
Relaxing Time Granularity for Mining Frequent
Sequences

Asma Ben Zakour, Sofian Maabout, Mohamed Mosbah, and Marc Sistiaga

Abstract. In an industrial context application aiming at performing aeronautic
maintenance tasks scheduling, we propose a frequent Interval Time Sequences
(ITS) extraction technique from discrete temporal sequences using a sliding win-
dow approach to relax time constraints. The extracted sequences offer an interesting
overview of the original data by allowing a temporal leeway on the extraction pro-
cess. We formalize the ITS extraction under classical time and support constraints
and conduct some experiments on synthetic data to validate our proposal.

1 Introduction

Sequential patterns mining is an important data mining task. It handles several
kind of sequential information like network intrusion detection [Srinivasulu et al.,
2010], identification of behavior trends [Rabatel et al., 2009] and tandem repeat
DNA sequences [Ceci et al., 2011]. According to the target application, differ-
ent forms of sequences may be extracted e.g., timestamped (see [Yi-Cheng et al.,
2010] and [Fournier-Viger et al., 2008]), summarized [Pham et al., 2009], compos-
ite (see [Ceci et al., 2011]) and multidimensional sequences (see [Rabatel et al.,
2009] and [Plantevit et al., 2007]). Considering timestamped patterns, time rep-
resentation and time granularity are both more or less relevant regarding the ap-
plication domain. We introduce through the work presented in this paper a new
form of timestamped sequences and propose ITS-PS: an algorithm enabling their
extraction. The sequences we want to extract aim to characterize aeronautic us-
age behaviors with respect to their impact on maintenance tasks application. They
are intended to be used to predict maintenance application in order to perform its
scheduling process. For example, for aircraft lives data, let Vi refer to the flight i,

Asma Ben Zakour · Sofian Maabout ·Mohamed Mosbah ·Marc Sistiaga
LaBRI, University of Bordeaux, CNRS UMR 5800, France and
2MoRO Solutions, Bidart, France

F. Guillet et al. (eds.), Advances in Knowledge Discovery and Management, 53
Studies in Computational Intelligence 527,
DOI: 10.1007/978-3-319-02999-3_4, c© Springer International Publishing Switzerland 2014

54 A. Ben Zakour et al.

Mj refer to a maintenance task j and S = {S1,S2} be a set of historic sequences
where S1 = 〈(0,V1)(2,V2)(3,V3)(5,M1)〉 and S2 = 〈(0,V1)(2,V3)(3,V2)(6,M1)〉. Let
the minimal support constraint be equal to 2. Our method returns the sequence:
〈([0,0]V1)([2,3]V2 V3)([5,6]M1)〉. Its meaning is as follows: “If flight V1 occurs, fol-
lowed by both flights V2 and V3 in any order but in a time interval [2,3] after V1

then, maintenance task M1 is performed in a time lying in the interval [5,6] after
V1”. Such a pattern allows to group V2 and V3 in the same relevant behavior.

For this propose, extracted patterns must convey three criteria: (1) the frequency
of events chronology in order to describe frequent usage behaviors, (2) timestamped
sequences to ensure relevance and precision of maintenance prediction and (3) re-
laxation of local order of events, i.e., if two events occur in a close time interval,
then the chronology of their respective occurrences could be considered as irrele-
vant, then they may be considered as co-occurring.

To fulfill those three criteria we propose to merge temporally close and consec-
utive events (associated to a discrete timestamp) into an unique set of simultaneous
events associated with an interval timestamp. This interval reflects an uncertainty
on the occurrence time of events. The “closeness” of events is managed via a user
defined maximal sliding window size. In the previous example, events V2 and V3

have been merged and timestamped with [2,3] following the application of a slid-
ing window size equal to 1. Note that V1 cannot be merged with them because
its two occurrences are “far” from those of V2 and V3. Related methods (some of
them are presented in section 2) do not allow extracting such information. For in-
stance, the GSP algorithm proposed in [Agrawal and Srikant, 1996] applied on the
sequences of the previous example with the same minimal support constraint and
window size, extracts the sequence: 〈(V1)(V2 V3)(M1)〉. Even if it contains the same
events chronology as ours, it does not provide any temporal information. Hence,
the only information it carries is: “flight V1 is followed by flights V2 and V3, in any
order, and they are themselves followed by the application of the maintenance task
M1”. This frequent sequence cannot be efficiently used by an aeronautic expert who
needs to reduce maintenance costs and aircraft interruptions by forecasting the most
precise maintenance task application moment since the sequence does not provide
any temporal information.

Paper Organization

The following section presents a concise overview of related work, especially the
difference between our method and other approaches extracting interval times-
tamped sequences. Then, we formally define the semantics of sequences with un-
certainty time intervals. Section 4 details the extraction process. We conclude our
work by comparing our approach with an existing method, the GSPM algorithm
proposed in [Hirate and Yamana, 2006]). Finally, we present some avenues for
future work.

Relaxing Time Granularity for Mining Frequent Sequences 55

2 Related Work

Several works found in the literature deal with grouping events and frequent in-
terval sequences extraction. The approach proposed in [Pham et al., 2009] merges
some sequences events by using a sliding window. Grouping is performed during
a pre-processing step, and then an extraction algorithm is applied. The resulting
grouped events are however timestamped with a discrete time reference which is
an arbitrary choice motivated by treatment simplicity. This represents an informa-
tion loss w.r.t events occurring times. Moreover, applying the sliding window during
a pre-processing phase increases the size of initial sequences since several group-
ing possibilities for the same sequence. Hence this introduces an ambiguity on the
support counting.

Other approaches consider the initial data as timestamped with intervals. These
intervals represent duration times not uncertainty about the exact discrete occur-
rence time. [Giannotti et al., 2006] extracts frequent sequences by using an Apri-
ori like algorithm [Agrawal and Srikant, 1996]. It first identifies frequent patterns
apart from timestamps. Then, for an extracted frequent pattern, it intersects intervals
events occurrences in order to provide a succession of intervals associated with the
frequent sequence.

In [Guyet and Quiniou, 2011], a timestamped sequence is represented by a hy-
percube whose axes are the sequence events. The similarity between sequences is
expressed by hypercubes intersection volume. Sequences are grouped using this
similarity. If there are enough grouped sequences, then a representative one is ex-
tracted and considered as a interesting pattern.

Extraction algorithms presented in [Wu and Chen, 2007], [Yi-Cheng et al., 2010]
use Allen’s interval relationships [Allen, 1983]. A PrefixSpan-like [Pei et al., 2001]
algorithm is applied on interval timestamped sequences. Both algorithms results
presented in [Wu and Chen, 2007] and in [Yi-Cheng et al., 2010] consist in rela-
tionships sequences between events and not on timestamped sequences. To the best
of our knowledge, the closest work to ours is the one of [Hirate and Yamana, 2006].
Authors extract frequent sequences with interval timestamps from discrete times-
tamped sequences. They use a level function which is actually a non sliding window.
Intuitively, events belonging to the same time interval are merged. But since close
events may belong to consecutive but different intervals, they cannot be merged.
This is due to the fact that the window is fixed.

