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Abstract— In Intensity Modulated Radiation Therapy 
(IMRT), the selection of appropriate radiation incidence direc-
tions is one of the determinants of proper tumor coverage and 
sparing of healthy tissues. Nevertheless, most of the times, the 
incidence directions used in clinical practice are equidistant or 
determined by a trial and error procedure that is very time 
consuming and does not guarantee the  best possible treat-
ment plan. This paper presents some preliminary results con-
sidering the application of DDS (Dynamically Dimensioned 
Search) algorithm to the problem of Beam Angle Optimization 
(BAO) for IMRT treatment planning. BAO is a problem 
known by having many local minima. DDS is a derivative-free 
optimization algorithm, and presents the capability of not 
getting trapped in these local minima as happens with, for 
instance, gradient descent based algorithms. In this paper we 
will briefly describe the problem, the algorithm, and present 
computational results for clinical cases of head and neck tu-
mors. 
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I. INTRODUCTION  

Radiation therapy consists of the treatment of cancerous 
tissues using radiation, having as goal the destruction of 
cancerous cells and the preservation of healthy tissues. 
IMRT is a modern technique in radiation therapy, where the 
radiation beam is modulated by a multileaf collimator. 
Multileaf collimators enable the transformation of the beam 
into a grid of small beamlets of independent intensities. The 
treatment plan is based on the patient CT images, where the 
radiation oncologist delineates the target volume (PTV) and 
organs at risk (OAR), and declares the treatment objectives 
(prescription dose for the PTV and dose constraints for the 
OARs). To plan a given treatment it is necessary to deter-
mine how many and which incidence directions to use 
(BAO) and the radiation intensity from each beam angle 
(Fluence Map Optimization – FMO). In clinical practice, 
most of the times, the number of angles is considered fixed 
and decided a priori, and the remaining treatment plan pa-
rameters are determined by using an iterative and time  
consuming trial and error procedure until a treatment com-
plying with the medical prescription is obtained (forward 
planning). An alternative approach considers using inverse 

planning, where given the desired medical prescription the 
treatment parameters are automatically determined. Inverse 
planning applied to radiotherapy is a fruitful ground of 
research with several important unresolved issues, but until 
now most of the efforts have been devoted at solving the 
FMO, and comparatively fewer research effort has been 
directed to the BAO problem. The BAO problem has been 
tackled using several different methodologies like response 
surface approaches [1], derivative-free approaches [2], 
mixed integer programming approaches [3], simulated an-
nealing [4], particle swarm optimization [5] or genetic algo-
rithms [6]. In this paper we apply DDS algorithm to the 
BAO problem. The DDS algorithm is a simple stochastic 
single-solution based global search algorithm [7]. In the 
next section we will describe the BAO problem in more 
detail. In section III we will briefly describe the DDS algo-
rithm. Section IV will show the preliminary computational 
results. Section V will state some conclusions and possible 
future developments. 

II. THE BEAM ANGLE OPTIMIZATION PROBLEM 

In BAO we want to calculate the optimal number of 
beams, k, to use in a given treatment and to decide what are 
the best k beam angles. This is a very important step in 
IMRT optimization since it directly influences both the 
quality of the treatment delivered and the overall treatment 
time (the treatment time increases with the increase in the 
number of beams). In this paper we consider that k is deter-
mined a priori. So, a given solution to the BAO problem 
will be any set of k angles chosen from the interval [0,360]. 
Many authors choose to discretize this interval and interpret 
this problem as a combinatorial problem: the problem of 
choosing a combination of k angles out of a set of n possible 
angles, where n is determined by the degree of the discreti-
zation. In this paper, we consider each angle as a continuous 
variable. As pointed out in [2], it is not even necessary to 
consider an upper and lower bound for each variable, since 
an angle of -10º, for instance, is equal to 350º or an angle of 
370º is equal to 10º.  

Each solution (the set of angles) will have to be assessed, 
so that it is possible to somehow quantify its quality. In 
reality, this assessment can only be done after considering 
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how the radiation dose will be deposited into the patient 
cells, so the FMO problem needs to be first solved. To solve 
the FMO problem, we need a way to calculate accurately 
the radiation dose distribution deposited in the patient, 
measured in Gray (Gy). Each structure’s volume is discre-
tized in voxels (small volume elements) and the dose is 
computed for each voxel using the superposition principle, 
i.e., considering the contribution of each beamlet. Typically, 
a dose matrix D is such that each row of D corresponds to a 
voxel and each column to each possible beamlet. Thus, the 
number of rows of matrix D equals the number of voxels 
(V) and the number of columns equals the number of 
beamlets (N) from all beam directions considered. The ele-
ment in row i and column j of matrix D corresponds to the 
dose contribution to voxel i from beamlet j with unit intensi-
ty. Therefore we can say that the total dose received by the 
voxel i is given by  
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with  ݓ௝ representing the intensity (or fluence) of beamlet 
j. The size of D originates large-scale problems being one of 
the main reasons for the difficulty of solving the FMO prob-
lem. From a mathematical point of view, we are thus in the 
presence of two related problems. If we define Θ as the set 
of all possible angles, then a basic formulation for the BAO 
problem can be defined as follows: 

