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Abstract. The usual frameworks for image classification involve three steps:
extracting features, building codebook and encoding features, and training the clas-
sifier with a standard classification algorithm (e.g. SVMs). However, the task com-
plexity becomes very large when applying these frameworks on a large scale dataset
like ImageNet containing more than 14 million images and 21,000 classes. The com-
plexity is both about the time needed to perform each task and the memory and disk
usage (e.g. 11TB are needed to store SIFT descriptors computed on the full dataset).
We have developed a parallel version of LIBSVM to deal with very large datasets
in reasonable time. Furthermore, a lot of information is lost when performing the
quantization step and the obtained bag-of-words (or bag-of-visual-words) are often
not enough discriminative for large scale image classification. We present a novel
approach using several local descriptors simultaneously to try to improve the classi-
fication accuracy on large scale image datasets. We show our first results on a dataset
made of the ten largest classes (24,807 images) from ImageNet.

1 Introduction

Image classification is one of the important research topics in the areas of computer
vision, object recognition, and machine learning. Low-level local image features
and the bag-of-words model (BoW) are the core of state-of-the-art image classifi-
cation systems. The usual frameworks for image classification involve three steps:

Thanh-Nghi Doan
IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
e-mail: thanh-nghi.doan@irisa.fr

François Poulet
Université de Rennes I, IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex,
France
e-mail: francois.poulet@irisa.fr

F. Guillet et al. (eds.), Advances in Knowledge Discovery and Management, 155
Studies in Computational Intelligence 527,
DOI: 10.1007/978-3-319-02999-3_9, c© Springer International Publishing Switzerland 2014

thanh-nghi.doan@irisa.fr
francois.poulet@irisa.fr


156 T.-N. Doan and F. Poulet

1) extracting features, 2) building codebook and encoding features, and 3) training
classifiers. Step 1 is to extract low-level local invariant features from images: the
usual choices are SIFT [Lowe, 2004], SURF [Bay et al., 2008], and dense SIFT
(DSIFT) [Bosch et al., 2007]. Step 2 is to build codebook and encode features: k-
means clustering algorithm is the usual choice for building codebook, BoW model
is the state-of-the-art of feature encoding. The image representation is obtained by
applying the clustering algorithm and then constructing the histogram of each image
SIFT distribution in the previously obtained set of clusters. Step 3 is to train clas-
sifiers: many systems choose either linear or non-linear kernel SVM classifiers. All
these frameworks are evaluated on small datasets, e.g. Caltech 101 [Li et al., 2007],
Caltech 256 [Griffin et al., 2007], and PASCAL VOC [Everingham et al., 2010] that
can fit into desktop memory. However, the emergence of ImageNet [Deng et al.,
2009] with more than 14 million images and 21,000 classes makes the complexity
of image classification very large and difficult to deal with. This challenge motivates
us to study an efficient framework in both computation time and classification ac-
curacy. In this paper, we show how to address the challenge and achieve promising
results over the state-of-the-art classification algorithms on ImageNet. We propose a
fast and efficient framework for large scale image classification, as shown in Fig. 1.
Our key contributions include:

1. A parallel version of LIBSVM to deal with a large scale dataset in reasonable
time.

2. A novel approach using several different local robust descriptors and how to
combine them efficiently by using multi-feature and multi-codebook approach.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related work on large scale classification and image representation. The benchmark
datasets in computer vision are introduced in section 3. In section 4, we present the
efficient low-level local image features for many vision tasks. Our multi-feature and
multi-codebook approach and parallel LIBSVM are described in section 5. Section
6 presents numerical test before the conclusion and future work.