Concerning the extraction technique itself, we find two main procedures in the
literature: the first one is level wise, or breadth first, like A priori technique [Agrawal
et al., 1994; Agrawal and Srikant, 1995]. This method has been used in many works,
for instance, in [Rabatel et al., 2009] and [Agrawal and Srikant, 1996] it was ap-
plied to discrete temporal sequences and in [Giannotti et al., 2006] was applied to
interval temporal sequences. The principal limitations of the Apriori extraction ap-
proach are (1) the number of generated candidates and (2) the number of the whole
database scanning which is equal to the number of the levels used during the ex-
traction process. Its principal advantage is its relatively low memory consumption
since it maintains only one copy of the database in the main memory. The breadth

56 A. Ben Zakour et al.

first method uses a divide and conquer strategy by progressively reducing the search
space and selecting at each step 1-patterns (candidates of size 1). Each such selected
1-pattern P is actually a witness of an i+1-pattern Q.P where Q is previously evalu-
ated. Evaluating P, e.g its support, is equivalent to that of Q.P because the former is
performed in a projected data set, i.e., the part that we already know that it contains
Q. Hence, intuitively, during the computation advancement, the underlying data is
progressively reduced while the patterns keep their size equal to 1 making the eval-
uation as simple as possible. This second strategy has been used in e.g., [Hirate and
Yamana, 2006; Pei et al., 2001; Yi-Cheng et al., 2010; Fournier-Viger et al., 2008;
Wu and Chen, 2007; Guyet and Quiniou, 2008].

[Li et al., 2012] used it in order to approximate the set of close patterns extracted
from a long sequence by introducing the gap constraint.The main limitation of this
approach is its relative great memory consumption since at each pattern extension
a physical projection of the database is created. Its advantages are (1) the fewer
number of candidates generated at each step and (2) the increasingly reduced data to
be scanned during the extraction process. We adopt this second method for applying
our algorithm which is inspired by PrefixSpan proposed in [Pei et al., 2001].

3 Preliminaries

We first recall some of the standard definitions regarding simple temporal sequences
as formulated in previous works, e.g., [Hirate and Yamana, 2006], [Pei et al., 2001]
and [Fournier-Viger et al., 2008]. Let ω = {e1,e2, . . . ,ek} be a set of events. A trans-
action is defined a set of events supposed as occurring simultaneously. A temporal
sequence is a succession of chronologically ordered transactions. Each transaction
in a temporal sequence is associated with a discrete timestamp, it is denoted by
S = 〈(t1, I1),(t2, I2) . . . (tn, In)〉, n ∈ IN where ∀1≤ i≤ n, Ii is a transaction and ti its
timestamp. A timed sequences database is a set of temporal sequences where each
of them is identified by a unique identifier denoted by id_sequence.

Definition 1. Subsumption Let S′=(t ′1, I
′
1),(t

′
2, I

′
2) . . . (t

′
m, I

′
m)〉 and S=(t1, I1),(t2, I2)

. . . (tn, In)〉 be two temporal sequences. S subsumes S′ iff there exist 1 ≤ i1 ≤ ·· · ≤
im ≤ n with I′1 ⊂ Ii1 . . . I

′
m ⊂ Iim and t ′1 = ti1 , . . . , t

′
m = tim .

If S subsumes S′ we also say that S is a super-sequence of S′. The support of a
sequence S in a database sequences D is the percentage of sequences from D which
are super-sequences of S. It is denoted by supportD(S). S is said frequent if its
support is greater than a fixed minimum threshold minsupp.

Now, we define uncertainty interval temporal sequences. We recall that sequences
with interval timestamps consider the transaction’s interval as an uncertainty during
which the transactions events do occur. If we consider for example the 1-sequence
S = 〈([tb, te],e)〉, intuitively S means that: “the event e occurs punctually between
times td and te”.

Definition 2 (uncertainty Interval Temporal Sequences (ITS)). An n length in-
terval temporal sequence S (ITS) is denoted by:

Relaxing Time Granularity for Mining Frequent Sequences 57

S = 〈([m1,M1], I1),([m2,M2], I2) . . . ([mn,Mn], In)〉

where ([mi,Mi], Ii) is a transaction with interval timestamp such that:

• mi ≤ occurrence_time(e j)≤Mi. for all e j ∈ Ii;
• An interval temporal sequence is consistent if, mi ≤ mi+1 and Mi ≤Mi+1;
• m1 = 0, i.e., timestamps in S are relative to m1.

Example 1. Let S1 = 〈([0,1],A)([2,2],BC)〉. It means: “A occurs between time
points 0 and 1, B and C occur simultaneously between 1 and 2 temporal units after
A”. The lower bound of the interval associated to A is the time reference of S1. Each
of B and C, occur at most 2 (2−0) time units after A and at least 1 (2−1) time unit
after A.

S2= 〈([0,3],A)([1,2],B)([2,5],C)〉 is not consistent since the upper bound of the
second interval is lower than the upper bound of the first interval(2 < 3).

One may note that Interval Temporal Sequences are special cases of classical
temporal sequences. Indeed, S = 〈(t1, I1) . . . (tn, In)〉 is equivalent to:

ITS(S) = 〈([t1, t1], I1), . . . ,([tn, tn], In)〉

In order to fit temporal parameters on extracted sequences and patterns formu-
lation needs, we consider temporal constraints. They aim to: (i) set a maximum
threshold of uncertainty, (ii) control minimum and maximum temporal delays bet-
ween successive transactions and (iii) control the minimum and maximum temporal
whole pattern length.

• Gap controls the earlier delay between two successive transactions and fix two
thresholds: (1) the mingap represents the minimum delay below which the suc-
cessive transactions are considered as too close to represent significant dissoci-
ated events and (2) the maxgap is the maximum delay between two transactions
above which they are considered as too far to be directly correlated (strictly con-
secutive). Let SI be an n length ITS. SI satisfies the temporal constraints: mingap,
maxgap if and only if ∀ 2≤ i≤ n:

mingap≤ (mi−Mi−1)≤ maxgap

• Whole_interval controls the whole length time of a sequence by fixing two
thresholds: (1) the min_whole_interval fixing the minimum temporal extent of
the sequence below which the behavior conveyed by the sequence is not consid-
ered as complete and (2) the max_whole_interval fixing the maximal temporal
extent of the sequence above which the behavior conveyed by the sequence is
considered as more than a single one. The Whole_interval regulates the time
length of a sequence such that for SI an n length ITS, SI satisfies the temporal
constraints: min_whole_interval, max_whole_interval iff:

min_whole_interval ≤ |m1−Mn| ≤max_whole_interval

58 A. Ben Zakour et al.

• Sliding Window enables grouping successive transactions into a single one times-
tamped with an interval. The size of the sliding window fixes a maximum group
spreading and so the maximum interval width. The window size regulates a max-
imum uncertainty threshold. Let SI be an n length ITS. Then SI satisfies the win-
dow size ws iff ∀ 1≤ i≤ n

|Mi−mi| ≤ ws

Example 2. Consider the ITS S = 〈([0,1],A)([2,3],BC)([6,10],D)〉 and the time
constraints mingap and maxgap respectively equal to 2 and 3. SI does not sat-
isfy mingap because m2 −M1 = 2− 1 = 1 ≤ 2. On the other hand, S satisfies
maxgap since for all its successive transactions the maxgap constraint is satisfied
(m2−M1 = 2−1≤ 3 ;m3−M2 = 6−3≤ 3). For a sliding window size equal to 3,
S is not valid since M3−m3 = 10− 6 > 3. For a sliding window constraint fixed to
4, S satisfies it by all its timestamps.

