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Abstract. In this paper, we deal with the problem of curves clustering. We propose
a nonparametric method which partitions the curves into clusters and discretizes the
dimensions of the curve points into intervals. The cross-product of these partitions
forms a data-grid which is obtained using a Bayesian model selection approach
while making no assumptions regarding the curves. Finally, a post-processing
technique, aiming at reducing the number of clusters in order to improve the in-
terpretability of the clustering, is proposed. It consists in optimally merging the
clusters step by step, which corresponds to an agglomerative hierarchical classifica-
tion whose dissimilarity measure is the variation of the criterion. Interestingly this
measure is none other than the sum of the Kullback-Leibler divergences between
clusters distributions before and after the merges. The practical interest of the ap-
proach for functional data exploratory analysis is presented and compared with an
alternative approach on an artificial and a real world data set.

1 Introduction

In functional data analysis (FDA [Ramsay and Silverman, 2005]), observations are
functions (or curves). Each function is sampled at possibly different evaluation
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points, leading to variable-length sets of pairs (evaluation point, function value).
Functional data arise in many domains, such as daily records of precipitation at a
weather station or hardware monitoring where each curve is a time series related to
a physical quantity recorded at a specified sampling rate.

Exploratory analysis methods for large functional data sets are needed in practi-
cal applications such as e.g. electric consumption monitoring [Hébrail et al., 2010].
They reduce data complexity by combining clustering techniques with function ap-
proximation methods, representing a functional data set by a small set of piece-
wise constant prototypes. In this type of approach, both the number of prototypes
and the number of segments (constant parts of the prototypes) are under user con-
trol. On a positive side, this limits the risk of cognitive overwhelming as the user
can ask for a low complexity representation. Unfortunately, this can also induce
under/over-fitting of the model to the data; additionally the number of prototypes
and the number of segments both need to be tuned, while they can be adjusted
independently in [Hébrail et al., 2010], increasing the risk of over/under-fitting.
Other parametric approaches for function clustering and/or function approxima-
tion can be found in e.g. [Cadez et al., 2000; Chamroukhi et al., 2010], [Gaffney
and Smyth, 2004], [Ramsay and Silverman, 2005]. All those methods make (some-
times implicit) assumptions on the distribution of the functions and/or on the
measurement noise.

Nonparametric functional approaches (e.g. [Ferraty and Vieu, 2006]) have been
proposed, in particular in [Gasser et al., 1998; Delaigle and Hall, 2010], where the
problem of density estimation of a random function is considered. However, those
models do not tackle directly the summarizing problem outlined in [Hébrail et al.,
2010] and recalled above. Nonparametric Bayesian approaches based on Dirichlet
process have also been applied to the problem of curves clustering. They aim at in-
ferring a clustering distribution on an infinite mixture model [Nguyen and Gelfand,
2011; Teh, 2010]. The clustering model is obtained by sampling the posterior
distribution using Bayesian inference methods.

The present paper proposes a new nonparametric exploratory method for func-
tional data, based on data grid models [Boullé, 2010]. The method makes assump-
tion neither on the functional data distribution nor on the measurement noise. Given
a set of sampled functions defined on a common interval [a,b], with values in [u,v],
the method outputs a clustering of the functions associated to partitions of [a,b] and
[u,v] in sub-intervals which can be used to summarize the values taken by the func-
tions in each cluster, leading to results comparable to those of [Hébrail et al., 2010].
Both approaches are for that matter compared in this article.

The method has no parameters and obtains in a fully automated way an optimal
summary of the functional data set, using a Bayesian approach with data dependent
priors. In some cases, especially for large scale data sets, the optimal number of
clusters and of sub-intervals may be too large for a user to interpret all the discovered
fine grained patterns in a reasonable time. Therefore, the method is complemented
with a post-processing step which offers the user a way to decrease the number of
clusters in a greedy optimal way. The number of sub-intervals, that is the level of
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details kept in the functions, is automatically adjusted in an optimal way when the
number of clusters is reduced.

The post-processing technique consists in merging successively the clusters in the
least costly way, from the finest clustering model to one single cluster containing all
the curves. It appears that the cost of the merge of two clusters is a weighted sum of
Kullback-Leibler divergences from the merged clusters to the created cluster which
can be interpreted as a dissimilarity measure between the two clusters that have been
merged. Thus, the post-processing technique can be considered as an agglomerative
hierarchical clustering [Hastie et al., 2001]. Decision-making tools can be plotted
using a dendrogram and a Pareto chart of the criterion value as a function of the
number of clusters.

