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Abstract. Clustering is a popular task in knowledge discovery. In this chapter we
illustrate this fact with a new clustering algorithm that is able to partition objects
taking into account simultaneously their relational descriptions given by multiple
dissimilarity matrices. The advantages of this algorithm are threefold: it uses any
dissimilarities between objects, it automatically ponderates the impact of each dis-
similarity matrice and it provides interpretation tools. We illustrate the usefulness of
this clustering method with two experiments. The first one uses a data set concern-
ing handwritten numbers (digitized pictures) that must be recognized. The second
uses a set of reports for which we have an expert classification given a priori so we
can compare this classification with the one obtained automatically.

1 Introduction

Clustering is a popular task in knowledge discovery and it is applied in various
fields including data mining, pattern recognition, computer vision, etc. [Gordon,
1999; Jain et al., 1999]. Clustering methods aim at organizing a set of objects into
clusters such that items within a given cluster have a high degree of similarity, while
items belonging to different clusters have a high degree of dissimilarity. A precise
definition of the dissimilarity between objects is thus very important.

Some of the clustering techniques are called partitioning methods. Partitioning
methods seek to obtain a single partition of the input data into a given number
of clusters. Often, such methods look for a partition that optimizes (locally) an
adequacy criterion function.
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Two usual representations of the objects upon which clustering can be based are
(usual or symbolic) feature data and relational data. When each object is described
by a vector of quantitative or qualitative values the set of vectors describing the ob-
jects is called feature data. When each object is described by a vector of sets of cat-
egories, intervals or weight histograms, the set of vectors describing the objects can
be considered as symbolic (feature) data, according to the Symbolic Data Analysis
(SDA) approach[Bock and Diday, 2000]. Alternatively, when each pair of objects
is represented by a relationship, then we have relational data. The most common
case of relational data is when we have (a matrix of) dissimilarity data, say R = [ril ],
where ril is the pairwise dissimilarity (often a distance) between objects i and l.

Many methods and algorithms have been proposed in order to cluster (usual or
symbolic) feature data[Gordon, 1999; Jain et al., 1999; Kaufman and Rousseeuw,
1990]. However, few clustering models have been proposed for relational data.
[Frigui et al., 2007] observed that several applications, as content-based image re-
trieval, would benefit strongly from clustering methods for relational data. In SDA,
many effective dissimilarity measures proposed to the comparison of symbolic data
are not differentiable with respect to the prototype parameters and thus, they could
not be used in clustering methods for symbolic feature data based on objective func-
tions. For example, in order to cluster constrained symbolic data, [De Carvalho et al.,
2009] used the dynamic clustering algorithm for relational data [De Carvalho et al.,
2012]. The constraints were taken into account during the computation of a suit-
able dissimilarity function between the symbolic feature data in order to obtain a
relational data set.

In this paper we will focus on relational data. When the representation of an
object is not unique, we speak of multi-view data. Multi-view data can be found in
many domains such as bioinformatics, marketing, etc. [Cleuziou et al., 2009], and
in structural documents. For example, in XML documents with many sections, each
of these sections can be interpreted as a different view.

This paper presents a clustering algorithm that is a variant of the one given in
[De Carvalho et al., 2012], that is able to partition objects taking simultaneously
into account their relational descriptions given by multiple dissimilarity matrices.
The main idea is to obtain a collaborative role of the different dissimilarity matrices
[Pedrycz, 2002] in order to obtain a final consensus partition [Leclerc and Cucumel,
1987].

The dissimilarity matrices could have been generated using different sets of vari-
ables and a fixed dissimilarity function (the final partition gives a consensus between
different views (sets of variables) describing the objects), using a fixed set of vari-
ables and different dissimilarity functions (the final partition gives the consensus
between different dissimilarity functions) or using different sets of variables and
dissimilarity functions. Moreover, the influence of the different dissimilarity matri-
ces is not equally important in the definition of the clusters in the final consensus
partition. Thus, in order to obtain a central partition from all dissimilarity matrices,
it is necessary to learn cluster-dependent relevance weights for each dissimilarity
matrix.
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[Frigui et al., 2007] proposed CARD, a clustering algorithm that is able to parti-
tion objects taking into account multiple dissimilarity matrices and that learns a rel-
evance weight for each dissimilarity matrix in each cluster. CARD is mainly based
on the well known fuzzy clustering algorithms for relational data RFCM [Hathaway
et al., 1989] and FANNY [Kaufman and Rousseeuw, 1990].