2 Related Work

Large Scale Classification: Many previous works on image classification have
relied on BoW models [Csurka et al., 2004], local feature quantization, and sup-
port vector machines. These models can be enhanced by multi-scale spatial pyra-
mids (SPM) [Lazebnik et al., 2006] on BoW or histogram of oriented gradient
(HoG) [Dalal and Triggs, 2005] features. Fergus et al. [Fergus et al., 2009] study
semi-supervised learning on 126 hand labeled Tiny Images categories, Wang et
al. [Wang et al., 2009] show classification on a maximum of 315 categories. Li
et al. [Li et al., 2009] do research with landmark classification on a collection of
500 landmarks and 2 million images. On a small subset of 10 classes, they could
improve BoW classification by increasing the visual vocabulary up to 80K visual
words. To make large scale learning more practical, many researchers are begin-
ning to study strategies where the original data in low-dimensional space is often
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Fig. 1 The overview of our framework for large scale image classification

transformed to high- dimensional space by a nonlinear mapping induced by a
particular kernel and then efficient linear classifiers are trained on the resulting
space [Deng et al., 2010], [Perronnin et al., 2010]. Some recent works consider
exploiting the hierarchical structure of dataset for image recognition and achieve
impressive improvements in accuracy and efficiency, but has not evaluated clas-
sification minimizing hierarchical cost. Related to classification is the problem of
detection, often treated as repeated 1-vs-all classification in sliding windows. In
many cases, such localization of objects might be useful to improve classification,
but even the most efficient of state-of-the-art techniques [Vedaldi et al., 2009; Ev-
eringham et al., 2010] take a lot of computation time and thus it is very difficult
to deal with large scale datasets. The difference between our work and previous
studies is to take into account parallel algorithms to speedup two processes: extract-
ing features and training classifiers. Our experiments show first promising results
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improving both classification time and accuracy and confirm that parallel algorithms
are very essential for large scale image classification in terms of time efficiency.

Image Representation: Local image features and BoW model are the core of
state-of-the-art image classification systems. Representing an image based on BoW
model includes the three following steps: 1) feature detection, 2) feature description,
and 3) codebook generation. Recent works have studied these steps and achieved
impressive improvements. However, in each processing step there exists a signifi-
cant amount of lost information, and the resulting visual-words are often not dis-
criminative enough for large scale image classification applications. Many different
approaches have been proposed to improve the discriminative power during these
steps. At the feature detection step, multiple local features are grouped to obtain
a more global and discriminative feature. At the feature description step, high-
dimensional descriptors or descriptors enhanced by other information have been
studied to get more image information [Winder and Brown, 2007]. At the code-
book generation step, many previous works have proposed efficient quantizers or
codebooks that reduce quantization errors and preserve more information of fea-
ture descriptors [Moosmann et al., 2006], [Philbin et al., 2008]. We have a more
general view for all these three steps and propose a novel approach that combines
both multi-feature and multi-codebook approach to construct the final image repre-
sentation. Our approach aims to increase the discriminative power of image repre-
sentation by embedding more useful information from the original image features.
In multi-feature and multi-codebook approach, first BoW histograms of images for
each feature channel is constructed based on their corresponding codebook. The re-
sult is a bag-of-BoW for all different feature types extracted in step 1 and we call
it a bag-of-visual packets or a bag-of-packets (BoP). Finally, all BoW histograms
in BoP are concatenated to form the final image representation, as shown in Fig. 3.
In our novel approach the final image representation is constructed by using par-
allel multi-feature and multi-codebook computation, improving the discriminative
power of image representation for large scale image classification. These are the
major differences between our approach and previous studies.

3 Datasets

There are quite a few benchmark datasets for image classification, such as MNIST
(http://yann.lecun.com/exdb/mnist), Caltech 101, Caltech 256, PAS-
CAL VOC, etc. However, there are very few multi-class image datasets with many
images for more than 300 categories. In recent years, there is an agreement that it is
necessary to build a large scale dataset for studying object retrieval and recognition
systems. One is Tiny Images [Torralba et al., 2008], 32×32 pixel versions of image
collected by performing web queries for nouns in the WordNet hierarchy [Fellbaum,
1998], without verifying the content. The other one is ImageNet, a large-scale on-
tology of images built upon the backbone of the WordNet structure. The images are
also collected from web searches for the nouns in WordNet, but the content of im-
ages are verified by human labelers. ImageNet is much larger in scale and diversity

http://yann.lecun.com/exdb/mnist
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Fig. 2 A comparison of ImageNet with other benchmark datasets

and much more accurate than the current image datasets. The current released Im-
ageNet has grown a big step in terms of the number of images and the number of
classes, as shown in Fig. 2 - it has 21,841 classes with more than 1000 images for
each class on average. Positively, it is necessary to have many images in the same
class to cover visual variance, such as illumination, view point changes, and differ-
ent appearance, even if in the dataset, some classes have only one or less than 10
images so machine learning algorithm cannot learn anything.