The rest of the paper is organized as follows. Section 2 introduces the problem
of curves clustering and relates our method to alternative approaches. Next, in Sec-
tion 3, the clustering method based on joint density estimation is introduced. Then,
the post-processing technique is detailed in section 4. In Section 5 the results of
experimentations on an artificial data set and on a power consumption data set are
shown. Finally Section 6 gives a summary.

2 Functional Data Exploratory Analysis

In this section, we describe in formal terms the data under analysis and the goals of
the analysis.

Let C be a collection of n functions or curves, ci,1 ≤ i ≤ n, defined from [a,b]
to [u,v], two real intervals. Each curve is sampled at mi values in [a,b], leading to a
series of observations denoted ci = (xi j,yi j)

mi
j=1, with yi j = ci(xi j).

As in all data exploratory settings, our main goal is to reduce the complexity
of the data set and to discover patterns in the data. We are therefore interested in
finding clusters of similar functions as well as in finding functional patterns, that
is systematic and simple regular shapes in individual functions. In [Chamroukhi
et al., 2010; Hébrail et al., 2010] functional patterns are simple functions such as
interval indicator functions or polynomial functions of low degree: a function is
approximated by a linear combination of such simple functions in [Hébrail et al.,
2010] or generated by a logistic switching process based on low degree polynomial
functions in [Chamroukhi et al., 2010]. B-splines could also be used as in [Abraham
et al., 2003] but with no simplification virtues.

Let us denote kC the number of curve clusters. Given kC classes Fk of “simple
functions” used to discover functional patterns (e.g., piecewise constant functions
with P segments), the method proposed in [Hébrail et al., 2010] finds a partition
(Ck)

kC
k=1 of C and kC simple functions ( fk ∈Fk)

kC
k=1 which aim at minimizing

kC

∑
k=1

∑
ci∈Ck

mi

∑
j=1

(yi j− fk(xi j))
2 , (1)
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which corresponds to a form of K-means constrained by the choice of the segments,
in the functional space L2. The approach of [Chamroukhi et al., 2010] optimizes a
similar criterion obtained from a maximum likelihood estimation of the parameters
of the functional generative model.

Given a specific choice of the simple function classes, the functional prototypes
( fk)

kC
k=1 obtained by [Chamroukhi et al., 2010; Hébrail et al., 2010] induce kC par-

titions of [a,b] into sub-intervals on which functions are roughly constant. Those
partitions are the main tool used by the analyst to understand the functional pattern
inside each cluster. The general abstract goal of functional data exploration is there-
fore to build clusters of similar functions associated to sub-intervals of the input
space of the functions which summarize the behavior of the functions.

Bayesian Approaches, as described in [Nguyen and Gelfand, 2011], assume that
the collection of curves realizations can be represented by a set of canonical curves
drawn from a Gaussian Process and organized into clusters. The clusters are de-
scribed using a label function that is a realization of a multinomial distribution with
a Dirichlet prior. Whereas parametric models using a fixed and finite number of pa-
rameters may suffer from over- or under-fitting, Bayesian nonparametric approaches
were proposed to overcome these issues. By using a model with an unbounded
complexity, underfitting is mitigated, while the Bayesian approach of computing or
approximating the full posterior over parameters lessens over-fitting [Teh, 2010]. Fi-
nally, the parameters distribution is obtained by sampling the posterior distribution
using Bayesian inference methods such as Markov Chain Monte Carlo [Neal, 2000]
or Variational Inference [Blei and Jordan, 2005]. Then a post-treatment is required
for the choice of the clustering parameters among their distribution.

The Dirichlet Process prior requires two parameters: a concentration parameter
and a base distribution. For a concentration parameter α and a data set containing
n curves, the expected number of clusters k̄ is k̄ = α log(n) [Wallach et al., 2010].
Hence, the concentration parameter has a significant impact on the obtained number
of clusters. For that matter, according to [Vogt et al., 2010], one should not expect
to be able to reliably estimate this parameter.

Our method - named MODL and detailed in Section 3 - is comparable to ap-
proaches based on Dirichlet process (DP) in so much as all estimate a posterior
probability based on the likelihood and a prior distribution of the parameters. The
methods are also nonparametric with an unbounded complexity, since the number
of parameters is not fixed and grows with the amount of available data.