The clustering algorithm proposed in this paper is designed to give a partition and
a prototype for each cluster as well as to learn a relevance weight for each dissimilar-
ity matrix by optimizing an adequacy criterion that measures the fit between clusters
and their representatives. These relevance weights change at each algorithm iteration
and are different from one cluster to another. The method is based on the dynamic
hard clustering algorithm for relational data [Lechevallier, 1974; De Carvalho et al.,
2008, 2009] and on adaptive distances [Diday and Govaert, 1977; De Carvalho and
Lechevallier, 2009]. One of the advantage of the algorithm is that it provides inter-
pretation tools that help in understanding the result.

In order to demonstrate the usefulness of this new clustering algorithm, we apply
it on two different applications. The first one concerns the clustering of handwritten
digits (0 to 9) that are scanned in binary pictures. The data that are used are avail-
able from the “UCI machine learning repository”. The second one uses the example
given [De Carvalho et al., 2010] taking a document data base for which we have an
expert categorization.

2 A Dynamic Clustering Algorithm Based on Multiple
Dissimilarity Matrices

In this section, we introduce an extension of the dynamic clustering algorithm
for relational data [De Carvalho et al., 2008] which is able to partition objects
taking simultaneously into account their relational descriptions given by multiple
dissimilarity matrices.

In this new version, the prototype is no more defined as an object, but as a vector
of objects from E . For each matrix there is one associated object.

Let E = {e1, . . . ,en} be a set of n examples and let p dissimilarity n × n
matrices (D1, . . . ,D j, . . . ,Dp) where D j[i, l] = d j(ei,el) gives the dissimilarity bet-
ween objects ei and el on dissimilarity matrix D j. Assume that the prototype
gk = (gk1, . . . ,gkp) is the prototype vector of cluster Ck, where each component be-
longs to the set E , i.e. , gk ∈ E p (k = 1, . . . ,K), with gk j ∈ E ( j = 1, . . . , p).

The dynamic hard clustering algorithm with relevance weight for each dissimi-
larity matrix looks for a partition P = (C1, . . . ,CK) of E into K clusters and the cor-
responding prototype vector gk ∈ E p representing the cluster Ck in P and a weight
for each dissimilarity matrix such that the adequacy criterion J is locally optimized.
The adequacy criterion is defined as

J =
K

∑
k=1

∑
ei∈Ck

dλ k
(ei,gk) =

K

∑
k=1

∑
ei∈Ck

p

∑
j=1

λk jd j(ei,gk j) (1)
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in which

dλ k
(ei,gk) =

p

∑
j=1

λk jd j(ei,gk j) (2)

is the dissimilarity between an example ei ∈ Ck and the cluster prototype gk ∈ E p

parameterized by the relevance weight vector λ k = (λk1, . . . ,λk j, . . . ,λkp) where λk j

is the weight for the dissimilarity matrix D j for the cluster Ck, and d j(ei,gk j)) is the
local dissimilarity d j between an example ei ∈Ck and the cluster prototype gk j ∈ E .

Our clustering algorithm alternates the three following steps:

• Step 1: Definition of the Best Prototype Vectors
In this step, the partition P = (C1, . . . ,CK) of E into K clusters and the relevance
weight matrix λ are fixed.
For each cluster Ck we compute the prototype vector gk which minimizes the
clustering criterion J. This vector contains the components gk j, objects of E , that
are obtained using :

l = argmin1≤h≤n ∑
ei∈Ck

λk j d j(ei,eh) (3)

• Step 2: Definition of the Best Relevance Weight Matrix
In this step, the partition P = (C1, . . . ,CK) of E and the vector of prototypes
g = (g1, . . . ,gK) are fixed.
The element j of the relevance weight vector λ k = (λk1, . . . ,λk j, . . . ,λkp), which
minimizes the clustering criterion J under λk j > 0 et ∏p

j=1 λk j = 1, is calculated
by the following expression:

λk j =

{
∏p

h=1

[
∑ei∈Ck

dh(ei,gkh)
]} 1

p

[
∑ei∈Ck

d j(ei,gk j)
] (4)

Remark The more the examples in the cluster Ck are close to the component gk j

of the prototype gk considering the matrix of dissimilarity D j, the higher is the
value of the weight λk j.

