correlations in motor-unit activity at longer time lags than
those required for detection of short-term synchrony, e.g., outside of the central
peak region of the cross-correlogram (Fig. 2a; see Sect. 3).

Probably one of the most convincing arguments for plasticity of motor-unit
coherence has been provided by Semmler and colleagues [32]. This study reported
that within-muscle coherence in the 16-32 Hz frequency range from motor units of
the FDI was stronger in strength-trained than skill-trained and untrained subjects.
The authors interpreted this finding by considering the potential functional
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consequences of coherence in relation to habitual muscle usage. Specifically,
weaker across-muscle coherence might correlate with generating a more inde-
pendent control of motor units relative to tasks that would benefit from a more
global activation of motor units for the production of large forces (the relation
between common neural input and muscle synergies is further discussed in Sect. 5).

To examine whether digit force affects the strength of across-muscle coherence,
Poston et al. [56] studied brief submaximal isometric force production tasks using
a three-digit grip (thumb, index, and middle fingers) while interference EMG
activity was simultaneously recorded from six intrinsic and six extrinsic hand
muscles. The total target forces (the sum of all digit normal forces) were 5, 20, 40,
60, and 80 % of the maximal voluntary force. To quantify changes in coherence,
the integral of coherence was computed on pooled coherence from all muscle pairs
(n = 66). Interestingly, force modulation over the voluntary range did not affect
the strength of coherence [56]. This result suggests the existence of a force-
independent distribution of excitatory drive to the hand muscles that were studied
and is consistent with the results of the analysis of EMG amplitude from the same
muscles. Specifically, the distribution of EMG amplitudes of each muscle
remained consistent across target forces. Therefore, despite force-induced changes
in motor unit recruitment and discharge rate to implement force modulation—and
quantifiable as a modulation of EMG amplitude, no significant changes occurred in
how neural drive was distributed to hand muscles. The finding of a invariant
distribution of EMG amplitude and across-muscle coherence should not be con-
sidered obligatory, as a dissociation between these two variables has also been
found, i.e., fatiguing contractions cause an increase in both EMG amplitude and
EMG-EMG coherence [55]. To conclude our discussion of studies on the effect of
force on common neural input, it has been found short term strength training does
not elicit a modulation of across- or within-muscle coherence, respectively. These
findings, together with the above observation that coherence is affected by long-
term skill training, further support the notion of correlated neural input as a
functional mechanism for coordinating the activity of motor units within a muscle
and, possibly, across muscles.

The extent to which correlated neural input to hand muscles might be sensitive
to sensory input from tactile receptors has been addressed by several studies. The
question is particularly important when assigning a functional role to across-
muscle motor-unit synchrony or coherence. For example, tonic input from the
fingertip mechanoreceptors elicited by static grasping or holding of an object
might potentially modulate the efficacy with which a diverging descending neural
drive can temporally couple the activity of target motor neurons. Similarly, such a
modulatory effect driven by tactile mechanoreceptors might also be elicited by
different tactile stimuli, e.g., frictional properties of the contacts. It should be
noted, however, that these questions assume a functional role of common neural
input whereby its modulation might fulfill a given behavioral goal that might rely
on tactile sensing, e.g., preventing an object from slipping when sensing a low
friction object surface. Our preliminary work (unpublished) addressed these
questions by having subjects hold against gravity objects with different frictional
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properties (sandpaper and rayon). We found that, although holding the object
while contacting a more slippery surface elicited larger digit normal forces, across-
muscle coherence was not significantly affected by contacting surfaces with
different textures. These results further point to a dissociation between the
modulation of total digit force magnitude and coherence (see also Sect. 5). Most
importantly, however, they suggest that changes in tactile afferent activity asso-
ciated with sensing the object’s different frictional properties do not significantly
modulate the strength of common neural input to hand muscles. These findings are
consistent with other reports showing that the strength of across-muscle motor unit
synchrony is not affected by tactile input during a simulated two-digit grip [66].
However, there appears to be other instances in which differences in tactile afferent
activity can modulate common neural input. Following digital nerve anaesthesia,
Fisher et al. [67] observed a reduction in the high frequency coherence across hand
muscles during the static phase following a dynamic phase of a force production
task. These authors suggested that tactile afferents might play a role in modulating
across-muscle coherence when neural drive has to be changed during transitions
from dynamic to static muscle contractions. Therefore, it would appear that tactile
input might play a role in certain, but not all tasks.

To further investigate the issue of task-dependency of common neural input, we
have compared the task of holding an object against gravity (unpublished data)
with generating the grip forces of comparable magnitude on an object that was
clamped to the table [56]. Our preliminary analyses indicate that object hold is
associated with significantly weaker across-muscle coherence than generating
forces on a fixed object. These two tasks are characterized by several differences.
For example, the weighting of sensory modalities involved in monitoring ongoing
task performance is mainly visually-driven for the force production task (visual
display of the target force on a computer monitor), whereas tactile input is likely to
dominate object hold against gravity to prevent the object from slipping. Another
difference between the two tasks is that little or no load forces are generated or
required during the force production task, whereas during object hold subjects
modulate digit force vectors such that load forces match the gravitational force
acting on the object. A more important factor, however, might be the mechanical
requirement of generating net zero normal forces and moments associated with
object hold, but not explicitly required by the force production task, e.g., exertion
of non-zero torques on the object do not interfere with producing the target force
as the object is clamped to the table. Therefore, holding an object might require a
greater degree of independence in the neural drive to hand muscles to enable
continuous force compensations across digits, such that changes in force at one
digit are compensated by force modulation at other digits, thus minimizing net
torques. This proposition, however, requires further testing across a wider variety
of task conditions and is the subject of ongoing investigations.
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5 Heterogeneous Distribution of Common
Input to Hand Muscles

5.1 Motor-Unit Synchrony and Coherence: Studies
of Single Motor Units

Bremner and colleagues [36, 37] first reported that motor-unit synchrony is
heterogeneously distributed across motor units of hand muscles revealed through
isometric contractions of the index and/or middle finger. Specifically, the occur-
rence and strength of motor-unit synchrony was higher for hand muscles with
similar mechanical actions on different digits than muscles with different actions
inserting on the same digit. Studies of object hold using a multi-digit grip have
extended these observations by revealing significantly stronger motor unit
synchrony and coherence across motor units of thumb and index finger flexors
(FPL-FDP2) than thumb and all other FDP compartments [27, 52]. These findings
demonstrated that the strength of across-muscle synchrony, traditionally consid-
ered to be weak [36, 37], can be significant. These authors speculated that the
strong across-muscle synchrony exhibited by FPL-FDP2 might reflect the rela-
tively more important role of thumb and index finger among all thumb-finger
combinations for grasping and fine manipulation. Therefore, the stronger syn-
chrony of thumb-index flexors relative to all other thumb-finger muscles suggested
a distribution of common neural input that might be muscle-pair specific. Sub-
sequent work [30, 48] further revealed the existence of heterogeneous distribution
of common neural input to motor units innervating intrinsic (1DI-1PI) and
intrinsic-extrinsic muscle pairs (FPL-1PI, FPL-1DI), the former muscle pair being
characterized by weak synchrony. This was an unexpected result as, traditionally,
synchrony across intrinsic muscles has been reported to be stronger than across
extrinsic muscles [36, 37]. We also recorded motor unit synchrony within each
intrinsic muscle and found that within-intrinsic muscle synchrony (1DI-1DI,
1PI-1PI) was three times stronger than across intrinsic muscle synchrony
(1DI-1PI). These results are consistent with results reported by Mclsaac and
Fuglevand [53] about weak synchrony across motor units of two intrinsic muscles,
adductor pollicis and FDI. The same group also reported that synchrony of motor
units belonging to a given compartment of flexor digitorum superficialis (FDS)
was significantly stronger than across adjacent FDS compartments, such difference
being even larger when comparing within-compartment synchrony versus across
non-adjacent compartments [68].

The above results support the notion that the distribution of across-muscle
motor unit synchrony may reflect the functional role of specific digit pairs. Pairs of
extrinsic flexors of the digits, capable of generating large forces and essential for
coordination of grip forces receive stronger common neural input than pairs of
intrinsic muscles that are important synergists for controlling force direction but
not strong force producers. Similarly, stronger common neural input within than
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across finger flexor compartments might reflect the functional requirement of
decoupling the action of individual fingers. Nevertheless, additional or alternative
factors underlying the heterogeneity with which common neural input is distrib-
uted to hand muscle should be considered (see below).

5.2 Motor-Unit Synchrony and Coherence: Studies
of Interference EMG

Coherence analysis has further confirmed and extended previous observations of
synchrony between motor-unit pairs regarding the existence of a heterogeneous
distribution of common neural input to muscle and muscle compartment pairs
[27, 30, 48, 55, 56]. For example, the muscles innervating the thumb and index
finger (FPL and FDP2) and thumb and little finger (FPL and FDP4) were char-
acterized by the strongest coherence among all muscle pairs during a five-digit
object hold [27]. Furthermore, during a static three-digit force production task,
Poston et al. [56] recorded intramuscular EMG from 12 concurrently active hand
muscles innervating the thumb, index, and middle fingers. The coordination of
hand muscles was quantified in two ways, one based on EMG amplitude of each
muscle (this is further discussed in Sect. 5) and one as across-muscle coherence
from all muscle combinations (n = 66). A main finding of this study was that
coherence was muscle-group dependent, the strongest and weakest coherence
being found across extrinsic and intrinsic muscle pairs, respectively. Interestingly,
this pattern was preserved across a wide range of digit forces (5—80 % of maximal
voluntary force). Such force-independent distribution of common neural input
suggests that increases in descending drive to the motor neuron pool, which result
in an increase in motor unit recruitment and rate coding, do not significantly
change how correlated inputs are distributed to multiple motor nuclei of hand
muscles. These data, consistent with the above described results from motor-unit
synchrony [48], point to a muscle-pair specific distribution of common neural
input. Poston et al. [56] speculated that the stronger coherence exhibited by
extrinsic versus intrinsic muscle groups could be associated with differences in
their functional properties, e.g., how much force they can produce, and/or their
innervations. As described above, extrinsic and intrinsic muscles can also be
distinguished based on their functional role for grasping and manipulation.
However, it should be noted that the muscle-pair specificity of common neural
input should not be interpreted as a discrete and invariant categorization of how
neural drive is distributed to hand muscles for a number of reasons. First, from a
behavioral perspective both sets of muscles interact and contribute to modulate
fingertip force vectors. Second, inputs to spinal motor neurons can undergo plastic
changes. This plasticity might, in turn, alter how motor neurons respond to
common neural input and, therefore, in how it is distributed across hand muscles.
Last but not least, the observations of muscle-specific distribution of common
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neural input have been obtained through a fairly restricted set of experimental
conditions. Therefore, the extent to which they generalize to other tasks involving
coordinated actions among the digits require further experimental work.

The finding of stronger coherence across extrinsic than intrinsic muscles is
particularly interesting because it provides further insight into the principles
underlying how correlated neural input is distributed across hand muscles. As
noted above for coherence measured from motor unit pairs (Sect. 5.2), weaker
coherence across intrinsic than extrinsic muscles might be related to their different
role in manipulation and force production capabilities. Ongoing work aims at
determining the key factors responsible for the heterogeneous distribution of
common neural input among hand muscles. Of particular interest are the questions
of (a) whether the heterogeneity of common neural input is relatively fixed and
(b) whether there are factors—other than the above-mentioned functional differ-
ences among hand muscles—that might account for the wide range of common
neural input strengths.

The question of whether the distribution of correlated neural input is fixed or,
conversely, sensitive to task demands or training is reminiscent of the question
discussed in Sect. 3 (E, F), e.g., whether the strength of common neural input is
task-dependent. However, it has been reported that modulation of common neural
input strength can occur within an invariant distribution among hand muscles [27].
Therefore, the question arises as to whether and the extent to which the force-
independent distribution of common neural input generalizes to other tasks. In a
follow-up study of muscle fatigue, Danna-dos Santos and colleagues [55] observed
a similar, but not identical distribution among the same 66 muscle pairs studied by
Poston et al. [56]. Specifically, the comparison of across-muscle coherence
between the first and last quarter of a fatiguing contraction (three-digit force
production) revealed that fatigue caused an increase in coherence but not in how
coherence was distributed among hand muscles. Therefore, significant changes in
the mechanisms responsible for motor unit recruitment and rate coding underlying
either voluntary force modulation [56] or maintaining a constant force while
fatigue develops [55] do not seem to affect the distribution of neural drive to hand
muscle motor nuclei. Another important consideration is that the distribution of
common neural input remains invariant regardless of whether coherence magni-
tude is modulated [55] or not [56].

A difference between the results of these two studies, however, was that in the
study by Danna-dos Santos et al. [55], no statistically significant difference was
found in coherence from extrinsic and intrinsic muscle pairs. These authors
speculated that methodological and task differences may underlie the different
result. Specifically, Danna-dos Santos and colleagues [55] measured coherence
over a significantly longer time period than Poston et al. [56]. Another major
difference between the two studies is the examination of fatiguing versus non-
fatiguing contractions, respectively. Therefore, it is possible that the distribution
pattern of correlated neural input is sensitive to the duration of a voluntary
contraction and/or to peripheral and central impairments associated with fatigue,
e.g., increased descending drive from supraspinal sources and recruitment of larger
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motor units, transmitter depletion at IA afferent terminals, and increased presyn-
aptic inhibition of IA afferents mediated by activation of group III and IV afferents
by muscle metabolite accumulation (for review, see [69]). One may conclude that
the distribution of correlated neural input to hand muscles is not fixed or insen-
sitive to the characteristics of a task. Further investigations are warranted to
determine the relation between coherence magnitude and distribution in relation to
task demands. However, the evidence from these interference EMG studies as well
as single motor unit studies seem to indicate that (a) correlated neural input to hand
muscles is heterogeneously distributed and that (b) this distribution appears to
reflect anatomical and/or functional differences among hand muscle groups.

With regard to the question of whether factors other than functional differences
among hand muscles might contribute to the heterogeneous distribution of com-
mon neural input, another factor that should be considered is the nerve supply to
given muscle pairs. Specifically, it has been suggested that hand muscles that share
the same nerve innervation might be characterized by stronger common neural
input than muscle that are innervated by different nerves [37]. For example, the
results of Winges et al. [48] could be interpreted as due to the fact that each pair of
muscles (extrinsic, FPL-FDP2; intrinsic, 1DI-1PI) shares the same innervation
(median and ulnar nerve, respectively), whereas the muscle pair characterized by
the weakest coherence (1DI-FDP2) are innervated by two different nerves. Lastly,
an additional factor that might account for the heterogeneous distribution of
common neural input to different hand muscle pairs is the digit they insert on.
Therefore, a digit-specific distribution of common neural input might also be
expected. Preliminary (unpublished) results from our laboratory further indicate
that muscles inserting into digits involved in a three-digit grasping receive com-
mon neural input of different strength. This result was obtained by comparing a
three-digit object hold with force production performed by individual digits, the
thumb, index, and middle fingers muscles being characterized by the strongest
across-muscle coherence.

6 Common Neural Input and Hand Muscle Synergies

6.1 Functional Role of Motor-Unit Synchrony: Theoretical
Considerations

As indicated in Sect. 4, probably the most important question about common neural
input is: “What are the functional consequences of common neural input on motor
control?” This is a difficult question to answer experimentally because divergence
is a defining characteristic of descending neural inputs to hand muscles in primates
(see Chap. 1). One would need, for example, to ‘turn off’ the mechanisms
responsible for constraining the correlations in motor unit firings to measure the
consequences in how digit forces are coordinated during grasping or manipulation.
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Alternatively, one may wish to modulate the strength with which the neural drive to
muscle pairs is correlated, and measure what aspect, if any, of grasp behaviors is
affected. These approaches, however, are not feasible as they would require
selective and tonic activation, deactivation, or modulation of specific cortical
and/or spinal networks. Nevertheless, insights have been provided by studies of
task-dependency of common neural input as well as by computational models.
Specifically, the studies reviewed above (Sect. 4.4) suggest that the strength of
common neural input in time and frequency domains does not correlate with the
magnitude of digit forces, but does correlate negatively with the requirement of fine
motor control of hand muscles, e.g., the extent of digit movement fractionation.
This observation points to a potential role of common neural input for the temporal
coordination of neural drive to hand muscles.

Santello and Fuglevand [70] addressed the question of whether common neural
input might be important for regulating the temporal relations among grip forces
using a motor unit simulation. The focus on the temporal coordination of grip
forces was motivated by previous work on five-digit grasping [49, 71, 72].
Specifically, this work revealed that each pair of digit normal forces during object
hold exhibits in-phase relations. Importantly, this behavior was highly reproduc-
ible in a wide variety of task conditions, e.g., regardless of whether subjects could
anticipate the object’s mass distribution on a trial-to-trial basis or used the dom-
inant versus non-dominant hand. These early observations raised the question of
whether this ‘default’ pattern of digit force synchrony was a mere byproduct of
biomechanical constraints (e.g., multi-tendoned finger flexors) or whether neural
factors, e.g., common neural input, should also be considered. To address this
question, Rearick et al. [50] compared multi-digit grasping of an object that
remained stationary on the table versus holding it against gravity. By matching
the total normal digit force required by the ‘force production’ task with that
elicited by the object ‘hold’ task, these authors could dissociate the (common)
force output requirement from the mechanical constraints that were unique to each
task, e.g., time-to-time fluctuations in force at one digit must be compensated by
force modulation at one or more digits to prevent object slip in the ‘hold’, but not
in the ‘force production’ task. Therefore, the authors hypothesized that in-phase
digit force relations are the byproduct of digit force production per se and thus,
force synchronization should be found in both tasks. Conversely, a task-dependent
modulation of digit force synchronization would indicate that different neural
mechanisms are selectively involved in the two tasks, the expectation being that
holding an object against gravity—challenging grasp stability to a greater extent
than force production—would be associated with more consistent force synchro-
nization among digit pairs. The results supported the latter prediction, between-
digit force synchronization being consistently high when holding the object, but
much weaker and less consistent in the ‘force production’ task. This finding,
therefore, points to neural mechanisms that, by interacting with biomechanical
constraints, can independently modulate the temporal relationships between digit
forces while maintaining the same force output.
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Santello and Fuglevand [70] identified and tested motor unit synchrony as a
mechanism that could potentially account for the experimental results of Rearick
et al. [50]. These authors used a motor unit model developed by Andrew Fug-
levand and colleagues [73, 74]. In the model, the authors imposed varying levels of
across-muscle synchrony to two simulated motor unit populations that activated
two ‘virtual’ muscles and quantified the correlations among simulated forces (a) to
establish whether across-muscle motor unit synchrony could reproduce the above
experimental findings on the coupling of grip forces and (b) to determine values of
across-muscle synchrony that are behaviorally important. Both of these questions
were highly significant as the functional consequences of across-muscle motor unit
synchrony for motor control had not been investigated or quantified. Santello and
Fuglevand [70] reported that that moderate across-muscle synchrony, normally
found in motor-unit synchrony studies (e.g., CIS: 0.3), could lead to force coupling
that was quantitatively similar to that found during multi-digit grasping (see
above). This result is consistent with the notion of across-muscle motor unit
synchrony as a mechanism that can modulate the temporal coordination of digit
forces.

The results of the motor unit simulation study appears to contradict the above-
mentioned unpublished results from a study of EMG-EMG coherence where the
same tasks (force production vs. object hold) were compared using a three-digit
grip (Sect. 4.4). Specifically, across-muscle coherence was stronger in the force
production than in the object hold task, the interpretation being that a higher
degree of independent control of digit forces might be necessary. However, a
direct comparison between the simulated and experimental results might be pre-
mature because it is limited by three main factors: [1] the simulation study
examined motor-unit synchrony, defined as near-coincident firing of motor units,
whereas the identification of coherence is not restricted to synchronous events (see
Sect. 2); [2] motor-unit synchrony and coherence can operate independently, e.g.,
the task-dependent modulation of coherence might have not involved a modulation
of motor-unit synchrony; and [3], to date no simulation study has quantified the
affect of across-muscle coherence modulation on digit force coordination, and
therefore the speculation that weaker coherence is associated with the requirement
of higher digit force individuation during object hold remains to be validated.