Nevertheless, MODL is intrinsically different from the DP based methods. First,
approaches based on DP are Bayesian and yield a distribution of clusterings, the
final clustering being selected using a post-treatment like chosing the mode of the
posterior distribution or by studying the clusters co-occurence matrix. By contrast,
MODL is a MAP approach, the most probable model is directly obtained using opti-
mization algorithms. Secondly, MODL is not applied on the values but on the order
statistics of the sample. One first benefit is to avoid outliers or scaling problems. By
using order statistics, the retrieved models are invariant by any monotonic transfor-
mation of the input data, which makes sense since the method aims at modeling the
correlations between the variables, not the values directly. Then, DP based methods
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consider distributions of the parameters that lie in R or any continuous space, which
measure is consequently infinite. As for MODL, the correlations between the vari-
ables are modeled on a sample. In the case of curves clustering, these variables are
the location X , the corresponding curve realization Y , and the curve label C. This
allows to work on a finite discrete space and thus to simplify the model computa-
tion, that mainly comes down to counting problems. Finally, the MODL approach is
clearly data dependant. In a first phase, the data sample is used cautiously to build
the model space and the prior: only the size of the sample and the values (or empiri-
cal ranks) of each variable taken independently are exploited. The correlation model
is inferred in a second phase, using a standard MAP approach. Hence, proving the
consistency of this data dependant modeling technique is still an open issue. Actu-
ally, experimental results with both reliable and fine grained retrieved patterns show
the relevancy of the approach.

3 MODL Approach for Functional Data Analysis

In this section, we summarize the principles of data grid models, detailed in [Boullé,
2010], and apply this approach on the functional data.

3.1 Data Grid Models

Data grid models [Boullé, 2010] have been introduced for the data preparation phase
of the data mining process [Chapman et al., 2000], which is a key phase, both time
consuming and critical for the quality of the results. They allow to automatically,
rapidly and reliably evaluate the class conditional probability of any subset of vari-
ables in supervised learning and the joint probability in unsupervised learning. Data
grid models are based on a partitioning of each variable into intervals in the numer-
ical case and into groups of values in the categorical case. The cross-product of the
univariate partitions forms a multivariate partition of the representation space into
a set of cells. This multivariate partition, called data grid, is a piecewise constant
nonparametric estimator of the conditional or joint probability. The best data grid
is searched using a Bayesian model selection approach and efficient combinatorial
algorithms.

3.2 Application to Functional Data

We propose to represent the collection C of n curves as a unique data set with
m = ∑n

i=1 mi observations and three variables, C to store the curve identifier, X and
Y for the point coordinates. We can apply the data grid models in the unsupervised
setting to estimate the joint density p(C,X ,Y ) between the three variable. The curve
variable C is grouped into clusters of curves, whereas each point dimension X and
Y is discretized into intervals. The cross-product of these univariate partitions forms
a data grid of cells, whith a peacewise constant joint density estimation per triplet
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of curve cluster, X interval and Y interval. As p(X ,Y |C) = p(C,X ,Y )
p(C) , this can also be

interpreted as an estimator of the joint density between the point dimensions, which
is constant per cluster of curves. This means that similar curves with respect to the
joint density of their point dimensions will tend to be grouped into the same clusters.
It is noteworthy that the (X ,Y ) discretization is optimized globally for the set of all
curves and not locally per cluster as in [Hébrail et al., 2010].

We introduce in Definition 1 a family of functional data clustering models, based
on clusters of curves, intervals for each point dimension, and a multinomial distri-
bution of all the points on the cells of the resulting data grid.

Definition 1. A functional data clustering model is defined by:

• a number of clusters of curves,
• a number of intervals for each point dimension,
• the repartition of the curves into the clusters of curves,
• the distribution of the points of the functional data set on the cells of the data

grid,
• the distribution of the points belonging to each cluster on the curves of the cluster.

Notation.

• C : collection of curves, size n = |C |.
• P: point data set containing all points of C using 3 variables, size m = |P |.
• C: curve variable
• X ,Y: variables for the point dimensions
• kC: number of clusters of curves
• kX ,kY : number of intervals for variables X and Y
• k = kCkX kY : number of cells of the data grid
• niC: number of curves in cluster iC
• mi: number of points for curve i
• miC : cumulated number of points for curves of cluster iC
• m jX , m jY : cumulated number of points for intervals jX of X and jY of Y
• miC jX jY : cumulated number of points for cell (iC, jX , jY ) of the data grid

We assume that the numbers of curves n and points m are known in advance and
we aim at modeling the joint distribution of the m points on the curve and the point
dimensions. In order to select the best model, we apply a Bayesian approach, using
the prior distribution on the model parameters described in Definition 2.

Definition 2. The prior for the parameters of a functional data clustering model are
chosen hierarchically and uniformly at each level:

• the numbers of clusters kC and of intervals kX ,kY are independent from each
other, and uniformly distributed between 1 and n for the curves, between 1 and
m for the point dimensions,

• for a given number kC of clusters, every partitions of the n curves into kC clusters
are equiprobable,
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• for a model of size (kC,kX ,kY ), every distributions of the m points on the k =
kCkX kY cells of the data grid are equiprobable,

• for a given cluster of curves, every distributions of the points in the cluster on the
curves of the cluster are equiprobable,

• for a given interval of X (resp. Y ), every distributions of the ranks of the X (resp.
Y ) values of points are equiprobable.