4 Low-Level Local Image Features

As shown in Fig. 1, given a set of input images, our system first extracts SIFT, SURF,
and DSIFT features. These features have been proven to be efficient in various vision
tasks such as object recognition, texture analysis, scene classification, etc.

4.1 SIFT

SIFT (Scale-invariant feature transform) is an algorithm proposed by [Lowe, 2004]
to detect and describe local features in images. Extracting SIFTs consists of four key
stages: scale-space extrema detection, keypoint localization, orientation assignment
and keypoint descriptor. The first stage uses Difference-of-Gaussian function (DoG)
to identify candidate interest points that are invariant to scale and orientation. DoG
is used instead of Gaussian to speedup the computation.

In the keypoint localization stage, they reject the candidate points that have low
contrast or are poorly localized along an edge. Hessian matrix is used to compute
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the principal curvatures and eliminate the keypoints that have a ratio between the
principal curvatures greater than the threshold. An orientation histogram is formed
from the gradient orientations of sample points within a region around the keypoint
in order to get an orientation assignment. According to the paper’s experiments, the
best results are achieved with a 4 × 4 array of histograms with 8 orientation bins in
each. So the SIFT descriptor used is 4 × 4 × 8 = 128 dimensions.

4.2 SURF

SURF (Speeded Up Robust Feature) is a robust image detector and descriptor pre-
sented by [Bay et al., 2008]. The standard version of SURF is several times faster
than SIFT and claimed by its authors to be more robust against different image trans-
formations than SIFT. SURF is based on sums of 2D Haar wavelet responses and
makes an efficient use of integral images.

SURF is partly inspired by the SIFT descriptor and has slightly different ways of
detecting features. It uses an integer approximation to the determinant of Hessian
blob detector, which can be computed extremely quickly with an integral image. For
features, it uses the sum of the Haar wavelet response around the point of interest.
Again, these can be computed with the aid of the integral image.

4.3 DSIFT

DSIFT is a variant of SIFT descriptors that is extracted at multiple scales. It is
roughly equivalent to running SIFT on a dense grid of locations at a fixed scale and
orientation. This type of feature descriptors is often used for object categorization.

• Bin size vs. keypoint scale. DSIFT specifies the descriptor size by a single
parameter, size, which controls the size of a SIFT spatial bin in pixels. In the stan-
dard SIFT descriptor, the bin size is related to the SIFT keypoint scale by a multi-
plier, denoted magnif, which defaults to 3. As a consequence, a DSIFT descriptor
with bin size equal to 5 corresponds to a SIFT keypoint of scale 5/3 = 1.66.

• Smoothing. The SIFT descriptor smoothes the image according to the scale of
the keypoints (Gaussian scale space). By default, the smoothing is equivalent to
a convolution by a Gaussian of variance s2 where s is the scale of the keypoint
and 0.25 is a nominal adjustment that accounts for the smoothing induced by the
camera CCD.

5 Classifiers

In various applications, kernel machines such as Support Vector Machines (SVM)
have been used with impressive success often delivering state-of-the-art results.
Using the kernel trick, they are applied in several domains and even enable het-
erogeneous data fusion by concatenating feature spaces or multiple kernel learning.
Before performing image classification, we apply multi-feature and multi-codebook



Large Scale Image Classification 161

approach to construct the final image representation for all images in dataset. To
stick to the efficient linear classifier, we use the explicit feature mapping approach
from [Vedaldi and Zisserman, 2012] to improve the accuracy performance of image
classification.