6.2 Hand Muscle Synergies

The concept of common neural input as a mechanism that might play a functional,
task-dependent role for the neural control of the hand is related to the broader
concept of muscle synergies. Briefly, muscle synergies are defined as combinations
of groups of muscles. The criteria underlying how certain combinations are
selected by the CNS, the extent to which they are fixed or flexibly adapted to task
conditions, and whether they serve a functional purpose for the control of
movement are questions that are still debated and are subjects of ongoing
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investigations (for a more comprehensive discussion of muscle synergies and
related issues, the reader is referred to a recent review by [75]; see also a recent
study on forelimb muscle synergies in non-human primates associated with reach-
to-grasp and manipulation by [76]). Note that the concept of ‘muscle synergies’
described here is different from the definition of ‘synergies’ used by clinicians
in relation to neurological disorders, e.g., leg flexion synergy also known as
‘Babinski sign’.

Within the framework of the above-reviewed studies of common neural input,
constraints on the temporal relations in the activity of motor unit populations
within and across hand muscles, and/or how common input is distributed across
hand muscles, can be viewed as building blocks for muscle synergies. Specifically,
it has been suggested that the correlated firing of motor units, as measured by
coherence, might be a mechanism by which the central nervous system reduces the
number of independent degrees of freedom to be controlled (e.g., motor units,
forces) [32, 61, 77]. Although the coordination of motor units within a given
muscle can be considered an example of ‘muscle synergy’, often this term is used
in relation to the spatio-temporal coordination of multiple muscles. When exam-
ining neural control of the hand, this problem is equivalent to fingertip forces are
modulated within a digit or, for grasping and manipulation tasks, across digits.

A more viable approach to study common neural input as a mechanisms con-
tributing to muscle synergies is interference EMG, e.g., the recording of electrical
activity of multiple motor units from concurrently active muscles. Studies of
interference EMG of hand muscles have described a tendency for covariation in
EMG amplitude of multiple hand muscles acting on one digit [78, 79] or multiple
digits [55, 56]. Such covariation results from neural constraints through which the
orderly recruitment of motor units and increase in motor unit discharge rate,
indirectly quantified as EMG amplitude, is coordinated across multiple muscles in
a fairly stereotypical fashion, e.g., as a scaling of the EMG vector length but not
orientation, across the range of voluntary forces. As discussed above, the obser-
vation that both EMG-EMG coherence and the distribution of EMG amplitude
across muscles does not change as a function of grip force might suggest a
functional link between these two phenomena.

To further test the phenomenon of covariation of EMG amplitude across
multiple muscles, a recent study of interference EMG examined the relation
between EMG of intrinsic and extrinsic hand muscles during a two-digit grip as a
function of wrist joint angle [80]. This study was designed to determine whether
EMG activity of intrinsic muscles, whose length does not change with wrist angle,
might be modulated in response to an expected EMG modulation of extrinsic hand
muscles. Two alternative scenarios were envisioned: (a) both sets of muscles are
modulated as a function of wrist angle, or (b) EMG amplitude modulation occurs
only in those muscles in which changes in muscle length with wrist angle requires
a concurrent modulation of neural drive to maintain the desired force output.
Johnston et al. [80] reported that EMG amplitude was modulated in both intrinsic
and extrinsic muscles, thus suggesting the existence of a muscle synergy as defined
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above. Common neural input across these two sets of muscles might contribute to
their concurrent modulation in order to generate the desired force output.

Last but not least, and as mentioned in Sect. 2, divergence of inputs to motor
units is not limited to descending inputs as indicated by one-to-many divergence of
tactile stimuli to EMG reflex responses in muscles. One such recent observation
shows that electrotactile stimuli to branches of the digital nerve elicit cutaneous
reflexes across multiple hand muscles (unpublished observations). Most impor-
tantly, however, cutaneous reflexes occur in several hand muscles innervating
different digits regardless of which digit is stimulated. This observation points to
the existence of spinal circuitry that transmits sensory information from one
stimulated digit to muscles that act on stimulated and non-stimulated digit(s). This
concept is similar to that introduced above of a force- or fatigue-independent
distribution of common neural input to hand muscles, both underscoring the
usefulness of analyzing patterns through which correlated inputs might be revealed
by quantifying motor-unit synchrony and/or coherence. The concept of hand
muscle synergies can also inspire the design and control algorithms of robotic
hands. Specifically, for anthropomorphic robotic hands, controls signals that are
shared by task-specific groups of joint actuators—the artificial counterpart of
biological common neural input—could potentially simplify the spatial and tem-
poral coordination of digit forces for grasping and manipulation.

7 Conclusion

The analyses of common neural input, quantified through motor-unit synchrony
and coherence, has provided significant insights into how the Central Nervous
System controls hand muscles, including the task-dependency of common neural
input and a functional gradient in its distribution.

Plasticity has been described for within-muscle motor-unit synchrony and
coherence both at the acute and chronic level. Interestingly, however, short-term
force training has no affect on the strength of common neural input, whereas
long-term skill training does. These observations have been interpreted as indic-
ative of a functional role of common neural input whereby constraints on motor
unit recruitment can be modulated according to task requirements, e.g. movement
direction and lengthening versus shortening contraction. However, task-
dependency (grip type, frictional properties of the contacts) has been found for
across-muscle coherence but not motor-unit synchrony measured during multi-
digit tasks (force production or object hold). These and similar observations
suggest separate mechanisms as well as differential sensitivity of motor-unit
synchrony and coherence in detecting common neural inputs. Several important
questions, however, remain, the most important one being what is the functional
role of common neural input. This question has been addressed mostly using motor
unit simulations indicating a potential role for motor-unit synchrony for the
temporal coordination of digit forces, but further simulation work is needed to
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further characterize the functional consequences of common neural input.
Although it is difficult to directly measure the effect of common neural input
modulation on grasp or manipulative behaviors, experimental work is also needed
to improve our understanding of the link between plasticity and function. If, as
suggested by some authors, common neural input is associated with the require-
ment of coordinating the action of multiple muscles, further studies are needed to
define the range of task conditions within which common neural input should or
should not be modulated.

Even though the functional role of common neural input remains to be
understood, analyses of the pattern of distribution of motor-unit synchrony have
revealed important features of how neural drive is shared among hand muscle
motor nuclei. Specifically, common neural input appears to be distributed in a
muscle-specific fashion. The features of these patterns suggest the existence of a
‘functional gradient’ along which common neural input tends to be stronger across
extrinsic than intrinsic hand muscles. Importantly, voluntary force modulation or
fatiguing contractions do not affect the distribution of common neural inputs,
therefore suggesting a fairly invariant neural network that might reflect functional
differences across muscle groups. However, invariance of muscle-specific distri-
bution of common neural input during short-term experimental manipulations does
not rule out the possibility of plasticity in response to more prolonged practice or
skill learning. A related question is whether the strength and distribution of
common neural input is sensitive to sensory inputs. Although it appears that tactile
feedback is not essential for across-muscle motor-unit synchrony or coherence,
further work is needed to establish the role of sensory modalities that might be
relevant to the performance of grasp or manipulation tasks.
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Chapter 3
MRI-Based Skeletal Hand Movement
Model

Georg Stillfried, Ulrich Hillenbrand, Marcus Settles
and Patrick van der Smagt

Abstract The kinematics of the human hand is optimal with respect to force
distribution during pinch as well as power grasp, reducing the tissue strain when
exerting forces through opposing fingers and optimising contact faces. Quantifying
this optimality is of key importance when constructing biomimetic robotic hands,
but understanding the exact human finger motion is also an important asset in, e.g.
tracking finger movement during manipulation. The goal of the method presented
here is to determine the precise orientations and positions of the axes of rotation of
the finger joints by using suitable magnetic resonance imaging (MRI) images of a
hand in various postures. The bones are segmented from the images, and their poses
are estimated with respect to a reference posture. The axis orientations and posi-
tions are fitted numerically to match the measured bone motions. Eight joint types
with varying degrees of freedom are investigated for each joint, and the joint type is
selected by setting a limit on the rotational and translational mean discrepancy. The
method results in hand models with differing accuracy and complexity, of which
three examples, ranging from 22 to 33 DoF, are presented. The ranges of motion of
the joints show some consensus and some disagreement with data from literature.
One of the models is published as an implementation for the free OpenSim simu-
lation environment. The mean discrepancies from a hand model built from MRI
data are compared against a hand model built from optical motion capture data.
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Abbreviations

Bones

MC Metacarpal bone
PP  Proximal phalanx
PM  Medial phalanx
PD  Distal phalanx

Joints

CMC Carpometacarpal joint

IMC  Intermetacarpal joint

MCP  Metacarpophalangeal joint
PIP Proximal interphalangeal joint
DIP Distal interphalangeal joint
IP1 Thumb interphalangeal joint

Other

DoF Degree(s) of freedom

LOOCV  Leave-one-out cross-validation
MRI Magnetic resonance imaging

MoCap  (Optical) motion capture

The abbreviations for bones and joints are augmented by numbers from 1 for
thumb to 5 for little finger. For the location of the joints and bones, see Fig. 2.
Abbreviations for the joint types are found in Fig. 6.

1 Introduction

Many robot hands have been built after the human example, one of the latest being
the DLR Hand Arm System [1] (Fig. 1). The design of its kinematics was guided by
simple length measurements of a human hand, by functional considerations (e.g.
how do the joint axes need to be inclined in order to achieve a robust opposition
grasp, Fig. 2) and by intuitive appeal of different models to human subjects [2].
Each movement degree of freedom (DoF) of the hand is supplemented by a stiffness
DoF, so that 21 movement DoF of the hand and wrist are driven by 42 antago-
nistically placed motors. By tensioning non-linear spring elements between the
motors and the joints, the mechanical stiffness can be adjusted. This allows to
mimic humans’ stiffness variation in manipulation tasks, to store energy, e.g. for
finger flicking, and to survive heavy collisions. With the motors placed in the
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Fig. 1 Hand, wrist and forearm of the DLR Hand Arm System [1]

robotic “forearm”, the hand is embedded in a Hand Arm System, which provides
five additional movement DoF for shoulder, elbow and forearm rotation.

Here we present a method that aims at very precisely measuring and modelling
movement of the human hand skeleton, in order to verify and further improve
robot hand kinematics. The method is demonstrated by creating hand models that
cover all joints of fingers and thumb as well as the palm arching movement of the
metacarpus (Fig. 3). The models are based on magnetic resonance imaging (MRI)
of an individual hand in 51 different postures, from which bone poses are
extracted, localised, and used to optimise a parametrised general hand model.

Existing methods for modelling hand kinematics are mostly based on cadaver
measurements [3—8] and optical surface tracking [9-16].

In our opinion, measurements at hand cadavers cannot be used to reconstruct
the active kinematics of the hands, since the muscle synergies cannot be taken into
account, plus the fixture by the ligaments is no longer realistic; consequently, such
models will lead to artefacts in the kinematic representation. Models based on
tracking the surface of the fingers, on the other hand, lead to unknown inaccuracies
due to non-linear and varying movement of the soft tissue (e.g. the skin) with
respect to the bones [17, 18]; indeed, such models often ignore phalanx rotation
around their longitudinal axis. To overcome these disadvantages, we measure bone
poses in vivo using 3D medical imaging. We conjecture that our method therefore
leads to more accurate models of human hands.

Fig. 2 Human hand
kinematics enables optimal
grasps by aptly orienting
surfaces with respect to each
other. Here the finger pads of
thumb and index finger are
brought face-to-face
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Fig. 3 The joints and bones
of the fingers, the thumb and
the metacarpus that are
investigated here. Bone
contours adapted from [32]
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The first and probably only previous work that used MRI images for measuring
finger kinematics is by Miyata et al. [19]. They recorded one reference posture and
three other postures to determine helical movement axes for the flexion axes of the
proximal and distal interphalangeal joints of the index finger (PIP2 and DIP2).

We aim to extend the MRI-based kinematic analysis in three ways:

(1) covering all joints of the hand, including multi-DoF joints;

(2) covering the range of motion of all the joints; and

(3) constructing a continuous representation of the hand kinematics from which
any intermediate posture can be generated.

For solving these issues, we need to reproducibly measure the movement of
fixed parts of the fingers, i.e., the bones.

We model the human hand as a kinematic chain with an arbitrary number of
DoF per joint. The optimal number of DoF for each joint, as well as the static
parameters of each of these joints, are optimised from the recorded data. Once
these parameters are determined for each of the joints, a model is generated with a
fixed number of DoF. Since the model is targeted towards the subsequent
implementation in a robotic system [20], only rotary joints are considered—any
more complex joint in a robotic system will probably create friction and control
difficulties.

Data recording is focussed on single subjects rather than statistical averages.
When reproducing the kinematics of the human hand, statistics are of no great
help: that approach would average over a number of participants without taking
principal components of the variation into account. Instead, the kinematics of one
adult individual is measured and reproduced.

The resulting model is made available within the OpenSim simulation envi-
ronment [21]. OpenSim is a software that is able to match motion capture data to
skeletal models, and can be extended to include tendons and muscles. Much of the
human skeleton is already covered: legs, torso, neck, arms and a cadaver-based
thumb and index finger [22]. The hand model presented here will be a step towards
the completion of the human skeletal model.
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2 Methods

In order to determine the kinematics of the human hand, the rigid bones—forming
the endoskeletal structure of the hand—are assumed as key reference points in the
kinematics. The active kinematics is investigated, i.e., as induced by actively
moving the joints through muscle activation, but passive kinematics, i.e., as
induced by putting external forces on the fingers of the hand, is ignored. The
presented reconstruction of the active kinematics of the human hand is based on
the following scheme:

(1) first, 3-dimensional MRI images of the hand are recorded in a large number of
predefined postures (Sect. 2.1). The postures must be chosen so as to represent
the full kinematic range of the hand. Among a large number of other postures,
the Kapandji Test [23] for the assessment of thumb motion is used;

(2) second, in each 3-D MRI image the bones are segmented, using automatic
grey-level-based segmentation followed by manual correction;

(3) third, the position and orientation of each of the bones of the hand is deter-
mined. This is done automatically using novel image-processing algorithms, in
which statistical methods are used to localise known objects in a 3-dimen-
sional visual scene (Sect. 2.2);

(4) finally, from a range of possible joint models (Sect. 2.3), the optimal model for
each joint is selected and the parameters of the joints are determined in order
to minimise the errors in the model (Sect. 2.4). From that, kinematic chains
are defined for each of the fingers, thus ending up with the full kinematic
model.

The results of these steps are presented in Sect. 3.

2.1 MRI Images and Segmentation

The MRI images are taken on a Philips Achieva 1.5 T unit with a Philips SENSE
eight-channel head coil to receive a more homogeneous signal and to improve the
signal-to-noise ratio (SNR). Generally, SNR is proportional to the voxel' volume
and to the square root of the net scan duration:

roc wi, (1)

where r is the SNR, v is the voxel volume and ¢ is the net scan duration, i.e., the
time actually spent for signal acquisition. Thus for every application an individual
compromise has to be found optimally balancing the needs for a small v (high

! voxel “volume pixel” = basic volume element of a 3-D image; analogous to pixel in 2-D

images.
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spatial resolution), small 7 (short scan times to minimise potential motion artefacts)
and large r (image quality sufficient for either diagnosis or—as in this case—the
segmentation of certain anatomic structures).

An optimal compromise is found with a total scan duration (which is always
longer than the net scan duration) of between two and two and a half minutes and a
spatial resolution of (0.76 mm)3 . Note that, from Eq. (1), a voxel volume of
0.38 mm)3 would require 64 times the scan duration in order to achieve the same
SNR. To further minimise motion artefacts the hand is stabilised using modelling
clay. For post-processing, the spatial resolution is interpolated to (0.38 mm)® in
order to achieve sub-voxel resolution in the segmentation process. In the pro-
cessing step after the segmentation, the grey value information is discarded. The
interpolation helps retain some of the information that is contained in the grey
values.

For scanning, the sequence type balancedFFE is used (also known as trueFISP
or balancedSSFP) with Tr/Tg/flip angle = 4.8 ms/2.4 ms/45°. The repetition time
Tr is the time between two successive excitation pulses. The transverse component
of the magnetization is read out at echo time Tg after each pulse.

The advantage of balancedFFE is that it yields a strong signal at short Tr. (In
fact, the signal of the balancedFFE sequence becomes independent of T, which
can be as low as 2.5 ms with the limiting factors being the readout time and the
avoidance of peripheral and heart muscle stimulation.)

As a drawback, balancedFFE is prone to the so-called banding artefacts
appearing as black stripes across the bone. This artefact can in principle be
overcome by applying the balancedFFE offset averaging technique (also known as
CISS or FIESTA-C), but requires twice the scan time.

Another artefact occurring in these sequences is opposed phase fat/water can-
celling, where voxels containing both fat and water, i.e., at corresponding tissue
boundaries, appear dark, because the magnetisation vectors of fat and water point
in opposite directions.

Also a cine-sequence, i.e., a continuous-motion sequence with two to five
images per second, is recorded. However, only one image layer for the whole hand
can be recorded, which renders this method unusable for the purpose of exact bone
localisation.

The images are taken of a 29 year old female subject with no history of hand
problems who gave informed consent to the procedure. Fifty images are taken in
different hand postures with the aim of reflecting each joint’s range of motion.

From the MRI volume images, the bones are segmented. In fact, not the whole
bone volume is segmented but the signal-intense volume inside the bone that
corresponds to the cancellous bone. The tissue between the trabeculae of the
cancellous bone is bone marrow consisting mainly of fat, which yields high signal
intensity in the balancedFFE sequence.

The cortical bone, which forms the outer calcified layer of the bone, hardly
contains any free fat or water protons and therefore stays dark in the MRI image.
Near the bones there are other low-signal structures like tendons, which makes it
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Fig. 4 Segmentation process. Top left: Slice of an MRI image, showing the middle finger
metacarpal (MC3). Tissue types can be discriminated by the intensity of the signal that is emitted.
Segmentation is done at the boundary between cancellous and cortical bone. Top right:
Threshold-based preselection. Botfom left: Manually refined selection. Bottom right: Segmented
volume consisting of the selected areas from all slices

difficult to determine the outer bone surface. Therefore, the boundary between
cancellous and cortical bone is used for segmentation (Fig. 4).

The bones are segmented from the image by highlighting the cancellous bone
area in each slice of the MRI image. In the medical imaging software Amira
(Visage Imaging GmbH, Berlin, Germany), the area is preselected by adjusting a
threshold and refined manually (Fig. 4).
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2.2 Motion Estimation

For the purpose of estimating the rigid motion of bones between different hand
postures, some geometric structure rigidly related to each bone has to be extracted
from the MRI images that can be reliably recovered with little shape variation
between images. Automatic reconstruction of the bone geometry is a challenge, as
the image density of cancellous bone, cortical bone and surrounding tissue can
vary greatly between and across images. Also manual segmentation, besides being
tedious work, is prone to introducing shape variation.

Hence a double strategy is pursued. The border between cancellous and cortical
bone often produces a marked contrast edge at reproducible locations. These
border points can hence be detected by selection of high-contrast points. In the
absence of such a marked density contrast, on the other hand, guidance by manual
bone segmentation is needed. This double strategy is implemented as follows.
First, the bone segments are padded with zero-density voxels to fit in a cuboid
volume. Then a dipolarity score of the padded density within each 3 x 3 x 3-voxel
sub-volume is computed, as

i— C1
Dipolarity(cy, ¢, ¢3) = Yoo k) —Iene )] | j-e
(1K) € fe1—1er+1} k—cs

x{cy—1,c,+1}

x{e3—1,c3+1}

Here I(i,j, k) is the MRI image density as function of the voxel indices (i, , k), and
(c1,¢2,c3) are the indices of the centre voxel within the considered 3 x 3 x 3-voxel
sub-volume. The sum computes the density-weighted centroid of voxels around the
voxel at (cy, ¢, ¢3); its Euclidean norm quantifies the degree of dipolarity of the
density at the centre voxel. It attains high values for centre voxels close to a strong
density edge. Finally, the centre voxels with the top g percent of dipolarity are
selected as representing bone-related points. The grey value information is discarded
in the selected points, but the interpolation mentioned in Sect. 2.1 is used to refine the
point set. The quantile g is chosen to produce a data set of between 2,000 and 20,000
points, depending on the size of the bone. This way, points on the manually deter-
mined bone border are selected in the absence of high-contrast edges in the image;
while high-contrast image edges dominate the selected points where available.

The above procedure produces sets of points that are close to the surface of the
bones. However, missing parts and shape variation cannot be avoided. Moreover,
there is no correspondence of points across different data sets of the same bone. A
robust estimator of motion between such data sets hence has to be employed. A
correspondence-free alignment that is also robust to geometric deviations [24] is
provided within the framework of parameter-density estimation and maximization,
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or parameter clustering. This is a robust estimation technique based on location
statistics in a parameter space where parameter samples are computed from data
samples [25, 26]. The estimator may be viewed as a continuous version of a
generalised, randomised Hough transform. In the present variant, samples are
drawn from the 3-D points selected through the high-dipolarity criterion above.