The temporal constraints allow us to manage the temporal parameter into an ITS;
they control minimum (respectively maximum) temporal leeway between two suc-
cessive transactions since the correlation between both of them can be meaningful.
Actually, minimum (respectively maximum) gap avoids considering too close (re-
spectively too far) transactions as successive. These constraints are used in several
algorithms, e.g., [Agrawal and Srikant, 1996; Fournier-Viger et al., 2008; Rabatel
et al., 2009; Li et al., 2012]. In the same way, the whole_interval constraint fixes
a minimum (respectively maximum) threshold for the whole sequence duration in
order to guarantee a meaningful correlation between the transactions belonging to
the same sequence[Hirate and Yamana, 2006; Fournier-Viger et al., 2008]. On the
other hand, the sliding window manages a balance between the events grouping and
uncertainty of their occurrences [Agrawal and Srikant, 1996; Rabatel et al., 2009].

In order to combine these temporal constraints in a consistent manner, we fix the
following relationships between them:

ws < mingap; mingap≤ maxgap

Temporal constraints enumerated above are fixed by the user in order to extract
relevant ITS. In the rest of this section we focus our work on the application of the
ws constraint.

3.1 Merging Sequences

In this section, we define a♦ operator that merges successive transactions belonging
to the same sequence. For an ITS, ♦ starts from a position j and merges spreading
transactions covered by a window size until the last transaction of the ITS. Hence,
♦ has three parameters: a sequence S, a position j in S and a window size ws. More
formally:

Relaxing Time Granularity for Mining Frequent Sequences 59

Definition 3. Let S = 〈([m1,M1], I1)([m2,M2], I2) . . . ([mn,Mn], In)〉 be an ITS, j < n
an integer and a window size ws. Then the ♦ws operator is defined by:

♦ws(S, j) = S′ = 〈([m′1,M′
1], I

′
1)([m

′
2,M

′
2], I

′
2) . . . ([m

′
n,M

′
n], I

′
k)〉

• where ∀1≤ i < j : ([m′i,M′
i], I

′
i) = ([mi,Mi], Ii) ;

• ∃ j ≤ l j ≤ l j+1, . . . li · · · ≤ lk−1 ≤ n such that:

– I′j = ∪
l j
p= jIp; . . . I′i = ∪li

p=li−1+1Ip; . . . I′k = ∪ln
p=lk−1+1Ip,

– m′j = m j, M′
j = Mlj , . . . , m′i = mli−1+1, M′

i = Mli , . . .m
′
k = mlk−1+1, M′

k = Mn

– |m j−Mlj | ≤ ws; . . . |mli−1+1−Mli | ≤ ws; . . . |mlk−1+1−Mn| ≤ ws.

Example 3. Consider SI = 〈([0,2],A)([1,2],B)([3,5],C)([4,6],D)〉 and a window
size ws = 3. Then ♦3(SI,1) = 〈([0,2],AB)([3,6],CD)〉, it applies the grouping op-
erator ♦ w.r.t ws =3 from the first transaction of SI to the last one. Events from
the first (respectively last) couple of transactions are grouped and their intervals
merged. Since both transactions are spread into the window size and (2− 0) ≤ 3
(respectively (6− 3) ≤ 3)). We note that ♦3(SI,2) = SI it applies the grouping
operator ♦ w.r.t ws =3 from the second transaction of SI to the last one. Actu-
ally, for the start grouping position 2, the second and third transactions cannot be
merged since their unified interval is too large regarding the window size. Finally,
♦3(SI,3) = 〈([0,2],A)([1,2],B)([3,6],CD)〉 and ♦3(SI,4) = SI.

Remark 1. The resulting sequencing of the application of ♦ws operator may merge
transactions containing the same item. Indeed, it may happen that an item appears in
two successive transactions of the initial sequence. If these transactions are merged,
then the item will appear only once (transactions are sets). However, because of the
window size condition, we know that both occurrences of the same item take place
in a time interval at most equal to ws. Hence, the time interval associated to the item
in the new sequence does include both initial timestamps. Moreover, the fact that
it appears only once does not affect its support in the database since the support is
the number of sequences of the database that support an item. Therefore, replacing
two occurrences by one it the same sequence does not incur any loss of information
regarding the support measure.

Now we define the
︷︸︸︷
♦ operator which for an n length ITS and a sliding window

of size ws, provides a set of ITS’s. It is the set of results of all applications of the
♦ operator on a n length sequence (applied by successively starting the merge from

the first transaction to the last one , j ∈ [1,n−1]). Intuitively
︷︸︸︷
♦ merges successive

transactions by sliding the window size along the input sequence. It provides the set
of all summarized sequences that represent the input one.

Definition 4. Let S= 〈([m1,M1], I1) . . . ([mn,Mn], In)〉, ws be a window size and S j =
♦ws(S, j)∀1≤ j < n. Then:

︷︸︸︷
♦
ws

(S) = {S1,S2, . . . ,Sn−1}

60 A. Ben Zakour et al.

Example 4. Let S = 〈([0,2],A)([1,2],B)([3,4],C)([4,6],D)〉 and ws = 3.
︷︸︸︷
♦3 (S) =

{〈([0,2],AB)([3,6],CD)〉, 〈([0,2],A)([1,4],BC)([4,6]D)〉, 〈([0,2],A) ([1,2],B)
([3,6]CD)〉}.

3.2 Support

Now we define the supporting relationship between ITSs. Intuitively, S supports S′
also said S′ is a sub-sequence of S iff events of each transaction of S′ are contained
in one (or successive) transaction(s) of S and transactions interval of S′ imply (a
combination of) S transaction(s) interval(s). Note that the transactions chronology
order must be preserved. More precisely,

Definition 5. Let S and S′ be two ITS. Let S = 〈([m1,M1], I1), . . . ,([mn,Mn], In)〉 and
S′ = 〈([m′1,M′

1], I
′
1) . . . ([m

′
k,M

′
k], I

′
k)〉. S is a super-sequence of S′ denoted by S� S′

(equiv. S′ is a sub-sequence of S denoted S′ � S) if and only if: ∀([m′j,M′
j]I
′
j) ∈ S′

and e ∈ I′j there exists ([mk,Mk]Ik)⊂ S such that:

• e ∈ Ik

• [mk,Mk]⊆ [m′j,M
′
j] (we say that [mk,Mk] implies [m′j,M

′
j])

Example 5. Let SI1 = 〈([0,2]A)([3,4],B)([5,6]C)〉, SI2 = 〈([0,4]AB)〉 and SI3 =
〈([0,2]A)([3,6]BC)〉. SI1 � SI2 since [0,4] implies [0,2] and [3,4] and SI1 � SI3.
However, SI1 �� SI4 = 〈([0,3]A)([2,6]BC)〉 since [0,2] does not imply [0,3].

The support of an ITS w.r.t. a sequence database is the number of sequences in
the collection that support the interval sequence.

Definition 6. The support of a ITS SI in a collection D is defined by:

suppD(SI) = |{S ∈D |S� SI}|

Recall that temporal sequences are a special case of interval sequences. Thus, S� SI.

4 ITS Extraction

This section describes the extraction process of ITS patterns from discrete temporal
sequences by considering a frequency threshold minsupp, and the time constraints:
ws, mingap, maxgap, min_whole_interval and max_whole_interval. We detail the
ITS-PS (uncertainty interval temporal sequences-PrefixSpan) algorithm. It gradually
groups frequent close events into a single transaction by applying a sliding window.