Taking the negative log of the posterior probability of a model given the data, this
provides the evaluation criterion given in Theorem 1, which specializes to functional
data clustering the unsupervised data grid model general criterion [Boullé, 2010].

Theorem 1. A functional data clustering model M distributed according to a uni-
form hierarchical prior is Bayes optimal if the value of the following criteria is
minimal

c(M) =− log(P(M))− log(P(P |M))

= logn+ 2logm+ logB(n,kC)

+ log

(
m+ k− 1

k− 1

)

+
kC

∑
iC=1

log

(
miC + niC − 1

niC − 1

)

+ logm!−
kC

∑
iC=1

kX

∑
jX=1

kY

∑
jY=1

logmiC jX jY !

+
kC

∑
iC=1

logmiC !−
n

∑
i=1

logmi!

+
kX

∑
jX=1

logm jX !+
kY

∑
jY=1

logm jY !

(2)

B(n,k) is the number of divisions of n elements into k subsets (with eventually
empty subsets). When n = k, B(n,k) is the Bell number. In the general case, B(n,k)
can be written as B(n,k) = ∑k

i=1 S(n, i), where S(n, i) is the Stirling number of the
second kind [Abramowitz and Stegun, 1970], which stands for the number of ways
of partitioning a set of n elements into i nonempty subsets.

As negative log of probabilities are coding lengths, the model selection technique
is similar to a minimum description length approach [Rissanen, 1978]. The first line
in Formula 2 relates to the prior distribution of the numbers of cluster kC and of in-
tervals kX and kY , and to the specification of the partition of the curves into clusters.
The second line represents the specification of the parameters of the multinomial
distribution of the m points on the k cells of the data grid, followed by the specifica-
tion of the multinomial distribution of the points of each cluster on the curves of the
cluster. The third line stands for the likelihood of the distribution of the points on the
cells, by the mean of a multinomial term. The last line corresponds to the likelihood
of the distribution of the points of each cluster on the curves of the cluster, followed
by the likelihood of the distribution of the ranks of the X values (resp. Y values) in
each interval.
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Algorithm 1: Greedy Bottom Up Merge Heuristic
Require: M (initial solution)
Ensure : M∗; c(M∗)≤ c(M)

1 M∗ ←M;
2 while solution is improved do
3 M′ ←M∗;
4 forall the merge u between 2 clusters or adjacent intervals of X or Y do
5 M+←M∗+u;
6 if c(M+)< c(M′) then
7 M′ ←M+;
8 end if
9 end forall

10 if c(M′)< c(M∗) then
11 M∗ ←M′ (improved solution);
12 end if
13 end while

3.3 Optimization Algorithm

The optimization heuristics have practical scaling properties, with O(m) space com-
plexity and O(m

√
m logm) time complexity. The main heuristic is a greedy bottom-

up heuristic, which starts with a fine grained model, with a few points per interval
on X and Y and a few curves per cluster, considers all the merges between clusters
and adjacent intervals, and performs the best merge if the criterion decreases after
the merge, as detailed in Algorithm 1.

This heuristic is enhanced with post-optimization steps (moves of interval bounds
and of curves across clusters), and embedded into the variable neighborhood search
(VNS) meta-heuristic [Hansen and Mladenovic, 2001], which mainly benefits from
multiple runs of the algorithm with different initial random solutions.

The optimization algorithms summarized above have been extensively evaluated
in [Boullé, 2010], using a large variety of artificial data sets, where the true data
distribution is known. Overall, the method is both resilient to noise and able to
detect complex fine grained patterns. It is able to approximate any data distribution,
provided that there are enough instances in the train data sample.

4 Agglomerative Hierarchical Clustering

The model carried out by the method detailed in the section 3 is optimal according
to the criterion introduced in Theorem 1. This parameter-free solution allows to
track fine and relevant patterns without over-fitting. This provides a suitable initial
solution to lead an exploratory analysis. Still, this initial solution may be too fine for
an easy interpretation. We propose here a post-processing technique which aims at
simplifying the clustering while minimizing the loss of information. This allows to
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explore the retrieved patterns at any granularity, up to the finest model, without any
user parameter.

We first study the impact of a merge on the criterion, then focus on the properties
of the proposed dissimilarity measure and finally describe the agglomerative hie-
rarchical clustering heuristic. It is noteworthy than the same modeling criterion is
optimized both for building the initial clustering and for aggregating the clusters in
the agglomerative heuristic.