Let X,Y C R? be the point sets extracted from two MRI images of the same
bone. A motion hypothesis can be computed from a minimum subset of three
points from X matched against a minimum subset of three points from Y. The
sampling proceeds thus as follows:

1. Randomly draw a point triple x;,x2,x3 € X.

2. Randomly draw a point triple y,,y,,y; € Y that is approximately congruent to
the triple x,x,,x3 € X.

3. Compute the rigid motion that aligns (x,x2,x3) with (y;,¥,,y3) in the least-
squares sense.

4. Compute and store the six parameters of the hypothetical motion.

Random drawing of approximately congruent point triples in step 2 of the
sampling procedure is efficiently implemented using a hash table of Y-point triples
indexed with the three X-point distances (|| x; —x2 ||, || X2 —x3 ||, || x3 —x1 ||) as
the key. Least-squares estimation of rigid motion in step 3 computes the rotation
R € SO(3) and translation £ € R® as

(R,t) = arg min [x; +¢ —y, ||
(R'") €SE(3)

+ | Rxo+¢ —y, |+ || Rxs +¢ —y5 |I7].

The special three-point method of [27] is used to obtain a closed-form solution.
The parametrisation of rigid motions chosen for sampling step 4 may have an
influence on the result. In fact, the parameter density from which the samples are
taken depends upon this choice. A parametrisation that is consistent for clustering
is used here, in the sense of [25].

By repeatedly executing the sampling procedure 1—4 above (in the order of 10°
times), samples are obtained from the parameter density for the rigid alignment
problem. This parameter density is similar in spirit to a posterior density, but
without assuming a probabilistic observation model.

The parameter samples can be stored in an array or a tree of bins. The sampling
stops when a significant cluster of samples has formed, as judged from the bin
counts. Then the location of maximum parameter density is searched by repeatedly
starting a mean-shift procedure [28, 29] from the centre of the bins with high
parameter counts. From all the local density maxima found through mean shift,
the location in the 6D parameter space of the largest maximum is returned as the
motion estimate of a bone, in the following denoted as R. and f.. Details of the
implementation are presented elsewhere [26].

The main sources of error in the procedure for estimating bone motion are
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e the variation in bone geometry erroneously represented in the point sets
extracted from different images of the same bone, resulting from variation in
manual segmentation or dipolarity values computed from the images;

e the approximate rotational symmetry about the longitudinal axis of a bone,
especially in case of poor geometric representation lacking shape details.

To get rid of grossly wrong motion estimates, an interactive cluster analysis is
performed on the estimated rotations. Making use of the stochastic nature of the
estimation algorithm, each motion estimate is repeated 100 times with different
subsets of the data being sampled, resulting in motion estimates {Relvtel}' ..
{Re100:te100}- If the angular distance between any two of the 100 motion
estimates exceeds a threshold, clusters of rotation parameters are identified and the
correct cluster C C {1,...,100} is selected through visual inspection (Fig. 5).

The angular distance between two rotations is defined as the angle of a third
rotation that would have to be appended to the the first rotation in order to make it
identical to the second rotation. It is calculated as follows:

angdist(R;, Ry) := arccos (% (trace (RyR; ") — 1)), (2)

where R; and R, are the rotation matrices of the first and second rotation.

The final rotation estimate R is determined as the rotation that minimises the
sum of squared angular distances to all rotations in the cluster, i.e., the mean
rotation in the difference-rotation-angle metric,
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Fig. 5 Visual inspection of pose estimates. The rotational part of 100 randomly repeated pose
estimates is plotted in three dimensions as the product of rotation axis and angle. In this example
there are two distinct clusters. One element in each cluster is inspected by regarding the more
strongly curved side of the neighbouring bone (arrows). The motion of the bottom right cluster
element implies a large, anatomically impossible, longitudinal rotation of the bones. Therefore
the fop left cluster is taken as the correct cluster C
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R = argmin Zangdist(R’,Rei)2 , (3)
R €50(3) | jec

Likewise, the final translation estimate ¢ is determined as the translation that
minimises the sum of squared Euclidean distances to all translations in the cluster,
i.e., the ordinary mean value of valid translations,

o1
’:;Ztcei’ (4)

ieC
where n is the number of elements in the correct cluster C, and £ is the i-th

translation estimate of the bone centroid. The translation estimate of the bone
centroid is calculated as follows:

leei = Reic +ti — ¢,

where ¢ is the bone centroid, i.e., the mean of all points in X. If the correct cluster
contains less than ten elements, the respective bone pose is discarded from the
modelling process. Furthermore, all pose estimates are checked optically and
obviously wrong estimates are discarded.

A natural confidence weight of the final rotation estimates is obtained from the
variance of the sample mean values, i.e.,

2 1

=—— ist(R, Rei)”.
oy n(nil);angdlst( yRei) (5)

This confidence weight enters in the estimation of orientation of rotational axes
for the kinematic hand model below. Likewise, a confidence weight of the final
translation estimates is given by

1 1 -
2 2
=3 |t | 6
t n(” 1) p || ce H ( )

and used in the estimation of the position of rotational axes for the kinematic hand
model below.

2.3 Determining Joint Models

In the fingers of the human hand contain different types of joints. The 1-DoF joints all
are hinge joints (Fig. 6); 2-DoF joints can be divided into two types. The metacarpal
joint of the thumb is a saddle joint. In contrast, the metacarpal joints of the fingers are
condyloid. The main difference between saddle and condyloid joints is that con-
dyloid joints have (roughly) intersecting axes, which saddle joints do not have.
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Fig. 6 Joint types used in the presented method. From left to right: Hinge joint (one axis, “1a”),
hinge joint with combined longitudinal rotation (two coupled intersecting axes, “2cia”),
condyloid joint (two orthogonal/oblique intersecting axes, “2o0ia”/“2ia”), saddle joint (two
orthogonal/oblique non-intersecting axes, “2ona”/“2na”), ball joint (three orthogonal intersect-
ing axes, “3o0ia”) and 3-DoF joint with orthogonal non-intersecting axes (“3ona”, combination of
a saddle and a pivot joint). Upper row images from [33]

The condyloid and saddle joint types are further divided into joints whose
rotation axes are orthogonal and joints whose rotation axes are at any arbitrary
angle to each other. Additionally, a hinge joint with a coupled longitudinal rota-
tion, a ball joint and a 3-DoF joint with non-intersecting axes are defined (Fig. 6).

As mentioned above, one of the goals is to compute an optimal kinematic
model for a robotic system. For that reason, but also for reasons of computational
efficiency and easy representation, the joints are rotational joints with axes fixed to
the proximal bone or the preceding axis in multi-DoF joints. This certainly has an
effect on the accuracy of the model, but this accuracy remains within the accuracy
of the recording and reconstruction method.

Typically there is a trade-off between the complexity and the accuracy of a joint
type. For each joint, the joint type is selected by setting a limit on the mean
deviation between the measured and modelled bone poses, and by selecting the
simplest joint type that fulfils it. Joints that have fewer axes are considered simpler
than joints with more axes, intersecting axes simpler than non-intersecting axes
and orthogonal axes simpler than freely oriented ones. The mean deviation is an
outcome of the identification of the joint parameters (Sect. 2.4).

2.4 Identification of Joint Parameters

The joint parameters (positions and orientations of the rotation axes) are identified
on a joint-by-joint basis by numerically minimising the discrepancy between the
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measured and modelled relative motion of the joint’s distal bone with respect to
the proximal bone. To calculate the relative motion, the absolute motion of the
proximal bone is inversely applied to the absolute motion of the distal bone:

—1] =

R =R, Ry (7)
and

_71 - -
=R, (chrtd—tp—cp)Jrcp—cd, (8)

where {R;,t} is the relative motion of the distal bone with respect to the proximal
bone, {Ry,%,} and {Rq,Z} are the absolute motions of the proximal and distal
bone according to Egs. (3) and (4), and ¢, and ¢4 are the vectors of Cartesian
coordinates of the centroids of the proximal and distal bone.

In order to reduce the dimensionality of the search space, the identification of
the axis orientations and positions is split up into two steps. In the first step, the
axis orientations are identified by minimising the angular difference between the
measured orientations and the modelled orientations.

The modelled orientation R,, of the bone is calculated as follows:

Ry = H rOt(aka qk) (9)
k=1

where n, € {1,2,3} is the number of rotation axes of the joint, a; is the orientation
of the kth axis and g; is the rotation angle around the kth axis. The operator
rot(a, ¢) yields the rotation matrix of a rotation around an axis a by an angle g:

c+cda: dayay—ays aca;+ays
rot(a,q) = | c'axay +a;s ¢+ c’aﬁ c'aya, —ays |, (10)
c'aca, —ays c'aya;+ ays c+ca?
with
¢ =cosgq,
¢ =1— and
s =sing,

where ay, a, and a. are the Cartesian elements of the unit orientation vector a. The
position and orientation vectors of the rotation axes are given in the coordinate
system of the MRI system, and with respect to the bones in the reference posture.

The orientations of the rotation axes and the rotation angles are identified by
numerically minimising the weighted mean square angular difference over all
postures:
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'1p ’ ’ ! 2
(a17"‘7anu7q17"’7qup) = argmin {Zwrjangdist<Rr_,', ij(ala'-wanavqj)) :|7
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a,..ad, ) J=1
(11)
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1
W = (12)
Trpj T T

where 7, is the number of postures, ay,...,a,, are the orientation vectors of the
rotation axes, qi;---q,, are the vectors of joint angles for each posture
. T . ..
je{l,...,n}, where ;= (qy,...,qn;) contains the joint angles for each

rotation axis, wy; is the confidence weight due to the variances afpj and arzdj of the
rotation estimates of the proximal and distal bone in posture j as calculated in
Eq. (5), angdist is the angular distance operator according to Eq. (2), Ry; is the
measured relative orientation of the bone in posture j according to Eq. (7) and Ry,
is the modelled relative orientation of the bone according to Eq. (9).

The positions of the rotation axes are identified by minimising the mean
squared distance between the measured and modelled position of the bone
centroid:

p

(pl,...,pnﬂ) = (alrgrnin Zwtj

BNE)

tmj (pla .. 'apna) - trj

/

PyoeiPyy ) Li=1

with
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for joints with intersecting axes,
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Wy (16)
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where py, .. .,p, are the position vectors of the rotation axes, #,; are the modelled
translations of the bone centroid, #; are the measured translations of the bone
centroid, a; and gy, are the rotation axes and angles as derived from Eq. (11) and
¢q is the position vector of the distal bone centroid.

In order to perform the optimisations described in Egs. (11) and (13), the
fminsearch function of the Matlab computation software is used, which imple-
ments the Nelder-Mead simplex algorithm [30]. The algorithm is called with
broadly different starting points to increase the chance of finding the global
optimum, and not only a local optimum. For Eq. (11), a nested optimisation is
conducted, with an outer optimisation for the axis orientations a, .. .,a,,. Within
each iteration step of the outer optimisation, a number of n,, inner optimisations are
carried out to find the optimum joint angles ¢, .. ., q,,- For the outer optimisation,

the axis orientations are parametrised by two spherical coordinates (azimuth and
elevation), in order to reduce the search space by one dimension as compared to
Cartesian coordinates for axis orientation.

2.5 Leave-one-out Cross-Validation of Joint Parameters

In order to check to what extent the results apply to the investigated hand in general
as opposed to being overfit to the investigated postures, a leave-one-out cross-
validation is performed. For this, the parameters of the joints are identified 7, times,
with n, being the number of measured bone poses, where in each round one of the
poses is left out. The joint parameters (axis orientations and positions) resulting
from each identification are used to move the bone as close as possible to the omitted
pose. The rotational and translational discrepancy between the modelled and
measured bone pose is calculated, and the weighted mean of rotational and trans-
lational discrepancies between the modelled and measured bone poses is calculated.

2.6 Comparison with Optical Motion Capture

Kinematic hand models are built based on MRI data and based on optical motion
capture (MoCap) data. The residual rotational and translational discrepancies of
both models are compared.

Another subject is recruited for MRI and MoCap measurements, because the
previous subject was not available anymore. Due to time constraints, only one
reference posture and 19 other postures are recorded with MRI, using a turboFFE
sequence and a spatial resolution of (1 mm)?®. For MoCap, a Vicon system (OMG
plc, Oxford, UK) with seven 0.3-megapixels cameras is used. One finger is
recorded at a time, with three retroreflective markers per finger segment. One
reference time sample and nineteen representative other samples are selected from
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the capture data. In the reference frame, bone coordinate systems are attached
manually to the marker triples of each segment. The motion of the finger segment
from the reference posture to the other postures is determined using the least-
squares method by [27].

One joint instead of three joints is used to model the palm, because the motion of
the single metacarpal bones is difficult to discriminate with MoCap. The same
fifteen joints for fingers and thumb as described above are used. The thumb CMC
joint is modelled with two non-orthogonal, non-intersecting axes (2na), the MCP
joints are modelled with two orthogonal, intersecting axes (2o0ia) and the remaining
joints are modelled with single axes (1a). The axis parameters and residual rota-
tional and translational discrepancies are modelled as described above.

Additionally, whole finger postures are matched with both methods. For this,
the joints are concatenated to form kinematic chains. The global pose and the joint
angles are optimised to minimise the mean rotational and translational discrep-
ancies between the modelled and measured bone poses. For this, a weighting
between the rotational and translational discrepancy is decided. One millimetre of
translational discrepancy is treated with the same weight as one degree of rota-
tional discrepancy.

The means of the residual discrepancies are tested with a two-tailed Student’s
¢ test for unpaired data, with a significance threshold o« = 5%, to find out if they are
statistically significantly different. We conjecture that the MRI method will lead to
lower residuals than MoCap, because the measurements are not disturbed by soft
tissue artefacts. The null hypothesis is that the mean residuals are equal.

3 Results

The calculation steps described in the previous Methods section lead to optimised
joint parameters. By setting a limit on the modelling error, the joint types for each
joint are found (Sect. 3.1). The modelling error is computed for each joint and
checked by a leave-one-out cross-validation (Sect. 3.2). The measurement error is
assessed by a repeatability test (Sect. 3.3). As far as available, results are com-
pared to data from literature (Sect. 3.4). The software implementation of the hand
model is introduced (Sect. 3.5).

3.1 Joint Types

The main results of the presented method are movement models of the analysed
human hand. Depending on the desired accuracy in terms of discrepancy between
modelled and measured bone poses, hand models with different complexity are
generated. In Fig. 7, different hand models from simple (fop) to complex (bottom)
are presented.
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Fig. 7 Variants of the
kinematic model at different
accuracy constraints, dorsal
view (left) and radial view
(right). Top: 22 DoF,
rotational deviation <9°,
translational deviation

<6 mm. Middle: 24 DoF,
rotational deviation <6°,
translational deviation

<3 mm. Bottom: 33 DoF,
rotational deviation <3°,
translational deviation

<2 mm. In joints with more
than one axis, the first one is
marked “1”, the second one
“27”, and, if existing, the third
one “3”
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In the simple model, four joints are modelled as 2-DoF universal joints: thumb,
index, ring and little finger MCP. The other joints are modelled as 1-DoF hinge joints.

The intermediately complex hand model (middle) differs from the simple one
by providing two DoF each to MCP3 and CMCI. The joint axes of MCP3
intersect, while the ones of CMC1 do not.

The most complex model (bottom) models CMC1 with three non-intersecting
axes, with the third one allowing a longitudinal rotation (pro-/supination) of MC1.
A longitudinal rotation is also enabled in DIP2 and PIP5, while PIP2 allows a
combined longitudinal rotation and sidewards movement. The little finger DIP
joint allows a longitudinal rotation only in an extended position. Additional DoF
for sidewards movement are found in DIP2, DIP3, DIP4 and IP1.

The weighted-mean rotational deviation per joint ranges from 1.6° in IMC3 to
5.5 in IP1. The maximum rotational deviation in a single hand posture is 17.2° in
CMC1. Weighted-mean translational deviation ranges from 0.9 mm (PIP4) to
2.6 mm (CMC1), and the maximum translational deviation in a single hand pos-
ture is 7.2 mm, and also occurs in CMC1. The examples in Fig. 8 are supposed to
give a feel of these values.

F

Fig. 8 Comparison of measured (bright) and modelled (dark) bone poses in several postures.
Top left: Pose of the bone MC4 relative to MC3 in posture 36. The rotational discrepancy is 1.6°
and the translational discrepancy is 1.0 mm. The arrow is the rotation axis of the modelled IMC4
joint that connects MC3 and MC4. Top middle: DP1 relative to PP1 in posture 1. Discrepancy:
5.5°, 1.4 mm. IP1 joint. Top right: MCI relative to MC2 in posture 29. Discrepancy: 17.2°,
6.4 mm. CMC1 joint. Bottom left: MP4 relative to PP4. Discrepancy: 2.6°, 0.9 mm. PIP4 joint.
Bottom middle: MCI1 relative to MC2 in posture 24. Discrepancy: 5.5°, 2.6 mm. Bottom right:
MCI1 relative to MC2 in posture 35. Discrepancy: 5.1°, 7.2 mm
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3.2 Cross-Validation of the Results

For most joints, there is only a slight increase of the rotational and translational
modelling error from the whole data mean error (columns 3 and 5) to the LOOCV
mean error. For example, in the thumb MCP joint, the mean angular when using all
poses is 2.5°, and the mean angular error of the LOOCYV is 2.9°. In the same joint,
the mean translational error is 1.2 mm when taking into account all poses and
1.3 mm in the LOOCYV analysis. This means that the results are generally valid for
the investigated individual hand and do not depend on certain postures.

All differences for the translational error are within 0.2 mm and all differences
for the rotational error are within 1.0° except for the thumb interphalangeal joint,
where the difference is 1.2° and the little finger metacarpophalangeal joint, where
it is 3.0°. In these exceptional cases the joint parameters depend strongly on the
selection of the subset of bone poses. This means that there are single extreme
poses is the data that are not adequately represented by the other poses.

3.3 Motion Estimation Repeatability

The repeatability of the motion estimations is examined by repeating it 100 times
with randomly permuted point sets. The standard deviation of the rotation and
translation estimate is given in Table 1 as the square root of the variance described
in Egs. (5) and (6).

3.4 Comparison with Results from Literature

Comparing the range of motion (RoM) of the MCP joints with the values provided
by [31], in most points the results agree, but some are different [31] states that

(1) the flexion RoM “falls short of 90° for the index but increases progressively
with the other fingers”,

(2) “active extension [...] can reach up to 30° or 40°” and

(3) “the index finger has the greatest side-to-side movement”.

In the hand we used in our measurements, a smaller flexion RoM for the index
finger (80°) is measured, while there is an increase towards in the little finger:
middle and ring finger are similar with 86° and 84°, respectively, and the little
finger has a flexion RoM of 95°. The active extension RoM is 30° (index), 33°
(middle), 43° (ring) and 52° (little finger) and therefore higher than the ones in [31]
for the ring and little finger. We agree that, for the hand we investigated, index
finger side-to-side movement is greater than that of the other fingers with 59°
(index), 43° (middle), 44° (ring) and 54° (little finger).
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Table 1 Standard deviation of the motion estimation for the rotational (¢;) and translational (o)
part. The minimum, maximum and mean over all images are given

Bone a: (°) oy (mm)
Min Max Mean Min Max Mean

MC1 1.0 53 3.0 0.1 0.2 0.1
PP1 1.6 5.7 32 0.1 0.3 0.1
PD1 1.2 54 1.8 0.1 0.3 0.1
MC2 1.7 8.0 32 0.1 0.4 0.2
PP2 1.0 5.9 2.8 0.1 0.2 0.1
PM2 1.2 3.7 2.1 0.0 0.1 0.1
PD2 3.2 4.9 39 0.0 0.1 0.1
MC3 1.1 23.7 2.6 0.1 0.5 0.2
PP3 1.3 5.8 3.1 0.1 0.2 0.1
PM3 1.0 2.9 1.7 0.0 0.1 0.1
PD3 2.9 5.1 33 0.1 0.4 0.2
MC4 1.4 7.6 33 0.1 0.5 0.1
PP4 0.9 8.9 34 0.1 0.2 0.1
PM4 1.2 8.5 2.5 0.0 0.4 0.1
PD4 2.1 4.3 2.9 0.1 0.2 0.1
MC5 1.4 11.2 3.6 0.1 0.4 0.1
PP5 1.5 7.1 33 0.0 0.1 0.1
PM5 1.0 4.3 2.8 0.0 0.1 0.1
PD5 0.1 4.4 3.1 0.0 0.1 0.0
All 0.1 23.7 2.9 0.0 0.5 0.1

For the PIP and DIP joint, Kapandji states that

(1) the “range of flexion in the PIP joints is greater than 90°” and

(2) in the DIP joints “slightly less than 90°”,

(3) the range “increases from the second to fifth finger” to 135° (PIPS) and
(4) to “a maximum of 90°” (DIP5);

(5) the range for PIP extension is zero and

(6) for active DIP extension zero or trivial.