( )1 2min , , , kf θ θ θ                     (2) 

subject to 1, , kθ θ ∈Θ                  (3) 

There are many different ways of solving the FMO prob-
lem and it is beyond the scope of this paper to discuss the 
appropriateness of the different approaches. We have cho-
sen to use a convex penalty function voxel-based nonlinear 
model [8], where each voxel is penalized considering the 
square difference of the amount of dose received by the 
voxel and the amount of dose desired/allowed for the voxel.  
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where iT is the desired dose for voxel i, iλ  and iλ  are the 

penalty weights of underdose and overdose of voxel i,  
respectively, and ( ) { }max 0,

+
=  . This nonlinear formula-

tion implies that a very small amount of underdose or over-
dose may be accepted in clinical decision making, but larger 
deviations from the desired/allowed doses are decreasingly 
tolerated.  

III. DDS ALGORITHM 

The DDS algorithm begins with any admissible solution 
of the problem, and iteratively perturbs this solution looking 
for a better one. Whenever a better solution is found, it 
becomes the current solution that, in turn, will be perturbed. 
The search is more global at the beginning of the algorithm, 
and it then becomes more focused in the local neighborhood 
of the best solution so far. This adjustment from global to a 
more local search is achieved by reducing the number of 
variables that are perturbed. The magnitudes of the pertur-
bations are randomly sampled from a normal distribution 
with mean 0. In our implementation of the algorithm we 
follow [7], considering some adaptations described in [9]. 
The algorithm’s parameters are as follows: r represents the 
initial standard deviation considered; r_max and r_min 
represent the maximum and minimum admissible standard 
deviations considered; N represents the maximum number 
of iterations (an upper limit to the number of objective func-
tion evaluations, since in each iteration at most one solution 
is evaluated); l_success and l_failure determine a change in 
the current standard deviation due to successive successful 
or unsuccessful iterations (a success meaning that the objec-
tive function value has improved). The algorithm has as 
input an admissible solution to the problem (that can be 
randomly generated) and returns as output an improved 
admissible solution. 

The algorithm behavior can be described as follows: 

1. Set counter i←1; Define the initial admissible solution  x_current 
and evaluate this solution (f_current). f_best←f_current; 
x_best←x_current; success←0; failure←0. 

2. Calculate the probability of any given variable be perturbed as 
p(i)=1−ln(i)/ln(N). For each decision variable x_best(j), j=1,…,k, add 
the variable to the set J with probability p(i). 

3. For every variable x_best(j), j∈J, perturb randomly this variable 
considering a normal distribution N(0,r). This perturbed solution will 
constitute the new x_current. 

4. Evaluate x_current. If f_current< f_best, then f_best←f_current;  
x_best←x_current ; success← success +1 and failure←0. Else suc-
cess←0 and failure← failure+1. 

5. If failure ≥ l_failure then r=min(r/2,r_min). If success ≥ l_success 
then r=max(2r,r_max).  

6. i← i +1. If i ≥ N then stop, else go to 2. 
 

Steps 2 and 3 of the algorithm are responsible for calculat-
ing a new current solution in a random manner (by randomly 
deciding which variables to perturb and the magnitude of the 
perturbation). Given the specificities of the BAO problem, we 
also guarantee that the current solution does not have two 
adjacent angles that are too near each other. From a clinical 
point of view, angles that are less than 4º apart are considered 
the same. The evaluation of the current solution in step 4 is 
done by resorting to the optimization of the FMO problem. 
The computational times needed to solve each of these  
optimization problems are considerably high.  
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IV. COMPUTATIONAL RESULTS 

The DDS algorithm was tested considering ten clinical 
examples of already treated patient cases of head-and-neck 
tumors at the Portuguese Institute of Oncology of Coimbra 
(IPOC) signalized as complex cases where proper target 
coverage and organ sparing proved to be difficult to obtain. 
The spinal cord and the brainstem are some of the most 
critical organs at risk (OARs) in the head-and-neck tumor 
cases. These are organs such that if only one subunit is 
damaged, the whole organ functionality is compromised. 
Thus, it is extremely important not to exceed the tolerance 
dose prescribed for these types of organs. Other than the 
spinal cord and the brainstem, the parotid glands, the largest 
of the three salivary glands, are also important OARs. A 
common complication due to the irradiation of parotid 
glands is xerostomia (the medical term for dry mouth due to 
lack of saliva). This decreases the quality of life of patients 
undergoing radiation therapy of head-and-neck, causing 
difficulties to swallow. The parotids are parallel organs, i.e., 
if a small volume of the organ is damaged, the rest of the 
organ functionality may not be affected. Thus the organ 
mean dose is generally used instead of the maximum dose 
as an objective for planning. 