5.1 Multi-feature and Multi-codebook

As mentioned in section 3, the images in the same class of ImageNet usually have
high intraclass variability. This variability poses more challenges for image classifi-
cation systems. Many previous works want to design a robust image feature which is
invariant to image transformation, illumination and scale change [Lowe, 2004; Bay
et al., 2008; Bosch et al., 2007; Tola et al., 2010]. There are some improvements
when using these robust features for image classification, but it is easy to realize that
none of the feature descriptors have the same discriminative power for all classes.
For instance, the features based on texture analysis and shape might be useful when
classifying the photos with the same geometric direction. However, it will not be
sufficient when the images are rotated or the objects are taken a shot in different
camera angles. In this case, the appropriate choice should be the features based on
interesting keypoints (e.g. SIFT). Obviously, instead of using a single feature type
for all classes we can combine many different feature types to get higher improve-
ment in classification accuracy. In this section, we present a novel multi-feature and
multi-codebook approach and demonstrate how to combine these features.

Let a set of all different feature descriptor types extracted from an image i be
F = { f j

i }, where f j
i are the descriptors of feature type j extracted from image i,

M is the number of feature types, and j = 1, ..,M. Our approach is that BoW his-
tograms of each feature type are constructed based on their corresponding code-
book, as shown in Fig. 3. Instead of using a single codebook for constructing the
final image presentation, we use multiple codebooks {C1,C2, . . . ,CM} that are built
from different feature types. More specifically, the codebook C j is used to construct
BoW histogram h j

i for feature descriptors f j
i ∈ F . Then all BoW histograms h j

i are
concatenated to form the final image representation Hi. As a result, for each image
i, we obtain Hi with M elements Hi = {h1

i ,h
2
i , . . . ,h

M
i }. For simplicity, we call Hi a

¨bag- of- packets¨ (BoP) that is the final image representation constructed based on
different codebooks of the original image i. A BoP is more discriminative than an
usual BoW because two BoPs Hi and Hj are considered identical if and only if their
corresponding BoWs are identical. Formally, it takes the intersection of the BoWs
elements from multiple features:

(Hi = Hj)≡ (h1
i = h1

j)∧ (h2
i = h2

j)∧ . . .∧ (hM
i = hM

j ) (1)

Obviously, this approach improves the discriminative power of the final image
representation more than the classical approach with a single codebook.
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Fig. 3 Constructing bag-of-packets based on multi-feature and multi-codebook approach

5.2 Parallel LIBSVM (pLIBSVM)

LIBSVM is an integrated software for support vector classification, (C-SVC, nu-
SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class
SVM). It supports multi-class classification. Since version 2.8, it implements an
SMO-type algorithm [Chang and Lin, 2001]. LIBSVM provides a simple interface
where users can easily link it with their own programs. Main features of LIBSVM
include: different SVM formulations, efficient multi-class classification, cross vali-
dation for model selection.

Keerthi el al. [Keerthi and Lin, 2003] present the theoretical proof that SVMs
with RBF kernel and suitable parameters give at least as good accuracy as linear
kernel. Yuan et al. [Yuan et al., 2012] show empirically that LIBSVM (RBF kernel)
often offers better and more stable results than LIBLINEAR [Fan et al., 2008] on
many benchmark datasets. However, the training cost of LIBSVM is too high in
terms of computation time. It would take many days when performing on large
scale datasets like ImageNet. Therefore, speedup the training process of LIBSVM
become a very essential task in the context of large scale image classification.