The algorithm applies a pattern growth approach [Pei et al., 2001] by perform-
ing a depth first extraction based on database projections. First, ITS-PS identifies
the set of 1-patterns (frequent events) from the initial database SDB denoted by
L1 = {S;S= 〈([m = 0,M = 0],e)〉;support(e)≥minsupp}. Then, recursively i+1-
patterns are identified by extending an i-pattern. Each recursive step i applies two
tasks:

Relaxing Time Granularity for Mining Frequent Sequences 61

• The first task identifies L1 the set of frequent 1-ITS from the search space. A 1-
ITS is considered frequent if: (1) the event of its transaction appears in a sufficient
number of sequences of the search space, and (2) the maximum delay between
its occurrences timestamps is at most equal to ws. Each 1-ITS is concatenated to
the pattern extracted at the i− 1 iteration to provide a frequent i-pattern. Then, a
new iteration is executed. This step is detailed in the section 4.1

• The second task computes a new projection of the current data on each frequent
1-ITS computed at iteration i. Each new search space is a summary of the initial
one such that it resumes each sequence that is a super-sequence of the i + 1-
pattern by selecting only sub-sequences considered as continuity of the i+ 1-
pattern. The i+ 1-pattern is the concatenation of the i-pattern with the 1-ITS.
This procedure is detailed in the section 4.2.

The recursive process continues until one of the two following conditions is sat-
isfied: (1) No frequent 1-ITS is identified or (2) the projection procedure provides
an empty search space.

Table 1 Example of sequences database SDB

SDB
S1 〈(0,A)(1,B)(2,CD)〉
S2 〈(0,A)(2,D)(3,B)(4,F)〉

Table 2 SDBA: the projection of SDB over 〈([0,0]A)〉

SDBA

S1 〈(1,B)(2,CD)〉
S2 〈(2,D)(3,B)(4,F)〉

Example 6. Let SDB be the data described in Table 1, minsupp = 2 and ws = 2.
First, ITS-PS identifies frequent events and associates to each one the null interval.
In the sample data, it identifies L1 = {〈([0,0]A)〉,〈([0,0]B),〈([0,0]D)〉}. It is the set
of first transactions of all other extended frequent ITS.

Let us consider the frequent 1-ITS 〈([0,0]A)〉 the projection step summarizes
SDB by retaining only the continuations of A, i.e. sub-sequences with A as a prefix.
Table 2 shows the resulting projection. The extraction process continues and iden-
tifies in the new search space the frequent 1-ITS in order to extract longer patterns.
Then, SDBA is projected over each 1-pattern found frequent in it. When all exten-
sions of 〈([0,0]A)〉 are identified those extending 〈([0,0]B)〉 will be explored and
finally those extending 〈([0,0]D)〉.

62 A. Ben Zakour et al.

4.1 Selecting Frequent 1-Sequences

Concerning the 1-ITS identification, the application of the sliding window allows us
to associate shifted occurrences of the same event occurring in different sequences.
This association is made under the condition that the delay between their two far-
thest occurrences is less or equal to the window size.

Example 7. Let’s consider SDBA from the previous example. B appears twice. These
2 occurrences are counted in the support because the maximal delay between them
is less or equal to ws (3− 1 = 2 ≤ 2). Thus, the 1-ITS 〈([1,3]B)〉 is frequent. In
the same manner 〈([2,2]D)〉 is frequent because D appears in the two sequences of
SDBA and the time delay between the timestamps of its occurrences is less than ws
(2− 2 = 0≤ ws).

We now introduce the ⊕ operator for the concatenation of an ITS and a 1-ITS.
Intuitively, when an i-ITS is extended by an 1-ITS, there exist two possibilities of
concatenating the second at the end of the first: a T-extension and a S-extension. We
describe them as follows:

• The T-extension merges the 1-ITS with the last transaction of the i-ITS. The
timestamp of the resulting transaction is the union of both initial intervals. Con-
sidering ws, this kind of concatenation is possible when one of the intervals im-
plies the other. It is denoted by ⊕T

• The S-extension adds the 1-ITS as the (i+ 1) transaction of the i-pattern. This
extension is possible if the gap constraints and the coherence of the sequence are
satisfied. It is denoted by ⊕S

Finally, ⊕ defines the concatenation operator through ⊕T and ⊕S. Both kinds
of concatenation depend on the combination of upper bounds and lower bounds of
the concerned intervals. Fig. 1 illustrates intervals relationship with respect to the
concatenation type.

Definition 7. Let given ws, S= 〈([m1,M1]I1) . . . ([mn,Mn]In)〉 and S′=([tb, te]I) both
satisfying ws. The extension of S by S′ is defined as follows:

S⊕ S′ =

⎧
⎪⎪⎨

⎪⎪⎩

S⊕T S′ if [tb, te] implies [mn,Mn]
or[mn,Mn] implies [tb, te]

S⊕S S′ if mn ≤ tb and Mn ≤ te
S otherwise

Example 8. Let S = 〈([0,1]A)([2,3]B)〉 and S′ = 〈([4,5]C)〉. S⊕ S′ = S⊕S S′ =
〈([0,1]A)([2,3]B)([4,5]C)〉. If we consider ws= 3 and S′′= 〈([1,3]D)〉 then S⊕S′′=
S⊕T S′′ = 〈([0,1]A)([1,3]BD)〉.

4.2 Projection

Concerning search space projection, we extend the classical process by using a re-
stricted (to the window size) backward projection. Such projection allows to take

Relaxing Time Granularity for Mining Frequent Sequences 63

Fig. 1 Illustration of the intervals relationship w.r.t. the extensions types

into account the slide of the window and to consider locally (with regard to the win-
dow size) disordered events. This backward exploration permits the selection as an
extension of a pattern events occurring frequently around (before or after) its last
transaction. Intuitively the new projection holds both of the T-extensions and the S-
extensions of the pattern to extend. T-extensions represent close events w.r.t the last
transaction of the pattern and to the window size. T-extensions are located in a time
delay at most equal to ws before and after the last event of the pattern. S-extensions
represent events occurring after the pattern in the underlying sequences. The pattern
backward analysis has already been used for patterns extension for instance in [Li
et al., 2012] to prune the set of close extracted patterns.

Table 3 Projection of the sequences database SDBA by 〈([1,3]B)〉

SDBA,B

S1 〈(1,CD)〉
S2 〈(−1,D)(1,F)〉

Example 9. Let us continue the execution of Example 6. Continuations of 〈([0,0]A)
([1,3]B)〉 are identified in the projection of SDBA by 〈([1,3]B)〉 denoted by SDBA,B

(illustrated in Table 3). The first sequence represents only events appearing after B
because there is no event occurring before it (their timestamps w.r.t B are positive).
However, in the second sequence, D appears close to and before B (its timestamp
w.r.t B is negative). So it is considered as one of its T-extensions and is time stamped

64 A. Ben Zakour et al.

with −1: its time delay w.r.t B. In this new search space, D appears twice and the
time delay between its occurrences is less than ws (1−(−1)= 2≤ 2). Therefore, the
1-ITS 〈([−1,1]D)〉 is frequent. Actually, the backwardness of the projection allows
us to consider this event frequent despite the fact that in the two sequences it appears
on both sides of B. In order to concatenate it to the last extracted pattern, we have
first to adjust the temporal reference of 〈([−1,1]D)〉 w.r.t A. D appears earlier 1
temporal unit after B which turns to appear 3 units after A (3− 1 = 2). It appears
at most 1 unit after B which itself appears 1 (1−−1 = 2) units after A. Hence, D
is referenced by [2,2] w.r.t the occurrences of A. 〈([0,0]A)([1,3]B)〉⊕ 〈([2,2]D)〉=
〈([0,0]A)([1,3]B)〉⊕T 〈([2,2]D)〉= 〈([0,0]A)([1,3]BD)〉.