• Step 3: Definition of the Best Partition
In this step, the vector of prototypes g = (g1, . . . ,gK) and the relevance weight
matrix λ are fixed.
The cluster Ck is updated according to the following allocation rule:

Ck = {ei ∈ E : dλ k
(ei,gk)< dλ h

(ei,gh)∀h �= k } (5)

If the minimum is not unique, ei is assigned to the class having the smallest index.

It’s easy to demonstrate that each previous step decreases the criterion J.
The dynamic hard clustering algorithm with relevance weight for each dissimilar-

ity matrix sets an initial partition and alternates three steps until convergence, when
the criterion J(P,λ ,g) reaches a stationary value representing a local minimum.
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Comparing with the initial algorithm [De Carvalho et al., 2012], using a vector
prototype allows to optimize the choice of the prototype and of the weight locally, by
class and by dissimilarity matrix. The clustering criterion J is decomposed accord-
ing to the dissimilarity matrices, and according to classes and dissimilarity matrices
simultaneously, allowing to interpret the classes against matrices.

3 Interpreting Clusters and Partition

Let T be the criterion corresponding to the criterion J applied to a clustering in a
unique class of E . The tools that help to interpret the classes and the partition are
based on the decomposition of the criterion T in two parts. The first one corresponds
to the dispersion intra-classes W (W corresponds to the clustering criterion J) and
the second one corresponds to the dispersion inter-classes B. We use the approach
given by [Chavent et al., 2006] that permits to compute this decomposition even
if computing the inter-classes dispersion B is impossible (see [De Carvalho et al.,
2012]).

Let P = (C1, . . . ,CK) the final partition E = {e1, . . . ,en} in K classes. Let gk the
prototype and λ k the vector of relevance weight of Ck (k = 1, . . . ,K). Suppose also
that the global prototype is the vector g = (g1, . . . ,gp) where g j ∈ E ( j = 1, . . . , p).

The global dispersion T of the partition P = (C1, . . . ,CK) is defined by

T =
K

∑
k=1

∑
ei∈Ck

dλ k
(ei,g) =

K

∑
k=1

∑
ei∈Ck

p

∑
j=1

λk jd j(ei,g j) (6)

where the global prototype g, that minimizes the global dispersion T , is composed
of g j = el ∈ E computed using :

l = argmin1≤h≤n

K

∑
k=1

∑
ei∈Ck

λk j d j(ei,eh) (7)

The global dispersion is decomposed in

a) T = ∑K
k=1 Tk with Tk = ∑ei∈Ck ∑p

j=1 λk j d j(ei,g j) ;

b) T = ∑K
k=1 ∑p

j=1 Tk j with Tk j = ∑ei∈Ck
λk j d j(ei,g j) ;

c) T = ∑p
j=1 Tj with Tj = ∑K

k=1 ∑ei∈Ck
λk j d j(ei,g j)

The dispersion intra-classes W is given by the clustering criterion J(see 1):

a) J = ∑K
k=1 Jk with Jk = ∑ei∈Ck ∑p

j=1 λk j d j(ei,gk j);

b) J = ∑p
j=1 Jj with Jj = ∑K

k=1 ∑ei∈Ck
λk j d j(ei,gk j);

c) J = ∑K
k=1 ∑p

j=1 Jk j with Jk j = ∑ei∈Ck
λk j d j(ei,gk j)

One can easily show that

i) T ≥ J;
ii) Tk ≥ Jk (k = 1, . . . ,K);
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iii)Tj ≥ Jj ( j = 1, . . . , p);
iv)Tk j ≥ Jk j (k = 1, . . . ,K; j = 1, . . . , p).

Given the global dispersion, the intra-classes dispersion and their decomposi-
tion, the indexes for the help to interpretation of classes and partition introduced by
[Chavent et al., 2006] can be easily be adapted to the new algorithm.