In the multi-core era, computers with multi-cores or multiprocessors bring to us
many advantages. Advanced technologies designed for the systems where several
processing cores have access to a single memory space are becoming popular choice
for high performance computing systems. OpenMP Application Program Interface
(API) is a multi-platform shared-memory parallel programming model working on
these systems [OpenMP Architecture Review Board, 2008]. It has been proven to
work effectively on shared memory systems by the Board of OpenMP Architecture
Review Board, 2008. Therefore, it motivates us to investigate parallel algorithms
and demonstrate how LIBSVM can benefit from these modern platforms. In the
original implementation of LIBSVM, computing kernel values in the matrices of
various formulations is a very time-consuming step, especially when performing
on datasets with a very large number of instances. Fortunately, the values in these
matrices can be computed independently allowing to apply parallel algorithms. In
this paper, we use OpenMP to parallelize this computation on a multi-core computer.
With this modification, we significantly reduce the training time of LIBSVM.
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To evaluate the performance of pLIBSVM, we compare it with LIBLINEAR and
OCAS [Franc and Sonnenburg, 2008]. Franc et al. [Franc and Sonnenburg, 2008]
have shown in their experiments that OCAS even in the early optimization steps
shows often faster convergence than the so far in this domain prevailing approx-
imative methods. So we chose OCAS to compare with our pLIBSVM instead of
Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) or SGD SVM (Stochas-
tic Gradient Descent SVM).

6 Experiments and Results

6.1 Datasets

The full size of ImageNet dataset is 1TB. In the experiments, we evaluated our
framework on 10 largest classes that contains 24,807 images with data size 2.4GB.
The specific names of these classes are n00483313, n01882714, n02086240, n0208-
7394, n02094433, n02100583, n02100735, n02138441, n02279972, n09428293.
There are more than 2000 diversified images per class. In each class, we sample
90% of images for training and 10% of images for testing.

6.2 Parallel Feature Extraction

We perform our experiments on an Intel(R) Xeon(R) CPU E5345, 2.33GHz com-
puter. Depending on parameters setting, the computation time of extracting feature
(e.g. SIFT) of an image ranges from 0.46 to 1 second (single thread is used in com-
putation). To process the 10 largest classes, it would take from 3 to 7 hours. There-
fore, it is very difficult to scaleup to full ImageNet because if it takes 1 second per
image for feature extraction then we need 14M × 1 second  162 days. To deal
with this challenge, we apply parallel solutions to reduce the computation time.

SIFT/DSIFT: VLFeat, a free version for extracting SIFTs, can be downloaded
from the author’s homepage (www.vlfeat.org). It has been developed by Andrea
Vedaldi from the Vision Lab of the University of California. The original imple-
mentation of SIFT descriptors are integer vectors in 128 dimensions. There is no
interdependence in feature extraction tasks, so we can extract features in parallel
way. In this experiments, we use 8 CPU cores on our computer to extract features.
As shown in Table 1, we need 56 minutes to extract more than 639M DSIFTs from
the 10 largest classes. That means it takes 0.14 second to extract DSIFTs from an
image on average. Therefore, with full ImageNet dataset, extracting DSIFTs would
take 0.14s × 14M 22 days.

Parallel SURF: Parallel SURF is a fast parallel version of SURF maintained by
David Gossow [Gossow et al., 2010]. The local image descriptors extracted from
original implementation of Parallel SURF are floating vectors in 64 dimensions.
In this experiment, we also use 8 CPU cores for extracting feature. As shown in
Table 1, we need 54 minutes to extract more than 47M SURFs from the 10 largest
classes. That means it takes 0.13 second to extract SURFs from an image on average.
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So, with full dataset, extracting SURFs will take 0.13s× 14M 21 days. Obviously,
we can speedup the process of extracting features by using more resources (CPU
cores, computer, etc.).

Table 1 Extract features from the 10 largest classes ImageNet using 8 CPU cores

Features Time # keypoints Size

SIFT 17m46s 18,923,756 6GB
SURF 54m 47,308,685 24.4GB
DSIFT 56m 639,904,650 201.3GB

6.3 Fast Codebook Building

In BoW model, one of the steps that takes a long time is to build codebook. With a
large scale dataset we need to get a large amount of datapoints to build a discrimi-
native codebook, so this task becomes very large in terms of time complexity. One
of the popular choices to build codebook is the k-means clustering algorithm. How-
ever, the original implementation of k-means takes many days to converge when
performing on a large scale dataset like ImageNet. So reducing the execution time
for this task is becoming an essential task when we study an efficient framework
for large scale image classification. In this experiment, we have used the parallel
version of k-means from Wei Dong [Dong, ]. This program is a re-implementation
of the k-means clustering algorithm. It has the following features:

1. An out-of-core k-means that allows clustering data larger than main memory,
2. Support parallel reading from multiple input files,
3. Accelerate L2 distance calculation with BLAS or KD-tree.
To perform the k-means algorithm, we use 8 CPU cores on the same computer

as in section 6.2. We sample all visual descriptors of the images in training dataset
to build codebooks with 5,000 codewords. We set the maximum iteration of the k-
means to 40 and the convergence threshold to 0.001. By using parallel k-means, we
build codebooks from very large datasets in reasonable time, as shown in Table 2.

Table 2 Parallel k-means on the 10 largest classes ImageNet using 8 CPU cores

Features # datapoints Dimension Size Time

SIFT 17,032,522 128 5.4GB 5h21m
SURF 42,610,816 64 22GB 4h03m
DSIFT 575,790,745 128 181.2GB 8 days
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6.4 Parallel Bag-of-Packets Constructing

To speedup the construction of BoW histograms of images, we take into account
the implementation of randomized kd-tree forests from VLFeat toolbox. It not only
improves the effectiveness of the representation in high dimensions, but enables
fast medium and large scale nearest neighbor queries among high dimensional data
points. Once k-means is performed, we build a hierarchical structure for codebooks
by using vl_kdtreebuild. By this way, we can use vl_kdtreequery to speedup the pro-
cess of mapping visual descriptors to visual words (or codewords). The computation
time for applying each codebook is similar to classical approach (single codebook).
When we use n codebooks for constructing BoP of images, it means we need n
more times to finish this process. To achieve the same computation time as single
codebook approach, we perform the process of constructing BoP in a parallel way.
Consequently, the whole computation time of this process is the same as the largest
individual standard approach. As shown in Table 3 and 4, we can reduce the com-
putation time for constructing BoP of DSIFT+SURF+SIFT with multi-codebooks
to the same amount of time that the one of DSIFT with a single codebook.

Table 3 Parallelize bag-of-packets construction using 8 CPU cores. The image representation
is normalized by L2-Norm.

Features Dimension Time Size

SIFT 5,000 3m18s 179MB
SURF 5,000 7m48s 320MB
DSIFT 5,000 1h01s 934MB
DSIFT+SURF 10,000 1h02s 1.2GB
DSIFT+SURF+SIFT 15,000 1h05s 1.5GB

Table 4 Parallelize bag-of-packets construction using 8 CPU cores. The image representation
is converted to high-dimensional space by using homogeneous kernel map.

Features Dimension Time Size

SIFT 15,000 3m06s 560MB
SURF 15,000 7m02s 1GB
DSIFT 15,000 58m03s 2.9GB
DSIFT+SURF 30,000 59m01s 4GB
DSIFT+SURF+SIFT 45,000 1h05s 4.5GB
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6.5 Classification Accuracy

The linear kernel on the classical histogram based feature gives very poor accuracy
on image classification. Therefore, once BoW histogram is constructed, some recent
image classification systems use feature map to convert BoW histogram from linear
space to non-linear space. This step is useful when one want to stick to the efficient
linear classifiers [Chatfield et al., 2011]. The result is the image representation in
high-dimensional space, that ensures linear separability of the classes. Notice that
before training classifiers, we should normalize BoW histograms, so that the image
size does not influence histogram counts. The popular normalization methods used
in recent image classification systems are L1-Norm and L2-Norm:

L1− norm : f (x) =
x
||x||1 =

x
N
∑

i=1
|xi|

(2)

L2−Norm : f (x) =
x
||x||2 =

x
√

N
∑

i=1
|xi|2

(3)

In the experiments, we want to evaluate our approach in two different cases. In the
first case, we use L2-Norm to normalize BoW histograms of all images in dataset,
as shown in Table 5 and 6. In the second one, we use L1-Norm to normalize BoW
histograms and then the final image representation is converted to high-dimensional
space by using homogeneous kernel map from Vedaldi, as shown in Table 7 and 8.
By using this feature map, we obtain a significant improvement in image classifica-
tion accuracy (from +6.24% to +16.93% with different feature types).