Let us now consider the extension of 〈([0,0]A)〉 by the 1-ITS 〈([2,2]D)〉 fre-
quent in the sequences presented in table 2. 〈([0,0]A)〉⊕〈([2,2]D)〉= 〈([0,0]A)〉⊕S

〈([2,2]D)〉 = 〈([0,0]A)([2,2]D)〉. The projection of SBDA by 〈([2,2]D)〉 is illustrated
in Table 4. The 1-ITS 〈([−1,1]B)〉 is frequent and extends the last extracted pattern.
We have first to adjust the time reference of the interval associated to B, (-1 +2 =1)
for the lower bound and (1+2=3) for the upper bound, then 〈([0,0]A)([2,2]D)〉⊕
〈([1,3]B)〉= 〈([0,0]A)([2,2]D)〉⊕T 〈([1,3]B)〉= 〈([0,0]A)([1,3]BD)〉

Table 4 Projection of SDBA by 〈([2,2]D)〉

SDBA,D

S1 〈(−1,B)(0,C)〉
S2 〈(1,B)(2,F)〉

Using the simple backward projection provides in some cases the problem of
multiple extractions of the same pattern. This case happens when the proximity
between two events is analyzed several times. Actually, when close events can be
merged on the same transaction, the order by which the events are considered does
not matter because the result is always the same.

Property 1. Let S = 〈([m1,M1]I1) . . . ([mn,Mn]In)〉, ws and α = {([m1,M1]I1), . . . ,
([mp,Mp]Ip)} the set of the T-extensions of S. Let m = min(m1 . . .mp) and M =
max(M1 . . .Mp) such that M−m≤ ws. The ITS provided by successive concatena-
tions of S with all 1-ITS from α in any order are equivalent.

Proof. Let Sp = ([mp,Mp]Ip) and Sk = ([mk,Mk]Ik) two T-extensions of S. Sp and
Sk are close to the last transaction of S and then close also from each other. We pro-
pose to evaluate the patterns S⊕([mp,Mp]Ip)⊕([mk,Mk]Ik) = S⊕T ([mp,Mp]Ip)⊕T

([mk,Mk]Ik) and S⊕T ([mk,Mk]Ik)⊕T ([mp,Mp]Ip)

• Let us first consider the extension of S by Sp = ([mp,Mp]Ip) and then by Sk to
obtain: S⊕ Sp = S⊕T Sp = 〈([m1,M1]I1) . . . ([m′n,M′

n]I
′
n) such that

⎧
⎨

⎩

m′n = min(mn,mp)
M′

n = max(Mn,Mp)
I′n = In∪{Ip}

Relaxing Time Granularity for Mining Frequent Sequences 65

Then the second concatenation provides: S⊕Sp⊕Sk = S⊕T Sp⊕T Sk = 〈([m1,M1]
I1) . . . ([m′′n ,M′′

n]I
′′
n) such that:
⎧
⎨

⎩

m′′n = min(m′n,mk) = min(mn,mp,mk)
M′′

n = max(M′
n,Mk) = max(Mn,Mp,Mk)

I′′n = I′n∪{ek}= In∪{Ip, Ik}
• Now we consider the concatenation of S first with Sk and then with Sp: S⊕ Sk =

S⊕T Sk = 〈([m1,M1]I1) . . . ([m′′′n ,M
′′′
n]I′′′n) such that:

⎧
⎨

⎩

m′′′n = min(mn,mk)
M′′′

n = max(Mn,Mk)
I′′′n = In∪{Ik}

Then the second concatenation provides: S⊕Sk⊕Sp = S⊕T Sk⊕T Sp = 〈([m1,M1]
I1) . . . ([m1

n,M
1
n]I

1
n) such that
⎧
⎨

⎩

m1
n = min(m′′′n ,mk) = min(mn,mp,mk)

M1
n = max(M′′′

n ,Mk) = max(Mn,Mp,Mk)
I1
n = I′′′n ∪{ep}= In∪{Ip, Ik}

We can then conclude that S⊕T Sp⊕T Sk = S⊕T Sk⊕T Sp.
Let S1 be the result pattern, consider two other T-extension Su = ([mu,Mu]eu)

and Sv([mv,Mv]Iv) such that {Sv,Su} ∈ α . By the same manner, if we extend twice
(1) by concatenating first Su to S1 and then Sv to the obtained sequence and (2) by
concatenating first Sv to S1 and then Su to the obtained sequence. Then, it is clear
that S⊕ Sv⊕ Su = S⊕T Sv⊕T Su.

We can finally conclude that whatever the number of T-extensions is, if we extend
a sequence S with the same set of T-extensions by considering different orders, the
result is always the same. �

In order to avoid multiple extractions of the same ITS k-pattern from an ITS
(i− 1)-pattern, Property 1 is useful. Indeed, we assume that backward exploration
does not take into account events already processed as the last element of a i-pattern
from the same (i− 1)-pattern. To cope with this consideration, we suppose a total
order � between events such that event e1 is lower than e2 w.r.t � (noted e1 � e2). Let
I = {e1, . . . ,en}. For notation convenience, we note e � I iff e � ei for 1 ≤ i ≤ n and
generalize it to sets of events, i.e., I1 � I2 iff ∃e j ∈ I2 such that ∀ei ∈ I1 ei � e j.

Example 10. Let ω = {A,B,C,D,E,F} and A�B�C�D�E �F , then A�EF

Considering �, we define the prefix and suffix of a sequence. Intuitively, the pre-
fix of S w.r.t S′ is the set of sub-sequences of S starting at the beginning of S and
supporting S′. The suffix of S w.r.t S′ is the set of sub-sequences of S containing the
possible continuations of S′.

66 A. Ben Zakour et al.

Definition 8 (Prefix). Let S = 〈(t1, I1) . . . (tn, In)〉 and S′ = 〈([m,M], I)〉. The sub-
sequence 〈(t1, I1),(t2, I2) . . . (t j, I j)〉 is a Prefix of S w.r.t S′ iff I j ⊇ I and t j ⊆ [m,M].
We denote by Prefix(S,S’) the set of prefixes of S w.r.t S′.

We define the wsu f ix� that represents the possible continuations (T-extensions
and S-extensions) of a sequence S′ on a sequence S by taking into account the win-
dow size backward. We use property 1, and the � order to avoid the extraction of pat-
terns already discovered. In this way, the � order selection is applied on T-extensions
which extend on an area span equal to 2ws and centered on S. Formally,

Definition 9 (wsu f ix�). Let ω = {e1,e2 . . .em}, S = 〈(t1, I1) . . . (tn, In)〉 and S′ =
〈([m,M], I)〉.
• For (1≤ j ≤ n) such that I ∈ I j and t j ∈ [m,M] 〈(t ′k, I′k) . . . (t ′j, I′j \{I}) . . .(t ′n, I′n)〉

is a suffix of S w.r.t S′ iff:

1. ∀i, k ≤ i≤ n, t ′i = ti− t j

2. t ′k � (t ′j−ws) and t ′k−1 > (t j−ws)
3. ∀i, k ≤ i≤ n and t ′i ≤ ws then I′i = Ii \ {eu|eu � I}

• Otherwise, the empty sequence 〈 /0〉 is the suffix of S w.r.t S′.

Fig. 2 illustrates the Prefix and Suffix concepts.

Fig. 2 Illustration of Prefix and Suffix of S w.r.t S′

We denote by wsu f f ix�(S1,S′) the set of suffix of S regards to S′.