We considered treatments with 5 coplanar beams, since 5 
angles is the usual starting point for the trial and error pro-
cedure conducted by planners and for this beam number 
irradiation direction becomes increasingly important. In 
order to facilitate convenient access, visualization and anal-
ysis of patient treatment planning data, as well as dosimetric 
data input for treatment plan optimization research, we have 
used CERR, a computational tool developed within 
MATLAB [10]. Our tests were performed on a Intel Core i7 
CPU 2.8 GHz computer with 4GB RAM and Windows 7. 
We used CERR 3.2.2 version and MATLAB 7.4.0 
(R2007a). The dose was computed using CERR’s pencil 
beam algorithm (QIB). For each of the ten head-and-neck 
cases, the voxel size considered was 0.3cm×0.3cm×0.3cm. 
To address the convex nonlinear formulation of the FMO 
problem we used a trust-region-reflective algorithm 
(fmincon) of MATLAB 7.4.0 (R2007a) Optimization 
Toolbox. For this set of patients, each instance of the FMO 
problem can take from 56 seconds to 350 seconds to be 
calculated. In this study, the OARs used for treatment opti-
mization were defined as being the spinal cord, the brain-
stem and the parotid glands. For the head-and-neck cases in 
study, the PTV was separated in two parts with different 
prescribed doses: PTV1 and PTV2. The prescription dose 
for the target volumes and tolerance doses for the organs at 
risk considered in the optimization are presented in Table 1. 
The algorithm’s parameters used were r=36; r_max=90; 
r_min=3; l_success=3; l_failure=k and N=200. The initial 
solution was always the equidistant solution. 

Table 1: Prescribed doses for all the structures considered. 

Structure Mean dose Maximum Dose Prescribed Dose 
Spinal cord – 45 Gy – 
Brainstem – 54 Gy – 
Left parotid 26 Gy – – 
Right parotid 26 Gy – – 
PTV1 – – 70.0 Gy 
PTV2 – – 59.4 Gy 
Body – 80 Gy – 

 
Table 2 presents the computational results, considering 

the improvement in the objective function value in relation 
to the equidistant solution. For each patient, five runs of the 
DDS algorithm were performed.  

Table 2: Computational Results. 

Patient 
equi 

solution
Average DDS 

Solution 
Standard 
Deviation 

Average % 
improvement

1 387.3 374.5 0.8 3.3%
2 72.9 68.0 0.5 6.7%
3 187.6 172.2 2.0 8.2%
4 156.4 149.2 1.0 4.6%
5 277.6 258.1 1.7 7.0%
6 165.6 154.5 0.6 6.7%
7 40.4 34.8 1.0 13.8%
8 165.0 154.1 2.6 6.6%
9 124.3 117.1 1.0 5.8%
10 186.4 181.0 2.8 2.9%

 
The quality of the results can be perceived considering a 

variety of metrics. A metric usually used for plan evaluation 
is the volume of PTV that receives 95% of the prescribed 
dose. Typically, 95% of the PTV volume is required as a 
minimum. These metrics are displayed for the ten cases in 
Fig. 1, considering the best solution out of the 5 solutions 
generated. The horizontal lines represent 95% of the pre-
scribed dose. Satisfactory treatment plans should obtain 
results above these lines. By simple inspection we can veri-
fy the advantage of DDS treatment plans that have an im-
proved tumor irradiation metric for most cases compared to 
equi treatment plans. 

 

Fig. 1: Comparison of target irradiation metrics obtained by DDS and equi 
treatment plans. 
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Fig. 2: Comparison of organ sparing metrics obtained by BAO-DDS and 
equi treatment plans. 

In order to verify organ sparing, mean and/or maximum 
doses of OARs are usually displayed. These metrics are 
displayed for the ten cases in Fig. 2. The horizontal lines 
represent the tolerance mean or maximum dose for the cor-
responding structures. Satisfactory treatment plans should 
obtain results under these lines. For spinal cord and brain-
stem, treatment plans fulfill the maximum dose tolerance in 
almost all tested cases. However, as expected, the mean 
dose limit for parotids was achieved less times, mostly by 
DDS treatment plans. Moreover, observing Fig. 2, it is  
perceivable that DDS treatment plans outperform equi 
treatment plans in terms of mean dose obtained. In fact, in 
average, DDS treatment plans reduced the parotid’s mean 
dose irradiation in 1Gy compared to the equi treatment 
plans. 

V. CONCLUSIONS  

The preliminary results of applying DDS to BAO show 
that it is possible to improve organ sparing without jeopard-
izing tumor coverage. Adaptations to the algorithm can be 
considered, like considering accepting a worse solution with 
a given probability (similar to simulated annealing). Anoth-
er possibility is the use of surrogate models like radial basis 
functions [2] or neural networks [6], allowing the evaluation 
of more than one solution in each iteration of the algorithm, 
without compromising computational times. 
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