The global quality of the final partition is Q(P) = 1− J
T . An index Q(P) close to

1 indicates a partition of better quality (more homogeneous classes).
The global quality of the final partition according to each dissimilarity matrix is

given by Q j(P) = 1− Jj
Tj

. A value for Q j(P) close to 1 indicates a good quality of

the partition P according to the dissimilarity matrix D j. The comparison between
Q j(P) and Q(P) shows that the discriminant power of the dissimilarity matrix D j is
greater than the average discriminant power of all the dissimilarity matrices.

4 Applications

To illustrate the usefulness of our new algorithm, we use it on two different data sets.
The first one is a set of digitized handwritten digits, the second a set of scientific
activity reports.

4.1 Handwritten Digits Dataset

Our first example concerns the clustering of “multiple features” data available in the
“UCI machine learning repository”. This set of data contains handwritten digits (0
to 9) that are scanned in binary pictures. The 2000 handwritten digits (objects) are
described by 649 numerical variables. These variables are partitioned in 6 different
sets (views):

Fig. 1 Digitized handwritten digit ’3’, ’3’, ’5’, ’7’, ’7’

• 76 Fourier coefficients describing the shape of the digits
• 64 Karhunen-Love coefficients
• 240 pixels average in 2 x 3 windows
• 47 Zernike moments
• 6 Morphological characteristics
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Theses data are structured in 10 a priori classes containing 200 objects, each
class corresponding to one digit.

We first consider 7 data tables: one in which the objects are described by all the
649 variables (table “mfeat”) and 6 other tables in which the objects are described
by one of the 6 different “views”, each “view” having respectively 76 (table “mfeat-
Fou”), 216 (table “mfeatFac”), 64 (table “mfeatKar”), 240 (table “mfeatPix”), 47
(table “mfeatZer”), and 6 (table “mfeatMor”) variables.

Then 7 relational data tables are obtained from theses 7 data tables using the
Euclidean distance. All these tables are then normalized according to their global
dispersion [Chavent, 2005] to have the same dispersion. This means that each dis-

similarity d(xi,x′i) in a given relational data table has been normalized as d(xi,x′i)
T

where T = ∑n
i=1 d(ei,g) is the global dispersion and g = el ∈ E = {e1, . . . ,en} is the

global prototype, which is computed according to l = argmin1≤h≤n ∑n
i=1 d(ei,eh).

Our clustering algorithm has been performed first on the relational data table
“mfeat” and then simultaneously in the 6 relational data tables “mfeatFou”, “mfeat-
Fac”, “mfeatKar”, “mfeatPix”, “mfeatZer”, and “mfeatMor”, corresponding to the
6 different “views” to obtain a partition in 10 clusters. The clustering algorithm is
run 100 times and the best result according to the adequacy criterion J is selected.
Our goal is to compare the partition obtain by our clustering algorithm with the par-
tition in 10 clusters given a priori. The comparison criterion that we have chosen
are the overall (global) error rate of classification (OERC)[Breiman et al., 1984],
the corrected Rand index (CR)[Hubert and Arabie, 1985], and the F-measure[Van
Rijisbergen, 1976].

Results

The values of the CR, F-measure and OERC indexes, obtained from the final par-
tition computed by our clustering algorithm applied to the relational data table
“mfeat”, are respectively 0.518, 0.674, and 37.75%.

The values of the same indexes obtained from the final partition computed by
our clustering algorithm applied simultaneously to the 6 relational data tables cor-
responding to the 6 different “views” are respectively 0.762, 0.879 et 12.10%. The
table 1 shows the relevance weight matrix of the relational data tables in the clusters.

The table 2 shows the confusion matrix into 10 cluster computed for the final
partition.

We can see that the dissimilarity matrix “mfeatMor” is the most pertinent one for
defining all the clusters. We also see that the dissimilarity matrix “mfeatFac” has a
relevance weight as important that the one for the dissimilarity matrix “mfeatMor”
for the cluster 3.