Multi-feature and multi-codebook. To evaluate the performance of multi-
feature and multi-codebook approach on the ten largest classes from ImageNet,
we perform the experiments for each single feature SIFT, SURF and DSIFT.
Then we perform classification by using simultaneously different feature types
DSIFT+SURF and DSIFT+SURF+SIFT. As shown in Fig. 4, in the case of train-
ing LIBSVM (RBF kernel) on the combination of three different feature types, we
significantly improve the performance of overall classification accuracy up to 1.82
times, compared to single feature SIFT (Table 5). The picture of the improvements
is the same when we use homogeneous kernel map (Table 7 and 8).

Parallel LIBSVM. To evaluate the performance of our pLIBSVM, we compare
it with LIBLINEAR, OCAS, and the original implementation of LIBSVM (a non-
parallel version) in terms of both classification accuracy and training time. In the
experiments, we use 8 CPU cores on the same computer as in section 6.2. We also
evaluate our implementation with different SVM (linear kernel and RBF kernel). In
the case of training pLIBSVM with RBF kernel, we use cross validation on training
data to find the best parameters C and gamma of SVM classifiers.

As aforementioned, the major challenge of large scale image classification is on
training classifiers. This paper proposed a parallel version of LIBSVM that was ef-
ficient on the ten largest classes of ImageNet. As shown in Fig. 5, in the case of
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Table 5 Overall classification accuracy and training time. The image representation is nor-
malized by L2-Norm. Training LIBSVM with linear kernel.

Features LIBLINEAR OCAS LIBSVM pLIBSVM

SIFT 34.91% 38.94% 46.31% 46.31%
(3m05s) (28m39s) (45m55s) (8m57s)

SURF 35.79% 44.7% 50.83% 50.83%
(3m34s) (43m40s) (1h13m) (13m36s)

DSIFT 52.64% 59.09% 64.57% 64.57%
(11m52s) (1h23m) (1h50m) (17m20s)

DSIFT+SURF 60.42% 64.05% 67.63% 67.63%
(15m06s) (1h52m) (3h26m) (31m46s)

DSIFT+SURF+SIFT 63.80% 65.70% 70.09% 70.09%
(23m03s) (4h45m) (4h58m) (43m27s)

Table 6 Overall classification accuracy and training time. The image representation is nor-
malized by L2-Norm. Training LIBSVM with RBF kernel.

Features LIBSVM pLIBSVM Accuracy

SIFT 1h01m 7m33s 50.42%

SURF 2h00m 15m31s 56.47%

DSIFT 3h01m 19m02s 68.36%

DSIFT+SURF 5h48m 37m10s 70.25%

DSIFT+SURF+SIFT 6h03m 47m44s 71.46%

Table 7 Overall classification accuracy and training time. The image representation is con-
verted to high-dimensional space by using homogeneous kernel map. Training LIBSVM with
linear kernel.

Features LIBLINEAR OCAS LIBSVM pLIBSVM

SIFT 41.15% 43.62% 47.52% 47.52%
(3m58s) (55m31s) (1h21m) (16m41s)

SURF 47.84% 50.63% 55.62% 55.62%
(6m30s) (1h23m) (2h17m) (25m19s)

DSIFT 69.57% 72.07% 74.32% 74.32%
(15m05s) (3h07m) (3h42m) (43m44s)

DSIFT+SURF 71.22% 72.72% 75.17% 75.17%
(49m59s) (6h53m) (5h15m) (1h08m)

DSIFT+SURF+SIFT 72.95% 73.97% 75.98% 75.98%
(1h30m) (20h39m) (5h50m) (1h17m)
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Fig. 4 Overall accuracy of SVM classifiers with different feature types

Fig. 5 Overall accuracy and training time of SVM classifiers

the combination of three different feature types (DSIFT+SURF+SIFT), the accu-
racy performance of pLIBSVM and LIBSVM are higher than the other classifiers
from +4.39% to +6.29% (Table 5). Table 6 to 8 also show a high performance of
pLIBSVM and LIBSVM on all different feature types. Furthermore, in the case of
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training SVM classifiers with RBF kernel, pLIBSVM achieves better results than
those of linear kernel classifiers, as shown in Table 6 and 8.