4.1 The Cost of Merging Two Clusters

Let M1C,2C and MγC be two clustering models, the first one is the model before the
merge of the clusters 1C and 2C, the second one is the model after the merge, that
yields a new cluster γC = 1C∪2C. We denote Δc(1C,2C) the cost of the merge of 1C

and 2C, defined as:

Δc(1C,2C) = c(MγC)− c(M1C,2C)

It results from Theorem 1 that the clustering model MγC is a less probable MODL
explanation of the data set P than M1C,2C according to a factor based on Δc(1C,2C).

p(MγC |P) = e−Δc(1C,2C)p(M1C,2C |P) (3)

We focus on the asymptotic behavior of Δc(1C,2C) when the number of data points
m tends to infinity.

Theorem 2. The criterion variation is asymptotically equal to a weighted sum of
the Kullback-Leibler divergences from the clusters 1C and 2C to γC, estimated on
the kX × kY bivariate discretization.

Δc(1C,2C) =m1C DKL(1C||γC)+m2CDKL(2C||γC)+O(log(mγC)) (4)

Proof. The full proof is left out for brevity. Mainly, the computation of Δc(1C,2C)
makes some prior terms (2 first lines of Formula 2) vanish and bounds the other
ones by O(log(mγC)) terms. Then, using the Stirling approximation log(m!) =
m(log(m)− 1) +O(log(m)), the variation of the likelihood (the two last lines of
Formula 2) can be rewritten as a weighted sum of Kullback-Leibler divergences. �

4.2 The Cost of a Merge as a Dissimilarity Measure

As the criterion defined in Theorem 1 is used to find the best model, we naturally
chose it to evaluate the quality of the clustering. When two clusters are merged, the
criterion decreases and its resulting variation can be viewed as dissimilarity between
both clusters. When the number of points tends to infinity, the dissimilarity mea-
sure asymptotically converges to a weighted sum of Kullback-Leibler divergence
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(see Theorem 2). This divergence is a non symmetric measure of the difference bet-
ween two distributions [Cover and Thomas, 1991]. The variation of the criterion
Δc has some interesting properties. First, it is symmetrical, Δ(1C,2C) = Δ(2C,1C).
Then, Δc(1C,2C) is asymptotically non-negative since the Kullback-Leibler diver-
gence is also [Cover and Thomas, 1991]. The weights have an important impact
on the merge in the case of unbalanced clusters. A trade-off is achieved between
merging two balanced clusters with similar distributions and merging two different
clusters, one of them having a tiny weight. The best merge is the one with the least
loss of information, as c(M) can be interpreted as the total coding length of the
clustering model plus the data points given the model.

4.3 The Agglomerative Hierarchical Classification

The principle of the agglomerative clustering is to merge successively the clusters
in order to build a tree called dendrogram. The usual dissimilarity measures for the
dendrogram are based on Euclidean distances (Single-Linkage, Complete-Linkage,
Ward, . . . ). Here we build a dendrogram using the criterion variation Δc. Due to the
properties of this dissimilarity measure, the resulting dendrogram is well-balanced.
Indeed, given the trade-off between merging similarly distributed clusters and merg-
ing tiny with large clusters, we obtain clusters with comparable sizes at each level
of hierarchy.

Let us notice that during the agglomerative process, the best merge can relate
either to the cluster variable C or to the points dimensions X or Y . Therefore, the
granularity of the representation of the curves coarsens as the number of clusters
decreases. As a consequence, the dissimilarity measure between two clusters of a
partition “coarsens” together with the coarsening of the other partitions. This makes
sense since fewer clusters in the partition need a less discriminative similarity mea-
sure to be distinguished. It is noteworthy that during the agglomerative process,
partitions are coarsened but not re-optimized by locally moving the bounds of the
intervals. Although this may be sub-optimal, this allows to ease the exploratory
analysis by using the same family of nested intervals at any model granularity.

5 Experiments

In this section, we first highlight properties of our approach using an artificial data
set and then apply it on a real-life data set, next we successively merge the clusters
and finally show what kind of exploratory analysis can be performed.

5.1 Experiments on an Artificial Data Set

A variable z is sampled from an uniform distribution: Z ∼ U (−1,1). εi denotes a
white Gaussian noise: E ∼ N (0,0.25). Let us consider the four following
distributions:



Nonparametric Hierarchical Clustering of Functional Data 25

• f1 : x = z+ εx, y = z+ εy

• f2 : x = z+ εx, y =−z+ εy

• f3 : x = z+ εx, y = αz+ εy

with α ∈ {−1,1}
and p(α =−1) = p(α = 1)

• f4 : x = (0.75+ εx)cos(π(1+ z)),
y = (0.75+ εy)sin(π(1+ z))

(a) f1 (b) f2

(c) f3 (d) f4

Fig. 1 Artificially generated distributions

We generate a collection of 40 curves using each distribution defined previously
(10 curves per distribution). We generate a data set P of 105 points. Each point
is a triple of values with a randomly chosen curve (among 40), a x and a y value
generated according to the distribution related to the curve.