The global quality of the final partition is Q(P) = 1− J
T = 0.919. Closer is the

index Q(P) to 1 better is the partition quality (with more homogeneous clusters).
The global quality of the final partition relative to each dissimilarity matrix

Q j(P) = 1− Jj
Tj
( j = 1, . . . ,6) is shown in Table 3. A value of Q j(P) close to 1

is an indication of a good quality of the partition P relative to the dissimilarity
matrix D j. Comparing Q j(P) with Q(P) shows that the discriminant power of the
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Table 1 Relevance Weight Matrix of the Relational Data Tables in the Clusters

Relevance Weight of Dissimilarity Matrices
Clusters 1-mfeatMor 2-mfeatZer 3-mfeatPix 4-mfeatKar 5-mfeatFou 6-mfeatFac

1 6.728 0.713 0.562 0.595 0.533 1.165
2 12.543 0.615 0.515 0.546 0.434 1.059
3 2.891 0.919 0.612 0.646 0.454 2.091
4 3.412 1.083 0.526 0.562 0.513 1.778
5 5.318 0.828 0.573 0.640 0.454 1.361
6 135.631 0.338 0.236 0.252 0.318 1.147
7 54.559 0.484 0.270 0.290 0.393 1.223
8 5.276 0.794 0.547 0.596 0.421 1.733
9 8.163 0.749 0.504 0.559 0.383 1.505

10 8367.671 0.199 0.124 0.134 0.097 0.363

Table 2 Confusion Matrix

Clusters (Handwritten Digits)
Clusters ’7’ ’1’ ’5’ ’2’ ’4’ ’0’ ’8’ ’3’ ’6’ ’9’

1 193 15 4 16 6 0 0 30 2 0
2 1 170 0 0 4 0 3 1 5 0
3 0 0 149 1 0 2 0 27 0 0
4 1 0 6 178 0 0 1 3 0 0
5 1 2 1 1 183 0 1 2 3 0
6 0 0 0 0 0 188 18 0 0 0
7 0 11 0 0 0 9 174 0 3 0
8 4 0 40 3 1 1 2 137 1 0
9 0 2 0 1 6 0 1 0 186 0
10 0 0 0 0 0 0 0 0 0 200

Table 3 Global Quality of the Partition P relatively to each Dissimilarity Matrix (%)

Dissimilarity Matrices
1-mfeatMor 2-mfeatZer 3-mfeatPix 4-mfeatKar 5-mfeatFou 6-mfeatFac

Q j(P) 98.44 47.28 43.58 47.16 35.09 65.69

dissimilarity matrix “mfeatMor” is greater that the average discriminant power of
all the dissimilarity matrices.

Table 4 shows the heterogeneity index J(k) = Jk
J and the quality index Q(k) =

1− Jk
Tk

for each cluster k = 1, . . . ,10. One can sea, for example, that the cluster 10
(digit ’9’) is more homogeneous while the cluster 6 (digit ’0’) is of best quality.

Table 5 shows the index Q j(k) = 1− Jk j
Tk j

, that gives the quality of the cluster

Ck (k = 1, . . . ,10) in the dissimilarity matrix D j ( j = 1, . . . ,6). Closer to 1 is the
value of this index, better is the quality of this cluster in this dissimilarity matrix.
While Q(P) is a global index, Q j(k) is a local one for a given cluster and a given
dissimilarity matrix. More, the comparison between the indices Q j(k) and Q(k)
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Table 4 Heterogeneity Index and Quality Index of a Cluster(%)

Cluster k
1 2 3 4 5 6 7 8 9 10

Cardinal 266 184 179 189 194 206 197 189 196 200
J(k) 17.52 10.20 12.67 10.34 14.07 3.75 6.14 12.38 10.39 2.48
Q(k) 88.63 84.80 93.36 93.42 89.42 97.70 93.70 93.43 84.18 88.73

Table 5 Quality of Clusters in the Dissimilarity Matrices (%)

Dissimilarity Matrix
Classes 1-mfeatMor 2-mfeatZer 3-mfeatPix 4-mfeatKar 5-mfeatFou 6-mfeatFac

