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Abstract— Microarray technology has made possible the
simultaneous monitoring of the expression levels of thousands
of genes under multiple disease states. Due to the high com-
plexity of the obtained data the use of computational methods
for extracting biological evidences is still a major issue. In this
work we address this problem by adjusting the use of gene co-
expression networks to analyze a Head and Neck Squamous
Cell Carcinoma (HNSCC) dataset. The proposed method ap-
plies hierarchic clustering to identify gene modules using the
topological overlap dissimilarity measure after, defining a gene
co-expression similarity, defining a family of adjacency func-
tions and calculating their parameters. This method calculates
the eigengenes of each module to define a network of modules
and the correlation between the eigengenes and the risk fac-
tors, identifying modules of genes where those are more
expressed and associating these concepts to gene ontology
functional terms. The preliminary results described in this
paper contribute to reveal the molecular mechanisms associat-
ed with HNSCC and the contribution of experimental factors
types like differentiation, alcohol use, sex, age, tumor site,
smoking pack years and race.

Keywords— gene expression, co-expression network, head
and neck cancer.

I. INTRODUCTION

Head and Neck Squamous Cell Carcinoma (HNSCC) is
the sixth most common cancer worldwide, affecting
600,000 new patients each year [1]. Several risk factors
such as smoking habits, alcohol use, and human papilloma-
virus infection have already been documented as having a
very high correlation with this type of cancer [2, 3]. Despite
that, still lacks a full comprehension of genomic processes
that are associated with HNSCC and more importantly the
individual contribution of each of these factors, when
crossed with epidemiologic characteristics and the existence
of other risk factors associated with this disease.

While techniques such as microarray experiment evaluates
a large number of genomic sequences (genes), under multiple
conditions (samples) [4], the traditional computational ap-
proaches for extracting evidences from the data are cumber-
some and most of the times lead to inconclusive results.

One promising approach consists in the use of gene co-
expression networks to study gene expression data, helping
in the extraction of structural and functional features that
can be used to better understand the data. The followed
approach to analyze expression data using weighted gene
co-expression networks includes the following steps [5]:
definition of a gene co-expression similarity, definition of a
family of adjacency functions, determination of the adja-
cency functions parameters, identification of the network
modules using clustering, association to network concepts
and association these concepts to external gene or sample
information.

This paper shows the preliminary results of a study that
aims to contribute to reveal the molecular mechanisms as-
sociated with HNSCC and the contribution of other risk
factors besides smoking habits and alcohol use, like differ-
entiation, sex, age, tumor site and race with a major focus in
the age and alcohol use experimental factor types.

1. METHODS

A. Dataset Construction

The dataset was downloaded from the public microarray
gene expression database ArrayExpress [6, 7], from the
investigation E-GEOD-39366 - Molecular Subtypes in Head
and Neck Cancer [expression].

A total of 138 tumor arrays were considered from the 163
samples, after removing low-quality and duplicate arrays,
and arrays from non-HNSCC samples. Probes produced
expression values for 15,595 genes.

Database for Annotation, Visualization, and Integrated
Discovery bioinformatics resources (DAVID) is an integrat-
ed biological knowledgebase and data mining tools. It is
used to extract biological meaning from large lists of genes
or proteins, like gene ontology functional terms [8, 9].

B. Gene Co-expression Network

Co-expression network construction from microarray da-
ta uses correlation analysis to build the correlation matrix,
which is converted to an adjacency matrix representing the
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co-expression network. Each gene corresponds to a node
and two genes are connected by an edge if their expression
values are highly correlated.

Many real networks have been found to have approximate-
ly scale free topologies with the associated topological
properties presented. An example is the study made with
protein-protein interaction networks obtained from the human
oral proteome [10]. Networks whose scale free topology
index R? is close to 1 are said to be approximately scale free.

A co-expression network can be represented by a sym-
metric adjacency matrix, A = [a;;] with values in [0,1].
For weighted networks, the adjacency matrix returns the
connection strength between gene pairs and as gene co-
expression similarity measure can be used the absolute
value of the Pearson product moment correlation to relate
every pairwise gene—gene relationship

a;; = |cor(xi,xj)| (1)

An adjacency function can be used to transform the orig-
inal network into a new network. For the construction of
weighted gene co-expression networks [5], the adjacency
matrix is constructed using a “soft” power adjacency func-
tion a;;, where for an unsigned network

a;; = |cor(xi,x]-)|ﬁ 2)

A choice of a power f > 1 is used to emphasize large
adjacencies at the expense of low ones. To choose the pa-
rameter value £ is used the scale free topology criterion,
being B the value obtained through the trade-off between
the lowest integer such that the resulting network satisfies
approximate scale-free topology (linear model fitting index
R? of the regression line between log(p(k)) and log (k)
larger than 0.8) with the highest mean number of connec-
tions (high power for detecting modules, clusters of genes
and hub genes).

It can also be defined the gene significance (GS) based
on a microarray sample risk factor, defining gene signifi-
cance measure as a function GS that assigns a nonnegative
number to each gene. The higher GS; the more biologically
significant is gene i. Risk factor based gene significance is
defined as (the absolute value of) the correlation between
the gene and the risk factor.

Two network connectivity measures can be defined: the
whole-network connectivity (including the whole gene
network) and the intra-modular connectivity (including the
genes of a particular module) as

k; = Zj aij 3)

Modules in weighted gene co-expression network are
groups of highly correlated genes with high topological
overlap [11]. A pair of genes is said to have high topological
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overlap if they are both strongly connected to the same
group of genes. The use of topological overlap is a filter to
exclude very weak connections during network construction.
The topological overlap matrix (TOM) transformation can
lead to a more robust network and larger modules

Yu Qi Ay jtaij
min(iiy )i @

TOM;; is a value in [0,1] and TOM;; = TOM;;.