About the training time, all the results presented in Table 5 to 8 are user time. We
have chosen this instead of cpu time because cpu time is the sum of all threads cpu
time when we use multi-threading, so we could not show the improvement of our
approach this way. We know the drawback of user time: we cannot be sure we are
the only user during the whole execution process. As shown in Fig. 5, we can see we
significantly speedup the training time of classifiers with our approach. Particularly,
our pLIBSVM use 43 minutes with 8 CPU cores to train classifiers, compared to
4 hours 58 minutes of LIBSVM and 4 hours 45 minutes of OCAS (Table 5). The
accuracy of all the linear kernel classifiers is increased when we transform the data
in a high-dimensional space by using homogeneous kernel map (Table 7), but the
training time is increased too, due to the higher dimension of the input space. Finally
the best result is obtained by using the same transformation and RBF kernel with
LIBSVM/pLIBSVM as shown in Table 8. The time reported here is with only 8
CPU cores and the 10 largest classes from ImageNet, of course the training time
can easily be reduced by using more resources (CPUs, cores, computers). This is
what we plan to do for the 1000 largest classes of the same dataset.

Table 8 Overall classification accuracy and training time. The image representation is con-
verted to high-dimensional space by using homogeneous kernel map. Training LIBSVM with
RBF kernel.

Features LIBSVM pLIBSVM Accuracy

SIFT 3h17m 19m22s 51.47%

SURF 4h54m 29m51s 58.57%

DSIFT 7h31m 53m11s 76.86%

DSIFT+SURF 8h51m 1h19m 77.03%

DSIFT+SURF+SIFT 9h50m 1h33m 78.15%

Among the different GPU-based approaches, the only one that could be used for
very large datasets is the incremental SVM with CUDA [Poulet and Pham, 2010].
This method is 3 to 4 orders of magnitude faster than usual classification algorithms
like libSVM, but it is only a linear kernel so we know the accuracy will be less
than the one with RBF kernel. To the best of our knowledge, the other GPU-based
SVMs with non linear kernel require to load the whole dataset into main memory.
Most of the GPU architectures today have up to 6 GB memory size. Here with
only 5k vocabulary size and the 10 largest classes from ImageNet, we already need
4.5GB for the data and the 1000 largest classes from the same dataset require 25GB
memory so no GPU-based SVM can be used in this context.
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7 Conclusion and Future Work

We have proposed a fast and efficient framework for large scale image classification
and show how to address this challenge by using ImageNet dataset as an example. In
this framework, we have developed a parallel version of LIBSVM to efficiently deal
with very large datasets in reasonable time. To speedup the process of extracting
features, we have presented how to use a multi-core computer to reduce the com-
putation time of feature extraction. We have also presented a novel approach using
several different local features simultaneously to improve the classification accuracy
on a large scale image dataset (the relative increase is up to 82%). In the near future,
we plan to study how to combine effectively the global features (e.g. contour, tex-
ture, shape, etc.) with the local features to get more discriminative power of image
representation. About the computation time our approach allows us to get the classi-
fication results with a RBF kernel in almost the same time as with usual algorithms
and linear kernel by using only 8 cores. The next step is the classification of the
1000 largest classes of ImageNet (more than 1.4 million images). Furthermore, the
current version of libOCAS only offer parallel version of the binary solver, so we
intend to parallelize it for multi-class problem. That will be a promising research
for large scale image classification. Encoding spatial information of the interesting
keypoints of image will be also studied.
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