We apply our functional data clustering method introduced in Section 3 on sub-
sets of P of increasing sizes. The experiment is running 10 times per subset of
points that are resampled each time. The graph on Figure 2 displays the average
number of clusters and the number of X and Y intervals for a given number of points
m. For very small subsets (below 400 data points), there are not enough data to dis-
cover significant patterns, and our method produces one single cluster of curves,
with one single interval for the X and Y variables. From 400 data points, the num-
bers of clusters and intervals start to grow. Finally with only 25 points per curve
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on average, that is 1000 points in the whole point data set, our method recovers the
underlying pattern and produces four clusters of curves related to the f1, f2, f3 and
f4 distributions.

Despite the method retrieved the actual number of clusters, below 2000 data
points, the clusters may not be totally pure and some curves misplaced into clus-
ters. In our experiments, for 1000 data points, 2% of the curves are misplaced on
average, while for 2000 points, all the curves are systematically placed in their
actual cluster.

It is noteworthy that by growing the size of the subset beyond 2000 data points,
the number of retrieved patterns is constant and equal to four. By contrast, the num-
ber of intervals grows with the number of data points. This shows the good asymp-
totic behaviour of the method: it retrieves the true number of patterns and exploits
the growing number of data to better approximate the pattern shapes.

Fig. 2 Number of clusters (solid line), number of X intervals (tight dotted line) and number
of Y intervals (spaced dotted line) for a given number of data points m

Regarding the results of the experiments on this data set, it is noteworthy that
MODL does not require the same point locations for each curve. This may be an
usefull property to make a clustering of functionnal data for which the measure-
ment have not been recorded at regular intervals. Moreover, beyond the clustering
of functional data, our method is able to deal with distributions. Thus, it is pos-
sible to detect clusters of multimodal distributions like the ones generated using
f3 and f4.

5.2 Analysis of a Power Consumption Data Set

We use the data set [Hébrail et al., 2010] which consists in the electric power con-
sumption recorded in a personal home during almost one year (349 days). Each
curve consists in 144 measurements which give the power consumption of a day
at a 10 minutes sampling rate. There are 50,256 data points and three features: the
time of the measure X , the power measure Y and the day identifier C. The study of
this data set aims at grouping the days according to the characteristic of the power
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consumption of each day. First, the optimal model is computed using the MODL
approach. Finally the approach is compared to that of [Hébrail et al., 2010].

The MODL-Optimal Discretization. The optimal clustering consists in a data grid
defined by 57 clusters, 7 intervals on X and 10 on Y . This means that the 349
recorded days have been grouped into 57 clusters, each day has been discretized
into 7 time segments and the power measures into 10 power segments. This result
highlights some characteristic days, such as the workdays, the days off or the days
when nobody is at home. The summarized prototypes, represented by piecewise
constant lines, show the average power consumption per time segment. The condi-
tional probabilities of the power segments given the time segments are represented
by grey cells, where the grey level shows the related conditional probability. The
first representation has been chosen in order to simplify the reading of the curve,
and the second to highlight some interesting phenomena such as the multimodal
distributions of data points within the time segments.

(a) (b)

Fig. 3 Two examples among the 57 clusters, the plots display the summarized prototypes and
the conditional probabilities represented by darkened cells. Figure (a) represents the largest
cluster, typifying days where the power consumption is very low and almost constant; the
residents were probably not at home. Figure (b), that is the second largest cluster, shows a
workday with a low consumption during the night and the office hours, and with peaks in the
morning and evening.

Multimodal distributions. In Figure 3.(b), we notice that the prototype is located
between two dark cells for the third time segment. This means that the majority of
the data points have been recorded in the higher and the lower power segments but
rarely in the interval where the prototype is for this time segment. Thus, a multi-
modal distribution of the data points on this time segment is highlighted, which is
confirmed by Figure 4.(b). Let us notice that 3.(a) is another illustration of a multi-
modal distribution for which the points are more frequent in the lower mode than in
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(a) (b)

Fig. 4 Prototypes and stacked curves for the clusters of Figures 3 (a) and (b)

the upper one. Overall, the method extends the clustering of curves to clustering of
distributions.