We define now the projection considering the new definition of suffix. It resumes
a sequence database w.r.t an ITS by calculating the possible continuations of this
ITS in the data sequences.

Definition 10 (wpro jection�). Let BDS and S′=([m,M]I). We define the projection
wpro jection� of BDS by SI as follows:

wpro jection�(BDS|S′) = {S′′|S′′ = wsu f f ixe�(S,S
′), S ∈ BDS}

Relaxing Time Granularity for Mining Frequent Sequences 67

Example 11. Let us reconsider Example 3 by applying the wpro jection�. Let � be
the lexicographic order. In SDBA the following 1-ITS are frequent: 〈([1,3]B)〉 and
〈([2,2]D)〉. Considering �, 〈([0,0]A)〉 is first extended by 〈([1,3]B)〉 and the pattern
〈([0,0]A)〉 ⊕ 〈([1,3]B)〉 = 〈([0,0]A)〉 ⊕S 〈([1,3]B)〉 = 〈([0,0]A)([1,3]B)〉 is identi-
fied. The projection of SDBA by 〈([1,3]B)〉 is then calculated. The result is denoted
by SDBA,B and is represented in table (5) of Fig. 3. In SDBA,B the 1-ITS 〈([−1,1]D)〉
is frequent and allows to identify the extended pattern 〈([0,0]A)([1,3]BD)〉. Then,
SDBA,B is projected by 〈([−1,1]D)〉 and the result is represented in table (8) of
Fig. 3. It does not contain any frequent event. The extraction process extends then
the pattern 〈([0,0]A)〉 by 〈([2,2]D)〉.

Fig. 3 Extraction steps during the processing of ITS-PS over SDB

〈([0,0]A)〉⊕〈([2,2]D)〉= 〈([0,0]A)〉⊕T 〈([2,2]D)〉= 〈([0,0]A)([2,2]D)〉 is iden-
tified and the projection of SDBA by 〈([−1,1]D)〉 is calculated. The result of this last
projection is illustrated on Table (6) of Fig. 3. In this sequences database, B doesn’t
appear because it precedes D wrt the lexicographic order and all its occurrences are
close to D in the sequences of the projected database. So in SDBA,D there is no fre-
quent ITS. At this stage of the extraction process, all patterns extending 〈([0,0]A)〉
are identified. Now the extraction process extends the pattern ([0,0]B). First, the
initial database (table (1) of Fig. 3) is projected by the pattern, the resulting search
space denoted by SDBB is illustrated in table (3). In this search space the item A does
not appear because its close to B w.r.t ws and A�B. In SDBB, the 1-ITS ([−1,1]D)
is frequent and is used to extend ([0,0]B). It identifies the pattern ([0,2]BD) by
adjusting the time reference of both patterns to the smallest timestamp. The extrac-
tion projects SDBB by ([−1,1]D), the resulting search space SDBB,D is illustrated in

68 A. Ben Zakour et al.

the table(7) of Fig. 3. SDBB,D does not contain any frequent 1-ITS. The extraction
process extends the [0,0]D) pattern. SDB is projected by ([0,0]D) to obtain SDBD

illustrated in table(4) Fig. 3. It does not contain any frequent 1-ITS to extend the
pattern. Here the extraction process is done.

This section presented our algorithm ITS-PS. It extracts (i+ 1)-sequences from
an i-sequence by progressive reductions of the search database following a pattern
growth procedure. The temporal intervals are built by using the sliding window on
two levels of the extraction process: the identification of frequent events and the
search space projection.

5 Experiments

In this section we evaluate the performances of the ITS-PS algorithm. In a first
paragraph we analyze its computation time and memory consumption. They are
compared with those of other FP-growth algorithms: PrefixSpan, SPMF and SPAM.
PrefixSpan [Pei et al., 2001] is the pathfinder algorithm of the FP-growth extrac-
tion approach which perform a divide and conquer extraction. The SPMF algo-
rithm [Fournier-Viger et al., 2008] is an Fp-growth algorithm that applies a time
grouping constraint and SPAM algorithm [Ayres et al., 2002] enforce bitmap repre-
sentation for sequences database. In a second paragraph we study the relevance of
the ITS extracted patterns and compare them with patterns extracted by the GSPM
algorithm.

From a theoretical point of view, there is no hope to come up with an extraction
algorithm having a worst case complexity less than exponential w.r.t. the number
of events appearing in the mined data since the number of returned sequences may
itself be in exponential size. Therefore, our algorithm has an exponential worst case
complexity.

In order to work over the performance evaluation of the ITS-PS algorithm,
we analyze in the following its computation time and memory consumption. For
this proposal, we compare both criterion to those of other FP-growth algorithms
(PrefixSpan, SPMF and SPAM) by varying the support threshold and the sequences
database size. We use randomly generated data.

Fig. 4 shows the maximum memory consumption of ITS-PS compared to those of
the algorithms SPMF [Fournier-Viger et al., 2008], PrefixSpan [Pei et al., 2001] and
SPAM [Ayres et al., 2002]. Considering the support threshold variation (Fig. 4a), the
memory consumed by ITS-PS is similar to that of SPMF and PrefixSpan unless for
a 0.6 support value since data events are especially close and frequent. Considering
the database size variation (Fig. 4b), the memory consumption behavior of ITS-PS
algorithm is similar to memory consumed by the other studied algorithms, except
that for larger database the memory consumption of SPAM is especially important
because of the high cost of database bitmap transformation. So, Fig. 4a and Fig. 4b
show that despite the extended projection of ITS-PS, the memory consumption of
our algorithm has the same trend that the other “classical” FP-growth algorithms
(except SPAM algorithm that use bitmap representation).

Relaxing Time Granularity for Mining Frequent Sequences 69

(a) Maximum memory consumption vs support variation

(b) Maximum memory consumption vs database size

Fig. 4 Maximum memory consumption

Fig. 5 displays computation time behaviors of ITS-PS compared to those of the al-
gorithms SPMF, PrefixSpan and SPAM with regards to support threshold variation
(Fig. 5a) and database size variation (Fig. 5b). Considering the support variation,
Fig. 5a shows that time consumption of ITS-PS outperforms those of “classical”
FP-growth algorithms. However, it is higher than the time consumption of SPAM al-
gorithm, since bitmap representation reduces considerably time consumption. Con-
sidering the database variation, Fig. 5b shows that for larger databases ITS-PS needs
big execution time since larger projection computation is costly. We can say that the
time consumption of the ITS-PS algorithm is regular regards to SPMF and PrefixS-
pan ones. We can conclude that execution performances of ITS-PS algorithms are
regular with respect to the performance of classical FP-growth algorithms. Since
the extension of projections space results does not affect the cost of the algorithm.

70 A. Ben Zakour et al.

(a) computation time vs support variation

(b) computation time vs database size

Fig. 5 Computation time

In the rest of this section, we evaluate the relevance of the extracted patterns. In
the following, we compare patterns extracted by our method with those extracted
by GSPM presented in [Hirate and Yamana, 2006]. Both algorithms are based on
the PrefixSpan method. They are different because of the application of distinc-
tive grouping methods: GSPM is based on the application of an increment func-
tion unlike ITS-PS which uses a sliding window. For a meaningful comparison,
when the sliding window is fixed to a ws value, the GSPM step function is set to
f (t) = �1/ws�. The following example explains the GSPM process. More details
can be found in the original paper.