Our measurements agree with points 1 and 2. An increase from second to fifth
finger (points 3 and 4) is not observed. Small PIP and DIP extension angles (up to
22.5°) are measured.

3.5 OpenSim

The OpenSim model of the hand contains simplified bone geometries and the full
set of joints. The joints can be moved by sliders (Fig. 9). The OpenSim framework
also provides for the extension of the model with tendons and muscles [21]. The
model is available for download as a zip-compressed file at http://www.robotic.dlr.
de/human_hand.


http://www.robotic.dlr.de/human_hand
http://www.robotic.dlr.de/human_hand
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Fig. 9 Screenshot of the OpenSim application. Each DoF of the skeletal model can be moved by
a slider

3.6 Dependence of Results on Starting Points

The result of the parameter identification is in some joints sensitive to the opti-
misation starting point and in others not. For example, the parameters of the CMC1
joint were optimised with three different starting points for each of the two axis
orientations and three different starting points for the axis offset. The results are
slightly sensitive to the axis orientation starting points, with rotational error
ranging from 2.95° to 3.18°. The variation of the axis offset starting point has no
effect on the results. In other joints, for example the IP1 joint, the optimisation
starting points have no effect on the result.

3.7 MRI versus MoCap

MRI and optical motion capture (MoCap) were compared with respect to the
residual discrepancies, as described in Sect. 2.6. The results of this comparison are
shown in Fig. 12.
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The mean rotational residual for single joints is 4.4° for MRI data explained by
the MRI-based model and 4.7° for MoCap data explained by the MoCap-based
model. The mean translational residual for single joints is 1.4 mm (MRI) and
1.2 mm (MoCap) respectively. The mean rotational residual for whole fingers is
3.5° and 3.6°, respectively. The mean translational residual for whole fingers is 1.2
and 1.5 mm, respectively.

The null hypothesis that the data come from distributions with the same mean
could not be rejected except in the case of the translational residual of single joints.
The mean translational residual is statistically significantly smaller for MoCap
than for MRI.

4 Discussion

We showed that MRI images can be used to build a movement model of the human
hand. Estimating the longitudinal orientation of the bones proved difficult, but
reasonable accuracy could be achieved by repeated measurements. The resulting
model can be used for visualising skeletal motion based on motion capture data,
using the freely available software OpenSim.

It should be borne in mind that the presented models are based on one indi-
vidual hand. Since different people have different hands in terms of e.g. size,
flexibility and possibly kinematics, the models should be used with caution. In
OpenSim there is, however, a functionality to scale skeletal models according to
measured marker movements. This might compensate part of the inter-individual
differences.

4.1 Consideration of Errors

There are six sources for errors in the kinematic modelling process:

(1) selection of postures,

(2) MRI acquisition,

(3) segmentation,

(4) motion estimation,

(5) joint definition, and

(6) joint parameter identification.

It is impossible to consider all possible postures of each joint as they are
infinite. Ideal, therefore, would be a very dense sampling of postures during a large
number of different movements. This is not possible in MRI due to cost and time
constraints. Hand postures for this work are selected so that for each joint, the
extremes and some intermediate positions are covered. The selection of postures
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influences the resulting model in the way that multiple recordings of similar joint
postures assign them a greater weight compared to postures that occur only once.

In MRI acquisition, same tissue can be represented by different grey values.
Artefacts such as missing parts, motion artefacts, artefacts due to the surrounding
tissue and possibly distortions can occur. A discretisation error occurs due to the
spacial resolution of (0.76 mm)>.

In the segmentation process, the segmented shape depends on the way the
operator defines the grey value thresholds and manually refines the selection. The
combined error of MRI acquisition and segmentation is illustrated by the distri-
butions of grey value and segmented volume (Figs. 10 and 11).

An attempt was made at measuring the error of the MRI image acquisition by
taking images of an animal bone without surrounding tissue, in order to discard the
need for segmentation. However, the images showed hardly any signal, which
might be due to the missing surrounding tissue or to a lack of humidity within the
bone.

The motion estimation error depends on the quality of the segmented point
clouds and the robustness of the algorithm with respect to differences in shape and
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grey value distribution. The combined error of steps 2 to 4 is partly expressed by
the repeatability values in Table 1, which however do not reflect a potential bias.

In this work, joints are modelled as rotational joints with constant parameters.
In the case of a 1-DoF joint, this corresponds to rigid joint surfaces with perfectly
circular cross-sections orthogonal to the joint axis. The 3-DoF joint with inter-
secting axes would be ideally represented by spherical joint surfaces. These are
simplifications of the human joints with elastic cartilage and more complex
surfaces.

The parameters of the defined joints are identified by way of numerical opti-
misations. These may introduce error by finding local optima. This error is
assessed by the robustness of the result in the face of varying starting points
(Sect. 3.6).

Magnetic resonance imaging (MRI) vs. optical motion capture (MoCap)
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-a E 2 k3 + :_. +
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Fig. 12 Comparison of MRI and MoCap. On the left, single bone poses are measured, and on the
right, whole finger postures. The points marked by “plus” signs show the residual rotational
discrepancies in degrees and the translational discrepancies in mm, respectively, of each bone
pose in each posture. The bars show the mean values. The value n is the number of bone poses,
and the p-value is the probability that a difference of means equal or larger than the observed one
would occur if data were sampled from normal distributions with an identical mean
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4.2 Joint Types

The model in the middle of Fig. 7 seems to be the most natural one with two DoF
for the thumb CMC and the MCP joints and one DoF for all other joints. The
simpler model lacks a second DoF in the thumb CMC joint and in the middle
finger MCP joint. On the other hand, the more complex model at the bottom has
many additional DoF: in the thumb CMC and IP joint, in the PIP joints of index
and little finger and in all the DIP joints. The tendon structure of the hand makes it
seem unlikely or impossible that these axes represent independently actuated DoF.
They probably compensate bone pose measurement errors or deviations of the
bones from a perfectly circular path that really occur in the hand.

4.3 Thumb CMC Joint

At the thumb CMC joint, the largest translational error occurs. This might be due
to the fact that the thumb metacarpal poses are determined with respect to the
index finger metacarpal. However, the bone that the thumb metacarpal articulates
with is the trapezium bone, which is one of the carpal bones. Another possible
explanation is that the motion of this joint is more complex, so that simple rotation
axes are not sufficient to fully model it.

4.4 Comparison Between MRI and Optical Motion Capture

Fitting a model with equal number of DoF to either MRI or optical motion capture
(MoCap) data yielded no statistically significant differences in the mean residuals
in three of four comparisons, and one statistically significant difference in favour
of MoCap (Fig. 12). This contradicts our initial hypothesis that MRI data can be
fitted with significantly smaller residuals. The effect of the soft tissue artefact on
MoCap data seems not to be as strong as initially postulated.

Acknowledgments The authors would like to thank Karolina Stonawska for the tedious work of
segmenting the bones. This project was partly funded by the EU project The Hand Embodied
(FP7-1CT-248587).
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Chapter 4
Transmission of Musculotendon Forces
to the Index Finger

Sang Wook Lee and Derek G. Kamper

Abstract This chapter reviews work completed by the authors and others to
examine the mechanisms of musculotendon force transmission to the index finger
and, ultimately, to generation of desired force at or movement of the fingertip.
Specifically we examined the roles of finger posture, passive joint impedance,
anatomical pulleys, and the extensor hood in mapping muscle forces to finger
dynamics. Results from in vivo and in vitro experiments, as well as from bio-
mechanical modeling of the musculotendon structure of the index finger, are
provided. These findings can inform both the study of motor control of the hand
and the potential design of robotic end-effectors.
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1 Introduction
1.1 Complexity of the Human Hand

The human hand consists of a remarkably complex musculotendon structure
designed to maximize power and agility while minimizing mass and bulk of
the hand. A total of 39 extrinsic and intrinsic musculotendon units control the
movements of the 27 bones in each hand. Over 25 degrees-of-freedom (DOF) are
available to generate the sophisticated finger and wrist movements possible with
the human hand [1].

1.2 Index Finger Musculotendon Structure and Tendon
Force Transmission

1.2.1 Musculoskeletal Structure of the Index Finger

The index finger alone is comprised of three joints: metacarpophalangeal (MCP),
proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints with a total
of four DOF (one each for DIP and PIP, and two for MCP). These joints connect
the four bones of the index finger: metacarpal, proximal phalanx, middle phalanx,
and distal phalanx. Motion about the joints is controlled by seven different mus-
cles: four extrinsic muscles which are located in the forearm and three intrinsic
muscles contained within the hand. The extrinsic muscles consist of two long
extensor muscles, extensor digitorum communis (EDC) and extensor indicis
proprius (EIP) and two long flexor muscles, flexor digitorum superficialis (FDS)
and flexor digitorum profundus (FDP). As the relatively large muscle bellies for
these muscles reside in the forearm, only their tendons run through the hand,
thereby reducing the necessary weight and size of the hand. The intrinsic muscles
consist of the first dorsal interosseous (FDI), first palmar interosseous (FPI), and
lumbrical (LUM) muscles (Fig. 1). The intrinsic muscles are generally smaller in
size (aside from FDI) than the extrinsic muscles and are thought to have a greater
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impact on fingertip force direction than magnitude [2]. Each of these index finger
muscles impacts multiple DOF.

1.2.2 Musculotendon Connections on Palmar Side

On the palmar side of the fingers, both FDP and FDS travel through a series of
anatomical pulleys that shape the tendon path (Fig. 2a). The pulley system is
comprised of five annular pulleys and three cruciform pulleys, which arise either
from the phalanges or from the volar plates of the three joints [3]. The direct tendon
pulling forces are applied to only more distal segments, i.e., the distal phalanx for
FDP and the middle phalanx for FDS. The pulleys restrict bowstringing of the
flexor tendons as the finger joints flex. This has the effect of transmitting some of
the force within the FDP and FDS tendons to other segments of the finger. The
magnitude and direction of the force applied to the pulley is dependent upon the
joint posture. Thus, the anatomical pulleys impact fingertip motion or fingertip
force production resulting from a specific muscle activation pattern.

1.2.3 Musculotendon Connections on the Dorsal Side

On the dorsal side of each finger, tendons from multiple muscles insert into the
extensor hood, an aponeurotic sheet, also referred to as the “extensor apparatus”
[4],“dorsal aponeurosis” [5], “tendinous rhombus™ [6], and “extensor mechanism”
[7] (Fig. 2b). In the index finger, the hood is comprised of the tendons for EDC,
EIP, FPI, and LUM, and sometimes FDI. Transverse and oblique fibers connect the
tendons to each other (i.e., EDC to the lateral bands from LUM and FPI) or to the
palmar plate near the MCP joint (sagittal bands, [8]) (Fig. 2b). The structure is also
connected by transverse and oblique retinacular ligaments to the palmar plate at the
PIP joint and into the pulleys of the flexor tendons. The extensor hood has two
primary insertions into the phalanges: the central slip from the EDC and EIP
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tendons inserts into the base of the middle phalanx just distal to the PIP joint and the
terminal slip, arising from two lateral bands with contributions from EDC, EIP, FPI,
and LUM, inserts into the dorsal base of the distal phalanx just beyond the DIP
joint.

Due to its complex structure, tendon force transmission within the extensor hood
and its contribution to the finger kinetics is still not well understood. It has been
studied by using optimization techniques, which usually minimize the weighted
sum of muscle forces or maximize the endurance [9—12]. Strains and geometric
changes in selected regions of the extensor mechanism have also been directly
measured by varying tendon loading conditions and finger postures [7, 13, 14].

1.2.4 Tendon Force Transmission Within the Hand

Ultimately, the different structures of the finger work together to position the fin-
gertip or to create desired forces between the fingertip and an object. Fundamental
to this control is the translation of musculotendon force into fingertip movement/
force. Both in vivo and in vitro studies have examined relationships between
muscle activations, or tendon forces, and fingertip forces/moments [2, 15-17]. The
contribution of individual tendons to finger kinetics, however, has not been eval-
uated explicitly. The direct measurement techniques that correlate the measured
joint moment to the applied tendon force via in vitro experiments have been
implemented to evaluate the contribution of tendon forces to joint moments
[18-20], but the measured joint moments usually include passive joint moments
produced by extrinsic (inactive muscle—tendon units) and intrinsic (cartilage, lig-
ament, joint capsules) tissues of the hand. Several dynamic models of the finger
have also been developed to elucidate the kinetic functions of the finger flexor
muscles [9, 10, 17, 21]; however, most of these dynamic models employed inverse
dynamics, for which the mechanism involved in the transformation of muscle
forces into joint torques cannot be examined in detail.

As noted, almost all of the tendons in the finger cross more than one joint. Thus,
forces are transmitted from the insertion sites to more proximal segments via joint
reaction forces and resistance torques generated by passive joint impedance (i.e.,
stiffness and damping). This passive impedance seems especially important for
torque transmission to proximal joints [10, 22, 23]. Local stiffness is highly
dependent upon joint angle [22]. Similarly, joint posture affects muscle length
[24], as well as contact and pulley forces, thereby impacting the mapping of
tendon to fingertip forces. Thus, knowledge of finger posture is vital for control of
the hand. Proprioception provides key information regarding the kinematic state
of the joints. Proprioceptive perception is derived from a variety of sensory inputs
such as muscle spindle afferents, cutaneous mechanoreceptors, joint receptors, and
Golgi tendon organs (for details, see the chapter ‘Proprioceptive mechanisms and
the human hand’ by Walsh, Taylor, and Gandevia).
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1.3 Outline of the Chapter

The goal of this chapter is to elucidate the means by which musculotendon forces
are transmitted to the index finger to yield desired force production at or move-
ment of the fingertip. This mapping in the fingers is complicated by four key
factors: passive joint impedance, multi-articular musculotendons, anatomical
pulleys, and the extensor hood. Results of in vivo and in vitro experiments, as well
as of biomechanical modeling of the musculotendon structure of the index finger,
are provided.

2 Joint Impedance

The mass and inertia of the finger segments are quite small relative to other
segments. Accordingly, gravitational and inertial forces have a smaller impact on
finger dynamics. Rather, the resistance torques generated by passive joint
impedance (e.g., stiffness and damping) play a much larger role in determining
finger movement. This impedance arises from the mechanical properties of
surrounding passive tissues such as ligaments, skin, and inactive muscles and
tendons. A variety of measurement techniques have been implemented to estimate
these passive properties and the resulting impedance.

2.1 Parameter Estimation: Different Models

2.1.1 Mathematical Model of Nonlinear Viscoelastic Joint Passive
Moment [25]

In this study, the authors aimed to identify the viscoelastic property of the passive
moment, i.e., the dissipative part of the passive moment of the finger MCP joints.
They utilized two different tests. First, the relaxation of the moment was measured
over a range of MCP joint angles in the index finger. Then, in a constant-velocity
test, the joint moments were measured while the joint was cycled through its full
range of motion. Measurements were made at five different angular speeds to
determine the effect of rate of joint rotation on passive joint moment. A cus-
tomized device, consisting of a vertical cantilever beam and a strain gauge, was
used to measure the MCP joint moment. During measurements, the index finger
was strapped to a brace so that the DIP and PIP joint angles remained fixed
throughout the MCP motion.

Based on the experimental data obtained from three subjects, empirical models
of moment relaxation and instantaneous elastic response of the finger joints were
determined. While the proposed mathematical model was capable of describing
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the behavior of the passive finger joint moments, a large degree of inter-subject
variability in the identified model parameters was also observed. More impor-
tantly, the behavior of the dissipative part of the passive moment required
modeling by joint speed raised to a power less than one. This indicates that the
dissipative part of the passive moment cannot be described by traditional linearly
viscous models or a Coulomb friction model. Values were not obtained for the PIP
or DIP joints.

2.1.2 Intrinsic and Extrinsic Contribution to MCP Passive
Moment [26]

The particular objective of this study was to delineate the relative contributions of
the intrinsic tissues crossing a single joint, such as articular cartilage, ligaments
and inactive intrinsic muscles, and of the extrinsic tissues crossing multiple joints,
i.e., inactive multi-articular musculotendons (e.g., FDP and FDS tendons), on the
passive impedance of the MCP joint. The passive moment about the MCP joint
was measured by the same custom-design device used in [25] during a complete
cycle of joint extension and flexion at various wrist positions. Therefore, the
intrinsic component was modeled as a function of the MCP joint angle, and the
extrinsic component as a function of the MCP joint angle and wrist angle.

The results of this study indicated that the contribution of extrinsic components
becomes significant near the flexion and/or extension limits of the MCP joint
angle, while the contribution of intrinsic tissues is dominant when the wrist is
flexed or extended sufficiently to slacken the extrinsic tissues.

2.1.3 System Identification Approach [22, 27]

In this study, the finger passive joint impedance was estimated in an attempt to
accurately describe the role of the long finger flexors (i.e., FDP and FDS) on index
finger movement generation. The authors employed a system identification tech-
nique to estimate the dynamic characteristics of the passive joint impedance (i.e.,
stiffness and damping). Pseudo-random binary sequences of +2° in amplitude
were imposed at different operating points (i.e., flexion angles) of each joint, and
the dynamic characteristics of the joint passive impedance were computed by
fitting a linear 2nd-order inertia-damping-stiffness dynamic system model at each
operating point (Eq. 1). Local stiffness was found to vary substantially with joint
angle for all three joints, but the damping coefficients remained relatively constant
across postures.

© =10+ B0+ K(0 — 0p) (1)

Due to limitations with the system, however, only one joint could be rotated at
any one time; the other two joints were kept in the neutral (0°) flexion/extension
posture while the third joint was manipulated. Thus, exploration of the finger
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workspace was limited. Recently, this group developed a novel actuated exo-
skeleton for the index finger, the FingerBot, which can independently actuate each
of the three joints [27]. A system identification technique similar to the one used in
the previous study [22] is currently being employed to measure the passive joint
impedance of the index finger throughout the sagittal plane workspace.

2.1.4 Theoretical Model of Joint Passive Moment [10]

The biomechanical model of the finger developed by Sancho-Bru et al. [10]
attempted to theoretically model the passive MCP joint moment produced by ulnar
and radial ligaments over the MCP joint using a quadratic relationship between the
ligament force and its elongation. This model utilized in vitro experimental data
from literature to determine the insertion points of the ligaments [28], the rotation
and orientation of the joint rotation axes [29], and the ligament stiffness values
[30].

2.2 Impact of Joint Impedance

Kamper et al. [22] included their experimentally determined values of passive joint
impedance in a planar model of index finger dynamics. The authors modeled the
FDS and FDP tendons as cables running through pulleys attached to the different
finger segments. The inclusion of the passive joint impedance in the finger model
was crucial to accurate replication of the movement pattern (i.e., spatial joint
coordination pattern) of the in vivo data obtained by the electrical stimulation of
the FDS and FDP muscles. The concurrent flexion of all three finger joints that was
seen experimentally could only be achieved with simulations including the passive
joint impedance.

Similarly, Lee and Kamper [23] assessed the importance of passive joint
impedance in tendon force transmission to proximal joints by examining the
effects of the removal of passive components using a biomechanical model of the
index finger. While the original biomechanical model was capable of accurately
predicting the movement pattern generated by the stimulation of FDP muscle
(Fig. 3a vs. b), removal of passive components from the model resulted in an
abnormal movement pattern of rapid DIP flexion followed by PIP flexion, while
the MCP joint was slightly extended (Fig. 3c). This confirms the importance of
passive impedance in the tendon force transmission to the proximal joints; without
the passive impedance, the proximal joint flexion can only occur after the distal
joint reaches its physical flexion boundary, at which point it acts as a rigid rather
than rotational connection.
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Fig. 3 Finger flexion movements obtained from the experiment (a) and the simulation (b). Spatial
coordination of the joint flexion angles of the model-generated movements (a) in response to two
levels of tendon force (2.5 vs. 3.5 N) were compared with that of representative flexion movements
generated in response to electrical stimulation of FDP(I) (Subject 1) (a). ¢ Simulation without passive
stiffness and damping. FDP tendon force = 0.01 N. Removal of passive joint properties resulted in
rapid DIP flexion, followed by PIP flexion; MCP joint was extended. Here, both DIP and PIP joint
flexion reached their upper bound. Figure adapted from [23]. Used with permission from IEEE
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3 Multi-Articular Musculotendons

Finger musculotendons are multi-articular, thereby impacting multiple joints
simultaneously. This makes the mapping between tendon force and joint rotation
or moment much more complex than for uniarticular muscles. For example,
shortening of FDS could result in rotation of PIP, rotation of MCP, or some
combination of the two depending on the states of the joints. The traditional use of
geometric moment arms [31] may not fully capture this mapping.