Merging the Clusters. Whereas the finest data grid yields a rich clustering and use-
ful information for some characteristic clusters, a more synthetic and easily inter-
pretable view of the power consumption over the year may be desirable in some
applications. That is why agglomerative merges have been performed and repre-
sented on Figure 5 by a dendrogram and a Pareto chart presenting the percentage of
kept information as a function of the number of clusters. This measure is defined as
following:

Definition 3. Let M/0 be the null model with one cluster of curves and one interval
per point dimension, whose data grid consists in one cell containing all the points.
Its properties are detailed in [Boullé, 2010]. We denote Mopt the optimal model
according to the optimization of the criterion defined in the Theorem 1 and Mk the
model resulting from successive merges until obtaining k clusters. The percentage
of kept information for k clusters τk is defined as:

τk =
c(Mk)− c(M/0)

c(Mopt)− c(M/0)

The dendrogram is well-balanced and the Pareto chart is concave, which allows
to divide by three the number of clusters while keeping almost 90% of the initial
information.
Comparative analysis of the modeling results. In order to highlight the differences
between the results retrieved using MODL and the approach of [Hébrail et al., 2010],
we propose to study a simplified data grid by coarsening the optimal model un-
til having four clusters, using the post-processing technique detailed in Section 4.
By doing this, 50% of the information is kept and the power consumption and the
time discretizations are reduced to four intervals. Contrary to MODL, the approach
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(a) Dendrogram (b) Pareto chart

Fig. 5 Dendrogram and Pareto chart of kept information per number of clusters

of [Hébrail et al., 2010] requires the user to specify the number of clusters and time
segments. We applied therefore their clustering technique with four clusters and a
total of sixteen time intervals that are optimally distributed over the four clusters.
The clusters retrieved by both approaches are displayed in Figures 6 and 7.

Fig. 6 The four clusters of curves retrieved using MODL with the average (black line) and
the prototype (red solid line) curves. The number in parenthesis above each curve refers to
the number of curves in the cluster.

MODL computes a global discretization for both the time and the power con-
sumption. Conversely, the approach of [Hébrail et al., 2010] makes a discretiza-
tion of the temporal variable only, that is different for each cluster of curves.
In certain cases like the cluster 3 of the Figure 7, it may be suitable to avoid
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over-discretizations, and a few number of time segments is better for a local in-
terpretation. However, having common time segments for all the clusters enables an
easier comparison between the clusters. In the context of the daily power consump-
tion, MODL enables the identification of four periods: the night (midnight - 6.35
AM), the morning (6.35 AM - 8.45 AM), the day (8.45 AM - 6.35 PM) and the
evening (6.35 PM - midnight). We are then able to compare the differences in terms
of power consumption between the clusters of curves for each period of the day.

The approach of [Hébrail et al., 2010] is based on the k-means and thus mini-
mizes the variance between the curves locally to each time segment. It is the reason
why the prototype are close to the average curves in the clusters obtained by this
approach. In MODL, this property is not wanted. As a consequence, the prototype
and the average curves seem less correlated. MODL is based on a joint density es-
timation that yields more complex patterns. To highlight the differences in terms of
patterns, we propose to focus on a specific time segment. The first interval (i.e the
night) found by MODL also exists in the four clusters obtained using the approach
of [Hébrail et al., 2010]. Let us focus on this time segment to investigate on the
distributions of the power consumption measurements for each cluster of curves.
To do that, we compute the probability density function of the power consumption
variable locally to the first time segment, using a kernel density estimator [Sheather
and Jones, 1991]. The results are displayed in Figures 8 and 9.

The density functions for the power consumption are similar for all the four clus-
ters retrieved by the approach of [Hébrail et al., 2010] during the night: for all the
four clusters, we observe that the power measurements are very dense around one

Fig. 7 The four clusters of days retrieved using the approach of [Hébrail et al., 2010] with
the average (black line) and the prototype (red solid line) curves. The number in parenthesis
above each curve refers to the number of curves in the cluster.
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Fig. 8 Kernel density estimation of the power consumption measurements between midnight
and 6.35 AM for each cluster of curves retrieved using MODL
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Fig. 9 Kernel density estimation of the power consumption measurements between midnight
and 6.35 AM for each cluster of curves retrieved using the approach of [Hébrail et al., 2010]

unique low consumption value that corresponds to the year average power consump-
tion of the studied time segment. As for MODL, the density functions are very sim-
ilar for the clusters 1 and 3 and also very similar to the ones displayed in Figure 9.
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January February March April May June
1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25
2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26
3 10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27
4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
5 12 19 26 2 9 16 23 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29
6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30
7 14 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1

July August September October November December
2 9 16 23 30 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31
3 10 17 24 31 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25
4 11 18 25 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26
5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27
6 13 20 27 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28
7 14 21 28 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29
8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30

Fig. 10 Calendar of the year 2007 retrieved using MODL. Each line represents a day of the
week. There are four colors (one per cluster), the redder the color, the higher the average
power consumption of the cluster is. The white days correspond to days with missing data.