Both GSPM and ITS-PS look for frequent 1-pattern associated with time inter-
vals on the projected databases. However, while time intervals identified by GSPM
are defined by a step wise function, those looked by ITS-PS are defined by merg-
ing close occurrences of a frequent item. Thus, for GSPM an occurrence of an
event e at a timestamp t denoted by (t,e) can be associated with a single 1-pattern.

Relaxing Time Granularity for Mining Frequent Sequences 71

This timestamp is equal to f (t). However, for ITS-PS, a such event may be asso-
ciated with as many intervals as possible in the margin [t −ws, t +ws] as item e
is fairly frequent in this period. A 1-patterns selection such that of ITS-PS allows
us to broaden the number of continuation possibilities of a pattern by associating a
frequent item to a full pallet of intervals.

Example 12. Consider the database {S1 = 〈(0,A)(1,B) (2,C)(3,F)(4,B) (6,G)〉,
S2 = 〈(0,A)(1,C)(2,B)(3,D)(4,F)(5,G)〉}, a threshold support minsupp = 2, a
sliding window ws = 2 and a step function f (t) = �t/2�. Timestamps interval
provided by GSPM are in the form [2× f (t),2× (f (t) + 1)[. The extraction al-
gorithm first identifies the frequent 1-sequences A, B, C, F and G (They are times-
tamped with null intervals). If we consider the frequent B, the projection provides:
{S′1 = 〈(1,C)(2,F)(3,B)(5,G)〉, S′′1 = 〈(2,G)〉, S′2 = 〈(2,F)(3,G)〉}. In this search
space, the pattern ([2,4[,F) is identified as frequent since (1) F appears twice: in S′1
and in S′2 and (2) for the both occurrences, f (t) = �t/2�= 1. Then, in order to iden-
tify the interval timestamps to be associated with F , we apply [2. f (t),2.(f (t)+ 1)[
which provides [2,4[. In the same projection, G appears in 3 sequences. In S′′1 and S′2
with f (t) = 1, while in S′1 its function step value corresponds to f (t) = 2. So, only
the 1-sequence ([2,4[,G) is extracted and ([4,6[,G) is not considered so.

Both algorithms are implemented in JAVA using a PrefixSpan version1 proposed
in [Fournier-Viger et al., 2008]. The implementation is done on a Windows 7(64)
machine, Intel(R) Core(TM) 3 CPU 2.40 GHz with 3 GB RAM.

We compare both extraction results using synthetic data. Data sequences have
7 different events, the average deviation between strictly successive transactions is
equal to 3 time units and a sequence average length is equal to 15 transactions.
During extraction executions the time constraints mingap (respectively maxgap,
min_whole_interval and max_whole_interval) are fixed to 0 (resp. 1, 0 and 15).
Synthetic sequences database contains 12 sequences since we focus our experimen-
tation on the nature and the number of results that is why we choose a small se-
quences database. In the following, our goal is focused on validating our algorithm
by checking the relevance of its extracted frequent patterns regards to our interested
application domain. Considering the time constraints relaxation employed by our
approach, we expect that the ITS-PS algorithms provide more information because
of two point: (1) first, we use the extended projection which is larger than the projec-
tion used on GSPM and than offer a larger range of continuities by considering the
backward projection. (2)Second, the ws relaxation allows to group a larger palette of
timestamps to identify the 1-ITS. A such frequent selection provides more options
of time intervals and more patterns and the extraction process is deeper.

Fig. 6, Fig. 7, Fig. 8 and Fig. 9 show the number of returned patterns by both al-
gorithms regards to support variation for different values of merging parameters (ws
and f (t)). for each parameter configuration, we measure the number of returned pat-
terns by each algorithm and compute the maximal ones. Fig. 6 (respectively Fig. 7,
Fig. 8 and Fig. 9) show that the amount of ITS− PS results is greater than the

1 http://www.philippe-fournier-viger.com/spmf/index.php

http://www.philippe-fournier-viger.com/spmf/index.php

72 A. Ben Zakour et al.

Fig. 6 Number of extracted sequences by varying minsupp, ws and the step function (WS=1,
f (t) = �t/1�)

Fig. 7 Number of extracted sequences by varying minsupp, ws and the step function (WS=3,
f (t) = �t/3�)

amount of GSPM result. Actually, the application of the sliding window gradually
groups successive transactions and considers all possible merging combinations. It
also allows longer sequences extraction since more events combination are consid-
ered frequent from the data sequences and the extraction process stop ‘later’. On the
other hand, the backward projection employed by ITS-PS takes into account more
continuation possibilities and so some events see their support growing up.

Considering an aeronautics’s historical sequences where each transaction relates
flight parameters by indicating (1) the hauled distance done which can be high.haul,
med.haul and low.haul.(2) the filling degree of the plane: P f ull. f ill, Pmed. f ill, and
Plow. f ill indicate how full is the plane (3) the third flight parameter is the crossed
environment which can be: salt, sand. If this last parameter is normal no information
are mentioned. Table 5 presents patterns extracted from such sequences database by
both algorithms GSPM and ITS-PS. The outstanding difference between patterns

Relaxing Time Granularity for Mining Frequent Sequences 73

Fig. 8 Number of extracted sequences by varying minsupp, ws and the step function (WS=5,
f(t)= �t/5�)

Fig. 9 Number of extracted sequences by varying minsupp, ws and the step function (WS=7,
f(t)= �t/7�)

extracted by both algorithms is the timestamp representation. Actually, patterns ex-
tracted by GSPM are timestamped with discrete values that represent predefined
intervals (by the step wise function). However, Patterns extracted by ITS-PS convey
more flexible temporal interval information where intervals may be narrower than
ws and cover sliding span. This last point helps us to perform the accuracy of events
prediction and provides more precise time laps occurrence.

In Table 5, transactions of the ITS-Ps patterns have overlapped intervals, such a
representation is made since the mingap constraint is aborted. Also, we choose to
not apply merging for ⊕T when intervals are not equal in order to preserve time
precision and reduce uncertainty.

74 A. Ben Zakour et al.

The ITS patterns convey more realistic time information as regards to data be-
havior. This information can be handled in order to regulate time precision and un-
certainty.

Table 5 Example of patterns extracted from an aeronautical data sequence

GSPM patterns 〈(0,sand)(1,veri f ication.mot)〉
〈(0,Plow. f ill med.haut)(1,sand)〉

ITS-PS patterns 〈([0,0],Plow. f ill)([1,4], long.haul)([4,4],sand)([4,7],veri f ication.mot)〉
〈([0,3],Plow. f ill)([2,2],med.haut)([5,5],veri f ication.mot)〉
〈([0,1],Plow. f ill)([3,6],med.haut)([5,7],veri f ication.mot)〉

Table 6 Number of extracted i-sequences (Li) by varying the window size, the step function
depth and fixing minsupp to 0.4

maximal GSPM pat-
terns

ITS-PS maximal ITS-PS patterns

ws L1 L2 L3 L1 L2 L3 L4 L5 L6 L2 L3 L4 L5 L6
1 13 21 1 17 39 14 0 0 0 21 0 14 0 0
2 11 16 5 7 47 44 3 0 0 3 19 3 0 0
3 9 12 5 7 53 96 26 3 0 0 30 26 3 0
4 8 12 6 7 53 108 62 9 1 0 23 34 8 1
5 9 13 2 7 55 133 75 9 1 0 26 42 13 1
6 9 14 4 7 52 98 88 38 7 0 26 20 27 7
7 9 19 3 7 51 115 88 21 4 0 24 29 12 4

Table 6 details the number of k-patterns extracted by ITS-PS and GSPM for a
fixed minsupp value (equal to 0.4) and different grouping values. We notice that
when both methods provide the same patterns length results (correspondence bet-
ween Fig.6 and Table 6), maximal sequences extracted by our approach are fewer
than maximal patterns obtained by GSPM. Such situation is illustrated in Exam-
ple 13. However, when the sequences returned by ITS-PS are longer than those
provided by GSPM, ITS-PS maximal sequences are more than GSPM’s ones and
majority represent longer patterns then those from maximal GSPM result. Finally,
notice that the number of maximal sequences extracted by our approach is still sim-
ilar to those extracted by GSPM.