The translation of muscle activation into fingertip movement/force generation is
highly dependent upon posture of the entire finger. Joint angle affects internal joint
contact forces [32], passive joint impedance, and the extensor hood force distri-
bution [33], in addition to musculotendon length (and therefore force generating
capacity [34]). Thus, muscle activation patterns may have to change substantially
to create the same result (e.g., fingertip force generation in a desired direction)
when the finger posture changes [35, 36].

3.1 Effective Static Moment Arms [32]

To address possible limitations in the use of geometric moment arms, Lee et al.
[32] developed a novel parameter, the effective static moment arm (ESMA), to
compactly represent the net effects of the tendon force on joint moment production
during static force generation. They measured this parameter through cadaveric
experiments (Fig. 4). The authors specifically aimed to elucidate the postural effect
on the transmission of tendon forces through the extensor hood to joint moments.
Thus, the ESMAs for the five tendons contributing to the finger extensor apparatus
were estimated by directly correlating the applied tendon force to the measured
resultant joint moments in nine different finger postures.

Substantial postural effects on tendon force transmission were confirmed, as
repeated measures analysis of variance revealed that the finger posture, specifically
interphalangeal (IP) joint angles, had significant impact on the measured ESMA
values in seven out of 20 conditions (four DOFs x five muscle-tendons) (Table 1).
Strikingly, MCP ESMA values of the EDC and EIP tendons increased along with
the IP joint flexion. ESMA values, therefore, were dependent upon the posture of
joints other than the one for which the effective moment arm was being computed;
with geometric moment arms only the posture of the joint being examined is
considered. Additionally, the abduction ESMA values of all tendons except EDC
were mainly affected by MCP flexion.

The ESMA values were generally smaller than the geometric moment arm
values obtained from cadaveric experiments [31] or imaging studies [37], which
implies that tendon forces are not fully converted to generate joint moments. This
reduction may result from a change in tendon force distribution into different
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Load cell

Fig. 4 Experimental setup for the measurement of fingertip force/moment in the cadaveric
specimen. This setup was adapted from the work of Valero-Cuevas, et al. [53]. Each specimen
was mounted on a fixation device (Agee-Wristjack, Hand Biomechanics Lab, Sacramento, CA),
and the index fingertip was secured to a 6 degrees-of-freedom load cell (JR3, Inc., Woodland,
CA). Cables connected to the tendons were directed through a metal plate which served as a
pulley. Loads were applied to the tendons by hanging weights from the ends of the cables. Figure
adapted from [32]. Used with permission from Pergamon Press Ltd

tendon insertions within the extensor apparatus [17]. Note that the MCP moment
arm estimated from the geometric excursion method [31] corresponds to the
moment-generating capability of the tendon if it were to insert directly into the
phalanx on the distal side of the joint. In actuality, the MCP joint extension
moment is generated by the tendon forces at two distal insertion sites, as no tendon
has an apparent insertion into the proximal phalanx. Another possible mechanism
that explains the moment reduction is force dissipation into the surrounding
ligaments or joint capsules. Previous studies have reported the insertion/adhesion
of part of the extensor apparatus to the MCP joint capsule [38, 39] and have
identified components such as oblique retinacular ligaments that connect the
extensor hood and the proximal phalanx [40]. Our own dissections of selected
specimens confirmed the existence of these connections in most cases, which may
serve as pathways for the potential tendon force dissipation. The loss of force
would decrease joint moments, and thus fingertip force. Reduction in the ESMA
values relative to the geometric moment arms may represent the amount of force
dissipation into the surrounding structure.
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3.2 Changes in Activation Patterns [36]

As the kinetic function of the finger musculotendons is significantly affected by the
joint angles, such postural dependency may directly affect the motor control of the
finger musculature, thereby requiring a change in the muscle activation patterns.
Accordingly, this study attempted to elucidate the effects of finger posture on the
muscle activation patterns of the index finger. The activities of six index finger
muscles were recorded with intramuscular electrodes when subjects produced
submaximal isometric fingertip forces in six specific orthogonal directions at each
of nine different joint postures.

A post hoc statistical analysis showed that muscle activation patterns vary
significantly with IP joint posture (p < 0.001). Such IP postural dependence did
not consist of a uniform scaling of EMG amplitude but rather impacted different
muscles in different ways, as the interaction terms between the muscle and IP
posture were significant in most fingertip force directions, aside from the dorsal
direction (see Sect. 5). The results of this study suggest that joint posture can have
a profound impact on muscle activation patterns of the index finger. Changes were
seen in activation of both intrinsic and extrinsic muscles. Interestingly, MCP
posture did not significantly affect activation patterns despite the fact that MCP
rotation has a greater impact on muscle fiber length than PIP or DIP rotation. Thus,
alterations in musculotendon length did not appear to contribute to the changes in
activation patterns; rather, changes in ESMAs and joint contact forces had the
greatest impact.

4 Anatomical Flexor Pulleys

As the two extrinsic flexor tendons, FDP and FDS, run along the volar aspect of
each finger, their paths are restrained by a number of ligamentous or retinacular
structures called pulleys. The pulley system consists of three major components:
transverse carpal ligament, palmar aponeurosis pulley, and the digital flexor pulley
system composed of five annular pulleys and three cruciform pulleys. These
pulleys constrain the tendon paths and keep the tendons close to the finger joint
centers of rotation, thereby preventing bowstringing and promoting mechanical
efficiency in finger flexion [41]. Therefore, damage to the pulley system would
have a fundamental effect on the dynamics of finger movement generation. The
pulleys also impact the translation of tendon force into joint contact forces and
the mechanical stress applied to articular cartilage. These stresses can lead to
detrimental changes within the joint structure of the hand, such as osteoarthritis.
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4.1 Effect of Pulley Damage

4.1.1 Experimental [42—46]

Due to the aforementioned importance of the anatomical pulleys, researchers
examined the effects of pulley damage on the kinematic and/or dynamic aspects of
the finger movements via in vitro experiments. The loss of function due to the
pulley excision was generally assessed by the change in tendon excursion, i.e.,
range of motion, and/or in the work of flexion, which represents the kinematic and
dynamic effects of the pulley excision. A majority of these studies concluded that
the effects of pulley excision on finger kinematics and/or dynamics are substantial,
as a significant amount of change in both the tendon excursion and the work of
flexion results from the loss of integrity of a pulley and/or multiple pulleys. After
the pulley excision, the amount of tendon excursion required to produce a given
amount of finger flexion significantly increased [42, 43], or a substantial loss
of motion was observed when the same tendon excursion was applied [44]. Fur-
thermore, the detrimental effects of pulley damage on the finger dynamics,
assessed by the change in the work of flexion, were found to be even more
significant than the change in the kinematics [43].

Most of these studies, however, examined the detrimental effects of the com-
plete removal of the major annular pulleys. Conversely, a partial excision (up to
25 %) of these annular pulleys (i.e., A2 and A4) was found to have no significant
effects on either excursion or work during flexion [45]. In addition, damage to the
minor pulleys (i.e., Al and/or AS) did not significantly affect the tendon excursion
or work efficiency [46].

4.1.2 Modeling [11, 12]

Vigouroux et al. [11] employed a biomechanical model of the finger [47] in order
to estimate the forces acting on finger flexor tendons and pulleys during sport-
climbing grip techniques. The results of this study indicate that the type of grip
may have a significant effect on the magnitude of the forces acting on the pulleys,
as well as on the coordination of FDP and FDS muscle forces. The outcome of this
study also emphasizes the importance of joint posture in the dynamics of the
finger.

Lee and Kamper [23] utilized a biomechanical model of the index finger in
order to examine the detrimental effects of pulley removal on finger movement
generation. Two types of pulley damage were simulated in this study: complete
excision of the Al pulley and a partial excision of the A2 pulley. The excision of
the Al pulley, simulated by adjusting the geometrical parameters of the model,
resulted in a roughly 10° increase in MCP flexion angle when the FDP force was
applied, while the partial excision of the distal A2 pulley increased the PIP flexion
angle by 5° (Fig. 5). Note that the simulation results of this study are generally in
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agreement with the experimental results from the in vitro studies mentioned in the
previous section [45, 46]. Other simulations of full A2 excision and removal of
more pulleys, however, have shown substantial kinematic changes [22].

4.2 Joint Contact Forces

4.2.1 Possible Involvement in Osteoarthritis [48]

As emphasized by the impact of the pulley mechanisms, the tendons convey force,
not moments. These forces must be countermanded by structures within the joints
to maintain joint integrity. These joint reaction forces, in addition to being
important to propagation of moments to more proximal joints, can also lead to
pathological changes. The internal joint force produced by muscle contraction has
been found to be associated with the development and progression of knee and hip
osteoarthritis (OA) [49], for example. The neuromechanical pathways through
which OA develops and/or progresses remain largely unexplored in hand OA. Lee
and Kamper [48] hypothesized that potential neuromechanical change in the
muscle coordination of the hand is responsible for the hand OA development/
progression. In this pilot study, the authors compared coordination patterns of FDS
and EDC muscles of two individuals with hand OA and two control subjects
during submaximal grip force generation tasks. OA patients generally demon-
strated much higher levels of co-contraction of the antagonist muscle (EDC) across
all grip force levels. Accordingly, the estimated internal force at the PIP joint of
OA patients was much greater than that of control subjects, even though their
grip force was generally smaller than control subjects. Overall, higher antagonist
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co-contraction in OA subjects led to an inefficient strategy that created higher
detrimental internal force while generating lower end-point (grip) force. The
outcome of this study suggests that the internal force generated by the extrinsic
flexor (FDP and FDS) and extensor (EDC) muscle contractions may be responsible
for the detrimental change in the internal mechanics of the hand, resulting in the
hand OA development and/or progression.

5 Extensor Hood

The four (or five) tendons on the dorsal aspect of the index finger, EDC, EIP, FPI,
LUM, (and sometimes FDI), enter into a complex tendon network, commonly
referred to as the ‘extensor hood’ (see Fig. 1a). This structure interconnects the
tendons, attaches to the soft tissue on the palmar aspect (e.g., palmar plates and/or
pulleys), and forms insertions into the distal phalanx (i.e., distal slip) and the
proximal phalanx (i.e., central slip). Force distribution between the two tendon
slips has a critical impact on the dynamics of the finger movement and on static
fingertip force generation. Tendon force dissipation to the soft tissue attachment
sites also affects the efficiency of the tendon force conversion into fingertip force.

Force distribution patterns within the extensor hood can be deduced from its
mechanical response to forces applied to the tendons. Accordingly, strains and/or
geometric changes in different regions of the extensor hood, which are the
indicators of the magnitude of the force transmitted to the corresponding part of
the apparatus, have been measured under varying tendon loading conditions (see
[7, 13, 14]) in attempts to elucidate the force transmission characteristics within
the extensor hood. Generally, the tendon force-strain relationship within the
extensor hood is thought to be non-linear due to its heterogeneous tissue properties
(i.e., stiffness) within the hood [7, 13]. Indeed, we have observed significant
variation in the mechanical stiffness, as quantified by the Young’s modulus, across
different regions of the extensor hood [50]. Additionally, the force transmission
pattern within the extensor hood was observed to be dependent upon joint posture
[32, 33].

5.1 Distribution of Force Between Central and Terminal
Slips

5.1.1 Indirect Estimation [33]

Lee et al. [33] estimated the magnitude of the tendon forces transmitted to the
terminal and central slips of the extensor hood by combining the force/strain
measurement data from cadaveric experiments with the biomechanical model of
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the index finger musculoskeletal structure [23]. Strain resulting from loading of a
given tendon inserting into the extensor hood was measured with a 3D camera
system for different regions within the extensor hood. Fingertip force/moment and
regional strains of the extensor apparatus were measured in cadaver specimens for
nine different finger postures. The amount of tendon force transmitted into the
terminal and central slips of the extensor hood across nine postures were estimated
from the experimental strain data.

While finger posture had a substantial impact on absolute force transmission, it
did not affect the relative force distribution between the two slips. Repeated
measures analysis of variance revealed that the total amount of tendon force
transmitted to each of the two tendon slips was significantly affected by finger
posture, specifically by the IP joint angles (p < 0.01). Absolute tendon force
transmitted to both the central and terminal slips was found to decrease with IP
flexion. The main effect of the MCP joint angle was not as consistent as the IP
angle, but there was a strong MCP x IP interaction effect for which MCP flexion
led to large decreases in the slip forces (>30 %) when the IP joints were extended.
The estimated force distribution ratio of terminal slip: central slip remained
relatively constant across postures at approximately 1.7:1. The outcome of this
study suggests that the impact of finger posture should be carefully considered
when studying finger motor control or examining injury mechanisms in the
extensor apparatus.

5.1.2 Direct Measurement [51]

Valero-Cuevas, et al. [51] hypothesized that the peripheral structure (i.e., tendon
network of the extensor hood) itself plays a critical role in the motor control of the
joint torque coordination. In order to address this research question, the authors
systematically changed the proportion of tendon forces (EDC versus interosseous
tendons) and directly measured the tension delivered to the terminal and central
slips in cadaver specimens. The results of this study indicate that the distribution of
input tensions in the tendon network, i.e., ratio of interosseous: extensor tensions,
regulates how forces propagate to finger joints. They showed that the tendon
network acts as a switch, or logic gate, enabling different torque production
capabilities and permitting a wide range of joint actuation patterns that would not
have been possible to achieve with a simpler tendon structure. The authors con-
cluded that the structural complexity of the tendon network may be critical to
understanding brain-body co-evolution and neuromuscular control.

It should be noted that, in this study, the force distribution ratio between ter-
minal and central slips identified from the experiment (around 1:2) was different
from the ratio obtained from simulation (around 2:1), which was similar to the
value obtained from our indirect estimation [33]. Potential errors in the biome-
chanical models in both studies may be responsible for the dissimilarity between
the direct measurement and indirect estimation.
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6 Discussions

The dexterity of the hand is greatly enhanced by the large number of DOF and the
capability of the digits to work in close proximity. Not only can fingers make
contact with adjacent fingers along their lengths, but the digits can even overlap
each other. This is possible due to the actuation mechanism of the digits. The
majority of the strongest actuators of the digits, as determined by the physiological
cross-sectional area, reside in the forearm. This helps to minimize the bulk of the
digits and, as importantly, the mass of the hand. By reducing the hand mass, the
torques required at the shoulder and elbow to support the hand are reduced. In fact,
all of the hand muscles that actuate the digits are located proximal to the MCP
joints; only tendinous structures run along the digit phalanges. This provides tre-
mendous advantage in terms of maximizing the attainable workspace of the tip of
each digit. For example, in some individuals, the distal finger segment can actually
contact the proximal segment, which is quite remarkable. The digits easily curl into
the palm to create a fist. This contrasts with the situations at the elbow and knee,
where flexion is limited by the bulk of the biceps brachii and by the hamstrings and
gastrocnemius, respectively. Additionally, torques needed to move the digits are
minimized in the fingers as no muscle mass has to be accelerated or decelerated.

In order to provide the large passive range of motion, a more complex control
scheme is required. Generation of even an isometric force in a specified direction
often requires the activation of all seven muscles [15-17]. The nervous system in
humans, with disproportionally large cortical representations in motor and
somatosensory cortices [52], has obviously adapted to provide this control. This
neural organization, however, is supported by a number of specialized biome-
chanical structures that serve to transmit the muscle forces across the multiple
joints of the digits. The extensor hood, the dorsal aponeurosis spanning the length
of each finger, is a prime example. Tendons from four or five independent muscles
insert into this structure, which in turn inserts into the middle and distal phalanges,
with additional connections to the proximal phalanx. The extensor hood thus
affects how forces from the different muscles are mapped into joint torques.
Experimental studies by Lee et al. [32, 33] and Valero-Cuevas et al. [51] showed
how the nature of this mapping can be affected by joint posture and the relative
force levels of the different muscles. The adaptations in mapping can reduce the
requirements on the neural controller. Intriguingly, we found that, unlike for other
force directions, dorsally directed isometric forces could be generated for a variety
of finger postures without altering the basic muscle activation pattern [36]. Pro-
duction of this force was dominated by contraction of EDC and EIP, two of the
primary contributors to the extensor hood. This suggests that the biomechanical
structure of the hood may help to accommodate changes in task requirements
without necessitating a change in control strategy.

Similarly, the anatomical pulleys, which keep the long flexor tendons close to
the phalanges, improve control. Less tendon excursion (produced physiologically
by muscle activation) is needed to produce a desired amount of finger flexion when
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the pulleys are intact. Thus, less muscle contraction and less energy are needed to
achieve the same amount of finger movement.

The passive properties of the muscles and joints themselves help to produce
coordinated movement among the joints of a given digit. Electrical stimulation of
the long flexor FDP, for example, generates concurrent flexion of all three joints
(MCP, PIP, and DIP). Removal of this passive joint impedance in computer
simulations led to disruption of this coordination [22], with the DIP and MCP
joints actually extending rather than flexing. These results suggest that, due to the
passive joint impedance, a very functional movement in which all three joints are
flexed concurrently can be achieved through the activation of a single muscle.
Without this impedance, a more complex muscle activation pattern would be
required.

Ultimately, muscles produce force. This force is applied through tendinous
structures to different parts of the digits. These forces will create joint moments,
but they will also create joint reaction forces which will be transmitted to more
proximal segments. Force-based models may thus be preferable to moment-arm
based models for examining certain multi-articular characteristics of the digits,
such as the impact of joint contact forces on the development of osteoarthritis.
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Chapter 5
The Control and Perception of Finger
Forces

Lynette A. Jones

Abstract The human hand demonstrates remarkable dexterity in its capacity to
control precisely the forces involved in manipulating objects and the timing of
movements during the execution of skilled motor tasks. In all of these endeavors,
mechanoreceptors in the skin play a critical role in encoding the timing, magni-
tude, direction and spatial distribution of fingertip forces. When cutaneous inputs
are absent or deficient, the hand is unable to compensate rapidly when an object
begins to slip between the digits, and misdirected finger movements are not rec-
ognized and corrected. The control and perception of forces generated by the hand
therefore relies on a close interplay between the sensory and motor systems. When
sensory information changes, the capacity to control and modulate force can be
disrupted and this in turn influences the perceived magnitude of the forces being
produced. Cutaneous mechanoreceptors provide crucial information about the
forces produced by the fingers and these inputs together with centrally generated
corollary discharges are fundamental to the human perception of force.

Keywords End effectors - Force feedback - Grasping - Tactile sensors

1 Introduction

The ability to control the forces generated by the hand is a requirement for most
skilled activities from grasping a small object between the index finger and thumb
to turning a key in a lock. In these activities finger forces are exquisitely adapted to
the contact conditions between the hand and the object and vary as the weight,
surface texture or shape of the object changes [1, 2]. The skillful manipulation
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entailed in these tasks requires that the central nervous system (CNS) has accurate
information about the magnitude and direction of load forces acting tangential to
the skin surface, and normal forces orthogonal to the skin surface. The results from
numerous experiments have demonstrated that normal (grip) forces are precisely
coordinated in space and time and are of sufficient, but not excessive, magnitude to
prevent the object from slipping between the fingers [2]. When an object begins to
slip, cutaneous mechanoreceptors sense the displacement of the object on the skin
with the result that there is an automatic and rapid (~ 70 ms) increase in grip force
that results in a more stable grasp [3]. Afferent feedback from mechanoreceptors in
the skin is therefore essential for the control and modulation of force during skillful
manipulation. When it is impaired due to damage in the peripheral nerves or
cortical lesions, precise control of prehensile force is lost and the hand becomes
clumsy and inefficient, even though the muscles controlling finger movements are
not affected.