Module significance is the mean gene significance of the
module genes.

The module eigengene [12] summarizes the expression
profiles in a module and is the first principal component of
the Singular Value Decomposition (SVD) of the module
expression matrix. It is the most highly connected intra
modular hub gene and allows treating modules as single
units.

The module membership (MM) is defined as the correla-
tion of the module eigengene and the gene expression pro-
file, allowing the quantification of the similarity of all array
genes to every module.

Modules can be found using hierarchical clustering. Hi-
erarchical clustering takes a dissimilarity measure as input.
The topological overlap based dissimilarity measure is

The modules are the branches of the resulting hierarchical
clustering tree (dendrogram), which can be selected manual-
ly using a constant height cut-off value or using an algo-
rithm for the selection of the height cut-off value, like the
Dynamic Tree Cutting algorithm that adaptively chooses
cutting values depending on the shape of the branches.

The dissimilarity of two modules q; and g, can be calcu-
lated by

diss(qy,q,) = 1 — cor(EW@), E(@)) ©)

and the eigengene network can be defined as the signed
correlation network

Agq, 4.3 =05+ 0.5 cor(E(@V}, pl@)}) )

1. RESULTS

Weighted gene co-expression analysis was applied to the
expression dataset of 138 tumor arrays with expression
values of 15,595 genes from the investigation Molecular
Subtypes in Head and Neck Cancer from the ArrayExpress
database [6]. Experimental factor types considered are:
differentiation, alcohol use, sex, age, tumor site, smoking
pack years and race with a major focus in age and alcohol
use experimental factor types.

Scale free topology criterion was used to choose the
power 8 for the unsigned weighted correlation network and
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it was chosen 8 = 5. The scale free topology plot of the
weighted head-neck co-expression network constructed
with power f = 5 satisfies a scale free topology approxi-
mately with R? = 0.96, a value close to 1. It was defined a
topological overlap matrix using (5) and constructed a hier-
archical tree (average linkage) to define modules as branch-
es of the tree. Eigengenes for each module were calculated
and a network among modules was defined, where each
node of the network correspond to a module (Fig 1). It was
constructed a hierarchical clustering dendrogram of the
eigengenes E based on (6) and a heat map to visualize the
eigengene network defined by the signed correlation net-
work (7). Modules highly correlated are similar and can be
merged (Fig. 1).

Multidimensional scaling can be used to visualize pair-
wise relationships specified by a dissimilarity matrix, where
each row of the dissimilarity matrix is a point in a Euclidean
space and the Euclidean distances between a pair of points
reflect the corresponding pairwise dissimilarity. The input
is the Tom dissimilarity and each dot is colored by the cor-
responding module assignment (Fig. 2). Colors from each
module are well separated, showing distinct modules.

To identify modules associated with the risk factors and
because each eigengene is a summary of the expression
profiles of the respective module, eigengenes and risk fac-
tors were correlated. Each row corresponds to a module
eigengene, and each column to a risk factor. Each cell con-
tains the corresponding correlation and p-value. The table is
color-coded by correlation according to the color legend.
Age is more correlated with the magenta, black, green and
light green modules and alcohol use with blue, light cyan,
tan and pink modules (Fig. 3). Two different experimental
factors are correlated with different modules (different
genes) in this type of cancer.

The correlations between age an alcohol use and the re-
spective module eigengenes can be measured using gene
significance (GS) and module membership (MM) to identify
genes with high significance for age and alcohol use and
high module memberships in the identified modules (Fig. 4).

Gene ontology analysis was performed using DAVID
[8], but needs to be further developed. For the modules
black and green, two of the modules more correlated with
age, the results obtained are for the black module: tyrosine
kinase, non-receptor, 2; peptide YY, 2 (seminal plasmin);
and oxytocin, prepropeptide (considering the three correla-
tion higher values with the age risk factor, respectively:
0.233; 0.190; 0.160) and for the green module: family with
sequence similarity 89, member A; hypothetical protein
LOC100134229; and Rap guanine nucleotide exchange
factor (GEF) 3 (considering the three correlation higher
values with the age risk factor, respectively: 0.218; 0.216;
and 0.215).
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Fig. 1: Visualization of the eigengene network representing the relation-
ships among the modules and the age and alcohol use
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Fig. 2: Multidimensional scaling
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Fig. 4: Gene significance versus module membership for the risk factor age
and alcohol use

IV. CONCLUSIONS

Gene expression profiles across samples can be highly
correlated [5]. Gene co-expression networks were defined
as weighted correlation networks, to preserve the continu-
ous nature of the co-expression information, where strong
correlations were privileged to weak correlations to mini-
mize noise and due to the small number of samples com-
pared to the number of genes. The quantitative microarray
sample risk factor was used to define risk factor based gene
significance measure.

This methodology allows the identification of distinct
modules (Fig. 2). Co-expression modules are summaries of
interdependencies, through the modules eigengenes.

Correlations between risk factors and HNSCC gene ex-
pression data modules were quantified, but some physiolog-
ical risk factors, like race, showed no correlation with
HNSCC. The analysis for this disease was mainly focused
in the risk factors age and alcohol use, which were more
correlated with different sets of modules from the HNSCC
gene expression dataset (Fig. 3).

A preliminary gene ontology analysis, obtained functions
for the genes of the modules identified and here were listed
as an example the functions associated with genes with the
three correlation higher values with two of the modules
more correlated with the risk factor age.
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