1 97.69 38.36 49.84 52.10 39.84 50.57
2 96.80 32.34 45.94 46.65 30.16 34.07
3 98.79 23.15 34.46 39.43 35.03 39.12
4 98.76 61.18 47.37 52.09 41.66 53.72
5 97.93 13.31 42.37 46.97 20.34 56.26
6 99.58 81.82 60.47 65.07 69.41 77.24
7 98.85 42.33 22.75 26.86 41.98 51.96
8 98.81 25.05 30.37 34.73 20.25 23.20
9 96.50 00.00 45.99 50.50 18.19 68.99

10 03.77 91.28 55.00 53.25 42.25 97.11

gives the dissimilarity matrices that characterize the cluster k. For example, the
dissimilarity matrix “mfeatMor” is characteristic of the clusters 1 to 9, while the
matrices “mfeatZer” and “mfeatFac” are characteristic of the cluster 10 (digit ’9’).

4.2 Document Data Base Categorization

As a second application of our algorithm, we use it to categorize a document data
base. The document data base is a collection of scientific activity reports produced
by each INRIA (The French National Institute for Research in Computer Science
and Control) research team in 2007. Theses deliverables are send to the French
parliament for public funding assessing and are also made available to its industrial
and research partners.

Research teams are grouped into scientific themes that do not correspond to an
organizational structure (such as departments or divisions), but act as a virtual struc-
ture for the purpose of presentation, communication and evaluation. Figure 2 gives a
view of this categorization. The choice of the themes and the allocation of the teams
are mostly related to strategic objectives and scientific closeness between existing
teams, however some geographical constraints, such as the desire for a theme to be
representative of most INRIA centers are taken into account. Our aim is to compare
the a priori categorization given by INRIA of the reports with that induced by the
clustering algorithm here proposed.
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Fig. 2 INRIA research categorization

Each report (RA) is written in English and using LaTeX, it is automatically trans-
lated into XML, then to HTML and published on the Web. In the rest of the paper
we implicitly refer to the XML version of the Activity Report. The logical structure
of the RA is defined by an XML DTD with a few mandatory sections and some
optional parts.

In this application we consider activity reports from 164 INRIA research teams
in 2007. The XML version of these documents contains 173 files, a total of 613 000
lines, more than 40 Mbytes of data. Figure 3 gives an example of an activity report
summary.

Fig. 3 Example of an activity report summary
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In these activity reports, four sections have been selected to describe a research
team: overall objectives, scientific foundations, dissemination and new results.
The overall objectives part defines the research objectives, scientific foundations
provides the scientific background followed by potential applications of the research
domain, Dissemination includes any teaching activity, involvement with the re-
search community (program committees, editorial boards, conference and workshop
organization) and seminars, while the new results includes the principal results ob-
tained during that year.

In a first step all the texts are preprocessed. Stop-words are removed, and the
texts are annotated with part-of-speech and lemma information using treetagger.

Four feature data tables are build, each with 164 objects (the research teams)
described by the frequent words (categories) present in one of the four sections. The
numbers of frequent words in the sections overall objectives, scientific foundations,
dissemination, and new results are respectively 220, 210, 404, and 547. Each cell on
a data table gives the frequency of a word for the considered activity report section
and research team.

Then, four relational data tables have been obtained from the 4 feature data ta-
bles through a dissimilarity measure derived from the affinity coefficient [Bacelar-
Nicolau, 2000]. We assume that each individual is described by one set-valued
variable (“presentation”, etc.) which has m j modalities (or categories) {1, . . . ,m}.
An individual ei is described by xi = (ni1, . . . ,nim) where ni j is the frequency of
modality j. The dissimilarity between a pair of individuals ei and ei′ is given by:

d(xi,x′i) = 1−
m

∑
j=1

√
ni j

ni•
ni′ j
ni′•

where ni• =
m

∑
j=1

ni j.

All these relational data tables were normalized according to their global dis-
persion [Chavent, 2005]: each dissimilarity d(xi,x′i) in a relation data table has

been normalized as d(xi,x′i)
T where T = ∑n

i=1 d(ei,g) is the global dispersion and
g = el ∈ E = {e1, . . . ,en} is the global prototype, which is computed according to
l = argmin1≤h≤n ∑n

i=1 d(ei,eh).

Results

The clustering algorithm has been performed simultaneously on these 4 relational
data tables (“presentation”, “foundation”, “dissemination” and “bibliography”) in
order to obtain a partition in K ∈ {1, . . . ,15}. For a fixed number of clusters K, the
clustering algorithm is run 100 times and the best result according to the adequacy
criterion is selected.