Non-prehensile activities such as typing on a keyboard or playing a piano also
require that the forces produced by the fingers are controlled either to avoid
musculoskeletal strain injuries (e.g. when typing) or to vary the sound intensity of
the music produced (piano playing). The performance of experts engaged in these
activities has been studied and compared to that of novices to provide insight into
which aspects of these motor skills are explicitly controlled and which elements of
performance differentiate the responses of novices and experts. Most computer
keyboards used for typing have activation forces of less than 1 N and the break-
away force at which tactile feedback indicates that the key has registered ranges
from 0.04 to 0.25 N [4]. For skilled typists the mean keystroke force is around
0.9 N and the force does not vary significantly across the fingers [4]. Peak forces
are usually higher, in the order of 2-3 N, and are correlated with the velocity of the
fingertip prior to key contact [5]. The forces produced during typing are quite
variable which suggests that force is a rather loosely controlled variable that is
simply programmed to exceed the key activation force [6]. The most obvious
factor that differentiates the performance of expert and novice typists is that
experts type faster (i.e. have shorter inter-stroke intervals) with much lower error
rates. The faster performance of experts is achieved by overlapping their finger
movements so that two and occasionally three keystrokes are occurring concur-
rently as successive letters are processed in parallel. In contrast, novices typically
adopt a serial hunt and peak method when typing [2].

The forces produced when playing an acoustic piano determine the sound
intensity of the notes and contribute to the dynamics of the performance and so in
contrast to typing are explicitly controlled by experts. In their extensive study of
the performance of expert and amateur pianists, Krampe and Ericsson [7] found
that expert pianists typically applied more force than amateurs and were more
variable in the forces applied. It has also been noted that expert performance is
characterized by a superior ability to reproduce reliably the timing and loudness
variations in a musical score in consecutive performances [8]. As was noted for
prehensile activities such as grasping and manipulation, feedback from
mechanoreceptors in the skin is important for non-prehensile skills such as typing



5 The Control and Perception of Finger Forces 101

and playing the piano. When the fingers are anesthetized, which eliminates tactile
feedback from the skin but does not affect the ability to move the fingers, there is
an increase in misdirected movements during typing with the majority of errors
involving striking a key adjacent to the correct key. In contrast to normal per-
formance when the interval before the next keystroke increases after mistyping a
letter, inter-stroke intervals do not usually increase after errors when the fingers are
anesthetized. This suggests that the errors are not recognized and that tactile
feedback contributes to the accuracy of finger movements [9].

The control of finger forces is not only essential for dexterous activities but is
also required when the hand is used for tactile and haptic exploration. In these
activities the normal and tangential forces are optimized to recruit tactile receptors
in order to achieve a sensory goal, such as detecting changes in the surface friction
between the fingers and an object or the presence of a lump in soft tissue [10, 11].
Mechanical deformation of the fingertip surface during tactile or haptic exploration
is signaled by cutaneous mechanoreceptors that convey the critical spatial and
temporal information that permits the human observer to detect features such as a
texture composed of periodically ordered bars only 0.06 pm high [12]. The latter
study and many others have highlighted the importance of tangential forces on the
fingertips to haptic perception (see Sect. 5).

In all of these activities, from perceiving texture to grasping an object, the hand
often serves dual roles as an active sensory organ and as the medium for motor
activity. In many situations both functions must be performed concurrently, for
example, when we reach and grasp an object using force appropriate for its weight,
surface texture and compliance, and so the central nervous system has to optimize
the performance of the task to satisfy both objectives.

2 Force Sensing: Peripheral and Central Mechanisms
2.1 Cutaneous Mechanoreceptors

Forces applied to the fingers are sensed by different populations of mechanore-
ceptors in the skin that respond to various features of the stress—strain field and
motion during contact. Slowly adapting type 1 (SA I) units are particularly
responsive to fine spatial features such as edges, bars and curvature rather than the
overall indentation, although they do respond to the application of normal force
and have sustained responses to lateral stretch of the finger pad [13]. Their
receptive fields are relatively small, in the order of 2-3 mm in diameter, with
highly sensitive local areas within the receptive field. Psychophysical studies have
suggested that SA I units are maximally sensitive to very low frequencies of
vibration in the 0.4-3 Hz range, which are associated with sensations of pressure
consistent with the neurophysiological studies described above [14]. Slow adapt-
ing type II (SA II) units are much more sensitive to skin stretch than SA I units and
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are thought to contribute to the perception of object motion and force when the
skin is stretched as a result of object motion. Fast adapting type I (FA I) units are
poorer at discriminating fine spatial details than SA I units but respond well to
transient deformation of the finger pad and to the low frequency vibration that
occurs during the initial contact with an object. Similar to SA I units, their
receptive fields are small, about 3—5 mm in diameter, but they respond uniformly
across the entire receptive field and so are not sensitive to the fine spatial features
of a stimulus. They discharge when there is relative motion between the skin and
an object such as when an object beings to slip between the fingers. Fast adapting
type II (FA II) units are less densely distributed in the hand than either FA I and
SA T units, and have extremely large receptive fields, rendering them poor at
discriminating the spatial details of a stimulus. They are, however, extremely
sensitive to transient stimulation, particularly vibratory stimuli in the 40-500 Hz
range. Collectively, cutaneous mechanoreceptors provide the requisite cues that
enable people to perceive variations in texture, the tangential forces associated
with movement of an object across the skin and the normal forces generated during
contact. (See chapter by M. Tavakoli).

2.2 Muscle Receptors

When the hand actively explores the environment, forces are generated by muscles
and these are sensed peripherally via the afferent discharges arising from
mechanoreceptors in muscles and can be detected centrally from changes in the
voluntarily generated motor command. In muscle, forces are sensed by Golgi
tendon organs which are encapsulated receptors usually found at the junction
between the collagen strands that comprise the muscle tendon and a small group of
extrafusal muscle fibers, the main contractile element. In human muscles, each
receptor is in series with 10-20 muscle fibers, and discharges in response to the
forces developed only by these fibers. Although individual Golgi tendon organs
respond non-linearly to the total force generated by the muscle, the ensemble
response of a population of tendon organs is monotonically related to muscle force
and so provides the CNS with information regarding active muscle tension [15, 16].
There have been very few recordings from the afferent fibers arising from Golgi
tendon organs in human subjects, in part because tendon organ receptors are less
numerous and more variable in number than muscle spindles. In one of the rare
descriptions of a perceptual response to micro-stimulation of a Golgi tendon organ
afferent fiber, Macefield et al. [17] reported an illusion of muscle lengthening. This
is consistent with the observation that Golgi tendon organs respond to changes in
muscle length in addition to force during contractions and that the perception of
force is primarily derived from descending efferent commands, as described below.
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2.3 Corollary Discharges

The CNS monitors the output of the motor areas of the brain that produce con-
tractions in muscles. These correlates or copies of the motor command were
historically referred to as sensations of innervation and more recently have been
termed efference copies or corollary discharges. Information about the forces
generated by muscles can be sensed via these copies of the motor commands that
are transmitted to the sensory structures in the brain and reflect the magnitude of
the efferent command generated [18]. The results from a number of experiments
indicate that whenever there is an increase in the efferent signal sent to the
motoneurons controlling a muscle, there is a corresponding increase in the per-
ceived magnitude of the force of contraction. This overestimation of muscle force
occurs even when the force produced by the muscle remains constant. The increase
in the efferent signal may result from changes in the excitability of the muscle due
to fatigue, interference with transmission at the neuromuscular junction, decreased
excitability of the spinal cord because of cerebellar damage, or of the motor cortex
following damage to the corticofugal pathways. In each of these situations the
forces generated by the affected muscle are overestimated in magnitude [18, 19].
The finding that the perceived amplitude of muscle forces is derived from neural
correlates of the descending efferent command should not be interpreted as dis-
missing a contribution from Golgi tendon organs to the awareness of muscle force.
Afferent input is required to provide a signal that the force generated by the muscle
is adequate for the task being performed and these inputs are critically important in
peripheral feedback pathways [16]. Reflex inputs from joint, muscle and skin
receptors can inhibit or facilitate motoneurons in the spinal cord and in so doing
influence the magnitude of the centrally generated motor command.

3 Force Control

The hand is capable of performing a remarkable variety of actions which have
provided the basis for numerous taxonomies developed to characterize its diverse
range of function (e.g. [20, 21]). Most of these classificatory schemes make a
distinction between the two dominant prehensile postures, the precision grip and
the power grip, each of which may take several forms. Three types of prehensile
grips are often differentiated: the tip pinch in which a small object is held between
the tips of the index finger and thumb; the lateral or key pinch that involves contact
between the pad of the thumb and the lateral surface of the index finger, and the
palmar pinch in which the pad of the thumb opposes the finger pads of the index
and middle fingers (see Fig. 1). The most commonly used prehensile grips are the
tip and lateral pinch. The maximum forces produced with these prehensile grips
range from 50 to 120 N, depending on the particular grasp, and age and sex of the
person [22]. The peak forces produced with the palmar and lateral pinch grips are
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approximately 40 % higher than those generated with the tip pinch. When force is
the primary objective the power grip is used (see Fig. 1); this grip typically
involves an extensive area of contact between the hand and the object (e.g. when
holding a hammer) and movement of the object held in the hand is accomplished
by moving the whole hand using the wrist and arm. The maximum forces produced
with the power grip are large (up to 600 N) and vary substantially as a function of
the age and sex of the individual [22].

For many activities in which prehensile grips are used the forces generated at
the fingertips are much lower than the peak forces and are typically around 10 N or
less. At these low forces, the contact area on the fingertip increases rapidly as the
normal force increases, with 70 % of the overall change in area with force
occurring at forces below 1 N [23]. This means that if a normal force of 1-2 N at
the fingertips is adequate to perform a task, little additional tactile information is
available at higher forces because the increase in contact area is so small.

Fig. 1 Common prehensile patterns. Upper right: tip pinch between the pulps of the opposed
thumb and index finger. Upper left: the lateral pinch in which the thumb pulp is in contact with
the lateral surface of the middle phalanx of the index finger. Lower left: the palmar pinch in which
the pulp surface of the thumb opposes the finger pads of the index and middle finger. Lower right:
the power grip is shown on the lower right. From [2] with permission of Oxford University Press
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Fig. 2 Average contact forces and contact areas (finger pad images) at these forces when people
are asked to make judgments about surface friction [10], the presence of an asperity in a smooth
surface [11], the roughness of raised-dot surfaces [24] and the temperature of different materials
[25]. Adapted from [2] and [23] with permission of Oxford University Press and ASME

Measurements of the contact forces used during tactile and haptic exploration of
objects reflect this finding, in that the forces are typically less than 1.5 N, and for
some tasks such as locating a small feature on a smooth surface or perceiving the
friction between the finger and a surface are less than 0.5 N [10, 11]. The average
contact forces and contact areas measured at the fingertip when people make
judgments about various material properties of objects are shown in Fig. 2. These
data illustrate that people adopt an optimal strategy to perceive surface features that
minimizes the normal forces between the finger and the surface while maximizing
contact area.

3.1 Sensory Feedback and Force Control

There has been an extensive number of experiments on the control of force during
grasping many of which have used variations of an apparatus and procedure first
described by Johansson and his colleagues in the 1980s [3]. The experimental
protocol requires that the subject grasp an object between the thumb and index
finger, lift it a fixed distance from a support surface and then lower it to a resting
position. The temporal sequence of the forces produced is analyzed in terms of a
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loading phase in which there is a parallel increase in the grip force normal to the
object surface and the load force tangential to the surface, until the load force
overcomes gravity and the object is lifted to the target position. In these studies,
the object usually has displacement or acceleration sensors attached to its surface
and force transducers are mounted on the object to record the normal and tan-
gential forces. The object may be passive, for example a box whose weight, shape
and surface texture may vary, or active such as a servo-controlled motor, which
can be perturbed as it is manipulated. The results from numerous experiments have
demonstrated that when an object is grasped and lifted from a supporting surface
the rate at which the normal and tangential forces increase is maintained at an
approximately constant ratio, indicating a coordinated pattern of muscle activation
in the hand and forearm [1]. The grip forces are modulated as a function of the
weight of the object and the friction between the object and the skin. If friction is
varied independently at the contact surfaces on the thumb and index finger, the
fingertip forces are automatically adjusted to the surface conditions at each digit
[26]. Afferent input from cutaneous mechanoreceptors is essential to the regulation
of grip forces when manipulating objects. The mechanoreceptors’ capacity to
detect mechanical events at the digit-object interface permits the hand to maintain
stable and efficient grasps during manipulation.

Various experiments have examined how accurately finger forces can be con-
trolled under different feedback conditions. In these studies, subjects are typically
provided with visual feedback to reach a target force and are then asked to maintain
the force at a constant amplitude for a specified period of time using either visual
and haptic feedback or only haptic feedback [27, 28]. When only haptic feedback is
available subjects are able to maintain finger forces ranging from 2 to 6 N to within
1 N over a 120 s time period [27]. In this situation the only cues available regarding
the forces being generated come from mechanoreceptors in the skin and muscles
and from central feedback pathways that monitor the output from motor cortex.
When visual feedback of the forces being produced is also provided the accuracy
with which forces are maintained improves considerably and the mean absolute
error is now 0.22 N. The precision with which finger forces can be controlled is
reflected in the coefficient of variation (i.e. standard deviation/mean) which aver-
ages 13 % when only haptic feedback is available and decreases to 4 % when both
visual and haptic feedback is provided as shown in Fig. 3 [27]. The latter number
represents the optimal performance of voluntary force control over relatively long
periods. At much shorter intervals (5 s), the coefficient of variation has been
reported to be considerably lower (1-2 %) [29].

It is interesting to note in this context that the accuracy (measured in terms of
absolute and constant errors) and precision (evaluated by the coefficient of vari-
ation) with which forces are controlled has not been found to differ significantly
for more proximal muscles such as the elbow flexors in the upper arm as compared
to the distal muscles in the forearm controlling movements of the fingers. With
visual and haptic feedback, the coefficient of variation associated with maintaining
a constant force averages 4 % across both muscle groups when the forces are
scaled to the operating range of the muscle groups. However, even for the same
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force (4 N), Jones [27] found no significant difference between the index finger
and elbow flexor muscles in the precision with which the force was controlled.
This suggests that there is not a proximal to distal gradient in force control as has
been reported for limb position and movement and that forces are controlled with
same relative degree of precision across different muscle groups.

3.2 Multi-digit Force Control

Many of the muscles that control the fingers and wrist act over many joints and so
the forces and movements produced by these muscles are not controlled inde-
pendently and coactivation occurs frequently [30]. Three of the extrinsic hand
muscles in the forearm (the flexor digitorum superficialis, the flexor digitorum
profundus and the extensor digitorum communis) connect to each of the four
fingers and within these muscles are motor units that can activate several fingers
concurrently [31]. The extent to which each of these muscles can produce a force
in an isolated finger depends on the extent of compartmentalization within the
muscle. This means that there are both neural and mechanical limitations in the
degree to which individual fingers can produce forces when they are acting syn-
ergistically. The effect of concurrent activation of the fingers on the maximum
forces produced is considerable as demonstrated by the 37 % increase in the peak
forces produced by the fingers individually as compared to the maximum force
produced when all four fingers flex simultaneously [32]. The decrease in the
maximum force that can be produced by a finger as more fingers are involved in
force production is assumed to reflect a limit in the central neural drive sent to the
muscles. As more muscles are involved in the task, there is a reduction in the
neural input each muscle receives with a concomitant deficit in force production.
Mechanical and neural coupling also influences the production of submaximal
forces (i.e. 40-80 % of the maximum force) and the extent of coactivation varies
across the fingers. Reilly and Hammond [33] showed that coactivation was least in
the thumb and then increased progressively when the index, middle, little and ring
fingers generated a target force. In their study, forces were measured across the
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digits while subjects were asked to produce a target force with a single finger.
Additional evidence that indicates the limitations in controlling individual finger
forces comes from force tracking experiments in which subjects have to generate
different combinations of forces using two or three fingers. The force combinations
that subjects have most difficulty producing are those that involve large differences
in the amplitudes of forces produced by adjacent fingers (e.g. index finger 40 %
maximum force, middle finger 10 % maximum force and little finger 40 %
maximum force) [34].

The ability to coordinate and control forces across the fingers concurrently has
also been evaluated during prehensile grasping with three, four or five digits. The
results from these experiments indicate that the largest change in finger force as the
weight of the object increases or the surface friction decreases occurs at the index
finger [35]. Interestingly, the relative contribution of each finger to the overall force
remains relatively constant independent of variations in surface texture or weight
[36]. This means that the control of individual forces during grasping involves a
fairly simple scaling strategy that creates fixed relations between the forces
produced at the fingertips.

4 Force Perception

As described in Sect. 2 (Force Sensing), perceptual information about muscle force
is primarily derived from centrally generated sensations arising from the innervation
of the efferent pathways. Numerous experiments have detailed the underlying
mechanisms involved in sensing muscle force and how the perception of voluntarily
generated force changes when the state of the muscle or the peripheral sensory
apparatus is altered [37, 38]. In contrast to active force perception, forces applied
passively to an immobilized finger are sensed via the responses of cutaneous
mechanoreceptors. Wheat et al. [39] demonstrated that these forces can be scaled
consistently, with the perceived magnitude of force increasing monotonically as
normal force increases.

4.1 Contralateral Limb-Matching Paradigm

Many of the experiments on the perception of voluntarily generated forces have
used the contralateral limb matching procedure to study perception. In this para-
digm the forces exerted by a muscle group in one limb, designated the reference
limb, are matched in perceived magnitude by contractions of the corresponding
muscle group in the other limb, the matching limb. The subject usually has feed-
back of the force produced by the reference limb and attempts to match the force
sensations in both limbs during the matching interval. In some studies the limbs are
loaded with weights and subjects request adjustments in the loading of the matching
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limb until the weights are perceived to be the same [37]. The matching forces or
weights indicate the perceived force or heaviness on the reference side. Provided
that there is a control condition in which the accuracy of force matching under
normal conditions is measured, this paradigm can be used to analyze the effect of a
range of perturbations (e.g. fatigue, electrical stimulation) on force perception. One
advantage of the matching technique is that some of the response biases associated
with numerical estimation of stimulus magnitude are avoided.

Under normal conditions the average error associated with matching forces in
two corresponding muscle groups is around 3.5 %, when the forces are expressed
in terms of the maximum voluntary contraction (MVC) of each muscle group [40].
The accuracy with which forces are matched varies somewhat across different
muscle groups, but does not follow any proximal to distal gradient in sensitivity.
There is no difference in the precision with which forces can be matched by the
first dorsal interosseous (FDI) and the adductor pollicis (AP) muscles, both of
which are intrinsic muscles in the hand, the flexor pollicis longus (FPL) and the
flexor digitorum profundus (FDP) muscles, extrinsic hand muscles in the forearm,
and the biceps brachii (BB) an elbow flexor muscle in the upper arm [40, 41].
These findings are illustrated in Fig. 4 where it can be seen that the coefficient of
variation does not vary significantly across the different muscles (range:
13.5-17.6 %) and is surprisingly high at an average of 15.6 %. The absence of any
gradient in sensitivity indicates that the recruitment of many small motor units in a
distal muscle is not necessarily associated with a superior accuracy in perceiving
the forces produced.

The matching paradigm has been used to explore whether the perception of
finger force changes as a function of how forces are produced. Although the
thresholds for discriminating changes in force are similar when measured iso-
metrically (constant muscle length) and anisometrically (changing muscle length)
as described below [40, 42], the perceived magnitude of forces does vary. If both
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Fig. 4 Coefficient of variation for matching forces produced by muscles controlling the index
finger: flexor digitorum profundus (FDP) and first dorsal interosseus (FDI); the thumb: adductor
pollicis (AP), and flexor policis longus (FPL); and the elbow: biceps brachii (BB). Data are from
[37, 40] and [41]. From [34] with permission of Mac Keith Press
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the reference and matching muscle group are producing forces under the same
conditions (i.e. either both isometric or both anisometric), forces are reasonably
accurately matched, although matching is more accurate with anisometric force
production. However, if the reference force is produced anisometrically and
matched isometrically then the forces are overestimated in magnitude, and in the
reverse condition forces are underestimated [43]. This means that the same force is
judged to be much greater if the muscle changes length during production, a result
that probably reflects the effects of sensory inputs from the spindle receptors in
muscles being stretched on the motoneurons innervating the muscle.

4.2 Force Constancy

Perceptual constancy is a feature of most sensory systems and refers to the tem-
poral and spatial continuity of the perceived world in the presence of changing
sensory inputs. In some situations the human haptic system appears to adopt a
principle of constancy as demonstrated by the observation that the weight of an
object is not perceived to change when it is supported first by the fingers and then
the whole hand. Interactions with the environment would be much more difficult if
this were not the case, since the perceived properties of objects or tools would vary
as a function of the limb segments and muscles used to interact with them.
Extensive training would be required before the neuromuscular system could
determine what torques should be produced at which joints to perform a specific
task. Associated with this perceptual constancy in the haptic system is the poor
localization of action internally, where the focus again is on the end result of the
action rather than on the muscles involved in achieving that objective.