Example 13. If we consider Example 12 then the longest maximal sequences ex-
tracted by GSPM are: 〈([0,0[,B)([2,4[,F)〉, 〈([0,0[,G)〉, 〈([0,0[,A)〉, 〈([0,0[,C)〉.
The only one extracted by ITS-PS is 〈([0,2],ABC)([3,4],F)([5,6],G)〉. The se-
quence 〈([0,0[,B)([2,4[,F)〉 extracted by GSPM means that “F appears randomly
in [2,4[after B”. However, the sequence 〈([0,2],ABC)([3,4],F)([5,6],G)〉 provided
by ITS_PS means, among others, that F appears in the interval [3−2= 1,4−0= 4]
after B. Given that [1,4] contains [2,4[, we can say that the maximal sequence

Relaxing Time Granularity for Mining Frequent Sequences 75

provided by our approach includes all maximal sequences extracted by GSPM by
tolerating more uncertainty.

6 Conclusion

This paper presents ITS-PS, a sequences extraction algorithm based on the sliding
window principle allowing time constraints relaxation. The sliding window gradu-
ally merges close transactions (co-occurring events) by considering several merging
combinations. The algorithm extracts interval temporal sequences from a collection
of discrete temporal ones. The interval timestamps express an uncertainty of the
exact moment when transaction events occur. The uncertainty magnitude is man-
aged by the size of the sliding window fixed by the user. The implementation of
our algorithm is inspired by that of [Pei et al., 2001]. We compared qualitatively the
results of our method to those provided by the GSPM algorithm proposed in [Hirate
and Yamana, 2006]. It turns that our algorithm provides more and longer sequences
than GSPM since result patterns convey more information from input data. Actu-
ally, when “local” events appear (in the data sequences) with an alternate order are
met in the data sequences, GSPM (and other extraction algorithms) stops extension
of the pattern. However, the ITS-PS algorithm extract the same kind of information
as frequent and continues its extension. This makes this latter comparing to GSPM
providing such additional patterns.

Future works will concern the optimization of maximal patterns extraction
process. Indeed, due to our relaxation of the chronological sequence of event oc-
currences, we extract more sequences than other approaches. However, when we
restrict our result to the maximal sequences, not only the amount of result is lower
than that of the other approaches but it encompasses it. From a practical viewpoint,
it is not relevant to first extract all patterns and then select the maximal ones. In
order to cope with the huge data manipulated by our targeted industrial application
(aeronautic maintenance tasks prediction), we are currently optimizing the present
proof-of-concept implementation.

References

[Agrawal and Srikant, 1995] Agrawal, R., Srikant, R.: Mining sequential patterns. In: Pro-
ceeding of ICDE Conference, Taipei, Taiwan, pp. 3–15. IEEE Computer Society Press
(1995)

[Agrawal and Srikant, 1996] Agrawal, R., Srikant, R.: Mining sequential patterns: General-
izations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin,
G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996)

[Agrawal et al., 1994] Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association
rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499
(1994)

[Allen, 1983] Allen, J.F.: Maintaining knowledge about temporal intervals. Communications
of ACM 26 (1983)

76 A. Ben Zakour et al.

[Ayres et al., 2002] Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining
using a bitmap representation. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 429–435. ACM (2002)

[Ceci et al., 2011] Ceci, M., Loglisci, C., Salvemini, E., D’Elia, D., Malerba, D.: Mining
spatial association rules for composite motif discovery. In: Mathematical Approaches to
Polymer Sequence Analysis and Related Problems, pp. 87–109 (2011)

[Fournier-Viger et al., 2008] Fournier-Viger, P., Nkambou, R., Nguifo, E.M.: A knowledge
discovery framework for learning task models from user interactions in intelligent tutoring
systems. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp.
765–778. Springer, Heidelberg (2008)

[Giannotti et al., 2006] Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences
with temporal annotations. In: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC), pp. 593–597. ACM (2006)

[Guyet and Quiniou, 2008] Guyet, T., Quiniou, R.: Mining temporal patterns with quantitative
intervals. In: Workshops Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM), Pisa, Italy, pp. 218–227. IEEE Computer Society (2008)

[Guyet and Quiniou, 2011] Guyet, T., Quiniou, R.: Extracting temporal patterns from
interval-based sequences. In: IJCAI, Barcelona, Catalonia, Spain, pp. 1306–1311 (2011)

[Hirate and Yamana, 2006] Hirate, Y., Yamana, H.: Generalized sequential pattern mining
with item intervals. JCP 1(3), 51–60 (2006)

[Li et al., 2012] Li, C., Yang, Q., Wang, J., Li, M.: Efficient mining of gap-constrained sub-
sequences and its various applications. ACM Trans. Knowl. Discov. Data 6(1), 2:1–2:39
(2012)

[Pei et al., 2001] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.:
Prefixspan: Mining sequential patterns by prefix-projected growth. In: Proceedings of the
17th International Conference on Data Engineering ICDE, pp. 215–224 (2001)

[Pham et al., 2009] Pham, Q., Raschia, G., Mouaddib, N., Saint-Paul, R., Benatallah, B.: Time
sequence summarization to scale up chronology-dependent applications. In: EDBT 2008,
11th International Conference on Extending Database Technology, Hong Kong, China, pp.
1137–1146 (2009)

[Plantevit et al., 2007] Plantevit, M., Laurent, A., Teisseire, M., et al.: Extraction de motifs
séquentiels multidimensionnels clos sans gestion d’ensemble de candidats. In: EGC 2007:
Extraction et Gestion des Connaissances, p. 6 (2007)

[Rabatel et al., 2009] Rabatel, J., Bringay, S., Poncelet, P.: So_mad: Sensor mining for
anomaly detection in railway data. In: Perner, P. (ed.) ICDM 2009. LNCS (LNAI),
vol. 5633, pp. 191–205. Springer, Heidelberg (2009)

[Srinivasulu et al., 2010] Srinivasulu, P., Rao, J.R., Babu, I.R.: Network intrusion detection
using fp tree rules. CoRR, abs/1006.2689 (2010)

[Wu and Chen, 2007] Wu, S., Chen, Y.: Mining nonambiguous temporal patterns for interval-
based events. IEEE Trans. on Knowl. and Data Eng. 19, 742–758 (2007)

[Yi-Cheng et al., 2010] Yi-Cheng, C., Ji-Chiang, J., Wen-Chih, P., Suh-Yin, L.: An efficient
algorithm for mining time interval-based patterns in large database. In: ACM, Proceedings
of CIKM Conference, Hong Kong, China, pp. 49–58 (2010)

	Relaxing Time Granularity for Mining Frequent Sequences
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Merging Sequences
	3.2 Support

	4 ITS Extraction
	4.1 Selecting Frequent 1-Sequences
	4.2 Projection

	5 Experiments
	6 Conclusion
	References