However, the cluster 4 is different in that the density peak has been translated to
an upper power interval. Finally, the cluster 2 highlights multimodalities with three
power values around which the measurements are dense. This complex pattern has
been retrieved by MODL since it based on joint density estimation; the competing
approach cannot track such patterns.

The curves of Figures 6 and 7 do not clearly highlight the differences between
the results. Displaying the calendar with different colors for the 4 clusters gives a
more powerful reading of the differences between the results obtained using both
methods. This is displayed in Figures 10 and 11.

The calendar of the clusters retrieved using MODL (see Figure 10) emphasizes a
certain seasonality. Indeed, the way the curves are grouped highlights a link with the
weather and the temperatures in France this year. The summer, from June to Septem-
ber, is a season when the temperatures are usually high. On the calendar, there are
two clusters corresponding to this period. The rest of the year, the temperatures are
lower and lead to an increase of the power consumption which is materialized by
the two other clusters. It appears that in late April and early May, the temperature
was exceptionally high this year: these days have been classified into the summer
clusters. Interestingly, the cluster shown in Figure 3.(a) where nobody was at home
and the power consumption is low, has been included into a summer cluster (periods
from the 23th of February to the 2nd of March and from the 29th of October to the
3rd of November).

For its part, the calendar obtained using the approach of [Hébrail et al., 2010]
does not show a seasonality as the one retrieved using MODL does. The clusters
are more distributed all over the year. The dark blue cluster (i.e the one with the
higher average power consumption) groups however only cold winter days and can
be compared to the reddest cluster of the Figure 10. The palest cluster (i.e the one
with the lower average power consumption) characterizes also the warmer days and
the days where there is nobody at home (see Figure 3.(a)). As for the other ones with
intermediate average power consumption, they do not show any correlation with the
period of the day and thus do not allow an immediate interpretation.
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January February March April May June
1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25
2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26
3 10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27
4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
5 12 19 26 2 9 16 23 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29
6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30
7 14 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1

July August September October November December
2 9 16 23 30 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31
3 10 17 24 31 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25
4 11 18 25 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26
5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27
6 13 20 27 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28
7 14 21 28 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29
8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30

Fig. 11 Calendar of the year 2007 retrieved using the approach of [Hébrail et al., 2010]. Each
line represents a day of the week. There are four colors (one per cluster), the bluer the color,
the higher the average power consumption of the cluster is. The white days correspond to
days with missing data.

All in all, both approaches track different patterns and consequently retrieve dif-
ferent clustering schemes. On the one hand, MODL requires no user-defined param-
eters and is suitable when there are no prior knowledges of the data. Moreover, the
approach is supplemented by powerful exploratory analysis tools allowing a global
interpretation of the results at different granularity levels. On the other hand, the
approach of [Hébrail et al., 2010] enables a thorough understanding of the clusters
by making a time decomposition locally to every cluster. In this practical case study,
it appears that both methods are complementary.

6 Conclusion

In this paper, we have focused on functional data exploratory analysis, more par-
ticularly on curves clustering. The method that is proposed in this paper does not
consider the data set as a collection of curves but rather as a set of data points with
three features, two continuous, the point coordinates, and one categorical, the curve
identifier. By clustering the curves and discretizing each point variable while se-
lecting the best model according to a Bayesian approach, the method behaves as a
nonparametric estimator of the joint density of both the curve and point variables.
In case of large data sets, the best model tends to be too fine grained for an easy in-
terpretation. To overcome this issue, a post-processing technique is proposed. This
technique aims at merging successively the clusters until obtaining a simplified clus-
tering while losing the least accuracy. This process is equivalent to making a hierar-
chical agglomerative classification, whose dissimilarity measure is a weighted sum
of Kullback- Leibler divergences from the new cluster to the two merged clusters.
Experimentations have been conducted on an artificial data set in order to highlight
interesting properties of the method and on a real world data set, the power con-
sumption of a home over a year. On the one hand, the finest model highlights inter-
esting phenomena such as multimodal distributions for some time segments among
the same cluster. As for the post-processing technique, a well-balanced dendrogram



34 M. Boullé, R. Guigourès, and F. Rossi

and a concave Pareto chart emphasize the ability of the finest model to be simplified
with few information loss, leading to a more interpretable clustering. An interpreta-
tion of these results has been made focusing on the differences with an alternative
approach.

Beyond clustering of curves, the proposed method is able to cluster a collection
of distributions. In future works, we plan to extend the method to multidimensional
distributions by considering more than two point dimensions.
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