Although the perception of force appears to remain relatively invariant with
changes in the muscle groups contributing to force production, the perceived
magnitude of a force does change when other forces are produced concurrently by
adjacent muscle groups. Kilbreath and Gandevia [44] showed that the perceived
magnitude of forces produced by flexing the thumb increased when the index
finger was also generating a force, but was not affected by forces produced con-
currently by muscles in the leg. Moreover, the magnitude of the change in the
perceived force generated by a single finger increased progressively with the
amplitude of the forces generated concurrently by an adjacent digit. These findings
have been interpreted in terms of a perceptual inability to segregate the motor
output sent to muscles commonly used together, such as the long flexors of the
thumb and index finger used for grasping.

The properties of objects may be perceived to be invariant, however, in the
absence of an external referent does the haptic system still demonstrate perceptual
constancy? This question has been addressed by asking subjects to match the force
produced in one muscle group by generating the same force with another non-
homologous muscle group. In that experiment forces ranging from 2 to 10 N were
produced and matched by the elbow flexor muscles, the muscles involved in the
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palmar prehensile grasp and the index finger flexors [45]. The results showed that
the perceived magnitude of a force varied as a function of the muscle group
generating the force. When reference forces produced by the elbow flexor muscles
were matched in perceived magnitude by flexing the index finger, they were
consistently underestimated in magnitude: an elbow flexion force of 8 N was
perceptually equivalent to a finger force of 4.5 N. In contrast, a reference finger
force of 2 N was equivalent to an elbow flexion force of 7 N. These findings are
illustrated in Fig. 5. When these matching forces are scaled with respect to the
maximum forces that each muscle group can produce, they span a remarkably
similar range in amplitude. It appears that forces are perceived relatively and
scaled with respect to the operating range of the muscles. The relative force
amplitudes produced by the reference and matching muscle groups are not pre-
cisely matched however, with forces being underestimated for the finger (21 %
MVC matched by 13 % MVC) and overestimated for the elbow (8 % MVC
matched by 15 % MVC), which suggests that the scaling takes into account the
absolute force produced by the muscles. These results clearly demonstrate that the
perceived magnitude of a force changes as a function of the muscle group pro-
ducing the force and that there is little evidence for perceptual constancy in force
perception [45].

4.3 Thresholds

Most experiments that have used the contralateral limb matching procedure have
examined the perception of supra-threshold forces and have focused on under-
standing the sensory mechanisms involved in force perception. It is also of interest
to determine how well people can discriminate between forces. Discrimination is
usually measured in terms of the difference threshold which is the amount of
change in a stimulus required to produce a just noticeable difference (jnd) in
sensation. For many sensory modalities the change in stimulus intensity that can be
discriminated is a constant fraction of the intensity of the stimulus and this is
known as the Weber fraction for that modality. The results from a number of
experiments have shown that the Weber fraction (as a percentage) for force is
approximately 7 % [40, 42]. This is within the range of Weber fractions reported
for haptic weight discrimination in which subjects discriminate between weights
lifted either simultaneously or successively. In the latter studies, thresholds are
typically around 6-12 % depending on the range of weights presented and the
experimental procedure [46]. When only tactile cues are available, for example
when weights are placed on a hand that rests passively on a support surface,
differential thresholds increase (i.e. sensitivity diminishes) and the Weber fraction
is approximately 50 % higher than that obtained during active lifting [46]. When
weight is sensed passively, the properties of the object in contact with the skin
such as its volume, shape and temperature can influence its perceived heaviness.
Various illusions such as the size-weight, shape-weight and temperature-weight
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illusions attest to the profound effect that the geometric and material properties of
an object can have on its perceived heaviness.

Force discrimination thresholds do not appear to vary significantly as a function
of the muscle group or range of forces produced, although at very low forces the
Weber fraction increases, consistent with the results from other sensory modalities
at low stimulus intensities. The invariance of force thresholds across different
muscle groups is demonstrated by the findings from Jones [40] and Pang et al.
[42]. The latter measured force thresholds using an electromechanical device that
was grasped between the thumb and index finger and was designed to display a
constant resistive force as it was squeezed to a predetermined location [42]. They
reported thresholds of around 7 % for forces ranging from 2.5 to 10 N, and noted
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that thresholds did not change as a function of the method of termination of the
finger displacement (i.e. a “cliff” or a “wall”). Jones [40] used an isometric force
task involving flexion of the elbow joint to measure thresholds over a force range
of 25-410 N and also reported a threshold of 7 %. The absence of any proximal to
distal gradient in differential thresholds is consistent with the findings reported
earlier (Sect. 3.1), where it was also noted that there was no evidence for such a
gradient in the ability to control force.

4.4 Effects of Tactile Feedback

The perceived magnitude of forces produced by the fingers can be influenced by
feedback from cutaneous mechanoreceptors. These effects vary across the hand
and as a function of the type of tactile feedback. When the skin on the thumb is
anesthetized, the perceived heaviness of weights lifted by thumb flexion increases
by over 40 % as compared to control conditions, whereas anesthesia of the index
finger results in only a 13 % increase in perceived heaviness. Surprisingly, anes-
thesia of the ring and little finger results in a decrease in the perceived heaviness of
weights lifted by these digits [47]. The differential effects of anesthesia are pre-
sumed to reflect the net loss of cutaneous reflex facilitation (thumb and index
finger) or inhibition (ring and little fingers) on the motoneuron pool activated by
the descending motor command. These results also suggest that cutaneous inputs
from the thumb play a more critical role in modulating forces generated by the
thumb as compared to tactile inputs from the skin on the index finger and that
finger’s force production.

The contribution of tactile feedback to the perception of force has also been
compared at different sites on the hand and arm. Jones and Piateski [38] constrained
tactile feedback from the contact surfaces during force production with the index
finger, hand and forearm using rigid splints to eliminate spatial cues about the
forces being produced. They found that when spatial information was attenuated,
forces were underestimated as compared to control conditions and that the effect did
not vary across the three muscle groups tested. This suggests that tactile cues from
the contact surface on the hand convey spatial cues about the forces produced that
influence the perceived magnitude of forces, even when those forces are produced
by muscles in the upper arm. In contrast to the effects of skin anesthesia which
eliminates all sensory feedback from the skin with the result that forces are over-
estimated in magnitude [47], attenuating sensory feedback from the skin causes
forces to be underestimated. This suggests that the contribution of cutaneous
mechanoreceptor feedback to the perception and control of force is task and finger
dependent, and that subtle changes in tactile feedback can modulate the forces
being produced.
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4.5 Effects of Thermal Feedback

When the hand makes contact with an object at room temperature there is a fairly
rapid decrease in skin temperature in the initial 2-3 s of contact and then the
temperature declines more slowly at a rate that depends on the thermal properties
of the skin and object [23, 48]. Due to their thermal properties, objects made from
materials such as stainless steel and copper result in greater heat flux being con-
ducted out of the skin during contact than objects made from plastic or foam. In
addition to the thermal properties of the objects, the change in skin temperature is
influenced by the contact force exerted. As the force increases from 0.1 to 6 N
there is a concomitant decrease in skin temperature as illustrated in Fig. 6, where
the temperature has decreased by an average of 3.2 °C after 20 s. This decrease
presumably results from the increase in contact area with force which provides a
larger surface for heat transfer between the hand and the object. At higher forces it
is also likely that the increased compression of the finger pad restricts blood flow
in the capillary network beneath the skin, further contributing to a reduction in
temperature. The changes in skin temperature as a function of force are well above
threshold and so are perceptible; this suggests that thermal cues could be used to
discriminate between different contact forces if other sources of sensory infor-
mation were unreliable or absent.

Although the contact force influences the change in skin temperature, the
perceived magnitude of voluntarily generated forces is not affected by the tem-
perature of the contact surface. Galie and Jones [48] used the contralateral limb
matching procedure to evaluate the perception of forces exerted by the index finger
and found that the perceived magnitude of forces (1-8 N) did not change as the
reference contact surface varied from 22 to 38 °C. These results are in marked
contrast to those obtained when weights or forces are estimated using only tactile
(pressure) cues and the temperature of the object in contact with the skin surface
varies. Under these conditions, cold objects are perceived to be much heavier than
objects of the same weight at neutral temperatures (30-36 °C), and warm objects
are also perceived to be heavier than neutral objects but the effect is smaller, a
phenomenon known as the thermal-weight illusion [49]. It appears that corollaries
from the centrally generated motor command provide information about volun-
tarily generated forces that is not influenced by peripheral thermal inputs; in
contrast thermal-tactile interactions reflect either the influence of thermoreceptors
on the perception of pressure or thermally induced changes in the responses of
cutaneous mechanoreceptors.

4.6 Tangential Forces

In comparison to the fairly extensive body of research on the perception and
control of normal forces, there are relatively few studies on the perception of
tangential forces applied to the hand. These forces are important during object
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manipulation and palpation and are optimized during certain activities to maximize
the extraction of tactile information [11]. For example, when subjects are asked to
stroke featureless smooth surfaces and rate them on a scale from “most sticky”
to “most slippery” they typically move their fingers across the surface by varying
the tangential force while keeping the normal force relatively constant [10].
Neurophysiological studies have demonstrated that all classes of cutaneous
mechanoreceptors (SA I, SA II, FA I and FA 1I) are activated with the application
of normal and tangential forces to the finger pad [13]. However, only the SA I
afferents respond with a sustained discharge as the skin is stretched and they have a
strong directional bias. It is challenging to study the perception of tangential forces
experimentally as the device presenting stimuli to the finger pad must also either
apply a normal force to prevent it from slipping on the skin surface, or be glued to
the finger pad which affects skin mechanics and results in an unnatural stimulus.
Wheat et al. [39] used the procedure of first applying a constant normal force to the
finger pad and then imposing a tangential force on the finger and found that
subjects could scale and discriminate tangential forces ranging from 0.25 to 1.75 N
consistently. The magnitude estimates of the forces increased monotonically with
increasing tangential force, and when the normal force was held constant at either
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2.5 or 4 N it did not influence the perceived magnitude of the tangential forces.
However, when both the tangential and normal forces varied randomly from trial
to trial there was a small but consistent effect of normal force on the perception of
tangential force, with larger normal forces reducing the perceived amplitude of the
tangential forces applied. The threshold (Weber fraction) for discriminating tan-
gential force was 16 % when calculated using standard tangential forces of 1 and
1.6 N [39]. Collectively, these results indicate that cutaneous mechanoreceptors
provide precise information about both the magnitude and direction of forces
applied to the skin and that information about these two components of force can
be extracted independently from the ensemble response of cutaneous afferents.

5 Stiffness and Viscosity Perception

Changes in muscle length and force are used not only to sense the internal state of
the organism, but also to perceive the properties of objects encountered in the
environment. Features such as mass, weight, stiffness (force/displacement), vis-
cosity (force/velocity) and inertia (force/acceleration) are typically sensed through
manual exploration. All of these are derived variables in the sense that there are no
known stiffness, viscosity or inertial sensors in muscle or skin. The human pro-
prioceptive system must therefore integrate sensory information regarding the
forces generated by muscles and the associated movements of limbs to perceive
these variables. By understanding how people derive information about these
properties and which cues are the most salient, effective haptic displays can be
designed that present realistic cues to human users.

5.1 Perception of Stiffness and Compliance

The sensitivity of people to changes in stiffness or compliance has been studied in
a number of experiments using a variety of servo-controlled electromechanical
systems and physical stimuli. A major finding from this research has been the loss
in perceptual resolution when limb movement and force cues are integrated so as
to perceive stiffness. Jones and Hunter [50] examined the perception of stiffness
using the contralateral limb-matching procedure, in which subjects adjusted the
stiffness of a computer servo-controlled motor connected to one arm until it was
perceived to be the same as that of the motor connected to the other arm. They
found that over a stiffness range extending from 0 to 6260 N/m, subjects could
adjust and match the stiffness of the two motors with an accuracy that paralleled
the matching of forces and movements by the same muscle groups. The ability to
discriminate the stiffness of the two motors varied across the wide range of
stiffness amplitudes studied, but was essentially stable from 670 to 6260 N/m at a
mean value of 23 %. These findings were confirmed in another experiment in
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which subjects discriminated the compliance (the inverse of stiffness) of a
mechanical system compressed between the thumb and index finger. Tan et al. [51]
reported that when work and terminal force cues were eliminated (as was the case
in [50]), compliance resolution was poor relative to force and length discrimina-
tion, with a Weber fraction of 22 %. This number stands in contrast to the 7 and
9 % reported for force and displacement, respectively, and suggests that the human
proprioceptive system is much less consistent when perceiving changes in stiffness
as compared to force and displacement.

The thresholds for stiffness just described were obtained using rigid electro-
mechanical systems in which there was no deformation of the contact surface as
subjects interacted with the device. The perception of stiffness of compliant
materials such as silicone rubber has also been studied, often with the objective of
determining the relative contribution of cutaneous and kinesthetic (force and
displacement) cues to the perceptual judgments. With compliant materials the
Weber fraction is around 15 % when both cutaneous and kinesthetic cues are
available; when surface deformation cues are eliminated performance deteriorates
and thresholds treble [52]. These results and other similar findings point to the
importance of cutaneous cues in discriminating the compliance of deformable
materials and indicate that such judgments are primarily based on the haptic
perception of surface deformation. For rigid interfaces, however, cutaneous me-
chanoreceptors do not appear to be a major source of information regarding
stiffness, as the capacity to discriminate the stiffness of hand-held springs is not
affected by cutaneous anesthesia.

5.2 Perception of Viscosity

The perception of viscosity has also been studied using servo-controlled motors
and physical stimuli, generally with the objective of measuring the sensitivity of
human observers to changes in viscosity. Consistent with the findings reported for
stiffness, Jones and Hunter [53] found that for viscosities ranging from 2 to
1024 N.s/m subjects were accurate at setting the viscosity of a matching motor to
equal that of the reference motor connected to the other arm. The matching
function was linear with a slope of 0.88, which is comparable to the slopes
measured when matching forces (0.84) and positions (0.95) with the same muscle
group. Differential thresholds for viscosity were calculated and found to be even
larger than those reported for stiffness. They varied from 15 to 50 % across the
amplitude range studied, but were relatively stable at approximately 34 % for
viscosities ranging from 32 to 1024 N.s/m. Differential thresholds for viscosity
have also been measured using adaptive psychophysical techniques in which
subjects did not have direct control over the viscosity of the motors (as in the
matching method), but simply indicated on each trial which of two motors had the
greater viscosity. Using this method, Jones et al. [54] determined that the Weber
fraction for viscosity was 19 %. Consistent with the results from studies of
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stiffness and compliance, subjects were less sensitive to changes in viscosity as
compared to force and displacement, which suggests that there is a loss in reso-
lution when force and velocity cues are integrated to perceive viscosity.

Analyses of the forces and movements produced by subjects as they sensed the
viscosity of the electromechanical systems revealed a remarkable consistency in
the amplitudes of the movements generated. In contrast, both the forces and the
velocities of the movements changed significantly with different reference vis-
cosities which indicates that subjects did not simply apply a constant velocity or
force to perceive the viscosity of the system. It is interesting to note that these
thresholds are very similar to those reported using physical stimuli (e.g. silicone
oils) that are manually explored [55].

6 Conclusions

The human hand demonstrates remarkable dexterity in its capacity to control
precisely the forces involved in manipulating objects and the timing of movements
during the execution of skilled tasks such as typing or playing a piano. In all of
these endeavors, cutaneous mechanoreceptors play a crucial role in encoding the
timing, magnitude, direction and spatial distribution of fingertip forces. When
these inputs are absent or deficient, the hand is unable to compensate rapidly as an
object begins to slip between the digits, and misdirected finger movements are not
recognized. It is also important to bear in mind as Napier [56] noted that the
qualities of the human hand that “elevate it to the peerage lie in the degree of
differentiation of its musculature, the intricacy of its nerve supply, and its generous
representation in the higher centers of the brain.” It is the latter and in particular
the capacity of the cortical maps of the body to be modified as a function of
experience that contributes to the remarkable capabilities of the human hand.

Kinematic analyses of complex keyboard tasks such as typing and playing the
piano have offered insight into the internal representation of motor activities and
have shown that the muscles controlling movements of the fingers are not controlled
independently and that coactivation is common. Although keyboard tasks are often
thought of as serial activities, analyses of the sequencing of finger movements in
skilled practitioners reveal that there is an anticipatory component to performance
particularly when keystrokes are executed by different hands. In contrast to the
precise control of the trajectory of the fingers’ movements when typing, force
appears to be a rather loosely controlled variable that is simply programmed to
exceed the key activation force. When playing the piano, however, expert pianists do
modulate force to vary the sound intensity of the notes and reliably reproduce the
same forces in consecutive performances of the same musical score.

The ability to control the forces produced by the hand using only haptic
feedback is not particularly precise and has not been found to vary significantly
across the broad range of muscle groups involved in controlling movements of the
hand and arm. There is no evidence of a proximal to distal gradient in sensitivity in
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force control or perception as has been reported for the control and perception of
limb movements. This suggests that the recruitment of smaller motor units in a
distal muscle in the hand does not impart a superior accuracy in controlling or
perceiving the forces produced. Studies of the perception of forces produced by the
hand and arm have revealed that people are able to discriminate relatively small
changes in force, as reflected in the Weber fraction of 7 %, and that their per-
formance in discriminating forces is comparable to their capacity to discriminate
changes in limb position or movement. The thresholds for force are relatively
invariant across different muscle groups and are similar to those measured for
haptic weight discrimination. However, when force and displacement cues have to
be combined so as to perceive the stiffness and viscosity of an object, there is a
substantial increase in the Weber fractions which are larger by a factor of three to
four than those measured for force and limb movement. The process of integrating
two sensory channels each with their associated noise appears to result in a loss in
perceptual resolution.

The perceived magnitude of supra-threshold forces does vary across muscle
groups and is perceived to change when other forces are produced concurrently by
adjacent muscle groups. The latter finding has been interpreted as indicating that
there is a perceptual inability to segregate the motor output sent to muscles
commonly used together. Forces produced by muscle groups not normally used
together (e.g. the flexors in the leg and hand) have no effect on the perceived
magnitude of the forces produced. When people are asked to match the forces
produced by two non-homologous muscle groups, they scale the forces with ref-
erence to the operating range of the muscle, indicating that forces are sensed
relatively and not absolutely. The perceived magnitude of these forces does,
however, change when tactile cues are eliminated or attenuated.

In summary, the control and perception of forces generated by the hand relies
on a close interplay between the sensory and motor systems. When sensory
information changes, the capacity to control and modulate force can be disturbed
and this in turn influences the perceived magnitude of the forces being produced.
Cutaneous mechanoreceptors provide crucial information about the magnitude and
direction of forces on the fingers and these inputs together with centrally generated
corollary discharges are fundamental to the human perception of force.
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Chapter 6
Proprioceptive Mechanisms
and the Human Hand

Lee D. Walsh, Janet L. Taylor and Simon C. Gandevia

Abstract The hand is complex and used in many functions, including eating and
communication. To control the hand accurately the brain needs information about
the position, velocities and forces around each joint, which is provided by pro-
prioception. Despite being studied for over a century, there is much to learn about
this enigmatic sense. The first part of this chapter summarises the key historical
debates and the evidence that shaped the current view of proprioception. The main
part then highlights recent evidence that has profoundly changed the understanding
of proprioception. One recent development is the discovery that the firing rates of
muscles spindles depend upon the contraction history of the muscle and that it is
possible for muscle spindles to become insensitive to movement of the joint,
remaining quiet during small joint movements. This alters the perceived position
of joints. Other experiments show that illusions of joint movement can be induced
by stretching the skin, providing evidence that slowly adapting cutaneous receptors
contribute to movement sense. However, at least at finger joints, it seems that
rapidly adapting cutaneous receptors interfere with the detection of the direction of
movement. Recent evidence reveals illusions of altered joint position and move-
ment with voluntary efforts during paralysis and anaesthesia. Thus command
signals generated by the brain provide direct information about joint position and
movement. Other experiments using anaesthesia have shown key roles of muscle
receptors in generating the body maps stored by the brain. Together this recent
work shows that the textbook view of proprioception needs revision.
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1 Introduction

The hand has a remarkable structure with more than 15 joints and more than 20
muscles which can move them. It is positioned with seeming ease to perform a
wide range of essential tasks from manipulation and communication to grooming
and eating. The sensory and motor mechanisms which permit this have long
interested scientists and clinicians. One overarching contribution on the sensory
side is proprioception. The present chapter reviews some background to this topic
and recent developments. It is not coincidental that many of the mechanisms
subserving proprioception have been exposed in psychophysical studies of the
human hand.