Determining the appropriate number of clusters in a partition is a classical prob-
lem but no good solution exists[Milligan and Cooper, 1985]. To choose the right
number of cluster, our strategy is those of the SPAD software1. It consists in choos-
ing the best couple (inter-classes inertia, number of classes). The decrease of the
number of classes increases the intra-classes inertia, so to get a partition with a

1 http://eng.spad.eu/

http://eng.spad.eu/
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good quality we must identify an important jump of the index. This peak can be
found using the second order differences of the clustering criterion [Da Silva, 2009;
Charrad et al., 2010].

The discrete first derivative of J according to k is D f (x) = ( f (x+ h)− f (x))/h
and the second one is D2 f (x) = ( f (x+h)−2 f (x)+ f (x−h))/h2. When h tends to
0 this is equivalent to the usual derivative.

A partition in 4 clusters is chosen because at this spot the second derivative is
maximal (see Fig. 4). A partition in 11 clusters would also be possible as it is a local
maximum.

Fig. 4 J criteria, second derivative

The 4-clusters partition obtained with the here proposed algorithm was compared
with the a priori 5-class partition of the INRIA in 2008. INRIA a priori catego-
rization is as follows: “Applied Mathematics, Computation and Simulation (M)”,
“Algorithmics, Programming, Software and Architecture (A)”, “Networks, Systems
and Services, Distributed Computing (N) ”, “Perception, Cognition, Interaction (P)”
and “Computational Sciences for Biology, Medicine and the Environment (C)”.

The activity reports refer to year 2007, and the expert classification by INRIA has
been done in 2008. Between these two years some research teams have been closed
and others has evolved. For this reason, only 154 activity reports has been used in
the comparison between our automatic clustering and the expert classification done
by INRIA.

Table 6 shows that the 4-clusters partition obtained with the clustering algorithm
is quite consistent with the a priori 5-class categorization, except for the M and C
class.

Category 5, Computational Sciences for Biology, Medicine and the Environment,
is artificial and is distributed (considering the vocabulary that is used) in two clus-
ters, depending on the fact that the subject is more mathematical or more cognitive.
Thus, the cluster C3 could be labelled “Simulation/control/modelisation”, and the
cluster C4 “Data processing”.

The relevance weight matrix for the for variables (sections) used in the activity
reports is shown in table 7.
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Table 6 Distribution table of 154 reports (2007) in 5 a priori categories (2008) (rows) in the
4 clusters (columns)

C1 C2 C3 C4
M - Applied Mathematics, Computation and Simulation 1 1 20 6
A - Algorithmics, Programming, Software and Architecture 17 3 1 9
N - Networks, Systems and Services, Distributed Computing 1 28 2 2
P - Perception, Cognition, Interaction 5 1 2 35
C - Computational Sciences for Biology, Medicine and the Environment 0 0 11 9

Table 7 Relevance Weight Matrix of the Dissimilarity matrices in the classes

Relevance Weight of Dissimilarity Matrices
Clusters overall objectives scientific foundations new results dissemination

1 0.969026 0.979387 1.000909 1.052727
2 1.019705 0.934093 1.073774 0.977738
3 0.966223 1.068582 1.073115 0.902545
4 0.976156 0.993158 1.026519 1.004837

The values of the CR, F-measure and OERC indexes, obtained from the final
partition computed by our clustering algorithm are respectively 0.360, 0.657 and
27.92%.

5 Conclusion

This paper introduced a new clustering algorithm that is able to partition objects
taking into account simultaneously their relational descriptions given by multiple
dissimilarity matrices. These matrices could have been generated using different
sets of variables and dissimilarity functions.

This algorithm provides a partition and a prototype for each cluster as well as a
relevance weight for each dissimilarity matrix by optimizing an adequacy criterion
that measures the fit between clusters and their representatives. These relevance
weights are automatically computed at each algorithm iteration and are different
from one cluster to another. We also provide tools for the interpretation of the clus-
ters and the partition provided by the algorithm.

Two experiments demonstrate the usefulness of this clustering method.
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