The brain generates movement by activation of skeletal muscles. Activation of
a skeletal muscle causes it to pull on the bones, causing them to move relative to
each other. However, the brain can only make skeletal muscles shorten, it cannot
lengthen them directly. Thus each muscle can only move a joint in one direction.
To move the joint back to where it started a second opposing, or antagonist,
muscle is required. Furthermore many joints contain multiple degrees of freedom
and therefore require more than two muscles to control them. Some joints are
controlled by remote muscles. Muscles located in the forearm move the fingers,
and their tendons cross several joints to reach the fingertip. Even simple move-
ments require the control of multiple joints, so clearly controlling movement of the
skeleton is a complex task.

To perform movements accurately the brain requires information about the
position, velocity and forces around each joint. Perception of this information is
known as proprioception. This term is used now to refer to the sensation of any
movements and forces that occur within or are imposed on the body. Proprio-
ception is provided via two broad mechanisms. The first is a feedback mechanism
and involves information being transduced in the peripheral parts of the body and
sent to the brain. This is afferent information and it is generated by sensory
receptors located in the muscles and skin as well as the joints themselves. Sensory
receptors in the muscles, called muscle spindles, transduce information about the
length and rate of change of length of the muscles while Golgi tendon organs,
located mostly in the musculo-tendinous junction, signal the forces generated by
muscles. Some slowly adapting receptors in the skin signal stretch of the skin
around a joint as the joint moves. Similarly, joint receptors signal stretch of the
joint capsule. The second mechanism involves the brain using a motor command
signal and a stored model to generate information about how the body responds to
the efferent command signals sent to the muscles. Where the term afferent refers to
information moving towards the brain, the term efferent refers to information
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associated with generation of motor output, often termed corollary discharge or
efference copy (see Sect. 3.4). The term efferent is used here because the pro-
prioceptive information is derived from an efferent signal, although once derived,
the information may stay in the brain.

How proprioceptive information is generated and used by the brain has been
studied for more than a century and has often been a source of controversy.
However, despite the long history, there is still a lot that is unknown, and there
have been important recent developments in the understanding of proprioceptive
mechanisms. Over the history of research into proprioception many of the key
experiments have been performed in the hand [e.g. 1-3] and the hand continues to
play an important role in the study of proprioception.

2 History
2.1 Muscle Spindles Versus Joint Receptors

The idea of having a sense that signals the position and movements of the limbs
goes back at least as far as Bell in the 1830s [4] and even early on there was
controversy about whether this sense was based on afferent signals [e.g. 5-7] or
centrally-generated signals [e.g. 8]. Sherrington’s [7] ‘muscle sense’ favoured
afferent information, specifically from muscle receptors, such as muscle spindles.
Muscle spindles do not detect joint angle as such, but the length and rate of change
of length of the skeletal muscles. If the length of all the muscles around a joint is
known then the position of the joint and velocity of joint movements can be
determined. Sherrington’s view became dominant in the early 1900s [9-11] but
muscle receptors subsequently fell out of favour as contributors to sensation. By
the 1950s joint receptors were seen as the dominant source of information about
joint position and movement. This view was supported by the extensive work of
Skoglund [12]. Further support came from the discovery of neurons in the sensory
cortex that responded to joint movement and joint probing [13], combined with
evidence that muscle receptors did not project into the cortex [14]. The latter result
was eventually proved wrong and was due to the class of anaesthetics used in
animal experiments at the time [15].

Muscle spindles again became the favoured source for the sense of joint
position and movement after experiments by Goodwin, McCloskey and Matthews
[16] showed that vibration of the muscle’s tendon induced illusions of altered joint
position and joint movement. Muscle spindles are known to be sensitive to low-
amplitude vibration (frequency ~ 80 Hz, amplitude ~1 mm) [e.g. 17, 18]. Fur-
thermore illusions of movement are produced when the muscle is stretched by
pulling on an exposed tendon without any movement of the joint [19, 20, cf. 21] or
when the muscle afferents are stimulated electrically [22]. This strong evidence of
a role for muscle spindles was accompanied by evidence that joint receptors were



126 L. D. Walsh et al.

not ideal as transducers of joint position and movement. It was shown that joint
receptors were usually not good at encoding joint angle in cats [23] or in the
human hand [24]. Furthermore, they produced ambiguous signals because their
output was often similar at both ends of the joint range [23]. In addition, after total
hip replacement surgery, which removes the joint capsule and presumably all joint
receptors, position sense at the hip is still intact [25, 26]. Similar results have been
found for the knee [27] and the shoulder [28]. Currently it is thought that muscle
spindles are the dominant afferent source of information about the position and
movement of the joints, and that joint receptors are important for signalling the
extremes of joint range.

2.2 Cutaneous Receptors

When joint movement occurs, the skin around the joint is stretched and thus
cutaneous receptors, usually thought of as being simply used for the sense of
touch, are able to provide proprioceptive information. This was first noted in 1929
by Adrian and Umrath [29] but not until 1979 was it shown that cutaneous
receptors in the human hand respond to the movement of nearby joints [30].
Hulliger and colleagues found that rapidly adapting type two (RA-II) receptors and
slowly adapting type two (SA-II) receptors were the most responsive to joint
movement. In addition SA-II afferent nerve fibres encoded the static position of a
joint. This fitted with previous evidence that SA-II afferents responded to skin
stretch and were directionally sensitive [31]. These studies demonstrated that
signals from SA-II receptors were capable of contributing to proprioception
because they produced stable firing rates that depended upon the amount of skin
stretch around a joint. However a problem with cutaneous afferent signals is that
the same afferents also respond to skin stretch that is not related to movement of
position of the joint. This means that cutaneous signals must undergo some pro-
cessing if they are to be used for proprioception.

While it was clear that cutaneous receptors could contribute to proprioception,
it was not straightforward to determine if they actually had an important role. One
problem was that the experimental techniques that remove cutaneous signals, for
example blocking the digital nerves of the finger with local anaesthetic, usually
also removed the signals from joint receptors. Some authors assumed that skin
receptors did not contribute directly to proprioception when they blocked the
digital nerves to study the contribution of joint receptors [1, 32, see also 2]. This
separation is less difficult in the knee and thus Clark et al. [33] believed they were
able to independently block skin and joint afferents using local anaesthetic. They
suggested that skin receptors did not contribute to static position sense, but they
noted that that the ability to match limb position degraded with the removal of
cutaneous input. They suggested that signals from the skin may be more important
for movement sense in the hand than for proximal joints. Further studies suggested
that cutaneous receptors contributed to limb position and movement sense [21, 34],
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but opposition continued [35]. One problem at the time was that it was not clear if
cutaneous signals provided a specific signal of limb position and/or movement or
whether they provided central facilitation to aid in the decoding of muscle and
joint receptor input [2, 36, 37]. This issue has been addressed in recent studies
which are discussed in Sect. 3.2.

2.3 Tendon Organs

Proprioception also includes the ability to perceive force and heaviness, the history
of which has been less controversial than the senses of limb position and move-
ment [38]. The sense of force refers to the ability to perceive the force that is
generated by the muscles and its primary receptor is the Golgi tendon organ.
Tendon organs are located mostly near the musculo-tendinous junction [39] and
their firing rates are closely related to muscle force [18, 40]. However they are
more sensitive to force produced by an actively contracting muscle than passive
forces [41]. In addition to tendon organs, information about force can be obtained
from cutaneous receptors [42] because when a limb moves and applies force to
something the skin is compressed or sheared in the region of contact. A third
source of information about force is the centrally generated motor command which
is directly related to the signal driving the muscle to contract. This signal may
increase when a muscle is effectively weakened [43]. However, this information is
not ideal because it is corrupted by factors, such as muscle fatigue, that change the
relationship between motor command output and muscle force output. This is
where the sense of effort is distinguished from the sense of force. An example of
the divergence of the sense of force and effort can be seen when carrying a heavy
suitcase some distance. Over time the suitcase feels heavier, even though its
weight has not changed. This is because the loaded muscles are fatiguing and
therefore have to be driven harder to maintain the force required to lift the suitcase.
The increase in motor command required to drive the muscles is perceived as
increased effort and interpreted as increased heaviness of the suitcase. Central
signals of motor command are thought to be a major source of the sense of effort,
however it is possible that muscle spindles provide input as well [44].

It is common to break proprioception into ‘sub-senses’ to simplify investiga-
tion. In the history presented above it was broken into senses of limb position, limb
movement, force and effort. All proprioceptive signals provide information
simultaneously when a movement is made. Some receptors, such as muscle
spindles and tendon organs, are specialised to signal one type of information. This
does not mean that they only provide that information. As an example, tendon
organs signal force, but could also detect lengthening during muscle contraction
because if the muscle shortens they will be stretched. Likewise, muscle spindles
could also signal muscle force. Because they are ‘co-activated’ by fusimotor drive
during voluntary contractions, they also fire more when the muscle contracts (see
Sect. 3.1). Although it is possible to focus and perceive the angle, velocity or force
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at one joint, this is not how we generally perceive our body. For example, we are
consciously aware of the position of our hands, but we do not perceive the
information from individual joint and muscles, we simply perceive the position of
the hand. This emphasises that proprioceptive information is combined into a
synthesised representation of the body, and we perceive that representation which
is updated continuously by sensory information.

3 Recent Developments
3.1 Muscle Spindles

When skeletal muscle contracts and shortens it might be expected that the muscle
spindles would also shorten, and therefore fall slack. However this is overcome by
the structure of the muscle spindles which comprise small muscle fibres inside a
spindle-shaped capsule. These intrafusal muscle fibres have their own motor
supply, the fusimotor system. Fusimotor activation acts to shorten the muscle
spindles and thus, ideally to ensure that they are at an appropriate length to signal
changes in muscle length. However the presence of the fusimotor system also
creates its own complications for the muscle spindle signal. The contractile parts
of the intrafusal muscle fibres are predominantly located at both ends of the
spindles. This means that when the fusimotor system is activated both ends of the
intrafusal muscle fibres shorten and the centre of the fibres, where the afferent
nerve terminals are located, is stretched. During an isometric contraction there is
little change in total muscle length (i.e. the length of the muscle-tendon unit),
although muscle fibres would shorten slightly. However, the fusimotor system is
usually activated along with the rest of the muscle [45-49, cf. 50, 51] and this will
stretch the muscle spindle endings and increase their firing rate. Hence despite the
actual muscle length remaining relatively constant, the spindle signal during an
isometric contraction should indicate that the muscle is lengthening, which is
consistent with a movement or change in position opposite to the direction of the
contraction. In the 1970s, it was suggested that we do not perceive such a change
because the part of the muscle spindle signal that is due to the fusimotor activation
is subtracted out using a corollary of the motor command [16, 20, 37]. However
there is no evidence that this is the case. In fact recent studies have shown that we
do perceive a change in joint position during an isometric contraction [52, 53],
although the change is in the opposite direction to that expected from the fusimotor
activation of muscle spindles. So while fusimotor activation can assist in putting
muscle spindles at an appropriate length to indicate muscle length accurately, it
also corrupts the signals and makes them potentially ambiguous. In situations in
which the muscle spindle signal from the agonist muscles is ambiguous, the signal
from muscle spindles in the passive antagonist muscle could be very useful [54].
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Fig. 1 The effect of thixotropy on passive muscle. The dotted arms show the position at which
an isometric contraction was made. In (a) the elbow was extended after the contraction while
biceps and triceps were relaxed. This action stretched biceps and shortened triceps, but because of
the splinting caused by stable crossbridges the triceps falls slack. In this situation any passive
lengthening or contraction of triceps will be taken up by the slack. A similar situation is depicted
in b, the elbow has been passively flexed after an isometric contraction at a more extended
position. This causes the biceps to fall slack. The intrafusal muscle fibres of the muscle spindles
are affected by the same thixotropic property and spindles that fall slack will lower their firing
rate and may go silent. Muscle spindles that are stretched (biceps in a and triceps in b) will
increase their firing rates. The situation depicted in a is known as flexion conditioning and b is
known as extension conditioning. The figure is adapted from [83] with permission

Another problem with the muscle spindle signal is that it depends on the history
of contraction of the muscle. Skeletal muscle has thixotropic properties in that
after contraction, or even after a period of rest at a set length, the behaviour of the
crossbridges means that the muscle fibres have a resistance to length changes [55].
Hence, length changes imposed on passive muscle are met with some stiffness.
The result is that a muscle contracted at a long length and then passively shortened
may fall slack (Fig. 1) and a muscle contracted at a short length and then passively
stretched may initially resist the increase in length. These thixotropic properties
extend to the intrafusal muscle fibres of the muscle spindles [56-58] so that the
state of the spindle endings and their firing rate in a passive muscle depend on the
previous muscle contraction and any subsequent passive movement. The effects of
muscle spindle thixotropy on the sense of joint position are large enough to pro-
duce illusions of altered joint position [e.g. 57, 59]. While the role of muscle
spindles in the sense of joint position and the sense of joint movement is well
established, they are not ideal detectors of muscle length or rate of change of
muscle length. Activation of the fusimotor system can make the spindle signal
ambiguous in active muscle and the thixotropic properties of the intrafusal fibres
can make the signal ambiguous in passive muscle. Furthermore the initial response
of spindle afferents to stretch is reset a short time after the last change in length
[60]. Despite being accepted as the primary detector of joint position and
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movement, muscle spindles seem poorly suited to the task. However this is typical
of proprioceptive signals, none are ideal and all have shortcomings, but they all
combine to provide an accurate sense of what the body is doing.

Muscle spindles have generally been thought of as receptors for muscle length
and rate of change of muscle length. Recent work investigating the firing of muscle
afferents in the hand during ‘natural’ grasping movements has shown that muscle
spindles may also encode the second derivative of muscle length, that is accel-
eration [61, 62]. Dimitriou and Edin also suggested that muscle length and velocity
information is not simple to extract from muscle spindle signals in active muscle
and that information about fusimotor activation and the ongoing load properties
may be necessary. These authors have gone on to show that muscle spindles are
also capable of acting as forward sensory models and predicting future kinematic
states of their parent muscle [63]. Forward models are important in motor control
because the ability to predict motor outcomes allows faster adaptation and cor-
rection ‘on-the-fly’.

3.2 Cutaneous Receptors

Studies that blocked the nerves containing cutaneous afferents impaired the sense
of limb position in the hand. However it was not known if signals from cutaneous
receptors signalled position and movement directly or whether they simply pro-
vided facilitation to the signal from other receptors. More recently it has been
shown that a facilitatory role is not likely because removing the input from the
digital nerves of the middle finger did not impair movement detection of the
proximal interphalangeal joint of the adjacent index finger, and adding input did
not improve it [64]. However this study also showed that an electrical or natural
cutaneous stimulus applied to the adjacent finger did impair movement detection,
suggesting that there is an interaction between cutaneous input and proprioception.
Edin and Johansson [65] suggested that afferents from skin receptors contributed
to the perception of movement. They demonstrated that illusions of finger
movement could be induced by manually stretching the skin around the proximal
interphalangeal joint in a way that mimicked how it would normally be stretched
during a movement of that joint. Similar illusions were shown for the metacar-
pophalangeal joint by Collins and Prochazka [3], who also produced these illusions
by electrically stimulating the skin on the back of the hand. More recently, skin
stretch was shown to produce illusions of movement of the finger, elbow and knee
(Fig. 2) [66], although illusions in the hand occurred in more subjects than illu-
sions at proximal joints. This suggests that perhaps skin receptors are most
important for movement detection in the hand. Cutaneous receptors have a high
density in the hand [67] which gives them the potential to provide greater, more
accurate input. Furthermore the accuracy of muscle spindles is compromised when
a muscle spans multiple joints [68], whereas cutaneous receptors in the fingers
may provide more localised information about which joint moved.
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Fig. 2 Illusions of altered joint position induced by tendon vibration and stretch of the skin
around joints of the index finger. Vibration results in errors in the perception of joint angle at the
metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the index finger. Skin
stretch can also induce these illusions. The effect of skin stretch is enhanced by simultaneous
vibration and is greater at the PIP joint which is distal compared to the MCP joint. * indicates a
result that is significantly different from the vibration only result (p < 0.05). This figure is
adapted from [66] with permission

Another recent development in proprioception concerns whether some input
from the cutaneous receptors can interfere with proprioception. Very low-ampli-
tude (20-50 um peak-to-peak) high-frequency (300 Hz) vibration favours input
from Pacinian corpuscles, while lower frequency (30 Hz) favours input from
Meissner corpuscles. Low-amplitude, high-frequency stimulation applied to either
the middle finger or the thenar eminence reduces the ability to detect movements
of the proximal interphalangeal joint in the index finger [69]. This reduction in the
ability to detect movement is not seen with a lower frequency stimulus, which
suggests that input from Pacinian corpuscles can interfere with movement detec-
tion in the hand. If the digital nerves of the adjacent finger are blocked, removing
input from skin and joint receptors, there is no impairment produced by Pacinian
corpuscle input (Fig. 3) [70]. Furthermore, removal of the muscle receptor con-
tribution makes no difference to the effect of the high frequency vibration. The
evidence from these two studies shows that cutaneous receptors can interfere with
proprioception in the hand.

3.3 Pain

Pain is another factor that has been shown to interfere with proprioception. Studies
done on the elbow flexor muscles have shown that muscle pain induced by eccentric
muscle damage or injection of hypertonic saline causes subjects to make errors
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Fig. 3 The effect of high-frequency cutaneous vibration (designed to activate Pacinian
corpuscles) on movement detection at the proximal interphalangeal joint (PIP) of the index
finger (test digit). Movement detection was measured as the number of correct detections of the
direction of movement at the PIP joint out of 40 trials, during three conditions: (1) vibration of
the index finger, (2) vibration of the middle finger and (3) vibration of the anaesthetised middle
finger. The dark lines and symbols show the group mean + SEM. The grey lines show each of the
nine subjects from each condition. There was a significant (asterisk, p < 0.05) decrease in the
incidence of correct detection of movement direction during vibration of the index finger and
vibration of the adjacent middle finger compared to control trials (C). No change occurred when
vibration was applied to an anaesthetised finger. Reproduced from [70] with permission

when matching the force produced by the painful muscle with a force generated by
the other arm [71-73]. Pain in the skin over the muscle also resulted in subjects
making force matching errors [72]. Another study of the hand investigated the
effect of muscle and skin pain on detection of movement of the thumb. Experi-
mentally induced pain in the flexor pollicis longus muscle which moves the thumb,
or in the skin of the thumb, impaired movement detection at the distal joint of the
thumb [74]. However pain in the skin over the flexor pollicis longus muscle, or in
the flexor carpi radialis muscle, which does not act on the thumb, did not impair
movement detection in the thumb. One concept emerging from the work is that
while pain may have some generalised effects on motor and sensory performance,
nociceptive inputs may also exert specific effects on aspects of proprioception.
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3.4 Motor Commands

If the brain is responsible for causing a movement, it can theoretically monitor the
commands that were issued to enact that movement. Using that information and
knowledge gained from experience about how the body responds, the brain could
determine the outcome of its motor commands. For example, during a voluntary
flexion of the index finger, the brain could know that the index finger is flexed
because the muscle, skin and joint receptors are signalling finger flexion, or it could
know that the finger is flexed because it commanded the finger to flex. The concept
that we are consciously aware of the drive to our muscle may be as old as the 1500s
[75], but it became more widely known in the late 1800s [8, 10]. In the 1950s it was
proposed that corollary discharges [76] or efference copies [77] of the motor com-
mand interacted with afferent information to compensate for, or subtract, the cor-
rupting influences of self-generated action on afferent information. From the 1970s
until recently it was speculated that this was the only role of central motor commands
in the sense of limb position and movement. That is, corollary discharges allowed
subtraction of the increased firing of muscle spindles caused by fusimotor activation,
but did not provide a direct signal of position or velocity [16, 36-38].

Recently it was shown that when subjects have one set of elbow flexors
weakened by fatigue or eccentric muscle damage, they make errors in matching
the angle of one arm, placed by the experimenter, with the other arm in the absence
of vision [78-80]. It was proposed that subjects used the amount of effort required
to hold their arm against gravity as a cue for the angle of their elbow, rather than
afferent signals. Further experiments in the hand have shown that during anaes-
thesia and paralysis induced by ischaemic block, if subjects are asked to make a
voluntary effort with their wrist muscles they perceive the hand to become dis-
placed in the same direction as the effort [81]. For example, if a subject makes an
effort into flexion, they report their wrist to be more flexed. Furthermore the size of
the perceived displacement grades with the level and duration of the volu